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Abstract

Query-based summarization problem is an interesting problem in the text summarization

field. On the other hand, the reinforcement learning technique is popular for robotics, and

becoming accessible for the text summarization problem in the last couple of years (Narayan

et al., 2018). The lack of significant works using reinforcement learning to solve the query-

based summarization problem inspired us to use this technique. While doing so, We also

introduce a different approach for sentence ranking and clustering to avoid redundancy in

summaries. We propose an unsupervised extractive summarization method, which pro-

vides state-of-the-art results on some metrics. We develop two abstractive multi-document

summarization models using the reinforcement learning technique and the transformer

model (Vaswani et al., 2017). We consider the importance of information coverage and

diversity under a fixed sentence limit for our summarization models. We have done sev-

eral experiments for our proposed models, which bring significant results across different

evaluation metrics.
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Chapter 1

Introduction

“Text Summarization is the process of distilling the most important information from one

or more texts to produce an abridged version for a particular task and user.” (Section 23.3

of Jurafsky and Martin (2008))

We are living in a digital information world where we need to pass information as

fast as possible at a minimum cost. Everything is at our hands with the assistance of the

internet and digital media. The internet consists of huge amount of textual data with an

exponential growth rate. A single query in the search engine generates thousands of results

within a fraction of a second. Sometimes, it becomes difficult to choose the best result from

the varieties of options and topics. These huge amounts of information might cause data

redundancy and make it difficult to get concise information. Sometimes, going through

large documents might cause a user to miss important information. From these particular

concerns, the idea of developing automatic text summarization systems got focused, where

the model has to generate a short summary from a single or a related set of documents.

After a while, rather than getting the summary from the whole document, people started

to feel the urge to get a precise summary based on a particular topic. From that thinking,

the idea of query-based summarization gets the attention in the field of Natural Language

Processing (NLP).

A quality summary includes most of the important information from the source doc-

ument maintaining the readability and grammatical structure. For extractive summaries,

sentences are directly chosen from the source text. So, sometimes it is quite impossible to

1



1.2. THESIS OVERVIEW

express the actual idea, because we do not consider the hidden meaning of the sentences.

On the other hand, in the process of abstractive summary generation new words and sen-

tences are created, which might compromise the sentence structure and readability. In this

thesis, we have proposed some approaches in the area of query-based text summarization

focusing on solving these problems.

1.1 Contribution

In this thesis, we propose a few models. The summary of our contributions in this thesis

are as follows:

• We design an unsupervised sentence ranking model, which is simple and effective.

• We propose an unsupervised extractive summarization model. To the best of our

knowledge, this one has the best result as an unsupervised method on DUC 20051,

DUC 20062 and DUC 20073 datasets based on ROUGE-2 evaluation metrics.

• We propose an abstractive summarization model using the Transformer model (Vaswani

et al., 2017).

• We develop a reinforcement learning-based approach to solve the query-based ab-

stractive summarization problem. To the best of our knowledge, our model is the first

approach with reinforcement learning to solve the query-based abstractive summa-

rization problem.

1.2 Thesis Overview

This thesis is organized as follows. In Chapter 2, we provide an overview of automatic

text summarization. We also provide a brief introduction to the deep learning techniques,

especially used in our text summarization methods. In Chapter 3, we present our model for
1https://duc.nist.gov/duc2005/
2https://duc.nist.gov/duc2006/
3https://duc.nist.gov/duc2007/

2



1.2. THESIS OVERVIEW

sentence ranking and text clustering, followed by the details of our unsupervised extrac-

tive summarization model. We also include our approaches for the abstractive summariza-

tion using a reinforcement learning-based model and a tensor2tensor4 based Transformer

model (Vaswani et al., 2017) at sentence level in this chapter. In Chapter 4, we include

the experimental results of our summarization models. We conclude our thesis with an

overview of our works and the future direction in Chapter 5.

4Tensor2tensor code library link: https://github.com/tensorflow/tensor2tensor

3



Chapter 2

Background

2.1 Text Summarization: Overview of Recent Works

The automated text summarization task intends to find the most relevant information in a

document, and presents it in a short or condensed form. A good summary is one that retains

the most vital contents from the source document or a collection of related documents while

being non-redundant, coherent and grammatically readable (Yao et al., 2017).

Based on summary generation process, summarization can be categorized into two

classes: Abstractive Summarization and Extractive Summarization. To generate an abstrac-

tive summary, extensive natural language generation is needed including but not limited to:

paraphrasing, word deletion, sentence fusion etc (Chali et al., 2017). So, it is compara-

tively easy to generate extractive summaries, in which important sentences from the source

text are selected without any alteration to generate a summary. Some of the commonly

used abstractive summarization methods are sentence compression, lexical paraphrasing,

and syntactic reorganization.

We can classify summarization into two classes based on the number of the source

documents, namely single-document summarization and multi-document summarization.

Because of the overlapping information between the documents of a particular topic, the

multi-document summarization is more difficult to deal with than the single document sum-

marization. However, the extractive techniques may generate a redundant summary or bi-

ased to any particular source document in the case of multi-document summarization, as all

of the source documents usually contain similar information (Nayeem and Chali, 2017a).

4



2.1. TEXT SUMMARIZATION: OVERVIEW OF RECENT WORKS

We can also classify the summarization problem into generic summarization and query-

based summarization. The generic summarization problem has only a set of source docu-

ments, and we need to generate the summary, which will represent the important informa-

tion from the whole set of documents. For the query-based summarization problem, a set

of query sentences is also provided along with the set of source documents. We need to

generate the summary from the source documents, which will include the important infor-

mation from the source documents related to the query. So, the generic summary provides

the gist of the source documents, while the query-based summary represents the gist of the

source documents based on the topic provided by the query.

In the following subsections, we will discuss about the recent works and techniques on

generic summarization for both extractive and abstractive methods; then, we will continue

for the query-based summarization techniques.

2.1.1 Extractive Summarization

Since the beginning of this century, a number of approaches have been taken for an au-

tomated extractive summary generation that is the combination of a collection of machine

learning and graph-based technique. Computing sentence importance for text summariza-

tion, LexRank (Erkan and Radev, 2004) and TextRank (Mihalcea and Tarau, 2004) are

graph-based methods. The RegSum system (Hong and Nenkova, 2014) makes use of a

supervised model that predicts word importance. Instead of adding sentences greedily to

form a summary, considering multi-document summarization as a sub-modular maximiza-

tion problem was proven successful by Lin and Bilmes (2011). One of the most commonly

used practices is to formulate the problem as integer linear programming (ILP). There-

fore, concept-based ILP (Gillick and Favre, 2009; Nayeem and Chali, 2017a) was proposed

where the aim was to maximize the summation of the weights of the concepts present in

the summary.

Among the recent works on neural networks, an attention-based encoder-decoder was

5



2.1. TEXT SUMMARIZATION: OVERVIEW OF RECENT WORKS

proposed by Cheng and Lapata (2016), and a simple recurrent network-based sequence

classifier was used by Nallapati et al. (2017) to solve the problem of extractive summa-

rization. However, they were limited to single document summarization, where sentences

of summaries are ordered according to their position in the original document. Parveen

and Strube (2015) and Parveen et al. (2015) proposed graph-based techniques to undertake

coherence, which is also limited to single-document summarization. A multi-document

summarization system was proposed by Wang et al. (2016), which combines both coher-

ence and informativeness.

In the past few years, reinforcement-learning based summarization models have become

popular in the field of natural language processing. Ryang and Abekawa (2012) proposed a

framework to solve the multi-document summarization problem using reinforcement learn-

ing, which was the first attempt in this field. Later on Rioux et al. (2014) updated the model

with different reward functions. Narayan et al. (2018) proposed an encoder-decoder based

sentence ranking method using the ROUGE metric as the reward function.

2.1.2 Abstractive Summarization

Abstractive summarization is much more difficult in comparison to extractive summary,

as it involves advanced techniques; namely: content organization, meaning representation,

sentence fusion, sentence compression, and paraphrasing. In recent days, there has been

a significant growing interest in document summarization. In this method, the source sen-

tences are compressed into smaller sentences (Clarke and Lapata, 2006, 2008; Filippova,

2010) as a first step to generate an abstractive summary. The sentences that have been

compressed from the original document only using the word deletion method are included

in the techniques of compressive summarization. Sentence compression that is generated

from more than one sentence is known as Multi-Sentence Compression (MSC). The major-

ity of the previous MSC approaches depend on syntactic parsing to build the dependency

tree for each related sentence in a cluster producing grammatical compressions (Filippova

6



2.1. TEXT SUMMARIZATION: OVERVIEW OF RECENT WORKS

and Strube, 2008). It is mentioned that the syntactic parsers are not available for every

language. That is why, an alternative word graph-based approach was proposed by Filip-

pova (2010), which only requires a list of stopwords and a POS (Parts of Speech) tagger.

Here, a directed word graph is built where nodes represent the words, and edges represent

the adjacency between words in a sentence. Then the compressed sentences are generated

by finding the k-shortest path in the word graph. Boudin and Morin (2013) refined Fil-

ippova’s approach by re-ranking the fusion candidate paths according to the key phrases,

which helps generate more informative sentences. However, in order to improve the in-

formativity, grammaticality has been sacrificed in these works (Nayeem and Chali, 2017b;

Nayeem, 2017).

Banerjee et al. (2015) used the sentence fusion approach of Filippova (2010), and com-

bined it with Integer Linear Programming (ILP) sentence selection to develop an abstrac-

tive multi-document summarization system. Following Banerjee et al. (2015)’s work, sev-

eral approaches were proposed recently with slight modifications. Shafiei Bavani et al.

(2016) exploited Multiword Expressions (MWE) to generate more informative compres-

sions. Tuan et al. (2017) included syntax factors along with Banerjee et al. (2015) for

improving the performance of their model. Still, all the aforementioned systems attempt to

generate compressions by making a copy of the source sentence words without any para-

phrasing.

In recent days, end-to-end training with encoder-decoder neural networks has estab-

lished great success for abstractive summarization (Bahdanau et al., 2014). To solve the

sentence summarization task, these systems have followed encoder-decoder with attention

(Bahdanau et al., 2014; Luong et al., 2015) models from the area of machine translation.

Rush et al. (2015) were the first to use neural sequence-to-sequence learning to generate

a headline from a single document. However, this research under the term sentence sum-

marization (Rush et al., 2015), which only can generate a single sentence is somewhat

misleading, and is termed as text summarization in some research works (Chopra et al.,

7



2.1. TEXT SUMMARIZATION: OVERVIEW OF RECENT WORKS

2016; Nallapati et al., 2016; Ma et al., 2017; Nayeem et al., 2018; Zhou et al., 2017; Suzuki

and Nagata, 2017). The previously mentioned models have several limitations: one of

them is that the produced output is very short (about 75 characters). Similar to headline

generation, the model also produces sentences without considering grammatical properties

during generation. Moreover, there are also some attempts that use the CNN/DailyMail

dataset (Hermann et al., 2015) as supervised training data for generating a multi-sentence

summary from a single document (Li et al., 2017b; See et al., 2017; Paulus et al., 2017a;

Narayan et al., 2018; Chali et al., 2017). The recently proposed abstractive summarization

models generate compressed summaries by deleting the words from a single source docu-

ment. The models do not involve any direct paraphrasing. Therefore, any new words are

not generated that are different from the source document words (other than morphological

variation), and this is also pointed out by the researcher’s own experimental results. Some

of the researchers make use of a neural network-based framework to take care of the sum-

marization problem in a multi-document setting (Yasunaga et al., 2017; Li et al., 2017a).

However, Yasunaga et al. (2017)’s work is only limited to extractive summarization while

Li et al. (2017a)’s work is limited to the compressive summary generation which uses an

ILP-based model where there have some great possibilities of the existence of redundant

sentences in the summary side. Recently, Fuad et al. (2019) proposed an attention-based

neural sentence fusion model to solve the multi-doc abstractive summarization problem,

which achieves the state-of-the-art results in different evaluation metrics, and solves the

redundancy problem to a great extent.

Paulus et al. (2017b) proposed a neural intra-attention model combined with reinforce-

ment learning. This was the first significant effort in the abstractive text summarization

problem using reinforcement learning. Liu et al. (2018) proposed a different approach of

using the generative adversarial network to solve the abstractive summarization problem.

Later on, Chen and Bansal (2018) proposed a method where they built an extractor agent to

get the extractive summary from the source, and then used a sequence-to-sequence encoder-
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decoder model to convert that summary into a concise abstractive one. At the same time,

Pasunuru and Bansal (2018) proposed a method of using the multi-reward function for re-

inforcement learning to solve the abstractive summarization problems which opens a great

opportunity of solving the summarization problems using reinforcement learning.

2.1.3 Query Focused Summarization

The query-based summarization task was first introduced in the Document Understand-

ing Conference (DUC) (Dang, 2005) in 2005, which was extended in 2006 and 2007. The

task of query-based summarization provides us the relevant source documents paired with a

set of queries. The expected output is a short summary generated from the source document

while answering the question or focusing on the topic mentioned in the queries. Daumé III

and Marcu (2006) proposed a Bayesian model to solve the query-based summarization

model, which was one of the first recognized works in this field. Fisher and Roark (2006)

proposed a supervised sentence ranking approach to solve the DUC 2006 task, and achieved

a state-of-the-art result. Later Ouyang et al. (2011) made the initial attempt to introduce the

regression model to solve the query-based summarization problems. Recently, Feigenblat

et al. (2017) provided an unsupervised method named Cross Entropy Summarizer (CES),

which achieved the state of the art ROUGE scores on DUC 2005-7 datasets. Until 2017, the

topic-based DUC datasets were the only option to work with the query-based summariza-

tion problem, and all of those previous works were focused on extractive summarization.

After that Nema et al. (2017) created a dataset from Debatepedia encyclopedia, which in-

cludes the pro and con arguments and quotes on different debate topics. They also proposed

an attention-based abstractive summarization model to solve the problem with their dataset.

2.2 Summary Evaluation

We have used various automatic evaluation metrics to evaluate our models. Those are

mentioned as follows:
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2.2.1 ROUGE

To determine the accuracy of a machine-generated summary, we compare it with a ref-

erence or a number of reference summaries (generally human-annotated). Recall-Oriented

Understudy for Gisting Evaluation (Lin, 2004) (ROUGE)5 is an automatic tool which is

used widely for this purpose. There are four different ROUGE metrics - namely ROUGE-N

(1,2,3,4), ROUGE-L and ROUGE-S.

• ROUGE-N: A summary evaluation that measures uni-gram (one word), bi-gram (two

words), tri-gram (three words) and higher-order n-gram overlap.

• ROUGE-L: A summary evaluation that measures the longest matching sequence of

words using the Longest Common Sub-sequence (LCS).

• ROUGE-S: ROUGE-S is used to evaluate the summaries which allows arbitrary gaps

between any pair of words. It is also known as skip-gram co-occurrence. For exam-

ple, given any pair of words, we allow a maximum of two gaps in between them to

measure the ROUGE-S score using skip-bigram. For instance, if the phrase is “I like

to eat burgers,” the skip-bigrams would be “I like, I to, I eat, like to, like eat, like

burgers, to eat, to burgers, eat burgers”.

For multi-document summarization, the most frequently used metrics among the above

mentioned is ROUGE-N, where the number of overlapping n-grams is counted to evaluate

between the system generated summary and the reference summaries. ROUGE-N can be

defined as follows:

ROUGE-N(Sg,Ri) =
∑sr∈Ri ∑gn∈sr Countmatch(gn)

∑sr∈Ri ∑gn∈sr Count(gn)
(2.1)

where, Sg = system generated summary, sr = reference summary sentence, n = length

5ROUGE package link: http://www.berouge.com
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of the n-gram, gn = n-grams, Count(gn) = maximum number of n-grams in a system

generated summary, and Countmatch(gn) is the maximum number of n-grams in the system

generated summary that matches with the set of reference summaries (Lin, 2004).

While evaluating, if multiple reference summaries are used, a pairwise summary-level

ROUGE-N score is computed between a candidate system generated summary Sg and every

human annotated reference Ri from the reference set,

R = {R1,R2, . . . ,Rn} (2.2)

The maximum among the summary-level ROUGE-N scores is the final ROUGE-N

score. This can be described as follows:

ROUGE-Nmulti = argmax
Ri∈R

ROUGE-N(Sg,Ri) (2.3)

Here, n is the number of reference summaries.

For instance:

System Summary (system generated): People like the extra crispy french fries from Mc-

Donald’s.

Reference Summary (human annotated): People like McDonald’s extra crispy french

fries.

The precision and recall can be computed using the overlap of words to get a good

quantitative value. In terms of ROUGE, recall means how much of the reference summary

is presented by the system generated summary. If the individual words are considered only,

then the recall can be computed as:

ROUGE-1 (recall) =
number o f overlapping words

total number o f words in the re f erence summary
=

7
7
= 1.0 (2.4)

It is easily identifiable that all the words in the human-annotated reference summary
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have been captured in the machine-generated system summary. But a machine-generated

summary (i.e., system summary) can be exceedingly long if it captures all of the words from

the human-annotated reference summary. In the system summary, most of the words might

be useless, resulting in a summary with information that is redundant and repetitive. The

precision can be defined as the amount of the system summary that was actually relevant or

needed. For the same example, precision is measured as:

ROUGE-1 (precision) =
number o f overlapping words

total number o f words in system summary
=

7
9
= 0.78 (2.5)

This means 7 out of the 9 words in the system summary were relevant. Let us assume,

the following system summary instead of the previous example:

System Summary 2 (machine generated): People like McDonald’s french fries because

they are extra crispy and tasty.

The Precision is:

ROUGE-1 (precision) =
7

12
= 0.58 (2.6)

It is observed that the precision score has now decreased. This is the result of a few

redundant words appearing in the system summary. In the case of generating summaries

that are concise in nature, precision is really crucial. Therefore, the best way to evaluate a

summary is computing both the Precision and Recall. The system summaries are some-

times forced to be concise given some constraints (such as length limit constraint), and

using just the recall should be sufficient since precision is a matter of less concern in this

case. In this thesis, the limited length recall measure is only reported, and the performance

has also been reported in terms of ROUGE-SU4, where S means skip-bi-gram (match two

non-contiguous words with other words in between) allowing rephrasing and sentence reor-

ganization. To evaluate abstractive summaries, ROUGE-SU4 can be called a good measure
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compare to the other ROUGE metrics. For other in-between words, U4 has been used,

which means a maximum of four uni-gram words is allowed within a skip-bi-gram.

2.2.2 METEOR

The METEOR metric (Banerjee and Lavie, 2005) was first proposed as an evaluation

metric that evaluates at the sentence level more effectively. Before the computation of

the METEOR score, at first, an alignment between the system generated sentence and the

reference sentence is mapped. For this mapping, each uni-gram in the system generated

sentence is given 0 or 1 compared to the uni-gram in the reference sentences. The alignment

considers stems, synonyms and paraphrase matching in addition to exact matches. Based on

the mapping, uni-gram precision and recall are computed to measure the METEOR score.

We can define the precision (P) and recall (R) as m/g and m/r; where g and r are

number of words in generated summary and reference summary, and m is the number of

matched uni-gram between the reference summary and the generated summary. Then we

can calculate the Fmean as follows:

Fmean =
PR

αP+(1−α)R
(2.7)

where, Fmean is the harmonic mean between precision and recall. We consider α as 0.1 here,

so that, the weight of recall is 9 times as high as the weight of precision. We choose this

weight, because recall is more important than the precision in summarization task.

We introduce a penalty function which can be defined as follows:

p = ω(
g
m
) (2.8)

here, ω is considered a value between 0 and 1 to scale the amount of penalty. Finally we

calculate the METEOR score using the following formula:
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METEOR = (1− p)Fmean (2.9)

2.3 Keyword Extraction

Keyword extraction is the process of collecting the most important and relevant words

or sub-sentences from a text. While working with text summarization tasks, keyword ex-

traction is one of the most crucial and important tasks which can help the readers understand

the text in a short time. In text summarization, we collect the gist of the source text by gen-

erating some sentences, which represents the meaning of the source text. If we can identify

the keywords from a text, it kind of performs as a highlighter of the text where the reader

can focus more on the important words or phrases, which would be helpful for them to

understand the message of the text in a faster way.

A simple keyword extraction algorithm mainly works in three steps:

• Candidate Listing: At first, it identifies all the phrases, words and terms that can be

considered as keywords.

• Properties Identification: After listing all the candidates, the second step is to cal-

culate the properties of those candidates to confirm whether it is a keyword or not.

• Sorting and Finalize Keywords: Then, the algorithm gives a score to all the can-

didates based on their properties, and sort them according to their scores. While

scoring, it needs to prioritize a candidate’s length, impact on the sentence, and its

probability to be a keyword.

2.3.1 RAKE Algorithm

Rose et al. (2010) proposed an automatic keyword extraction method named Rapid

Automatic Keyword Extraction (RAKE), which got popularity among the researchers for

the summarization task. We describe the details working process of RAKE algorithm here.
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Assume we need to get the keywords from the following text from the abstract of this

thesis:

“reinforcement learning technique is popular for robotics, and become accessible for

the text summarization problem in the last couple of years. The lack of significant works

with reinforcement learning inspired us to solve the query-based summarization problem

using this technique.”

Firstly, RAKE algorithm will convert this text into tokens. So we will have the following

list of tokens:

“reinforcement”, “learning”, “technique”, “is”, “popular”, “for”, “robotics”, “and”, “be-

come”, “accessible”, “for”, “the”, “text”, “summarization”, “problem”, “in”, “the”, “last”,

“couple”, “of”, “years”, “the”, “lack”, “of”, “significant”, “works”, “with”, “reinforce-

ment”, “learning”, “inspired”, “us”, “to”, “solve”, “the”, “query”, “based”, “summariza-

tion”, “problem”, “using”, “this”, “technique”

Then RAKE removes the stopwords from these tokens. After removing the stopwords,

the resulting list of tokens will be like below:

“reinforcement”, “learning”, “technique”, “popular”, “robotics”, “become”, “accessi-

ble”, “text”, “summarization”, “problem”, “last”, “couple”, “years”, “lack”, “significant”,

“works”, “reinforcement”, “learning”, “inspired”, “solve”, “query”, “based”, “summariza-

tion”, “problem”, “using”, “technique”

Now, if we list down the candidate keywords, we will get the following list: “reinforce-

ment learning technique”, “popular”, “robotics”, “become accessible”, “text summarization

problem”, “last couple”, “years”, “lack”, “significant works”, “reinforcement learning in-

spired”, “solve”, “query based summarization problem using”, “technique”

Now RAKE algorithm will provide scores for each of the keywords based on their

property. We will show the process for the candidate “reinforcement learning technique”

here. The formula can be defined as follows:
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totalScore(candidate) =
n

∑
i=1

score(wi) (2.10)

score(w) = degree(w)/ f requency(w) (2.11)

where for a particular word w, degree function provides the number of words it associates

with including itself. And frequency function provides the number of occurrences in the

text. For example, the word “reinforcement” has frequency of two (2) and degree of four

(4). In this way, we can calculate the totalScore for “reinforcement learning technique” as

follows:

score(rein f orcement) = degree(rein f orcement)/ f requency(rein f orcement)

= 4/2

= 2

score(learning) = degree(learning)/ f requency(learning)

= 6/2

= 3

score(technique) = degree(technique)/ f requency(technique)

= 3/2

= 1.5

totalScore(rein f orcement learning technique) = 2+3+1.5

= 6.5

The algorithm also considers “reinforcement”, “learning”, “technique” and their bi-

grams as candidate keywords and gives them relevant scores. Then RAKE algorithm sorts

the keywords in descending order and provides us the list with corresponding scores.
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2.4 Sentence Similarity

Sentences can be similar in many aspects; for example, sentences can have similar struc-

tures, the same topics, or the same ideas. There are several Natural Language Processing

(NLP) tasks which require dealing with similar sentences. For example, question-answer

related sites like Quora6 or StackOverflow7 may need to determine whether a similar or

same question has been asked before. Based on the requirement, there are many ways

to calculate the similarity between two sentences. In this thesis, two-sentence similarity

approaches are discussed.

2.4.1 Jaccard Similarity

Jaccard similarity is computed using the Jaccard Index (Real and Vargas, 1996) between

two sentences. Sometimes, Jaccard Index is also referred as “Intersection over Union”. To

compute the Jaccard Similarity between two sentences, both of the sentences are repre-

sented as sets where the Jaccard similarity of two sets A and B can be found using:

jaccard similarity(A,B) =
|A

⋂
B|

|A
⋃

B|
(2.12)

Here, A
⋂

B represents the number of common words between the set A and B; and A
⋃

B

represents total number of distinct words in the set A and B.

2.4.2 Cosine Similarity

Cosine similarity (Mihalcea et al., 2006) is usually measured between two non-zero

sentence vectors. If a sentence only contains the stopwords, it might create a zero vector.

Cosine similarity ignores these vectors while computing the similarity score. Cosine Sim-

ilarity is basically the cosine distance between two vectors. To compute cosine similarity,

the sentences first need to be converted into a vector representation, and this process can be

6https://www.quora.com/
7https://stackoverflow.com/

17



2.5. WORD EMBEDDING

performed in various ways. There is a detailed discussion about the vector representations

in Section 2.5. After the conversion of sentences into vectors, the similarity between two

vectors si and s j is computed using:

cosine similarity(si,s j) =
si · s j

‖si‖
∥∥s j

∥∥ (2.13)

2.5 Word Embedding

Word embedding is the process of using a vector representation for a word. It is a pop-

ular method which is used in many NLP applications; for example document classification,

question answering and text summarization. The term “Word Embedding” was first intro-

duced by Bengio et al. (2003), where a word embedding model was proposed by training

a neural language model. In this section, we discuss some of the popular word embedding

techniques.

2.5.1 One-Hot Vectors

Before building different NLP models, the similarity between two words, sentences, or

even paragraphs has to be calculated. Through a vector space model, the one-hot vector

is a representation of all the words. The vector representation has the corresponding entry

in the vector for each word as 1 (present), and all other entries as 0 (absent). The size of

the dictionary or vocabulary will be the length of the one-hot vectors. Cosine similarity on

one-hot vectors is not capable of capturing semantic information when documents say the

same thing in entirely different words. Let us consider these two following news examples:

• Obama speaks to the media in Illinois.

• The President greets the press in Chicago.

These two sentences do not have any word in common except for the stopwords such

as the and in, which is not crucial for measuring semantic similarity. According to the
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Figure 2.1: Visualization of word to word similarity of all non-stop words from both head-
lines is embedded into a Word2Vec space (Kusner et al., 2015).

one-hot vectors representation, their cosine distance would be maximal. To measure their

semantic similarity accurately, further information is needed, which can be learned using

large amounts of data through machine learning models (Kusner et al., 2015). Figure 2.1

visualizes the word to word similarity of the example.

2.5.2 Word2Vec

In distributional semantics, vector space models have been used since the 1990s to

estimate continuous representations of words. Latent Dirichlet Allocation (LDA) (Blei

et al., 2003) and Latent Semantic Analysis (LSA) (Landauer et al., 1998) are two examples.

Word2Vec was proposed by Bengio et al. (2003), which was also the introduction of the

idea of word embeddings. The language models build the joint probability P(w1, . . . ,wT )

of a sentence, where wi represents the ith word in the sentence. In the language model,

grammatical and meaningful sentences are assigned with higher probabilities, and the lower

probabilities are assigned to meaningless sentences. For example, let us assume that we are

searching for something on the Internet using Figure 2.2; if we write “How long is a”
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Figure 2.2: N-gram neural language model (Nayeem, 2017).

the search engines would suggest the next words “football field.” This happens because,

according to the language model, the probability of “How long is a football field” among

all words in the target vocabulary is very high.

Figure 2.3: Visualization of semantic relationships, e.g. male-female, verb tense and even
country-capital relationships between words (Mikolov et al., 2013b).

To create high-dimensional (50 to 300) representations of words in an unsupervised

manner from a large amount of text, Word2Vec (Mikolov et al., 2013b,a) is one of the

most popular models to learn word embeddings. As illustrated in Figure 2.3, Word2Vec

embeds words in a continuous vector space in such a way that semantically similar words
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are placed as nearby points to each other. Recently, it has been shown that the word vectors

are able to capture many linguistic regularities. For example, vector arithmetic operations

[vector (“Paris”) - vector (“France”) + vector (“Italy”) ] implement a vector that is very

close to vector (“Rome”), and [vector (“king”) - vector (“man”) + vector (“woman”) ] is

close to vector(“queen”). Mikolov et al. (2013b) defined two architectures for learning word

embeddings, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram model.

Figure 2.4: CBOW model (left) and Skip-gram model (right) from (Mikolov et al., 2013b).

Continuous Bag-of-Words model (CBOW): The CBOW model can predict the current

word ,considering the previous N words and the next N words after it. The language models

can only predict based on the past words, which gives the CBOW model an advantage over

those language models. The structure of the model is shown in Figure 2.4 (left) where N=2.

Skip-gram model: Instead of using the surrounding words, skip-gram uses the centre

word to predict the surrounding words as can be seen in Figure 2.4 (right).

2.5.3 GloVe

Unlike Word2Vec, GloVe (Pennington et al., 2014) takes advantage of two primary

families of word vectors namely: global matrix factorization methods (e.g. LSA (Landauer

et al., 1998)) and local context window-based methods (e.g. skip-gram (Mikolov et al.,
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2013b)). Again, GloVe is a count based model whereas Word2Vec is a prediction based

model. GloVe first builds a co-occurrence matrix for the whole dataset. Then it is factorized

to yield matrices for word vectors and context vectors.

Assume we have a corpus of W words. Then GloVe will generate a co-occurrence

matrix M of W ∗W dimension. Here the ith row and jth column represents the number of

time words i and j have co-occurred in the sentences in that corpus. If we consider a single

sentence- “The university awarded the students”, the co-occurrence matrix will look like

this:

Table 2.1: Co-occurrence Matrix

the university awarded students
the 0 1 1 1

university 1 0 1 0
awarded 1 1 0 0
students 1 0 0 0

Then GloVe will determine the semantic similarity between words. Let us assume we

have two reference words “ice” and “steam” and we want to measure the similarity of a

different word with these two words.

Table 2.2: Co-occurrence probabilities for target words ice and steam with selected context
words from a 6 billion token corpus. (Pennington et al., 2014)

Probability and Ratio k=solid k=gas k=water k=fashion
P(k|ice) 1.9×10−4 6.6×10−5 3.0×10−3 1.7×10−5

P(k|steam) 2.2×10−5 7.8×10−4 2.2×10−3 1.8×10−5

P(k|ice)/P(k|steam) 8.9 8.5×10−2 1.36 0.96

where P(k|i) is defined as probability of getting the word k with the word i, together

in a sentence. We calculate this value by dividing the number of times those two words

appeared together from the Co-occurrence matrix (Mik) by the total number of times the

word i appears in the corpus (Mi = ∑
W
j=1 Mi j). In Table 2.2, we present the probability of

a set of third word (k) with respect to the words “ice” and “steam”. From the Table 2.2

we can observe that, if only one of the given words (i.e., ice and steam) is similar to the
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third word (when k=solid and k=gas) the value Pik/Pjk becomes either very high (k=solid)

or very small (k=gas). If both of the words are similar to the third word or none of them

are similar to the third word, the value Pik/Pjk becomes close to 1. We will define the

probability function using the following formula:

F(wi,w j,wk) =
Pik

Pik
(2.14)

where wi, w j and wk are word vectors. One of the goals of GloVe is to create vectors with

meaningful dimensions using simple arithmetic. Firstly, we want the function F to present

the ratio Pik
Pik

in the word vector space. Since vector spaces are inherently linear structures,

we can consider the function F as the difference of two target words. For example, we can

say that wMadrid−wSpain +wCanada = wOttawa. So, we can modify the Equation 2.14 to,

F(wi−w j,wk) =
Pik

Pik
(2.15)

Now, we can see that the left-hand side of the equation is vector, and the right-hand side

is scalar. To avoid this issue we take the dot product of the arguments,

F
(

dot(wi−w j,wk)
)
= F

(
(wi−w j)

T wk

)
=

Pik

Pik
(2.16)

Now we use two steps to determine F and simplify the equation:

• By taking the log of the probability ratios, we can convert the ratio into a subtraction

between probabilities.

• By adding a bias term for each word, we can capture the fact that some words just

occur more often than others.

Now, if we assume F has a homomorphism property between the additive (R,+) and

multiplicative groups (R>0,×),

23



2.5. WORD EMBEDDING

F
(
(wi−w j)

T wk

)
=

F(wi
T ,wk)

F(w jT ,wk)
(2.17)

From which we can solve the Equation 2.14 for a single entry as,

F(wi
T ,wk) = Pik =

Mik

Mi
(2.18)

If we assume the function F = exp, we can rewrite the Equation 2.18 as,

wi
T wk = log(Pik) = log(Mik)− log(Mi) (2.19)

This equation would exhibit the exchange symmetry if not for the log(Mi) on the right-

hand side. However, this term is independent of k, so it can be absorbed into a bias bi for

wi. Finally, adding an additional bias bk for wk restores the symmetry.

wi
T wk +bi +bk = log(Mik) (2.20)

This is the core equation for GloVe embedding (Pennington et al., 2014). But, there is a

simple problem in this equation. It considers all the co-occurrences with same importance.

However, not all co-occurrences contains the same quality of information. So, instead of

using 1 in the co-occurrence matrix, the authors created the following weighting function

to improve the performance of function F.

weight(x) = min
(

1,(x/xmax)
3/4

)
(2.21)
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So, applying the weight function, the authors updated the Equation 2.20 as,

W

∑
i j=1

(
weight(Mi j)

)(
wi

T wk +bi +bk− log(Mi j)
)2

(2.22)

2.5.4 FastText

Compared to other word embedding methods, FastText (Mikolov et al., 2018) is a new

approach which can generate competitive results. Instead of a flat structure, FastText uses

a hierarchical classifier, which is organized into a tree of different categories. Therefore,

the depth in the tree of very frequent categories is smaller than the infrequent ones, which

leads to further computational efficiency. A text is represented using FastText by a low di-

mensional vector which is obtained by summing vectors corresponding to the words which

appear in the text. A low dimensional vector remains associated with each word of the

vocabulary in FastText. This hidden representation is shared among all classifiers for dif-

ferent categories, and allows information about words learned for one category to be used

by other categories. These kinds of representations which ignore word order are called a

bag of words.

2.6 Sentence Embeddings

Sentence embeddings perform the same type of operations like word embeddings on the

sentence level. It converts the sentences into some vectors of real numbers. Recently, many

supervised and unsupervised sentence embeddings have been established. We explain some

of them:

2.6.1 Word Mover Distance

Kusner et al. (2015) proposed the Word Mover Distance (WMD) embedding to measure

the distance between two texts or two sentences. It measures the distance between two

sentences by getting the cumulative sum of the minimum distance for each pair of words

of the two sentences. The main advantage of WMD over the other similarity functions like
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Cosine Similarity or Jaccard Similarity is that, WMD is capable of handling the synonyms

as the same vector. Besides, WMD can leverage the ability of advanced word embeddings

to overcome the basic limitations of distance measurements.

Figure 2.5: Concept of Word Mover Distance. (Saxena, 2018)

An example is shown in Figure 2.5. Let us assume we have two sentences:

Sentence1= Modi had a chat with Bear Grylls in Jim Corbett.

Sentence2= The prime minister meets the TV host in a national park.

Here, we can see, even though the two sentences represent the same topic, they do not

have any common words except the stopwords. WMD can measure the distance in such

situation where we do not have any common words. It can work with the assumption of

having similar vectors for the same kind of words, which makes it more effective than the

other similarity measures. It can be explained with another example: vector (Madrid) —

vector (Spain) + vector (Canada) is almost same as vector (Ottawa), because the tuples of

the vectors represent the country and its capital.
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2.6.2 Smooth Inverse Frequency (SIF)

Smooth inverse frequency embeddings were originally conceived by Arora et al. (2017).

The authors present a probabilistic motivation for the inverse frequency weighted continu-

ous bag-of-words model. Taking the average of the word embeddings in a sentence tends to

give more weight to words, which is quite unnecessary. SIF solves this issue in two ways:

Measuring Weights: SIF considers the weighted average of the word embeddings of a

sentence; which can be represented by the following formula:

α

α+ f (w)
vw (2.23)

where α is a constant that is usually considered as 0.001, f (w) is the estimated frequency

of each word of the reference sentence in the corpus, and vw is the embedded word vector.

We have used GloVe word embedding to get the word vectors. We use the model provided

by the authors to predict the frequency. Assume we have a corpus of W words. Then we

can calculate f (w) for any word w using the following equation

f (w) =
count(w)

W
(2.24)

Then for all the words for a sentence S, we concatenate the vectors, and create the sentence

embedding matrix for that sentence.

Remove the Common Components: After that, the main components of the resulting

embeddings are being computed for a collection of sentences. It then subtracts their pro-

jections on their first principal component from this embeddings. This process removes the

variation related to the frequency and syntax that is irrelevant to the context semantically.

SIF ignores the stopwords such as the prepositions and articles, and preserves the infor-

mation that represents the most semantic meaning of the sentences.
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Figure 2.6: A Convolutional Neural Network. (Britz, 2015)

2.7 Neural Network

2.7.1 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) was first introduced by LeCun et al. (1998). It

uses different layers based on convoluted filters to be applied on different local features

(Kim, 2014). In recent years, CNN has become popular in different machine learning

problems, i.e., pattern recognition, image classifications, sentence classifications. CNN

is basically the combination of different layers of convolutions with activation functions

like ReLU or tanh applied to the results. We apply convolutions over the input layers to

generate the output. There might be thousands of filters in each layer of a CNN structure

based on its applications, and the filters of the output is connected with the input of the next

layer. The basic structure of a CNN is shown in Figure 2.6.

Figure 2.7: Max Pooling. (Ujjwalkarn, 2016)
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Max Pooling

With the convolution, spatial pooling is also included with a convolutional layer. It does

two things, firstly reduces the dimension to help the network with the operations, and sec-

ondly keeps all the important information. Pooling can be different types; for example Max

Pooling, Average Pooling, Min Pooling etc. In case of max pooling (Figure 2.7), we define

a spatial pooling in such a way that it will take the largest element from the rectified feature

map within that window. Max pooling has shown better results compared to the others.

2.7.2 Recurrent Neural Network (RNN)

In a traditional neural network, it is assumed that all the inputs and outputs are not

dependant on each other, which is not a good idea for many tasks. To predict the next word

in a sentence, we need to know which words came before it. Recurrent neural networks

are generally good for data if the previous inputs and the current input in a sequence have

a relation between them. As Natural Language Processing (NLP) is a classical problem

on sequential data, the RNNs have shown great success in many NLP tasks in the last few

years such as topic modeling, syntax parsing, image captioning, dialog generation, machine

translation, summarization and question answering etc.

Figure 2.8: An unrolled recurrent neural network. (Olah, 2015)

As shown in Figure 2.8, by unfolding a RNN at the tth time-step, the network takes

two inputs: the tth input vector xt (Normally, the embedded input word goes through an

RNN as e(xt) at every time-step) and the hidden state from the last time-step ht−1. From

these vectors, it computes the hidden state of the current time-step ht . This process is

repeated until all inputs are processed in sequence. Considering the RNN as function f , the
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formulation is:

ht = f (xt ,ht−1) (2.25)

2.7.3 Long Short Term Memory (LSTM)

One of the key properties of RNNs is their ability to connect past information to the

present situation. Sometimes, it is only required to look at recent information to describe

the current situation. For instance, if we consider a language model that tries to predict

the last word based on the previous ones in the sentence “What is the duration of a football

match.” It can be easily predicted that the next word should be match. Here the gap between

the relevant information (football) and the information that is required (match) is small. In

this type of cases, RNNs can learn to use past information. In contrast, if we try to predict

the last word of the sentence, “I grew up in Bangladesh, so I can speak fluently in Bengali.”

Here the recent information indicates that the next word should be a language. But if we

want to be certain about the language, we need the information about the country. For this

case Bangladesh is needed, which is further back from the last word. Unfortunately, with

the increase in the gap, RNNs cannot gather enough information to connect the words.

LSTM networks (Hochreiter and Schmidhuber, 1997) – are a specialized type of RNN

which can avoid the long-distance dependencies problem (Bengio et al., 1994). They have

been widely used on a large variety of NLP problems in recent times and worked excep-

tionally well.

In comparison to the structure of an RNN, an LSTM includes a memory cell c, an input

gate i, a forget gate f , and an output gate o. These gates and memory cells can avoid the

long term dependencies problem. We can formulate the LSTM as a function f , as follows:

ht = f (xt ,ht−1) (2.26)
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Figure 2.9: LSTM at time-step t (Hochreiter and Schmidhuber, 1997)

Where, f contains the following formulations (Hochreiter and Schmidhuber, 1997),

it = σ(Wxixt +Whiht−1 +Wcict−1 +bi) (2.27)

ft = σ(Wx f xt +Wh f ht−1 +Wc f ct−1 +b f ) (2.28)

ct = ft� ct−1 + it� tanh(Wxcxt +Whcht−1 +bc) (2.29)

ot = σ(Wxoxt +Whoht−1 +Wcoct +bo) (2.30)

ht = ot� tanh(ct) (2.31)

In the above equations, it , ft ,ct ,ot stand for the input gate, forget gate, memory cell and

output gate respectively. W and b denote model parameters, where tanh is the hyperbolic

tangent, and � denotes the element-wise product operation as shown in Figure 2.9.
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2.7.4 Gated Recurrent Unit (GRU)

GRU (Cho et al., 2014b) is related to an LSTM, but both use a different gating mech-

anism to prevent long-distance dependencies problems. GRUs are relatively new, have a

less complex structure, train faster, are computationally more efficient and perform better

than an LSTM on less training data (Chung et al., 2014). GRU also controls the flow of

information like the LSTM unit, but without using a memory unit, and combines the forget

and input gates into a single “update gate”. GRU just exposes the full hidden content with-

out any control (Cho et al., 2014b). A GRU layer is quite similar to an LSTM layer; the

following equations are for a single GRU layer (Cho et al., 2014b):

z = σ(xtU z + st−1W z) (2.32)

r = σ(xtU r + st−1W r) (2.33)

h = tanh(xtUh +(st−1
⊙

r)W h) (2.34)

st = (1− z)
⊙

h+ z
⊙

st−1 (2.35)

In the above equations, a GRU has two gates, one reset gate r, and an update gate z. The

reset gate defines the process of combining the new input with the past memory, and the

update gate determines how much of the past memory to keep as shown in Figure 2.10. For

all recurrent units the general formulation is,

ht = f (xt ,ht−1) (2.36)

2.7.5 Activation Functions

In neural network, the activation function of a node defines the possible output from

that node for a single input or a set of inputs. Based on the applications we use different
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Figure 2.10: GRU Gating Mechanism (Chung et al., 2014)

activation functions; we describe some of the activation functions related to this thesis here:

• Sigmoid Function: The sigmoid function (Han and Moraga, 1995) limits the output

of the node to a range of 0 and 1. So, it is mostly used for predicting the probaility as

the output. The equation for the sigmoid function can be defined as below:

sigmoid(x) =
ex

1+ ex (2.37)

• Tanh Function: Tanh function (Fan, 2000) limits the output of the nodes to a range

between -1 to 1. Which means the negative values are given negative values, and

zero inputs are mapped near zero in the tanh graph. The formula for tanh function is

defined as follows:

tanh(x) =
ex− e−x

ex + e−x (2.38)

• SoftMax Function: The Softmax function (Bridle, 1990) normalizes the input values
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into some vectors of values, and then provides a probability distribution whose total

sum is equal to 1. The range of the output values is between 0 and 1. If we have a

set of values X = [x1,x2, . . . ,xn], then for any xi, the softmax function can be defined

using the following formula:

so f tmax(xi) =
exi

∑
n
j=1 ex j

(2.39)

• Rectified Linear Unit (ReLU): ReLU (Nair and Hinton, 2010) is one of the most

used activation functions in deep learning as it can be used with almost all of the

neural networks. ReLU is half rectified from bottom, which implies that it provides

output as zero when the node has a value less than or equal to zero. The range of the

ReLU function is from 0 to infinity (∞). The formula can be defined as:

ReLU(x) = max(0,x) (2.40)

2.8 Sequence-to-sequence (seq2seq) Model

The sequence-to-sequence model (Sutskever et al., 2014b) was developed by Google

in 2014. Sequence-to-sequence learning is used to convert a sequence from one domain

to a different domain. For the text summarization problem, this model is mainly used

to establish relation between two fixed-length texts where their lengths may differ. For

example, translating a five words sentence from English to another language might give

us six or seven words in that language. Regular LSTM networks cannot work with this

type of example with accuracy. From that thinking, the idea of developing the sequence-to-

sequence model was initiated.

We can represent the basic structure of this model as Figure 2.11:

The model has three sections: encoder, intermediate (encoder) vector, and decoder.
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Figure 2.11: Basic structure of sequence to sequence model. (Kostadinov, 2019)

Encoder: The encoder is a collection of several recurrent units (LSTM or GRU for better

performance) where each of them accepts a single element of the input sequence, collects

information for that element, and propagates forward. For the question-answering problem,

at first, the stopwords are removed from the question, and then the input sequence is built

with all the remaining words. In that case, we can represent a word as xi, where i is the

sequential order of the particular word. For any time t, the hidden state ht for the word xi

can be calculated using the following formula:

ht = f (W (hh)ht−1 +W (hx)xt) (2.41)

This simple formula represents the result of a simple RNN. Here, the appropriate weights

to the previous hidden state ht−1 and the input vector xt are applied only.

Encoder Vector: This is the last hidden state produced by the encoder. It can be calcu-

lated using Equation 2.41. It is also the initial hidden state for the decoder of this model.

This vector summarizes the information from the input elements to assist the decoder in

predicting the outputs.

Decoder: A collection of several recurrent units where each of them predicts an output

yt at time t. Each of the recurrent units accepts a hidden state from the previous unit, and
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produces both the output and its own hidden state. In question-answering problem, the

output sequence can be defined as a list of words in the answer. Here, the words can be

represented by yi, where i is the sequential order of the particular word. The hidden states

hi can be computed using the following formula:

ht = f (W (hh)ht−1) (2.42)

The output yt on time t can be computed by the following equation:

yt = so f tmax(W sht) (2.43)

here, the softmax creates a probability vector that can help to generate the output. If we

have p numbers as [n1,n2, . . . ,np] the softmax function can be defined as below:

so f tmax(ni) =
eni

∑
p
j=1 en j

(2.44)

The result will be always in range of [0,1].

The main quality of this model is the ability to map sequences of different lengths to

each other. It is clear that the inputs and outputs are not related to each other. So in most of

the cases, their lengths become different. This creates a new range of solutions in the field

of summarization task.

2.9 Multi Sentence Compression

The multi-sentence compression (MSC) technique is a possible convenient solution to

the summarization task. This method usually takes a collection of related sentences as

input, and generates a single output sentence by merging the source sentences that relate to

the same information. In this process, it tries to retain the most important information, and

also maintains the grammatical structure of the generated sentence. MSC (popularly known
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as sentence fusion by Barzilay and McKeown (2005)) is a text-to-text generation process

where a novel sentence is generated as a summary of a set of related sentences. On the

other hand, lexical paraphrasing aims at replacing some selected words from the original

text with some new words while preserving the meaning of the source documents. A good

lexical substitution for a target word needs to have semantic similarity with the target word,

and should be compatible with the given context (Melamud et al., 2015). For example, the

sentence “Jack composed these verses in 1995” could be lexically paraphrased into, “Jack

wrote these lines in 1995” without changing the actual meaning of the source sentences.

2.10 Reinforcement Learning (RL)

Recently reinforcement learning has become popular in the field of Natural Language

Processing. The basic concept of reinforcement learning came from human actions, where

the process is to take the best action from previous experiences. The main difference be-

tween supervised learning and reinforcement learning is, reinforcement learning works as

a chain of decision making. We make a decision based on the inputs. The decision of our

current step will affect our next step as we consider the past experiences while making a

decision. But in supervised learning, whatever decision we make, it does not affect the deci-

sion making in the following steps as we do not consider the past experiences in supervised

learning, rather it depends only on the current step.

Figure 2.12: Agent-Environment relational loop
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Agent: The basic structure of a reinforcement learning model includes an agent which

will interact with the environment in different steps, and will receive a reward based on

it’s action. This transition lead the agent towards a new state where it will use its previous

learning to take the decision. A canonical agent-environment feedback loop is shown in

Figure 2.12:

Reward: The accuracy of a RL model highly depends on the assumption of the reward

score, which can be defined as the ultimate goal of the agent. A reward is provided by

the environment based on the actions of the agent. When an agent takes some decisions,

the environment provides it with some results or feedback, which could be both positive

and negative. In one word, we call this feedback as the reward. Based on the positive or

negative reward, the agent decides which path it has to take to achieve the ultimate goal, to

solve the problem while getting the maximum reward from the environment.

Example: In Figure 2.13 we demonstrate a sample Reinforcement Learning problem. In

Figure 2.13: Reinforcement Learning Method’s example. (Bajaj, 2018)

this problem, we have a robot that is our agent, and the diamond is the ultimate goal which

the agent wants to achieve with many hurdles in between. The agent has to find the most

optimum way to get the diamond while avoiding the fires. The robot tries each possible

38



2.11. NEURAL MACHINE TRANSLATION (NMT)

combination of steps to reach the diamond, and learn the process. With each step, it gets

feedback as a reward score. If it gets a positive reward score, that means it has taken the

right step; and if it gets a negative reward score, it implies that it has taken a wrong step.

The absolute reward is calculated when it gets the diamond, which ends its task. Based on

the reward in each step the robot tries to learn which step is the optimum option for it to get

to the ultimate goal, and it makes decision in the next steps based on it’s previous learning.

2.11 Neural Machine Translation (NMT)

The conversion process from one language to another language is called Machine Trans-

lation (MT). The input language to the MT system is referred to as the source language,

while the output language is the target language. In summary, MT is the task of converting

a sequence of words from the source language to a sequence of words of the target lan-

guage, preserving the meaning of the source sentence. It is one of the most significant and

well-known research topics in the field of Natural Language Processing (Neubig, 2017).

Statistical Machine Translation (SMT) techniques have been used (Brown et al., 1993)

for early automatic MT systems. But these statistical machine translation models pose many

limitations. Pre-processing techniques of SMT rely heavily upon processes like word seg-

mentation, word alignment, tokenization, syntactic parsing and rule-extraction. However,

the problem is that all possible linguistic variations cannot be covered, and all global fea-

tures cannot be used by human-designed features. The recent development of deep learning

presents new and better solutions compared to previous approaches to these problems of

Statistical Machine Translation mentioned previously. Neural Machine Translation (NMT)

(Sutskever et al., 2014a) does not need any pre-designed features. The goal of NMT is to

design a fully trainable model, where in order to maximize its performance, every compo-

nent is tuned based on a large-scale training data.

Let us consider a sequence of words as the rawest representation of a sentence. Then

it can be said that a fully trainable NMT model M starts from a raw representation of a
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Figure 2.14: Sequence to Sequence Learning with Neural Networks (Sutskever et al.,
2014a)

source sentence, and finishes by generating a raw representation of a target sentence. In a

vocabulary with a fixed number of words, each word is represented by its integer index. For

instance, in the vocabulary V of English words, which is sorted according to their frequency

of appearance in a training corpus, the very first frequent word is represented as an integer 1.

Let, X = (x1,x2, . . . ,xN) be a source sentence, and Y = (y1,y2, . . . ,yM) be a target sentence

where N and M are not necessarily the same number of words (Sutskever et al., 2014a).

The NMT model M attempts to find an output sequence Y which is able to maximize the

conditional probability given an input sequence X :

arg max
Y∈V

P(Y|X) (2.45)

The sequence-to-sequence network has gained popularity with Natural Language Pro-

cessing researchers to solve the problem of NMT (Sutskever et al., 2014a; Bahdanau et al.,

2014).

For example, according to Figure 2.14, we have “ABC” as the input and “WXYZ”

as the output. The two sequences have different lengths. So the question is, how does

sequence-to-sequence solve that problem of different sequence lengths? The solution is

to develop two different models, which consist of two separate recurrent neural networks

named Encoder and Decoder, respectively.
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2.11.1 Encoder-Decoder Framework

The Encoder-Decoder framework (Cho et al., 2014b) has found a solution for the map-

ping of one sequence to a sequence with different lengths. The encoder turns a source

sequence of words into a fixed-size feature vector, which is then to be decoded by a de-

coder as a target sequence by maximizing the predictive probability. The encoder and the

decoder are both typically implemented using a simple RNN, LSTM, or GRU.

Encoder

An encoder can encode the sequence of a sentence in three steps:

1. Considering one-hot vector representation of a word where each word xi in the source

x = {x1,x2, . . . ,xN} is represented as a vector wi ∈ {0,1}|V | , i = 1,2, . . . ,N where wi

has same number of dimension as the vocabulary |V |, and has an element of one

corresponding to the location of the word in the dictionary and zero elsewhere.

2. There are a couple of limitations with the one-hot vector representation. Firstly, The

dimension of each word vector is enormous. Also, capturing semantic relationships

between words in a source sentence is complicated. Hence, it is advantageous to

convert the one-hot vector into a low-dimensional semantic space as a dense vector

with fixed dimensions. For instance, si =Cwi for the ith word, with CεRK×|V | as the

projection matrix, and K is the dimensionality of the word embedding vector, and |V |

is the size of the fixed vocabulary.

3. The source sequence of words is then encoded using RNN:

hi =∅θ (hi−1,si) (2.46)

where, h0 is a zero vector, ∅θ is a non-linear activation function (e.g. sigmoid, ReLU,

tanh), and h = {h1, . . . ,hN} is the sequential encoding of the first N words from the
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input source sequence. After the last word’s continuous vector sN is projected, the

RNN’s internal state hn represents the summary of the whole source sentence.

Decoder

The decoder aims at maximizing the probability of the next possible correct word in the

target language sequence. We can build a decoder by following steps:

1. For any time-step i, given a summary vector (or encoding vector) c of the sequence

for the source sentences, the i-th word ui, the hidden state zi, the next hidden state

zi+1 are computed as:

zi+1 = φθ‘ (c,ui,zi) (2.47)

where φθ‘ is a non-linear activation function, and c = qh is the context vector of the

source sentence sequence, c can be described as c = hT .ui, which denotes the ith

word from the target language sequence, and u0 denotes the beginning of the target

language sequence, which indicates the beginning of the decoding. Lastly, z0 is an

all-zero vector, and zi is the RNN hidden state at time-step i.

2. Calculating the probability pi+1 for the (i+ 1)-th word in the target language se-

quence is described as:

p(ui+1|u<i+1,x) = so f tmax(Wszi+1 +bz) (2.48)

where, Wszi+1 + bz scores each possible words in the vocabulary |V |, and then the

scores are normalized using softmax, which converts the scores into probability pi+1

for the i+1-th word in the whole target sequence.

3. The cost is computed according to pi+1 and ui+1.

4. Repeat the steps 1-3 until all the words have been processed, which usually terminates

by a < eos > token.
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2.11.2 Training: Maximum Likelihood Estimation (MLE)

Following the development of the neural translation model, sometimes it needs to be

trained using parallel data (source sentences and target sentences). The previously de-

scribed encoder-decoder model uses Maximum Likelihood Estimation (MLE) (White, 1982),

which is a standard statistical technique for training. Let us consider a parallel corpus D,

in which each sample in the corpus is a pair (Xn,Y n) of the source and target sentences.

Each of these sentences is a sequence of integer indices based on the vocabulary set V ,

which represents the sequence of one-hot vectors. If we consider any pair of words from

the sentences, the NMT model can compute the conditional log-probability of Y n given

Xn: logP(Y n|Xn,θ), where, θ is the training parameter, and the log-likelihood of the whole

training corpus can be described as,

Lt(θ) = ∑
(x,y)∈D

log P(Y|X;θ) (2.49)

P(Y|X;θ) = ∏
t=1

P(yt |y1:t−1,X) (2.50)

The machine translation process is actually the process of converting a source sentence

from one language to another sentence in the target language without changing the mean-

ing. For this process, it uses a pre-trained model. In the decoding step, there are different

strategies like greedy search and beam search to generate the next word in the output se-

quence.

2.11.3 Attention Mechanism

It is seemingly unreasonable to encode all the information of a sentence with a fixed

dimensional vector representation regardless of the length of the sentence. In theory, algo-

rithms like LSTMs are supposed to be able to deal with this. But in practice long-range

dependency issues still create problems due to the vanishing gradient problem (Hochreiter,

1998).
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Figure 2.15: Attention Model (Bahdanau et al., 2014)

While processing a source input sentence, the model usually pays more attention or

concentration to the parts in the source sentence which has more relevance to the output

translation, which is currently in the decoding stage. But in the source sentence, the focus

changes in the process of the translation. With a fixed dimensional vector, all the words

from the source sentence are treated as equals. This is not reasonable in any circumstances.

That is why Bahdanau et al. (2014) proposed attention mechanism in NMT (see Figure

2.15), which can decode based on different parts of the context sequence to tackle the

difficulty of feature learning for long sentences (Wu et al., 2016b). With an attention mech-

anism, it is not necessary to encode the full source input sentence into a fixed-length vector

anymore. Instead, the model allows the decoder to “attend” (focus on) the different parts

of the source sentence at each time-step of the output generation process. In the case of a

decoder with attention, the zi+1 is computed as:

zi+1 = φθ‘ (ci,ui,zi) (2.51)

During each time-step in the decoder, instead of using a fixed context, a distinct context
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vector ci is used for processing word yi. In short, this context vector ci is the weighted sum

of the RNN hidden states (h j) of the encoder. The weight ai j which denotes the strength

of attention of the ith word in the target language sentence to the jth word in the source

sentence.

ci =
N

∑
j=1

ai jh j (2.52)

ai = [ai1,ai2, . . . ,aiN ] (2.53)

ai j =
exp(ei j)

∑
N
k=1 exp(eik)

(2.54)

ei j = align(zi,h j) (2.55)

where, align is an alignment model that measures how well the inputs around the position

j and the output at position i match. The score is based on the RNN hidden state zi−1 and

the jth annotation h j of the input sentence (Bahdanau et al., 2014). In the conventional

alignment model hard alignment is used, which means each word in the target language

explicitly corresponds to one or more words from the source language sentence. On the

other hand, if any word in the source input sentence has relation to any word in the target

language output soft alignment is used. The output of the alignment model is a real number

which represents the strength of the attention. The decision to use a hard or soft alignment

model depends entirely on the problem.

2.11.4 Pointer Network

Pointer network (Vinyals et al., 2015) is a combination of sequence-to-sequence model

with the attention mechanism. It is highly used in the summarization task. The difference

of pointer network with a simple attention based translation model is, it does not directly

translate one sentence into another, rather it yields a succession pointers to the word vectors

of the input sentence. A simple workflow of a pointer network is shown in Figure 2.16.
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Figure 2.16: Pointer Network Architecture (Vinyals et al., 2015).

Here, an encoding RNN converts the input sequence to a code (blue) that is fed to the

generating network (purple). At each step, the generating network produces a vector that

modulates a content-based attention mechanism over inputs. The output of the attention

mechanism is a softmax distribution with dictionary size equal to the length of the input. If

we have a sequence of integer indices C = (c1, . . . ,cm) and a sequence of input vectors P =

(p1, . . . , pn), a pointer network will calculate the probability of index ci using the following

formula:

ui = vT tanh(W1 +W2di) (2.56)

P(ci|c1, . . . ,ci−1,P) = so f tmax(ui) (2.57)

here, j∈ (1, . . . ,n) and the softmax function normalizes the vector ui of length n to an output

distribution of different inputs. Here v,W1 and W2 are different learnable output parameters

of the model. vT is the transpose of the input matrix.
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Figure 2.17: Google’s Neural Machine Translation (NMT) Model. (Wu et al., 2016a)

2.11.5 Greedy 1-Best Search

Greedy 1-Best Search is very useful in machine translation, if we simply require the best

output according to the model. It follows the method of a simple BFS or DFS algorithm.

The difference of Greedy 1-best search with regular BFS or DFS algorithm is: BFS and

DFS algorithms consider each possible option, and go through all of the options in the list.

On the contrary, the greedy 1-best search calculates the probability of achieving the goal pt

at every time-step, then selects the word which gives the highest probability (1-best), and

uses it to predict the next word in the sequence (Neubig, 2017). But, sometimes it cannot

guarantee to provide the output with the highest probability, where using the n-best words

in each step could be a possible solution.

2.11.6 Beam Search Algorithm

Beam Search (Bennell and Song, 2010) is mostly used when the possible solution might

be too large for a NLP application. It is a heuristic search algorithm which explores a graph

by expanding it to find the most probable node in a limited set. It is mostly useful when we

are short of memory where it can provide a suitable solution.

Beam search uses a breadth first search (BFS) (Beamer et al., 2013) algorithm to con-
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struct a search tree, and sorts the nodes according to a heuristic cost at each level of the tree.

The main difference between beam search and greedy search is, unlike greedy search it uses

the b best words in each step where b is the width of the beam size (sometimes called beam

search size). Therefore, in the next level, b best nodes with highest scores are expanded.

Through this process the space and time requirements are significantly reduced. However,

beam search does not guarantee a global optimum solution. If the end-of-sentence token

< eos > is generated while decoding, that means either the search process has stopped or

the maximum length of the sentence has reached.

Figure 2.17 is an example of the Google’s recent machine translation framework (Wu

et al., 2016a) that uses almost all of the techniques described. We can divide the model

into three parts; the left side is the encoder network, the right side is the decoder network,

and in between these two is the attention module. We have a total of eight layers for

each of the encoder and decoder networks. All of the encoder layers are uni-directional

except the bottom layer. The bottom layer is bi-directional where the pink nodes gather

information from left to right, and the green nodes gather information from right to left.

While training the model, the bottom bi-directional encoder layers are computed in parallel

at first. Once the computing is finished, on separate GPU the uni-directional encoder layers

starts computing. Here, the softmax layer is also partitioned and placed on multiple GPUs.

2.12 Transformer Model

Similar to most NMT models, the Transformer model (Vaswani et al., 2017) is also

based on the popular encoder-decoder structure. The difference between the transformer

model (Vaswani et al., 2017) and any other NMT model is being entirely based on attention

mechanisms and dot-products, which contain fully connected layers for both the encoder

and the decoder sides. Though the model follows the actual architecture for a standard

encoder-decoder model, the most commonly used recurrent layers in encoder-decoder ar-

chitectures are replaced by the multi-head self-attention. In short, it can be said that this

48



2.12. TRANSFORMER MODEL

model is computationally cheaper than any other NMT models. The basic structure of the

transformer model (Vaswani et al., 2017) is given in Figure 2.18.

Figure 2.18: Transformer model architecture (Vaswani et al., 2017)

2.12.1 Transformer Encoder

A Transformer’s encoder is created using six identical layers, where each layer consists

of two sub-layers (Figure 2.19). The first layer is a multi-head self-attention mechanism,

and the second one is a simple layer which is a position-wise fully connected feed-forward

network. A residual connection is employed around each of the two sub-layers, followed

by a layer normalization. The output of each sub-layer is LayerNorm(x+ Sublayer(x)),

where Sublayer(x) represents the function that is implemented by the sub-layer itself. As

the authors used the dimension of the model as 512; all sub-layers in this architecture along

with the embedding layers produce outputs of dimension dmodel = 512 to ensure the proper

operations of those residual connections.
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Figure 2.19: Transformer Encoder-Decoder Architecture. (Alammar, 2018)

2.12.2 Transformer Decoder

As the encoder discussed above, the decoder also consists of six identical layers (Figure

2.19). Additional to the two sub-layers from the encoder, the decoder adds a third sub-layer

executing a multi-head attention mechanism over the output of the encoder side. Like the

encoder, residual connections are employed around each of the sub-layers followed by layer

normalization.

2.12.3 Multi-Head Attention

The Transformer’s (Vaswani et al., 2017) attention mechanism computes the relevance

of a set of values (information) based on what it is currently processing (queries and keys).

In recent days, multi-head attention (Figure 2.20) based models are becoming popular

among NLP researchers. In multi-head attention mechanism, the Transformer (Vaswani

et al., 2017) runs through the same attention mechanism on different projected version of

queries, keys and values parallelly. There are eight attention layers in this mechanism which

are called as “heads”. Instead of performing a single attention function, it is more effective

to linearly project the queries, keys and values h times with different, learned linear pro-

jections to dq, dk and dv dimensions, respectively with dmodel dimensional keys, values and

queries (Vaswani et al., 2017).

Using multi-head attention has some advantages. It helps the model to understand the
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Figure 2.20: Multi-Head Attention Mechanism. (Vaswani et al., 2017)

relationship between the words in different positions. For example, if we want to translate

a sentence: “The woman yelled at the cat because she was drunk”, we need to know which

word “she” refers to. We can easily understand that “she” refers to “the woman”, but for a

machine it has to consider both “the woman” and “the cat”. It can measure that using the

“Positional Encoding”. Also, multiple attention mechanisms encode the words in different

ways, which expand the range of the model’s learning ability.

The Transformer (Vaswani et al., 2017) computes the attention function on a set of

queries, keys and values packed together into a matrix Q, K and V respectively. The steps

of multi-head attention mechanism are as follows:

• It considers each of the words from the input sequence, and embeds them individu-

ally.

• It splits the embedding into eight heads, and calculates the attention using the follow-

ing equation (Vaswani et al., 2017):

Zi = headi = Attention(QWi
Q,KWi

K,VWi
V ) (2.58)

Here Wi
Q,Wi

K,Wi
V are different weight matrices for the queries, keys and values

respectively.

• Later, it concatenates the resulting matrices Zi, and multiplies it with W o to produce
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the output (Z) of that layer. The equation is as follows (Vaswani et al., 2017):

Z = MultiHead(Q,K,V ) =Concat(Z1, . . . ,Zh)W o (2.59)

For multi-head attention mechanism, h = 8 parallel attention layers are used. The di-

mension of each head is considered as dq = dv = dk = dmodel/h = 512/8 = 64. So, the

total dimension remains the same as the single-head attention mechanism which ensures

the similar computational cost.

2.12.4 Positional Encoding

The transformer model (Vaswani et al., 2017) does not contain any recurrence or con-

volution like the recurrent networks. In order to ensure the use of the order of the sequence

by the model some additional information is required about the relative or absolute position

of the tokens in the sequence. For that purpose “Positional Encoding” is added to the input

embeddings at the end of the encoder and decoder stacks. Without positional encoding, the

output of the multi-head attention network could be same for the sentences, “I like burg-

ers more than pizzas” and “I like pizzas more than burgers” as it cannot differentiate the

positions of the words “burgers” and “pizzas”.

The positional encoding holds the same dimension dmodel as the sentence embeddings.

So, it can encode the relative/absolute positions of the words of each sentence as embedded

vectors, and then add them with the sentence embeddings. The positional encodings use

the following equations (Vaswani et al., 2017):

PE(pos,2i) = sin(pos/100002i/dmodel) (2.60)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2.61)

Where pos represents the position and i is the dimension. Basically, each dimension of

the positional encoding is a sinusoidal wave with a frequency from 2π to 10000.2π. This
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allows the model to easily learn to attend to relative positions. PE(pos,k) can be represented

as a linear function of PE(pos) when we use a fixed frequency k for the equation. So the

relative position between different embeddings can be easily inferred.

2.13 Summary

In this chapter, we have discussed the basic idea and the related works on different types

of the summarization task. We also include all the basic and relevant tools for summariza-

tion task and the systems we have used in our thesis. In the following chapters, we will

discuss our proposed models and experiments along with the results.

53



Chapter 3

Proposed Models

Query-based summarization has become a popular problem in Natural Language Process-

ing (NLP) field in recent years (Nema et al., 2017). In this problem, we have a tuple -

query, source and summary. The query and the source text are the inputs, and the sum-

mary is the sample output based on a particular query. A query is a set of words and can

be represented as Q = q1,q2,q3......qm and the source is a set of sentences which can be

represented as S = s1,s2,s3.......sn. To solve this problem, we propose some approaches,

which are presented in this chapter. First, we describe our Sentence Ranking and Clustering

model, and then using the outcome from this model we continue with our Query Based Un-

supervised Extractive Summarization Model (QBUEM), Abstractive Summarization using

Transformer Model (QBATM), and Reinforcement Learning (QBARLM).

3.1 Sentence Ranking and Clustering

In this work, two initial steps are taken. At first, we rank the source sentences accord-

ing to their similarity with the query to preserve the information coverage; and then we

distribute the high scored sentences into different clusters to maintain the diversity. Our

proposed method for sentence ranking and clustering is shown in Figure 3.1. For the multi-

document summarization part, all the source documents are merged into a single document,

and then the sentence ranking and clustering process are applied. In this chapter, the sen-

tence ranking and clustering methods are explained.
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Figure 3.1: Proposed method of sentence ranking and clustering

3.1.1 Text Ranking

A good query-based summary is expected to reflect the important information from

the source documents as much as possible, and the information should be related to the

given query (Wang et al., 2008). In this problem, we need to consider two things while

ranking the sentences: the relevance with the query and the important information coverage.

For our experiment, each sentence is given a score based on these two points and ranked

accordingly. The score for each source sentences can be defined as the following:
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S = αX +βY (3.1)

Where α and β are two proportional constants considered as 0.9 and 0.1 and X , Y are two

scores generated based on its relevance with the query and the information importance. We

consider the values for α and β to prioritize the relevancy score with query. These two

scores are explained as follows:

Relevance with Query

In the query-based summarization system, the most important part is to maintain the

relevancy of the summary with the query. To ensure that, we assign a value X to every

source sentence. X is calculated based on the similarity of that sentence with the query. X

can be defined using the following formula:

X = max(
1

WMD(query,sentence)
,SIF(query,sentence)) (3.2)

where WMD is the word mover distance score, and SIF is the Smooth Inverse Frequency

score. To compute these score we use the following formulas:

WMD(query,sentence) =
Qw ·Sw

‖Qw‖‖Sw‖
(3.3)

Here Qw and Sw are the vectors generated by Word Mover Distance sentence embedding.

SIF(query,sentence) =
Qs ·Ss

‖Qs‖‖Ss‖
(3.4)

Here Qs and Ss are the vectors generated by Smooth Inverse Frequency sentence embed-
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ding.

The details about these sentence embeddings are presented in Chapter 2. We have used

the author provided implementation8 to calculate the WMD and SIF.

Important Information Coverage

It is essential to keep the important sentences from the source text in the summary. To

tackle this challenge, we have used the Rake algorithm to extract the keywords from all the

source sentences. The Rake algorithm identifies the keywords, and gives them a score based

on their importance. Then, we have assigned every source sentence a value Y based on the

existing keywords in that sentence, which can be defined using the following formula:

Y =
n

∑
i=1

scorei (3.5)

where n is the number of keywords in the sentence, and score is the score for each keyword

generated using the RAKE algorithm.

Pre-Trained Word Embeddings

The word embeddings are low dimensional vector representations of words such as

word2vec (Mikolov et al., 2013b) and GloVe (Pennington et al., 2014), which have become

popular in various natural language processing tasks. Recently, Bojanowski et al. (2017)

proposed a simple method named FastText, which takes the sub-word information into

account to learn the word representations. To calculate the similarity score in this thesis,

GloVe is used for WMD and SIF. All of the embeddings are explained in Chapter 2.

Datasets

In this work, both query-based single document dataset and topic-based multi-document

datasets are used for testing and evaluation. Those datasets are presented in the following

8https://github.com/nlptown/nlp-notebooks/blob/master/Simple%20Sentence%20Similarity.ipynb

57



3.1. SENTENCE RANKING AND CLUSTERING

Table 3.1: Queries associated with the topic “algae bio-fuel”

Topics Queries
Emissions Is algae biofuel good for combating global warming?
Economics Is algae biofuel economically viable?
Land-use Does algae biofuel take up too much land?
Ecosystem Is algae biofuel generally good for ecosystem?
Water-use Does algae biofuel use too much water?

sections:

Single Document Dataset The main challenge about the query-based summarization

problem is getting a suitable dataset. As there is no existing standard dataset for query-

based abstractive summarization, we have used the Debatepedia dataset (Nema et al., 2017).

Debatepedia is an encyclopedia of pro and con arguments and quotes on critical debate top-

ics. There are 53 overlapping categories such as Politics, Law, Crime, Health, etc. which

contains 663 debates in the corpus. The overlapping category represents the idea that a

given topic can represent the characteristics of multiple categories. For example, the topic

“Eye for an Eye philosophy” belongs to both “Law” and “Morality” categories. The av-

erage documents per query are four, and the average number of queries per debate is five.

For example, Table 3.1 shows the queries associated with the topic “Algae Bio-fuel”. The

dataset also provides the documents and an abstractive summary for each of the queries.

Multi-Doc Datasets There is no existing multi-document dataset for query-based sum-

marization. So for this task, we have used the topic based datasets provided from the

Document Understanding Conference (DUC 2005, DUC 2006, DUC 2007) (Dang, 2005)

to test and evaluate all of our models. These datasets include around fifty topics, and each

topic has at least 35 relevant documents associated with them. In this task, the topics are

considered as the query, and the associated documents with the topic are considered as the

source.
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Figure 3.2: Sentence Clustering Model

3.1.2 Text Clustering

Due to the sparseness of text representation, text clustering has become a challenging

task (Aggarwal and Zhai, 2012). As most of the words only occur once in a text, the Term

Frequency-Inverse Document Frequency (TF-IDF) measure can not provide good results.

We have used the clustering model presented by Fuad et al. (2019) to avoid this problem.

Model

We can represent a sentence as a sequence of words w, S = (w1,w2, ....,wL) of length,

L. We encode a sentence using bi-directional GRUs (Cho et al., 2014a) which read input

symbols in forward (
−→
ht = GRU(

−−→
ht−1,e(wt))) and backward (

←−
ht = GRU(

←−−
ht+1,e(wt))) di-

rections shown in Figure 3.2. At time t, A GRU learns the hidden annotations ht using

Equation 3.6 where ⊕ indicates concatenation.

ht =
−→
ht ⊕
←−
ht (3.6)
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Si = xi = hL (3.7)

Where, the ht ∈ IRn encodes all content at time t and e(wt) ∈ IRm is the m-dimensional

embedding of the current word wt using pre-trained word vectors. The output sentence em-

bedding xi for the sentence Si is the last hidden state. We then use a hierarchical clustering

algorithm with complete linkage criteria. Which means, if two clusters have any pair of

sentences that can pass the threshold value, we will merge the those two clusters into a

single cluster. In the process, we use cosine similarity as the distance between the sentence

embeddings obtained from Equation 3.7. We set a similarity threshold (τ = 0.5) to stop

the clustering process by using a hold out dataset SICK9 of SemEval-2014 to get optimal

performance.

3.1.3 Cluster Selection

We apply our clustering method explained in Section 3.1.2 on the ranked sentences

generated from the process explained in Section 3.1.1. When all the clusters are generated,

we filter them based on the number of the sentence in each cluster. We ignore the clus-

ters which have less than three sentences, and proceed with the remaining clusters. These

clusters are considered for our models explained in the next sections.

3.2 Unsupervised Extractive Summarization Model

Extractive summarization models generate a summary by choosing the most impor-

tant sentences from the source documents, and then concatenating them into a single para-

graph. One of the problems with the automated supervised summarization method is using

sparse input representation, which might not observe enough data in the training process

(Gupta and Lehal, 2010). To avoid this issue, we have used an unsupervised sentence se-

9http://clic.cimec.unitn.it/composes/sick.html
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lection method to construct our extractive summarization model. Several authors have pro-

posed some unsupervised extractive summarization models (Schluter and Søgaard, 2015;

Yousefi-Azar and Hamey, 2017) in the last few years, and provided good results in the case

of generic summarization problems. Feigenblat et al. (2017) proposed an unsupervised

method using a cross-entropy method over the DUC 2005-2007 datasets. But as per our

knowledge, there is no existing unsupervised approach for the Debatepedia dataset. That

makes our method as the first approach to the query-based summarization problem where

an unsupervised sentence selection method are used on the Debatepedia dataset.

Figure 3.3: Proposed method of Unsupervised Extractive Summarization Model
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In this section, we describe our unsupervised extractive summarization model. The flow

diagram of our extractive summarization model is shown in Figure 3.3. For this task, we

have used the clusters generated from the previous experiment explained in Section 3.1. We

choose a single sentence from each cluster, and consider them for our extractive summary.

The challenging part of this task is to order these sentences in such a way, which will give

us maximum readability, and provide us a good summary. All of these steps are explained

as follows.

3.2.1 Preliminaries

In this section, we have included the details of our extractive method, where we have

selected sentences from the clusters, and ranked them as our system requires.

Sentence Ordering for Clusters and Extraction Each of our cluster is a collection of

sentences related to each other meaning-wise. So, it is important to extract the most relevant

sentences from each cluster which will represent the perfect meaning, and is highly relevant

to the query. To do so, we give a normalized score to each of these sentences based on their

similarity with other sentences in their respective clusters. We can formulate the intra-

cluster score for each sentence as follows:

∆k =
n

∑
i=1

cosine similarity(sentencek,sentencei) (3.8)

where we calculate the sum of the cosine similarity scores to get the intra-cluster score.

This score represents their relevancy with other sentences in a particular cluster. So, the

sentence having the highest score is likely to have the ability to represent the meaning

of most of the sentences in the cluster. We calculate the intra-cluster score for all of the

sentences in a particular cluster. Then from each cluster we consider a single sentence

which has the maximum intra-cluster score. We consider those sentences as the summary

from each cluster, and continue to the next step.
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Extracted Sentence Ordering Our next challenge is to order the extracted sentences in

such a way which provides us with the maximum readability. For this purpose, we consider

the relevant position of each extracted sentences in the source documents, and assigned

those sentences a score of Ω, which can be formulated as follows:

Ωi = Pi/N (3.9)

where, Pi denotes the position of a sentence (i) in the source document, and N is the number

of sentences in the source document. For multi-document datasets, we consider the position

in the corresponding document as the score Pi, and the number of sentences in that particular

document as N.

Based on the score, we rearrange the sentences in ascending order, and use them for the

next step.

Sentence Limit for the Summaries One of the crucial parts for generating a summary is

to determine a fixed length of the summary. Among the extracted sentences from the clus-

ters, we consider the first three sentences for the Depatepedia dataset, and for DUC2005,

DUC 2006 and DUC 2007, we take the first seven sentences to match the length of the

reference summaries.

3.3 Abstractive Summarization Models

In this section, we describe our abstractive summarization methods, and compare them

with different baseline systems. We have implemented two abstractive models using various

techniques; for the first one, we have used the tensor2tensor (Vaswani et al., 2018) model

which is a part of the Transformer Model (Vaswani et al., 2017), and for the second one, we

have used the reinforcement learning (RL). We use these models to get a single sentence

from each of the clusters generated in Section 3.1. Both of these models are described
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separately in the following sections. Then we explain our sentence selection method, and

we include our experimental results afterward. The workflow for our abstractive model is

shown in Figure 3.4.

3.3.1 Abstractive Summarization using Transformer Model

For this model, we have used the Transformer model (Vaswani et al., 2017), which has

brought significant improvement over different applications. The Transformer (Vaswani

et al., 2017) is built by maintaining the overall architecture of a standard encoder-decoder

model. It does not include the complex recurrent or convolutional layers most commonly

used in encoder-decoder architectures. Rather it uses the multi-headed self-attention with

positional encoder. The natural ability of a multi-head attention mechanism to jointly attend

to similar phrases from different positions of a sequence makes this an appropriate choice

for our model. We use the implementation provided by the authors. The detailed description

of the structure of this model is provided in Section 2.11 and 2.12.

Abstractive Sentence Generation Given a set of source sentences of a related topic

S = (S1,S2, . . . ,SN), our model needs to predict its abstractive multi-sentence compres-

sion target, T = (t1, t2, . . . , tM) where N > 1 and M < |S1|+ |S2|+ · · ·+ |SN |. To train our

model for this task, we have created a dataset from the CNN/DailyMail dataset (Hermann

et al., 2015) having more than 600,000 samples of source documents (S) of almost the same

topics and the target sentence (T). The CNN/DailyMail dataset contains more than 300,000

documents, each having multiple highlighted sentences which represent the content for the

article. We take each highlighted sentence, and get the similarity score with each of the

sentences in the document. We only pick the sentences having the similarity score more

than 0.50 for a particular highlight. We consider the threshold value as 0.50, as it gave us

comparatively the best performance from our model. Then we consider them as the source

sentences, and the highlight as the target sentence.

For training, we split the tokens into a 32000 word-piece vocabulary as the author of
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Figure 3.4: Proposed method of Abstractive Summarization Model

the WMT 2014 English-French task. We have used the tensor2tensor (Vaswani et al., 2018)

neural translation model to train our model with a TITAN GTX GPU machine. We ran

the training for 500,000 epoch which took almost eight days. We have used the Adam

Optimizer (Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.98 and ε = 10−9. We followed

the equation from Vaswani et al. (2017) to vary the learning rate (lrate) during the training,

which is as follows:

lrate = d−0.5
model ·min(step num−0.5,step num ·warmup steps−1.5) (3.10)

Adam Optimizer is an adaptive learning rate algorithm which is highly used to train the

neural networks. It computes the learning rate in each step based on different parameters,

65



3.3. ABSTRACTIVE SUMMARIZATION MODELS

and optimizes the learning rate for the next steps. The parameters are given below:

• β1 - is used to decay the running average of the gradient (0.9 in our model).

• β2 - is used to decay the running average of the square of gradient (0.98 in our model).

• ε - is used to prevent the division by zero error (10−9 in our model).

We have used the warmup steps= 4000. This equation corresponds to increasing the learn-

ing rate for the first 4000 steps, and decreasing it proportionally to the inverse square root

of the step number.

After the model is trained, we have used the clusters generated from Section 3.1. As

described before, all of the clusters consist of at least three sentences which are highly

related to each other. We run our trained model on those clusters to get a single abstractive

sentence from each of them as shown in Figure 3.4.

3.3.2 Abstractive Summarization using Reinforcement Learning

In this section, we describe our reinforcement learning-based abstractive summariza-

tion model. We have used the idea of using the policy-based reinforcement learning (RL)

technique to combine both extractive and abstractive architecture to get a hybrid structure

(Chen and Bansal, 2018). This structure is formulated in such a way that it would give us

a single abstractive sentence from each of our clusters. In this method, we have used an

extractive RL agent to select the extractive sentences from the clusters, and an abstractive

network to convert the sentences into their abstractive form by rewriting them. We have

combined a sentence level metric reward with a policy gradient method to build a con-

nection between our extractive and abstractive models. Further details of our models are

explained as follows:

Extractive Agent We have implemented a hierarchical neural model to learn the rep-

resentations of each sentence in a document. Then we have used a selection network to

extract the sentences.
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First, we compute the sentence representation for each of the sentences in the clusters

using the temporal convolutional model introduced by Kim (2014). We have generated

a distributed vector representation for each individual words in the sentence using a pre-

trained word embedding matrix. Then we collect the sequence of word vectors from each

sentence, and provide them to a 1-D single-layer Convolutional Neural Network (CNN)

with various window sizes in the range of three to five (3, 4, 5) followed by ReLU non-

linear activation and max pooling. The purpose of this is to capture the temporal depen-

dencies of nearby words. Then we concatenate the outputs from the activation layers for all

the different filter window size to get the convolutional representations of each sentence.

To understand the context of the sentences and identify the semantic dependencies between

them, we use a bidirectional LSTM-RNN (Hochreiter and Schmidhuber, 1997) convolu-

tional output.

For sentence extraction, we have used an LSTM-RNN to train a “pointer network”

(Vinyals et al., 2015) in such a way so that it can recurrently extract the sentences from

the source text. This model performs the classification of all sentences of the document in

every step of the extraction process. The process is shown in Figure 3.5.

Figure 3.5: Extractive Agent. the convolutional sentence encoder calculates r j for every
sentences. The RNN encoder (blue) calculates the context-aware representation h j, and
then the RNN decoder (green) selects sentences jt at time t. With jt selected, h jt will be
fed into the decoder at time t +1. (Chen and Bansal, 2018)
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Abstractive Agent To develop our abstractive agent, we use the model provided by Chen

and Bansal (2018) which performs two modifications on the extracted sentences to provide

the summary in a concise way: firstly, compressing the sentences and then paraphrasing

them. The standard encoder-aligner-decoder (Bahdanau et al., 2014; Luong et al., 2015)

with the bi-linear multiplicative attention function (Luong et al., 2015) are used to develop

this model. The pointer generator copy mechanism (See et al., 2017) is also used to help

the model to copy some out of vocabulary words. A copy probability is calculated by

learnable parameters, and then used to compute the weighted sum of the probability of

source vocabulary and the predefined vocabulary. The combined structure is shown in

Figure 3.6

Figure 3.6: Training step of the extractor agent, and the operation in between the extractor
and abstractor agent. (Chen and Bansal, 2018)

We have used our own dataset created from CNN/DailyMail for training our model.

3.3.3 Abstractive Sentence Selection

Our first challenge is to order the sentences in such a way that it provides us the maxi-

mum readability, and also limit the sentences to get a concise summary. For this purpose,

we calculate the intra-cluster score for all the sentences in a cluster. Then we get the aver-

age intra-cluster sentence score for each cluster, and rank the clusters accordingly. Then,

we generate one abstractive sentence from each cluster using our different abstractive meth-

ods, and rank those sentences according to the rank of their respective clusters. Our next

challenge is to determine a fixed length of the summaries. Among the abstractive sentences
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from the clusters, we consider the first three sentences for the Depatepedia dataset, and for

DUC 2005, DUC 2006 and DUC 2007, we take the first seven sentences to match the length

of the reference summaries.

3.3.4 Summary

In this chapter, we have described our different proposed models. In our next chapter

the experimental results of our models are discussed.
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Chapter 4

Experiments and Results

In this chapter, we present our different summarization models and compare them with dif-

ferent baseline models. The details of our datasets, baseline models and evaluation metrics

are also included here.

4.1 Unsupervised Extractive Summarization

In this section, we describe the preliminaries and the experimental results for our Unsu-

pervised Extractive Summarization model.

4.1.1 Datasets

In this work, both query based single document dataset Debatepedia (Nema et al.,

2017) and query based multi document datasets DUC 2005-2007 are used. Details of these

datasets are provided in Chapter 3.

4.1.2 Baselines

To the best of our knowledge, there is no existing extractive summarization method

for the Debatepedia dataset. So, we could not compare our extractive model with any

existing models. For the DUC datasets, Zhong et al. (2015) proposed a query-oriented

deep extraction (QODE) with a new deep architecture and an unsupervised deep learning

algorithm, which was the first attempt of using deep learning techniques in the query-based

multi-document summarization task. Feigenblat et al. (2017) proposed a Cross-Entropy

Summarizer (CES), which provided a possible solution for the length constraint problem.
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This method achieved the state-of-the-art ROUGE scores on DUC 2005-2007 datasets. We

compare our model with these two baseline models.

4.1.3 Evaluation Metrics

This model is evaluated using ROUGE10 (Lin, 2004). However, ROUGE scores are

unfairly biased towards lexical overlap at the surface level. Taking this into account, this

system is also evaluated with a recently proposed metric, ROUGE-SU4. Limited length

recall performance are used for both metrics, as the system generated summary is concise

through some constraint such as sentence limit. Therefore, only the recall is considered

since precision is of less concern in this scenario.

Table 4.1: Comparison of our proposed Unsupervised Extractive model with the baseline
models.

Debatepedia
Models ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4

QBUEM (ours) 34.67 6.54 28.05 12.37

DUC 2005
Models ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4

Zhong et al. (2015) (QODE) 37.51 07.75 30.57 13.41
Feigenblat et al. (2017) (CES) 40.33 7.94 32.76 13.89

QBUEM (ours) 38.30 9.62 31.36 14.41

DUC 2006
Models ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4

Zhong et al. (2015) (QODE) 40.15 9.28 31.04 14.79
Feigenblat et al. (2017) (CES) 43.00 9.69 32.98 16.63

QBUEM (ours) 38.76 11.31 32.61 15.83

DUC 2007
Models ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4

Zhong et al. (2015) (QODE) 42.95 11.63 34.23 16.85
Feigenblat et al. (2017) (CES) 45.43 12.02 35.12 17.50

QBUEM (ours) 41.25 12.11 34.58 16.92

10ROUGE-1.5.5 with options: -n 2 -m -u -c 95 -x -r 1000 -f A -p 0.5 -t 0
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4.1.4 Experimental Results

We report the performance of our Query Based Unsupervised Extractive Method (QBUEM)

compared to other baseline systems in Table 4.1. For the DUC datasets, our model improves

the ROUGE-2 score, and matched almost the same level as the baseline model for ROUGE-

L and ROUGE-SU4 metric. The ROUGE metrics measure the exact tokens; for example,

ROUGE-1 compares between single tokens, on the other hand, ROUGE-2 compares with

bi-grams. Although, we did not achieve better ROUGE-1 score than the baseline models,

but for extractive summarization ROUGE-2 score represents a better quality summary as

it takes the bi-grams into account while ROUGE-1 just considers uni-grams. We present

example of outputs generated by our model in Appendix A.

4.2 Abstractive Summarization Models

In this section, the detailed experimental results of our abstractive models are presented.

4.2.1 Datasets

To train our model we have created a customized dataset from CNN-Dailymail (Her-

mann et al., 2015) dataset which is mentioned in Chapter 3. For evaluation, both of the

query based single document dataset Debatepedia (Nema et al., 2017) and the query based

multi document datasets DUC 2005-2007 are used. We describe the datasets in detail in

Chapter 3.

4.2.2 Baselines

As the baseline, we compare our model with the abstractive model proposed by Nema

et al. (2017) for the Debatepedia dataset. For the DUC datasets, we could not find suit-

able abstractive models with good results to compare our models with. So we compare

our abstractive models result with the query-oriented deep extraction (QODE) model pro-

posed by (Zhong et al., 2015), and the Cross-Entropy Summarizer (CES) model proposed

by (Feigenblat et al., 2017).
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4.2.3 Evaluation Metrics

We evaluate our Query Based Abstractive Summarization using Transformer Model

(QBATM) and Query Based Abstractive summarization using Reinforcement Learning

Model (QBARLM) using the ROUGE metric along with the METEOR metric. Denkowski

and Lavie (2014) used a combination of both precision and recall in the METEOR met-

ric. The alignment is based on WordNet synonyms, stemmed tokens and look-up table

paraphrases in addition to the exact token matching.

Table 4.2: Comparison of our proposed Abstractive Summarization Models with the base-
line models.

Debatepedia
Models ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4 METEOR

Nema et al. (2017) 41.26 18.75 40.43 15.93 9.12
QBATM (ours) 26.91 6.54 20.51 12.43 5.92

QBARLM (ours) 40.77 7.98 33.69 15.21 6.38

DUC 2005
Models ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4 METEOR

Zhong et al. (2015) (QODE) 37.51 07.75 30.57 13.41 10.53
Feigenblat et al. (2017) (CES) 40.33 7.94 32.76 13.89 11.68

QBATM (ours) 28.96 5.69 20.79 10.60 10.93
QBARLM (ours) 36.30 8.50 29.29 13.11 13.29

DUC 2006
Models ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4 METEOR

Zhong et al. (2015) (QODE) 40.15 9.28 32.86 14.79 11.45
Feigenblat et al. (2017) (CES) 43.00 9.69 34.76 16.63 12.70

QBATM (ours) 32.38 8.74 27.40 10.91 12.21
QBARLM (ours) 37.07 10.43 30.72 14.79 13.93

DUC 2007
Models ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4 METEOR

Zhong et al. (2015) (QODE) 42.95 11.63 33.83 16.85 11.34
Feigenblat et al. (2017) (CES) 45.43 12.02 34.88 17.50 14.63

QBATM (ours) 33.56 10.30 31.28 15.86 13.49
QBARLM (ours) 40.01 12.11 34.57 16.93 15.25
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4.2.4 Experimental Results

We have reported the performance of our Query Based Abstractive Reinforcement Learn-

ing Model (QBARLM) and Query Based Abstractive Transformer Model (QBATM) com-

pared to other baseline systems in Table 4.2. We have reported different ROUGE metrics

and the METEOR11 score as well. As the baseline models for DUC 2005-2007 are ex-

tractive summarization models, they are expected to have better ROUGE scores than our

models, because, the ROUGE metric matches the exact tokens between the reference and

generated summary. On the other hand, the METEOR metric represents the abstractiveness

because it considers the stemmed tokens and paraphrases which is the important property

of an abstractive model. In spite of that, our model has achieved better ROUGE-2 result as

well as the METEOR scores which represents both the accuracy and abstractivenes of our

model. We present examples of our system generated summary in Appendix A.

4.3 Summary

In this chapter, we have presented the experimental results of our models and the com-

parison with the baseline models in term of different evaluation metric. In the next chapter

our overall work and future direction are discussed.

11The code for the METEOR metric is taken from https://github.com/Maluuba/nlg-eval
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Chapter 5

Conclusion

We have developed an unsupervised method for solving extractive summarization along

with our own sentence ranking and hierarchical clustering approach. We also provide a

novel approach to solve the query-based summarization problem using reinforcement learn-

ing. We have also proposed a method to solve the query-based summarization problem

using the transformer model (Vaswani et al., 2017). For this task, we have created a dataset

on our own to train our model. Our approaches are applied to several datasets, and com-

pared with several proposed methods. Our models achieve competitive results compared to

the baseline models for multi-doc datasets. The combined operation of our techniques also

achieve a state-of-the-art result based on ROUGE-2 and METEOR evaluation metrics.

Though the results we obtain have already shown the effectiveness of our approaches,

it could be further improved in a number of ways:

• Our extractive summarization model can be implemented using reinforcement learn-

ing. We can do it only using the extractor agent of our model.

• Using multiple reward function for our Reinforcement Learning model is possible as

well

• One of the problems we face is the lack of proper query-based datasets. The creation

of a proper query-based summarization dataset is possible.
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Appendix A

Sample System Generated Summaries

Table A.1: Randomly selected outputs for our Extractive model.

Unsupervised Extractive Model
Query How has Starbucks Coffee attempted to expand and diversify through joint ventures, acquisitions, or subsidiaries?

Reference

The New York Times Co. and Starbucks Coffee Co. said Tuesday that they had agreed to the sale of The New
York Times newspapers in Starbucks stores for three years in exchange for The Times’ advertising promotion of
Starbucks. The agreement calls for The Times to be sold at all American Starbucks stores. Some stores may also
offer local newspapers and other national newspapers. The Times will use its advertising resources to promote the
products and retail outlets of Starbucks, which is based in Seattle. Starbucks will also consider acquisitions and
investments in other companies that provide some of the products to be sold on the Web site. There will also be
a link between The New York Times’ circulation Web site (www.homedelivery.nytimes.com) and the Starbucks
Web site (www.starbucks.com).

System Output

Starbucks will also consider acquisitions and investments in other companies that provide some of the products
to be sold on the Web site. The Times will use its advertising resources to promote the products and retail
outlets of Starbucks, which is based in Seattle. It also wants to expand overseas. The company has big plans to
continue leveraging that loyalty to its brand built so carefully at the retail coffee shops. In addition, Starbucks will
promote Kozmo and train its sales staff to answer questions about the Internet company. And though e-commerce
companies are loath to open up stores for this reason alone, they are clearly in the market for help from companies
that can help streamline returns. The agreement calls for The Times to be sold at all American Starbucks stores.

Table A.2: Randomly selected outputs for our Abstractive Reinforcement Learning
model

Reinforcement Learning Model
Query Describe the drug Interferon, its uses, effectiveness, patient tolerance and side effects.

Reference

Interferon is a protein isolated from human cells. Researchers in China have succeeded in developing recombinant
a-1b Interferon from healthy leukocyte cells. Interferon beta-1a, known by the brand name Avonex is a genetically
engineered replica of a naturally occurring human protein. Interferon is expensive with a year’s supply in some
applications running as high as $18,000. For many years, Interferon was the only approved drug for the treatment
of hepatitis C. The traditional drug, interferon, approved in Canada in 1991, has helped in 40 percent of the cases,
but the benefits are generally not long lasting as less than 15 percent of the patients achieve complete remission
after the treatment. A more effective treatment for hepatitis C was to use the drug ribavarin in combination with
Interferon. Interferon alpha-2b is used to treat viral diseases, including Ebola, and is also used to treat some
cancer. It is used to slow down the debilitating neurological disease, multiple sclerosis. Interferon has also saved
many children with life threatening growths, called hemangiomas by its ability to knock out a tumor’s ability to
recruit blood vessels from nearby tissues. Interferon is known to produce flu-like side effects. For some people,
interferon treatment can be nearly as devastating as the disease it’s meant to cure.

System Output

A drug called interferon approved in Canada in 1991 helps in 40 percent of cases, but the benefits are short-
lived. The only approved treatment is interferon alpha, which can cause flu-like side effects. Researchers say
not all hepatitis c patients need rebetron, which can have severe side effects including flulike symptoms, anemia,
depression and suicidal behavior. The US food and drug administration approved use of another drug , ribavirin,
the treatment is a combination of interferon and ribavirin. Some doctors and patient groups have criticized
schering-plough for refusing to “unbundle” the two drugs. The other drug in the kit is schering-plough’s brand of
alpha interferon. Schering-plough has been the sole source of ribavirin.
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Table A.3: Randomly selected outputs for our Abstractive Transformer models.

Transformer Model

Query Describe steps taken and worldwide reaction prior to introduction of the Euro on January 1, 1999. Include
predictions and expectations reported in the press.

Reference

Prior to the scheduled introduction of the euro, polls indicated most EU citizens were in favor and believe it
will be successful. However, only 20% felt well informed about upcoming changes. Despite media skepticism,
the European Commission maintained it would be introduced on schedule January 1, 1999, initially for cashless
trading. The founding euro countries were Belgium, Germany, Spain, France, Ireland, Italy, Luxembourg, the
Netherlands, Austria, Portugal and Finland. Euro design development began in 1996. That year, Britain’s mort-
gage lenders prepared for euro mortgages. In 1997, the code EUR was ascribed to the euro; Zambia expected
to benefit from the currency; and Germany’s Bundesbank claimed investors would benefit. Italy was to make
provisions for Vatican City and San Marino, which used Italian lire, to use euros. France was to do the same
for Monaco, St. Pierre and Miquelon, which used French francs. Signs of the euro’s acceptance included: two
international banks quoting prices in the euro; China welcoming its initiation; Eurostat offering euro-related in-
formation online; Bulgaria moving to link its currency with the euro; and Thailand considering using it in foreign
reserves. However, the European Central Bank announced it wouldn’t encourage it as reserve currency. By late
1998, Romania’s Central Bank included the euro in hard currency exchange rates and performed euro services.
The Reserve Bank of India permitted Indian banks to do euro transactions. France, Finland, Belgium and Spain
had begun production of euros. Germany was preparing to do so. Euros would become legal tender on January 1,
2002.

System Output

The euro will be launched on January 1, 1999, new code has been issued to allow progress to the European single
currency, EU member nations agreed to the EU single currency. France has already struck one billion coins of the
European single currency euro. Euro bank notes and coins will become legal tender on January 1, 2002. European
union ’s single-currency plan will take effect in 11 of its member states on January 1, 1999. German economics
minister Guenter Rexrodt says German companies are not prepared for the shift to the single European currency,
the euro, which is due to be launched on, only 20 percent of German companies are prepared for the euro. Private
investors are set to benefit from the 1999 introduction of the single European currency, investors are also set to
benefit from reduced transaction costs.
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