
VISUAL REPRESENTATION OF BUG REPORT ASSIGNMENT
RECOMMENDATIONS

SHAYLA AZAD BHUYAN
Bachelor of Science, BRAC University, 2011

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Shayla Azad Bhuyan, 2019

VISUAL REPRESENTATION OF BUG REPORT ASSIGNMENT
RECOMMENDATIONS

SHAYLA AZAD BHUYAN

Date of Defence: December 18, 2019

Dr. John Anvik Assistant Professor Ph.D.
Thesis Supervisor

Dr. Yllias Chali Professor Ph.D.
Thesis Examination Committee
Member

Dr. Wendy Osborn Associate Professor Ph.D.
Thesis Examination Committee
Member

Dr. Howard Cheng Associate Professor Ph.D.
Chair, Thesis Examination Com-
mittee

Dedication

To an outstanding human being and an adorable father, Abul Kalam Azad Bhuyan. The

first person ever who believed in me.

iii

Abstract

Software development projects typically use an issue tracking system where the project

members and users can either report faults or request additional features. Each of these

reports needs to be triaged to determine such things as the priority of the report or which

developers should be assigned to resolve the report. To assist a triager with report assign-

ing, an assignment recommender has been suggested as a means of improving the process.

However, proposed assignment recommenders typically present a list of developer names,

without an explanation of the rationale. This work focuses on providing visual explanations

for bug report assignment recommendations. We examine the use of a supervised and un-

supervised machine learning algorithm for the assignment recommendation from which we

can provide recommendation rationale. We explore the use of three types of graphs for the

presentation of the rationale and validate their use-cases and usability through a small user

study.

iv

Acknowledgments

I would first like to thank my thesis advisor Dr. John Anvik. His office door was always

open whenever I ran into any trouble or had questions about my research, writing, or any-

thing. He always let me find my own way but guided me in the right direction whenever he

thought I needed it. I learned everything about research from him. He is the best supervisor

I could wish for.

The next person on this list would surely be Faisal Ahmed, for always believing in me,

supporting me, and pushing me to achieve my goals.

I am very grateful to my M.Sc. supervisory committee member Dr. Wendy Osborn

and Dr. Yllias Chali for their valuable feedback and time. I appreciate their effort. I

want to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada

Discovery Grant and Alberta Innovates Technology Futures (AITF) Grant for providing me

funding for the research work.

I want to thank my family, especially my mother and sister, for offering me their un-

failing support and encouragement throughout my years of study. I am very grateful to my

friends, who were always there for me when I needed any help, cheered for me, listened to

me and advised me.

I would also like to thank those people who participated in my user study. I am deeply

grateful for their time and effort.

v

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

2 Background 7
2.1 Bug Report Assignment Recommenders 7
2.2 Machine learning . 8

2.2.1 Multinomial Naı̈ve Bayes . 9
2.2.2 Topic Modeling . 9
2.2.3 Word Mover’s Distance(WMD) 10

2.3 Text Processing . 10
2.4 Information Retrieval(IR) . 11

2.4.1 Bag of Word(BoW) . 12
2.4.2 Term Frequency(TF) . 12
2.4.3 Inverse Document Frequency(IDF) 13
2.4.4 Term Frequency-Inverse Document Frequency(TF-IDF) 13

2.5 Summary . 13

3 Methodology 14
3.1 Assignment Recommender Creation . 14

3.1.1 Data Collection . 15
3.1.2 Data Preparation . 15
3.1.3 Recommender Creation . 16

3.2 Visualization of Assignment Recommendations 23
3.2.1 Visually Representing Recommendations (Multinomial Naı̈ve Bayes

) . 23
3.2.2 Visually Representing Recommendations (Topic Modeling) 24
3.2.3 Font-End Representation . 27

3.3 Web Extension Creation . 29
3.3.1 Web Browser Plug-in . 29
3.3.2 Web Service . 30

3.4 Summary . 32

vi

CONTENTS

4 Evaluation 33
4.1 Analytical Evaluation of Recommenders and Results 33

4.1.1 Evaluation Procedure . 34
4.1.2 Result . 35

4.2 Empirical Evaluation and Result . 38
4.2.1 Evaluation Procedure . 38
4.2.2 Results . 45

4.3 Summary . 48

5 Discussion 49
5.1 Research Questions . 49

5.1.1 RQ1: Supervised Vs. Unsupervised Machine Learning Algorithm . 49
5.1.2 RQ2: Ease of Understanding Visual Explanations 51
5.1.3 RQ3: Trust of Visual Explanations 51
5.1.4 RQ4: Prefered Visualization . 51
5.1.5 General Comments from Participants 52

5.2 Threats to Validity . 53
5.2.1 External Validity . 53
5.2.2 Internal Validity . 53

5.3 Summary . 54

6 Related Work 55
6.1 Expert Recommendation . 55
6.2 Use of machine learning . 59
6.3 Importance of explanation . 62
6.4 Visualizing Expertise . 63
6.5 Summary . 65

7 Conclusion 67
7.1 Future Directions . 68

Bibliography 69

A Appendix Example 73
A.1 Back-End Database . 73
A.2 REST . 73

vii

List of Tables

3.1 Accuracy of the classifiers based on the number of recommendations. . . . 23

4.1 Accuracy@1 for Multinomial Naı̈ve Bayes and Topic modeling. 35
4.2 Accuracy@5 for Multinomial Naı̈ve Bayes and Topic modeling. 36
4.3 Accuracy@10 for Multinomial Naı̈ve Bayes and Topic modeling. 36
4.4 Explanation sufficiency for recommendation for Bugzilla. 37
4.5 Explanation sufficiency for recommendation for Thunderbird. 37
4.6 Results for visualization preference. 46

viii

List of Figures

2.1 Flowchart for BoW model creation. 12

3.1 Flow chart for visualization using machine learning algorithm. 14
3.2 Example of conditional probability values scaled by 1000 for terms for a

developer in a bug report. 18
3.3 Example of conditional probability values of a bug report for all developers. 19
3.4 Experimental pie chart. 21
3.5 Topic modeling Classifier workflow. 22
3.6 Pie for ten developers. 24
3.7 Stacked bar graph for all words from a bug report for a Multinomial Naı̈ve

Bayes classifier. 25
3.8 Stacked bar graph for the top five most relevant words from a bug report for

a Multinomial Naı̈ve Bayes classifier. 25
3.9 Example of conditional probability value of a bug report with the top five

(left) terms and all terms (right) for Multinomial Naı̈ve Bayes classifier for
a developer. 26

3.10 Pie chart for the top five ranked developers of a bug report for a Multinomial
Naı̈ve Bayes classifier. 26

3.11 Bar chart for the selected topic for Topic Modeling classifier. 27
3.12 Pie chart for for the selected topic for Topic Modeling classifier. 28
3.13 Using Extension. 30
3.14 Table with Bug report information. 31
3.15 Table with TF-IDF score. 32

4.1 Excerpt from the user manual. 40
4.2 Visualization for recommendations in stacked bar form. 43
4.3 Visualization for recommendations in pie chart form. 43
4.4 Visualization of recommendations using Naı̈ve Bayes classifier. 44
4.5 Extended explanation of a pie chart for Naı̈ve Bayes classifier. 44
4.6 Visualization of recommendations using Topic Modeling. 45
4.7 Results for classifier preference. 47
4.8 Post-usage result analysis. 48

6.1 Graphical representation of ExplainD. 65

A.1 Database Schema for Thunderbird bug report. 74
A.2 Database Schema for Bugzilla bug report. 74

ix

Chapter 1

Introduction

The increasing need for Global and Distributed Software Development (GDSD) projects

has also increased the demand to find and connect with people with needed expertise for

a task. For any newly assigned developers in a medium to large GDSD project, the mod-

ules and libraries used in existing code bases are often unfamiliar or difficult to understand

solely based on documentation. Being able to identify an expert in an area of the codebase

or the use of any library is a potential solution to this cold start problem. For example, if a

new developer or a tester wants to know about a specific part of a project or how to solve

a specific bug, recommendation systems have been proposed as a means for improving the

achievement of this goal [6, 27, 38, 41]. Also, different studies have shown that develop-

ers spend 50%-70% of their time communicating with other developers [11, 30, 39]. By

knowing with whom to communicate, developers can increase their effectiveness. However,

creating such a recommendation system requires effectively assessing the project members’

expertise.

There are many ways a developer can acquire expertise in a particular project. In gen-

eral, the more a developer works on a project, the more he or she gains expertise for that

project. Expertise is primarily gained in two ways. First, developers acquire expertise as

they develop code for a specific module in the codebase. This type of expertise is referred

to as implementation expertise [3, 14]. Secondly, a developer gains expertise through the

use of calls to other modules or components of the system or libraries. This type of exper-

tise is referred to as usage expertise [18, 32]. Aside from these two, bug report analysis is

1

1. INTRODUCTION

also another way of finding experts [2, 7, 20, 22]. When using bug reports, the system can

consider facts like how many times a developer solved an issue, how many of those issues

are on the same kind of topics, how many of them are a high priority, how much time did

the developer take to solve an issue and so on. In this work, bug reports are used to find

expertise.

Researchers have been using machine learning algorithms to create classifiers [2, 17,

18, 22, 26]. The use of machine learning algorithms frequently involves careful tuning of

learning parameters [33]. As a result, researchers can tune parameters until they are sat-

isfied with the result of a classifier. Then the classifier can be used with real-time data to

give predictions. The machine learning algorithm has been proven to be useful in creating

a recommender system. The creation of a recommender system involves a series of steps.

First, data needs to be collected from an appropriate data source. These datasets are then

filtered to provide features for distinguishing different classes by a machine learning algo-

rithm. For a bug report assignment recommender, these features may include the names of

developers, how often they have committed code for a module in the project, and how many

times they called or used specific components of the system within their code. Having es-

tablished the features and class names, the machine learning algorithm is used to create the

recommender.

In a typical expert recommender system, the recommendations are provided as a textual

list without an explanation of the rationale for the recommendations. As described by Her-

locker et al. [12], most current recommendation systems are similar to a black box where

the transparency is not ensured. Providing transparency by incorporating the reasoning

and data behind a recommendation is an essential feature of an effective recommendation

system [6, 29]. As many recommendation systems use multi-dimensional data, such as

historical user preferences, context-related information, and temporal information, making

efficient visualization of the recommendations can show how different dimensions were

applied while making recommendations to improve transparency [29] . Furthermore, the

2

1. INTRODUCTION

visualizations can improve a user’s acceptance rate of recommendations by providing more

information [6]. Trintarev et al. [37] surveyed a group of moviegoers and found that as

much as the list of recommended movies is important, the explanations behind the recom-

mendations are also equally important to the users.

Bug report1 triage recommenders are an example of such a recommender system in

software engineering. Bug report triage is the process where a project member, typically

a project manager, decides what to do with a bug report. These decisions include which

bug reports need to be resolved and which to ignore, the priority of the report, what is the

estimated time to resolve the report, who should be assigned to resolve the bug report, and

which “sprint” or product release will contain the changes. Bug report triage is a signif-

icant software maintenance problem for any reasonably sized and active software project.

Projects may receive an overwhelming number of bug reports each day [2, 3, 39]. Also, bug

report triage is a tedious task that often shifts development resources away from improving

a product instead towards managing the project.

Bug report triage recommenders have been proposed as a means to reduce the overhead

of the project. Within the area of bug report triage recommenders, assignment recom-

menders are the most commonly researched [2, 26, 41]. Typically, proposed assignment

recommenders provide a textual list of recommended developers’ names, without explana-

tion given for the recommendations (e.g., [2, 36]). Although the expert list provided by the

recommender is crucial, evidence and feedback from software developers indicate that the

lack of explanation leads them to question and perhaps not trust the recommendations.

In this thesis, we present work towards providing accurate expert recommendations and

transparency for bug report triage assignment recommendations using visual explanations.

To the best of our knowledge, this area has not been explored within the area of recom-

mender systems for software engineering (RSSE). We believe that part of the reason for

this is that bug report assignment recommenders are created typically using machine learn-

1We use the term ”bug report” to refer to any change request made for software development, including
feature requests and tasks.

3

1. INTRODUCTION

ing algorithms that make it hard to provide explanations. For example, one of the most

commonly used algorithms is Support Vector Machines (SVM) [28, 42], which creates a

non-probabilistic binary linear classifier. When training such a classifier, each instance in

the training set is labeled as belonging to one or the other of two labels, and the built model

assigns new examples to one label or the other. In a multi-class classifier, the classifier is

typically built as a set of one-vs-all classifiers with a winner-takes-all strategy, or as a set of

one-vs-one classifiers with a max-win strategy. In either case, determining the rationale for

the recommendations is near impossible. More recent work on assignment recommenders

have used the Random Forest algorithm [46, 45], but we found a similar problem concern-

ing determining rationale. Instead, we have focused on assignment recommenders using

Multinomial Naı̈ve Bayes and Topic Modeling. We have created one classifier using

Multinomial Naı̈ve Bayes. To create the recommender, we first create a bag of words, then

generate the conditional probability scores for each developer. We use the conditional prob-

ability scores as the expertise score for that respective developer. To find the most relevant

word, we have used an information retrieval technique known as the TF-IDF. Finally, we

used the expertise score, relevant words, and experts name to generate visual representa-

tions. In contrast to Multinomial Naı̈ve Bayes, the use of Topic Modeling is a relatively

new addition to this field. First, we create a word2vec model using the training dataset.

Next, we randomly select five bug reports, and those five reports are used as initial centers

of clusters. Using the vector values, we use the Word Movers Distance method and calcu-

late the distance between bug reports. We then apply the K-means clustering method and

move the bug reports from one cluster to another depending on their distances. We stop

when not a lot of the reports are shifting from one cluster to another. At this point, each

cluster represents a topic. We adopt an information retrieval technique to select topics. We

determined experts depending on how many reports a developer has solved from a cluster.

From this classifier, we visually represent the topic name, the number of reports a developer

solved, and the developers’ names.

4

1. INTRODUCTION

To explore the use of visualization for recommender explanation, we chose to display

assignment recommendations using three different graphical methods: stacked horizontal

bars, pie charts, and a data table. Previous researchers have used different graphical repre-

sentations for recommendations, including a circle pack layout for recommending talks to

conference attendees [29], and a network representation to display recommendations based

on the data extracted from Facebook [27]. Bostandjiev et al. [6] created a music recom-

mendation system where the interface was interactive. The recommendations took the form

of a horizontal bar chart, and the length of the bars indicated the recommendation score.

When a user changed their preference for a particular artist or band, the recommendation

strength changed in the interface in real-time.

To assess the impact of the use of the assignment recommendations and these visualiza-

tions, we conducted a small user study. We created a browser plug-in that communicated

with a web service. We posted an advertisement on reddit to invite people to partici-

pate in our study. The criteria for participation selection were to have prior experience

in either software engineering, machine learning, or bug report triage. In the end, our

study contained fourteen (14) individuals where participants examined bug reports from

an open-source project and used a web browser plug-in to receive visualized assignment

recommendations. The goal of our work was to answer the following research questions:

RQ1: Does Topic Modeling (i.e., an unsupervised learning algorithm) provides an ac-

ceptable accuracy to be an alternative to Multinomial Naı̈ve Bayes (i.e., a supervised learn-

ing algorithm) ?

RQ2: Do developers find visual explanations of assignment recommendations easier to

understand than a text list?

RQ3: Do developers find visual explanations of assignment recommendations more

trustworthy?

RQ4: What is the preferred recommended visualization technique by the developers?

This thesis is organized in the following manner. First, we provide some background

5

1. INTRODUCTION

information regarding our approach to creating and visualizing bug report assignment rec-

ommendations. Then, we present an overview of how the assignment recommenders are

created and the visualizations we use. Next, we describe the setup of our user study, includ-

ing details about the web browser plug-in and web service that is created to provide a visual

explanation of the recommendations. Then we give the results of our study and a discussion

of our findings. Before we present previous works that are found to be complementary to

our approach, we discuss the lessons we learned, present threats to validity, and possible

future directions. In the end, we conclude with a summary of the works that we proposed.

6

Chapter 2

Background

Representing assignment recommendations visually requires an understanding how such

recommenders are created. In this section, we provide overviews of assignment recom-

mender, machine learning, text processing, and term weighting.

2.1 Bug Report Assignment Recommenders

In order to create a bug report assignment recommender using machine learning algo-

rithms, text and attributes from the reports are extracted. In the machine learning literature

[2], these reports are known as instances, and the attributes of the instances are known

as features. An important feature for supervised machine learning algorithms is the label,

which describes the category or class to which the instance belongs. For an assignment rec-

ommender, this will be the name of the developer previously assigned to the report. In the

case of unsupervised machine learning, the user determines the number of classes (i.e., the

number of developers in the project), or clusters (i.e. if using a cluster-based unsupervised

machine learning algorithm). Also, the user specifies the number of iterations to run the

algorithm. Then, the classifier uses the features to iterate through grouping instances and

recalculates a goodness metric for the groups until either there is little to no change in the

groups or the iteration threshold is reached.

As the title (or summary) and description of the bug report provide the primary features,

text classification is used to process this data into individual features. The Bag of Word

(BoW) model can be used for text classification method. In this model, the text (such as a

7

2.2. MACHINE LEARNING

sentence or a document) is interpreted as a collection of independent terms. It disregards

grammar and the order of words in that text but keeps the multiplicity. The BoW usually

gets utilized in the processes of document classification, where the frequency of a word

found in that document is used as a feature for training a classifier.

2.2 Machine learning

Machine learning is applying some form of artificial “learning”, where the “learning” is

the ability to change an existing model based on new information. Machine learning refers

to techniques that allow an algorithm to modify an internal model based on observations so

that its accuracy or effectiveness increases. Although every machine learning algorithm is

unique, all such algorithms generalize to the following steps which repeat until the result is

considered satisfactory:

1. Apply the algorithm to a set of training examples.

2. Find results for testing examples.

3. Evaluate the results against a gold standard.

4. Tune the algorithm parameters.

Machine learning algorithms are often divided into two categories: supervised and un-

supervised. Supervised machine learning is applied based on the knowledge learned from

previous data to predict future results. The process begins by analyzing a training dataset

where the categories of the training instances are known. In other words, each item in the

training set is labeled. The algorithm then generates an inferred function (i.e., classifier)

that makes predictions for labeled data that has not been used in training dataset. The pre-

dicted label is then compared to the known label to assess the effectiveness of the classifier.

Support Vector Machines, Linear Regression, and Naı̈ve Bayes are examples of commonly

used supervised learning algorithms.

8

2.2. MACHINE LEARNING

In contrast, unsupervised machine learning algorithms analyze a dataset to describe a

hidden structure of unlabeled data. Unsupervised learning identifies patterns in the data

and reacts based on the presence or absence of such patterns in each new piece of data. K-

means, Topic Models, and mixture models are examples of commonly used unsupervised

learning algorithms.

The main goal of this work is to investigate the visualization of recommendations for

both a supervised and unsupervised machine learning algorithm. The two chosen algo-

rithms were Multinomial Naı̈ve Bayes and Topic Modeling.

2.2.1 Multinomial Naı̈ve Bayes

Multinomial Naı̈ve Bayes is a specialized version of Naı̈ve Bayes that is designed to use

with text documents [16]. Whereas the traditional Naı̈ve Bayes algorithm would represent

a document as the presence and absence of particular words, Multinomial Naı̈ve Bayes

explicitly models the word counts and adjusts the underlying calculations. Especially for

small sample sizes, Multinomial Naı̈ve Bayes classifiers can outperform the more powerful

alternatives.

This equation is for Multinomial Naı̈ve Bayes. It shows that the likelihood of a word

(P(w|c)) given a class (c) equals the count of the word (w) occurring in the class divided by

the count of all words in the class. The purpose of the addition of one (1) is to smooth the

result. |V | represents the vocabulary size.

P(w|c) =
count(w,c)+1
count(c)+ |V |

(2.1)

2.2.2 Topic Modeling

A topic modeling approach begins with selecting n instances as centroids. The remain-

ing instances are then grouped around the centroids based on a distance metric and using a

k-means approach [5]. The centroids are recalculated, and clusters are reformed until the

system reaches a stable state or a specified number of iterations is completed.

9

2.3. TEXT PROCESSING

Traditionally, the Latent Dirichlet allocation (LDA) [26, 25] is used as a technique for

topic modeling. However, in this work, the more modern method, known as Word Mover‘s

Distance (WMD), is applied. This method uses semantic similarity. WMD applies the earth

mover‘s distance technique.

2.2.3 Word Mover’s Distance(WMD)

Word Mover’s Distance (WMD) is based on word embedding techniques that learn

meaningful representations for words from local coexistence in sentences. WMD uses some

advanced embedding techniques like word2vec and Glove. Word2Vec is a predictive word

embedding technique which changes a word into number-based vectors based on the tar-

get word. This model measures a target word’s vector value using other words from the

same sentence. It uses a Neural Network whose hidden layer encodes the word representa-

tion. Glove is a count-based model that learns vectors or words from their co-occurrence

information (i.e., how frequently they appear together in large text corpus).

Word Mover’s Distance (WMD) suggests that distances between embedded word vec-

tors are, to some degree, semantically meaningful. It utilizes this property of word vector

embedding and treats text documents as a weighted point cloud of embedded words. The

distance between two text documents A and B is calculated by the minimum cumulative dis-

tance that words from the text document A needs to travel to match exactly the point cloud

of text document B. This approach produces a more coherent document representation than

a Bag of Word model.

2.3 Text Processing

Text processing is one of the most common tasks in many machine learning applica-

tions. Applications like a language translator, a sentiment analyzer, and spam filtering use

text processing. Machine learning for natural language processing (NLP) and text pro-

cessing involves using machine learning algorithms and some artificial intelligence to un-

10

2.4. INFORMATION RETRIEVAL(IR)

derstand the meaning of any given text documents. NLP includes applying algorithms to

identify and extract the natural language rules in such a way that the unstructured language

information is converted into a form of a string which is comprehensible by the computers.

After the texts is given, NLP utilizes algorithms to obtain the meaning incorporated with

each sentence and collect the required data from them. There are several kinds of text pro-

cessing libraries available for classification, tokenization, stemming, tagging, parsing, and

semantic reasoning. Text processing contains a few steps:

• Tokenization — converting sentences to words.

• Removing unnecessary punctuation (-*$), tags.

• Removing stop words — removing frequent words such as “the”, “and”, “is” that do

not have specific semantics.

• Stemming — reducing words to their root by removing inflection through discarding

unnecessary characters, usually a suffix.

2.4 Information Retrieval(IR)

Information retrieval (IR) is the process of searching for documents or information in

documents [9]. Document types included text, multimedia, HTML, etc. It has been fully

studied in the last 40 years and applied to various domains, including software engineering

[1]. Information retrieval is established on two principles: firstly, the data under search

are unstructured, and secondly, unlike SQL queries in database systems, the queries in IR

are formed mostly by keywords. Usually, information retrieval adopts probabilistic models

(e.g. Naı̈ve Bayes). A few concepts from information retrieval have been used in this work:

• Bag of Word(BoW)

• Term Frequency(TF)

• Inverse Document Frequency(IDF)

11

2.4. INFORMATION RETRIEVAL(IR)

Figure 2.1: Flowchart for BoW model creation.

• Term Frequency-Inverse Document Frequency(TF-IDF)

2.4.1 Bag of Word(BoW)

The Bag of Words (BoW) model is a simple algorithm used in NLP (Natural Language

Processing). It can be used to extract features from the text. This framework contains a

very simple and easy to use approach. It can be used in many ways to extract features from

documents. It is known as “bag” of words as the order or structure of words is not stored.

The main interest of this model is to find occurrences of a known word, not how many times

or where in the document it occurred. Figure 2.12. shows the steps to create a BoW model.

At first, data is collected. After that, a list of unique words is created from that data. The

next step is to score those words in each document so that these documents can be turned

into a vector. These vectors can later be used as input or output for a machine learning

classifier. Finally, a binary vector for each sentence of that document can be generated.

2.4.2 Term Frequency(TF)

The term frequency refers to the number of times that a term t occurs in document d

[24]. As every document is different in length, the possibility of a term appearing more

times in long documents than shorter ones is higher. Therefore, to normalize this value, the

2The image was created using information provided in this https://machinelearningmastery.com/
gentle-introduction-bag-words-model website

12

https://machinelearningmastery.com/gentle-introduction-bag-words-model
https://machinelearningmastery.com/gentle-introduction-bag-words-model

2.5. SUMMARY

term frequency is often divided by the document length:

T F(t) =
Number o f times term t appears in a document d

Total number o f terms in the document
(2.2)

2.4.3 Inverse Document Frequency(IDF)

The inverse document frequency is a way to measure whether a term is usual or not in a

given document collection. It can be calculated by dividing the total number of documents

with the number of documents containing the term in the corpus [24].

IDF(t) = loge
Total number o f documents

Number o f documents with term t in it
(2.3)

2.4.4 Term Frequency-Inverse Document Frequency(TF-IDF)

The term frequency and inverse document frequency can be combined (i.e. multiplied)

to obtain a new measure known as TF-IDF. This value shows how important a word is with

respect to a given document in a collection of documents.

TF-IDF (t, d, D) = TF(t, d) · IDF(t, D) (2.4)

t: Term occurring in a document

d: One document from corpus

D: Total number of documents in the corpus

2.5 Summary

This chapter explained the basic concepts for understanding our work. We presented

how a machine learning algorithm can be used to create a bug report assignment recom-

mender, how machine learning algorithms work, and various text processing techniques.

13

Chapter 3

Methodology

In this section, an overview of the steps to create the assignment recommenders and create

the visual explanations of the recommendations is presented. Figure 3.1 shows steps of

our work. First, data from the bug reports need to be collected. Second, the data needs to

be filtered and processed using text categorization techniques. After that, a supervised and

unsupervised machine learning algorithm is applied to create two assignment recommender

classifiers. Finally, the recommendations are represented visually.

3.1 Assignment Recommender Creation

The creation of an assignment recommender for a software project involves the follow-

ing steps:

1. Data Collection.

2. Data Preparation.

3. Recommender Creation.

Figure 3.1: Flow chart for visualization using machine learning algorithm.

14

3.1. ASSIGNMENT RECOMMENDER CREATION

3.1.1 Data Collection

We use text classification for assignment recommender creation. The first step is to

collect bug reports from a project’s issue tracking system (ITS). For this work, we decided

to use bug reports from a well known open-source bug repository: bugzilla.mozilla. As

it is an open-source bug repository, there are hundreds of products for which developers,

testers, users, and other project-related people submitted reports. From there, we used

the bug reports from two products: Bugzilla and Thunderbird. Generaly speaking in

machine learning, the more data we have to train the algorithm, the better the classifier can

perform. Therefore, we gathered bug-reports going back five years from August 2019 (i.e.,

August 2014 to August 2019).

A bug report contains different kinds of information: name and other details of the

product, status, reporter’s name, contact information, assignee’s name, type of bug, priority,

summary, and comments. Not all information is useful. For an assignment recommender,

information like the bug-report id, name of the reporter, name of the person who fixed the

bug report, summary/title, and description of the report are useful. In the Bugzilla ITS there

is no direct “description” of a bug report. Instead, we found that the first comment in any

bug report is the description of that bug. In many software ITS, typically the name shown

in the assignee can be a default email address or the reporter’s name. As the name of the

assignee is important for creating a supervised recommender, we found that the person who

wrote the last comment is often the developer who fixed that bug. For training both of the

machine learning algorithms, the reports whose status are either Assigned or Resolved with

a Fixed resolution were used.

3.1.2 Data Preparation

In this work, over eight thousand (8,371) bug reports were used. Over five thousand

(5,020) reports were used from the Bugzilla product, and the remainder (3,351) were

from the Thunderbird product. Before initiating the data processing, we need to perform

15

https://bugzilla.mozilla.org/home
https://bugzilla.mozilla.org/home

3.1. ASSIGNMENT RECOMMENDER CREATION

a few more steps. First, the first comment (i.e., bug report description) needs to be extracted

and concatenated with the summary/title of the report. After that, for each report, the name

of the person who wrote the last comment needs to be collected. Often instead of a name,

the ITS uses the developer’s full email address. We used these email addresses as the de-

veloper’s name. Now each report has three core pieces of information: report ID, assignee,

and text (i.e., summary and description together). These pieces of information are saved to

be used later to train the classifiers. After all the necessary elements are accumulated, data

processing can be started.

The first step of data processing is to break down the data-set into a sets of features.

These features from the bug reports will be used by the machine learning algorithm to learn

how to distinguish the different classes (i.e., developers). We performed the standard text

processing actions of removing stop words and stemming. The remaining terms were then

used to create a BoW model. The assigned developers’ name is used to label the instances.

And both of the classifiers are heavily dependent on the TF-IDF score, TF-IDf is calculated

for each product separately.

3.1.3 Recommender Creation

The main aim of this work is to explain the recommendations of the assignment recom-

mender in such a way that would help triagers to understand the reason for a person to be

recommended as an expert. The triager can then assign new reports to the developer. To

create an assignment recommender, two algorithms were investigated. A supervised ma-

chine learning algorithm (Multinomial Naı̈ve Bayes) and an unsupervised machine learning

algorithm (Topic Modeling).

3.1.3.1 Multinomial Naı̈ve Bayes

We chose to use one of the most popular supervised machine learning algorithms:

Multinomial Naı̈ve Bayes. By using Multinomial Naı̈ve Bayes theory, the classifier cal-

culates conditional probability values. These values are then assigned to developers as their

16

3.1. ASSIGNMENT RECOMMENDER CREATION

expertise score. When a new bug report arrives for triaging, the classifier uses that report’s

text information and calculates conditional probability values for that report. Based on the

value, the experts are recommended.

After processing the reports, developers that solved less than ten (10) bug reports are

excluded from the list. As the intention is to find an expert, if a developer did not solve

a minimum of ten (10) bug reports within the past five (5) years (i.e., two (2) reports per

year), he/she should not be recommended as an expert. Hence, those developers and their

solved bug reports are eliminated from the dataset. Less than 1% of bug reports from the

datasets are removed by this process. After that, for every report the conditional probability

value for each word and assigned developer is calculated. The Equation from 2.1 in the

context of a bug report assignment recommender is as follows.

CP(DeveloperD|WordW) =
count(DeveloperD,Wordw)+1

count(Word)+ count(DeveloperD,Words)
∗1000 (3.1)

Where:

• DeveloperD: A developer D.

• WordW : A specific word W.

• CP(developerD|wordW): The conditional probability value for D given W.

• count(DeveloperD,Wordw): Number of time W appears in all bug reports of D.

• count(Word): All distinct words from the bug-report corpus.

• count(DeveloperD,Words): Total number of words from the bug-report corpus for D.

The conditional probability value was calculated for each word and developer in every bug

report. To make these values more understandable and presentable, they were scaled by one

thousand (1000). Figure 3.2 shows an example of conditional probability values for all the

words of a bug report (ID:1325128) for a developer named andy+bugzilla@mckay.pub,

17

3.1. ASSIGNMENT RECOMMENDER CREATION

Figure 3.2: Example of conditional probability values scaled by 1000 for terms for a devel-
oper in a bug report.

where the values are scaled by 1000. For implementation convenience, we saved the data

in such a way where bug report id would be the first entry. After that, for every word of

that bug-id, we would keep a conditional probability value of all the developers for that

product. Figure 3.3 shows the conditional probability values for all developers for one term

in a bug report. The left-hand side of Figure 3.3, shows that this bug report has 34 words

in it (after removing stop words and stemming). This product (Bugzilla) has one hundred

and thirteen (113) developers who solved more than ten (10) reports. On the right-hand

side of the figure, a sample of conditional probability scores for the developers is shown for

only the first word.

Not every word in a bug report carries equal importance. The higher the value of TF-

IDF, the more relevant the word is. So the TF-IDF list is sorted by their values from highest

to lowest. Only the words from reports that appear in the first one thousand (1000) relevant

words from the TF-IDF list are kept. In this way, the computation time for generating

18

3.1. ASSIGNMENT RECOMMENDER CREATION

Figure 3.3: Example of conditional probability values of a bug report for all developers.

19

3.1. ASSIGNMENT RECOMMENDER CREATION

recommendations could be reduced significantly.

3.1.3.2 Topic Modeling

We have decided to use topic modeling to create a K-means clustering algorithm as an

example of an unsupervised machine learning algorithm. The algorithm creates clusters

of bug reports based on the shortest distance with each other using the dataset. Then, the

most relevant topic from each cluster can be selected and used as centroids of the clusters.

When a new bug report arrives for triaging, the classifier calculates the distance between

the new report and the centroid of each cluster. Based on the minimum distance, the report

is labeled with cluster name. Experts from that cluster are then recommended to the triager

by the classifier.

Similar to the Multinomial Naı̈ve Bayes classifier creation process, after reports are

processed, developers who did not solve a minimum of ten (10) reports are excluded. We

use the Word Movers Distance method (WMD) to calculate this distance. This method

can assess the ”distance” between two (2) documents even when they have no words in

common. It uses word2vec vector embedding of words. In other words, instead of using

exact word similarity like LDA, WMD uses meaning. By using the word2vec model, all of

the words in the sentences are turned into vectors, which are later used to find the distance

between two documents.

To start, five (5) bug reports are selected randomly, and these reports would be used

as centroids to create clusters. Figure 3.4 shows a representation of those clusters as a pie

chart. The distance between each report and these five (5) reports are measured. Later,

reports are grouped into the clusters according to their minimum distance to each centroid.

A short TF-IDF scored list is created to find the most relevant words for each cluster. This

list of terms now represents the centroid of each cluster. Again the distance between each

bug report and the centroids of each cluster are calculated, and reports are moved to new

clusters as needed. The process is repeated ten (10) times. After that, the clusters are con-

20

3.1. ASSIGNMENT RECOMMENDER CREATION

Figure 3.4: Experimental pie chart.

sidered stable. Each cluster can have thousands of bug reports, and the same developer

might have solved most of them. The names of developers for each cluster are determined

and sorted according to how many times they have appeared in the cluster. In short, devel-

opers are ranked in each cluster by the number of reports they resolved. Figure 3.5 shows

the flowchart of how the topic model classifier provides recommendations.

21

3.1. ASSIGNMENT RECOMMENDER CREATION

Figure 3.5: Topic modeling Classifier workflow.

22

3.2. VISUALIZATION OF ASSIGNMENT RECOMMENDATIONS

3.2 Visualization of Assignment Recommendations

After the recommenders are created, the next step is to use the information provided

by the recommender in a visually understandable way. The aim is to generate graphs in

a way that a triager would see the graph and understands why the specific developers are

recommended. In order to determine how many expert recommendations are sufficient, we

conducted a small experiment. Table 3.1 shows that if the assignment recommender gives

only one recommendation, for both classifiers, the chances of being accurate is less than

25%. When the number of recommended developers increases by five (5), the accuracy

rate increases significantly. But, as the number of recommended developers increases to

ten (10), we can see that the accuracy rate increases but less significantly. Also, visually

representing ten developers in one graph proved to be confusing and unclear (Figure 3.6).

Therefore, the assignment recommenders should provide five expert recommendations.

Table 3.1: Accuracy of the classifiers based on the number of recommendations.

Number of Recommendations Multinomial Naı̈ve Bayes Topic Modeling

One Recommendation 24.31% 6.61%

Five Recommendations 68.20% 44.63%

Ten Recommendations 81.30% 49.87%

3.2.1 Visually Representing Recommendations (Multinomial Naı̈ve Bayes)

Recall that in the case of the Multinomial Naıve Bayes classifier, when getting a recom-

mendation for a new bug report, the system returns the most relevant words, corresponding

conditional probability scores for all of the developers, and the developers’ names. All

of these pieces of information are used to graphically represent the recommendations. As

the system returns information for each developer, the amount of information can be large.

Therefore, the developers are ranked based on their highest conditional probability score.

23

3.2. VISUALIZATION OF ASSIGNMENT RECOMMENDATIONS

Figure 3.6: Pie for ten developers.

Based on the results shown in Table 3.1, the first five developers whose overall score is the

highest are recommended as experts.

In most cases, bug reports have a lot of relevant words. Figure 3.7 shows an example

of how it would look if all the words from a bug report were shown. Figure 3.8 shows an

example for the same report as Figure 3.7. The pie chart was also chosen to be one of the

experimental visualizations. As the pie chart can only display two values meaningfully (a

percentage and a label), a pie chart is created for each developer (Left side of the Figure

3.9) and a summary pie chart is created (Figure 3.10). Note that, from the right hand side

of Figure 3.9 shows a similar problem with displaying the values for all terms. Again, only

the top five (5) terms are shown to the user. There would also be five more pie charts, for

each recommended developer and their score for the relevant words from the bug report.

Here also we faced similar issues.

3.2.2 Visually Representing Recommendations (Topic Modeling)

For topic modeling, when getting a recommendation for a new bug report, the system

provides the overall size of each cluster, the names of the developers from each cluster, and

the number of bug reports they resolved for the cluster. For example, from Figure 3.4, we

24

3.2. VISUALIZATION OF ASSIGNMENT RECOMMENDATIONS

Figure 3.7: Stacked bar graph for all words from a bug report for a Multinomial Naı̈ve
Bayes classifier.

Figure 3.8: Stacked bar graph for the top five most relevant words from a bug report for a
Multinomial Naı̈ve Bayes classifier.

25

3.2. VISUALIZATION OF ASSIGNMENT RECOMMENDATIONS

Figure 3.9: Example of conditional probability value of a bug report with the top five (left)
terms and all terms (right) for Multinomial Naı̈ve Bayes classifier for a developer.

Figure 3.10: Pie chart for the top five ranked developers of a bug report for a Multinomial
Naı̈ve Bayes classifier.

26

3.2. VISUALIZATION OF ASSIGNMENT RECOMMENDATIONS

Figure 3.11: Bar chart for the selected topic for Topic Modeling classifier.

can see that cluster 1 is the largest cluster. Therefore, the system would select cluster 1

as our recommended cluster. For this cluster, the system would provide the name of the

developers and the number of reports they solved. Figure 3.11 shows the recommended de-

velopers for the selected cluster. The Y-axis of the graph shows the name of the developers,

and X-axis shows how many bug reports from that cluster were solved by each developer.

Figure 3.12 shows the same recommended developers using a pie chart. The chart shows

the name of the developers and the percentage of the number of reports they solved.

3.2.3 Font-End Representation

After the extension is installed and the user navigates to bugzilla.mozilla, it is ready

to provide recommendations. To provide an assignment recommendation for a new bug

report, the user needs to click the “Recommend Expert” (Figure 3.13) button. When the

user clicks that button, multiple steps of the recommendation process start. First, the data

preparation steps are applied to the report (i.e., the report is turned into a “bag of words”

or a vector of features). Next, the features of the new bug report are given to the trained

classifier.

In the case of the Multinomial Naı̈ve Bayes classifier, for each potential developer,

27

http://bugzilla.mozilla.org/\OT1\textquotedblright

3.2. VISUALIZATION OF ASSIGNMENT RECOMMENDATIONS

Figure 3.12: Pie chart for for the selected topic for Topic Modeling classifier.

the set of features that are common between their instances and the new bug report are

collected. Then the sum of conditional probability scores of each of these features is de-

termined, which provides the expertise score of that developer for that bug report. Finally,

developers are ranked based on expertise scores. Figure 4.4 shows three types of visual

representation. The pie chart is showing the important features of each report based on

their conditional probability values. If a user clicks on the pie, a new web page (Figure

4.5) opens. This new page shows a pie chart for each developer, and each pie chart shows

the overall conditional probability values for the corresponding recommended developers.

The data-table shows the values for each important feature and developers. The stacked

bar chart, however, shows developers horizontally where a different color represents each

feature. The developer who has the highest total conditional probability values for all the

selected features is at the very bottom.

For the Topic modeling classifier, the cluster with the shortest distance to the new bug

report is the selected cluster, and the ranked list of developers for that cluster forms the

28

3.3. WEB EXTENSION CREATION

recommendation list. Figure 4.6 shows the same three types of visual representations for

Topic Modeling. The pie chart shows the recommended developer names and their solved

bug report rate for the specific cluster. The data table gives the list of developer names with

the exact number of reports that the developer solved related to that cluster. The stacked bar

chart also shows the developer names horizontally with their score. The color of the bar,

however, is related to the selected cluster. Based on the cluster, the color of the bar would

change.

3.3 Web Extension Creation

When provided with a new bug report, the Multinomial Naı̈ve Bayes and Topic Model-

ing techniques are used to recommend developers to resolve the bug report. To present the

visual explanations, a web browser plug-in is used to provide a front-end interface to the

user, which connects to a back-end server web service for providing the visualizations. The

REST (Representation State Transfer)3 architecture was adopted to develop the API that

establishes the communication between the front-end and the back-end.

3.3.1 Web Browser Plug-in

The front-end part of this project involves a browser plug-in or extension, which is a

small software program typically used to customize users’ browsing experience. Extensions

can be general-purpose, where a user can use them for any website. On the other hand,

extensions can also be developed that are specific to certain websites. In other words, such

an extension will only get activated while browsing a specific website.The latter approach

was used to create a browser extension designed to activate for bugzilla.mozilla. The goal

was to create the extension in such a way so that it would be simple and user-friendly.

For the simplicity of design, this extension consists of only a button for users to obtain

recommended experts. Figure 3.13 shows how the extension looks when a user decides to

3A

29

http://bugzilla.mozilla.org/\OT1\textquotedblright

3.3. WEB EXTENSION CREATION

Figure 3.13: Using Extension.

use it. By clicking the Recommend Experts button, the user sends a request to the backend

server. The browser extension was created for Google Chrome.

3.3.2 Web Service

In this work, we adopted one of the most common architectures for creating a web-

based application known as REST (Representation State Transfer). To create the back-end

server the DJANGO framework was used.

A SQL (Structured Query Language) server was used as the back-end database. The

database contains 4 tables4.

• Bugzilla bug report information,

• Thunderbird bug report information,

• TF-IDF score for Bugzilla, and

• TF-IDF score for Thunderbird.
4A

30

3.4. SUMMARY

Figure 3.14: Table with Bug report information.

Figure 3.14 and 3.15 shows example of two tables that we created to store data. These tables

contain all of the necessary information from bug reports (e.g. bug-id, assigned developers’

names, reported by, status, summary, description)

When the front end (i.e. browser plugin) requests a recommendation for a particular

bug report, the extension sends an HTTP request to the back-end server’s REST endpoint.

The HTTP request contains the id of the bug report for which to obtain recommendations

using this information, features are extracted and fed to the machine learning classifiers.

An example request to obtain the bug report information is

https://bugzilla.mozilla.org/rest/bug/1466306, where 1466306 is the id of the bug report

for which a recommendation has been requested. Once the recommendations are obtained

from the two classifiers, the back-end server processes the result to form an HTTP re-

sponse object, which is then sent back to the front-end. For Multinomial Naı̈ve Bayes ,

this HTTP response object contains conditional probability scores of each word in the re-

port for each developer. The words are in ranked order with the expertise score for each

top-recommended developer. For topic modeling, it returns the developers’ names and the

number of bug reports solved by the corresponding developer in ascending order.

31

https://bugzilla.mozilla.org/rest/bug/1466306

3.4. SUMMARY

Figure 3.15: Table with TF-IDF score.

3.4 Summary

This chapter explained the methodology used to create the two assignment recom-

menders. Figure 3.1 showed steps of our work. First, the data from the bug reports are col-

lected. Second, the data is filtered and processed using text classification techniques. After

that, machine learning algorithms are applied to create two bug report assignment classi-

fiers. Finally, the recommendations are represented visually. Multinomial Naı̈ve Bayes was

chosen as a supervised machine learning algorithm and Topic Modeling as an unsupervised

machine learning algorithm for creating the two classifiers. Both of these classifiers have

the potential to represent their results visually. An information retrieval technique (TF-IDF

score) was used to find the most relevant words. However the goal of this work is not just

to create an assignment recommender, but also to present the recommendations in such

a way so that a project member can understand why the specific recommendations were

provided. Two graphs, a stacked bar chart and a pie chart, were selected to visually rep-

resent the recommendations, in addition to a data table. A browser plug-in (i.e., a Google

Chrome extension) was created to interact with a REST web service which provides the

visualizations.

32

Chapter 4

Evaluation and Result

The focus of this work is to investigate the explanation of assignment recommendations

using visual representation. In order to do this, assignment recommenders needed to be

created such that their recommendations can be explained. Therefore, an analytical eval-

uation of the two recommenders is presented before presenting the details and results of

the empirical evaluation used to answer our research questions. Recall that our research

questions are:

RQ1: Does Topic Modeling (i.e., an unsupervised learning algorithm) provides an ac-

ceptable accuracy to be an alternative to Multinomial Naı̈ve Bayes (i.e., a supervised learn-

ing algorithm)?

RQ2: Do developers find visual explanations of assignment recommendations easier to

understand than a text list?

RQ3: Do developers find visual explanations of assignment recommendations more

trustworthy?

RQ4: What is the preferred recommended visualization technique by the developers?

4.1 Analytical Evaluation of Recommenders and Results

In this section, we explain how both of the classifiers were evaluated analytically. When

getting recommendations for a new bug report, the recommender processes the report, cat-

egorizes the texts and creates a BoW. Then both of the classifiers use that BoW to rec-

ommend developers. Both of our assignment recommender systems provide five experts

33

4.1. ANALYTICAL EVALUATION AND RESULT

(recommended developers) names.

Our bug report corpus has more than eight thousand (8,371) bug reports; more than

five thousand (5,020) reports are from Bugzilla product and the rest (3,351) are from

Thunderbird. For evaluating the recommenders, cross-validation evaluation method tech-

niques were used.

4.1.1 Evaluation Procedure

Cross-validation is a resampling procedure that is used to evaluate machine learning

classifiers on any given dataset. The procedure has only one parameter known as K. K

refers to the number of groups into which a given dataset is to be split. This is why the

procedure is known as k-fold cross-validation. In this work, the value of K was set to 5.

Hence, we used five-fold cross-validation. For k-fold cross-validation, the whole data is

first randomly shuffled, and then split into k groups (in our case five). First, one set is

chosen as the test-set, and the remainder are training sets. Each bug report in the testing

set is then given to the recommender for classification and the bug report would be selected

randomly and used as a new bug report for the classifiers. The rest of the 4 groups would

be used as training dataset. For both Multinomial Naı̈ve Bayes and Topic Model classifier,

we used the cross-validation to evaluate.

TF-IDF was used to find relevant words in our assignment recommender. For both of

the classifiers, we compared the words from bug reports with the TF-IDF list. The TF-IDF

list provides scores of all the words from the bug report corpus. Using the whole list would

be redundant. Therefore, a shortlist was made where the classifiers would only use the

first few hundred words (based on their higher values) for comparison. We tested with the

five hundred (500), one thousand (1000), and fifteen hundred (1500) most relevant words

from the lists based on their TF-IDF score. We found that if we use the first five hundred

words, even though the comparison time is significantly reduced, most of the test reports

would have few or no words to use as input for the classifiers. With fifteen hundred words,

34

4.1. ANALYTICAL EVALUATION AND RESULT

the comparison time increases significantly, and many words from the bug report remain

as the input, which increases the recommendation time. But with one thousand words, the

comparison time is not too long, and bug reports still have words to use as input in the

classifiers. Therefore, one thousand most relevant words (based on their TF-IDF score)

from the whole bug-reports corpus to compare is found to be adequate. However, there

still remains a possibility that a bug report can only have one relevant word or even none.

An experiment was conducted to assess how often the recommenders were able to provide

multiple terms, one term, or no terms for an explanation when the vocabulary size is limited.

4.1.2 Result

To determine the accuracy of the classifiers, the following approach was used: as the

classifiers give a list of recommended developers, if one of the developers matches the

actual developer that solved the report, we count that as a success. The top-1 (Accuracy@1),

top-5 (Accuracy@5), and top-10 (Accuracy@10) accuracies were evaluated. Table 4.1, 4.2,

and 4.3 shows the percentages of the accuracy for both the classifiers for both projects.

Table 4.1: Accuracy@1 for Multinomial Naı̈ve Bayes and Topic modeling.

Product Name Multinomial Topic Modeling Average

Naı̈ve Bayes (Product-wise)

Bugzilla 27.12% 8.24% 17.62%

ThunderBird 21.49% 4.97% 13.23%

Average (Classifier-wise) 24.31% 6.61%

35

4.1. ANALYTICAL EVALUATION AND RESULT

Table 4.2: Accuracy@5 for Multinomial Naı̈ve Bayes and Topic modeling.

Product Name Multinomial Topic Modeling Average

Naı̈ve Bayes (Product-wise)

Bugzilla 78.08% 71.67% 74.88%

ThunderBird 58.31% 17.59% 37.95%

Average (Classifier-wise) 68.20% 44.63%

Table 4.3: Accuracy@10 for Multinomial Naı̈ve Bayes and Topic modeling.

Product Name Multinomial Topic Modeling Average

Naı̈ve Bayes (Product-wise)

Bugzilla 87.51% 73.62% 80.57%

ThunderBird 75.08% 26.12% 50.60%

Average (Classifier-wise) 81.30% 49.87%

Table 4.1 shows that, when an assignment recommender recommends only one devel-

oper, the accuracy is very low (24.31% for Multinomial Naı̈ve Bayes and 6.61% for Topic

Modeling). But if the assignment recommender recommends five developers, the average

rate for the Multinomial Naı̈ve Bayes classifier becomes 68.20%, and for the Topic Mod-

eling classifier, 44.63%. Finally, if the number of recommended developers increases from

five to ten, the average accuracy rate for Multinomial Naı̈ve Bayes becomes 81.30% and

for Topic Modeling, 49.87%

To evaluate whether the assignment recommenders is always providing the visual expla-

nations, it was decided that any recommendation where either less than five (5) developers

were recommended or less than five terms were available for explanation was not sufficient

for recommendation. For the Multinomial Naı̈ve Bayes classifier, both situations were in-

36

4.1. ANALYTICAL EVALUATION AND RESULT

vestigated.

Even though number of terms for explanations are not shown in the case of Topic Mod-

eling classifier, we decided to test for all three cases similar to the Multinomial Naı̈ve Bayes

classifier.

Table 4.4: Explanation sufficiency for recommendation for Bugzilla.

Multinomial Naı̈ve Bayes Topic Modeling

More than 5 developers and 100% 100%

less than 5 terms

Less than 5 developers and 98.20% 99.76%

more than 5 terms

Less than 5 developers and 92.30% 99.98%

less than 5 terms

Table 4.5: Explanation sufficiency for recommendation for Thunderbird.

Multinomial Naı̈ve Bayes Topic Modeling

More than 5 developers and 63.81% 100%

less than 5 terms

Less than 5 developers and 63.35% 100%

more than 5 terms

Less than 5 developers and 63.35% 99.73%

less than 5 terms

Table 4.4 shows that given a bigger dataset, both the Multinomial Naı̈ve Bayes clas-

sifier and the Topic modeling classifier can provide graphical explanations for any given

37

4.2. EMPIRICAL EVALUATION AND RESULT

scenarios. However, Table 4.5 shows that given a smaller dataset, the Topic Modeling clas-

sifier outperforms the Multinomial Naı̈ve Bayes classifier significantly. In the cases of the

supervised machine learning classifiers, the more labeled data that is given as input to train

the classifier, the better the predictions classifier can make. However, in the cases of the

unsupervised machine learning classifiers, data labeling is not necessary as the classifier

learns from the natural structure of the data. Hence, the classifier would always generate an

output.

4.2 Empirical Evaluation and Result

4.2.1 Evaluation Procedure

In this section, we present the details of the empirical study performed to evaluate the

effectiveness of the approach for explaining assignment recommendations visually. This

evaluation consisted of conducting a user study where we sought answers to questions about

ease of understanding, recommendation trust, and preferred visualization. First, we present

details about the web application created for our study. Then, we present the methodology

of our study in which the web application was used.

4.2.1.1 Web Application

The web application used in our study consisted of two parts: a web browser plug-in

and a web service.

Web Browser Plug-in

To present a participant with visual explanations of the assignment recommendations,

we created a web browser plug-in, specifically a Google Chrome extension5. Web-browser

plug-ins come in two varieties: those that customize a user’s general browsing experience

(e.g., Adblocker) and those that are activated only for a specific website (e.g., Amazon.com

shopping list). Our plug-in is of the latter type.

5https://chrome.google.com/webstore/detail/recommend-expertise

38

https://chrome.google.com/webstore/detail/recommend-expertise

4.2. EMPIRICAL EVALUATION AND RESULT

To use the plug-in, first, the user must open a bug report in the web browser from a

Bugzilla server. As our study used reports from Mozilla projects, the plug-in was configured

to only work with reports from that project’s ITS (Issue Tracking System). Next, the user

clicks on the plug-in in the browser and clicks on a button labeled ”Recommend Experts.”

This action sends a request to the web service with the bug report’s id and opens a new

browser window containing the response from the web service - an HTML page showing

the assignment recommendations in a visual form. Figures 4.2, 4.3, 4.4 and 4.6 shows the

four visualizations that are returned by the web service.

Web Service

When given the bug report id on Mozilla’s ITS, the web service queries the ITS for the

summary and description of the requested report. Stop words are removed and stemming

applied to the text before being passed to a classifier. The results from the classifier are

then used to create the visualizations. To avoid information overload, only the top ten (10)

recommended developers are shown.

The web service was created using the REST (Representation State Transfer) model and

implemented using the Django framework.

4.2.1.2 User Study

Our user study6 consisted of three parts:

1. A demographic survey.

2. Presentation of the visualizations with an accompanying survey.

3. A post-usage survey.

The demographic and post-usage survey was conducted using Qualtrics, and the visu-

alization survey integrated into the web pages generated by the web service.

6The study was reviewed by the ethics committee of the University of Lethbridge and the assigned protocol
number 2019-070.

39

4.2. EMPIRICAL EVALUATION AND RESULT

To recruit participants for our study we posted in channels such as, r/learnmachinelearning

and r/AskComputerScience on reddit.ca asking for software engineers to participate.

The criteria for participation were to have either be in a two-year computer science post-

graduate degree (i.e., in an M.Sc.-like program or equivalent) or have more than one year of

software development experience in open source or commercial projects. Interested partic-

ipants were asked to contact the primary researcher for a study id and further instructions.

Participants were given six items in the response email: their study id, a link to down-

load the web browser plug-in, a link to the plug-in user manual (see Figure 4.1), links to

the demographic and post-usage survey, and a link to a web page containing links for the

Mozilla bug reports used in the study7.

Participants were asked to complete the demographic survey first, then install the browser

plug-in and go through the list of bug reports, and then complete the post-usage survey.

Figure 4.1: Excerpt from the user manual.

7http://thesis-final.fuam9wh3cq.us-west-2.elasticbeanstalk.com/reportlist/

40

4.2. EMPIRICAL EVALUATION AND RESULT

Demographic Survey

Participants were asked to complete a demographic survey to allow us to understand who

was participating in the study. Participants were asked the following questions:

1. To which gender identity do you most identify?

2. What is the highest degree or level of school you have completed?

3. What is your job function?

4. How many years of experience do you have with programming?

5. What level of experience do you have with triaging bug reports?

6. How frequently do you log a bug in an issue tracking system?

7. What level of experience do you have with using machine learning algorithms?

Presentation of Visualizations

To assess the effectiveness of the visual representation of recommendations, each partic-

ipant was given a set of links to a set of pre-selected bug reports from the Mozilla project.

The selected bug reports were randomly chosen from those that had a resolution and sta-

tus of FIXED and RESOLVED respectively. Each participant was given the same fifteen bug

reports to use.

After clicking the link for one of the bug reports, the participant was taken to the ac-

tual bug report in the Mozilla ITS. The participant would when click ”Recommend Ex-

perts” in plug-in and the web service would provide the recommendations using one of four

randomly-selected visualizations (i.e. one of Figures 4.2, 4.3, 4.4, and 4.6). The participant

would also be asked one of two sets of questions depending on the presented visualization.

The intent of presenting Figures 4.2 and 4.3 was to present participants with a single

visualization for both algorithms. In this way, we could determine if participants preferred

the use of one visualization approach over another (i.e., bar chart vs. pie chart). The intent

41

4.2. EMPIRICAL EVALUATION AND RESULT

of presenting Figures 4.4 and 4.6 was to determine if participants preferred a particular type

of classifier.

For the visualizations that presented results from the two different classifiers (Multino-

mial Naı̈ve Bayes and Topic Modeling), participants were asked:

1. Do you think these visualizations increase your understanding of the recommenda-

tion?

2. How much do you trust these recommendations? (1 being not trustworthy at all to 5

being you trust this fully.)

3. Do you think these visualizations provide you with enough information?

4. If no, what do you think the visualization is missing. Explain in a few words.

And for the visualizations where the same classifier was used, but the visualization

differed (i.e. bar vs. pie vs. data-table), the participant was asked:

1. Do you trust these recommendations?

2. Do you think these visualizations provide you enough information?

3. If no, what do you think the visualizations are missing. Explain in a few words.

Post-Usage Survey

After participants finished using the browser plug-in on the fifteen bug reports, or how-

ever many they chose to do, they were asked to complete the post-usage survey. This survey

contained the following questions about their thoughts about our approach to providing vi-

sual explanations of bug report assignment recommendations.

1. How important to you is the visual explanation of the recommendation?

2. If you were a triager, how useful would you find an assignment recommender?

42

4.2. EMPIRICAL EVALUATION AND RESULT

Figure 4.2: Visualization for recommendations in stacked bar form.

Figure 4.3: Visualization for recommendations in pie chart form.

43

4.2. EMPIRICAL EVALUATION AND RESULT

Figure 4.4: Visualization of recommendations using Naı̈ve Bayes classifier.

Figure 4.5: Extended explanation of a pie chart for Naı̈ve Bayes classifier.

44

4.2. EMPIRICAL EVALUATION AND RESULT

Figure 4.6: Visualization of recommendations using Topic Modeling.

3. How would you improve the explanation of the recommendations?

4. Do you think that one visualization is enough?

5. Which combination of visualizations do you want?

Also, participants were asked if they wanted to be informed about the results of the

study at a later time. If so, the participant could provide their email addresses.

4.2.2 Results

We now present the results of our user study. We found that, on average, a participant

took an hour to complete the study.

4.2.2.1 Demographics of Participants

We had a diverse set of participants for our study, leading us to believe that our results

are likely generalizable.

We had fourteen (14) participants in our study, with three (3) students, three (3) qual-

ity analysts, five (5) application developers, one (1) project manager, one (1) application

architects, and one (1) other were given. The participants identified as 64% male and 36%

45

4.2. EMPIRICAL EVALUATION AND RESULT

Table 4.6: Results for visualization preference.

Question Stacked Bar Chart Pie Chart
Do you think these visual-
izations increase your under-
standing of the recommenda-
tion?

77.00% 76.09%

How much do you trust these
recommendations? (1 being
not trustworthy at all to 5 be-
ing you trust this fully.)

3.46 3.41

Do you think these visualiza-
tions provide you enough in-
formation?

79.00% 77.78%

female. Just over half (57%) of the participants had a post-undergrad degree (Masters or

Ph.D.). Only one participant had less than three (3) years of software development experi-

ence, with 50% having between four (4) and nine (9) years of development experience and

the remainder (43%) having more than nine years of development experience. Most of the

participants (71%) reported having logged a bug report, which indicates that most of them

had some form of firsthand knowledge of how bug report assignment works. When asked

about their level of familiarity with machine learning, two (2) reported themselves as be-

ginners, with the rest considering themselves to have advanced knowledge about machine

learning.

4.2.2.2 Presentation of Visualisation of Assignment Recommendations Result

Recall that participants were asked a different set of questions depending on if we were

assessing preference for a type of classifier or assessing preference for a type of visual

explanation.

Table 4.6 shows the results for the questions where we were trying to determine if there

was a preference for one visualization over another. From this table, we can see that there

was a slight preference for the stacked bar chart over the pie chart. We can also see that

more than 70% of participants felt that these visualizations provided enough information.

46

4.3. SUMMARY

Figure 4.7 shows that the participants trusted the recommendations from the Topic Mod-

eling classifier more than those from the Naı̈ve Bayes classifier.

Figure 4.7: Results for classifier preference.

4.2.2.3 Post-Usage Survey Result

Figure 4.8 shows the results from our post-usage survey. The results show that more

than half of the participants wanted to see more than one visual representation of the recom-

mendations. Also, three-quarters of the respondents (75%) felt that it was very or extremely

important to represent recommendations with explanations in a visual manner and that if

they were a triager, they would find an assignment recommender useful.

47

4.3. SUMMARY

Figure 4.8: Post-usage result analysis.

4.3 Summary

Our main focus is to find the answers to our four research questions. To evaluate the

system thoroughly, we evaluated the system in two ways: analytically and empirically. The

analytical approach showed the system is sufficiently accurate and can produce enough

information to provide an explanation for the recommendation in nearly all cases. We used

k-fold cross-validation as the evaluation approach and accuracy as the evaluation metric. If

the system gives us a positive result, we can say that our assignment recommender system

can be reliable. From Tables 4.1, 4.2, and 4.3, we can see that the Multinomial Naı̈ve Bayes

classifier is more accurate than the Topic Modeling classifier.

The empirical evaluation (i.e., user study) evaluates the system from the user’s perspec-

tive. By conducting this study and analyzing the results, we found that participants trust

recommendations with the provided explanations with more than 80% of participants con-

sidering these recommendations as trustworthy. Also more than 75% of participants found

that these visualizations are easy to understand.

48

Chapter 5

Discussion

In this section, a detailed discussion of our results in the context of the research questions

is presented, including final conclusions. The sections is concluded with a discussion of the

threats to the validity of this work.

5.1 Research Questions

In this section, we present a discussion of our findings towards answering our research

questions. Recall that the research questions for this work are:

RQ1: Does Topic Modeling (i.e., an unsupervised learning algorithm) provides an ac-

ceptable accuracy to be an alternative to NB (i.e., a supervised learning algorithm)?

RQ2: Do developers find visual explanations of assignment recommendations easier to

understand than a text list?

RQ3: Do developers find visual explanations of assignment recommendations more

trustworthy?

RQ4: What is the preferred recommended visualization technique by the develop-

ers?

5.1.1 RQ1: Supervised Vs. Unsupervised Machine Learning Algorithm

To create the assignment recommender, we investigated creating a supervised machine

learning algorithm (Multinomial Naı̈ve Bayes) and an unsupervised machine learning al-

gorithm (Topic Modeling). In the case of supervised machine learning algorithms, the data

49

5.1. RESEARCH QUESTIONS

needs to be labeled, and then the algorithm uses that labeled input data to predict the out-

put. For unsupervised machine learning algorithms, data does not need to be labeled, and

it learns from the natural structure of the input data. As the aim for this work is to create

an assignment recommender that provides recommendations that can be visually explained.

Multinomial Naı̈ve Bayes and Topic Modeling were chosen as the algorithms. Using these

two examples, we can find which type of algorithm is more suitable.

From Tables 4.1, 4.2, and 4.3 we can see that the accuracy is higher for the Multinomial

Naı̈ve Bayes classifier than for the Topic Modeling classifier. Also from Table 4.1, 4.2, and

4.3, it is shown that the accuracy rate for the Bugzilla project is higher than the Thunderbird

project regardless of the algorithm used. As mentioned previously, the data used for training

the Thunderbird classifiers was less than that used to train the Bugzilla classifier(3351 vs.

5020). Therefore, we can state that for an unsupervised machine learning algorithm, the

larger the training data-set is better the accuracy. Nevertheless, the supervised algorithm

can provide reasonable accuracy using a smaller data-set.

Tables 4.4 and 4.5 show that when it comes to the explanation sufficiency of the rec-

ommender, the unsupervised machine learning classifier performs better than a supervised

one.

From Figure 4.7, we can see that when it comes to the visual representation of the rec-

ommendations, participants trusted Topic Modeling more than Multinomial Naı̈ve Bayes.

However, in considering this result, it needs to be understood that participants were pre-

sented with more information with the Multinomial Naı̈ve Bayes classifier than the Topic

Modeling classifier. With the Multinomial Naı̈ve Bayes classifier, the participant was pre-

sented with the relevant words, whereas this information was not provided with the Topic

Modeling classifier. This added layer of information may have made the Multinomial Naı̈ve

Bayes visualizations more challenging to understand.

In the summary, we can say that, given a large enough data-set, Topic Modeling (or an

unsupervised learning algorithm) can provide an acceptable accuracy as an alternative to

50

5.1. RESEARCH QUESTIONS

Naı̈ve Bayes (or a supervised learning algorithm). However, if we do not consider the size

of the training data-set, a supervised machine learning algorithm provides more accurate

recommendations.

5.1.2 RQ2: Ease of Understanding Visual Explanations

Recall that, Table 4.6 shows that more than 76% of the participants find visual explana-

tions of assignment recommendations easier to understand. From the participants’ scoring

pattern, we found that the more they used the extension, the better they understood the ex-

planations. We think that is why 24% of users do not find that easier to use. In short, we

can say that participants do find it easier to understand the recommendation with the visual

explanations than a text list.

5.1.3 RQ3: Trust of Visual Explanations

We considered the trustworthiness of visual explanation as a critical issue. If people do

not trust the explanations, they will not use it in the future. Therefore, the visual explanation

must provide enough information to be trustworthy to the participants. We asked whether

they found that these visualizations provide them enough information to make a bug re-

port assignment decision. More than 77% of times participants think they provide enough

information. From the participants’ comments, it can be stated that they wanted to know

about the topic for Topics Modeling based recommendations. That is why almost 23% of

the time, they felt that the information is not enough. While answering the question about

trustworthiness when presenting any visual explanations, Figure 4.7 and Table 4.6 shows

that most participants felt that these visual explanations of assignment recommendations

are trustworthy.

5.1.4 RQ4: Prefered Visualization

We wanted to know the preferred recommended visualization technique by the devel-

opers, from the three styles of visual graphs: stacked bar chart, pie chart, and data-table.

51

5.2. THREATS TO VALIDITY

For word-based recommendations, participants have to click on the pie to find more expla-

nations. Some of the participants did not find this to be user-friendly. When it comes to

explaining recommendations using the data-table, one participant said: “it is not interest-

ing.” But the stacked bar chart explains the recommendations easily with different colors

and without being redirected to a new web page. Therefore, from Figure 4.7, we can see

that participants preferred the stacked bar chart over any other graphical representations.

5.1.5 General Comments from Participants

The post-usage survey collected the general thoughts and impressions of visual expla-

nation for assignment recommendation. We asked the participants whether they thought

that the visual explanation of recommendations is essential. From Figure 4.8, we can see

that 85% of the participants think it is very important to explain what the system is rec-

ommending visually. When it comes to the usefulness of an assignment recommender,

85% of the participants believe an assignment recommender is very useful. From Figure

4.8, we can also see that almost all participants want to see more than one kind of visual

explanations. We also asked for their comments/suggestions on how to improve the ex-

planation of these recommendations. Many of the participants wanted to see the selected

terms from the cluster in topic-based recommendations. They suggested that if the terms

were provided, it would be easier for them to understand why the bug report falls into that

selected cluster. One participant commented that for word-based visual recommendations,

we should increase the number of words we are showing. Another participant suggested

adding a tooltip-text (i.e., a mouse hover event) to make the websites more responsive.

However, all of the participants commented that they understood the ideas and principles

of the work, and with the addition of a few more features, the representations can be even

more responsive, informative, and attractive.

52

5.2. THREATS TO VALIDITY

5.2 Threats to Validity

In this section, we present a discussion on external and internal threats to the validity of

our work.

5.2.1 External Validity

Although in our study, we trained our classifier using data from a single Mozilla product

- Bugzilla, we do not feel that this limits the generalizability of our results. As our focus was

on the representation of the recommendations, not the accuracy of the recommendations,

our results are not dependent on the project used. Generalizability related to using an open-

source project vs. a commercial project, and few projects vs. many projects are regarded to

be a concern.

5.2.2 Internal Validity

Although we found that the accuracy of our created recommender suffered due to an

imbalanced data set (i.e., the developer who solved the greatest number of the bug reports

is always in the list recommended developers), this is unlikely to have affected the results of

our investigation. As none of the participants were from the Bugzilla project, the accuracy

of the recommender was not a factor in their responses.

The inclination to generalize our results to a larger set of projects is bound by the lim-

ited size of our data set. Our experiments were applied to two projects, and although we

gathered data for 5 years, one of the projects still did not have many bug reports. In ad-

dition, both projects are open source, which means it has its own distributed development

structures. We can not state that our findings can be equally applicable to another kind of

software projects that do not use the open-source platform.

Like any machine learning algorithm, both algorithms have the same problem. A devel-

oper who solved the greatest number of the bug report is always in the list recommended

developer. For example, a person named dkl solved 1376 bug reports, whereas the next

highest solver solved almost half. As a result, dkl is always on the list. However, our algo-

53

5.3. SUMMARY

rithms bring other developers to the list, so even though one person may always be there,

the user has other recommended developers too.

During the recruitment of participants, we tried to cast as broad of a net as possible.

As a result, some of the participants were known to us. However, as the collected data

identified participants only by study id, and we did not seek to discover who was whom, we

do not know which responses were from these people. Also, participants were asked not to

contact us personally to let us know their personal views during the study. In other words,

we tried not to influence the result in any way.

Nevertheless, there is a possibility that our results may suffer from social desirability

bias (i.e., “please the researcher” bias). Based on the trend where participants initially

reported that they had low trust in the recommendations, and then the trust level improved,

we do not feel that such bias had a significant impact. However, we cannot discount this

possibility from our study results.

5.3 Summary

In this chapter, we discussed the four research questions of our work, as well as threats

to the validity of our conclusions. We found that, given a large enough dataset, an un-

supervised learning algorithm can provide an acceptable accuracy as an alternative to a

supervised learning algorithm. From the study, it can be stated that most of the participants

found the visual explanations of assignment recommendations easier to understand than a

list of names. Also, the visual explanation provided enough information to be trustworthy

to most of the participants. Among the three types of representations, the stacked bar chart

was favored by most of the participants. Finally, the users wanted to see more than one

visualization and that the visualizations be more interactive.

Even though there is a possibility that our results may suffer from social desirability

bias, the user study results show that the more users used the extension, the more positive

reaction they showed towards the tool.

54

Chapter 6

Related Work

The following sections present previous works on expert recommendations using different

software artifacts, the use of machine learning algorithms in the recommendation system,

the usefulness of explaining the recommendations, and visual explanations of recommen-

dations.

6.1 Expert Recommendation

Recommendation systems are mainly an extension of the normal process of recom-

mendation by word-of-mouth to other people. Usually, every recommendation system can

provide a narrow or personalize recommendations based on users’ expectations. Creation

of user profile and learning from them, experimentation with different recommendation

algorithms, and design user interface so that the system is more user-friendly, this kind

of research has become a popular idea among researchers from the early 90s [4, 8, 13].

Glance et al. [8] states that it is essential to have a recommendation system that gives users

suggestions related to their needs. They were one of the first people that researched rec-

ommendation systems, and their usage and effects in different fields. Even though they

thought recommendation techniques should be based on indexing, retrieval, and relevance

feedback, but they were more focused on the last one. Their goals were not just to create a

recommender tool using recommendation algorithms and user profile construction methods

but also focusing on the issues that motivate users to use the recommender system in an

organization.

55

6.1. EXPERT RECOMMENDATION

As the researchers wanted to support the workplace community and help automate the

process of sharing recommendations, they implemented and deployed a research prototype

named “Knowledge Pump.” They implemented their prototype in Java as a client-server

system. Users could use it as an applet in a web browser. By being available in both web-

browser and Java, their tool was cross-platform. When the first-time user created a profile

in the Knowledge Pump, they were asked multiple questions. For example, they were to

choose a set of advisors from current users whom they think are most trustworthy as refer-

rals, and their domain of interest from a set of given communities. As a browser applet,

the Knowledge Pump provided users with two main functionalities. The first one was a

shared bookmarking system. This system let a user bookmark a web-page that they think

might be useful for other members of the organization. It helped users search and browse

through the set of shared bookmarks. It had a “what’s new” button that allowed users to

see the most popular items shared among the communities. The second one was a list of

recommended articles, case studies, customer solutions, and web-pages which get updated

every day. When a user reloaded the web browser, Knowledge Pump provided a list of

“What’s Recommended?” where each recommendation had stars. These represent the like-

liness of whether Knowledge Pump thinks the user would find the article interesting. It also

included a list of reviewers that previously rated and commented on the items. The Knowl-

edge Pump also provided a link where users could see each reviewer’s ratings, comments,

and time of evaluation for the item. The researchers conducted a thorough user study for

one year, where 66 people participated in that study. They found that only a portion of

these users were active participants. These active contributors contributed more than they

received from the Knowledge Pump. Even though their shared bookmarks idea was unique,

the researchers thought they needed to work more on that. But overall, they found that the

recommender system is highly essential for sharing knowledge support.

To create an expert recommendation system in software engineering domain, researchers

have been using a different kinds of software artifacts.

56

6.1. EXPERT RECOMMENDATION

In any software company, whether it is big-scale or not, global or not, software engi-

neers get a good number of the bug reports for their ITS. These reports then need to be

triaged, which means to sort the reports based on their duplicate entries, importance, and

later assigning these reports to a developer. If there is a new project coming on the farm, the

manager also has to decide which people have the most knowledge to be part of that project

team. In order to help them, recommendation systems have become a commonly researched

part of software engineering. Anvik and Murphy [3] and Ma et al. [18] used source code as

an artifact to provide expert recommendations. Both of their works insisted on the fact that

the more a developer works on the code base of a project, the more knowledge they gather,

which makes them expert for that project.

Recommendation system can help developers by giving a list of experts that can review

the code they write for any project or even a specific bug report. In most software compa-

nies, reviewing code by patches is a common practice for Quality Assurance (QA). After

one or more people review each patch, the code is usually merged into the Version Control

System (VCS). Hannebauer et al. [10] performed an empirical study and showed that using

a recommender system can mitigate the problems of finding relevant reviewers. They com-

pared six algorithms based on modification expertise and two algorithms based on review

expertise on four major Free/Libre Open Source Software (FLOSS) projects. They used

File Path Similarity (FPS) and Weighted Review Count (WRC) algorithms to predict based

on review expertise. Later they evaluated their results with modified expertise algorithms

like Line 10 Rule, Expertise Cloud, Degree-of-Authorship (DOA), and many more. They

found that for every set of evaluation, higher accuracy is provided from the review expertise

algorithms. Not only that, but also, they found that WRC is more reliable, less character

sensitive, and shows better results than FPS to recommend expert reviewers.

In reality, for many software companies, the main unit of work is the number of solved

bug report. Knowing which developers have code base expertise (implementation expertise)

can help to solve a particular bug report has many usages. Anvik and Murphy [3] used two

57

6.1. EXPERT RECOMMENDATION

approaches to recommend expert developers for solving a new bug report. The first one is

to find who checked-in last in the source repository, and the second one is to use the value

of “status” and “assigned to” fields in a bug report. For the initial approach, they created

expertise sets for a bug report by using source repository check-in logs in three steps. The

first step is to create a link between the bug report and the source repository. The result is

a list of source files with information about the changeset of the report. The next step is to

find the containing module for each source file in the changeset. From there, they wanted

to find a list of developers’ names who committed changes to these modules. This list can

be acquired by using the “Line 10” heuristic. Finally, this set is filtered to find the set of

relevant developers. For the second approach, the researchers used bug reports and bug

networks. A bug report contains different types of information in the form of predefined

fields, free-form texts, attachments, and dependencies. To create a list of experts from a

bug report, the researchers first created a bug network that contains the report, and then

they extract the names of the people in the carbon-copy (CC) list, who added comments

to the report and who fixed the bug. They created lists in every step and finally merged

them to form a list of experts for the bug report. This set of the recommended expert

was also filtered to remove irrelevant developers. The expertise set created by these two

given approaches was compared to the expertise sets produced by the project experts. Both

approaches can give better results depending on what was expected, i.e., if it is necessary to

find expertise set with as few false positive as possible, then the source repository approach

using changeset gives a better result. The researchers also found that the bug report can

be a better substitute for the source repository approach using changesets, mainly when the

source repository data is not that precise.

Previous researches were done to find expert recommendations based on expertise arti-

facts such as files, packages, and software repositories. However, these expertise artifacts

are usually specific to a given project. Schuler et al. [32] proposed mining usage exper-

tise to make it possible to get independent project expertise that can be used across dif-

58

6.2. USE OF MACHINE LEARNING

ferent projects. Their method to recommend experts for code worked with very little or

no source revision history, which eventually helped new developers to find experts for a

specific project.

Ma et al. [18], on the other hand, proposed a method where they built two types of ex-

pertise profiles. The two profiles were for changed methods and inserted methods for each

developer. Based on how many times and when a developer changed method, a scoring

formula was used to build an implementation expertise profile. Similarly, a usage expertise

profile score was determined based on the depth and breadth of the change in the method.

Profiles and queries were then used as input to heuristics, which would then generate a

ranked list of developers with the most expertise. After every commit to the version control

system, the expertise profile would be updated. To evaluate their approach, they considered

a recommendation successful when an actual commit author was found in the recommen-

dation list. We adopted a similar approach in our analytically evaluation.

6.2 Use of machine learning

A Recommender can be useful for developers while writing codes. It is a prevalent

practice among programmers to use API (Application Programming Interfaces). But not

all the API has proper documentation or inspect code examples. As a result, using API

correctly and accurately from unknown libraries and frameworks is not easy for all APIs.

Zhang et al. [44] proposes an automated tool named Precise. This tool, instead of recom-

mending only API method calls, predicts all the parameters for that method. It also helps

to simplify the API usage by helping developers with code completion. By proposing rec-

ommendation, precise helps the programmer to reduce the effort of finding some pieces of

information from examples. It also helps them to map them in the right places. Precise

built a usage database by evaluating the parameter usage instances and their context. After

getting the recommendation request, it then ran a query in the database. It uses the context

as key and fetches a bunch of abstract usage patterns. Then it shortens the list, sorts it, and

59

6.2. USE OF MACHINE LEARNING

finally provides the recommendation. For finding the similarity of recommended methods,

they used a customized K-Nearest Neighbors Algorithm (KNN) algorithm. The kind of rec-

ommendations made by Precise are, in general, more complicated, hard to find or compose

and not recommended by the actual Eclipse JDT. At the same time, the user study showed

that Precise is indeed a useful tool. But it was also suggested to include an explanation for

their ranking strategy as well as it should integrate better with other techniques.

To help the triagers with bug report triaging, Anvik et al. [2] proposed a semi-automatic

approach to recommend a list of developers to whom the bug report should be assigned.

They used Eclipse and Firefox project bug reports for training purposes. Their approach

consisted of four steps. First of all, they characterized the bug reports. They decided to use

both the one-line summary and description. In this step, they created a feature vector that

shows the frequency of the terms in texts. The second step is to assign a label. They used a

project-based heuristics method for labeling to avoid issues like generic “assigned-to” label.

For example, in the case of the Firefox project, it’s the last one who approved the patch and

for Eclipse, the last person to change status. The third step is to choose a set of bug-reports

to train the algorithm. In order to select the trained data-set, they filtered the whole data-

set three times. They discarded all the reports which do not have a useful label. They

also disregarded reports for which the developer no longer works in the company. Then

they filtered out all those developers, and their bug reports, who did not solve a minimum

of three (3) reports each month for the most recent three months. The last part of their

proposed method wa to decide which machine learning algorithm is applicable in this case.

They used Naı̈ve Bayes , Support Vector Machines (SVM), and C4.5 algorithm. From the

result of all these three algorithms’ precision and recall value, they finally decided to use

SVM. Their precision with SVM on the Eclipse and the Firefox project data-set was 57%

and 64% respectively.

Researchers have found that Naı̈ve Bayes is an exceptionally well-performing text clas-

sification algorithm and have frequently adopted the algorithm in recent work. For text clas-

60

6.2. USE OF MACHINE LEARNING

sification, Naı̈ve Bayes has the two most efficient and frequently used model: multi-variate

Bernoulli model and multinomial model. McCallum and Nigam [19] described these two

models in their paper and showed the differences between these two models. They showed

that multi-variate Bernoulli performs well with small vocabulary sizes; however, if the vo-

cabulary size is large, then the multinomial performs better.

However, Topic Modeling is relatively new in the assignment recommender system.

Nguyen et al. [25] used topic modeling to find duplicate bug reports. They proposed a new

approach, named DBTM. This approach uses both information retrieval and topic-based

features to identify duplicate bug reports. The model takes advantage of both IR based

features and topic-based features. These features focused on finding the textual dissimilarity

between duplicate reports. Their topic model finds not only the similar technical issues of

the bug report but also the semantic similarities between duplicate reports based on topic

structures. DBTM is a combination of two components: T-Model and BM25F model,

where T-Model is an extension of Latent Dirichlet Allocation (LDA), and BM25F is an

advanced document similarity function based on weighted word vectors of documents. In

their approach, each bug report is contemplated as a textual document that narrates one or

more technical issues. This model used LDA to depict the topic structure for a bug report.

LDA also finds the duplication relations among the bug reports. The topic selection of bug

reports gets affected by the topic distribution of that report as well as problematic topics

for which the report was submitted. They also applied the Ensemble Averaging technique

to combine both IR and topic modeling. Finally, they found that DBTM is scalable and

efficient in detecting duplicate bug reports accurately. In the end, they concluded by saying

that their system can improve the current state of the approach by 20% as DBTM utilizes

both IR and topic modeling-based features.

In recent years topic modeling was also used in bug report triaging. Bug report triag-

ing can be a tedious task. In order to help software engineers/managers with bug report

triaging, Xia et al. [40] proposed a new framework that maps every word(term) from a bug

61

6.4. VISUALIZING EXPERTISE

report to their corresponding topics (topic). They created a special topic modeling algorithm

named Multi-Feature Topic Model (MTM). Their model was created using Latent Dirich-

let Allocation (LDA). MTM maps the terms with topics by using product and component

information from bug reports. They have also proposed a new method named TopicMiner.

When a new bug report comes in, the TopicMiner takes into account the topic distribution

of that report and recommends an expert based on how many reports they solved to that

related topic. They combined their MTM and TopicMiner and evaluated their solution on 5

bug report data-sets. For the top one recommendation, their model gets accuracy more than

45%, and for the top 5, it is higher than 75%. Finally, they compared their approaches with

some of the currents approaches [35, 43, 34, 23], and found that their approach precedes

those approaches.

6.3 Importance of explanation

Usually, the recommender system works as a black box. It does not explain the list.

As a result, people who do not have good knowledge of algorithms might get confused.

Explaining the reason that why a recommendation system recommends a list of people/-

movie/song is important to many users. Trintarev et al. [37] surveyed a focused group

of moviegoers to show what users think of a recommendation system. In total, 11 people

participated in their study. These moviegoers were divided into two groups. They wanted

to know how participants would like to be recommended or discouraged from watching

a movie. Form the study, they came to a few decisions. First, while explaining the rec-

ommendations, features should be selected according to the user’s preference. Second, in

explanation, features should also be selected based on context. Third, the shorter the fea-

ture list, the better. Fourth, a credible source of recommendations is important to users.

Moreover, the result showed that the most appropriate explanation also depends on some

other factors such as mood and source.

62

6.4. VISUALIZING EXPERTISE

6.4 Visualizing Expertise

Some classic recommendation systems for software engineering like Expertise Browser

[21] and Mylar [15] realized the visualization was important.

Expertise Browser (ExB) [21] is a tool that uses data from change management systems

to locate people with desired expertise who are distributed in a large geographical area. It

is a web-based platform where information is displayed in the form of HTML pages. Users

can run the query to find the people who have the adequate expertise for an individual

product. This tool also provides the expertise profile of an expert. Rather than letting a

recommender system to provide a list of experts, this tool allowed users to choose the most

prolific experts by browsing all the available expert. To measure the degree of experience

of an expert, they use Experience Atoms (EAs). They use deltas, which keeps tracks of the

changes made in the code. They use Modification Requests (MRs) that indicated to make

a change to the software entity for a single purpose at the correct time by using deltas. If

EAs failed to measure the expertise, they would introduce a substantial degree of support.

Expertise Browser can be used as a Java Applet. In order to evaluate their system, they ran

a user study. The researchers implemented ExB in several projects of two organizations

where each of them has more than one workstation. From the study, the researchers found

that in most cases, the user finds it extremely helpful that they can see experts profile, which

gives them an explanation of why this person is an expert. The user gave feedback that also

suggests that they wanted even more explanations.

Kersten and Murphy [15] decided to use the degree of interest (DOI) model. They cre-

ated a tool named Mylar, an Eclipse plugin, which automatically encodes the context of the

programmer’s task in a DOI model and shows it in IDE views. The default highlighting

scheme uses colored shading to indicate the programmer’s relative interest in the element.

Mylar records developers’ activity and whenever a developer chooses or edits a program

element, Mylar escalates the interest level of that specific element. Mylar’s interest model

encodes the relevance of systematic program elements rather than recording the unsystem-

63

6.4. VISUALIZING EXPERTISE

atic places where a document is edited. It does not capture navigation paths but correlates

editing and navigation activity with program elements. As Eclipse already indicates cur-

rently selected elements, Mylar shows them in bold font. Using Mylar has four benefits.

First of all, interest-based filtering is possible. As a result, the relevant files and libraries are

more visible. Second, from a large number of elements, the specific problem of interest is

highlighted. Third, the Mylar editor can provide a choice of actively folding and unfolding

elements based on the interest filtering. Finally, this view is updated to provide an idea of

how high-interest elements fit into the crosscutting structure of the system. They performed

a user study to see how real-life programmers find it useful. Six senior IBM Toronto lab

programmers participated in this study. All developers stated that the representation of the

context of their task by the model was entirely correct and transparent. Even though high-

lighting was necessary, a few of the subjects stated that they did not like the color used to

highlight. Subjects found the automatic filtering and auto-expansion mode useful.

Lu et al. [17] constructed five machine-learning classifiers to predict the most accurate

subcellular localization of proteins from animals, plants, fungi, Gram-negative bacteria,

and Gram-positive bacteria. Their predictor was a part of the Proteome Analyst (PA) web-

service. After using their classifier, Proteome Analyst could than also be used to create new

sub-cellular classifiers using custom training data. PA used labeled training data to build a

simple Naı̈ve Bayes classifier, which generates a probability for each label. They have used

a stacked bar chart to show their prediction graphically.

Poulin et al. [31] described a framework to explain decisions made by different clas-

sifiers. They demonstrated their framework by using implementations of Naı̈ve Bayes,

Linear Support Vector Machine, and Logistic Regression classifiers. ExplainD used a sim-

ple graphical way of representation. This representation gives five types of explanations:

Decision, Evidence of that decision, Speculation of that decision, Ranks of evidence, and

finally, the source of that evidence. They used an example of a classification model used by

a physician on the diagnosis of obstructive Coronary Artery Disease (CAD). They showed

64

6.5. SUMMARY

in their work that ExplainD could be added to any classifier that is an additive model. They

merged their idea with Proteome Analyst(a popular bioinformatics application) and found

that their graphical explanation helped both experienced and less-experienced users to find

an error in PA. Their graphical representations are shown in figure 6.1. It helped users to

build trust in classifier’s results, increase the knowledge on the relationship between feature

values and decisions for the classifier. As it shows visual representations of the decisions,

it gives the user a visual idea of the classifier’s result, and that helps them to find errors as

well.

Figure 6.1: Graphical representation of ExplainD.

6.5 Summary

Using a recommendation system in different sectors has become very popular from the

very early 1990s. Researchers have found significant potential in this field and started using

it in different fields like matchmaking, commercial product suggestions, related research

paper suggestions, and so forth. In software engineering, a recommendation system can be

beneficial to developers while writing code for any project by suggesting such items as an

65

6.5. SUMMARY

API or a developer’s name who worked in this kind of project before or developers who can

review their codes. Recommender systems can be helpful to quality analysts by providing

names of developers who have solved the same kind of bug reports before. Similarly a rec-

ommender system can help project managers to solve bug triage issue in the more efficient

ways. When it comes to creating a recommender system, using a machine learning algo-

rithm has been one of the most popular choices. For visualizing the recommendations, users

want to know why and how the recommendations are made. In the software engineering

sector, usage of visualizing is still an under-researched area.

66

Chapter 7

Conclusion

In this thesis, we wanted to assist bug report triagers for assigning a new bug report. We

want to create an assignment recommender that provides accurate recommendations. In-

stead of just the usual black-box approach where a triager or any user can only see a list of

recommendations, we wanted to visually present our recommendations in such way so that

anyone can see the graphs and understand why these people have been recommended. We

determined that our goal for this work is to find answers to four research questions:

RQ1: Does Topic Modeling (i.e., an unsupervised learning algorithm) provides an ac-

ceptable accuracy to be an alternative to Multinomial Naı̈ve Bayes (i.e., a supervised learn-

ing algorithm)?

RQ2: Do developers find visual explanations of assignment recommendations easier to

understand than a text list?

RQ3: Do developers find visual explanations of assignment recommendations more

trustworthy?

RQ4: What is the preferred recommended visualization technique by the developers?

We used one supervised (Multinomial Naı̈ve Bayes) and one unsupervised (Topic Mod-

eling) algorithms to create two assignment recommenders. We used a Bag of Words model,

TF-IDF score from information retrieval techniques, along with the basic probabilistic

equations to create the Multinomial Naı̈ve Bayes classifier. We have used the Word movers

distance model that uses a word2vec technique, as well as TF-IDF, while creating the

topic model classifier. When it comes to the number of recommended experts, we provided

67

7.1. FUTURE DIRECTIONS

five developers names as the experts. The logic behind that is, a lot of the time the first few

developers can be unavailable. By creating our assignment recommender to be as accurate

as possible, we answered our 1st research question.

The next goal of this work was to investigate the use of visualization for explaining

bug report assignment recommenders. To accomplish this, we created a web service that

provides explanations of assignment recommendations using either a bar chart, a pie graph,

or a table. We also investigated whether explaining a supervised learning (Multinomial

Naı̈ve Bayes) or unsupervised learning (Topic Modeling) recommender was preferred. We

found that developers did prefer visual explanations, with 75% of participants stating that

the visual explanations increased their understanding of the assignment recommendations.

We also found that developers gained trust in the recommendations over time. Finally, we

found that the developers preferred a stacked bar chart.

7.1 Future Directions

When designing the visualization for the Topic Modeling classifier, we felt that includ-

ing the topic names and related words, the developer names and expertise score in one

graph would be confusing. However, from comments provided by participants, we discov-

ered that our representation of recommendations for the Topic Modeling classifier was not

detailed enough. Many participants commented that they also wanted to see the topics for

this type of recommender. A possible solution suggests by a participant is to have a tooltip

that provides extra information to the triager on what are they seeing. Another possibility

could be to allow the triager to click on a pie piece and have a pop-over that provides further

details as with our Multinomial Naı̈ve Bayes visualization.

68

Bibliography

[1] Franz L Alt. Advances in computers, volume 2. Academic Press, 1961.

[2] John Anvik, Lyndon Hiew, and Gail C Murphy. Who should fix this bug? In Proceed-
ings of the 28th international conference on Software engineering, pages 361–370.
ACM, 2006.

[3] John Anvik and Gail C Murphy. Determining implementation expertise from bug
reports. In Proceedings of the Fourth International Workshop on Mining Software
Repositories, page 2. IEEE Computer Society, 2007.

[4] Marko Balabanović and Yoav Shoham. Fab: content-based, collaborative recommen-
dation. Communications of the ACM, 40(3):66–72, 1997.

[5] Florian Beil, Martin Ester, and Xiaowei Xu. Frequent term-based text clustering.
In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 436–442. ACM, 2002.

[6] Svetlin Bostandjiev, John O’Donovan, and Tobias Höllerer. Tasteweights: a visual
interactive hybrid recommender system. In Proceedings of the sixth ACM conference
on Recommender systems, pages 35–42. ACM, 2012.

[7] Michael Fischer, Martin Pinzger, and Harald Gall. Analyzing and relating bug report
data for feature tracking. In WCRE, volume 3, page 90, 2003.

[8] Natalie Glance, Damián Arregui, and Manfred Dardenne. Making recommender sys-
tems work for organizations. In Proceedings of PAAM’99, pages 19–21. Citeseer,
1999.

[9] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques.
Elsevier, 2011.

[10] Christoph Hannebauer, Michael Patalas, Sebastian Stünkel, and Volker Gruhn. Auto-
matically recommending code reviewers based on their expertise: An empirical com-
parison. In Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 99–110. ACM, 2016.

[11] James D Herbsleb, Helen Klein, Gary M Olson, Hans Brunner, Judith S Olson, and
Joe Harding. Object-oriented analysis and design in software project teams. Human
Computer Interaction, 10(2-3):249–292, 1995.

69

BIBLIOGRAPHY

[12] Jonathan L Herlocker, Joseph A Konstan, and John Riedl. Explaining collaborative
filtering recommendations. In Proceedings of the 2000 ACM conference on Computer
supported cooperative work, pages 241–250. ACM, 2000.

[13] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending
and evaluating choices in a virtual community of use. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 194–201. ACM
Press/Addison-Wesley Publishing Co., 1995.

[14] Da Huo, Tao Ding, Collin McMillan, and Malcom Gethers. An empirical study of the
effects of expert knowledge on bug reports. In Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on, pages 1–10. IEEE, 2014.

[15] Mik Kersten and Gail C Murphy. Mylar: a degree-of-interest model for ides. In
Proceedings of the 4th international conference on Aspect-oriented software develop-
ment, pages 159–168. ACM, 2005.

[16] Ashraf M Kibriya, Eibe Frank, Bernhard Pfahringer, and Geoffrey Holmes. Multino-
mial naive bayes for text categorization revisited. In Australasian Joint Conference
on Artificial Intelligence, pages 488–499. Springer, 2004.

[17] Zhiyong Lu, Duane Szafron, Russell Greiner, Paul Lu, David S Wishart, Brett Poulin,
John Anvik, Cam Macdonell, and Roman Eisner. Predicting subcellular localization
of proteins using machine-learned classifiers. Bioinformatics, 20(4):547–556, 2004.

[18] David Ma, David Schuler, Thomas Zimmermann, and Jonathan Sillito. Expert recom-
mendation with usage expertise. In Software Maintenance, 2009. ICSM 2009. IEEE
International Conference on, pages 535–538. IEEE, 2009.

[19] Andrew McCallum, Kamal Nigam, et al. A comparison of event models for naive
bayes text classification. In AAAI-98 workshop on learning for text categorization,
volume 752, pages 41–48. Citeseer, 1998.

[20] Audris Mockus, Roy T Fielding, and James D Herbsleb. Two case studies of open
source software development: Apache and mozilla. ACM Transactions on Software
Engineering and Methodology (TOSEM), 11(3):309–346, 2002.

[21] Audris Mockus and James D Herbsleb. Expertise browser: a quantitative approach
to identifying expertise. In Proceedings of the 24th International Conference on Soft-
ware Engineering. ICSE 2002, pages 503–512. IEEE, 2002.

[22] G Murphy and D Cubranic. Automatic bug triage using text categorization. In
Proceedings of the Sixteenth International Conference on Software Engineering &
Knowledge Engineering. Citeseer, 2004.

[23] Hoda Naguib, Nitesh Narayan, Bernd Brügge, and Dina Helal. Bug report assignee
recommendation using activity profiles. In Proceedings of the 10th Working Confer-
ence on Mining Software Repositories, pages 22–30. IEEE Press, 2013.

70

BIBLIOGRAPHY

[24] David Nettleton. Commercial data mining: processing, analysis and modeling for
predictive analytics projects. Elsevier, 2014.

[25] Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen, David Lo, and Chengnian
Sun. Duplicate bug report detection with a combination of information retrieval and
topic modeling. In Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, pages 70–79. ACM, 2012.

[26] Tung Thanh Nguyen, Anh Tuan Nguyen, and Tien N Nguyen. Topic-based, time-
aware bug assignment. ACM SIGSOFT Software Engineering Notes, 39(1):1–4, 2014.

[27] John O’Donovan, Barry Smyth, Brynjar Gretarsson, Svetlin Bostandjiev, and Tobias
Höllerer. Peerchooser: visual interactive recommendation. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 1085–1088.
ACM, 2008.

[28] Kenta Oku, Shinsuke Nakajima, Jun Miyazaki, and Shunsuke Uemura. Context-aware
svm for context-dependent information recommendation. In Proceedings of the 7th
international Conference on Mobile Data Management, page 109. IEEE Computer
Society, 2006.

[29] Denis Parra. Beyond lists: studying the effect of different recommendation visualiza-
tions. In Proceedings of the sixth ACM conference on Recommender systems, pages
333–336. ACM, 2012.

[30] Dewayne E Perry, Nancy A. Staudenmayer, and Lawrence G Votta. People, organiza-
tions, and process improvement, 1994.

[31] Brett Poulin, Roman Eisner, Duane Szafron, Paul Lu, Russell Greiner, David S
Wishart, Alona Fyshe, Brandon Pearcy, Cam MacDonell, and John Anvik. Visual
explanation of evidence with additive classifiers. 21(2):1822, 2006.

[32] David Schuler and Thomas Zimmermann. Mining usage expertise from version
archives. In Proceedings of the 2008 international working conference on Mining
software repositories, pages 121–124. ACM, 2008.

[33] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimiza-
tion of machine learning algorithms. In Advances in neural information processing
systems, pages 2951–2959, 2012.

[34] Kalyanasundaram Somasundaram and Gail C Murphy. Automatic categorization of
bug reports using latent dirichlet allocation. In Proceedings of the 5th India software
engineering conference, pages 125–130. ACM, 2012.

[35] Ahmed Tamrawi, Tung Thanh Nguyen, Jafar M Al-Kofahi, and Tien N Nguyen. Fuzzy
set and cache-based approach for bug triaging. In Proceedings of the 19th ACM SIG-
SOFT symposium and the 13th European conference on Foundations of software en-
gineering, pages 365–375. ACM, 2011.

71

BIBLIOGRAPHY

[36] Cédric Teyton, Marc Palyart, Jean-Rémy Falleri, Floréal Morandat, and Xavier Blanc.
Automatic extraction of developer expertise. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, page 8. ACM,
2014.

[37] Nava Tintarev and Judith Masthoff. Effective explanations of recommendations: user-
centered design. In Proceedings of the 2007 ACM conference on Recommender sys-
tems, pages 153–156. ACM, 2007.

[38] Katrien Verbert, Denis Parra, Peter Brusilovsky, and Erik Duval. Visualizing recom-
mendations to support exploration, transparency and controllability. In Proceedings
of the 2013 international conference on Intelligent user interfaces, pages 351–362.
ACM, 2013.

[39] Chadd C Williams and Jeffrey K Hollingsworth. Bug driven bug finders. In Proceed-
ings of the International Workshop on Mining Software Repositories, pages 70–74.
IET, 2004.

[40] Xin Xia, David Lo, Ying Ding, Jafar M Al-Kofahi, Tien N Nguyen, and Xinyu Wang.
Improving automated bug triaging with specialized topic model. IEEE Transactions
on Software Engineering, 43(3):272–297, 2016.

[41] Jialiang Xie, Qimu Zheng, Minghui Zhou, and Audris Mockus. Product assignment
recommender. In Companion Proceedings of the 36th International Conference on
Software Engineering, pages 556–559. ACM, 2014.

[42] Jin An Xu and Kenji Araki. A svm-based personal recommendation system for tv
programs. In 2006 12th International Multi-Media Modelling Conference, pages 4–
pp. IEEE, 2006.

[43] Geunseok Yang, Tao Zhang, and Byungjeong Lee. Towards semi-automatic bug triage
and severity prediction based on topic model and multi-feature of bug reports. In 2014
IEEE 38th Annual Computer Software and Applications Conference, pages 97–106.
IEEE, 2014.

[44] Cheng Zhang, Juyuan Yang, Yi Zhang, Jing Fan, Xin Zhang, Jianjun Zhao, and
Peizhao Ou. Automatic parameter recommendation for practical api usage. In Pro-
ceedings of the 34th International Conference on Software Engineering, pages 826–
836. IEEE Press, 2012.

[45] Heng-Ru Zhang and Fan Min. Three-way recommender systems based on random
forests. Knowledge-Based Systems, 91:275–286, 2016.

[46] Hengru Zhang, Fan Min, and Shenshen Wang. A random forest approach to model-
based recommendation. JOURNAL OF INFORMATION &COMPUTATIONAL SCI-
ENCE, 11(15):5341–5348, 2014.

72

Appendix A

Appendix Example

A.1 Back-End Database
We have created two sets of table as we used two products. Figure A.1 and Figure A.2

shows the database schema for or back-end server. Each set contains two tables. One table
contains all the word and their TF-IDF score, where other table contains bug report related
in formations. The table with bug report information contains information such as, bug
report ID, assigned developers name, summary and description of that report, combined
text (where summary and description is concatenated together).

A.2 REST
REST (Representation State Transfer) is a set of rules that programmers follow when

they create the API for their web application. One of these rules states that users should be
able to get a piece of data (called a resource) when they link to a specific URL. Each URL
is known as a request while the data sent back to the user is the response. Furthermore,
each request consists of four things: the endpoint, the method, the headers, and the data (or
body). The endpoint is the URL that a user requests for. The method represents what type
of requests the user sends to the server. Headers are used to provide information to both the
client and the server. And finally, the data (body) contains information that the user wants
to be sent to the server.

73

A.2. REST

Figure A.1: Database Schema for Thunderbird bug report.

Figure A.2: Database Schema for Bugzilla bug report.

74

	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Bug Report Assignment Recommenders
	Machine learning
	Multinomial Naïve Bayes
	Topic Modeling
	Word Mover’s Distance(WMD)

	Text Processing
	Information Retrieval(IR)
	Bag of Word(BoW)
	Term Frequency(TF)
	Inverse Document Frequency(IDF)
	Term Frequency-Inverse Document Frequency(TF-IDF)

	Summary

	Methodology
	Assignment Recommender Creation
	Data Collection
	Data Preparation
	Recommender Creation

	Visualization of Assignment Recommendations
	Visually Representing Recommendations (Multinomial Naïve Bayes)
	Visually Representing Recommendations (Topic Modeling)
	Font-End Representation

	Web Extension Creation
	Web Browser Plug-in
	Web Service

	Summary

	Evaluation
	Analytical Evaluation of Recommenders and Results
	Evaluation Procedure
	Result

	Empirical Evaluation and Result
	Evaluation Procedure
	Results

	Summary

	Discussion
	Research Questions
	RQ1: Supervised Vs. Unsupervised Machine Learning Algorithm
	RQ2: Ease of Understanding Visual Explanations
	RQ3: Trust of Visual Explanations
	RQ4: Prefered Visualization
	General Comments from Participants

	Threats to Validity
	External Validity
	Internal Validity

	Summary

	Related Work
	Expert Recommendation
	Use of machine learning
	Importance of explanation
	Visualizing Expertise
	Summary

	Conclusion
	Future Directions

	Bibliography
	Appendix Example
	Back-End Database
	REST

