
AN APPROACH FOR MEASURING THE SOFTWARE MODULARITY BASED
ON THE BURSTY EVOLUTION OF FUNCTIONAL DEPENDENCIES

AJAY RAJ TEDLAPU
Bachelor of Technology, GITAM University, 2015

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Ajay Raj Tedlapu, 2019

AN APPROACH FOR MEASURING THE SOFTWARE MODULARITY BASED ON
THE BURSTY EVOLUTION OF FUNCTIONAL DEPENDENCIES

AJAY RAJ TEDLAPU

Date of Defence: December 13, 2019

Dr. Daya Gaur Professor Ph.D.
Thesis Supervisor

Dr. Shahadat Hossain Professor Ph.D.
Thesis Examination Committee Member

Dr. Robert Benkoczi Associate Professor Ph.D.
Thesis Examination Committee Member

Dr. Howard Cheng Associate Professor Ph.D.
Chair, Thesis Examination Committee

Dedication

To my parents, brother and my fiancee.

iii

Abstract

Modular Design of a software system is one of the parameters which defines the complexity

of a software system. If the software is built as one whole module, then it makes testing

a long process. Also, updating the software will make a significant impact on the whole

system code because of the dependencies.

We propose a methodology to study and visualize the evolution of the modular struc-

ture of a network of functional dependencies in a software system. We used the Understand

C++ tool for analyzing the dependencies and Gephi to produce the network. Our method

analyzes the modularity of the software and identifies specific periods of significant activ-

ities, which are known as the evolutionary hot spots in software systems. As a case study,

we analyzed the modular structure of Octave during its life cycle beginning from 1993 to

the present.

iv

Acknowledgments

I would like to convey my gratitude to my supervisor Dr. Daya Gaur, who guided and

motivated me throughout my research. I also want to thank my committee members Dr.

Shahadat Hossain and Dr. Robert Benkoczi for their constant support and motivation. I

would also like to thank Dr. Muhammad Khan for guiding me in my research.

I would like to thank Dr. Howard Cheng for being the Examination chair of my thesis

defense. I am grateful to SGS, Dr. Daya Gaur for helping me financially throughout my

Masters in Canada.

It is a great pleasure to thank my parents and my brother for encouraging me throughout

my life. Special thanks to my fiancee Abha Goel for her support and understanding me.

Finally, I would like to thank my friends Shahul Shaik, Leila Karimi, Akalanka Galap-

paththi and Disha Devaiya for being part of my journey these two years in Canada.

v

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 3
1.3 Contributions . 4
1.4 Organization . 5

2 Preliminaries and Related Work 6
2.1 Kleinberg’s Algorithm . 6

2.1.1 Bursty Model . 6
2.1.2 Two State Model . 7

2.2 Viterbi’s Algorithm . 8
2.3 Related Work . 10

3 Methodology 16
3.1 Phase 1: Dynamic Network using Gephi 17
3.2 Phase 2: Identification of the Modular Structure 20
3.3 Phase 3: Identifying the bursts of significant activity 21

3.3.1 Kleinberg’s Method . 22
3.3.2 Minimum cost state sequence . 25
3.3.3 Mathematical Formulation . 26

4 Case study and Implementation 29
4.1 Case Study: Introduction . 29
4.2 Implementation . 31

4.2.1 Phase 1: Dynamic network using Gephi 31
4.2.2 Phase 2: Identification of Modular Structure 37
4.2.3 Phase 3: Identifying the bursts of significant activity 37

5 Results 42
5.1 Phase 1: Dynamic network using Gephi 42
5.2 Phase 2: Identification of Modular Structure 47
5.3 Phase 3: Identifying the bursts of significant activity 50

vi

CONTENTS

6 Conclusion 54
6.1 Summary . 54
6.2 Future Work . 54

References 56

A Bursts based on different modular structure 59

B Preliminaries and Related Concepts 63
B.1 Introduction . 63
B.2 Understand C++ . 63
B.3 Gephi . 65
B.4 Mercurial Repository . 68
B.5 Java Integration . 68

B.5.1 Compiling the Java source code 68
B.5.2 Eclipse IDE . 69
B.5.3 HashMap - Java collection framework 69
B.5.4 CSV reader/writer . 69

C Dynamic Graph of GNU Octave 70

vii

List of Tables

3.1 Edges table derived from dependency matrix report 19
3.2 Edges Table with Start date and End date 20

5.1 Dependency information using Understand C++ 44
5.2 Arrival and removal streams . 51
5.3 Bursts of Significant activity based on Modular Structure of the year 2019 . 52

A.1 Bursts of Significant activity based on Modular Structure of the year 2001 . 59
A.2 Bursts of Significant activity based on Modular Structure of the year 2004 . 60
A.3 Bursts of Significant activity based on Modular Structure of the year 2005 . 60

viii

List of Figures

2.1 Code Trellis . 9
2.2 Step 1 in Viterbi’s Algorithm . 10
2.3 Finding the path with minimum hamming distance 11

3.1 Phases Involved . 18
3.2 Example Dependency Matrix Report . 18
3.3 Static Network from Edges Table Using gephi 20
3.4 The state sequence . 28

4.1 Steps involved in Phase 1 . 32
4.2 Extraction of GNU Octave source code 33
4.3 Extraction of edge table for network visualization 34
4.4 Dynamic Network using gephi . 35
4.5 Steps involved in Phase 3 . 38
4.6 Generation of arrival/removal event stream 39
4.7 Generation of relevant event stream for each module 39
4.8 Identification of the bursts of significant activity 40

5.1 Revisions made per each year . 43
5.2 ForceAtlas Layout view of the network . 46
5.3 ForceAtlas2 Layout view of the network 46
5.4 Yifan Hu Layout view of the network . 47
5.5 OpenOrd Layout view of the network . 48
5.6 Number of Dependencies for each year . 48
5.7 Number of Modules for each year . 49
5.8 Arrival Bursts of significant activity . 52
5.9 Removal Bursts of significant activity . 53

A.1 Arrival Bursts of significant activity based on Modular Structure of 2001 . . 60
A.2 Removal Bursts of significant activity based on Modular Structure of 2001 . 61
A.3 Arrival Bursts of significant activity based on Modular Structure of 2004 . . 61
A.4 Removal Bursts of significant activity based on Modular Structure of 2004 . 61
A.5 Arrival Bursts of significant activity based on Modular Structure of 2005 . . 62
A.6 Removal Bursts of significant activity based on Modular Structure of 2005 . 62

B.1 Dependency Graph based on Project Architecture 64
B.2 Difference between edges colors . 65

ix

Chapter 1

Introduction

1.1 Introduction

Software systems play a vital role in every sector such as Banking, Education. In days

when software systems did not exist, considerable human resources and time had to be

devoted to even simplest of the tasks. For example, to transfer money from one account to

another account, one had to go to the respective bank and fill a form. Now, with the help

of software systems, we can quickly transfer any amount to any account within minutes,

even across different countries. Many such conditions contributed to the rise of software

systems.

The complexity of the software system depends on the set of requirements. Based on

the requirements, the software system will be designed and released, but the requirements

might evolve, such as upgrading the software to the newer version or adding new function-

ality. Let us suppose we need to add new functionality to the system. If the system has an

excellent modular design, then the effect of the change would be restricted to the module

in which the change is undergoing. If the system has a poor modular design, then the effect

of the change can be the whole system functionality.

Software systems need to be updated regularly based on the available versions and func-

tionality, therefore software systems will undergo continuous changes. If the software is left

unmodified for more extended periods, then the software will be outdated in terms of both

functionality and also applicability. For example consider the Windows operating system,

the first version of the Windows operating system Windows 1.0 was released in 1985. The

1

1.1. INTRODUCTION

Windows 1.0 operating system has been developed based on the requirements as of 1985.

Imagine using the Windows 1.0 operating system on the presently available computer sys-

tem. So any software needs to be updated regularly.

As stated in [32], the software should be consistent with the new changes and also

should be adaptable. Software is said to have a good design if the changes made to the

software do not impact the entire software. If the changes made in a software impact major

areas in software, then the change impact assessment should be made across all the affected

areas of the software. Defects can also be introduced in the software during the process of

update and change if the design is weak.

A software system is said to be modular if it groups the entities in the entire system

into modules based on their functionality such that all the files with similar functionality

will be in one module. This reduces the interactions across modules. These interactions

are known as dependencies. As stated in [15] to assess the impact of changes made in a

software system understanding the dependency relationships is essential. If a file ’A’ uses

functionality in file ’B’ then file ’A’ is said to be dependent on file ’B’. A change in file ”B”

because of the dependency forces a change in file ”A”. This dependency is called direct

dependency. There are also the indirect dependencies where if file ”A” is dependent on file

”B” and file ”B” is dependent on file ”C”. Then file ”A” is indirectly depended on file ”C”.

Most of the dependencies in a module comprise indirect dependencies.

For a system to be modular, the elements in the module should be strongly coupled,

and the elements across the modules should be weakly connected. The strongly connected

components, coupling, and cohesion are metrics to analyze the dependency information of a

software system. If two files ’A’ and ’B’ are committed together at the same time, then files

are said to have a co-change relation. As stated in [15], the co-change relationships between

the files produce the logical dependencies. There are many research works available that

help us analyze the modularity of the software system based on metrics like co-change and

coupling as well. The evolution of software systems can also be done using design structure

2

1.2. MOTIVATION

matrices and design rule theory, as in [26].

1.2 Motivation

One of the methods for achieving modularity is the use of information hiding. Informa-

tion hiding groups the design decisions of a particular program that can be changed later

and keeps them isolated so that even if the design decision is changed, it will not affect the

other parts of the program. Refactoring is the process of restructuring the code and chang-

ing the internal behaviour without changing the external behaviour. Refactoring eliminates

duplicate code and improves reusability. By Refactoring we can improve software modular-

ity. Information hiding, Refactoring, Encapsulation, Polymorphism affects the modularity

of a software system.

By making the system modular, it helps the software developer in debugging the error.

Debugging is a process used by a developer to resolve an issue or a defect. Debugging

entails analyzing the source code. If the system is not modular, then the developer has to

check several files in order to determine the actual cause, which is time-consuming. The

developer has to do an impact assessment in order to confirm that the changes made in order

to fix the defect do not affect the rest of the code. This too takes time.

Software modularity also eliminates code repetition. It promotes code reusability, which

also decreases the length of the code. If the system is not modular, then the project might

become large involving more than one developer on the same project which might cause

design problems because it is recommended to have one developer handle at least one com-

plete functionality. The main point that motivates us is the effect of these techniques on the

overall design of the system.

In this thesis, for the case study, we have considered GNU Octave software because of

its three evolutionary phases. The first phase called the early development phase during the

period 1993 to 1997, where the primary developer Eaton is the chief developer. The second

phase is the period from 1997 to 2001, where Eaton concentrated more on maintenance

3

1.3. CONTRIBUTIONS

than development. The last or the current phase is post-2001, where the transition of GNU

Octave to open development has occurred, and several developers are involved. There

might be significant changes occurred during every phase that affects the modularity of the

system. The main point that motivates us is, whether we can identify the significant changes

and if those significant changes improved the modularity of the system.

Requirements determine the complexity of the software systems because the require-

ments will evolve based on the need for functionality. The various requirements forced

Eaton in 1997 to divide the branch in the repository into the staging and production branches,

to keep the impact of the immediate changes away from the end-users (until they are thor-

oughly tested). Once the new changes are available in the staging branch, he spent time

merging the completed changes with the production branch. These changes can improve

the modularity of the system, or they can decrease the modularity of the system. If the

resulting software is not modular, then the whole system is impacted because of the next

set of changes in the requirements. Testing the software would take much time as one has

to test the impact made by the change in the whole system. We have considered Octave as

our case study because Octave underwent many changes and revisions which might have

impacted the modularity of the system.

1.3 Contributions

The modularity of the software system in its design is essential. There are several

metrics for analyzing the design of the software system based on co-change and functional

dependencies. Few design methods like code refactoring, encapsulation also affect the

modularity of a software system. We propose a methodology to identify the bursts of these

local changes which affect the design of the system over its entire life cycle.

In this thesis, we propose a methodology to extract and visualize the evolution of the

modular structure of a network of functional dependencies in a software system. We can

also identify the significant changes that lead to a change in the modular structure. We

4

1.4. ORGANIZATION

have used the Understand C++ tool for analyzing dependencies and Gephi to produce and

visualize the network. Our method analyzes the software and identifies specific periods of

significant activities, which are known as the evolutionary hot spots in software systems.

Using our methodology, we can identify in GNU Octave the points in time (over the period

1993 to 2019) where significant changes occurred, leading to a change in the modular

structure of the software.

Our is a three-phase approach where, in Phase 1, we analyze the software based on

the functional dependencies and produce a dynamic network. In Phase 2, we identify the

modular structure of the network by using the weighted clustering algorithm. In Phase 3, we

extract the arrival and removal event streams from the dynamic network. We assume that

the significant effects on the modularity are due to the addition or removal of dependencies.

We use Kleinberg’s algorithm [20] to identify the bursts based on arrival and removal event

streams. We have implemented our methodology and tested in on GNU Octave software

over its entire life cycle.

1.4 Organization

There are six chapters in this thesis. The first (this) chapter deals with the introduction,

motivation, and contribution. In the second chapter, we introduced the algorithms used in

our thesis and described the related work.

In Chapter 3, we have explained our overall methodology and described the three phases

in our thesis. For each phase, we also describe the various tools and methods used in the

thesis along with the mathematical formulation. In chapter 4, we have explained our case

study and the implementation process for each of the three phases.

In chapter 5, we have shared and analyzed the results for each phase. In chapter 6, we

have the conclusions for the thesis. The scope of future work is also discussed.

5

Chapter 2

Preliminaries and Related Work

2.1 Kleinberg’s Algorithm

Our main goal is to find the bursts of significant activity and analyze whether these

bursts of significant activity lead to changes in the modularity of the system. To find out

the bursts of activity, we have used the work done by Kleinberg [20] based on the two-

state automaton. Kleinberg’s [20] goal is to find outbursts of activity of a topic in several

documents. Kleinberg modelled the bursts in the emails by looking for significant events for

a specific topic. The bursts are said to occur when there is an increase in the arrival of emails

on a particular topic. The behaviour of the bursts of email activity is very unpredictable,

sometimes the frequency may be high and sometimes the frequency may be low.

2.1.1 Bursty Model

To find the bursts of activity in email streams for specific topics, Kleinberg modelled the

process of generation of the email stream using an Infinite State Automaton. The infinite

model has states with probabilities which are directly proportional to the arrival rates of the

email for a particular topic. If the state transition moves from low probability state to high

probability state, then it is considered as a burst of activity. The probabilities are assigned

for the individual states based on the data. The cost of a state transition is also determined

using the data. The main advantage of assigning the costs to the state transition is that

it helps in finding the longer bursts instead of finding shorter bursts of activity. The high

probability states corresponding to the higher intensity of bursts also helps in providing the

6

2.1. KLEINBERG’S ALGORITHM

hierarchical structure in email streams [20].

The arrival of email messages based on the particular topic is considered to be an expo-

nential distribution. As stated in [20] the arrival of messages cannot be predicted and the

gap x between the messages m and m+ 1 is distributed according to the density function

f (x) = αe−αx where α is greater than zero. That is, the probability of the gap in time be-

tween the email message arrivals to be more than x is equal to e−αx. Here α is the rate of the

email arrivals. The model of bursts has periods of higher α along with the periods of lower

α. The bursty model extends the formulation by displaying the periods of lower arrival rates

along with the periods of higher arrival rates [20]. Kleinberg constructed the model with

multiple states, where the arrival rates of email depends on the current state. The infinite-

state model helps us in analyzing the hierarchical structure whereas the two-state model is

the basic model.

2.1.2 Two State Model

As stated by Kleinberg [20] the two-state modelling of bursts is the fundamental model

where the automaton has two states q0 and q1 where q0 is for low state and q1 is for the

high state for a specific event stream. So, when the automaton is in q0, then the arrival

of messages is slower when compared to automaton in q1. In between the messages, the

automaton undergoes state transition with probability p ∈ (0,1). The probability that it

does not change the state is given by (1− p) for some p.

So the automaton starts in q0 and changes the state with probability p. The email mes-

sages arrive in batches, some of which are relevant to the topic, and some are not relevant.

The main goal is to model the bursts based on relevant message streams.

Consider there are n batches of email messages, and the tth batch contains rt relevant

messages out of dt total messages. Let r = (r1,r2, ...,rn) and d = (d1,d2, ...,dn) and let

R = ∑
n
t=1 rt and D = ∑

n
t=1 dt . For state q0 the probability of fraction of relevant documents

is p0 = R/D and similarly for state q1 the probability of fraction of relevant documents is

7

2.2. VITERBI’S ALGORITHM

p1 = p0s, where ’s’ is a scaling parameter.

The cost of the state sequence q = (q1,q2, ...,qn) producing the observed email stream

if the automaton is in state q0 at time ’t’ is given by

σ(0,rt ,dt) =− log
((

dt

rt

)
prt

0 (1− p0)
dt−rt

)
Similarly, the cost function for the automaton to fit in state q1 at time ’t’ is given by

σ(1,rt ,dt) =− log
((

dt

rt

)
prt

1 (1− p1)
dt−rt

)
There is also a cost assigned for state transition. For a burst between [t1, t2], the weight

of the burst is given by

t2

∑
t=t1

σ(0,rt ,dt)−σ(1,rt ,dt).

In [20], they have conducted experiments with an email stream of data. With the help

of infinite-state automaton, they were able to extract and analyze the hierarchical structure

in email streams.

With the help of Kleinberg’s method [20] we can use a two-state automaton that can

model our event stream and identify the bursts of significant activity. Based on the two-

state automaton and relevant event stream, we can assign a cost for each sequence of state

transitions. The goal is to identify the state sequence that best explains the observed events.

Given the automaton and the relevant event stream, we need to find the state sequence for

the entire batch of the relevant event stream. The minimum cost state sequence is found by

using Viterbi’s algorithm [35] as described in the next section.

2.2 Viterbi’s Algorithm

Viterbi’s algorithm is named after Andrew Viterbi. In 1967 Andrew Viterbi proposed

the algorithm which is a dynamic programming algorithm for finding the hidden states to

8

2.2. VITERBI’S ALGORITHM

Figure 2.1: Code Trellis

decode convolutional codes. There were several applications of the algorithm; the most

crucial application of the Viterbi’s algorithm is the maximum likelihood decoding of the

convolutionally coded digital sequences over the channel with many distractions or noise.

The objective of Viterbi’s algorithm is to identify the best path through the trellis that is

closest to the received data bit sequence. The algorithm operates by computing a cost/metric

or discrepancy for every possible path in the trellis. The metric for a particular path is

defined as the Hamming Distance between the sequence represented by that path and the

received sequence. At each state in the trellis, the algorithm compares the paths and chooses

the path with lower hamming distance.

Let us consider an example, which will help us understand the Viterbi’s algorithm. Let

the received data bit sequence is 11 01 10. The code trellis is shown in figure 2.1. The code

trellis is a graphical representation of a code where every path represents a codeword.

We start from initial state a0 then based on the code trellis we have to indicate all the

possible paths from current state to next state as shown in the figure 2.2. a0 is the current

state and a1 is the next state, 00 is the output which will be received for moving from a0 to

a1. The desired output in the step 1 is indicated in the red color and the hamming distance

for each node is calculated and is indicated in blue color. The hamming distance is the

9

2.3. RELATED WORK

Figure 2.2: Step 1 in Viterbi’s Algorithm

metric here which is the difference in the received output bit and the desired output bit. In

step 2, from each node a1, b1 the possible next states is indicated along with the computed

hamming distance in figure 2.3. Similarly, in each step the hamming distance is calculated

and is indicated in blue color at the top of each node. At the final step, as shown in the

figure 2.3 we received 8 paths and the total hamming distance is calculated for each path

and is displayed in the green colour. The viterbi’s algorithm chooses the path which has

less hamming distance when compared with other paths. So, the path from a0, b1, d2, d3

has the less hamming distance and if we compared the output received in this path is 11 01

10 which is the received data bit sequence. Viterbi’s algorithm computes the metric in each

step and chooses the path with lower metric to receive the data bit sequence.

In section 2.1 we have the cost assigned for the states based on the probability distri-

bution and a cost is also assigned for the state transitions. Now the problem is identical

to the problem of finding the minimum cost state sequence. We used Viterbi’s algorithm

[35] to determine the state sequence based on the cost function. For each node or state, the

algorithm compares two paths entering the state. The path with the lower metric is retained,

and the other is discarded.

2.3 Related Work

The link between class dependencies and co-change is explained with empirical evi-

dence in [13]. The authors make the following point. If dependencies (either logical or

10

2.3. RELATED WORK

Figure 2.3: Finding the path with minimum hamming distance

functional) connect the modules, then they should have also exhibit co-change behaviour.

They have stated that most of the dependencies in the whole system are only due to the

few active dependencies. To characterize the refactoring effect, dependencies alone are not

enough; we need to see the changelogs of a project. They have also stated the impact of

differences on dependent and independent modules. They answered the question of co-

change propagation along with the depth of dependency structure with empirical evidence.

This paper provides a bias as it shows us that dependencies cause co-change, but at the same

time, it also provided results based on the Lorenz curve that the co-changes are only due

to small subset of dependencies. It is also not a good idea to remove all the dependencies

because they provide reusability of code. So we have to identify particular areas which have

more impact on co-change. In order to identify the ”hot spots” (the specific area to change

the code structure to reduce dependency) this paper tells us that dependency alone will not

suffice, but we also need changelogs (functional dependencies) in a project.

The approach for detecting changes to software modularity is stated in [34]. They have

described a few examples where the detection of the software (un)-modularity violation

11

2.3. RELATED WORK

is hard even while testing the software system. Their approach states that if two files are

changed simultaneously multiple times due to the requirement changes and if those two files

belong to different modules, then there is a modularity violation. They have implemented

their approach on two open-source software systems, Hadoop Common and Eclipse JDT.

They were able to find out the modularity violations and can show that the system has

lousy software modularity. There are several other approaches to detect software modularity

violations. However, this paper proved to be one of the best to determine the modularity

violations.

In [14], it is stated that it is challenging to determine the change propagation because of

the structural dependencies of several classes involved in the software system. They have

analyzed four open-source projects coded in Java and determined the impact of structural

dependencies over co-change propagation. They have shown that if a file ”A” depends on

file ”B” then file ”A” and file ”B” do not need to commit at the same time. However,

if file ”A” structurally depends on file ”B” then the two files’ files’ A” and ”B” might co-

change. They have also stated that the structural dependencies alone do not cause co-change

propagation. They have observed several other cases which caused co-change propagation.

The software development will undergo many changes over its life cycle, and the changes

that affect the system are analyzed in [10]. They have analyzed the data history of the

software and compared it with the structural data for software clustering. They have also

provided a design that measures the quality of software decomposition. They have worked

on projects based on Java language, and their results lead to impact analysis, software and

bug prediction.

In [5], they have analyzed and stated whether the software which is developed based

on SPL technology has dependencies which in turn cause co-changes along with its depen-

dency structure. They have worked on five software projects which have used SPL tech-

nology, and their results clearly described the relation between dependencies and change

propagation and stated that on reducing the dependencies the change propagation would

12

2.3. RELATED WORK

not be controlled.

In [7], they have provided a mathematical model and implemented a case study to pre-

dict the change propagation based on development structure and impact analysis. They have

stated that the number of files which will be affected by a change is directly proportional

to the complexity of the software system. It is stated that reduced complexity in a software

system might decrease the effect of a change in a software system.

In [27], the design structure matrix is formed by extracting the dependencies and by ap-

plying the requisite DSM algorithms. They described a tool that extracts the dependencies

present in a software system. This tool also indicates the defects or the problems associated

with the dependency structure, that is the problems that violate the software modularity

are also identified. They have presented an approach to maintain the architecture of the

complex software systems, and the violations to software modularity have been indicated.

In [16], it is stated that most of the developers do not make a note of the dependency

information in a software document or in the form of comments. Only the developer will

have an idea about that dependency relation. This paper deals with the logical dependencies

among the modules rather than static dependencies. They have described a methodology

where they have analyzed the historical process of the code development involved. They

have measured the coupling of the system based on the revision history.

In [22], they have defined the propagation cost and the clustering cost of the design

structure matrix based on functional dependencies. Based on the type of dependencies, the

clustering is then performed. Another design structure matrix approach for determining the

co-change modularity of a software system using commit logs is in [4]. The authors pointed

out the drawbacks with the propagation cost stated in [22] and described the weighted prop-

agation cost and weighted clustering cost to measure the co-change modularity of the soft-

ware systems. They have also implemented their methods as a case study on GNU Octave.

It was successful in determining the co-change modularity of GNU Octave over its entire

life cycle. They have used co-change dependencies but did not consider functional depen-

13

2.3. RELATED WORK

dencies. The relation between the co-change and functional dependencies is described in

[1].

In our thesis to identify the bursts in Phase 3, we have used Kleinberg’s method [20].

In his paper, Kleinberg presented a methodology for modeling bursts of occurrence of a

specific topic in the email stream so that they can be easily identified. Kleinberg’s motive

is to properly organize his personal email as it is overloaded with many numbers of emails.

There were many research papers involved in text indexing to develop email interfaces that

can organize the mails according to the topic. Kleinberg modeled the bursts of activity for

the occurrence of a particular topic in a document stream using an infinite-state automaton.

A burst of activity is identified if there is a state transition from a lower state to a higher

state. Using an infinite state model, they can extract the hierarchical structure of the emails

from the bursts. Kleinberg proposed a two-state model where he assigned a cost to each

state sequence according to the binomial distribution with the probability of occurrence of

relevant emails. The problem of finding the bursts is now equal to the problem of finding

the minimum cost state sequence. Given the state sequence, when the automaton is in high

state corresponds to the burst of activity.

Kumar et al. in [21] extended the work done by Kleinberg [20] by analyzing the com-

munity structure of blog space the information from blog pages. They also proposed a

methodology to identify the communities by pruning and extracting bursty communities.

In their results, they have identified the community structure, and they found out that blogs

that give rise to the communities are significantly more long-lasting than a typical blog.

Qi He et al. [29] proposed a new temporal representation of text streams using bursty

features. The bursty text representation is different from a regular text representation. As

the bursty text dynamically represents the documents over time. In their model, the burst

is considered as a significant amount of text content over a particular topic. The represen-

tation of the document is also dynamic as it depends on its publication date. Their work

is motivated by research in the field of Topic Detection and Tracking (TDT). They have

14

2.3. RELATED WORK

two main steps, bursty feature identification, and bursty feature representation. They have

used Kleinberg’s [20] two-state model in order to identify the bursty features. They have

classified the states based on the emission rate for each feature. They have computed the

burstiness of each feature across all topics.

Andreas et al. [2] proposed a model to evaluate two separate tasks. Data Association is

one of the tasks where a topic is assigned to each data point and Intensity tracking models

the bursts and changes in intensities of topics over a period of time. They proposed an

extension of Factorial Hidden Markov Model for the topic intensity tracking for data asso-

ciation. They state that in Kleinberg’s model [20] the data association and burst detection

are viewed as two separate tasks and that could add bias to the model. They presented an

approach that combines the two tasks of associating data and tracking of intensity into a

single model.

Kleinberg’s model of identifying bursts is used for identifying the bursts of arrival of

documents over time for a particular query in [25]. Whenever we ran a query the result

will be comprised of documents related to the query along with the documents that are not

relevant to the query. They classify the data stream as either bursty i.e the automaton in

high state and non-bursty when the automaton is in low state which depends on whether

the result contains more documents relevant to the query or less documents relevant to the

query. Cost is assigned whenever there is a state transition from low to high state. The

weight of the burst is also computed for a period where the automaton is in high state.

15

Chapter 3

Methodology

Dependencies play a crucial role in the software system. File ”A” can depend on file ”B” in

various ways. File ”A” can call a member variable of file ”B”. File ”A” can use a member

function of file ”B”. File ”A” can import file ”B”. File ”A” can extend file ”B”. So a change

in file ”B”, due to the requirement changes can cause a change in file ”A”. A software

system contains many such dependencies. For a system to be modular, the elements in the

module should be ”strongly” connected, and the elements across the modules should be

”weakly” connected.

We produced a network based on the dependency structure of software, obtained from

its repository during a specific period. We analyzed the software dependencies using the

Understand C++ tool and produced the dependency table for each year during a specified

period. We built the dynamic network of the dependencies using the Gephi tool. The dy-

namic network helps us in visualization and the extraction of the data for a specific period.

The nodes in the graph represent files and edges represent the dependency. Labels on the

edges represent time intervals. Disjoint time intervals are represented as a list of labels.

This is a directed graph, and the direction is essential.

Grouping the functions or files which achieve similar tasks is called a modular grouping

[31]. Strongly connected components in the graph as a module. The number of strongly

connected components has been used as a measure of the modularity. The higher the num-

ber of strongly connected components, the more modular the system. However, this mea-

sure has some drawbacks. Therefore, we used the method of MacCornack et al. [22].

16

3.1. PHASE 1: DYNAMIC NETWORK USING GEPHI

This method was recently extended in [4] to handle a weighted clustering cost. We use the

method in [4] to determine the modules of the network for each year and the clustering cost

(which is a measure of modularity).

Requirements determine the complexity of the software systems. Conditions will keep

changing based on their necessity. Whenever there is a new requirement, then we need to

add or remove some functionality in our software system. This change can affect system

behaviour. We consider two types of events. One is the arrival event stream, and the other

is the removal event stream. These events can improve modularity or decrease modularity.

Our goal is to identify these significant events and analyze whether these significant changes

made during the life cycle of a project have improved the modularity or decreased the

modularity.

Ours is a three-phase approach, as shown in Figure 3.1.

• Phase 1: Analyze the software, produce a dynamic network, identify the strongly

connected components and visualize it using Gephi.

• Phase 2: Identify the modular structure of the network using the DSM methodology.

• Phase 3: For each module, and each event stream identify the periods of significant

activity called bursts during the entire life cycle of the project using the method of

Kleinberg.

In Phase 1, we cloned the repository, downloaded the source code, analyzed the source

code and produced a dynamic network [36]. In Phase 2, the modules associated with the

network are identified. Finally, in Phase 3, we determine the periods in time where signifi-

cant events occurred over the entire life cycle of the project.

3.1 Phase 1: Dynamic Network using Gephi

The source code to be analyzed is cloned to the local working repository. Understand

C++ can examine the source code in various programming languages like C, C++, Java,

17

3.1. PHASE 1: DYNAMIC NETWORK USING GEPHI

Figure 3.1: Phases Involved

Figure 3.2: Example Dependency Matrix Report

18

3.1. PHASE 1: DYNAMIC NETWORK USING GEPHI

Table 3.1: Edges table derived from dependency matrix report

Source Target
a b
b c
c a

Fortran, Objective-C, Objective-C++. Understand C++ has two types of analyzers, the

fuzzy analyzer, and the strict analyzer. The fuzzy analyzer can analyze projects like C,

C++, Java except for Objective-C and Objective-C++. For Objective-C and Objective-C++

we have to use the strict analyzer. Consequently, the fuzzy analyzer in Understand C++

is used to analyze the project and generate a dependency report which is a matrix where

the rows and columns are files. The methodology followed in this thesis is explained by

a simple example where the source code of the software comprises three files a, b and c.

The source code is given as input to Understand C++ to analyze. Which generates the

dependency matrix report, as shown in Figure 3.2.

The matrix is a 3 x 3 matrix because there are only three files associated with the soft-

ware. The dependency matrix report indicates the dependencies between the three files. The

entry in the second-row third column is 1; this means that the file ’a’ depends on file ’b,’

i.e. file ’a’ calls the member function/variable of file ’b’. Similarly, from the dependency

matrix, we can infer that file ’b’ depends on file ’c’ and file ’c’ depends on ’a’. These are

the direct dependencies associated with the software. There is also an indirect dependency

associated, file ’a’ depends on file ’b’, and file ’b’ depends on file ’c’. So, file ’a’ indirectly

depends on file ’c’ because there is a path from file ’a’ to file ’c’ through file ’b’. The edge

table associated with the dependency matrix is generated, as shown in Table 3.1.

Now, this edges table is loaded in a Gephi tool to produce a network. In Gephi, we can

analyze the network by loading either edge table or node table or the adjacency matrix. In

this example, we load the edges table. The network produced from the edge table looks like

as shown in Figure 3.3.

The network produced is a static network to it convert into the dynamic network we

19

3.2. PHASE 2: IDENTIFICATION OF THE MODULAR STRUCTURE

Figure 3.3: Static Network from Edges Table Using gephi

Table 3.2: Edges Table with Start date and End date

Source Target Start Date End Date
a b 2000/01/01 2000/12/31
b c 2001/01/01 2001/12/31
c a 2002/01/01 2002/12/31

need to know the start date and end date of these edges. This information can be gathered

from the repository. So after determining the start date and end date, the edge table looks

like as shown in Table 3.2.

In Gephi we can load the edge table 3.2 and produce a dynamic network. In a dynamic

network, an edge is visible only when the current date is in between the start date and end

date of the edge. When the current date is not in between the start date and end date of

the edge then the edge is not visible. Dynamic networks help us gather information about

the edges present during a certain period. Once the dynamic network is generated, using

Gephi, we can extract the edge table for every year during the entire life cycle. Then in

phase 2, we will illustrate the methodology used to identify the modular structure.

3.2 Phase 2: Identification of the Modular Structure

There are several methods to identify the modules associated with a network. The de-

tection of communities is done in [30] based on the bipartite cliques. The method followed

in [21] has two stages. The first stage is pruning, where the main file or the seed of the

community is identified. The second stage is expansion, where they identify the neighbours

20

3.3. PHASE 3: IDENTIFYING THE BURSTS OF SIGNIFICANT ACTIVITY

of the seed and extend the community. The approach used in this thesis is different from all

these approaches.

We used the method of weighted clustering described in [4]. It is a greedy algorithm

where it improves the solution in each iteration by making the best local move. An entry

in adjacency matrix of a directed graph, (D)a,b denotes the number of interactions between

two files a and b. (Dk)a,b is the number of walks between a and b. This approach is used to

cluster the DSM’s formed in phase one [9].

At the start, each file belongs to its own cluster. Let ’t’ be the total number of files. Let D

the functional dependency matrix. Cost is assigned to every dependency based on whether

the two files a and b belong to the same or different modules. If both the files a and b belong

to the same module m then the cost assigned to the dependency is eD(a,b) ∗ s(m)2 where

eD is the exponential matrix of the functional dependency matrix D and s(m) is the number

of files in module m. If both the files are in different modules, then the cost assigned to the

dependency is eD(a,b)∗ t2. During the initial step, the sum of the cost of all dependencies

is the total cost. This algorithm in [4] improves the local move in every iteration until no

local move can further decrease the cost beyond the threshold. The resultant is a clustering

matrix where we can find the module information of each file.

3.3 Phase 3: Identifying the bursts of significant activity

In phase 1, we have produced the DSMs, and to these DSMs, we have applied the clus-

tering algorithm in phase 2 to identify the modular structure. We have a dynamic network

where significant changes have occurred during a few years, and we intend to find the bursts

in time where these significant events occurred during the entire life cycle using Kleinberg’s

approach. This process of community extraction and burst analysis was also done in [21].

However, we use DSMs to cluster as opposed to the method of community detection.

In software based on the requirement, there will be many changes like adding a file,

removing a file, creating or removing a dependency. We are treating the addition or removal

21

3.3. PHASE 3: IDENTIFYING THE BURSTS OF SIGNIFICANT ACTIVITY

of a dependency in the software network as meaningful events. In this phase, we will

describe the methodology of how to identify the bursts in time where these significant

events occur.

The bursts of the events occur interspersed with the periods where this is no activity,

i.e. the bare distributed over the entire life cycle. We have to notice that events that occur

in different modules might be occurring at the same time or at different times. In case of

events that happen simultaneously in modules 1 and 2, we have to be able to detect the

most significant activity that happened among both the modules. In this thesis, we have

considered the addition of dependencies as one event stream and removal of dependencies

as another event stream. For both of these event streams based on the modular structure

identified in phase 2, we have to find out the periods in time where these significant changes

occurred. We have to analyze whether these changes have made the software system more

modular.

Before describing the method that we have used in our thesis, let us quickly review a

simple method to identify the bursts. One way of identification of bursts is through a thresh-

old. We can plot a graph based on the activity in every module over the entire time period

and then decide on a threshold. The period where the activity has crossed the threshold in

the module, forms as a burst. We can apply this method of identification of burst to each

module and each event stream (arrival and removal). But the main problem associated with

this technique is the choice of the threshold. It will be challenging to identify the burst

when the rate of arrival stream or removal stream varies significantly.

3.3.1 Kleinberg’s Method

For phase 3, we have used Kleinberg’s method [20]. They have proposed a method to

model bursts in such a way they can be easily detected. Kleinberg’s [20] approach is based

on using an infinite-state automaton for modelling the stream of activity where the bursts

appear as transitions to specific states. In their approach, the automaton has states that

22

3.3. PHASE 3: IDENTIFYING THE BURSTS OF SIGNIFICANT ACTIVITY

represent the steady-state and a bursty state of events. They have also proposed a two-state

model.

The two-state model is the basic model where the automaton has two states which repre-

sent low and high volumes of the events. When the automaton is in the low state, then there

will be no significant changes to the event rate. But when the automaton is in high state

there will be significant change to the event rate. Costs are associated with state transitions.

Now our problem is to find a state sequence that minimizes the cost and best explains the

observed sequence of events.

They have also proposed the infinite state model for capturing the bursts of higher sig-

nificant activity with very fewer gaps occurring over the time interval. Here the states are

defined based on the gaps between the occurrence of bursts. The costs are assigned in an

infinite-state model, similar to the two-state model. Now identical to the two-state model,

the problem is of finding the state sequence which minimizes the cost while explaining the

observed events.

They have also conducted experiments with an email stream of data and published their

findings. With the help of infinite-state automaton, they have been able to extract and

analyze the hierarchical structure in email streams.

In this thesis, we are concerned only with the arrival and removal of dependencies as

events. Our goal is to find the bursts of significant arrival or removal activity over its entire

life cycle. As stated by Kleinberg [20] the two-state modelling of bursts is the fundamental

model where the automaton has two states q0 and q1 where q0 is the low state and q1 is

the high state. So, when the automaton is in q0, the arrival or removal of dependencies is

slower compared to when the automaton in q1. The automaton undergoes state transition

with probability p ∈ (0,1). The probability that it does not change the state is given by

(1− p).

So the automaton starts in state q0 and changes the state with probability p. The arrival

or removal of dependencies happens in batches, of which some are relevant dependencies,

23

3.3. PHASE 3: IDENTIFYING THE BURSTS OF SIGNIFICANT ACTIVITY

and some are not relevant dependencies. If both the files in a dependency belong to the

same module, then it is recorded as a relevant dependency, irrelevant otherwise. The main

goal is to model the bursts based on relevant message streams.

Consider there are n batches of arrival dependencies, and the tth batch contains at

relevant arrival dependencies out of dt total dependencies. Let a = (a1,a2, ...,an) and

d = (d1,d2, ...,dn) and let A = ∑
n
t=1 at and D = ∑

n
t=1 dt . For state q0 the probability of

fraction of relevant arrival dependencies is p0 = A/D and similarly for state q1 the proba-

bility of fraction of relevant arrival dependencies is p1 = p0∗s where s > 1. The parameters

p0 and p1 corresponds to thresholds for generating relevant arrival or removal dependencies

in small and large numbers respectively.

The cost function for the fit of the model in state q0 at time ’t’ is given by

σ(0,at ,dt) =− log
((

dt

at

)
pat

0 (1− p0)
dt−at

)
Similarly, the cost function for the automaton in state q1 at time ’t’ is given by

σ(1,at ,dt) =− log
((

dt

at

)
pat

1 (1− p1)
dt−at

)
There is also a cost assigned for state transition. For a burst between [t1, t2], the weight

of the burst is given by

t2

∑
t=t1

σ(0,at ,dt)−σ(1,at ,dt).

The cost is assigned for each module and every year for the arrival and removal event

streams.

With the help of Kleinberg’s method [20] we can use a two-state automaton that can

model our event stream and identify the bursts of significant activity. Based on the two-

state automaton and event stream, we can assign the costs to each state and also for the

state transitions. Now we have to find the state sequence which minimizes the total cost,

24

3.3. PHASE 3: IDENTIFYING THE BURSTS OF SIGNIFICANT ACTIVITY

described in the next section.

3.3.2 Minimum cost state sequence

In section 3.3.1 we have the cost assigned to the states based on the probability distri-

bution and the cost is also assigned for the state transitions. Now the problem is identical to

the problem of finding the minimum cost state sequence. We used Viterbi’s algorithm [35]

to determine the state sequence based on the cost function.

This algorithm operates by computing a metric or discrepancy for every possible path.

For each node or state, the algorithm compares two ways of entering the state. The path

with the lower metric is retained, and the other is discarded. The pseudo-code is shown

below.
Algorithm 1: Minimum Cost state sequence

Initially at time t=1, the cost matrix C[0,1] = S[0,1] and C[1,1] = S[1,1].

TC = state transition cost.

B = All the values in back pointer matrix is initialized with one.

for t← 2 to N do

C[0,t] = min(C[0, t-1] , C[1, t-1]) + S[0, t];

if C[0, t-1] > C[1, t-1] then
B[0,t] = 2;

end

C[1,t] = min(C[0, t-1] + TC , C[1, t-1]) + S[1, t];

if C[0, t-1] + TC > C[1, t-1] then
B[1,t] = 2;

end

end

The algorithm starts the state sequence with state zero. Here S[i, t] is the variable that

stores the fit of the model for that particular state, where i denote the state 0 or state 1 and

t denotes the time, which ranges from (1 to n). Similarly, C[i, t] is the variable that stores

the minimum cost based on the previous time (t− 1). Given the metric for each state and

25

3.3. PHASE 3: IDENTIFYING THE BURSTS OF SIGNIFICANT ACTIVITY

state transition, it compares the metric of the previous state at time t− 1 and decides the

next state by choosing the lower metric among the possible paths. In our thesis, the metric

is the cost of the model to be in that particular state.

3.3.3 Mathematical Formulation

Let q0 and q1 represent low state and high state, respectively. Let p0 be the probability

of occurrence or removal of a fraction of relevant dependencies in q0. Let (1-p0) be the

probability of occurrence or removal of a fraction of irrelevant dependencies in state q0.

Let us choose two parameters s,γ both greater than zero where s is a scaling parameter

which controls the resolution and γ controls the rapid change of states. Generally, γ will be

set to a default value of 1.

We define, p0 = Dt /Tt , where Dt is the set of dependencies added/removed to the mod-

ule at time t and Tt is the total number of dependencies added or removed at time t. The

probability that relevant dependencies are added or removed in state q1 is sp0.

The fit of the model in the state qi is defined as

σ(i,Dt ,Tt) =− log
((

Tt

Dt

)
pDt

i (1− pi)
Tt−Dt

)
Let n be the number of batches. The cost of transitioning across states from q0 to q1 is

defined as

cost(q0,q1) = γ logn

The cost of the remaining state transitions are zero. The weight of a significant burst in

the interval [a,b] is defined as

b

∑
t=a

σ(0,Dt ,Tt)−σ(1,Dt ,Tt).

Using the weight of the bursts, we can determine the relative order of the occurrence of

the bursts. The calculation of the cost of the paths is done separately for both the arrival

26

3.3. PHASE 3: IDENTIFYING THE BURSTS OF SIGNIFICANT ACTIVITY

stream and removal stream. The cost is assigned for the fit of the model in a particular state

i.e either q0 or q1 as in Kleinberg’s algorithm [20]. Then with the help of Viterbi’s algorithm

[35], the minimum cost state sequence is found, and the weight of the bursts is calculated to

determine the relative order of the bursts across different modules. So the identification of

the bursts is done with the help of Kleinberg’s algorithm [20]. This helps us to identify the

bursts and analyze them for any significant activity and whether it has improved the system

modularity or it decreased the system modularity. This two-stage process of identification

of community and then bursts is also done based on several activities in social networks in

[21]. In our thesis, detection of modularity is done based on [4] by the weighted clustering

algorithm.

For the better understanding of the methodology, consider an example where the number

of batches (n) = 10, s = 2.0 and γ = 1. For a Module M, let us consider the arrival of relevant

dependencies as A = [3, 6, 2, 8, 1, 1, 2, 1, 1, 3] , and the total number of dependencies as T =

[16, 20, 10, 10, 15, 12, 14, 12, 11, 10]. As shown in the figure 3.4, the top row corresponds

to the low state (q0) and bottom row corresponds to high state (q1). The sigma values

σ(i,At ,Tt) are assigned for each state and for each time (t = 1 to n). The cost is assigned for

the state transition from low state (q0) to high state (q1), i.e γ log n. Given a state sequence,

contiguous time when the automaton is in high state corresponds to a significant burst of

dependencies. Now our goal is to determine the state sequence by comparing and selecting

the path that has minimum cost.

The algorithm starts from state q0, computes the cost and updates the cost matrix for

each time t. At time t = 1, the the cost value is same as the sigma value for both the states.

At time t = 2, the algorithm compares the cost of state 0 with the cost of state 1 in the

previous time (i.e, t = 1) and updates the cost with the minimum cost. Similarly, the cost

matrix is updated at each time.

In the figure 3.4 the values inside the nodes are the sigma values, the solid edges have

cost γ log n and the dashed edges have cost 0. The shortest path is decided based on

27

3.3. PHASE 3: IDENTIFYING THE BURSTS OF SIGNIFICANT ACTIVITY

Figure 3.4: The state sequence

minimum cost and is represented by the elliptical shaped nodes. Given the time, state

sequence whenever the automaton is in high state corresponds to the significant burst, here

in this example the burst of dependencies is at time t = 4. The weight of the burst is 4.91.

So for the module M, there is an arrival burst of dependencies at time t = 4.

28

Chapter 4

Case study and Implementation

4.1 Case Study: Introduction

In this thesis, we have used GNU Octave for the case study. GNU Octave is free, the

popular software that is used for numerical computations. Octave is coded in C++. Octave

is similar to MATLAB, and the syntax is matrix-based and supports different operations on

matrix. Octave was introduced in the year 1988. It was associated with an undergraduate-

level textbook in Chemistry at the University of Texas [8]. Eaton and others built some spe-

cialized tools for solving the design problems for chemical reactors. It was coded Fortran.

They noticed that it is difficult to debug and analyze the code in Fortran. This motivated

them to build an easily understandable and flexible language, Octave.

The design was kept compatible with MATLAB because they thought it would help

the users right away, without the need to learn a new language [8]. The first full-time

development of the Octave started in January 1992. The first release was on January 4,

1993. From then on Octave has undergone many releases and revisions.

John W. Eaton was the primary developer of Octave in the initial period. Eaton started

working on Octave interpreter on February 20, 1992. Basic functionality was added to the

initial version. The first version was available on January 4, 1993. Eaton was the only

developer during the initial phase. After the release, in the next year, users started giving

comments for new features and some reported bugs. The next public release was on January

12, 1995. After the release in January 1995, there was not much functionality added in that

same year because Eaton concentrated on project cleanups [8].

29

4.1. CASE STUDY: INTRODUCTION

Eaton divided the production branch into two branches in 1997, one as a staging branch

and another one for production. So that the addition of the new functionality does not affect

the main production branch. All the new changes are kept in the staging branch or the

development branch. In May 1997, Eaton decided to make Octave as a part of the GNU

project. On December 7, 2000, Eaton stepped aside from the development of Octave and

made it an open-source software where any developer can contribute to the development of

the software. From 2001 till present GNU Octave has undergone many releases with many

people contributing to the project around the world.

The life cycle of GNU Octave can be classified into the following three stages [4].

1. Initial Phase: This is the start phase of the project. Eaton alone was the developer in

this stage. This phase is from 1993 to 1997.

2. Maintenance Phase: In 1997 Octave joined the GNU project and became GNU Oc-

tave. Eaton mainly concentrated on stabilizing the software in this stage. This phase

lasted from1997 to 2001.

3. Open source development: In 2001 Eaton decided to step away from Octave. He

made it an open-source software so that contributors across the world can develop

the software. This phase is from 2001 to the present.

The three phases above are from [4]. They analyzed the commit logs and using the

co-change DSM’s they were able to distinguish these three phases.

The Octave source code is maintained in a Mercurial repository. The Octave code base

is mainly of .c, .cc, .cpp and .h files. In this thesis, we analyzed the Octave source code

using functional dependencies. We consider the addition and removal of dependencies as

events in our model. Our goal is to find the bursts of significant events over the entire life

cycle. We also want to know whether these changes lead to an increase in modularity.

Requirements determine the complexity of the software systems. The requirements also

evolve based on the necessity. Because of the frequent changes to the requirements, Eaton

30

4.2. IMPLEMENTATION

in 1997 divided the branch into a staging and production branch. He did not want the system

to be impacted because of the new changes. These changes can improve the modularity of

the system or can decrease the modularity of the system. If the software is not modular

then the whole system is impacted by a single change. Testing the software would also take

a lot of time. We use Octave as our case study because it underwent many changes and

revisions. We want to study the impact of these changes on the modularity of the system.

4.2 Implementation

In our thesis, we have analyzed the software code of GNU Octave to identify the bursts

of significant activity over the entire life cycle to measure its impact on software modular-

ity. Our is a three-phase approach where we analyze the software and produce a dynamic

network in the first phase, identify the modular structure of the network in the second phase

and the last phase, we identify the bursts of significant activity over the entire life cycle

of the project. In chapter 3, we have discussed the entire process. In this chapter, we will

describe the implementation of each phase. We also describe the usage of tools like Under-

stand C++ and Gephi for code analysis and graph visualization in phase 1. For phase 2, we

describe the clustering algorithm used for the identification of the modular structure of the

entire software. For phase 3, we describe the implementation of Kleinberg’s method and

Viterbi’s algorithm for identifying the significant bursts of activity.

4.2.1 Phase 1: Dynamic network using gephi

We used Understand C++ tool to analyze the dependency structure of the code. We then

used the Gephi tool for graph visualization. Phase 1 that produces a dynamic network is

shown in figure 4.1 :

• Step 1: Extraction of GNU Octave source code from the repository

• Step 2: Extraction of edge table for network visualization

31

4.2. IMPLEMENTATION

Figure 4.1: Steps involved in Phase 1

• Step 3: Visualization of the dynamic network using Gephi

In Step 1, we cloned the mercurial repository and downloaded the source code of GNU

Octave. In Step 2, the edges which represent the dependency between the files are extracted

with the help of the Understand C++ tool. Step 3, uses the edge table along with their start

date (when the edge is formed) and end date (when the edge is removed). This updated

edge table is imported in Gephi to obtain a dynamic network. The details are explained in

the further sections.

Step 1: Extraction of GNU Octave source code from repository:

The GNU Octave source code is maintained in Mercurial Repository. Mercurial is free

software that is licensed under GNU. There are many other control version systems like

GIT, CVS. But Eaton in the year 1997 chose Mercurial as the source control management

tool for Octave because it is platform-independent, fast and has distributed architecture,

unlike CVS.

The first release of Octave was in the year 1993. From the year 1993 to 2019, we

cloned the repository to a local working repository for every month based on the latest

revision made in that particular month. For example, consider the January 1993, we search

32

4.2. IMPLEMENTATION

Figure 4.2: Extraction of GNU Octave source code

for the latest revision before January 31, 1993. If there are two revisions made on January

12 and January 25 as we are looking for the latest revision. In the month of January before

31st, the local working repository will be updated with the source code as of January 25,

1993. This process is repeated every month and every year from Aug 1993 to July 2019.

We have cloned the repository and extracted the source code for every month because there

might be a dependency created in month one, and it may get removed in another month.

Such dependencies which are essential might be obscured from the analysis if a coarser

unit of time is used. Once we have the source code for every month from 1993 to 2019, the

source code forms an input for Step 2. An edge table extraction method is described in the

next section.

Step 2: Extraction of edge table for network visualization:

In Step 1, we have cloned the source code of Octave from mercurial repository from

August 1993 to July 2019 every month. In total there are 312 versions of the source code

pulled from the repository based on revisions made in as many months. Now, we describe

how the data is extracted for the network visualization.

Step 2 has four steps, as shown in figure 4.3.

33

4.2. IMPLEMENTATION

Figure 4.3: Extraction of edge table for network visualization

1. Understand C++: Understand C++ is a tool that helps developers analyze their code

and project structure. It helps in project flow visualization and also in debugging. It

can perform code analysis and give us a functional dependency report. So, the source

code which is extracted from the mercurial repository for every month is uploaded

as a specific project in Understand C++ for analysis. We used fuzzy analyzer option

of Understand C++ because we have .c, .cc , .cpp and .h files. We generated a de-

pendency matrix report of the project, which is a CSV file. The dependency matrix

report has a record of all the functional dependencies that exist in the project. Note

that this process is executed for every month from August 1993 to July 2019. So in

total, there are 312 dependency matrix reports generated.

2. Dependency Matrix: We have 312 dependency matrix reports. From these depen-

dency matrices, we have to extract the dependency information as a table of all the

edges. We have written a java program that reads all these 312 dependency matrices

one by one and then produce an edge(dependency) table for each dependency matrix

report. Care is taken to ensure that the indices remain unchanged over the months.

3. Extraction of Start and End dates: Given are the 312 edge table starting from August

1993 to July 2019. Now we need to sum up all the edges in these 312 tables and also

extract the start date and end date for each edge. Few edges might repeat in every

month. We have written a java program to extract the start date and end date of each

34

4.2. IMPLEMENTATION

Figure 4.4: Dynamic Network using gephi

edge. For example, if there is an edge between two files a and b in the first month,

August 1993, then the start date of the edge is recorded as August 1, 1993. If the same

edge is present in the second and third months but not present in the fourth month,

then the end date for the edge between the files a and b is recorded as of October

31, 1993, because if the edge is not present in the fourth month. It also happens that

an edge can reappear then there will be two entries in the table. So in this process,

the java program converts the 312 dependency tables into one single edge table with

columns Source, Target, Start Date, and End date.

4. Data for network visualization: So far, the dependency information is extracted to

produce one a single file called edge table. This edge table has the complete informa-

tion of the edges (dependencies) over the entire life cycle of the project and is used

to produce a dynamic network using Gephi as described in the next step.

Step 3: Dynamic network using Gephi:

We upload the data in the edge table into Gephi. It will automatically detect the edges

and ask us to choose a merge strategy because edges might be repeated. So we have to

choose a merge strategy, and we decide not to merge those edges. By default, the repeating

edges are merged.

35

4.2. IMPLEMENTATION

Once we choose the merge strategy, the next process is shown in figure 4.4 option

generates the network statistics. In the network statistics tab, we are provided with many

operations that can be performed on the network. The main operations are to determine

the modularity, strongly connected components, degree, and clustering coefficient. After

computing these statistics for the network, we change the colors of the nodes and edges

based on a modularity class. We also change the size of the nodes based on the degree. The

next step in the process is to apply a layout algorithm. This layout algorithm makes the

network clearly visible and prevents the overlap of nodes and edges. Since we have a large

network there are few layout algorithms like Openord, YifanHu to choose from.

Once the layout algorithm is applied, the network looks clear. Now to construct the

dynamic graph, we have to merge the two columns Start date and End date and then create

a time interval. Once we create the time interval, then we will be provided with an option

called enable timeline. Once we enable the timeline then in Gephi we can see the timeline

from August 1993 to July 2019. We can animate the graph and visualize the evolution of

edges over the entire period.

When we set a particular time period, then the edges with interval in the time period are

visible, the rest of the edges are not visible. Finally, we generate the sparse matrices which

are given as input to phase 2.

For the generation of the sparse matrices for every year, we have to export the edge table

from the dynamic network. We set the start date and end date for a particular year then we

export the edge table from Gephi as a CSV file which will have the information of edges

belonging only to that year.

We have written a java program that will examine all the CSV’s generated for each year

from 1993 to 2019 and convert the edge table into a sparse matrix. Generally, the node name

contains the full directory information, for example, ”octave/src/example.c” . In phase two

(where we find the modularity structure) it will be difficult to manipulate the sparse matrix

as indexed by these strings. So the sparse matrix is generated by assigning numbers to

36

4.2. IMPLEMENTATION

every node. There are 9256 nodes in total, so numbers from 1 to 9256 are assigned to

every node and the number assigned to a node remains the same for all years. The sparse

matrix is then generated for each year based on the edge table exported from Gephi. The

sparse matrix also contains the information on the number of non-zeros and the dimension

of the matrix. This sparse matrix is given as an input to phase 2 for the identification of the

Modular structure in the network.

4.2.2 Phase 2: Identification of Modular Structure

We used the method in [4], the weighted clustering algorithm. It is a greedy algorithm

where it improves the solution in each iteration by making the best local move possible.

Initially, each file is in its own module. The cost assigned to the files a and b, if both

the files are in the same module is eD(a,b) ∗ s(m)2 where eD is the exponential matrix of

the functional dependency matrix D and s(m) is the number of files in module m. If both

the files are in different modules then the cost assigned is eD(a,b) ∗ t2 where t is the total

number of files. At every step, the algorithm tries to reduce the cost by placing the files in

different modules. The moves are considered in a random order. The move which improves

the cost is considered [4]. The algorithm continues to improve the cost in every iteration,

and it stops when the cost cannot be further improved.

The result is also a sparse matrix where it contains the information of the file and its

associated module. This resultant sparse matrix is generated for every year. These matrices

form the input for phase 3, where we detect the bursts of significant activity. The bursts are

identified in phase 3 based on the modular structure of the year 2019 because it is the latest

version that is currently in use.

4.2.3 Phase 3: Identifying the bursts of significant activity

In phase 1, we have produced the DSMs, and in phase 2, we have applied the cluster-

ing algorithm to find the modular structure. In this phase, we intend to find the bursts of

significant activity over the entire time period from 1993 to 2019. These activities include

37

4.2. IMPLEMENTATION

Figure 4.5: Steps involved in Phase 3

adding or removing a dependency. These bursts are interspersed with the time when there

is minimum or no activity. The implementation steps are shown in figure 4.5.

• Step 1: Generation of Arrival stream and Removal stream data.

• Step 2: Generation of relevant event stream for each module.

• Step 3: Identification of the bursts of significant activity

To identify the bursts of significant activity, we need the edge table for every year from

phase 1. Based on the edge table we generate the arrival and removal streams in step 1. In

step 2, for every module, we generate the relevant event stream and also the total number

of events in each year. Finally, in step 3, we apply Kleinberg’s algorithm [20] and Viterbi’s

algorithm [35] to find the bursts of significant activity.

Step 1: Generation of arrival/removal event stream:

We have the edge table from the dynamic network produced in phase 1 for every year

from 1993 to 2019.

1. Arrival Stream: We have written a java program where it compares the edge table

for the current year with the previous year edge table to find the edges added in the

38

4.2. IMPLEMENTATION

Figure 4.6: Generation of arrival/removal event stream

Figure 4.7: Generation of relevant event stream for each module

current year. If the edge is not present in the previous year, then the edge is added to

the arrival stream of the next year. The same process is carried out for all the years,

and an arrival stream is produced. Arrival stream is a CSV file containing the edge

added for that particular year.

2. Removal Stream: For the removal stream, we do similar to the arrival stream. But,

we compare the edges in the previous year against the edges in the current year. If

an edge is present in the previous year and is not present in the current year, then

the edge is added to the removal stream. So the removal stream is also generated

for all the years. Removal stream is a CSV file containing the edge removed in that

particular year.

39

4.2. IMPLEMENTATION

Figure 4.8: Identification of the bursts of significant activity

Step 2: Generation of relevant event stream for each module:

The Arrival stream and Removal stream are used to identify the relevant events and

computing the total number of events. We have written a java program to perform the task.

In this thesis, we have considered the modular structure of 2019 for identification of bursts.

The arrival/removal stream for each year consists of an edge list. We parse every ar-

rival/removal stream and for each edge, we check whether the two files are in the same

module or in a different module. The module information is obtained from the Module

info file generated in phase 2. If both the files are in the same module, then it counts as

a relevant dependency for that module in that particular year. Similarly, we generate the

relevant dependency count for each module from 1993 to 2019.

The total dependency stream is the addition of all arrivals or removals for a module

in the entire period from 1993 to 2019. The sum of the arrival/removal activity in a year

across all the modules is the total activity in that year. This relevant event stream and the

total stream is given as input to step 3, where we use Kleinberg’s algorithm [20] combined

with Viterbi’s algorithm [35] to identify the bursts.

Step 3: Identification of the bursts of significant activity:

The relevant dependencies generated for each module and both the arrival and removal

streams are called relevant event streams. The total stream is the total number of arrival/re-

moval dependencies for a particular year. For every year, we know the number of arrival/re-

40

4.2. IMPLEMENTATION

moval dependencies and the total arrival/removal dependencies which are given as input to

Kleinberg’s algorithm. We have written a java program to use the arrival/removal stream,

total stream to calculate the probabilities p0 and p1 given by p0 = ∑
n
t=1 At/Tt where At is

the set of arrival dependencies of the module at time t and Tt is the total number of arrival

dependencies at time t. Similarly for the removal stream p0 = ∑
n
t=1 Rt/Tt where Rt is the

set of removal dependencies of the module at time t. The probability for the generating

relevant dependencies in-state q1 is p1 given by p1 = s∗ p0 where s is a scaling parameter.

A cost is assigned for the model to fit the states, and a cost for the state transitions is

also assigned. Once the cost is assigned then using Viterbi’s algorithm the minimum cost

state sequence is found by comparing the cost of all the paths from the previous state to the

current state and chooses the path with minimum cost. For a particular year, if a path is in

state 1, then there is a burst of significant activity that year. Once the bursts are formed then

the weight of the burst in the interval [a,b] is defined as

b

∑
t=a

σ(0,At ,Tt)−σ(1,At ,Tt)

b

∑
t=a

σ(0,Rt ,Tt)−σ(1,Rt ,Tt)

for arrival and removal streams respectively. This program will generate a CSV containing

the weight of the bursts for each module in a particular year, where we have identified the

significant activity. The CSV is then parsed by another java program which compares the

weight of the bursts for every year across all modules. The module which has the highest

weight is recognized as a burst of significant activity for that year. A similar process is

carried out for all the years, and the bursts of significant activity are determined. In the next

chapter, we will discuss the implementation of each phase and discuss the impact of these

significant bursts of changes on the overall design of the software (modularity).

41

Chapter 5

Results

In this chapter, we analyze the results obtained in all three phases and compare it to the co-

change modularity is studied for the same in [4]. In this thesis, we analyzed the functional

dependencies of GNU Octave. Understand C++ tool provides the dependency information,

and by using Gephi, we produced a dynamic network of the GNU Octave over its entire life

cycle. Our goal is to identify the points in time called bursts of significant activity and to

analyze their impact on the modularity.

5.1 Phase 1: Dynamic network using Gephi

For the software to have good design structure modularity is an important factor [3].

Given the software code with any number of files, the dependency relation is said to exist

if a file uses another file syntactically. These dependencies affect the modular structure of

the software. To get the dependency data, we need to analyze the code of the software.

We have written a Unix script that has cloned the repository based on the latest revision

made every month from August 1993 to July 2019 a total of 312 months. The running time

for the script is approximately 18 hours when executed on an Intel(R) Core i7-8700 CPU

with 16 GB RAM. In total more than 25,000 revisions made in Octave were processed by

our script.

We know that Octave has three stages in its evolution. The initial phase, the maintenance

phase, and the open-source development phase. We plotted a graph to depict the revision

history over its entire life cycle. The number of revisions made in each year from 1993

42

5.1. PHASE 1: DYNAMIC NETWORK USING GEPHI

Figure 5.1: Revisions made per each year

to 2019 is shown in figure 5.1. This information will give us an idea about the years with

significant activity and years with less activity.

The figure 5.1 shows the three stages in the evolution of Octave. The first initial stage

is from 1993 to 1997. During the initial stage, there are several new files added to the

software system leading to several revisions as we can see in the figure. During the years

1994, 1995, 1996, several revisions were made by Eaton himself. The second stage is the

maintenance stage from 1998 to 2001. During this phase Eaton [8], mainly concentrated

on project cleanups and structure maintenance. During this period no new functionality is

added. So, the number of revisions is also less.

In the third stage from 2002 to 2019, is the open development stage. Many developers

contribute to development. There is a rapid increase in the number of revisions made during

this period. There were major releases in the years 2007, 2012 and 2013. In the year 2013,

there is a major release for Octave and this year has recorded the most number of revisions

for Octave when compared to all other years.

43

5.1. PHASE 1: DYNAMIC NETWORK USING GEPHI

Table 5.1: Dependency information using Understand C++

Year Number of Files Number of dependencies Cost
1993 248 1276 1184330000
1994 384 2875 76015600000
1995 558 4269 260310000000
1996 767 7230 13879600000000
1997 1001 9194 39227200000000
1998 795 6769 28734000000000
1999 823 7054 4188030000000
2000 887 7364 8833260000000
2001 922 7533 11820500000000
2002 896 7674 19402600000000
2003 1047 8527 181437000000000
2004 975 8642 313889000000000
2005 2615 34801 4662877063373252
2006 1330 11532 1.7585E+015
2007 3534 29245 5135229347974849
2008 2949 21137 1349852685704362
2009 3517 24679 1922930000000000
2010 3729 24498 2139240000000000
2011 5185 37581 1.5491541662E+016
2012 6571 35001 2.4907671911E+016
2013 7163 39657 2.9707353741E+017
2014 4223 25913 2984150000000000
2015 4224 25740 3986520000000000
2016 4308 26736 1.0383898996E+016
2017 4298 27577 9.82903183E+015
2018 4426 28693 2.1067391697E+016
2019 4416 26340 1.8041365978E+016

44

5.1. PHASE 1: DYNAMIC NETWORK USING GEPHI

Using Understand C++, we produced the 312 dependency matrices for 312 months from

August 1993 to July 2019. The java program for extracting the dependency information

and creating an edge (dependency) table from all the 312 dependency matrices took about

7 minutes and 15 seconds. Table 5.1 has the information on the number of files and the

number of dependencies recorded for each year. We also extracted the start date and end

date information for each edge (dependency) using this program. As shown in Table 5.1

there is a drop in the total number of dependencies from 34801 to 29245, but there is

an overall increase in the number of modules. In the years 2012, 2013 there were major

releases 3.6.1 and 3.8.0 which corresponds to the highest number of modules. In the year

2014, there is an increase in modularity as the number of dependencies, modules drop for

the release 3.8.1. From the year 2017 to 2019 the system seems to be more stable as the

number of modules remains constant. The cost shown in Table 5.1 is obtained in Phase 2.

By using the edge information, a dynamic graph is created in Gephi. We have imported

the edge table into the data laboratory. A static network was produced initially. To con-

vert it into a dynamic network, we create a time interval based on the start and end dates.

From the dynamic network, we can obtain the information of the edges present during a

particular period several network statistics such as Modularity class, degree, strongly con-

nected components can now be computed. The modularity class identifies the communities

in the network using strongly connected components. Nodes in a community are assigned

one color. Similarly, we size the nodes depending on their degree. To rearrange the graph

by grouping the nodes of the same community together and also to prevent node and edge

overlapping there are several layout algorithms.

ForceAtlas Layout:

ForceAtlas Layout can be used for networks with nodes ranging from 1 to 10,000. It

took around 12 hours to run this layout algorithm in Gephi. It uses edge weights and it is

slower compared to other layout algorithms. The layout still has a few node overlaps as

45

5.1. PHASE 1: DYNAMIC NETWORK USING GEPHI

Figure 5.2: ForceAtlas Layout view of the network

Figure 5.3: ForceAtlas2 Layout view of the network

shown in figure 5.2.

ForceAtlas2 Layout:

ForceAtlas2 Layout is a faster method and can be used for networks with nodes ranging

from 1 to 1000000. It took approximately 2 minutes to run this layout algorithm in Gephi.

The layout still has few edge overlaps, as shown in figure 5.3.

Yifan Hu Layout:

Yifan Hu Layout can be used for complex networks with nodes ranging from 100 to

100000. It took 1 minute and 30 seconds to run this layout algorithm in Gephi. It uses edge

weights, and it is fast when compared to force atlas2 layout algorithm. The network ishown

in figure 5.4.

46

5.2. PHASE 2: IDENTIFICATION OF MODULAR STRUCTURE

Figure 5.4: Yifan Hu Layout view of the network

OpenOrd Layout:

OpenOrd Layout can be used for networks with nodes ranging from 100 to 1000000.

It took approximately 1 minute to run this layout algorithm in Gephi. It uses edge weights

and it is fast when compared to the Yifan Hu layout algorithm. This algorithm has a fixed

number of iterations. The resulting layout is as shown in figure 5.5.

5.2 Phase 2: Identification of Modular Structure

From the dynamic graph in Phase 1, we can extract the edge (dependency) table for

each year. The java program which converts the edge table into a sparse matrix takes

approximately 2 minutes for all years in the combine. The sparse matrices are then used to

detect the modules by assigning a cost for each edge. The figure 5.6 is built from Table 5.1.

There are 497667 dependencies in total for all the years. There is an increase in the

number of modules. There were only 12 modules in the year 1993, but in 2019 there were

66 modules. We compared the Number of Modules as shown in figure 5.7 to the Number

of dependencies as shown in figure 5.6. During the initial stage of the GNU Octave, the

number of dependencies increased and the number of modules increased at a slower rate

till the year 2004. In 2005 there is a sudden increase in the number of dependencies from

47

5.2. PHASE 2: IDENTIFICATION OF MODULAR STRUCTURE

Figure 5.5: OpenOrd Layout view of the network

Figure 5.6: Number of Dependencies for each year

48

5.3. PHASE 3: IDENTIFYING THE BURSTS OF SIGNIFICANT ACTIVITY

Figure 5.7: Number of Modules for each year

8642 to 34801, and also in the modularity. This sudden increase in the dependencies is

because in 2005 Eaton moved out from Octave. Many contributors were involved in the

development of new functionality. Many dependency relations are created. There is again

a substantial decrease in the number of dependencies during the year 2006. There is also

a decrease in the modularity of the software. In the year 2013, there is an increase in the

number of dependencies (nearly 40000) and the number of modules in the system is also

high when compared with the rest of the years. There was a major release in the year 2013.

There were 84 modules in the year 2013. There is a drop in several dependencies, and

also in the modularity in the year 2014. From 2015 onwards the system is more stable

because there are no more fluctuations in the number of modules. In [18], it is observed

that modularity can be increased by increasing the connectivity among the files. We also

observed that when there is a major release then there are many dependencies created or

removed. This improved the modularity of the system. The next goal is to find the bursts

of significant activity which we will describe in phase 3.

49

5.3. PHASE 3: IDENTIFYING THE BURSTS OF SIGNIFICANT ACTIVITY

5.3 Phase 3: Identifying the bursts of significant activity

The DSMs are extracted from the dynamic network produced in Phase 1 to which we

have applied the clustering algorithm in Phase 2 and identified the modular structure of the

network. In Phase 3, our goal is to find the bursts in time where significant activity occurs.

For identifying the bursts of significant activity, we need the arrival stream and removal

stream events.

The java program which extracts the arrival and removal stream from the edge table for

each year runs approximately 2 minutes on Intel(R) Core i7-8700 CPU with 16 GB RAM.

The arrival and removal streams are as shown in Table 5.2. The program to generate the

relevant and total event streams runs for approximately 1 minute on the same configuration

(Intel(R) Core i7-8700 CPU with 16 GB RAM). The table 5.2 is in sync with the releases

made. From 1993 to 1997, there is an increase in the number of dependencies but for the

removal stream, there are not many removals during this period. This clearly explains that

Eaton concentrated on adding new features in the initial period. There is a sudden increase

in the number of removals from 414 in 1996 to 2960 in 1997. This is because from 1997 to

2001 Eaton concentrated on clearing the project structure. No new functionality was added

in this period. From the year 2005, there is a significant change in both arrival and removal

streams because of the open-source development with many developers contributing to the

new features in the software.

The relevant event and total event streams are given as input to the algorithm which is

coded in java. It takes approximately 6 minutes to process all the modules and to find out

the bursts. An edge (dependency) is counted as a relevant dependency for a module only

if the two files belong to the same module. The relevant dependencies for each module

and the total dependency information is input for phase 3. We got the bursts of activity as

shown in figure 5.8 for arrival stream and figure 5.9 for removal stream.

In Phase 3, we worked with the modular structure of the dependencies in the year 2019.

The table 5.3 shows the module number and its size. It also shows the year of activity.

50

5.3. PHASE 3: IDENTIFYING THE BURSTS OF SIGNIFICANT ACTIVITY

Table 5.2: Arrival and removal streams

Year Number of arrivals Number of removals
1993 1276 0
1994 1546 31
1995 1454 239
1996 3079 414
1997 3508 2960
1998 418 1260
1999 382 161
2000 439 98
2001 495 88
2002 739 632
2003 1601 601
2004 1835 1737
2005 17855 16007
2006 1408 440
2007 18158 10401
2008 1180 192
2009 3111 364
2010 1011 420
2011 16279 22323
2012 14333 16854
2013 9728 2190
2014 1201 740
2015 1089 966
2016 2011 1165
2017 2791 2196
2018 4056 2668
2019 1942 3550

51

5.3. PHASE 3: IDENTIFYING THE BURSTS OF SIGNIFICANT ACTIVITY

Table 5.3: Bursts of Significant activity based on Modular Structure of the year 2019

Module Size Arrival Year Removal Year
49 16 1994 –
30 12 1996 –
20 39 1997 –
8 35 2005 2005
6 54 2007 2007

27 25 2009 2009
52 8 2011 2011
40 26 2013 2013
9 21 2016 2017

16 8 2017 –
19 18 2018 2018

Figure 5.8: Arrival Bursts of significant activity

During the initial period of the Octave that is when Eaton was the chief developer the table

5.3 shows that the significant events are only arrival events during the period 1994, 1996

and 1997. We can also see that the number of modules has improved from 18 in 1994 to

25 in 1997. From this observation, we can infer that these significant bursts in the years

1994,1996 and 1997 have improved the modularity.

During the maintenance phase of the GNU Octave, which is from 1997 to 2001, Eaton

mainly concentrated on maintaining the software rather than adding new features. There are

no significant bursts for arrivals or removals. In the open development phase, when many

developers were contributing, there were many releases, so there are significant arrival and

52

5.3. PHASE 3: IDENTIFYING THE BURSTS OF SIGNIFICANT ACTIVITY

Figure 5.9: Removal Bursts of significant activity

removal bursts in 2005, 2007, 2009, 2011 and 2013. The significant burst of arrivals and

removals in the year 2007 improved the modularity as it improved the cost as shown in

Table 5.1. From the burst of the year 2007 we can observe that the local changes made in

the year 2007 has improved the modularity. There are significant arrival events in the year

2016 which decreased the modularity as the cost is decreased. So, with the arrival burst of

the year 2016 we can observe that the local changes made in the year 2016 has decreased

the modularity. So, we observe that not all local changes will increase modularity. But after

the year 2016, the significant bursts in 2017 and 2018 have made the system stable as the

number of modules remains at a constant number.

This thesis confirms the approach in [4] on functional dependencies [4] and provides an

implementation to identify the significant activity which is effecting the system modularity.

The results of this study are consistent with the observation regarding the evolution of

modularity in [18]. Our study can also be used for predicting software defects.

53

Chapter 6

Conclusion

6.1 Summary

In this thesis, we identified the bursts of significant activity and analyzed the impact

of these changes on the modularity of the software over its entire life cycle. We extracted

the functional dependency information of the code based by cloning the repository every

month and analyzed the dependency using Understand C++. We used the Gephi to produce

a dynamic network based on the dependency table from Understand C++. We used the

clustering algorithm in [4] to identify the modules. This modular strcuture, along with

the arrival and removal stream extracted from the dynamic network helped us to run the

algorithm based on [20] and [35] to identify the bursts of significant activity.

In this thesis, we observed that these bursts have made the system modular and more

stable, and we also identified the points in time over the entire life cycle of GNU Octave.

Similar to [11], it is observed that local changes made in the system improved the modu-

larity of the software. In [4] they have analyzed the GNU Octave based on the co-change

dependencies where we have analyzed based on functional dependencies, and we have also

identified the bursts of significant activity which made the system modular.

6.2 Future Work

1. We have analyzed only for the .c, .cc, .cpp, .h files of the octave software. There are

also .m files that can be analyzed.

2. We can analyze the error logs and also identify the impact of the changes made to fix

54

6.2. FUTURE WORK

those errors based on the commit logs on the overall modularity of the system as in

[33].

3. The same methodology can be applied on another software to identify the hotspots

which change the modular structure of the software system.

55

References

[1] Nemitari Ajienka and Andrea Capiluppi. Understanding the interplay between the
logical and structural coupling of software classes. Journal of Systems and Software,
134:120–137, 2017.

[2] Krause Andreas, Leskovec Jure, and Guestrin Carlos. Data association for topic in-
tensity tracking. Proc. of 23rd international conference on Machine Learning, ACM,
2006.

[3] C.Y. Baldwin and K.B. Clark. 1999. Design rules:the power of modularity vol. 1.
1999.

[4] Robert Benkoczi, Daya Gaur, Shahadat Hossain, and Muhammad Ali Khan. A design
structure matrix approach for measuring co-change-modularity of software products.
In 2018 IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR), pages 331–335. IEEE, 2018.

[5] Cafeo B.P., Cirilo Elder, Garcia Alessandro, Dantas Francisco, and Lee Jaejoon. Fea-
ture dependencies as change propagators: An exploratory study on perfective mainte-
nance of software product lines. Information Software Technology, 2016.

[6] Ken Cherven. Mastering Gephi Network Visualization. Packt Publishing Ltd, 2015.

[7] Clarkson Dr.P. John, Simons Caroline, and Eckert Dr. Claudia. Predicting change
propagation in complex design. J. Mechanical Design, 2004.

[8] John W. Eaton. Octave: Past, present and future. In proc. of the 2nd International
Workshop on Distributed Statistical Computing, 2001.

[9] Steven D Eppinger and Tyson R Browning. Design structure matrix methods and
applications. MIT press, 2012.

[10] Beck Fabian and Diehl Stephan. On the impact of software evolution on software
clustering. Empirical Software Engineering, 2013.

[11] Miguel A Fortuna, Juan A Bonachela, and Simon A Levin. Evolution of a modular
software network. Proceedings of the National Academy of Sciences, 108(50):19985–
19989, 2011.

[12] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement.
Software: Practice and Experience, 1991.

56

REFERENCES

[13] Markus Michael Geipel and Frank Schweitzer. The link between dependency
and cochange: Empirical evidence. IEEE Transactions on Software Engineering,
38(6):1432–1444, 2012.

[14] Oliva Gustavo, Ansaldi and Gerosa Marco, Aurelio. Experience report: How do struc-
tural dependencies influence change propagation? an empirical study. IEEE, 2015.

[15] Gall Harald, Hajek Karin, and Jazayeri Mehdi. Detection of logical coupling based
on product release history. International Conference on Software Maintenance, 1998.

[16] Gall Harald, Jazayeri Mehdi, and Krajewski Jacek. Cvs release history data for de-
tecting logical couplings. Proc. 6th International workshop on Principles of Software
Evolution IWPSE, 2003.

[17] Y. F. Hu. Efficient and high quality force-directed graph drawing. The Mathematica
Journal, 2005.

[18] Clune Jeff, Mouret Jean-Baptiste, and Hod Lipson. The evolutionary origins of mod-
ularity. 2013.

[19] Devangana Khokar. Gephi Cookbook. Packt Publishing Ltd, 2015.

[20] Jon Kleinberg. Bursty and hierarchical structure in streams. Data Mining and Knowl-
edge Discovery, 7(4):373–397, 2003.

[21] Ravi Kumar, Jasmine Novak, Prabhakar Raghavan, and Andrew Tomkins. On the
bursty evolution of blogspace. World Wide Web, 8(2):159–178, 2005.

[22] Alan MacCormack, John Rusnak, and Carliss Y Baldwin. Exploring the structure of
complex software designs: An empirical study of open source and proprietary code.
Management Science, 52(7), 2006.

[23] S. Martin, W. M. Brown, R. Klavans, and K. Boyack. Openord: An open-source
toolbox for large graph layout. SPIE Conference on Visualization and Data Analysis
(VDA)., 2011.

[24] Bastian Mathieu, Heymann Sebastien, and Mathieu Jacomy. Gephi: An open source
software for exploring and manipulating networks. Third International AAAI Confer-
ence on Weblogs and Social Media, 2009.

[25] Michael Mathioudakis, Nilesh Bansal, and Nick Koudas. Identifying, attributing and
describing spatial bursts. Proc. of the VLDB Endowment, 2010.

[26] M.LaMantia, Y.Cai, A.MacCormack, and J.Rusnak. Analyzing the evolution of large-
scale software systems using design structure matrices and design rule theory: Two
exploratory cases. IEEE/IFIP Conference Software Architecture, 2008.

[27] Sangal Neeraj, Jordan EV, Sinha Vineet, and Jackson Daniel. Using dependency mod-
els to manage complex software architecture. Proc. 20th Ann. ACM SIGPLAN Conf.
Object-Oriented Programming, Systems, Languages and Applications, 2005.

57

REFERENCES

[28] Bryan O’Sullivan. Mercurial: The Definitive Guide. O’Reilly Media Inc, 2009.

[29] He Qi, Chang Kuiyu, Lim Ee-Peng, and Zhang Jun. Bursty feature representation for
clustering text streams. Proc. of 2007 SIAM Internationsl Conference on Data Mining,
2007.

[30] S. Rajagopalan R. Kumar, P. Raghavan and A. Tomkins. Trawling the web for cyber
communities. WWW8/Computer Networks, 31:1481–1493, 1999.

[31] Milev Roberto, Muegge Steven, and Michael Weiss. Design evolution of an open
source project using an improved modularity metric. Carleton University, 2009.

[32] S.Bohner and R.Arnold. Software change impact analysis. IEEE, 1996.

[33] Richard W. Selby and Victor R. Basili. Analyzing error-prone system structure. IEEE
Transactions on Software Engineering, 17(2):141–152, 1991.

[34] Wong Sunny, Cai Yuanfang, Kim Miryung, and Dalton Micheal. Detecting software
modularity violations. ICSE, 2011.

[35] Andrew J Viterbi. A personal history of the Viterbi algorithm. IEEE Signal Processing
Magazine, 23(4):120–142, 2006.

[36] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller. Mining version histories
to guide software changes. In the Proceedings of 26th International Conference on
Software Engineering (ICSE ’04), 2004.

58

Appendix A

Bursts based on different modular
structure

This appendix included the tables which displays the bursts that are generated based on the
modular structures of the years 2001, 2004 and 2005.

Table A.1: Bursts of Significant activity based on Modular Structure of the year 2001

Module Size Arrival Year Removal Year
2 308 1994 –
1 398 2001 2001

24 20 2005 2005
4 27 2007 2007

59

A. BURSTS BASED ON DIFFERENT MODULAR STRUCTURE

Table A.2: Bursts of Significant activity based on Modular Structure of the year 2004

Module Size Arrival Year Removal Year
2 328 1994 –
1 420 2005 2005

15 21 2007 2007
1 420 2011 2011
1 420 2012 2012

Table A.3: Bursts of Significant activity based on Modular Structure of the year 2005

Module Size Arrival Year Removal Year
2 872 1997 –
1 1105 2005 2005
6 29 2007 2007
4 47 2009 2009
1 1105 2013 2013

30 48 2018 2018

Figure A.1: Arrival Bursts of significant activity based on Modular Structure of 2001

60

A. BURSTS BASED ON DIFFERENT MODULAR STRUCTURE

Figure A.2: Removal Bursts of significant activity based on Modular Structure of 2001

Figure A.3: Arrival Bursts of significant activity based on Modular Structure of 2004

Figure A.4: Removal Bursts of significant activity based on Modular Structure of 2004

61

A. BURSTS BASED ON DIFFERENT MODULAR STRUCTURE

Figure A.5: Arrival Bursts of significant activity based on Modular Structure of 2005

Figure A.6: Removal Bursts of significant activity based on Modular Structure of 2005

62

Appendix B

Preliminaries and Related Concepts

B.1 Introduction
In this chapter, we will discuss the tools and concepts used in this thesis. In the first

section we describe the tool Understand C++ used for analyzing the code structure, in the
next section we describe the tool Gephi used to produce graphs or networks and in the last
section we will discuss the concepts of mercurial repository on how to clone the repository
and how to check the revisions according to date.

B.2 Understand C++
Understand C++ is an integrated development environment that was built to help users

or developers edit, view, analyze their code. It helps in visualizing the program flow and
also makes debugging a lot easier. It has a fully loaded C++ editor. Understand has the
following features:

1. Static Analysis:

(a) Code Analysis: It helps to see the interactions between functions, classes and
also helps to see the variables declared in the entire project.

(b) Graph Visualization: The interactions between various functions or classes in
the whole project can be visualized in graphs.

(c) Dependency: The dependencies can be viewed based on functions in the project
or class dependencies or architecture dependencies.

2. Reports:

(a) The dependency reports can be exported either as a CSV, HTML file or into a
database file.

(b) We can get the error report which includes the details of the error such as the
exact line number in the code.

(c) We can even compare files and folders in the project.

Understand C++ tool has a project configuration menu where we have to set up our
project details like the languages used in our project, project location, etc. Understand
C++ supports with two analyzers fuzzy and strict. In the Fuzzy analyzer, we don’t have to

63

B.2. UNDERSTAND C++

Figure B.1: Dependency Graph based on Project Architecture

compile the code to understand to analyze the project. Even if the project has errors fuzzy
analyzer still analyzes the entire project and produces the dependency report. But in the case
of a strict analyzer we have to compile the code to analyze the project, if the project has
errors then understand cannot analyze the project. For C/C++ projects we can use the fuzzy
analyzer, but for other complex projects, we have to use the strict analyzer. Understand C++
supports multiple languages like C, C++, Java, Objective-C, Objective-C++ and so on.

The following are the steps involved to analyze the project in Understand C++.

Step 1 : Run Understand C++ and click on ”New Project”.

Step 2 : Enter the Project Name and the project directory.

Step 3 : Then select the language that is used in the project and select fuzzy or strict based
on the requirement.

Step 4 : Then we have to specify the project root directory location. Note that this direc-
tory will be watched by understand so that any changes made in this directory will
automatically reflect in Understand C++.

Step 5 : Once the project is added then the project will be analyzed automatically.

Step 6 : In Step 3, if we have selected fuzzy then go to Step 7, if we have selected strict then
go to Step 8.

Step 7 : We do not have to compile the project. Once the project is analyzed we can start
generating the reports.

Step 8 : For Strict analyzer, we have to compile the project, so we have to add includes,
macros of the project under the project configuration menu. Unless the project is
compiled we cannot generate the reports.

The dependency graph for an example project looks like as shown in Figure B.1. This
figure shows the dependencies based on the architecture of the project. For example, the
octave/test has 13 dependencies from octave/libinterp. Similarly, we can produce various
graphs or reports based on class dependencies or functional dependencies.

64

B.3. GEPHI

Figure B.2: Difference between edges colors

To generate a report of the dependency structure in the menu have to select reports
then there will be three types of reports available to generate. One is a dependency report
based on file dependencies where the report generates the dependency matrix csv only
based on dependencies between files in the project. We can also generate a report based
on architectural dependencies where the report consists of dependency relations based on
the architecture of the project. We can also generate a report based on class dependencies,
wherein the report we can see the details of a class depending on another class. It gives the
information of all class dependencies recorded in the project.

B.3 Gephi
Gephi is a tool used for network visualization and analysis. It is an open-source software

where it is maintained in GitHub. Gephi helps us to analyze large networks by clustering
or filtering techniques[19]. A network is comprised of nodes and edges. There are various
properties associated with a network such as In Degree, Out degree, Modularity and so
on. These properties will be discussed later. Gephi can run many statistics on the network
and helps to improve the visualization making the network more clear. We can also filter
the network based on the requirements, in the filter options we can add queries that we
need[24].

The following are some important functionality used in gephi.

Edges : The Color of the edges can be configured. By default, the color of the edges will be
the same as the color of the source node as shown in B.2.

Labels : The size, color of the node labels and edges labels can be configured. The size of
the labels can be either fixed for all the nodes or can also vary according to the size
of the node.

Overlap : Gephi also provides a function to eliminate labels overlapping. To eliminate label
overlapping, we have to go to the Layout panel and select ”label adjust” and then

65

B.3. GEPHI

click on Run.

These are the following steps involved to produce a network.

Step 1 : Run Gephi and click on ”New Project”.

Step 2 : Go to the Data Laboratory Tab and import the data either as an edges table or as a
nodes table or an adjacency list.

Step 3 : While importing if there are any parallel edges do not forget to choose merge strat-
egy.

Step 4 : Now we should be able to view a graph. We can adjust the edge thickness.

Step 5 : Now we can go to the Statistics tab and run the necessary statistics like Modularity,
Degree, Connected Components.

Step 6 : Once the statistics are completed then we can rank the nodes according to their
degree. For doing this, go to the Ranking tab and choose a Degree from the list.
Select the color and apply it. Now the nodes will be colored based on the degree
rankings.

Step 7 : We can also change the size of the nodes similarly based on the degree in the ranking
tab.

Step 8 : Gephi can be able to detect communities by the metric Modularity.

Step 9 : Go to partition and select Modularity Class, then we can see all the communities
in the network. We can assign a different color to each community and then click on
apply.

Step 10 : We can hide nodes or edges from visibility in the network by filtering the graph. For
example, if you would like to see only the nodes with degree greater than 10. Then
we can go to the Filters tab, Topology and drag Degree Range to the Queries Tab and
select the range then click on filter.

Step 11 : The last step is to export the graph as a png or pdf. We can also take a screenshot
by clicking on the camera symbol at the bottom of the visualization tab.

If the graph is small with less number of nodes the graph there might be few overlapping
of nodes and overlapping of node labels. So to remove overlapping we need to select Label
Overlap function under the layout tab. In case the graph is too large with more nodes then
the graph looks very unpleasant where even nodes might overlap and the edges might be
too large. To solve these problems gephi provides different layout algorithms where we can
expand the graphs, prevent node and label overlapping, and also groups the nodes of the
same community together such that the edges will not be large[19]. There are many layout
algorithms available both in the 2D model and also in the 3D model.

66

B.3. GEPHI

• ForceAtlas Layout : ForceAtlas Layout can be used for networks having nodes rang-
ing from 1 to 10,000. Its complexity is O(N2). It is slow when compared to other
layout algorithms. Before running the algorithm we can change a few settings de-
pending on the requirement. By selecting Adjust by size option we can eliminate
node overlapping. It uses edge weights.

• Fruchterman-Reingold Layout: This layout can be applied to networks with nodes
size ranging from 1 to 1000. This layout algorithm has also had a complexity of
O(N2). It does not use edge weights[12].

• Yifan Hu Layout: This layout is suitable for complex networks having nodes ranging
from 100 to 100000. It is very fast when compared to other layout algorithms. Its
complexity is O(N*(log(N)))[17].

• ForceAtlas 2 Layout: This is designed for large networks and with reducing com-
plexity when compared to ForceAtlas. This algorithm can be applied to a network
with nodes ranging from 1 to 1000000 nodes. Its complexity is O(N*(log(N))) and
uses edge weights.

• OpenOrd Layout: This algorithm works for networks with nodes ranging from 100
to 1000000. This algorithm has a fixed number of iterations. Its complexity is
O(N*(log(N))) and uses edge weights[23].

Gephi also provides a method to produce dynamic network[6]. For a network to be
dynamic the nodes or edges should be having a start date and end date. The advantages of
dynamic networks are we can make the nodes in the network visible only if the current date
is in between the start date and end date of the node.

These are the following steps for producing a dynamic network using gephi. Dynamic
networks help us in improving network visualization.

Step 1 : Run Gephi to load the static network by opening the graph file. When we open we
can see the number of nodes, edges in the graph.

Step 2 : In Data Laboratory tab and for the start date and end date columns are mandatory.
For a network to be dynamic with nodes or edges should have a start date and end
date.

Step 3 : If we want to display the nodes only based on start dates, i.e the nodes will be visible
from the start date till the end then go to step 4, otherwise step 5.

Step 4 : By using Merge columns, select start date in the left tab and move to the right tab.
Then go to step 7.

Step 5 : If we want to display the nodes based on their start date and end date then go to step
6.

Step 6 : Merge columns will merge the selected start date and end date.

67

B.5. JAVA INTEGRATION

Step 7 : In the merge strategy there will be an option called ”Create time interval”. which
can change the configuration of the time interval in configuration settings.

Step 8 : Interval column will be created in the data laboratory. Once we have merged the
columns of start date and end date we will be able to enable timeline.

Step 9 : Now the timeline will be enabled. We can go to Overview and create an animation
for the visualization of the graph.

B.4 Mercurial Repository
Requirements evolve in a continuous manner which rises to modifications in the current

version of the software system. In case if the requirement is changed and we want to revert
to the previous version, it would not be a good practice to revert all those modifications
manually to get the previous version. It involves a lot of time, effort because if we revert
those modifications manually then we have to test the system to make sure that all the
modifications are reverted. So, revision control solves this problem by maintaining the
older version of the code so that we can revert to older versions or newer versions whenever
required [28].

There are different kinds of repositories such as Git, Mercurial, CVS. We are discussing
mercurial because we took Octave as our case study to determine the periods in time where
significant events occurred. Octave is maintained using a mercurial repository. Mercurial
repository is easy to customize, easy to learn and use [28]. To install Mercurial for windows
we can use TortoiseHg. TortoiseHg provides with graphical interface and command-line
interface [28].

In this thesis, we have used the mercurial repository to clone the files according to
the revisions and download the various versions of the Octave source code to analyze the
dependency network which will be discussed more in Chapter 3.

B.5 Java Integration
In this thesis to achieve some tasks we have implemented our methodology using java

as source code. We have used Java because it is the most popularly used programming
language that follows the object-oriented design principle. The main advantage of Java
over C++ is the runtime error detection mechanism is handled by the system whereas in
C++ the runtime error detection is handled by the user.

Java is free software by Oracle where we can download the JDK (Java Development
Kit) from the Oracle website. The Java project was started in the year 1991. Java 13 is
the latest version of Java which is released in September 2019. We can use threads in Java
unlike in C++. Java provides guarantees for security such as Security-related APIs and
Byte-Code verification. Java supports multithreading functionality where it can perform
multiple tasks at the same time.

B.5.1 Compiling the Java source code
The Java source code is written in an IDE, notepad or using a text editor. The file

containing the source code should be saved as .java file. We can use the javac command to

68

B.5. JAVA INTEGRATION

compile the java code. When we use the javac command then the source code is compiled
and will be translated into a byte code if there are no errors and a file with .class is created.
This .class file is then compiled or interpreted to execute the program. The byte code which
is in .class file is then converted into the machine-understandable code with the help of
JVM(Java Virtual Machine). The platform independence of Java is achieved through JVM.

B.5.2 Eclipse IDE
Eclipse is an integrated development environment(IDE) software that provides an ability

to write and compile the Java source code. Eclipse helps us to write java code faster and
also tells the error associated with the code. Eclipse provides with many built-in plugins,
we can also clone the GIT repository to eclipse. The other IDE’s are Codenvy, IntelliJ,
NetBeans, Greenfoot and so on.

B.5.3 HashMap - Java collection framework
HashMap comes under the Java collection framework. Java HashMap class has two

parameters Key and Value. It stores the value based on the unique key. To retrieve the value
we need to pass the key as a parameter. For example, in HashMap if we store ’1’ as key
and ’abc’ as its value then to retrieve the value we need to use the get method of HashMap
and use ’1’ as key to getting the value ’abc’. HashMap does not support duplicate keys.

B.5.4 CSV reader/writer
The CSV reader or CSV writer is a part of OpenCSV library of Java. Using CSV reader

we can read the whole CSV file at once and store as ArrayList of a String array. With the
help of CSV writer, the data present in ArrayList of String array can be written in the form
of CSV. CSV stands for Comma Separated Values.

69

Appendix C

Dynamic Graph of GNU Octave

The dynamic graph of GNU Octave based on the functional dependencies can be viewed
from the following the link http://www.cs.uleth.ca/˜gaur/papers/dynamicGraph.mp4.

70

