A uniqueness result for a Schrödinger-Poisson system with strong singularity

Shengbin $\mathbf{Y u}{ }^{\boxtimes 1,2}$ and Jianqing Chen ${ }^{1}$
${ }^{1}$ College of Mathematics and Informatics \& FJKLMAA, Fujian Normal University, Qishan Campus, Fuzhou, Fujian 350117, P. R. China
${ }^{2}$ Department of Basic Teaching and Research, Yango University, Fuzhou, Fujian 350015, P. R. China

Received 20 April 2019, appeared 25 November 2019
Communicated by Dimitri Mugnai

Abstract

In this paper, we consider the following Schrödinger-Poisson system with strong singularity $$
\begin{cases}-\Delta u+\phi u=f(x) u^{-\gamma}, & x \in \Omega, \\ -\Delta \phi=u^{2}, & x \in \Omega, \\ u>0, & x \in \Omega, \\ u=\phi=0, & x \in \partial \Omega,\end{cases}
$$ where $\Omega \subset \mathbb{R}^{3}$ is a smooth bounded domain, $\gamma>1, f \in L^{1}(\Omega)$ is a positive function (i.e. $f(x)>0$ a.e. in Ω). A necessary and sufficient condition on the existence and uniqueness of positive weak solution of the system is obtained. The results supplement the main conclusions in recent literature. Keywords: Schrödinger-Poisson system, strong singularity, uniqueness, variational method, necessary and sufficient condition.

2010 Mathematics Subject Classification: 35A15, 35B09, 35J75.

1 Introduction

In this paper, we consider the existence and uniqueness of positive solution for the following Schrödinger-Poisson system

$$
\begin{cases}-\Delta u+\phi u=f(x) u^{-\gamma}, & x \in \Omega, \tag{SP}\\ -\Delta \phi=u^{2}, & x \in \Omega, \\ u>0, & x \in \Omega, \\ u=\phi=0, & x \in \partial \Omega,\end{cases}
$$

[^0]where $\Omega \subset \mathbb{R}^{3}$ is a smooth bounded domain, $\gamma>1, f \in L^{1}(\Omega)$ is a positive function (i.e. $f(x)>0$ a.e. in Ω). System (SP) can be viewed as a special case of the following SchrödingerPoisson system with singularity
\[

$$
\begin{cases}-\Delta u+\eta \phi u=f(x) u^{-\gamma}+g(x, u), & x \in \Omega \tag{1.1}\\ -\Delta \phi=u^{2}, & x \in \Omega \\ u>0, & x \in \Omega \\ u=\phi=0, & x \in \partial \Omega\end{cases}
$$
\]

which has been investigated recently. When $g(x, u)=0, f(x)=\mu$ is a positive parameter and $0<\gamma<1$ (i.e. weak singularity), Zhang [28] obtained a sufficient condition on the existence, uniqueness and multiplicity of positive solutions for system (1.1) with $\eta= \pm 1$. When $\eta=-1$, $g(x, u)=\lambda h(x) u+u^{3}, f(x)=\frac{\mu}{|x|^{\beta}}$ and $0<\gamma<1$, Wang [25] considered the existence and multiplicity of positive solutions for system (1.1) under some suitable conditions by Nehari manifold. Combining with variational method and Nehari manifold method, Lei and Liao [7] generalized a part of the results in Zhang [28] to the critical problem and obtained two positive solutions of system (1.1) with $\eta=1, g(x, u)=u^{5}, f(x)=\frac{\mu}{|x|^{\beta}}$ and $0<\gamma<1$. Jiang and Zhou [5] established the existence and a priori estimate of positive solutions of nonautonomous Schrödinger-Poisson system with singular potential. In addition, Kirchhoff type of problems with singularity have been considered by many researchers, one could refer to [$3,8,9,14-16,24,26]$ and the references cited therein. In a more general sense, Lei, Suo and Chu [10] studied a class of Schrödinger-Newton systems with singular and critical growth terms in unbounded domains and established results on the existence and multiplicity of positive solutions. We [27] obtained the uniqueness and asymptotical behavior of solutions to a Choquard equation with singularity in unbounded domains. Mu and Lu [17], Li et al. [13] and Zhang [29] studied the existence, uniqueness and multiple results to singular Schrödinger-Kirchhoff-Poisson system.

However, investigations (see [3, 5, 7-10, 13-17, 24-29] and references therein) considered elliptic equations with singularity have mainly focused on weak singularity (i.e. $0<\gamma<1$) and seldom with strong singularity (i.e. $\gamma>1$) which have been studied extensively (see [$1,2,4,6,11,12,18-23,30]$ and references therein). In 2013, Sun [20] considered the following nonlinear elliptic problem

$$
\begin{cases}-\Delta u=f(x) u^{-\gamma}+k(x) u^{q}, & x \in \Omega \tag{1.2}\\ u>0, & x \in \Omega \\ u=0, & x \in \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}, N \geq 1$, is a bounded open set with smooth boundary $\partial \Omega, k \in L^{\infty}(\Omega)$ is a non-negative function, $q \in(0,1), \gamma>1$ (i.e. strong singularity) and $f \in L^{1}(\Omega)$ is positive (i.e. $f(x)>0$ a.e. in Ω). By using variational method, Sun [20] has derived a compatible condition between coefficients and negative exponents, which is optimal for $H_{0}^{1}(\Omega)$-solutions of problem (1.2). The results obtained by Sun [20] supplement and improve the main conclusions in [913]. When $N \geq 3$ and $k(x) \equiv 0$, Sun [22] further obtained the existence of solutions of problem (1.2) and showed the reason on why 3 plays a crucial role in the study of elliptic equations with negative exponents. When $k(x) \equiv 0$ and $-\Delta u$ was replaced by $-\operatorname{div}(M(x) \nabla u)$ where $M(x)$ is a bounded elliptic matrix, Tan and Sun [23] also proved the existence of a positive $H_{0}^{1}(\Omega)$-solutions of problem (1.2). Furthermore, Cong and Han [2], Li and Gao [11] both
considered the existence of positive solutions to elliptic boundary value problem with strong singularity and p-Laplace operator. As for Kirchhoff type equations with strong singularities, Li et al. [12], Tan and Sun [21] and Santos et al. [18] have obtained some perfect results. However, to the best of our knowledge, Schrödinger-Poisson system with strong singularity has not been studied until now. Thus, the main purpose of this paper is to consider the existence and uniqueness of positive solution for system (SP) with strong singularity. Indeed, we obtain the following results.

Theorem 1.1. Assume that $f \in L^{1}(\Omega)$ is a positive function (i.e. $f(x)>0$ a.e. in Ω), $\gamma>1$, then system (SP) admits a unique positive solution if and only if there exists a $u_{0} \in H_{0}^{1}(\Omega)$, such that

$$
\begin{equation*}
\int_{\Omega} f(x)\left|u_{0}\right|^{1-\gamma} \mathrm{d} x<+\infty . \tag{1.3}
\end{equation*}
$$

As a consequence of Theorem 1.1, we also have the following.
Theorem 1.2. Suppose $f_{1}, f_{2} \in L^{1}(\Omega)$ are two positive functions (i.e. $f_{i}(x)>0, i=1,2$ a.e. in Ω) with $\int_{\Omega} f_{i}(x)\left|u_{0}\right|^{1-\gamma} \mathrm{d} x<+\infty, i=1,2$ and u_{1}, u_{2} are the corresponding solutions of system (SP) obtained in Theorem 1.1, then $f_{1} \geq f_{2}$ implies $u_{1} \geq u_{2}$.
Theorem 1.3. Let $\Omega \subset \mathbb{R}^{3}$ be a smooth bounded domain containing 0 . Suppose $0<\alpha<3$ and $1<\gamma<3$, then

$$
\begin{cases}-\Delta u+\phi u=|x|^{-\alpha} u^{-\gamma}, & x \in \Omega, \\ -\Delta \phi=u^{2}, & x \in \Omega, \\ u>0, & x \in \Omega, \\ u=\phi=0, & x \in \partial \Omega,\end{cases}
$$

admits a unique positive solution $u \in H_{0}^{1}(\Omega)$.
We then consider the property of the $H_{0}^{1}(\Omega)$-solution in Theorem 1.3 and get the following result.

Theorem 1.4. Let $\Omega \subset \mathbb{R}^{3}$ be a smooth bounded domain containing 0 . Suppose $\alpha>2$ and $\gamma>0$, then

$$
\begin{cases}-\Delta u+\phi u=|x|^{-\alpha} u^{-\gamma}, & x \in \Omega, \\ -\Delta \phi=u^{2}, & x \in \Omega, \\ u>0, & x \in \Omega, \\ u=\phi=0, & x \in \partial \Omega,\end{cases}
$$

admits no bounded positive solution.

Notations

- $L^{s}(\Omega)$ is a Lebesgue space whose norm is denoted by $|u|_{s}=\left(\int_{\Omega}|u|^{s} \mathrm{~d} x\right)^{\frac{1}{s}}$.
- $H_{0}^{1}(\Omega)$ is the usual Sobolev space equipped with the norm $\|u\|^{2}=\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x$.
- $u^{+}=\max \{u, 0\}$ and $u^{-}=\min \{u, 0\}$ for any function u.
- \rightarrow denotes the strong convergence and \rightharpoonup denotes the weak convergence.
- $B_{r}\left(x_{0}\right)$ denotes the Euclidean ball of center x_{0} and radius r.
- C and $C_{i}(i=1,2, \ldots)$ denotes various positive constants, which may vary from line to line.

2 Proof of main results

Before proving our main results, we need the following lemma (see [28]).
Lemma 2.1. For each $u \in H_{0}^{1}(\Omega)$, there exists a unique $\phi_{u} \in H_{0}^{1}(\Omega)$ solution of

$$
\begin{cases}-\Delta \phi=u^{2}, & x \in \Omega \\ \phi=0, & x \in \partial \Omega\end{cases}
$$

Moreover,
(i) $\left\|\phi_{u}\right\|^{2}=\int_{\Omega} \phi_{u} u^{2} \mathrm{~d} x$;
(ii) $\phi_{u} \geq 0$. Moreover, $\phi_{u}>0$ when $u \neq 0$;
(iii) for each $t \neq 0, \phi_{t u}=t^{2} \phi_{u}$;
(iv) for any $u \in H_{0}^{1}(\Omega)$,

$$
\int_{\Omega} \phi_{u} u^{2} \mathrm{~d} x=\int_{\Omega}\left|\nabla \phi_{u}\right|^{2} \mathrm{~d} x \leq S^{-1}|u|_{12 / 5}^{4} \leq S^{-1}|u|_{4}^{4}|\Omega|^{2 / 3} \leq S^{-3}\|u\|^{4}|\Omega|
$$

where $S>0$ is the best Sobolev embedding constant.
(v) assume that $u_{n} \rightharpoonup u$ in $H_{0}^{1}(\Omega)$, then $\phi_{u_{n}} \rightarrow \phi_{u}$ in $H_{0}^{1}(\Omega)$ and $\int_{\Omega} \phi_{u_{n}} u_{n} v \mathrm{~d} x \rightarrow \int_{\Omega} \phi_{u} u v \mathrm{~d} x$ for any $v \in H_{0}^{1}(\Omega)$;
(vi) we denote $\Psi(u)=\int_{\Omega} \phi_{u} u^{2} \mathrm{~d} x$, then $\Psi: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ is C^{1} and for any $v \in H_{0}^{1}(\Omega)$,

$$
\left\langle\Psi^{\prime}(u), v\right\rangle=4 \int_{\Omega} \phi_{u} u v \mathrm{~d} x
$$

(vii) for $u, v \in H_{0}^{1}(\Omega), \int_{\Omega}\left(\phi_{u} u-\phi_{v} v\right)(u-v) \mathrm{d} x \geq \frac{1}{2}\left\|\phi_{u}-\phi_{v}\right\|^{2}$.

According to Lemma 2.1, we substitute ϕ_{u} to the first equation of system (SP), then system (SP) transforms into the following equation

$$
\begin{cases}-\Delta u+\phi_{u} u=f(x) u^{-\gamma}, & x \in \Omega \tag{2.1}\\ u>0, & x \in \Omega \\ u=0, & x \in \partial \Omega\end{cases}
$$

The energy functional corresponding to equation (2.1) given by

$$
\begin{equation*}
I(u)=\frac{1}{2}\|u\|^{2}+\frac{1}{4} \int_{\Omega} \phi_{u}|u|^{2} \mathrm{~d} x-\frac{1}{1-\gamma} \int_{\Omega} f(x)|u|^{1-\gamma} \mathrm{d} x \tag{2.2}
\end{equation*}
$$

and a function u is called a solution of equation (2.1), i.e. $\left(u, \phi_{u}\right)$ is a solution of system (SP) if $u \in H_{0}^{1}(\Omega)$ such that $u>0$ in Ω and for every $\psi \in H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} \nabla u \nabla \psi \mathrm{~d} x+\int_{\Omega} \phi_{u} u \psi \mathrm{~d} x-\int_{\Omega} f(x) u^{-\gamma} \psi \mathrm{d} x=0 \tag{2.3}
\end{equation*}
$$

For the sake of simplicity, we just say u instead of $\left(u, \phi_{u}\right)$ is a solution of system (SP). In order to motivate our results, we consider the following two constrained sets:

$$
\mathcal{N}_{1}=\left\{u \in H_{0}^{1}(\Omega):\|u\|^{2}+\int_{\Omega} \phi_{u}|u|^{2} \mathrm{~d} x-\int_{\Omega} f(x)|u|^{1-\gamma} \mathrm{d} x \geq 0\right\}
$$

and

$$
\mathcal{N}_{2}=\left\{u \in H_{0}^{1}(\Omega):\|u\|^{2}+\int_{\Omega} \phi_{u}|u|^{2} \mathrm{~d} x-\int_{\Omega} f(x)|u|^{1-\gamma} \mathrm{d} x=0\right\} .
$$

We now come to prove our main results.
Proof of Theorem 1.1. (Necessity). Suppose $u \in H_{0}^{1}(\Omega)$ is the solution of system (SP), then $u>0$ and satisfies (2.3). Choosing $\psi=u$ in (2.3) leads to

$$
\int_{\Omega} f(x) u^{1-\gamma} \mathrm{d} x=\|u\|^{2}+\int_{\Omega} \phi_{u} u^{2} \mathrm{~d} x<+\infty,
$$

and the necessity is proved.
(Sufficiency) The proof will be complete in six steps.
Step 1. $\mathcal{N}_{i} \neq \varnothing, i=1,2$.
Fix $u \in H_{0}^{1}(\Omega)$ with $\int_{\Omega} f(x)|u|^{1-\gamma} \mathrm{d} x<+\infty$. For any $t>0$, according to Lemma 2.1 (iii), we have

$$
I(t u)=\frac{t^{2}}{2}\|u\|^{2}+\frac{t^{4}}{4} \int_{\Omega} \phi_{u}|u|^{2} \mathrm{~d} x-\frac{t^{1-\gamma}}{1-\gamma} \int_{\Omega} f(x)|u|^{1-\gamma} \mathrm{d} x .
$$

Set $g(t)=t \frac{\mathrm{~d} I(t u)}{\mathrm{d} t}$, then

$$
g(t)=t^{2}\|u\|^{2}+t^{4} \int_{\Omega} \phi_{u}|u|^{2} \mathrm{~d} x-t^{1-\gamma} \int_{\Omega} f(x)|u|^{1-\gamma} \mathrm{d} x
$$

Since $\gamma>1$, one can easily obtain that $g(t)$ is increasing on $(0,+\infty)$ with $\lim _{t \rightarrow 0^{+}} g(t)=$ $-\infty$ and $\lim _{t \rightarrow+\infty} g(t)=+\infty$. Thus, there exists a unique $t(u)>0$ such that $I(t(u) u)=$ $\min _{t>0} I(t u)$ and $g(t(u))=0$, i.e.

$$
t^{2}(u)\|u\|^{2}+t^{4}(u) \int_{\Omega} \phi_{u}|u|^{2} \mathrm{~d} x-t^{1-\gamma}(u) \int_{\Omega} f(x)|u|^{1-\gamma} \mathrm{d} x=0
$$

that is $t(u) u \in \mathcal{N}_{2}$. Specially, the assumption (1.3) implies that there exists a $t\left(u_{0}\right)>0$ such that $t\left(u_{0}\right) u_{0} \in \mathcal{N}_{2} \subset \mathcal{N}_{1}$, and so $\mathcal{N}_{i} \neq \varnothing, i=1,2$.
Step 2. \mathcal{N}_{1} is an unbounded closed set in $H_{0}^{1}(\Omega)$ and there exists a positive constant C_{1}, such that $\|u\| \geq C_{1}$ for all $u \in \mathcal{N}_{1}$.

According to Step $1, t u \in \mathcal{N}_{1}$ for any $t \geq t\left(u_{0}\right)$, so \mathcal{N}_{1} is unbounded in $H_{0}^{1}(\Omega)$. The closeness of \mathcal{N}_{1} follows easily from Lemma 2.1 (v) and Fatou's lemma. We claim that there exists a positive constant C_{1}, such that $\|u\| \geq C_{1}$ for all $u \in \mathcal{N}_{1}$. Arguing by contradiction, there exists a sequence $\left\{u_{n}\right\} \subset \mathcal{N}_{1}$ satisfying $u_{n} \rightarrow 0$ in $H_{0}^{1}(\Omega)$. Since $\gamma>1$ and $u_{n} \in \mathcal{N}_{1}$, by the reverse form of Hölder's inequality and Lemma 2.1 (v), one can get

$$
\left(\int_{\Omega} f^{\frac{1}{\gamma}}(x) \mathrm{d} x\right)^{\gamma}\left(\int_{\Omega}\left|u_{n}\right| \mathrm{d} x\right)^{1-\gamma} \leq \int_{\Omega} f(x)\left|u_{n}\right|^{1-\gamma} \mathrm{d} x \leq\left\|u_{n}\right\|^{2}+\int_{\Omega} \phi_{u_{n}}\left|u_{n}\right|^{2} \mathrm{~d} x \rightarrow 0 .
$$

Since $\int_{\Omega} f^{\frac{1}{\gamma}}(x) \mathrm{d} x>0$, we have $\int_{\Omega}\left|u_{n}\right| \mathrm{d} x \rightarrow \infty$, which is impossible. So there exists a positive constant C_{1}, such that $\|u\| \geq C_{1}$ for all $u \in \mathcal{N}_{1}$.

Step 3. Properties of the minimizing sequence $\left\{u_{n}\right\}$.

For any $u \in \mathcal{N}_{1}$, according to Step 2 , there exists a positive constant C_{1} such that $\|u\| \geq C_{1}$, then by (2.2), $\gamma>1$ and Lemma 2.1 (ii), one has

$$
I(u)=\frac{1}{2}\|u\|^{2}+\frac{1}{4} \int_{\Omega} \phi_{u}|u|^{2} \mathrm{~d} x-\frac{1}{1-\gamma} \int_{\Omega} f(x)|u|^{1-\gamma} \mathrm{d} x \geq \frac{1}{2}\|u\|^{2},
$$

therefore, $I(u)$ is coercive and bounded from below on \mathcal{N}_{1} and so $\inf _{\mathcal{N}_{1}} I$ is well defined. Since \mathcal{N}_{1} is closed, applying the Ekeland variational principle to construct a minimizing sequence $\left\{u_{n}\right\} \subset \mathcal{N}_{1}$ satisfying:
(1) $I\left(u_{n}\right)<\inf _{\mathcal{N}_{1}} I+\frac{1}{n}$;
(2) $I(z) \geq I\left(u_{n}\right)-\frac{1}{n}\left\|u_{n}-z\right\|, \forall z \in \mathcal{N}_{1}$.

The coerciveness of I on \mathcal{N}_{1} shows that $\left\|u_{n}\right\| \leq C_{2}$ uniformly for some suitable positive constant C_{2}. Hence, $C_{1} \leq\left\|u_{n}\right\| \leq C_{2}$ and then there exists a subsequence of $\left\{u_{n}\right\}$ (still denoted by $\left\{u_{n}\right\}$) and a function $u_{*} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{aligned}
& u_{n} \rightharpoonup u_{*} \text { in } H_{0}^{1}(\Omega), \\
& u_{n} \rightarrow u_{*} \text { in } L^{p}(\Omega), p \in[1,6), \\
& u_{n} \rightarrow u_{*} \text { a.e. in } \Omega .
\end{aligned}
$$

Since $I(|u|)=I(u)$, we could assume that $u_{n} \geq 0$. By $\left\{u_{n}\right\} \subset \mathcal{N}_{1}$, Lemma 2.1 (iv) and the boundness of $\left\{u_{n}\right\}$, we have $\int_{\Omega} f(x) u_{n}^{1-\gamma} \mathrm{d} x<+\infty$ which implies that $u_{n}(x)>0$ a.e. in Ω since $f(x)>0$ a.e. in Ω, and $\gamma>1$. Therefore, $u_{*}(x) \geq 0$. Furthermore, by Fatou's Lemma, we get $\int_{\Omega} f(x) u_{*}^{1-\gamma} \mathrm{d} x<+\infty$ which in turn implies $u_{*}(x)>0$ a.e. in Ω.
Step 4. $u_{*} \in \mathcal{N}_{2}, \inf _{\mathcal{N}_{1}} I=I\left(u_{*}\right), u_{*}>0$ in Ω and for any $0 \leq v \in H_{0}^{1}(\Omega)$,

$$
\int_{\Omega} \nabla u_{*} \nabla v \mathrm{~d} x+\int_{\Omega} \phi_{u_{*}} u_{*} v \mathrm{~d} x-\int_{\Omega} f(x) u_{*}^{-\gamma} v \mathrm{~d} x \geq 0 .
$$

To prove the above statements, we consider the following two cases regarding whether $\left\{u_{n}\right\}$ belongs to $\mathcal{N}_{1} \backslash \mathcal{N}_{2}$ or \mathcal{N}_{2}.

Case 1. Suppose that $\left\{u_{n}\right\} \subset \mathcal{N}_{1} \backslash \mathcal{N}_{\mathbf{2}}$ for all n large.

For any $0 \leq v \in H_{0}^{1}(\Omega)$, since $\left\{u_{n}\right\} \subset \mathcal{N}_{1} \backslash \mathcal{N}_{2}, f(x)>0$ a.e. in Ω and $\gamma>1$, we can derive

$$
\int_{\Omega} f(x)\left(u_{n}+t v\right)^{1-\gamma} \mathrm{d} x \leq \int_{\Omega} f(x) u_{n}^{1-\gamma} \mathrm{d} x<\left\|u_{n}\right\|^{2}+\int_{\Omega} \phi_{u_{n}} u_{n}^{2} \mathrm{~d} x, \forall t \geq 0 .
$$

Therefore, we could choose $t>0$ small enough such that

$$
\int_{\Omega} f(x)\left(u_{n}+t v\right)^{1-\gamma} \mathrm{d} x<\left\|u_{n}+t v\right\|^{2}+\int_{\Omega} \phi_{u_{n}+t v}\left(u_{n}+t v\right)^{2} \mathrm{~d} x
$$

that is $u_{n}+t v \in \mathcal{N}_{1}$. Applying condition (2) with $z=u_{n}+t v$ leads to

$$
\begin{aligned}
\frac{\|t v\|}{n} \geq & I\left(u_{n}\right)-I\left(u_{n}+t v\right) \\
= & \frac{1}{2}\left(\left\|u_{n}\right\|^{2}-\left\|u_{n}+t v\right\|^{2}\right)+\frac{1}{4} \int_{\Omega}\left[\phi_{u_{n}} u_{n}^{2}-\phi_{u_{n}+t v}\left(u_{n}+t v\right)^{2}\right] \mathrm{d} x \\
& +\frac{1}{1-\gamma} \int_{\Omega} f(x)\left[\left(u_{n}+t v\right)^{1-\gamma}-u_{n}^{1-\gamma}\right] \mathrm{d} x .
\end{aligned}
$$

Dividing by $t>0$ and passing to the liminf as $t \rightarrow 0^{+}$, then we obtain from Fatou's Lemma that

$$
\begin{aligned}
\frac{\|v\|}{n}+\int_{\Omega} \nabla u_{n} \cdot \nabla v \mathrm{~d} x+\int_{\Omega} \phi_{u_{n}} u_{n} v \mathrm{~d} x & \geq \liminf _{t \rightarrow 0^{+}} \frac{1}{1-\gamma} \int_{\Omega} f(x) \frac{\left(u_{n}+t v\right)^{1-\gamma}-u_{n}^{1-\gamma}}{t} \mathrm{~d} x \\
& \geq \int_{\Omega} \liminf _{t \rightarrow 0^{+}} \frac{f(x)}{1-\gamma} \frac{\left(u_{n}+t v\right)^{1-\gamma}-u_{n}^{1-\gamma}}{t} \mathrm{~d} x \\
& =\int_{\Omega} f(x) u_{n}^{-\gamma} v \mathrm{~d} x, \quad\left(\text { since } u_{n}>0 \text { a.e.in } \Omega\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$, according to Lemma 2.1 (v) and Fatou's Lemma again, one can get

$$
\begin{equation*}
\int_{\Omega} \nabla u_{*} \nabla v \mathrm{~d} x+\int_{\Omega} \phi_{u_{*}} u_{*} v \mathrm{~d} x \geq \int_{\Omega} f(x) u_{*}^{-\gamma} v \mathrm{~d} x \text { and } \int_{\Omega} f(x) u_{*}^{-\gamma} v \mathrm{~d} x<+\infty \tag{2.4}
\end{equation*}
$$

Choose $v=u_{*}$ in (2.4), we get $u_{*} \in \mathcal{N}_{1}, \int_{\Omega} f(x) u_{*}^{1-\gamma} \mathrm{d} x<+\infty$ and then Step 1 shows the existence of unique $t\left(u_{*}\right)>0$ satisfying $t\left(u_{*}\right) u_{*} \in \mathcal{N}_{2}$ and $I\left(t\left(u_{*}\right) u_{*}\right)=\min _{t>0} I\left(t u_{*}\right)$. Hence, according to the weakly lower semi-continuity of the norm, Lemma 2.1 (v) and Fatou's Lemma, one has

$$
\begin{aligned}
\inf _{\mathcal{N}_{1}} I & =\lim _{n \rightarrow \infty} I\left(u_{n}\right) \\
& =\liminf _{n \rightarrow \infty}\left[\frac{1}{2}\left\|u_{n}\right\|^{2}+\frac{1}{4} \int_{\Omega} \phi_{u_{n}} u_{n}^{2} \mathrm{~d} x-\frac{1}{1-\gamma} \int_{\Omega} f(x) u_{n}^{1-\gamma} \mathrm{d} x\right] \\
& \geq \liminf _{n \rightarrow \infty}\left[\frac{1}{2}\left\|u_{n}\right\|^{2}\right]+\liminf _{n \rightarrow \infty}\left[\frac{1}{4} \int_{\Omega} \phi_{u_{n}} u_{n}^{2} \mathrm{~d} x\right]+\liminf _{n \rightarrow \infty}\left[\frac{1}{\gamma-1} \int_{\Omega} f(x) u_{n}^{1-\gamma} \mathrm{d} x\right] \\
& \geq \frac{1}{2}\left\|u_{*}\right\|^{2}+\frac{1}{4} \int_{\Omega} \phi_{u_{*}} u_{*}^{2} \mathrm{~d} x+\frac{1}{\gamma-1} \int_{\Omega} f(x) u_{*}^{1-\gamma} \mathrm{d} x \\
& =I\left(u_{*}\right) \geq I\left(t\left(u_{*}\right) u_{*}\right) \geq \inf _{\mathcal{N}_{2}} I \geq \inf _{\mathcal{N}_{1}} I .
\end{aligned}
$$

Thus, the above inequalities are actually equalities. By the uniqueness of $t\left(u_{*}\right)$, we have $t\left(u_{*}\right)=1$, which implies that

$$
\begin{equation*}
u_{*} \in \mathcal{N}_{2}, \quad \inf _{\mathcal{N}_{1}} I=I\left(u_{*}\right) \tag{2.5}
\end{equation*}
$$

Moreover, we can also obtain that $\liminf _{n \rightarrow \infty}\left\|u_{n}\right\|^{2}=\left\|u_{*}\right\|^{2}$ and a subsequence of $\left\{u_{n}\right\}$ (still denoted by $\left\{u_{n}\right\}$), such that $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|^{2}=\left\|u_{*}\right\|^{2}$. This together with the weak convergence of $\left\{u_{n}\right\}$ in $H_{0}^{1}(\Omega)$ implies $u_{n} \rightarrow u_{*}$ strongly in $H_{0}^{1}(\Omega)$.

Case 2. There exists a subsequence of $\left\{u_{n}\right\}$ (still denoted by $\left\{u_{n}\right\}$) which belongs to $\mathcal{N}_{\mathbf{2}}$.
For any $0 \leq v \in H_{0}^{1}(\Omega)$, according to $\gamma>1$, the boundness of $\left\{u_{n}\right\}$, Lemma 2.1 (iv), we have

$$
\int_{\Omega} f(x)\left(u_{n}+t v\right)^{1-\gamma} \mathrm{d} x \leq \int_{\Omega} f(x) u_{n}^{1-\gamma} \mathrm{d} x=\left\|u_{n}\right\|^{2}+\int_{\Omega} \phi_{u_{n}} u_{n}^{2} \mathrm{~d} x<+\infty, \quad \forall t \geq 0
$$

then Step 1 shows the existence of some functions $h_{n, v}(t):[0,+\infty) \rightarrow(0,+\infty)$ corresponding to $u_{n}+t v$ such that

$$
h_{n, v}(0)=1, \quad h_{n, v}(t)\left(u_{n}+t v\right) \in \mathcal{N}_{2}, \quad \forall t \geq 0
$$

The continuity of $h_{n, v}(t)$ with respect to t follows from Lemma 2.1 (v) and the dominated convergence theorem since $\gamma>1$ and $\int_{\Omega} f(x)\left|u_{n}\right|^{1-\gamma} \mathrm{d} x<+\infty$. However, we have no idea whether or not $h_{n, v}(t)$ is differentiable. For the sake of proof, we set

$$
h_{n, v}^{\prime}(0)=\lim _{t \rightarrow 0^{+}} \frac{h_{n, v}(t)-1}{t} \in[-\infty,+\infty] .
$$

If the above limit does not exist, we choose $t_{k} \rightarrow 0$ (instead of $t \rightarrow 0$) with $t_{k}>0$ such that $h_{n, v}^{\prime}(0)=\lim _{k \rightarrow \infty} \frac{h_{n, v}\left(t_{k}\right)-1}{t_{k}} \in[-\infty,+\infty]$. According to $u_{n} \in \mathcal{N}_{2}, h_{n, v}(t)\left(u_{n}+t v\right) \in \mathcal{N}_{2}$ and Lemma 2.1 (iii), we have

$$
\begin{gathered}
\left\|u_{n}\right\|^{2}+\int_{\Omega} \phi_{u_{n}} u_{n}^{2} \mathrm{~d} x-\int_{\Omega} f(x) u_{n}^{1-\gamma} \mathrm{d} x=0, \\
h_{n, v}^{2}(t)\left\|u_{n}+t v\right\|^{2}+h_{n, v}^{4}(t) \int_{\Omega} \phi_{u_{n}+t v}\left(u_{n}+t v\right)^{2} \mathrm{~d} x-h_{n, v}^{1-\gamma}(t) \int_{\Omega} f(x)\left(u_{n}+t v\right)^{1-\gamma} \mathrm{d} x=0 .
\end{gathered}
$$

Since $\gamma>1$, the above two equalities yield

$$
\begin{aligned}
0= & {\left[h_{n, v}(t)-1\right]\left\{\left[h_{n, v}(t)+1\right]\left\|u_{n}+t v\right\|^{2}-\frac{h_{n, v}^{1-\gamma}(t)-1}{h_{n, v}(t)-1} \int_{\Omega} f(x)\left(u_{n}+t v\right)^{1-\gamma} \mathrm{d} x\right.} \\
& \left.+\left[h_{n, v}^{2}(t)+1\right]\left[h_{n, v}(t)+1\right] \int_{\Omega} \phi_{u_{n}+t v}\left(u_{n}+t v\right)^{2} \mathrm{~d} x\right\}+\left[\left\|u_{n}+t v\right\|^{2}-\left\|u_{n}\right\|^{2}\right] \\
& +\int_{\Omega}\left[\phi_{u_{n}+t v}\left(u_{n}+t v\right)^{2}-\phi_{u_{n}} u_{n}^{2}\right] \mathrm{d} x-\int_{\Omega} f(x)\left[\left(u_{n}+t v\right)^{1-\gamma}-u_{n}^{1-\gamma}\right] \mathrm{d} x
\end{aligned}
$$

Dividing by $t>0$ and passing to the limit as $t \rightarrow 0^{+}$, using Lemma 2.1 (vi), the continuity of $h_{n, v}(t)$ and $u_{n} \in \mathcal{N}_{2}$, we obtain

$$
\begin{aligned}
0 \geq & h_{n, v}^{\prime}(0)\left\{2\left\|u_{n}\right\|^{2}+(\gamma-1) \int_{\Omega} f(x) u_{n}^{1-\gamma} \mathrm{d} x+4 \int_{\Omega} \phi_{u_{n}} u_{n}^{2} \mathrm{~d} x\right\} \\
& +2 \int_{\Omega} \nabla u_{n} \nabla v \mathrm{~d} x+4 \int_{\Omega} \phi_{u_{n}} u_{n} v \mathrm{~d} x \\
= & h_{n, v}^{\prime}(0)\left\{(\gamma+1)\left\|u_{n}\right\|^{2}+(\gamma+3) \int_{\Omega} \phi_{u_{n}} u_{n}^{2} \mathrm{~d} x\right\}+2 \int_{\Omega} \nabla u_{n} \nabla v \mathrm{~d} x+4 \int_{\Omega} \phi_{u_{n}} u_{n} v \mathrm{~d} x
\end{aligned}
$$

We claim that there exists $C_{3}>0$, such that $h_{n, v}^{\prime}(0) \leq C_{3}$ uniformly in n. Fix n, either $h_{n, v}^{\prime}(0)$ is nonnegative, or $h_{n, v}^{\prime}(0)$ is negative. If $h_{n, v}^{\prime}(0) \geq 0$, then from the above inequality and Lemma 2.1 (ii), one can get

$$
0 \geq(\gamma+1) h_{n, v}^{\prime}(0)\left\|u_{n}\right\|^{2}+2 \int_{\Omega} \nabla u_{n} \nabla v \mathrm{~d} x .
$$

Since $C_{1} \leq\left\|u_{n}\right\| \leq C_{2}$ by Step 3 , we can conclude that

$$
\begin{equation*}
h_{n, v}^{\prime}(0) \leq C_{3} \quad \text { uniformly in } n \tag{2.6}
\end{equation*}
$$

for some suitable constant $C_{3}>0$ and

$$
\frac{\left\|u_{n}\right\|}{n}-\frac{(\gamma+1) C_{1}^{2}}{\gamma-1}<0
$$

for n large enough. We also claim that there exists a constant C_{4}, such that $h_{n, v}^{\prime}(0) \geq C_{4}$ uniformly in all n large. If $h_{n, v}^{\prime}(0)<0$, then $h_{n, v}(t)<1$ for $t>0$ small. Applying condition (2) with $z=h_{n, v}(t)\left(u_{n}+t v\right)$ leads to

$$
\begin{align*}
\frac{1}{n}\left[1-h_{n, v}(t)\right]\left\|u_{n}\right\|+\frac{t}{n} h_{n, v}(t)\|v\| & \geq \frac{1}{n}\left\|u_{n}-h_{n, v}(t)\left(u_{n}+t v\right)\right\| \tag{2.7}\\
& \geq I\left(u_{n}\right)-I\left[h_{n, v}(t)\left(u_{n}+t v\right)\right] .
\end{align*}
$$

Since $u_{n} \in \mathcal{N}_{2}$, Lemma 2.1 (iii) together with (2.7) leads to

$$
\begin{aligned}
\frac{\|v\|}{n} h_{n, v}(t) \geq & \frac{h_{n, v}(t)-1}{t}\left\{\frac{\left\|u_{n}\right\|}{n}-\left(\frac{1}{2}+\frac{1}{\gamma-1}\right)\left[h_{n, v}(t)+1\right]\left\|u_{n}+t v\right\|^{2}\right. \\
& \left.-\left(\frac{1}{4}+\frac{1}{\gamma-1}\right)\left[h_{n, v}^{2}(t)+1\right]\left[h_{n, v}(t)+1\right] \int_{\Omega} \phi_{u_{n}+t v}\left(u_{n}+t v\right)^{2} \mathrm{~d} x\right\} \\
& -\left(\frac{1}{2}+\frac{1}{\gamma-1}\right) \frac{\left\|u_{n}+t v\right\|^{2}-\left\|u_{n}\right\|^{2}}{t} \\
& -\left(\frac{1}{4}+\frac{1}{\gamma-1}\right) \int_{\Omega} \frac{\phi_{u_{n}+t v}\left(u_{n}+t v\right)^{2}-\phi_{u_{n}} u_{n}^{2}}{t} \mathrm{~d} x .
\end{aligned}
$$

Letting $t \rightarrow 0^{+}$, using Lemma 2.1 (vi), the continuity of $h_{n, v}(t)$ and $C_{1} \leq\left\|u_{n}\right\| \leq C_{2}$, we obtain

$$
\begin{aligned}
\frac{\|v\|}{n} \geq & h_{n, v}^{\prime}(0)\left\{\frac{\left\|u_{n}\right\|}{n}-2\left(\frac{1}{2}+\frac{1}{\gamma-1}\right)\left\|u_{n}\right\|^{2}-4\left(\frac{1}{4}+\frac{1}{\gamma-1}\right) \int_{\Omega} \phi_{u_{n}} u_{n}^{2} \mathrm{~d} x\right\} \\
& -2\left(\frac{1}{2}+\frac{1}{\gamma-1}\right) \int_{\Omega} \nabla u_{n} \nabla v \mathrm{~d} x-4\left(\frac{1}{4}+\frac{1}{\gamma-1}\right) \int_{\Omega} \phi_{u_{n}} u_{n} v \mathrm{~d} x \\
= & h_{n, v}^{\prime}(0)\left\{\frac{\left\|u_{n}\right\|}{n}-\frac{1}{\gamma-1}\left((\gamma+1)\left\|u_{n}\right\|^{2}+(\gamma+3) \int_{\Omega} \phi_{u_{n}} u_{n}^{2} \mathrm{~d} x\right)\right\} \\
& -\left(1+\frac{2}{\gamma-1}\right) \int_{\Omega} \nabla u_{n} \nabla v \mathrm{~d} x-\left(1+\frac{4}{\gamma-1}\right) \int_{\Omega} \phi_{u_{n}} u_{n} v \mathrm{~d} x \\
\geq & h_{n, v}^{\prime}(0)\left\{\frac{\left\|u_{n}\right\|}{n}-\frac{(\gamma+1) C_{1}^{2}}{\gamma-1}\right\}-\left(1+\frac{2}{\gamma-1}\right) \int_{\Omega} \nabla u_{n} \nabla v \mathrm{~d} x \\
& -\left(1+\frac{4}{\gamma-1}\right) \int_{\Omega} \phi_{u_{n}} u_{n} v \mathrm{~d} x
\end{aligned}
$$

since $\gamma>1$ and $h_{n, v}^{\prime}(0)<0$. Then, from the construction of coefficient we see that $h_{n, v}^{\prime}(0) \neq$ $-\infty$ and cannot diverge to $-\infty$ as $n \rightarrow \infty$, that is,

$$
\begin{equation*}
h_{n, v}^{\prime}(0) \neq-\infty \text { and } h_{n, v}^{\prime}(0) \geq C_{4} \text { uniformly in } n \text { large } \tag{2.8}
\end{equation*}
$$

for some suitable constant C_{4}. So, it follows from (2.6) and (2.8) that

$$
h_{n, v}^{\prime}(0) \in(-\infty,+\infty) \text { and }\left|h_{n, v}^{\prime}(0)\right| \leq C \text { uniformly in } n \text { large }
$$

where $C=\max \left\{C_{3},\left|C_{4}\right|\right\}$ is independent of n. Furthermore, applying condition (2) with $z=h_{n, v}(t)\left(u_{n}+t v\right)$ again leads to

$$
\begin{aligned}
& \frac{\left|1-h_{n, v}(t)\right|}{t} \frac{\left\|u_{n}\right\|}{n}+\frac{\|v\|}{n} h_{n, v}(t) \\
& \quad \geq \frac{1}{n t}\left\|u_{n}-h_{n, v}(t)\left(u_{n}+t v\right)\right\| \geq \frac{1}{t}\left[I\left(u_{n}\right)-I\left(h_{n, v}(t)\left(u_{n}+t v\right)\right)\right] \\
& \geq \\
& \quad \frac{h_{n, v}(t)-1}{t}\left\{-\frac{h_{n, v}(t)+1}{2}\left\|u_{n}+t v\right\|^{2}+\frac{h_{n, v}^{1-\gamma}(t)-1}{(1-\gamma)\left[h_{n, v}(t)-1\right]} \int_{\Omega} f(x)\left(u_{n}+t v\right)^{1-\gamma} \mathrm{d} x\right. \\
& \left.\quad-\frac{1}{4}\left[h_{n, v}^{2}(t)+1\right]\left[h_{n, v}(t)+1\right] \int_{\Omega} \phi_{u_{n}+t v}\left(u_{n}+t v\right)^{2} \mathrm{~d} x\right\}-\frac{1}{2} \frac{\left\|u_{n}+t v\right\|^{2}-\left\|u_{n}\right\|^{2}}{t} \\
& \quad-\frac{1}{4} \int_{\Omega} \frac{\phi_{u_{n}+t v}\left(u_{n}+t v\right)^{2}-\phi_{u_{n}} u_{n}^{2}}{t} \mathrm{~d} x+\frac{1}{1-\gamma} \int_{\Omega} f(x) \frac{\left(u_{n}+t v\right)^{1-\gamma}-u_{n}^{1-\gamma}}{t} \mathrm{~d} x
\end{aligned}
$$

Passing to the liminf as $t \rightarrow 0^{+}$, then we get from Lemma 2.1 (vi), the continuity of $h_{n, v}(t)$ and Fatou's Lemma that

$$
\begin{aligned}
& \frac{\left|h_{n, v}^{\prime}(0)\right| \cdot\left\|u_{n}\right\|}{n}+\frac{\|v\|}{n} \\
& \geq h_{n, v}^{\prime}(0)\left\{-\left\|u_{n}\right\|^{2}+\int_{\Omega} f(x) u_{n}^{1-\gamma} \mathrm{d} x-\int_{\Omega} \phi_{u_{n}} u_{n}^{2} \mathrm{~d} x\right\} \\
& \quad-\int_{\Omega} \nabla u_{n} \nabla v \mathrm{~d} x-\int_{\Omega} \phi_{u_{n}} u_{n} v \mathrm{~d} x+\liminf _{t \rightarrow 0^{+}} \frac{1}{1-\gamma} \int_{\Omega} f(x) \frac{\left(u_{n}+t v\right)^{1-\gamma}-u_{n}^{1-\gamma}}{t} \mathrm{~d} x \\
& \geq \\
& \geq \\
& =-\int_{\Omega} \nabla u_{n} \nabla v \mathrm{~d} x-\int_{\Omega} \phi_{u_{n}} u_{n} v \mathrm{~d} x+\int_{\Omega} \frac{f(x)}{1-\gamma} \liminf _{t \rightarrow 0^{+}} \frac{\left(u_{n}+t v\right)^{1-\gamma}-u_{n}^{1-\gamma}}{t} \mathrm{~d} x \\
& \\
& \quad u_{n} \nabla v \mathrm{~d} x-\int_{\Omega} \phi_{u_{n}} u_{n} v \mathrm{~d} x+\int_{\Omega} f(x) u_{n}^{-\gamma} v \mathrm{~d} x,
\end{aligned}
$$

since $u_{n} \in \mathcal{N}_{2}$. Furthermore, by Lemma 2.1 (iv), for n large, we have

$$
\begin{aligned}
\int_{\Omega} f(x) u_{n}^{-\gamma} v d x & \leq \frac{\left|h_{n, v}^{\prime}(0)\right| \cdot\left\|u_{n}\right\|}{n}+\frac{\|v\|}{n}+\int_{\Omega} \nabla u_{n} \nabla v \mathrm{~d} x+\int_{\Omega} \phi_{u_{n}} u_{n} v \mathrm{~d} x \\
& \leq \frac{C \cdot C_{2}+\|v\|}{n}+\int_{\Omega} \nabla u_{n} \nabla v \mathrm{~d} x+\int_{\Omega} \phi_{u_{n}} u_{n} v \mathrm{~d} x<+\infty,
\end{aligned}
$$

thanks to $C_{1} \leq\left\|u_{n}\right\| \leq C_{2}$ and $\left|h_{n, v}^{\prime}(0)\right| \leq C$ uniformly in n large. Passing to the limit as $n \rightarrow \infty$ with using Lemma 2.1 (v) and Fatou's Lemma again leads to

$$
\begin{equation*}
\int_{\Omega} f(x) u_{*}^{-\gamma} v \mathrm{~d} x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} f(x) u_{n}^{-\gamma} v \mathrm{~d} x \leq \int_{\Omega} \nabla u_{*} \nabla v \mathrm{~d} x+\int_{\Omega} \phi_{u_{*}} u_{*} v \mathrm{~d} x<+\infty, \tag{2.9}
\end{equation*}
$$

for any $0 \leq v \in H_{0}^{1}(\Omega)$. By the same argument as in Case 1, we can also obtain that

$$
\begin{equation*}
u_{*} \in \mathcal{N}_{2}, \quad \inf _{\mathcal{N}_{1}} I=I\left(u_{*}\right) . \tag{2.10}
\end{equation*}
$$

in Case 2. Therefore, Combining (2.4), (2.5), (2.9) and (2.10), we could conclude that in either case, up to subsequence, $u_{n} \rightarrow u_{*}$ strongly in $H_{0}^{1}(\Omega), u_{*} \in \mathcal{N}_{2}, \inf _{\mathcal{N}_{1}} I=I\left(u_{*}\right)$ and

$$
\begin{equation*}
\int_{\Omega} \nabla u_{*} \nabla v \mathrm{~d} x+\int_{\Omega} \phi_{u_{*}} u_{*} v \mathrm{~d} x-\int_{\Omega} f(x) u_{*}^{-\gamma} v \mathrm{~d} x \geq 0 \tag{2.11}
\end{equation*}
$$

for any $0 \leq v \in H_{0}^{1}(\Omega)$. Hence, $-\Delta u_{*}+\phi_{u_{*}} u_{*} \geq 0$ in the week sense. By Step $3, u_{*}(x)>0$ a.e. in Ω and similar to the proof in [28], we get $u_{*}>0$ in Ω.

Step 5. \boldsymbol{u}_{*} is a solution of system (SP).

For any $\psi \in H_{0}^{1}(\Omega) \backslash\{0\}$ and $\varepsilon>0$. Since $0<u_{*} \in \mathcal{N}_{2}$, applying inequality (2.11) with $v=\left(u_{*}+\varepsilon \psi\right)^{+}$leads to

$$
\begin{aligned}
0 \leq & \frac{1}{\varepsilon}\left\{\int_{\Omega} \nabla u_{*} \nabla\left(u_{*}+\varepsilon \psi\right)^{+} \mathrm{d} x+\int_{\Omega} \phi_{u_{*}} u_{*}\left(u_{*}+\varepsilon \psi\right)^{+} \mathrm{d} x-\int_{\Omega} f(x) u_{*}^{-\gamma}\left(u_{*}+\varepsilon \psi\right)^{+} \mathrm{d} x\right\} \\
= & \frac{1}{\varepsilon} \int_{\left[u_{*}+\varepsilon \psi \geq 0\right]}\left\{\nabla u_{*} \nabla\left(u_{*}+\varepsilon \psi\right)+\phi_{u_{*}} u_{*}\left(u_{*}+\varepsilon \psi\right)-f(x) u_{*}^{-\gamma}\left(u_{*}+\varepsilon \psi\right)\right\} \mathrm{d} x \\
= & \frac{1}{\varepsilon}\left(\int_{\Omega}-\int_{\left[u_{*}+\varepsilon \psi<0\right]}\right)\left\{\nabla u_{*} \nabla\left(u_{*}+\varepsilon \psi\right)+\phi_{u_{*}} u_{*}\left(u_{*}+\varepsilon \psi\right)-f(x) u_{*}^{-\gamma}\left(u_{*}+\varepsilon \psi\right)\right\} \mathrm{d} x \\
\leq & \frac{1}{\varepsilon}\left\{\left\|u_{*}\right\|^{2}+\int_{\Omega} \phi_{u_{*}} u_{*}^{2} \mathrm{~d} x-\int_{\Omega} f(x) u_{*}^{1-\gamma} \mathrm{d} x\right\} \\
& +\left\{\int_{\Omega} \nabla u_{*} \nabla \psi \mathrm{~d} x+\int_{\Omega} \phi_{u_{*}} u_{*} \psi \mathrm{~d} x-\int_{\Omega} f(x) u_{*}^{-\gamma} \psi \mathrm{d} x\right\} \\
& -\frac{1}{\varepsilon} \int_{\left[u_{*}+\varepsilon \psi<0\right]}\left[\nabla u_{*} \nabla\left(u_{*}+\varepsilon \psi\right)+\phi_{u_{*}} u_{*}\left(u_{*}+\varepsilon \psi\right)\right] \mathrm{d} x \\
& +\frac{1}{\varepsilon} \int_{\left[u_{*}+\varepsilon \psi<0\right]} f(x) u_{*}^{-\gamma}\left(u_{*}+\varepsilon \psi\right) \mathrm{d} x \\
\leq\{ & \left.\int_{\Omega} \nabla u_{*} \nabla \psi \mathrm{~d} x+\int_{\Omega} \phi_{u_{*}} u_{*} \psi \mathrm{~d} x-\int_{\Omega} f(x) u_{*}^{-\gamma} \psi \mathrm{d} x\right\} \\
& -\frac{1}{\varepsilon} \int_{\left[u_{*}+\varepsilon \psi<0\right]}\left[\nabla u_{*} \nabla u_{*}+\phi_{u_{*}} u_{*}^{2}\right] \mathrm{d} x-\int_{\left[u_{*}+\varepsilon \psi<0\right]}\left[\nabla u_{*} \nabla \psi+\phi_{u_{*}} u_{*} \psi\right] \mathrm{d} x \\
\leq & \left\{\int_{\Omega} \nabla u_{*} \nabla \psi \mathrm{~d} x+\int_{\Omega} \phi_{u_{*}} u_{*} \psi \mathrm{~d} x-\int_{\Omega} f(x) u_{*}^{-\gamma} \psi \mathrm{d} x\right\}-\int_{\left[u_{*}+\varepsilon \psi<0\right]}\left[\nabla u_{*} \nabla \psi+\phi_{u_{*}} u_{*} \psi\right] \mathrm{d} x .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0^{+}$to the above inequality and using the fact that meas $\left[u_{*}+\varepsilon \psi<0\right] \rightarrow 0$ as $\varepsilon \rightarrow 0^{+}$, we have

$$
\int_{\Omega} \nabla u_{*} \nabla \psi \mathrm{~d} x+\int_{\Omega} \phi_{u_{*}} u_{*} \psi \mathrm{~d} x-\int_{\Omega} f(x) u_{*}^{-\gamma} \psi \mathrm{d} x \geq 0, \quad \forall \psi \in H_{0}^{1}(\Omega)
$$

This inequality also holds for $-\psi$, hence we obtain

$$
\begin{equation*}
\int_{\Omega} \nabla u_{*} \nabla \psi \mathrm{~d} x+\int_{\Omega} \phi_{u_{*}} u_{*} \psi \mathrm{~d} x-\int_{\Omega} f(x) u_{*}^{-\gamma} \psi \mathrm{d} x=0, \quad \forall \psi \in H_{0}^{1}(\Omega) \tag{2.12}
\end{equation*}
$$

Thus $u_{*} \in H_{0}^{1}(\Omega)$ is a solution of system (SP).
Step 6. u_{*} is a unique solution of system (SP).
Suppose $v_{*} \in H_{0}^{1}(\Omega)$ is also a solution of system (SP), then for any $\psi \in H_{0}^{1}(\Omega)$, we have

$$
\begin{equation*}
\int_{\Omega} \nabla v_{*} \nabla \psi \mathrm{~d} x+\int_{\Omega} \phi_{v_{*}} v_{*} \psi \mathrm{~d} x-\int_{\Omega} f(x) v_{*}^{-\gamma} \psi \mathrm{d} x=0, \quad \forall \psi \in H_{0}^{1}(\Omega) \tag{2.13}
\end{equation*}
$$

Taking $\psi=u_{*}-v_{*}$ in both equations (2.12)-(2.13) and subtracting term by term, we obtain

$$
\begin{aligned}
0 & \geq \int_{\Omega} f(x)\left(u_{*}^{-\gamma}-v_{*}^{-\gamma}\right)\left(u_{*}-v_{*}\right) \mathrm{d} x \\
& =\left\|u_{*}-v_{*}\right\|^{2}+\int_{\Omega}\left(\phi_{u_{*}} u_{*}-\phi_{v_{*}} v_{*}\right)\left(u_{*}-v_{*}\right) \mathrm{d} x \\
& \geq\left\|u_{*}-v_{*}\right\|^{2}+\frac{1}{2}\left\|\phi_{u_{*}}-\phi_{v_{*}}\right\|^{2} \geq\left\|u_{*}-v_{*}\right\|^{2} \geq 0
\end{aligned}
$$

where we use Lemma 2.1 (vii). So $\left\|u_{*}-v_{*}\right\|^{2}=0$, then $u_{*}=v_{*}$ and u_{*} is the unique solution of system (SP).

Proof of Theorem 1.2. Since $u_{1}, u_{2} \in H_{0}^{1}(\Omega)$ are two positive solutions of system (SP) corresponding to f_{1} and f_{2} respectively, then for any $\psi \in H_{0}^{1}(\Omega)$, we have

$$
\begin{aligned}
& \int_{\Omega} \nabla u_{1} \nabla \psi \mathrm{~d} x+\int_{\Omega} \phi_{u_{1}} u_{1} \psi \mathrm{~d} x-\int_{\Omega} f_{1}(x) u_{1}^{-\gamma} \psi \mathrm{d} x=0, \\
& \int_{\Omega} \nabla u_{2} \nabla \psi \mathrm{~d} x+\int_{\Omega} \phi_{u_{2}} u_{2} \psi \mathrm{~d} x-\int_{\Omega} f_{2}(x) u_{2}^{-\gamma} \psi \mathrm{d} x=0 .
\end{aligned}
$$

Set $\Omega_{1}=\left\{x \mid u_{2}(x) \geq u_{1}(x), x \in \Omega\right\}$, then subtracting the above two equations and choosing $\psi=\left(u_{2}-u_{1}\right)^{+} \in H_{0}^{1}(\Omega)$ yield

$$
\begin{aligned}
0 & \geq \int_{\Omega}\left(f_{2}(x) u_{2}^{-\gamma}-f_{1}(x) u_{1}^{-\gamma}\right)\left(u_{2}-u_{1}\right)^{+} \mathrm{d} x \\
& =\left\|\left(u_{2}-u_{1}\right)^{+}\right\|^{2}+\int_{\Omega}\left(\phi_{u_{2}} u_{2}-\phi_{u_{1}} u_{1}\right)\left(u_{2}-u_{1}\right)^{+} \mathrm{d} x \\
& =\left\|\left(u_{2}-u_{1}\right)^{+}\right\|^{2}+\int_{\Omega_{1}}\left(\phi_{u_{2}} u_{2}-\phi_{u_{1}} u_{1}\right)\left(u_{2}-u_{1}\right) \mathrm{d} x \\
& \geq\left\|\left(u_{2}-u_{1}\right)^{+}\right\|^{2} \geq 0,
\end{aligned}
$$

where we use $f_{1} \geq f_{2}, \gamma>1$ and Lemma 2.1 (vii). So $\left(u_{2}-u_{1}\right)^{+} \equiv 0$ and hence $u_{1} \geq u_{2}$.
Proof of Theorem 1.3. The proof is exactly the same as Sun and Tan [21]. We omit the details here.

Proof of Theorem 1.4. We prove Theorem 1.4 by contradiction that $\sup _{\Omega} u<+\infty$. Motivated by Sun and Tan [21], Choose a sequence of test functions $\left\{\varphi_{\delta}\right\} \subset C_{0}^{\infty}(\Omega)$ satisfying $0 \leq \varphi_{\delta} \leq 1$, $\varphi_{\delta} \equiv 0$ in $B_{\delta}(0), \varphi_{\delta} \equiv 1$ in $B_{5 \delta / 3}(0) \backslash B_{4 \delta / 3}(0), \varphi_{\delta} \equiv 0$ in $\Omega \backslash B_{2 \delta}(0)$ and $\left|\Delta \varphi_{\delta}\right| \leq \frac{C_{5}}{\delta^{2}}$ in Ω. Thus, we have

$$
\begin{equation*}
\int_{\Omega} \nabla u \nabla \varphi_{\delta} \mathrm{d} x+\int_{\Omega} \phi_{u} u \varphi_{\delta} \mathrm{d} x-\int_{\Omega}|x|^{-\alpha} u^{-\gamma} \varphi_{\delta} \mathrm{d} x=0 . \tag{2.14}
\end{equation*}
$$

According to the definition of $\varphi_{\delta}(x)$ and $\gamma>0$, we have

$$
\begin{aligned}
\int_{\Omega}|x|^{-\alpha} u^{-\gamma} \varphi_{\delta} \mathrm{d} x & =\int_{B_{2 \delta}(0) \backslash B_{\delta}(0)}|x|^{-\alpha} u^{-\gamma} \varphi_{\delta} \mathrm{d} x \\
& \geq\left(\sup _{\Omega} u\right)^{-\gamma} \int_{B_{2 \delta}(0) \backslash B_{\delta}(0)}|x|^{-\alpha} \varphi_{\delta} \mathrm{d} x \\
& \geq\left(\sup _{\Omega} u\right)^{-\gamma} \int_{B_{5 \delta / 3}(0) \backslash B_{4 \delta / 3}(0)}|x|^{-\alpha} \mathrm{d} x \\
& =\left(\sup _{\Omega} u\right)^{-\gamma} \frac{4 \pi}{3-\alpha}\left[\left(\frac{5}{3}\right)^{3-\alpha}-\left(\frac{4}{3}\right)^{3-\alpha}\right] \delta^{3-\alpha} .
\end{aligned}
$$

On the other hand, by Sobolev inequalities and Lemma 2.1 (i), (iv), we have

$$
\begin{aligned}
\int_{\Omega} \nabla u \nabla \varphi_{\delta} \mathrm{d} x+\int_{\Omega} \phi_{u} u \varphi_{\delta} \mathrm{d} x & =-\int_{\Omega} u \Delta \varphi_{\delta} \mathrm{d} x+\int_{\Omega} \phi_{u} u \varphi_{\delta} \mathrm{d} x \\
& \leq \int_{\Omega} u\left|\Delta \varphi_{\delta}\right| \mathrm{d} x+\int_{\Omega} \phi_{u} u \varphi_{\delta} \mathrm{d} x \\
& \leq\left(\sup _{\Omega} u\right)\left[\int_{\Omega}\left|\Delta \varphi_{\delta}\right| \mathrm{d} x+\int_{\Omega} \phi_{u} \varphi_{\delta} \mathrm{d} x\right] \\
& \leq\left(\sup _{\Omega} u\right)\left[\int_{B_{2 \delta}(0) \backslash B_{\delta}(0)}\left|\Delta \varphi_{\delta}\right| \mathrm{d} x+\int_{B_{2 \delta}(0) \backslash B_{\delta}(0)} \phi_{u} \mathrm{~d} x\right] \\
& \leq\left(\sup _{\Omega} u\right)\left[\frac{22 \pi C_{5} \delta}{3}+C_{6}\|u\|^{2} \delta^{5 / 2}\right] .
\end{aligned}
$$

Therefore

$$
\left(\sup _{\Omega} u\right)^{1+\gamma} \geq \frac{12 \pi}{(3-\alpha)\left[28 \pi C_{5}+3 C_{6}\|u\|^{2} \delta^{3 / 2}\right]}\left[\left(\frac{5}{3}\right)^{3-\alpha}-\left(\frac{4}{3}\right)^{3-\alpha}\right] \delta^{2-\alpha} \rightarrow+\infty
$$

a contradiction as $\delta \rightarrow 0^{+}$since $\alpha>2$ and this ends the proof of Theorem 1.4.

Acknowledgements

The authors thank the anonymous referee for carefully reading and useful comments. This work was supported by the NNSF of China (No. 11871152, 11671085), NSF of Fujian Province (No. 2019J01089) and Program for New Century Excellent Talents in Fujian Province University (2018).

References

[1] L. Boccardo, L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations 37(2010), No. 3-4, 363-380. https://doi.org/10.1007/ s00526-009-0266-x; MR2592976; Zbl 1187.35081
[2] S. Cong, Y. Han, Compatibility conditions for the existence of weak solutions to a singular elliptic equation, Bound. Value Probl. 2015(2015), No. 27, 1-11. https://doi.org/10. 1186/s13661-015-0285-9; MR3311506; Zbl 1316.35137
[3] A. Fiscella, A fractional Kirchhoff problem involving a singular term and a critical nonlinearity, Adv. Nonlinear Anal. 8(2019), No. 1, 645-660. https://doi.org/10.1515/ anona-2017-0075; MR3918396; Zbl 1419.35035
[4] J. Giacomoni, K. Saoudi, Multiplicity of positive solutions for a singular and critical problem, Nonlinear Anal. 71(2009), No. 9, 4060-4077. https://doi.org/10.1016/j.na. 2009.02.087; MR2536312; Zbl 1175.35066
[5] Y. Jiang, H. Zhou, Schrödinger-Poisson system with singular potential, J. Math. Anal. Appl. 417(2014), No. 1, 411-438. https://doi.org/10.1016/j.jmaa.2014.03.034; MR3191436; Zbl 1312.35076
[6] A. Lazer, P. Mckenna, On a singular nonlinear elliptic boundary value problem, Proc. Am. Math. Soc. 111(1991), No. 3, 721-730. https://doi.org/10.1090/S0002-9939-1991-1037213-9; MR1037213; Zbl 0727.35057
[7] C. Lei, J. Liao, Multiple positive solutions for Schrödinger-Poisson system involving singularity and critical exponent, Math. Meth. Appl. Sci. 42(2019), No. 7, 2417-2430. https : //doi.org/10.1002/mma.5519; MR3936410; Zbl 1418.35099
[8] C. Lei, J. Liao, Multiple positive solutions for Kirchhoff type problems with singularity and asymptotically linear nonlinearities, Appl. Math. Lett. 94(2019), 279-285. https:// doi.org/10.1016/j.aml.2019.03.007; MR3926814; Zbl 1412.35022
[9] C. Lei, J. Liao, C. Tang, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents, J. Math. Anal. Appl. 421(2015), No. 1, 521-538. https : //doi.org/10.1016/j.jmaa.2014.07.031; MR3250494; Zbl 1323.35016
[10] C. Lei, H. Suo, C. Chu, Multiple positive solutions for a Schrödinger-Newton system with singularity and critical growth, Electron. J. Differential Equations 2018, No. 86, 1-15. MR3831832; Zbl 1387.35270
[11] Q. Li, W. Gao, Existence of weak solutions to a class of singular elliptic equations, Mediterr. J. Math. 13(2016), No. 6, 4917-4927. https://doi.org/10.1007/s00009-016-0782-9; MR3564541; Zbl 1354.35053
[12] Q. Li, W. Gao, Y. Han, Existence of solution for a singular elliptic equation of Kirchhoff type, Mediterr. J. Math. 14(2017), No. 231, 1-13. https://doi.org/10.1007/s00009-017-1033-4; MR3717825; Zbl 1387.35344
[13] F. Li, Z. Song, Q. Zhang, Existence and uniqueness results for Kirchhoff-SchrödingerPoisson system with general singularity, Appl. Anal. 96(2017), No. 16, 2906-2916. https: //doi.org/10.1080/00036811.2016.1253065; MR3731422; Zbl 1379.35141
[14] H. Li, Y. Tang, J. Liao, Existence and multiplicity of positive solutions for a class of singular Kirchhoff type problems with sign-changing potential, Math. Meth. Appl. Sci. 41(2018), No. 8, 2971-2986. https://doi.org/10.1002/mma.4795; MR3805102; Zbl 1400.35107
[15] J. Liu, A. Hou, J. Liao, Multiplicity of positive solutions for a class of singular elliptic equations with critical Sobolev exponent and Kirchhoff-type nonlocal term, Electron. J. Qual. Theory Differ. Equ. 2018, No. 100, 1-20. https://doi.org/10.14232/ejqtde. 2018. 1.100; MR3896824; Zbl 07065591
[16] X. Liu, Y. Sun, Multiple positive solutions for Kirchhoff type problems with singularity, Commun. Pure Appl. Anal. 12(2013), No. 2, 721-733. https://doi.org/10.3934/cpaa. 2013.12.721; MR2982786; Zbl 1270.35242
[17] M. Mu, H. Lu, Existence and multiplicity of positive solutions for Schrödinger-KirchhoffPoisson system with singularity, J. Funct. Spaces 2017(2017), No. 5985962, 1-12. https: //doi.org/10.1155/2017/5985962; MR3647535; Zbl 1371.35035
[18] C. Santos, L. Santos, M. Carvalho, Equivalent conditions for existence of three solutions for a problem with discontinuous and strongly-singular terms, published online of arXiv, 2019. https://arxiv.org/abs/1901.00165
[19] J. Shi, M. Yao, On a singular semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A 128(1998), No. 6, 1389-1401. https://doi.org/10.1017/S0308210500027384; MR1663988; Zbl 0919.35044
[20] Y. Sun, Compatibility phenomena in singular problems, Proc. Roy. Soc. Edinburgh Sect. A 143(2013), No. 6, 1321-1330. https://doi.org/10.1017/S030821051100117X; MR3134198; Zbl 1297.35103
[21] Y. Sun, Y. Tan, Kirchhoff type equations with strong singularities, Commun. Pure Appl. Anal. 18(2019), No. 1, 181-193. https://doi.org/10.3934/cpaa.2019010; MR3845561; Zbl 1401.35088
[22] Y. Sun, D. Zhang, The role of the power 3 for elliptic equations with negative exponents, Calc. Var. Partial Differential Equations 49(2014), No. 3-4, 909-922. https://doi.org/10. 1007/s00526-013-0604-x; MR3168615; Zbl 1291.35073
[23] Y. Tan, Y. Sun, Semilinear elliptic equations with strong singularity, J. Univ. Chinese Acad. Sci. 34(2017), No. 6, 660-666. http://journal.ucas.ac.cn/EN/10.7523/j.issn.20956134.2017.06.002
[24] Y. Tang, J. Liao, C. Tang, Two positive solutions for Kirchhoff type problems with Hardy-Sobolev critical exponent and singular nonlinearities, Taiwanese J. Math. 23(2019), No. 1, 231-253. https://doi.org/10.11650/tjm/180705; MR3909997; Zbl 1411.35121
[25] L. Wang, Multiple positive solutions for a kind of singular Schrödinger-Poisson system, Appl. Anal., appeared online (2018), 15 pp. https://doi.org/10.1080/00036811.2018. 1491035
[26] D. Wang, B. Yan, A uniqueness result for some Kirchhoff-type equations with negative exponents, Appl. Math. Lett. 92(2019), 93-98. https://doi.org/10.1016/j .aml.2019.01. 002; MR3903183; Zbl 1412.35007
[27] S. Yu, J. Chen, Uniqueness and asymptotical behavior of solutions to a Choquard equation with singularity, Appl. Math. Lett. 102(2020), No. 106099, 6 pp. https://doi. org/10. 1016/j.aml.2019.106099; MR4023938
[28] Q. Zhang, Existence, uniqueness and multiplicity of positive solutions for SchrödingerPoisson system with singularity, J. Math. Anal. Appl. 437(2016), No. 1, 160-180. https: //doi.org/10.1016/j.jmaa.2015.12.061; MR3451961; Zbl 1334.35048
[29] Q. Zhang, Multiple positive solutions for Kirchhoff-Schrödinger-Poisson system with general singularity, Bound. Value Probl. 2017(2017), No. 127, 1-17. https://doi.org/10. 1186/s13661-017-0858-x; MR3691292; Zbl 1379.35129
[30] Z. Zhang, J. Cheng, Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems, Nonlinear Anal. 57(2004), No. 3, 473-484. https://doi.org/10.1016/ j.na.2004.02.025; MR2064102; Zbl 1096.35050

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: yushengbin.8@163.com

