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Received 24 August 2019, appeared 22 October 2019

Communicated by Stevo Stević

Abstract. We study the higher order difference equations of the following form

∆mxn = an f (xσ(n)) + bn.

We are interested in the asymptotic behavior of solutions x of the above equation. As-
suming f is a power type function and ∆myn = bn, we present sufficient conditions that
guarantee the existence of a solution x such that

xn = yn + o(ns),

where s ≤ 0 is fixed. We establish also conditions under which for a given solution x
there exists a sequence y such that ∆myn = bn and x has the above asymptotic behavior.
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1 Introduction

We use the standard symbol N to denote the set of all positive integers. Analogously R

denotes the set of all real numbers. In this paper we assume that

m ∈N, f : R→ R, σ : N→N, lim
n→∞

σ(n) = ∞.

We consider difference equations of the form

∆mxn = an f (xσ(n)) + bn (E)

where an, bn ∈ R. We say that a sequence x : N → R is a solution of (E) if there exists an
index q such that (E) is satisfied for any n ≥ q.

Asymptotic properties of solutions were investigated by many authors. Some classical
results on asymptotic behavior of solutions of differential equations can be found in [8, 9, 12,
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14, 22–25]. For the case of difference equations, see, e.g., [6, 7, 15, 17, 18, 26–36]. With respect to
dynamic equations on time-scales we refer the reader to [1–4].

The main purpose of this paper is to generalize the following theorem.

Theorem 1.1. Assume σ : N→N, y : N→ R, ∆my = b, s ∈ (−∞, 0], λ ∈ (0, ∞),

lim
n→∞

σ(n) = ∞, lim
n→∞

yn = ∞,
∞

∑
n=1

nm−1−s|an| < ∞,

and f is continuous and bounded on [λ, ∞). Then there exists a solution x of (E) such that xn =

yn + o(ns).

This theorem follows from [18, Theorem 4.7] or [20, Theorem 4.1]. Some specific cases have
been proved in [15, Theorem 5.1], [16, Theorem 5.1], or [19, Theorem 4.1]. The generalization
consists in replacing the condition “ f is bounded on [λ, ∞)” by the condition “ f is of power
type on [λ, ∞)”. The last condition means that there exists a constant µ ∈ [0, ∞) such that the
function t−µ f (t) is bounded on [λ, ∞), i.e. f (t) = O(tµ). If σ(n) = n, µ ∈ [0, ∞), and f (t) = tµ

then equation (E) takes the form
∆mxn = anxµ

n + bn

which is the ”positive part” of discrete Emden–Fowler equation

∆mxn = an|xn|µ sgn xn + bn.

Asymptotic properties of solutions to discrete Emden–Fowler type equations were investi-
gated, for example, in [5, 10, 11, 13, 27, 35].

The paper is organized as follows. In Section 2, we introduce notation and terminol-
ogy. In Section 3, in Theorem 3.1, we obtain our main result. In Theorem 3.1 the condition
∑∞

n=1 nm−1−s|an| < ∞ from Theorem 1.1 is replaced by a stronger condition
∞

∑
n=1

nα+m−1−s|an| < ∞ (1.1)

where α is a non-negative constant dependent on the order of growth of f , the order of growth
of y, and the order of growth of σ. In Section 4, in Theorem 4.2, we show that constant α is
properly chosen, i.e. that condition (1.1) is not too strong. Section 5 is devoted to the problem
of approximation of solutions. In Section 6 we give some remarks and additional results.

2 Preliminaries

We use the symbol RN to denote the space of all sequences x : N → R. If x ∈ RN, then |x|
denotes the sequence defined by |x|(n) = |xn|. Moreover

‖x‖ = sup
n∈N

|xn|, c0 = {z : N→ R : lim
n→∞

zn = 0},

A(m) :=

{
x ∈ RN :

∞

∑
n=1

nm−1|xn| < ∞

}
, rm : A(m)→ c0,

rm(x)(n) =
∞

∑
k=n

(
k− n + m− 1

m− 1

)
xk =

∞

∑
k=0

(
m + k− 1

m− 1

)
xn+k.

It is not difficult to see that A(m) is a linear subspace of c0 and rm is a linear operator. We will
use the following two lemmas.
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Lemma 2.1. Assume s ∈ (−∞, 0], p ∈N, and ∑∞
n=1 nm−1−s|un| < ∞. Then

rm(|u|)(p) ≤
∞

∑
k=p

km−1|uk|, rm(u)(n) = o(ns), and ∆m(rm(u))(p) = (−1)mup.

Proof. This lemma follows from [17, Lemma 4.1 and Lemma 4.2].

Let us recall that a topological space X has a fixed point property if every continuous map
U : X → X has a fixed point.

Lemma 2.2 ([17, Lemma 4.7]). Let y be an arbitrary real sequence and let γ be a sequence which is
positive and convergent to zero. Then the space {u ∈ RN : |u− y| ≤ γ} with respect to the uniform
convergence topology has a fixed point property.

3 Solutions with prescribed asymptotic behavior

In this section, in Theorem 3.1, we present our main result. Next, in Corollary 3.5 we establish
conditions under which there exist asymptotically polynomial solutions of equation (E).

Theorem 3.1. Assume y : N→ R, ∆my = b, lim
n→∞

yn = ∞, s ∈ (−∞, 0], λ ∈ (0, ∞),

µ ∈ [0, ∞), τ, ω,∈ (0, ∞), f (t) = O(tµ), yn = O(nτ), σ(n) = O(nω),

∞

∑
n=1

nµτω+m−1−s|an| < ∞, (3.1)

and f is continuous on [λ, ∞). Then there exists a solution x of (E) such that

xn = yn + o(ns).

Proof. There exist positive constants L, Q such that

|yn| ≤ Qnτ, σ(n) ≤ Lnω

for n ∈N. We may assume that there exists a positive constant K such that

| f (t)| ≤ Ktµ

for t ∈ [λ, ∞). Define a constant M and sequences α, ρ by

M = (2QLτ)µK, αn = nµτω|an|, ρ = rm(α). (3.2)

Then, by the conditions of the theorem and Lemma 2.1, we have α ∈ A(m) and ρn = o(1).
There exists an index p1 ∈N such that

Mρn ≤ 1, and yn ≥ λ + 1

for n ≥ p1. Let

S = {x ∈ RN : |x− y| ≤ Mρ and xn = yn for n < p1}.

There exists an index p2 such that p2 ≥ p1 and σ(n) ≥ p1 for n ≥ p2. If x ∈ S, n ≥ p1, then

|xn − yn| ≤ Mρn ≤ 1 and yn ≥ λ + 1.
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Hence xn ≥ yn − 1 ≥ λ + 1− 1 = λ. Therefore

xσ(n) ≥ λ (3.3)

for any x ∈ S and any n ≥ p2. Let x ∈ S. If n ≥ p2, then

| f (xσ(n))| ≤ Kxµ

σ(n) = K(xσ(n) − yσ(n) + yσ(n))
µ ≤ K(|xσ(n) − yσ(n)|+ |yσ(n)|)µ

≤ K(Mρσ(n) + |yσ(n)|)µ ≤ K(1 + |yσ(n)|)µ ≤ K(2|yσ(n)|)µ

≤ K2µ(Qσ(n)τ)µ ≤ K2µQµ(Lnω)τµ = K2µQµLτµnµτω.

Hence
| f (xσ(n))| ≤ Mnµτω (3.4)

for any x ∈ S and any n ≥ p2. Let x ∈ RN, for n ∈N let

x∗n = an f (xσ(n)). (3.5)

Let x ∈ S. By (3.4), we have

|x∗n| ≤ |an|| f (xσ(n))| ≤ Mnµτω|an| = Mαn

for n ≥ p2. By (3.1) and (3.2), we get x∗ ∈ A(m). Hence we may define a sequence U(x) by

U(x)(n) =

{
yn for n < p2

yn + (−1)mrm(x∗)(n) for n ≥ p2.
(3.6)

If n ≥ p2, then

|U(x)(n)− yn| = |rm(x∗)(n)| ≤ rm(|x∗|)(n) ≤ Mrm(α)(n) = Mρn.

Therefore U(S) ⊂ S. We will show that the map U is continuous. Assume ε is a positive real
number. By (3.1),

∞

∑
n=1

nm−1nµτω|an| < ∞.

Select an index q ≥ p2 and a positive constant γ such that

2M
∞

∑
n=q

nµτω+m−1|an| < ε and γ
q

∑
n=1

nm−1|an| < ε. (3.7)

Let
x ∈ S, η = 1 + max(xσ(1), . . . , xσ(q)), W = [λ, η].

Since the function f is uniformly continuous on W, there exists a number δ ∈ (0, 1) such that

| f (r)− f (t)| ≤ γ

for any r, t ∈W such that |r− t| < δ. Select a sequence z ∈ S such that ‖z− x‖ < δ. Then

‖U(x)−U(z)‖ = sup
n≥p2

|rm(x∗)(n)− rm(z∗)(n)| = sup
n≥p2

|rm(x∗ − z∗)(n)|

≤ sup
n≥p2

rm(|x∗ − z∗|)(n) = rm(|x∗ − z∗|)(p2) ≤
∞

∑
n=p2

nm−1|x∗n − z∗n|

≤
q

∑
n=p2

nm−1|an|| f (xσ(n))− f (zσ(n))|+
∞

∑
n=q

nm−1|an|| f (xσ(n))− f (zσ(n))|

≤
q

∑
n=1

nm−1|an|γ +
∞

∑
n=q

nm−1|an|2Mnµτω < 2ε.
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Hence U is continuous and, by Lemma 2.2, there exists a sequence x ∈ S such that U(x) = x.
Then, by (3.6),

xn = yn + (−1)mrm(x∗)(n)

for n ≥ p2. Hence, using Lemma 2.1 and (3.5), for n ≥ p2, we obtain

∆mxn = ∆myn + (−1)m∆m(rm(x∗))(n) = bn + x∗n = an f (xσ(n)) + bn.

Moreover, since x ∈ S, we get |xn − yn| ≤ Mρn eventually. By Lemma 2.1, ρn = o(ns). Hence
xn − yn = o(ns) and we obtain

xn = yn + o(ns).

If the sequence b is “sufficiently small”, then in Theorem 3.1, in place of a solution y of
the equation ∆myn = bn we can take a polynomial sequence. More precisely, we have the
following result.

Corollary 3.2. Assume ϕn is a polynomial sequence, lim
n→∞

ϕn = ∞, s ∈ (−∞, 0],

µ ∈ [0, ∞), ω ∈ (0, ∞), τ ∈ (0, m), f (t) = O(tµ), ϕn = O(nτ), σ(n) = O(nω),

∞

∑
n=1

nµτω+m−1−s|an| < ∞,
∞

∑
n=1

nm−1−s|bn| < ∞, (3.8)

λ ∈ (0, ∞), and f is continuous on [λ, ∞). Then there exists a solution x of (E) such that

xn = ϕn + o(ns).

Proof. By [15, Lemma 2.3], there exists a sequence w such that wn = o(ns) and ∆mw = b. Let
y = ϕ + w. Then ∆my = ∆m ϕ + ∆mw = b and limn→∞ yn = ∞. By Theorem 3.1 there exists a
solution x of (E) such that xn = yn + o(ns). Hence

xn = ϕn + wn + o(ns) = ϕn + o(ns).

In the case of the classical Emden–Fowler discrete equation we obtain the following corol-
lary.

Corollary 3.3. Assume µ ∈ [0, ∞), s ∈ (−∞, 0],

∞

∑
n=1

n(µ+1)(m−1)−s|an| < ∞, and
∞

∑
n=1

nm−1−s|bn| < ∞. (3.9)

Then for any polynomial sequence ϕn such that deg ϕ < m, and lim
n→∞

ϕn = ∞, there exists a solution
x of the equation

∆mxn = anxµ
n + bn (3.10)

such that xn = ϕn + o(ns).

Proof. Let τ = m − 1 and ω = 1. Applying Corollary 3.2 to equation (3.10) we get the
result.

In particular, in the linear case, we obtain the following corollary.
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Corollary 3.4. Assume s ∈ (−∞, 0],

∞

∑
n=1

n2m−2−s|an| < ∞, and
∞

∑
n=1

nm−1−s|bn| < ∞.

Then for any polynomial sequence ϕn, such that deg ϕ < m, and lim
n→∞

ϕn = ∞, there exists a solution

x of the equation ∆mxn = anxn + bn such that xn = ϕn + o(ns).

The proof of the next theorem is similar to the proof of Theorem 3.1, therefore it will be
omitted.

Theorem 3.5. Assume y : N→ R, ∆my = b, lim
n→∞

yn = −∞, s ∈ (−∞, 0], λ ∈ (−∞, 0),

µ ∈ [0, ∞), τ, ω,∈ (0, ∞), yn = O(nτ), σ(n) = O(nω),
∞

∑
n=1

nµτω+m−1−s|an| < ∞,

the function f is continuous on (−∞, λ], and the function |t|−µ f (t) is bounded on (−∞, λ]. Then
there exists a solution x of (E) such that xn = yn + o(ns).

Of course, Corollary 3.2, Corollary 3.3, and Corollary 3.4 can be reformulated and proven
in a similar way. We leave it to the reader.

4 Necessary conditions

In this section we show that the condition of strong convergence of the sequence an in Theorem
3.1 is not too strong. More precisely, we present conditions under which the condition (3.8) in
Corollary 3.2 is necessary for the existence of asymptotically polynomial solution of equation
(E). We present the main results in Theorem 4.2 (in the case s = 0) and in Theorem 4.6 (in the
case s < 0).

Lemma 4.1. If zn = o(1) and the sequence ∆mzn is nonoscillatory, then

∞

∑
n=1

nm−1|∆mzn| < ∞.

Proof. This statement is a consequence of [17, Lemma 4.1 (f) and (b)].

Theorem 4.2. Assume ω, K, L ∈ (0, ∞), µ ∈ [0, ∞),

σ(n) ≥ Lnω, an ≥ 0, bn ≥ 0 for large n, f (t) ≥ Ktµ for large t,

ϕ is a polynomial sequence, deg ϕ = τ < m, lim
n→∞

ϕn = ∞, and a solution x of (E) exists such that

xn = ϕn + o(1). Then

∞

∑
n=1

nµτω+m−1|an| < ∞ and
∞

∑
n=1

nm−1|bn| < ∞.

Proof. There exists a positive number ε such that xn ≥ εnτ eventually. Select p1 ∈N such that

an ≥ 0, bn ≥ 0, σ(n) ≥ Lnω, xn ≥ εnτ
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for n ≥ p1. Select p2 ≥ p1 such that σ(n) ≥ p1 for n ≥ p2. For n ∈N let

un = an f (xσ(n)) + bn.

Then
un = ∆mxn = ∆m(ϕn + o(1)) = ∆m(o(1))

and un is nonoscillatory. Hence by Lemma 4.1, we get

∞

∑
n=1

nm−1|un| < ∞. (4.1)

Since an f (xσ(n)) ≥ 0 for large n, we have bn ≤ un for large n. By (4.1) we obtain

∞

∑
n=1

nm−1|bn| < ∞.

If n ≥ p2, then

f (xσ(n)) ≥ Kxµ

σ(n) ≥ K(εσ(n)τ)µ ≥ K(ε(Lnω)τ)µ = KεµLτµnωτµ.

Hence there exists a positive constant δ such that

f (xσ(n)) ≥ δnµτω

for n ≥ p2. If n ≥ p2, then we get

nµτω|an| ≤ δ−1|an| f (xσ(n)) ≤ δ−1|un|.

Now, by (4.1), we obtain
∞

∑
n=1

nµτω+m−1|an| < ∞.

Using Theorem 4.2 to the case of classical discrete Emden–Fowler equation we get:

Corollary 4.3. Assume µ ∈ [0, ∞), an ≥ 0, bn ≥ 0 eventually, ϕ is a polynomial sequence of degree
m− 1, limn→∞ ϕn = ∞, and there exists a solution x of the equation

∆mxn = anxµ
n + bn

such that xn = ϕn + o(1). Then

∞

∑
n=1

n(µ+1)(m−1)|an| < ∞ and
∞

∑
n=1

nm−1|bn| < ∞.

The case s < 0 is, unexpectedly, more difficult. In this case we get a slightly weaker result.
First, we will prove two lemmas.

Lemma 4.4. Assume s ∈ (−∞, 0] and zn = o(ns), then for every ε > 0 the series

∞

∑
n=1

∆zn

ns+ε

is convergent.
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Proof. Let ε be a positive real number and let t = −s − ε. By [15, Theorem 2.2], we have
∆nt = O(nt−1). Hence

nt∆zn = ntzn+1 − ntzn = ntzn+1 − (n + 1)tzn+1 + (n + 1)tzn+1 − ntzn

= −zn+1∆nt + ∆(ntzn) = ∆(ntzn) + zn+1O(nt−1) = ∆(ntzn) + zn+1nt−1O(1).

Moreover

zn+1nt−1 = zn+1n−s−εn−1 =
zn+1

(n + 1)s

(
n + 1

n

)s 1
n1+ε

= o(1)O(1)
1

n1+ε
= O

(
1

n1+ε

)
.

Therefore the series
∞

∑
n=1

zn+1nt−1O(1) =
∞

∑
n=1

O
(

1
n1+ε

)
is convergent. Since ntzn = o(1), the series

∞

∑
n=1

∆(ntzn)

is convergent, too. Thus we obtain the convergence of the series

∞

∑
n=1

∆zn

ns+ε
=

∞

∑
n=1

nt∆zn =
∞

∑
n=1

∆(ntzn) +
∞

∑
n=1

zn+1nt−1O(1).

Lemma 4.5. Assume m ∈ N, s ∈ (−∞, 0), zn = o(ns), and the sequence ∆mzn is nonoscillatory for
large n. Then for every ε > 0 the series

∞

∑
n=1

∆mzn

ns+ε−m+1

is convergent.

Proof. Induction on m. By Lemma 4.4, the assertion is true for m = 1. Assume it is true for
some m ≥ 1 and the sequence ∆m+1zn is nonoscillatory for large n. Moreover, assume that
∆m+1zn ≥ 0 for large n. Let

yn = ∆mzn.

Then yn = o(1) and ∆yn ≥ 0 for large n. Hence ∆mzn = yn ≤ 0 for large n. Obviously, we
may assume, that

∆mzn = yn < 0 (4.2)

eventually. Select an ε > 0 and let

λ ∈ (0, ε) ∩ (0,−s). (4.3)

By inductive hypothesis the series
∞

∑
n=1

yn

ns+λ−m+1

is convergent. Let
t = m− 1− s− λ.
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By (4.3), t > 0. Using de l’Hospital Theorem we obtain the following known limit

lim
n→∞

∆nt+1

nt = lim
n→∞

(n + 1)t+1 − nt+1

n−1nt+1 = lim
n→∞

(1 + n−1)t+1 − 1
n−1

= lim
n→∞

(t + 1)(1 + n−1)t(−n−2)

−n−2 = t + 1.

Hence, by the Cesàro–Stolz theorem, we obtain

lim
n→∞

1t + 2t + · · ·+ nt

nt+1 = lim
n→∞

(n + 1)t

∆nt+1 = lim
n→∞

(
n + 1

n

)t nt

∆nt+1 =
1

t + 1
. (4.4)

Let u0 = 0, c1 = 0, S = ∑∞
k=1 ktyk. For n ≥ 1 let

un =
n

∑
k=1

ktyk, bn = y−1
n , cn+1 =

n

∑
k=1

(bk+1 − bk)uk.

Then

lim
n→∞

cn+1 − cn

bn+1 − bn
= lim

n→∞

(bn+1 − bn)un

bn+1 − bn
= lim

n→∞
un = S. (4.5)

Note that limn→∞ yn = 0. Moreover, by assumption ∆yn ≥ 0 eventually. By (4.2), yn < 0
eventually. Hence the sequence bn is eventually monotonic and limn→∞ bn = −∞. Using (4.5)
and Cesàro–Stolz theorem we get

lim
n→∞

yncn = lim
n→∞

cn

bn
= S.

Since bk(uk − uk−1) = kt, we have

yn

n

∑
k=1

kt = yn

n

∑
k=1

bk(uk − uk−1)

= yn(b1(u1 − u0) + b2(u2 − u1) + · · ·+ bn(un − un−1))

= yn(−b1u0 − (b2 − b1)u1 − (b3 − b1)u2 + · · · − (bn − bn−1)un−1 + bnun)

= ynbnun − yncn = un − yncn.

Hence

lim
n→∞

yn

n

∑
k=1

kt = S− S = 0.

Therefore, by (4.4) we get

lim
n→∞

nt+1yn = lim
n→∞

nt+1

∑n
k=1 kt

(
n

∑
k=1

kt

)
yn = (t + 1)0 = 0.

Thus yn = o(n−t−1) = o(ns+λ−m) and, by Lemma 4.4, the series

∞

∑
n=1

∆m+1zn

ns+ε−m =
∞

∑
n=1

∆yn

ns+λ−m+(ε−λ)

is convergent.

Using Lemma 4.5 in place of Lemma 4.1 in the proof of Theorem 4.2 we obtain the follow-
ing result.
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Theorem 4.6. Assume ω, K, L ∈ (0, ∞), µ ∈ [0, ∞), s ∈ (−∞, 0]

σ(n) ≥ Lnω, an ≥ 0, bn ≥ 0 for large n, f (t) ≥ Ktµ for large t,

ϕ is a polynomial sequence, deg ϕ = τ < m, lim
n→∞

ϕn = ∞, and there exists a solution x of (E) such

that xn = ϕn + o(ns). Then for any ε > 0 we have

∞

∑
n=1

nµτω+m−1−s−ε|an| < ∞ and
∞

∑
n=1

nm−1−s−ε|bn| < ∞. (4.6)

Remark 4.7. The problem of whether condition (4.6) in Theorem 4.6 can be replaced by

∞

∑
n=1

nµτω+m−1−s|an| < ∞ and
∞

∑
n=1

nm−1−s|bn| < ∞.

remains open.

5 Approximation of solutions

In this section we establish conditions under which a given solution x of (E) can be approxi-
mated by solutions of the equation ∆myn = bn. More precisely, we present conditions under
which for a given solution x of (E) and a given nonpositive real number s there exists a se-
quence y such that ∆myn = bn and xn = yn + o(ns).

Lemma 5.1. Assume b, x, u : N→ R, s ∈ (−∞, 0],

∆mxn = O(un) + bn, and
∞

∑
n=1

nm−1−s|un| < ∞.

Then there exists a sequence y such that ∆myn = bn and xn = yn + o(ns).

Proof. This statement follows from [17, Lemma 3.11 (a)].

Theorem 5.2. Assume s ∈ (−∞, 0], α ∈ [0, ∞), and

∞

∑
n=1

nα+m−1−s|an| < ∞.

Then for any solution x of (E) such that f (xσ(n)) = O(nα) there exists a sequence y such that ∆myn =

bn for any n and xn = yn + o(ns).

Proof. Assume x is a solution of (E) such that f (xσ(n)) = O(nα). There exists a positive constant
M such that the condition | f (xσ(n))| ≤ Mnα is satisfied for any n. Define a sequence u by the
formula

un = an f (xσ(n)).

Then
∞

∑
n=1

nm−1−s|un| ≤ M
∞

∑
n=1

nα+m−1−s|an| < ∞.

Since x is a solution of (E), we have ∆mxn = un + bn eventually. Hence, ∆mxn = O(un) + bn

and, by Lemma 5.1, there exists a sequence y such that ∆myn = bn and xn = yn + o(ns).
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Corollary 5.3. Assume s ∈ (−∞, 0], µ ∈ [0, ∞), τ, ω,∈ (0, ∞),

f (t) = O(tµ), σ(n) = O(nω), and
∞

∑
n=1

nµτω+m−1−s|an| < ∞.

Then for any solution x of (E) such that limn→∞ xn = ∞ and xn = O(nτ) there exists a solution y of
the equation ∆myn = bn such that xn = yn + o(ns).

Proof. It is easy to see that f (xσ(n)) = O(nµτω). Taking α = µτω in Theorem 5.2 we obtain the
result.

Theorem 5.4. Assume s ∈ (−∞, 0], α ∈ [0, ∞),

∞

∑
n=1

nα+m−1−s|an| < ∞, and
∞

∑
n=1

nm−1−s|bn| < ∞.

Then for any solution x of (E) such that f (xσ(n)) = O(nα) there exists a polynomial sequence ϕ such
that deg ϕ < m and xn = ϕn + o(ns).

Proof. Assume x is a solution of (E) such that f (xσ(n)) = O(nα). Define a sequence u by
un = an f (xσ(n)) + bn. Then ∆mxn = O(un) and

∞

∑
n=1

nm−1−s|un| < ∞.

By Lemma 5.1, there exists a solution ϕ of the equation ∆m ϕn = 0 such that

xn = ϕn + o(ns).

6 Remarks and additional results

The convergence of a series can be difficult to verify. In the classical mathematical analysis,
various criteria are known to check the convergence of a given series. Some of these criteria
have been generalized in [18]. These generalized criteria can be used to check the convergence
of series (3.1) or (3.8). In this way we can get a number of new results. Four of them are
presented below.

Corollary 6.1. Assume y : N→ R, ∆my = b, lim
n→∞

yn = ∞, s ∈ (−∞, 0], λ ∈ (0, ∞),

µ ∈ [0, ∞), τ, ω,∈ (0, ∞), f (t) = O(tµ), yn = O(nτ), σ(n) = O(nω),

lim inf
n→∞

n
(
|an|
|an+1|

− 1
)
> µτω + m− s, (6.1)

and f is continuous on [λ, ∞). Then there exists a solution x of (E) such that

xn = yn + o(ns).

Proof. By [18, Lemma 6.3] we get

∞

∑
n=1

nµτω+m−1−s|an| < ∞.

Hence the result follows from Theorem 3.1.
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Using [18, Lemma 6.3] and Corollary 3.2 we obtain the following result.

Corollary 6.2. Assume ϕn is a polynomial sequence, lim
n→∞

ϕn = ∞, s ∈ (−∞, 0],

µ ∈ [0, ∞), ω ∈ (0, ∞), τ ∈ (0, m), f (t) = O(tµ), ϕn = O(nτ), σ(n) = O(nω),

lim inf
n→∞

n
(
|an|
|an+1|

− 1
)
> µτω + m− s, lim inf

n→∞
n
(
|bn|
|bn+1|

− 1
)
> m− s,

λ ∈ (0, ∞), and f is continuous on [λ, ∞). Then there exists a solution x of (E) such that

xn = ϕn + o(ns).

Corollary 6.3. Assume s ∈ (−∞, 0], α ∈ [0, ∞), and

lim inf
n→∞

n
(
|an|
|an+1|

− 1
)
> α + m− s.

Then for any solution x of (E) such that f (xσ(n)) = O(nα) there exists a solution y of the equation
∆myn = bn such that xn = yn + o(ns).

Proof. This corollary follows from [18, Lemma 6.3] and Theorem 5.2.

Using [18, Lemma 6.4] and Corollary 3.3 we obtain the following corollary.

Corollary 6.4. Assume µ ∈ [0, ∞), s ∈ (−∞, 0],

lim inf
n→∞

n ln
|an|
|an+1|

> (µ + 1)(m− 1) + 1− s,

and

lim inf
n→∞

n ln
|bn|
|bn+1|

> m− s.

Then for any polynomial sequence ϕn, such that deg ϕ < m, and lim
n→∞

ϕn = ∞, there exists a solution

x of the equation ∆mxn = anxµ
n + bn such that xn = ϕn + o(ns).

We can also receive some new consequences of Theorem 5.2.

Corollary 6.5. Assume s ∈ (−∞, 0], α ∈ [0, ∞), and

lim sup
n→∞

ln |an|
ln n

< s−m− α.

Then for any solution x of (E) such that f (xσ(n)) = O(nα) there exists a sequence y such that ∆myn =

bn for any n and xn = yn + o(ns).

Proof. Using [18, Lemma 6.2] and Theorem 5.2 we obtain the result.

Corollary 6.6. Assume s ∈ (−∞, 0], α ∈ [0, ∞), µ ∈ (0, ∞), β = α/µ, and

lim sup
n→∞

ln |an|
ln n

< s−m− α.

Then for any positive solution x of the discrete Emden–Fowler equation

∆mxn = anxµ
n + bn

such that xn = O(nβ) there exists a sequence y such that ∆myn = bn for any n and xn = yn + o(ns).
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Proof. If xn = O(nβ), then xµ
n = O(nα). Hence the result follows from Corollary 6.5.

Corollary 6.7. Assume s ∈ (−∞, 0], µ ∈ [0, ∞), τ, ω,∈ (0, ∞),

f (t) = O(tµ), σ(n) = O(nω), and lim sup
n→∞

ln |an|
ln n

< s−m− µτω.

Then for any solution x of (E) such that limn→∞ xn = ∞ and xn = O(nτ) there exists a solution y of
the equation ∆myn = bn such that xn = yn + o(ns).

Proof. This corollary follows from [18, Lemma 6.2] and Corollary 5.3.

Remark 6.8. In Corollary 3.2, due to assumptions τ ∈ (0, m), lim
n→∞

ϕn = ∞ and ϕn = O(nτ),
the degree m of equation (E) fulfills the condition m > 1. On the other hand, in Theorem 3.1,
the case of m = 1 is not excluded.

Example 6.9. Assume m = 1, f (t) = t2, yn = n, bn = 1, σ(n) = n, µ = 2, τ = 1, ω = 1, s = 0,
and

an =
n

(n + 1)(n4 − 2n + 1)
.

Then ∆yn = bn and µτω + m− 1− s = 2. Hence, by Theorem 3.1 there exists a solution x of
the equation

∆xn =
nx2

n
(n + 1)(n4 − 2n + 1)

+ 1

such that xn = n + o(1). We leave the reader to check that the sequence xn = n + 1/n is such
a solution.

Our results in Sections 3 and 4 relate to unbounded solutions. Below we present three
facts about bounded solutions.

Theorem 6.10. Assume y is a bounded solution of the equation ∆myn = bn, s ∈ (−∞, 0],

q ∈N, α ∈ (0, ∞), U =
∞⋃

n=q
[yn − α, yn + α],

∞

∑
n=1

nm−1−s|an| < ∞,

and f is continuous on U. Then there exists a solution x of (E) such that xn = yn + o(ns).

Proof. The assertion is a consequence of [18, Corollary 4.8].

Corollary 6.11. Assume c ∈ R, s ∈ (−∞, 0], U is a neighborhood of c,

∞

∑
n=1

nm−1−s(|an|+ |bn|) < ∞,

and f is continuous on U. Then there exists a solution x of (E) such that xn = c + o(ns).

Proof. We omit the proof which is analogous to the proof of Corollary 3.2.

The next example shows that in the above corollary the continuity of f on U can not be
replaced by the continuity at the point c.
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Example 6.12. Let Q be the set of all rational numbers. Assume

m = 1, s = 0, σ(n) = n, bn = 0, α ∈ (0, 1), an = α2n
, c = 1,

and f is defined by

f (t) =

{
1 for t ∈ Q

t for t /∈ Q.

Then f is continuous at the point c,

∞

∑
n=1

nm−1−s(|an|+ |bn|) =
∞

∑
n=1

α2n
< ∞,

but, by [21, Example 1], there is no solution to equation (E) convergent to c.

Theorem 6.13. Assume an ≥ 0 and bn ≥ 0 eventually, c ∈ R, U is a neighborhood of c, δ ∈ (0, ∞),
f (t) ≥ δ for any t ∈ U, and there exists a solution x of (E) such that xn = c + o(1). Then

∞

∑
n=1

nm−1(|an|+ |bn|) < ∞.

Proof. For n ∈N let
un = an f (xσ(n)) + bn.

Then un = ∆mxn = ∆m(c + o(1)) = ∆m(o(1)) and un is nonoscillatory. By Lemma 4.1

∞

∑
n=1

nm−1|un| < ∞.

Since 0 ≤ bn ≤ un for large n, we get ∑∞
n=1 nm−1|bn| < ∞. Since f (xσ(n)) > δ eventually, we

get |an| ≤ δ−1|an| f (xσ(n)) ≤ δ−1|un|. Hence ∑∞
n=1 nm−1|an| < ∞.
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[33] S. Stević, General solution to a higher-order linear difference equation and existence of
bounded solutions, Adv. Difference Equ. 2017, Art. No. 377, 12 pp. https://doi.org/10.
1186/s13662-017-1432-7; MR3736631

https://doi.org/10.14232/ejqtde.2016.1.11
https://doi.org/10.14232/ejqtde.2016.1.11
https://www.ams.org/mathscinet-getitem?mr=3475095
https://doi.org/10.1063/1.4992315
https://www.ams.org/mathscinet-getitem?mr=2299594
https://doi.org/10.1016/j.aml.2005.10.013
https://doi.org/10.1016/j.aml.2005.10.013
https://www.ams.org/mathscinet-getitem?mr=2240473
https://doi.org/10.1016/j.amc.2009.09.059
https://doi.org/10.1016/j.amc.2009.09.059
https://www.ams.org/mathscinet-getitem?mr=2563424
https://doi.org/10.1016/s0362-546x(04)00323-2
https://doi.org/10.1016/s0362-546x(04)00323-2
https://www.ams.org/mathscinet-getitem?mr=2098511
https://doi.org/10.1007/bf02881078
https://www.ams.org/mathscinet-getitem?mr=913886
https://www.ams.org/mathscinet-getitem?mr=1921141
https://doi.org/10.1017/s1446181100013742
https://www.ams.org/mathscinet-getitem?mr=2075520
https://doi.org/10.1017/s1446181100008361
https://www.ams.org/mathscinet-getitem?mr=2124934
https://doi.org/10.1017/s1446181100008361
https://www.ams.org/mathscinet-getitem?mr=3663764
https://doi.org/10.3390/sym9100227
https://doi.org/10.1186/s13662-017-1350-8
https://doi.org/10.1186/s13662-017-1350-8
https://www.ams.org/mathscinet-getitem?mr=3696471
https://doi.org/10.1186/s13662-017-1432-7
https://doi.org/10.1186/s13662-017-1432-7
https://www.ams.org/mathscinet-getitem?mr=3736631


Solutions to difference equations of Emden–Fowler type 17

[34] E. Thandapani, R. Arul, J. R. Graef, P. W. Spikes, Asymptotic behavior of solutions
of second order difference equations with summable coefficients, Bull. Inst. Math. Acad.
Sinica 27(1999), 1–22. MR1681601

[35] W. F. Trench, Asymptotic behavior of solutions of Emden–Fowler difference equations
with oscillating coefficients, J. Math. Anal. Appl. 179(1993), 135–153. https://doi.org/
10.1006/jmaa.1993.1340; MR1244954

[36] A. Zafer, Oscillatory and asymptotic behavior of higher order difference equa-
tions, Math. Comput. Modelling 21(1995), No. 4, 43–50. https://doi.org/10.1016/0895-
7177(95)00005-m; MR1317929

https://www.ams.org/mathscinet-getitem?mr=1681601
https://doi.org/10.1006/jmaa.1993.1340
https://doi.org/10.1006/jmaa.1993.1340
https://www.ams.org/mathscinet-getitem?mr=1244954
https://doi.org/10.1016/0895-7177(95)00005-m
https://doi.org/10.1016/0895-7177(95)00005-m
https://www.ams.org/mathscinet-getitem?mr=1317929

	Introduction
	Preliminaries
	Solutions with prescribed asymptotic behavior
	Necessary conditions
	Approximation of solutions
	Remarks and additional results

