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In this study, a ratioless full-complementary 12-transistor static random access memory 

(SRAM) was developed and measured to evaluate its operation under an ultra low supply 

voltage range. The ratioless SRAM design concept enables a memory cell design that is 

free from the consideration of the static noise margin (SNM). Furthermore, it enables a 

SRAM function without the restriction of transistor parameter (W/L) settings and the 

dependence on the variability of device characteristics. The test chips that include both 

conventional six-transistor SRAM cells and the ratioless full-complementary 12-transistor 

SRAM cells were developed by a 180 nm CMOS process to compare their stable 

operations under an ultra low supply voltage condition. The measured results show that the 

ratioless full-complementary 12-transistor SRAM has superior immunity to device 

variability, and its inherent operating ability at the supply voltage of 0.22 V was 

experimentally confirmed.  
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1. Introduction 

For static random access memory (SRAM) using state-of-the-art processes of 

deep-submicron generation, it is becoming difficult to secure operating margins owing to 

the decrease in the power supply voltage and the increase in the device characteristic 

variation. Figure 1(a) shows a conventional six-transistor CMOS SRAM cell that has been 

widely used until now. In this circuit, the write operation is performed by transferring the 

data of bit lines through transfer transistors, while the read operation is performed by 

outputting the stored data to the bit lines through the same transfer transistors without 

destroying the data in the memory cell. To achieve both secure write and read operations 

with the same transfer transistors, the size of the transfer transistors should satisfy the 

allowable impedance ratios  that are so-called β-ratio and γ-ratio. As a method of 

quantitative evaluation for this design margin in SRAM cells, the static noise margin 

(SNM) index shown in Fig. 1(b) is generally used.
1-4)

 There are two types of SNM, namely, 

read-SNM (RSNM) and write-SNM (WSNM). A stable operation of a memory cell should 

satisfy both RSNM>0 and WSNM>0. Considering both the device characteristic variation 

and the device characteristic aging effect, the SNMs should be as high as possible to 

achieve a stable SRAM operation under various voltage and temperature conditions. In 

recent years, with device dimensions becoming very small, it is becoming difficult to 

secure these two SNMs simultaneously.  

Various techniques have been proposed to overcome this problem; however, all the 

circuits proposed as SRAM cells require either the ratio design or dynamic control in the 

three states of write, read, and write-half-select.
 5-23)

 We proposed a ratioless SRAM design 

with the ratioless 10-transistor SRAM cell.
24)

 This enables the memory cell design that is 

free from the consideration of SNM. We call the cell as a ‘ratioless SRAM cell’ since its 

operation is secured regardless of the sizes of all the transistors.  

In this study, we developed the ratioless 12-transistor SRAM (RL-12T-SRAM) test chip 

and measured it to evaluate its operation at ultra low supply voltages. This study consists 

of the following sections. In Sect. 2, previously proposed circuit techniques to improve the 

SRAM operating margins are briefly reviewed. In Sect. 3, the ratioless SRAM operation is 

explained. In Sect. 4, a test chip design using a 180 nm CMOS process and its 

experimental results of the minimum operating supply voltage and fail-bit distribution at 

ultra low voltages are explained. In Sect. 5, the effect of device variability on SRAM 

operations is discussed by comparing the measured data with the simulated results. 
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2. Prior improvements for SRAM operation margins 

In order to improve the operating margins for SRAM, various techniques have been 

proposed.
5-23)

 First, there are various techniques that try to improve RSNM and WSNM 

independently by optimizing the word line potential (Vwl) and/or the voltage of the power 

supply of the memory cell (Vcell) during read and write operations; however, these 

techniques still require the ratio design [Fig. 2(a)].
5)

 Second, there are other approaches to 

add more transistors to the memory cell. A circuit named 8T-SRAM has been proposed 

[Fig. 2(b)].
14)

 In this method, RSNM may be freely set since it has a dedicated read buffer. 

It is also possible to design the read cell current without any restriction in ratio design. 

However, with 8T-SRAM, in order to avoid the problem of half-selection during the write 

operation, either combining it with the write-after-read technique or further adding 

transistors to enable the cross-point selection by the row (WLx) and column (WLy) word 

lines is required, as shown in Figs. 2(c) and 2(d).
16-19)

 As a different approach, a technique 

has been proposed to make WSNM free by breaking the flip/flop loop during the write 

operation [Fig. 2(e)].
20)

 With a similar concept, another 7T configuration shown in Fig. 2(f) 

has been proposed to make RSNM temporarily free by dynamically breaking the loop 

during the read cycle.
21)

 In another category, there are 1-bit register file circuits that are 

shown in Figs. 2(g) and 2(h). These register file circuits are composed of ten transistors 

and they make both RSNM and WSNM free by collapsing Vcell or breaking the flip/flop 

loop and by having a dedicated read buffer such as the 8T cell.
22-23)

 These cells achieve a 

subthreshold operation; however, they cannot be directly applied to the SRAM cell array 

because the write-half-select problem is not solved because all the cells that share the same 

word line are accessed in the register file application. The conventional techniques 

discussed above are summarized in Table І. Some techniques have abilities of  

near-threshold or subthreshold operation.
 17-23)

 However, all the circuits proposed as SRAM 

cells require either the ratio design or dynamic control in the three states of write, read, and 

write-half-select. Additionally, the register file design does not consider the 

write-half-select state that is mandatory for SRAM applications. It is expected that 

sufficiently satisfying both RSNM and WSNM will be severely difficult for the existing 

circuit techniques in applications that require the robustness for operation over wide PVT 

variations. 
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3. Ratioless 12-transistor SRAM operation 

To overcome this problem, we proposed a ratioless SRAM design with the ratioless 

10-transistor SRAM cell.
24)

 Figures 3(a) and 3(b) show the basic logic block diagrams for 

the conventional six-transistor SRAM (6T-SRAM) and ratioless SRAM (RL-SRAM) cells. 

In addition to the 6T-SRAM cell, the RL-SRAM cell has INV3 and SW3. The 

complementary bit line pair is divided into the dedicated write bit line (WB) and dedicated 

read bit line (RB). Two word lines are prepared for the dedicated write word line (WWL) 

and dedicated read word line (RWL). The INV3 is the dedicated read buffer for driving the 

read bit line, while the SW3 is added to break the flip-flop loop in the write operation. We 

have reported the basic ratioless operation with the ratioless 10-transistor SRAM cell 

shown in Fig. 4(a), in which the input switch and output tristate inverter were configured 

with single channels.
24-25)

 However, for the low-supply-voltage operation, it was suggested 

that the full-complementary configuration of the 12-transistor ratioless cell, as shown in 

Fig. 4(b), would be suitable because it has rail-to-rail read and write capabilities, and 

achieves a fully static operation. 

The circuit operations of the ratioless SRAM cell during the hold, read, and write states 

are summarized in Fig. 5. In the hold state [Fig. 5(a)], the data is held by the closed cell 

local loop (CLL), which consists of two inverters (INV1 and INV2) and a closed SW3. In 

the read operation [Fig. 5(b)], the data is read out to a read bit line (RB) through the read 

buffer that consists of the INV3 and a closed SW2 between the CLL and the read bit line 

(RB). Also, the stored data is never destroyed because the CLL is isolated from the RB by 

the read buffer (INV3). In the write operation [Fig. 5(c)], the CLL is broken by the open 

SW3 while the write word line is asserted. Thus, ratioless margin-free hold, read, and write 

operations can be performed because these operations are independent of the transistor size 

and impedance of the bit line. 

There are write-selected and write-half-selected cells, as shown in Fig. 6(a). In write- 

selected cells, cell data would successfully be updated by the upcoming write data. On the 

other hand, in the write-half-selected cells, the stored data are lost because the CLL no 

longer exists. In order to overcome the data corruption problem in write-half-selected cells, 

we proposed the static column retention loop (SCRL) to hold the data on behalf of the 

broken CLL.
12)

 Figure 6(b) shows the SCRL structure, which simply has the loop-back 

switch (LBS) to forward the read-out signal from the RB to the WB. When the write word 

line is asserted, the memory retention loops in the write-half-selected columns are switched 

from the CLL to the SCRL. Since a SCRL is composed of four (even) stages of inverters 
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(INV2, INV3, DSA, and WD), the data of the half-selected cells are statically retained. 

 

4. Test chip design and measurement results 

In order to demonstrate the ratioless operation of the proposed technique by measurement, 

we designed 1Kbit SRAM TEGs in which both the 6T-SRAM and RL-12T-SRAM cells are 

incorporated by using a 180 nm CMOS process. The layouts of the developed chips are 

shown in Figs. 7(a) and 7(b), respectively. The total layout area for the RL-12T-SRAM is 

almost one and a half times that for the 6T-SRAM. 

Figure 8 shows the measured minimum operating supply voltage versus operating 

frequency obtained from the test with the marching patterns. For the 6T-SRAM, the 

minimum supply voltage is almost constant at 0.5 V for the cycle time of 10 μs or more. On 

the other hand, the minimum supply voltage for the RL-12T-SRAM shows a scalability with 

the cycle time, and it reaches 0.22 V with a longer cycle time.  

Figures 9(a) and 9(b) show the measured fail bit counts for the low supply voltage at the 

low-frequency operation for the 6T-SRAM and RL-12T-SRAM, respectively. As can be 

seen in these figures, the distribution of the supply voltage for the 6T-SRAM between the 

first failure bit and the last failure bit is wider than that for the RL-12T-SRAM, especially in 

the low-frequency operation. Figures 10 and 11 show the measured fail-bit maps (FBMs) 

obtained from the measurements of the 6T-SRAM and RL-12T-SRAM with the low cycle 

time of 1 ms, respectively. The failure bits in the 6T-SRAM start to occur randomly at the 

supply voltage of 0.49 V, while most of the memory cells are changed to fail in a supply 

voltage range from 0.3 to 0.22 V. These results indicate that a 6T-SRAM cell operation 

becomes more sensitive for the device variability in the low supply voltage region such as 

0.5 V or less. On the other hand, in the RL-12T-SRAM, the failure bits occur nearly 

simultaneously even at low supply voltages. All of the memory cells of the RL-12T-SRAM 

are changed to fail in a narrow supply voltage range from 0.17 to 0.21 V. This is because 

the basic operation of the RL-12T-SRAM is fully digital and complementary. As a result, the 

RL-12T-SRAM has strong immunity to the variabilities of device characteristics. 
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5. Comparison with the simulated result 

Figures 12(a) and 12(b) show the circuit schematics for the 6T-SRAM and 

RL-12T-SRAM that are used for the circuit simulations of Monte Carlo analysis. Each 

MOS transistor in the memory cell has a voltage source at the gate terminal to shift its 

threshold voltage (Vth). Figures 13(a) and 13(b) show the simulated results from the 

Monte Carlo analysis for the 6T-SRAM and RL-12T-SRAM, respectively. As a result, if 

the Vth shift voltage is 20 mV for one standard deviation, the simulated results agree well 

with the measured results shown in Fig. 8. This estimated Vth shift voltage of 20 mV is 

also in agreement with that of 22 mV with the minimum channel length and width of the 

standard 180 nm process shown in Refs. 26 and 27. This result indicates that the minimum 

operating voltages for the 6T-SRAM were strongly affected by the variability of transistors, 

whereas the RL-12T-SRAM has a superior immunity to the device variability. 

We also compared the measured results of the minimum supply voltage of the SRAMs 

with that of the 51-stage CMOS ring oscillator, as shown in Fig. 14. As can be seen in this 

figure, the RL-12T-SRAM can be operated even at subthreshold voltages and has similar 

scalability between the minimum supply voltage and operating frequency of the CMOS 

ring oscillator. This indicates that the basic operation of the RL-12T-SRAM, as well as that 

of CMOS logic circuits, is fully digital and complementary.  

 

6. Conclusions 

A ratioless full-complementary 12-transistor SRAM was developed and measured to 

evaluate its operation under an ultra low supply voltage range. The test chips that include 

both conventional six-transistor and ratioless 12-transistor SRAM cells were developed by 

a 180 nm CMOS process. As a result, we confirmed that the ratioless full-complementary 

12-transistor SRAM has superior immunity to the variabilities of the device characteristics 

and an inherent ability of operation in the ultra low supply voltage of 0.22 V.  
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Figure List 

 

Fig. 1. Conventional six-transistor SRAM cell: (a) circuit; (b) SNMs. 

 

Fig. 2. Memory cells for SRAM: (a) 6T cell [5], (b) 8T cell [14], (c) 10T cell [18], 

(d) 9T cell [19], (e) 7T cell [20], (f) 7T’ cell [21], (g) 10T’ cell [22], and (h) 10T 

register file cell [23]. 

 

Fig. 3. Logic-level schematics of SRAM cells: (a) conventional and (b) ratioless 

SRAM cells. 

 

Fig. 4. Ratioless SRAM cells: (a) 10T type [24] and (b) 12T full-complementary 

type. 

 

Fig. 5. Operations of ratioless SRAM cell: (a) hold, (b) read, and (c) write. 

 

Fig. 6. SCRL structure: (a) data destruction in write-half-select columns and  

(b) SCRL in write-half-select columns. 

 

Fig. 7. Chip layout: (a) 6T-SRAM and (b) RL-12T-SRAM. 

 

Fig. 8. Measured minimum operating voltage versus cycle time. 

 

Fig. 9. Measured fail bit count versus supply voltage; (a) 6T-SRAM and (b) 

RL-12T-SRAM. 

 

Fig. 10. Measured fail bit map for 6T-SRAM: (a) Vdd=0.49 V, (b) Vdd=0.30 V, (c) 

Vdd=0.26 V, and (d) Vdd=0.23 V. 

 

Fig. 11. Measured fail bit map for RL-12T-SRAM: (a) Vdd=0.21 V, (b) Vdd=0.20 V, (c) 

Vdd=0.19 V, and (d) Vdd=0.18 V. 

 

Fig. 12. Vth shift configuration for Monte Carlo analysis: (a) 6T-SRAM and (b) 
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RL-12T-SRAM. 

 

Fig. 13. Simulated results of Monte Carlo analysis: (a) 6T-SRAM and (b) RL-12T-SRAM. 

 

Fig. 14. Comparison of the minimum operating voltages for 6T-SRAM, RL-12T-SRAM, 

and 51-stage CMOS ring oscillator. 
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Table I.  Comparison of SRAM memory cells. 

Reference Conv, [5] [14] [16][17] [18] [19] [20] [21] [22] [23] Our Prev.[24] This work

Number of TRs 6 8 8 10 9 7 7 10 10 10 12

Number of word and bit lines 1 + 2 1 + 3 1 + 3 2*1 + 2 3*1 + 1 2 + 1 3 + 2 2*3 + 3 3 + 2 3 + 2 4 + 2

Read margin RSNM>0 Free Free Free Free RSNM>0 Free*2 Free Free Free Free

Write margin WSNM>0 WSNM>0 WSNM>0 WSNM>0 WSNM>0 Free Free Maybe*3 Free Free Free

Write(halfselect) margin RSNM'>0 RSNM'>0 Free Free Free Free Free N/A N/A Free Free

Flip/flop loop cutting for write No No No No No Yes Yes Maybe*3 Yes Yes Yes

Rail-to-rail write ability No No No No No No No Maybe*3 Yes No Yes

Rail-to-rail & static read ability No No No No No No No No No No Yes

Write-half-select protection Vword / Vcell W.after.R XY-Select XY-Select W.after.R N/A N/A SCRL*4 SCRL *4

*1: Cross point (XY) select word lines,      *2: Free in dynamic read operation ,    *3 Vcell collaping for write,       *4  Static column retention loop   
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Fig. 1. Conventional six-transistor SRAM cell  
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(g)                                    (h)  

Fig. 2. Memory cells for SRAM  
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Fig. 3. Logic-level schematics of SRAM cells 
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Fig. 4. Ratioless SRAM cells 
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Fig. 5. Operations of ratioless SRAM cell 
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Fig. 6. Static column retention loop (SCRL) structure 
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Fig. 7. Chip layout 
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Fig. 8. Measured minimum operating voltage versus cycle time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

0

256

512

768

1024

0.550.50.450.40.350.30.250.20.15

F
a

il
 B

it
 C

o
u

n
t 

[b
it

]

Supply Voltage [V]

10[μs]

Tcyc =

1[ms]

100[μs]

 

 (a) 

 

0

256

512

768

1024

0.550.50.450.40.350.30.250.20.15

F
a
il

 B
it

 C
o
u

n
t 

[b
it

]

Supply Voltage [V]

1[ms]

100[μs]

Tcyc =

10[μs]

 

(b)  

 

 

Fig. 9. Measured fail bit count versus supply voltage 
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Fig.10. Measured fail bit map for 6T-SRAM 
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Fig. 11. Measured fail bit map for 12T-SRAM 
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Fig. 12. Vth shift configuration for Monte Carlo analysis 
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Fig. 13. Simulated results of Monte Carlo analysis 
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Fig. 14. Comparison of the minimum operating voltages for 6T-SRAM, RL-12T-SRAM 

and 51-stage CMOS ring oscillator 


