

# A Measurement of Ratio-less 12-transistor SRAM cell Operation at Ultra-low Supply-voltage

| 著者                | Kondo Takahiro, Yamamoto Hiromasa, Imi       |
|-------------------|----------------------------------------------|
|                   | Hitoshi, Okamura Hitoshi, Nakamura Kazuyuki  |
| journal or        | 2014 International Conference on Solid State |
| publication title | Devices and Materials (SSDM2014)             |
| page range        | 82-83                                        |
| year              | 2014-09-11                                   |
| URL               | http://hdl.handle.net/10228/00007562         |

## A Measurement of Ratio-less 12-transistor SRAM cell Operation at Ultra-low Supply-voltage

Takahiro Kondo Hiromasa Yamamoto Hitoshi Imi Hitoshi Okamura Kazuyuki Nakamura

Kyushu Institute of Technology

680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan Phone: +81-948-29-7584 Fax: +81-948-29-7586

E-mail: takahiro kondo @cms.kyutech.ac.jp

### Abstract

The ratio-less 12-transistor SRAM was developed and with the longer cycle time. measured to evaluate the operation under ultra-low supply-voltage range. Its superior immunity to the device 3. Comparison with the Simulated Result variability and its inherent operating ability at the supply voltage of 0.22V were experimentally confirmed.

### 1. Introduction

In the development of SRAMs for the deep sub-micron generation, it is difficult to maintain a sufficient operating margin in the conventional 6-transistor SRAM (6T-SRAM) cell, because of supply voltage scaling and device variability [1]. To overcome this problem, we proposed ratio-less 10-transistor SRAM [2] [3]. This enables the memory cell design that is free from consideration of the Static Noise Margin (SNM). It also enables stable SRAM function without the restriction of transistor parameter (W/L) settings in circuit design and the dependency on the device characteristic variation. Fig. 1 (a) shows the basic block diagram of the ratio-less SRAM (RL-SRAM) cell. In addition to the 6T-SRAM, the RL-SRAM cell has INV3 and SW3. The INV3 is the dedicated read buffer to drive the read bit-line while SW3 is added for breaking the flip-flop loop in the write operation. We have reported the basic ratio-less operation with the ratio-less 10-transistor SRAM cell in which the input switch and the output tri-state inverter was configured with single channels [2] [3]. However, for the low supply-voltage operation, it was suggested that the full complementary configuration of 12-transistor ratio-less cell as shown in Fig.1 (b) would be suitable.

In this paper, we developed the ratio-less 12-transistor SRAM (RL-12T-SRAM) test chip and measured to evaluate the operation at ultra-low supply-voltages.

### 2. Chip Design and Experimental Results

cells and RL-12T-SRAM cells are incorporated by using a device characteristics and the inherent ability of operation in 180nm CMOS process. The photos of developed chips are ultra-low supply-voltage of 0.5V or less. shown in Fig. 2. Fig. 3 shows the measured minimum operating supply voltage versus operating frequency obtained Acknowledgement from the test with the marching pattern. For the 6T-SRAM, the minimum supply voltage is almost constant of 0.5V for (VDEC), the University of Tokyo, in collaboration with Cadence the cycle time of 10[us] or more. On the other hand, the Design Systems, Inc., Mentor Graphics, Inc., the Rohm Corporation

minimum supply voltage in RL-12T-SRAM reaches to 0.22V

Fig. 4 shows the circuit schematic that is used for the circuit simulation of Monte Carlo Analysis. Each MOS transistor in the memory cell has a voltage source at the gate terminal to shift its threshold voltage (Vth). Fig. 5 (a) (b) show the simulated results from the Monte Carlo analysis for 6T-SRAM and RL-12T-SRAM, respectively. As a result, if the Vth shift voltage is 20[mV] for one standard deviation, simulated results agree well with the measured results shown in Fig. 3. This means the minimum operating voltages for 6T-SRAM were strongly affected by the variability of transistors while the RL-12T-SRAM has a superior immunity to the device variability.

### 4. Fail Bit Distribution in Low Supply-voltage

Fig. 6 (a) (b) show the measured fail bit counts for the low supply-voltage at the low-frequency operation for 6T-SRAM and RL-12T-SRAM, respectively. As can be seen in these figures, the distribution of the supply voltage for 6T-SRAM between first failure bit and last failure bit is wider than that for the RL-12T-SRAM, especially in the low-frequency operation. This means a 6T-SRAM cell operation becomes more sensitive in low supply-voltage region. On the other hand, in RL-12T-SRAM, the failure bits occur nearly simultaneously even at low supply-voltage. This is because the basic operation of RL-12T-SRAM is the fully digital and complementary.

### 5. Conclusion

We have compared the measured results of minimum supply voltage between the developed RL-12T-SRAM and conventional 6T-SRAM. As a result, we confirmed that the We designed 1Kbit SRAM TEGs in which both 6T-SRAM RL-12T-SRAM has the strong immunity to the variability of

This work was supported by VLSI Design and Education Center and the Toppan Printing Corporation.

### References



Vth\_IN2

Vth\_IN1

 $\frac{1}{2}$ 

Fig. 4 Vth shift 6T-SRAM



