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Abstract

Background: Cellular memory is a ubiquitous function of biological systems. By generating a sustained response to
a transient inductive stimulus, often due to bistability, memory is central to the robust control of many important
biological processes. However, our understanding of the origins of cellular memory remains incomplete. Stochastic
fluctuations that are inherent to most biological systems have been shown to hamper memory function. Yet, how
stochasticity changes the behavior of genetic circuits is generally not clear from a deterministic analysis of the
network alone. Here, we apply deterministic rate equations, stochastic simulations, and theoretical analyses of
Fokker-Planck equations to investigate how intrinsic noise affects the memory function in a mutual repression
network.

Results: We find that the addition of negative autoregulation improves the persistence of memory in a small gene
regulatory network by reducing stochastic fluctuations. Our theoretical analyses reveal that this improved memory
function stems from an increased stability of the steady states of the system. Moreover, we show how the tuning of
critical network parameters can further enhance memory.

Conclusions: Our work illuminates the power of stochastic and theoretical approaches to understanding biological
circuits, and the importance of considering stochasticity when designing synthetic circuits with memory function.

Keywords: Memory, Mutual repression, Negative autoregulation, Fokker-Planck, Stochasticity, Hill coefficient,
Bistability, Probability density

Background
Memory is ubiquitous in biological systems [1–4]. Char-
acterized by a continued response to a transient stimulus
[5], cellular memory has been found to aid in the robust
control of diverse biological functions such as synaptic
plasticity [6], differentiation [7, 8], cell cycle transition
[9], or gene regulation [10]. Memory in cellular circuitry
is tightly linked to bistability, i.e. the presence of two
stable steady states [11, 12]. To this end, memory is
achieved if an input signal evokes a switch to an alterna-
tive steady state where the system remains over time
even after the input signal has disappeared [11, 12].

Our general understanding of design principles of bio-
logical networks has improved dramatically during re-
cent years [13]. Feedback loops as elementary
components provide common control mechanisms of
cellular networks [14]. For instance, negative feedback
can facilitate adaptation and oscillation [15], while posi-
tive feedback loops, which play pivotal roles in cellular
signaling [16], often promote signal amplification, bi-
stable switches [17] and memory [11]. Indeed, a com-
mon circuit architecture that is known to give rise to
memory is based on interlinked positive feedback net-
work loops [18, 19]. Several experimental and theoretical
analyses of such network architectures that can give rise
to memory have been reported [7, 12, 20–25]. These
studies have revealed many general properties under-
lying successful memory, for instance that ultrasensitiv-
ity may be sufficient to generate two stable states [26],
and that the transition periods between the bistable
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states compose an important characteristic of a cellular
memory module [19]. In all cases, bistability and mem-
ory can convert a transient input signal to a continued
cellular response [27, 28]. This property is directly vis-
ible from the characteristic hysteresis behavior observed
for bistability and memory systems. Experimental exam-
ples confirm these findings, such as the presence of hys-
teresis behavior and bistability in a synthetic genetic
circuit in Escherichia coli [18]. Based on these general
principles that link network architecture to systems be-
havior, the blossoming field of synthetic biology has con-
tributed many useful designs of genetic circuits based on
a quantitative understanding of biological networks [29–
31] with myriad implications for biotechnology, biocom-
puting and gene therapy [13, 26, 32]. However, the
rational design of a robust memory function can be im-
plemented via many alternative mechanisms that remain
incompletely understood [21, 29].
Importantly, the vast majority of genes in a cell is nor-

mally only expressed at very low levels. Due to the in-
herent randomness of transcription and translation, this
gives rise to substantial stochastic fluctuations in cellular
mRNA and protein copy numbers of lowly expressed
genes [33–40]. Accordingly, the analysis and design of
biological circuits cannot be based solely on determinis-
tic properties of the network topology alone. In re-
sponse, much progress has been made in better
understanding the role of stochasticity to network func-
tion [41–45]. For instance, careful work has delineated
the sources of intrinsic noise in small transcriptional
networks [46] and how noise may propagate through
network architectures [39, 41], as well as how feedback
loops regulate bistability [42, 47] and intrinsic noise [48].
Similarly, extensive work has established general princi-
ples underlying the design of genetic circuits that exhibit
bistability and memory [11, 42–45].
Recent examples of opposing behavior further high-

light the importance of considering the contribution of
stochasticity to cellular circuitry. On the one hand, it has
been shown that noise can induce multimodality and
even stochastic memory in a system that, according to a
deterministic description, lacks bistability [49, 50]. On
the other hand, stochastic fluctuations in gene expres-
sion levels often reduce or disrupt the memory func-
tion of biological networks [21, 51, 52]. Equally
importantly, seminal technical and conceptual ad-
vances have made strong progress in the efficient and
accurate approximation of multivariate nonlinear sto-
chastic systems [53, 54].
Here, we investigate how a negative autoregulation

network architecture can improve the sustained memory
function of a mutual repression network in a stochastic
environment. Our work extends the previously published
regulated mutual repression network (MRN) [12] to the

regulated mutual repression network with negative auto-
regulation (MRN-NA) to investigate the effect of a nega-
tive autoregulation loop on memory function. The
network architecture is characterized by a mutual re-
pression cycle that can give rise to bistability and mem-
ory, adopted from two well-characterized mutual
repression networks, the system consisting of LacI and
TetR in E. coli that displays a bistable gene expression
memory module [24], and the mutual repression of the
two repressors cI and Cro that yield a bistable memory
module in the bacteriophage λ [21].
To explore and compare the memory behavior of the

MRN-NA network model, as well as how it compares to
the MRN model, deterministic rate equations, stochastic
simulations and theoretical analyses of Fokker-Planck
equations were employed to identify principles of the ro-
bustness of the memory function. We demonstrate how
negative autoregulation can reduce intrinsic noise and
thus improve the memory function by increasing the sta-
bility of the steady states. Negative autoregulation can
for instance be achieved by the ability of proteins to bind
and sequester their own mRNA. Systematic analyses of
successful memory as a function of central model pa-
rameters that describe the mutual repression cycle high-
light principles and limits of the memory function in
these mutual repression networks. Moreover, our work
emphasizes the importance of considering stochasticity
when designing synthetic circuits with memory function.

Results
To investigate the effect of negative autoregulation and
stochasticity on network memory function, we con-
structed a model network following a previously estab-
lished graphical notation [55, 56] (Fig. 1). Specifically, we
modelled a mutual repression network with negative
autoregulation (MRN-NA) that extends our previously
published mutual repression network (MRN) [12]. The
network consists of proteins y(1), y(2) and y(3). An input
signal S induces the synthesis of y(1), which activates
and represses the syntheses of y(2) and y(3), respectively.
The syntheses of y(2) and y(3) are mutually repressed
with cooperativity. Moreover, negative autoregulation
controls the synthesis reactions of y(2) and y(3) (Fig. 1).
The addition of negative autoregulation permits to in-
vestigate how negative feedback loops may affect mem-
ory. While modulation of several parameter values
should tune the presence of memory, the present ana-
lysis focuses on a direct back-to-back comparison of the
two network architectures that only differ in the addition
of negative autoregulation circuits. To compare the
memory regions of MRN-NA and MRN networks across
our deterministic, stochastic, and theoretical analyses,
the values of the corresponding kinetic parameters as
well as the steady state levels of y(2) and y(3) were
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conserved as much as possible in discrete parameter
space [12] (Table 1; Additional file 1: Texts S1, S2) (see
Methods).

MRN-NA model exhibits robust memory
Similar to our previously reported results on the mem-
ory function of the MRN [12], the MRN-NA network
exhibits robust memory functionality that depends on
strong cooperativity in the mutual repression cycle, as
expressed by high Hill coefficients n. Thus expectedly,
the deterministic solution to the time evolution of the
MRN-NA model showed persistent memory after the
end of the period during which the signal S was applied
for both Hill coefficients of n = 7 and n = 8 (Fig. 2a).
Strong hysteresis behavior was observed for both y(2)
and y(3) levels as a function of increasing and decreasing
S (Fig. 2b, c; Additional file 1: Figure S1). In the deter-
ministic case, bistability is sufficient to generate memory.
Stochastic simulations of the MRN-NA model as de-
scribed by the birth and death processes of Eqs. 1–3 re-
vealed strong and persistent memory both with Hill
coefficients n = 7 (Fig. 2d) and n = 8 (Fig. 2e). Import-
antly, the MRN alone could not sustain memory for ei-
ther y(2) or y(3) at n = 7 in a stochastic context [12], but

the MRN-NA yielded strong and sustained memory due
to the addition of negative feedback loops (Fig. 2d; Add-
itional file 1: Figure S2, S3).
To further understand how the addition of negative

autoregulation increases the robustness of the memory
function, we sought to quantify and compare the intrin-
sic noise in the protein levels of y(2) and y(3) in the
MRN and MRN-NA models. It is well established that
noise or a stochastic perturbation can flip gene expres-
sion levels from one to the other steady state [40, 46].
To obtain a reliable and comparable estimate, we com-
puted the coefficients of variation (CVs) of y(2) and y(3)
during the active signal S period; the interval from simu-
lation step 270 to 500 was chosen to allow the system to
respond to the stimulus for 20 simulation steps. Our
analysis of noise in protein levels y(2) and y(3) as a func-
tion of the dissociation constants K(2) = K(4) confirmed
a systematic reduction of stochasticity in y(2) and y(3)
levels upon the addition of negative autoregulation (Fig.
2f). While maintaining the same steady state levels, noise
was dramatically reduced for y(3) (Fig. 2f). Of note, the
lower steady state y(3) is more susceptible to noise.
Similarly, intrinsic fluctuations in y(2) during the signal
period were reduced in the MRN-NA compared to the
MRN model in our stochastic simulations irrespective of
the dissociation constants tested (Fig. 2f). Even more
important to the stability of the steady states are the
intrinsic fluctuations after the end of the signal
period. The levels of intrinsic noise are overall slightly
higher, likely because the signal does not stabilize
gene expression levels any longer. However, our cor-
responding analysis reveals that the negative autoreg-
ulation reduces, as expected, variability in the system
also after the stop of the signal (Fig. 2g; Additional
file 1: Figure S4). Taken together, our results suggest
that the negative autoregulation played a vital role in
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Fig. 1 Schematic of the mutual repression network model with negative autoregulation. Wiring diagram of the mutual repression network with
negative autoregulation (MRN-NA) model. The added negative autoregulation reactions that regulate the protein synthesis of y(2) and y(3) are
highlighted in red. All reaction rate constants k and dissociation constants K are listed in Tables 1 and 2. In this work, the MRN-NA is compared to
the previously published MRN [12] that is identical with the exception of the negative autoregulation loops. In addition, a simplified wiring
diagram is shown

Table 1 List of kinetic parameters

Kinetic parameters Definition

k(1), k(3), k(4), k(6),
k(7)

protein synthesis rate constants

k(2), k(5), k(8) degradation rate constants

K(1), K(2), K(3), K(4) dissociation constants of activators / repressor

k(9), k(10) protein synthesis rate constants of negative
autoregulation

K(5), K(6) dissociation constants of negative autoregulation

n Hill coefficient
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increasing the persistence of stochastic memory by re-
ducing intrinsic noise.

Negative autoregulation enhances the memory region
Our analyses show that the MRN-NA model can ex-
hibit memory, which however critically depends on
persistent mutual repression with strong cooperativ-
ity. We next set out to systematically map its mem-
ory region as a function of Hill coefficient and
dissociation constants K(2) = K(4) in comparison to
the previously reported MRN [12] (Fig. 3). Successful
memory was defined as sustained levels of y(2) and
y(3) at or near their levels during the applied S after

the end of the input signal S at simulation step 500
until the end of the simulations at simulation step
1000. Moreover, for direct comparison, the kinetic
parameter k(7) was adjusted to conserve the steady-
state levels between the two models [12] (Additional
file 1: Text S1). Indeed, the high steady-state levels
of both the models were set to the same expression
values, while the low steady-state levels were tuned
be as similar as possible. Memory was assessed in
both the deterministic and stochastic context (see
Methods). Accordingly, two memory regions were
defined: deterministic memory and stochastic mem-
ory (Fig. 3).
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43; all other corresponding parameter values are set as the same as the previously published MRN [12] (Table 2). The simulated time evolution is shown for
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In both the MRN and MRN-NA models, deterministic
memory could be observed for Hill coefficients of n = 4 or
greater (Fig. 3). In contrast, stochastic memory not only
required higher Hill coefficients, but also posed different
limits on the MRN and MRN-NA models. Without nega-
tive autoregulation that suppresses noise, stochastic mem-
ory in the MRN model required a Hill coefficient of n = 8
or greater (Fig. 3). In the presence of negative autoregula-
tion that reduces noise in protein levels, stochastic mem-
ory in the MRN-NA model could be observed from n = 7
(Fig. 3). Thus, the negative autoregulation relaxes the need
for strong cooperativity to generate stochastic memory.
Furthermore, the stochastic memory region for the MRN-
NA model was found to be larger than for the MRN
model (Fig. 3, red area), indicating that negative autoregu-
lation of the MRN-NA enhances memory function by re-
ducing intrinsic noise (Fig. 2f, g). While the deterministic
memory regions in both networks are essentially the same
(Fig. 3, green area), it was clearly more difficult to main-
tain a memory effect under noise in the MRN than the
MRN-NA (Fig. 3, red area). The large discrepancy be-
tween the deterministic and stochastic memory areas indi-
cate the general challenge of maintaining memory
function in the context of stochasticity.

Stochastic potential of the MRN-NA
Prerequisite for memory is normally the presence of
bistability in the system. Thus, a limited bistable regime
could explain why such high levels of cooperativity in
the mutual repression between y(2) and y(3) were re-
quired to yield memory. To map out the bistable re-
gimes of the MRN-NA in comparison to the MRN [12],
theoretical analyses based on the chemical master equa-
tions were employed to support the numerical simula-
tion results.

First, the corresponding Fokker-Planck equations Eqs.
9–13 describing the time evolution of the probability
densities for y(2) and y(3) levels were derived from the
three rate equations Eqs. 1–3 (see Methods). We made
use of the quasi-steady-state assumption to derive a one-
variable equation for each system [12] (Additional file 1:
Text S2). While there are inherent limitations to it [51],
the quasi-steady-state assumption is widely used [46].
Since we focus on the steady-state at t→∞, applying the
quasi-steady-state assumption to y(2) or y(3) is mathemat-
ically reasonable. By using the Fokker-Planck equations,
we next estimated the two-dimensional stochastic bistable
regions, characterized through the presence of a double
well potential, for the MRN and MRN-NA models as a
function of the Hill coefficient and dissociation constants
[12] (Fig. 4; Additional file 1: Figure S5; Texts S1–3).
In these theoretical analyses, both the MRN and the

MRN-NA models permitted bistability starting from a Hill
coefficient of n = 3 for both y(2) and y(3) (Fig. 4). However,
the bistable regions in the MRN-NA were larger than those
in the MRN model (Fig. 4). To display bistability in a sto-
chastic context, the MRN model required dissociation con-
stants K(2) =K(4) within a more constrained parameter
space (Fig. 4). These analyses established that the MRN-NA
more readily exhibits stochastic bistability than the MRN.
Conversely, a limited bistability regime in the MRN in a sto-
chastic context (Fig. 4) contributes to explaining why this
network had a smaller stochastic memory region (Fig. 3).

Mean first-passage time of the MRN-NA model
Having established that the presence of memory in the
MRN-NA model depended on both bistability and ro-
bustness of the steady states to stochasticity, we next
sought to further explore the origins and limits of memory
functionality in context of fluctuating protein levels. To this
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end, the stability of a steady state of a stochastic system can
be estimated by the mean first-passage time (MFPT). The
MFPT quantifies the average number of simulation steps it
takes for a system to leave a favorable steady state due to
random events. As such, the MFPT provides a useful de-
scription of the time-scale on which a phase transition is
likely to happen [57–59]. Thus, because the presence of a
stochastic bistable region only indicates the bimodality of
gene expression as prerequisite for memory but not the
presence of memory itself, a MFPT analysis can be helpful
for identifying the precise conditions under which memory
can be attained in a stochastic context.
Here, MFPT analyses were performed between the

two stable steady states under the quasi-steady-state
assumption [12] (Additional file 1: Figure S5) (see
Methods). Specifically, we calculated the MFPTs of
y(2) and y(3) for the MRN-NA model in comparison
to the MRN [12] (Fig. 5); the lower and upper
steady-states of y(2) and y(3) are denoted asyð2Þstl ,y

ð2Þstu , yð3Þstl and yð3Þstu , respectively. Similarly, the
MFPTs of leaving the lower (TL) and upper (TU)
steady states were calculated as a function of the
Hill coefficient and dissociation constants in the mu-
tual repression cycle for y(2) and y(3).
Due to the asymmetry in the both MRN and MRN-NA

models (Table 2), the MFPTs for y(2) and y(3) showed op-
posing behavior, as expected (Fig. 5). While the MFPT for
y(2) to leave the lower steady state, TLðyð2Þstl Þ, is consist-
ently longer than the corresponding time to leave the
upper steady state, TUðyð2Þstu Þ, the system is more likely to

leave the lower steady state of y(3) as indicated by TLðy
ð3Þstl Þbeing much smaller than TUðyð3Þstu Þ (Fig. 5).
An increase in the Hill coefficient as measure of

cooperativity exacerbated this trend observed for the
MFPTs of y(2) and y(3) (Fig. 5a). The prolonged
MFPTs as a result of increasing Hill coefficients ex-
plained why the robustness of sustaining stochastic
memory improved with increasing cooperativity. For
the parameter space explored, the lower steady state
of y(2) was more persistent in both models for any
Hill coefficients, as evident by TLðyð2Þstl Þ > TUðyð2Þstu Þ
(Fig. 5a). Moreover, all MFPTs for the MRN-NA, TLð
yð2Þstl Þ , TUðyð2Þstu Þ , TLðyð3Þstl Þ , and TUðyð3Þstu Þ , were
observed to be longer than their equivalents for the
MRN model, for any Hill coefficient (Fig. 5a). These
results confirm an increased persistence of the steady
states upon introduction of negative autoregulation in
MRN-NA compared to MRN, which explains the im-
proved memory function in the MRN-NA system.
Specifically, the residence times at the upper and
lower steady states of y(2) and y(3) were extended to
achieve the persistent memory after the stop of the
signal.
Next, we investigated the effect of the dissociation

constants in the mutual repression cycle on the MFPTs
of y(2) and y(3) (Fig. 5b). Consistently, the MFPTs for all
steady states, TLðyð2Þstl Þ, TLðyð3Þstl Þ, TUðyð2Þstu Þ and TUð
yð3Þstu Þ ,were found to be longer in the MRN-NA than
the MRN for any dissociation constants (Fig. 5b). For
both models, all MFPTs, TLðyð2Þstl Þ , TUðyð2Þstu Þ , TLðy
ð3Þstl Þ and TUðyð3Þstu Þ gradually decreased with an in-
crease in the dissociation constant, suggesting that
strong binding in the mutual repression cycle is neces-
sary for persistent memory. We also studied the MFPTs
for the MRN-NA as a function of the negative autoregu-
lation constants k(9) = k(10) (Fig. 5c). The MFPTs for
the MRN-NA at all steady states, TLðyð2Þstl Þ, TLðyð3Þstl Þ,
TUðyð2Þstu Þ and TUðyð3Þstu Þ , were found to increase with
increasing strength of the negative autoregulation. In
summary, these MFPT analyses illuminated in detail

Fig. 4 Phase diagram of the stochastic bistable regions. Phase
diagrams of the stochastic bistable regions as a function of Hill
coefficient and dissociation constant in the mutual repression cycle, a
for y(2) in the MRN (dotted line area) and MRN-NA (red area), and b for
y(3) in the MRN (dotted line area) and MRN-NA (cyan area) models
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how memory in the mutual repression networks im-
proved with increasing stability of the steady states as a
function of cooperativity or binding strength.

Probability densities of the steady-state levels in the
MRN-NA
The previous analyses revealed a strong dependency of
sustained memory on the robustness of the steady-
states. To formally establish the probability densities as-
sociated with populating the upper and lower steady
states of y(2) and y(3), we calculated the probability
densities from the Fokker-Planck Equations (Eq. (15)) as
a function of the Hill coefficient and dissociation con-
stants (Fig. 6). The probability density of the upper
steady state of y(2) increased while that of the

Fig. 5 Mean first passage time (MFPT) analysis. a The logarithmic MFPTs of the lower and upper steady states of y(2) (TL and TU) and y(3) (TL and TU)
are shown for the MRN and MRN-NA models as a function of the Hill coefficient n at dissociation constants K(2) = K(4) = 15. b The logarithmic MFPTs
of the lower and upper steady states of y(2) and y(3) denoted as above are shown for the MRN and MRN-NA as a function of the dissociation constant
K(2) = K(4) at the Hill coefficient n = 3. c The logarithmic MFPTs of the lower and upper steady states of y(2) and y(3) denoted as above are shown for
the MRN-NA as a function of the negative autoregulation constants k(9) = k(10) at the dissociation constants K(2) = K(4) = 15 and Hill coefficient n = 3

Table 2 Kinetic parameter values for the MRN and MRN-NA
models

MRN MRN-NA

Common
parameters between
the MRN and MRN-
NA

k(1) = 100
k(2) = 1
k(3) = k(6) = 18.1
kð4Þ ¼ 61:23 > kð7Þ;
kð7Þ ¼ 43:1
k(5) = k(8) = 0.8 K(1) =
K(3) = 9K(2) = K(4) = 43
n = 8

k(1) = 100
k(2) = 1
k(3) = k(6) = 18.1
kð4Þ ¼ 61:23 > kð7Þ;
kð7Þ ¼ 43:1

k(5) =

k(8) = 0.8 K(1) = K(3) = 9 K(2) =
K(4) = 43
n = 8

Specific parameters
to the MRN-NA

k(9) = k(10) = 4.1 K(5) = K(6) = 9
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corresponding lower steady state decreased with an in-
crease in the Hill coefficient for both the MRN and the
MRN-NA models (Fig. 6a). The addition of negative
autoregulation in the MRN-NA system visibly made the
upper steady state level of y(2) more dominant (Fig. 6a).
The probability density of y(3) clearly illustrated the

evolution of bistability and subsequent increased prob-
ability densities of the lower steady states with increasing
Hill coefficient (Fig. 6b). At low Hill coefficient (n = 3)
the MRN lacked a pronounced probability density of a
lower steady state (Fig. 6b, solid blue line) while in the
MRN-NA the probability density did not separate well
the peaks at lower and upper levels of y(3) (Fig. 6b,
dashed blue line). This result of weak bistability was
consistent with our previous analysis of the bistability re-
gions (Fig. 4). In turn, higher Hill coefficients of n = 8
and n = 12 promoted first the emergence and then sep-
aration of two clearly populated steady states (Fig. 6b).
While the upper steady state of y(3) was dominant for
n = 12 the system switched to a dominant lower steady
state for y(3) (Fig. 6b). Moreover, the addition of nega-
tive autoregulation strongly promoted the population of
the lower steady state at all Hill coefficients analyzed
(Fig. 6b, dashed lines). By buffering intrinsic noise, this

analysis thus confirmed that the negative feedback loops
stabilized particularly the low expression states of y(3),
i.e. those that are most susceptible to fluctuations.
Similarly, the probability densities of y(2) and y(3)

were found to quantitatively and qualitatively also de-
pend on the dissociation constants K(2) and K(4) in the
mutual repression cycle (Fig. 6c, d). At low K(2) = K(4) =
15, the upper steady state of y(2) was dominant in the
MRN and MRN-NA models with slightly higher prob-
ability density for the MRN-NA model (Fig. 6c). In gen-
eral, with decreasing values of K(2) and K(4) the upper
steady states became more pronounced in both models,
even more so in the MRN-NA (Fig. 6c). In turn, the
probability density of the lower steady state of y(3) be-
came dominant with decreasing the dissociation con-
stants in both the models (Fig. 6d). Moreover, lower
values for K(2) and K(4) as well as negative autoregula-
tion favored more pronounced bistability (Fig. 6d). The
MRN-NA model increased the probability density of the
upper steady-state of y(2) and the lower steady-state of
y(3) more than the MRN model. This result can support
the persistent memory of the upper steady-state of y(2)
and lower steady-state of y(3) after the stop of the signal
(Fig. 6d). Taken together, these results suggest a
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theoretical basis for our observation that the MRN-NA
model displays an improved memory function in a sto-
chastic context.

Consistency between stochastic simulation and the
Fokker-Planck equations
To verify the quasi-steady-state assumption for our case,
we validated that the solutions to the Fokker-Planck
equations were consistent with the probability densities
obtained by stochastic simulation of the full system
(Figs. 7 and 8). The Fokker-Planck equations provided
almost the same probability density as the Gillespie sto-
chastic simulation for initial molecule numbers ofy(1) =
y(2) = y(3) = 1(Figs. 7 and 8). The main limitation of the
quasi-steady-state assumption is an over-estimation of
the separation of the steady states ofy(2). However, in
the MRN-NA y(3) is more susceptible to fluctuations
and the driver for switching between steady states. Con-
sequently, the results obtained under the quasi-steady-
state assumption are meaningful for investigating the
memory function in these mutual repression networks.

Discussion
By applying numerical integration of the rate equa-
tions, stochastic simulations and theoretical analysis
of the Fokker-Planck equations, we investigated if
negative autoregulation can improve the memory
function in a mutual repression network. Previous
work had established the regulated mutual activation
network (MAN) and mutual repression network
(MRN) as good model systems to study fundamental
properties of cellular memory [12]. Here, we have sys-
tematically decoupled contributions of additional
negative autoregulation (MRN-NA) to the persistence
of the memory functionality. In general and as ex-
pected, stochasticity decreased the memory function
in all models. The addition of negative autoregulation
in the MRN-NA however extended robust and

persistent memory in both the deterministic and sto-
chastic approaches to lower levels of cooperativity in
the mutual repression cycle. Our results thus suggest
that, in addition to the added negative autoregulation,
the robustness of the stochastic memory of the MRN-
NA could be further improved by increasing the
binding strength of the repressor proteins.
In the present work, select sets of kinetic parameters

that can give rise to memory were used instead of ex-
haustive searches for alternative parameter combina-
tions. Despite accurately simulating the time evolution
of protein concentrations in stochastic systems, the Gil-
lespie algorithm is known for its limited power in char-
acterizing sustained memory in more complex networks
due to its computational cost that can quickly become
prohibitive. To generalize some of our findings, phase
diagrams of the memory region were derived as a func-
tion of the two most critical and previously identified
parameters. However and as evident from the small sto-
chastic memory regions, finely-tuned parameter combi-
nations were necessary to achieve robust memory. This
observation suggested both a biological challenge of
implementing a robust memory circuit, as well as a the-
oretical challenge in rationalizing its mechanistic basis
through exhaustive parameter perturbation.
Theoretical approaches that can complement these

shortcomings and make accessible the exploration of
larger parameter ranges often rely on additional as-
sumptions. Notably, the quasi-steady state assumption
of separately analyzing steady states is widely used,
performs in general well and is reasonably justified in
the presented work. Seminal advances have now pro-
vided advanced approximation methods that start to
render even multivariate and nonlinear chemical mas-
ters equations and related Fokker-Planck equations
amenable to theoretical analyses. For instance, the re-
cently introduced linear-mapping approximation con-
verts a nonlinear system to a linear problem via a
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mean-field approximation [54]. This and related tech-
niques will vastly improve accuracy and computa-
tional efficiency for future analyses of stochasticity in
more complex networks.
Biology has certainly evolved more complex architec-

tures, but in most cases the trade-offs between network
complexity and function remain poorly understood. For
instance, while the MAN network was found to yield
robust memory based on mutual activation [12], com-
parable results for the mutual repression network could
only be obtained after addition of negative autoregula-
tion, i.e. by a more complex network architecture. More
complex network architectures are often more expen-
sive to maintain, but may yield advantages in fidelity of
their robustness and dynamic control. To this end,
several related cellular networks of increased complex-
ity have been discovered and await further
characterization. For instance, a Notch-Delta mutual
repression network serves to communicate between
neighboring cells [60] where an increase in Notch activ-
ity within a cell decreases that in its neighboring cell.
The Notch-Delta mutual repression provides inhomo-
geneous or opposite protein synthesis in homogeneous
cell populations that however depends on spatial
changes in gene expression.

Finally, recent papers have outlined many funda-
mental principles of how to achieve bistability in
small networks [61–63]. The present work here ex-
tends these findings by a comparative network ana-
lysis that delineates the effect of additional negative
autoregulation on cellular memory.

Conclusions
We have shown that the addition of negative autoreg-
ulation can reduce intrinsic noise and generate per-
sistent stochastic memory in a mutual repression
network. Our mathematical comparison and theoret-
ical analyses contribute to an improved understanding
of how genetic circuits can encode biological function
and may aid the rational engineering of memory net-
works for applications in synthetic biology, medicine,
and biotechnology.

Methods
MRN-NA model
We constructed a simple model of a gene regulatory
network that consisted of two genes encoding a tran-
scription factor that we visualized according to a pre-
viously established graphical notation [55, 56] (Fig. 1).
Our mutual repression network with negative
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autoregulation (MRN-NA) consisted of proteins y(1),
y(2) and y(3). The input signal S induced the synthe-
sis of y(1), which in turn activated the synthesis of
y(2) and repressed production of y(3). Furthermore,
the synthesis reactions of both of y(2) and y(3) were
mutually repressed with cooperativity. Negative auto-
regulation governs synthesis reactions of y(2) and
y(3). This system can be bistable and exhibits mem-
ory. In formulating our model, we made deliberate
use of Michaelis-Menten approximations under the
assumption that substrate concentrations were in ex-
cess and association equilibria quickly attained. The
model is described by the following eqs. 1–3:

dy 1ð Þ
dt

¼ k 1ð Þ:S−k 2ð Þ:y 1ð Þ ð1Þ

dy 2ð Þ
dt

¼ k 3ð Þ: y 1ð Þ
y 1ð Þ þ K 1ð Þ þ k 4ð Þ: K 2ð Þn

y 3ð Þn þ K 2ð Þn þ k 9ð Þ: K 5ð Þ
y 2ð Þ þ K 5ð Þ−k 5ð Þ:y 2ð Þ ð2Þ

dy 3ð Þ
dt

¼ k 6ð Þ: K 3ð Þ
y 1ð Þ þ K 3ð Þ þ k 7ð Þ: K 4ð Þn

y 2ð Þn þ K 4ð Þn þ k 10ð Þ: K 6ð Þ
y 3ð Þ þ K 6ð Þ−k 8ð Þ:y 3ð Þ

ð3Þ

All parameters are described in Table 1.

Systems modeling and determination of successful
memory
The time evolution of the gene expression levels of y(1),
y(2) and y(3) was simulated both deterministically and
stochastically. For a deterministic systems description,
the ordinary differential equations (Eqs. 1–3) were
solved in MATLAB (Mathworks) with standard solvers.
Stochastic trajectories were simulated with the Gillespie
algorithm [64].
In all model simulations, the deterministic and sto-

chastic time courses of y(1), y(2) and y(3) were sim-
ulated for 1000 simulation time steps. The input
signal S was applied from simulation step 250 to
500. Deterministic memory was defined as sustained
protein levels in the numerical integration of the
rate equations during the subsequent period from
simulation steps 500 to 1000 after stop of the signal
S. Similarly, stochastic memory was assessed as sus-
tained protein levels in the stochastic simulations in
the period from simulation steps 500 to 1000 after
stop of the signal S. While arbitrary, a threshold of
1000 simulation time steps yielded a robust and
readily accessible criterium to assess memory. Due
to the probabilistic nature of the stochastic simula-
tions, robust stochastic memory for a given set of
parameters was defined as successful memory if 18
out of 20 stochastic simulations, i.e. 90%, yielded
persistent memory [12].

Theoretical model comparisons
All parameters were set as to render the MRN and
MRN-NA models as comparable as possible (Ta-
bles 1, 2) [12, 65]. With the exception of the add-
itional negative autoregulation loops, this meant
using the same parameters throughout. The parame-
ters of the negative autoregulation were tuned to
conserve the steady state levels of y(2) and y(3) be-
tween the MRN and MRN-NA models (Tables 1, 2).
Indeed, the high steady-state levels of both the
models were set to the same values, while the low
steady-state levels to be as similar as possible. Note
that it is not possible to also tune the low steady-
state levels to the exact same values. Given the
asymmetry of the models (activation of y(2) and sup-
pression of y(3) by S), the deterministic steady-state
levels of y(2) and y(3) always show opposing behav-
ior: when the steady-state level of y(2) is high, that
of y(3) is low and vice versa. Our parameters choices
conserved both the low and high steady states of
y(2) and y(3) between the MRN and MRN-NA
models [12] (Additional file 1: Texts S1, S2).
To systematically identify parameter choices that

can give rise to successful memory, phase diagrams of
the memory region as a function of the two most
critical parameters, the Hill coefficient and dissoci-
ation constants in the mutual repression cycle, were
computed by successive simulation at different param-
eter combinations.
Intrinsic noise in gene expression was quantified by

computing the coefficient of variation (CV) of the
levels of y(2) and y(3) during the input signal S from
the stochastic simulations. To eliminate transition ef-
fects, we considered the period from simulation step
270 to 500, i.e. omitting the first 20 simulation steps
of the signal period (Fig. 2f). In the same manner, we
estimated the CVs of the levels of y(2) and y(3) after
stop of the signal, for the period from simulation step
500 to 750 (Fig. 2g).

Stochastic potential and probability density function
The reaction rate equations (Eqs. 1–3) were converted
into fMRN −NA2(y) and fMRN −NA3(y) (Additional file 1: Text
S2). Using the quasi-steady-state assumption, we solved
the probability density at the steady state (at t→∞). At
t→∞ y(2) and y(3) definitely approach to the steady state,

i.e., dyð2Þ
dt →0 anddyð3Þ

dt →0. Therefore, we assumed dyð3Þ
dt ¼ 0

to solve the ODE of dyð2Þ
dt at t→∞. In a similar manner, we

assumed dyð2Þ
dt ¼ 0to solve the ODE of dyð3Þdt at t→∞.

Here, we illustrated how a one-variable equa-
tionfMRN −NA2(y) in a stochastic environment is given
by:
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dy
dt

¼ f MRN−NA2 yð Þ ¼ k 4ð Þ: K 2ð Þn
ySSn þ K 2ð Þn þ k 9ð Þ: K 5ð Þ

yþ K 5ð Þ−k 5ð Þ:y

ð4Þ
where

yss ¼ ½ k 6ð Þ: K 1ð Þ
yþ K 1ð Þ þ k 7ð Þ: K 2ð Þn

yn þ K 2ð Þn −k 5ð Þ:K 5ð Þ
� �

þf k 6ð Þ: K 1ð Þ
yþ K 1ð Þ þ k 7ð Þ: K 2ð Þn

yn þ K 2ð Þn −k 5ð Þ:K 5ð Þ
� �2

þ4:k 5ð Þ:K 5ð Þ: k 9ð Þ þ k 6ð Þ: K 1ð Þ
yþ K 1ð Þ þ k 7ð Þ: K 2ð Þn

yn þ K 2ð Þn
� �

g1
�
2 �: 1

2:k 5ð Þ
ð5Þ

This equation can be described by the birth-and-death
stochastic processes [12, 21, 49, 66]:

Wbirth yð Þ ¼ k 4ð Þ: K 2ð Þn
ySSn þ K 2ð Þn þ k 9ð Þ: K 5ð Þ

yþ K 5ð Þ ð6Þ

Wdeath yð Þ ¼ k 5ð Þ:y ð7Þ
where yssis given by Eq. (5).
The corresponding chemical master equation was

given by:

∂P y; tð Þ
∂t

¼ Wbirth y−1ð ÞP y−1; tð Þ þWdeath yþ 1ð ÞP yþ 1; tð Þ
− Wbirth yð Þ þWdeath yð Þf gP y; tð Þ

ð8Þ
where P(y, t) was the probability density of protein con-
centration y. Next, the chemical master equation was
transformed into the Fokker-Planck equation [12, 21, 50,
66–68]:

∂P y; tð Þ
∂t

¼ −
∂
∂y

A yð ÞP y; tð Þ½ � þ 1
2
∂2

∂y2
B yð ÞP y; tð Þ½ � ð9Þ

where

A yð Þ ¼ k 4ð Þ: K 2ð Þn
ySSn þ K 2ð Þn þ k 9ð Þ: K 5ð Þ

yþ K 5ð Þ−k 5ð Þ:y ð10Þ

and yssis given by Eq. (5). The noise function is given by:

B yð Þ ¼ k 4ð Þ: K 2ð Þn
ySSn þ K 2ð Þn þ k 9ð Þ: K 5ð Þ

yþ K 5ð Þ
þ k 5ð Þ:y ð11Þ

where yss is given by Eq. (5). In the same manner, the
Fokker-Planck equations of the four one-variable equa-
tions including fMRN −NA2(y) were solved under the fol-
lowing conditions (Additional file 1: Text S2):

A yð Þ ¼ f f MRN−NA2 yð Þ for y¼y 2ð Þ
f MRN−NA3 yð Þ for y¼y 3ð Þ fortheMRN−NA model

ð12Þ
and the noise functions were given by:

B yð Þ ¼ fgMRN−NA2 yð Þ for y¼y 2ð Þ
gMRN−NA3 yð Þ for y¼y 3ð Þ for the MRN−NA model

ð13Þ

Finally, we consider the stochastic potential analysis.
The limit of P(y, t) at t→∞ yields Pst(y), the stationary
probability density function of y [12, 21, 59, 66], which is
given by:

Pst yð Þ ¼ Nc

B yð Þ exp 2
Z y A zð Þ

B zð Þ dz
� �

ð14Þ

where Nc is the normalization constant. Eq. (14) can be
recast in the form:

Pst yð Þ ¼ Nce
−2Φs yð Þ ð15Þ

where

Φs yð Þ ¼ 1
2

ln B yð Þ½ �−
Z y A zð Þdz

B zð Þ ð16Þ

is called the stochastic potential of f(y) [57, 58, 66].

Mean first-passage time analysis
In gene expression, the stability of a steady state has
to be estimated in the presence of noise. The stabil-
ity of a steady state of a stochastic system can be es-
timated by the mean first-passage time (MFPT),
which describes the expected time within which the
system leaves a stable steady state due to random
fluctuations. An equilibrium point can exit from its
minimum potential due to the effect of noise. The
exit time depends on the specific realization of the
random process; this is known as the first passage
time. The MFPT is the average of the first passage
times over many realizations. In the context of an-
ticipating phase shifts, the MFPT provides a useful
tool to characterize the time-scale on which a phase
transition is likely to occur.
Let us consider ystl and ystu (ystl < ystu ) as two steady

states corresponding to a low and a high protein con-
centration, respectively, separated by the unstable
steady state defining the potential barrier yunb (i.e., the
unstable equilibrium point). The basin of attraction of
the state ystu extends from yunb to +∞, as it is to the
right of ystl . Let T(y) be the MFPT to state yunb starting
at y > yunb . T(y) satisfies the following ordinary differ-
ential equation [21, 59, 67, 68]:

A yð Þ ∂T yð Þ
∂y

þ 1
2
B yð Þ ∂

2T yð Þ
∂y2

¼ −1 ð17Þ

with boundary conditions:
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T yunb
	 
 ¼ 0 and

∂T þ∞ð Þ
∂y

¼ 0 ð18Þ

By solving Eqs. 17–18, the MFPTs of ystu and ystl :
TUðystu Þ and TLðystl Þ are calculated to state yunb for
the basin of attraction of the state ystu extending
from yunb to +∞ and for the basin of attraction of the
state ystl which extends from 0 to yunb , respectively, as
follows:

TL ystl
	 
 ¼ 2

Zyunb

ystl

1
Ψ xð Þ dx:

Zx

0

Ψ zð Þ
B zð Þ dz

ð19Þ

TU ystu
	 
 ¼ 2

Zystu
yunb

1
Ψ xð Þ dx:

Z∞

x

Ψ zð Þ
B zð Þ dz

ð20Þ
where

Ψ yð Þ ¼ exp
Zy

y0

2A wð Þ
B wð Þ dw

0
B@

1
CA

ð21Þ
with y0 = 0 for the ystu→ystl transition and y0 ¼ yunb for the
ystl →ystu transition. A high value of the MFPT of a steady
state protein level indicates that the level is sustained for
a longer time, whereas a low value indicates that the
protein can readily leave the steady state and quickly
transition to another level.
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