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ARTICLE INFO ABSTRACT

Keywords: Ischemic stroke is the main cause of disability and mortality worldwide. Apoptosis and inflammation have an
Mesenchymal stem cells important role in ischemic brain injury. Mesenchymal stem cells (MSCs) have protective effects on stroke
Stroke treatment due to anti-inflammatory properties. The inhibition of the C-Jun N-terminal kinase (JNK) pathway
gilJe“rsz'tenninal kinase may be one of the molecular mechanisms of the neuroprotective effect of MSCs in ischemic brain injury.

y

Twenty-eight male Wistar rats were divided randomly into 3 groups. Except the sham group, others subjected
to transient middle cerebral artery occlusion (tMCAO). Bone marrow MSCs or saline were injected 3h after
tMCAO. Sensorimotor behavioral tests were performed 24 and 72h after ischemia and reperfusion (I/R). The
rats were sacrificed 72 h after I/R and infarct volume was measured by TTC staining. The number of apoptotic
neurons and astrocytes in the peri-infarct area was assessed by TUNEL assay. The morphology of cells was
checked by Nissl staining, and the expression of p-JNK was detected by immunohistochemistry and Western blot.

Behavioral scores were improved and infarct volume was reduced by MSCs 24h and 72h after tMCAO.
TUNEL assay showed that neuronal apoptosis and astroglial activity in the penumbra region were reduced by
MSCs. Also, Nissl staining showed lower neuronal apoptosis in BMSCs-treated rats compared to controls. JNK
phosphorylation which was profoundly induced by ischemia was significantly decreased after MSCs treatment.

We concluded that anti-apoptotic and anti-inflammatory effects of MSCs therapy after brain ischemia may be
associated with the down-regulation of p-JNK.

1. Introduction inflammatory process is characterized by the activation of resident

immune cells such as microglia and astrocytes, increasing vascular

Ischemic stroke is a major cause of long-term disability and mor-
tality, worldwide [1]. This crippling event result from a sudden drop in
brain blood flow by an embolus or a thrombus and accounts for ap-
proximately 87% of all strokes [2]. Immediately after ischemic stroke, a
cascade of molecular events including excitotoxicity, increased levels of
intracellular calcium, oxidative stress and inflammation is initiated that
ultimately leads to apoptotic or necrotic neuronal cells death [3]. The

permeability, reducing the integrity of the blood-brain barrier and in-
filtration of peripheral immune cells including neutrophils, macro-
phages and T lymphocyte into the injured brain area. [4]. The inhibi-
tion of brain inflammation reduces infarct size and improves
neurological function [5,6]. The blockade of apoptosis attenuates cer-
ebral ischemic injury [7]. The primary goal of neuroprotective inter-
ventions is the protection of neurons in the surrounding area of the
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ischemic region [8]. There are a lot of studies about the pathophy-
siology, etiology, and treatment of ischemic stroke [9-11], but the
range of therapeutic interventions has remained very limited [12].
Currently, tissue plasminogen activator (tPA) is the only approved
pharmacological intervention with significant benefits in acute is-
chemic stroke. However, it is only effective in the first 4.5 h after the
onset of the brain ischemia [13].

Cell therapy is known as a promising strategy in the treatment of
many diseases, including. Stroke [14-16]. Mesenchymal stem cells
(MSCs) are among the cells that are widely considered for their char-
acteristics such as availability, rapidly expandable, and lack of ethical
and immunological problems in allogeneic transplantation [17]. Sev-
eral studies have shown the beneficial effects of MSCs transplantation in
the treatment of cerebral ischemic stroke [18,19]. The mechanisms
involved in MSCs-mediated therapeutic effects in cerebral ischemia are
the ability to migrate to injured tissues, trans-differentiation into the
neural lineage, and the production of trophic factors and cytokines by
MSCs [20] suggesting the importance of paracrine signaling by MSCs
[21,22]. Recent research has indicated that the transplantation of bone
marrow mesenchymal stem cells (BMSCs) reduces the infarct size and
improves functional outcome following a brain stroke. Despite the
protective effects, the exact molecular mechanisms are unknown.
Modulation of the immune system and reduction of the inflammatory
response by MSCs prevents secondary damage after stroke. Also,
apoptosis of neural cells after ischemic stroke can be suppressed by
these cells [23-25].

The c-Jun N-terminal kinase (JNK) cascade, also known as the
stress-activated signaling pathway, is a mitogen-activated protein ki-
nase (MAPK) that is activated in response to a wide variety of stresses,
including pro-inflammatory cytokines such as TNF-a [26], interleukin
1-beta [27] and many forms of environmental stress [28]. The activa-
tion of JNK leads to cell death via inflammation and apoptosis in many
cell types [29]. Studies revealed that activation of JNK is a major factor
in neuronal apoptosis triggered by focal and global ischemia [30].
Therefore, JNK signaling might have a role in the regulation of brain
inflammation which is followed by brain I/R injury progression
[30-32]. It was reported that inhibition of JNK activation may be
neuroprotective by suppression of inflammation in glial cells or apop-
tosis in neurons or both [33].

In this study, we examined the neuroprotective effects of BMSCs
transplantation against cerebral I/R injury in a rat model of focal
ischemia. We also investigated the possible role of the JNK signaling
pathway for MSCs effects.

2. Materials and methods
2.1. Animals and experimental groups

Adult male Wister rats weighing 230-280 g (8-10 weeks old) were
maintained in a 12h light/dark cycle at the temperature (21 = 2) °C
and allowed free access to food and water. All experimental protocols
were approved by the Kashan University of Medical Sciences Ethical
Committee by letter No. 3303, Date: 24.9.2014 and were carried out in
accordance with the Directive 2010/63/EU on the protection of animals
used for Scientific Purposes. A total of 28 rats were used in this study.
Animals were randomly divided into 3 groups: 1. Sham-operated group
(N = 8), 2. Vehicle-treated I/R group or saline group (N = 10) and 3.
BMSCs-treated I/R group or MSCs group (N = 10). Rats received a
single injection of MSCs 3h after tMCAO via the tail vein and were
sacrificed 72h after I/R. The vehicle-treated group received an equal
volume of saline in the same manner of MSCs treatment.

2.2. Induction of transient focal cerebral ischemia

Transient focal cerebral ischemia was conducted with the use of the
intraluminal filament technique as described previously [34,35] with
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some minor modifications. Briefly, the rats were anesthetized by 3%
isoflurane (Baxter, USA) and maintained with 2% in an oxygen/air
mixture using isoflurane vaporizer (Eickemeiyer, Germany). During the
experiment, body temperature was kept at 37.0 * 0.5°C using a
heating pad (NARCO Bio-systems, USA). Laser Doppler flowmetry
(Moor Instruments, U.K) was used to assure a successful occlusion and
reperfusion of the middle cerebral artery (MCA). Laser-Doppler mea-
suring sensors (P10d) were positioned and fixed on both hemisphere of
skull surface, 1-2 mm posterior and 4-5mm lateral to the bregma in
MCA territory for detecting cerebral blood flow (CBF). A midline skin
incision in the neck was performed. The left common carotid artery
(CCA) was exposed and the vagus nerve was protected. Then silicon-
coated monofilament (Doccol, USA) was gently inserted into the lumen
of CCA and forwarded to the internal carotid artery (ICA). When about
22 mm of filament entered into the arteries, a significant drop (> 60%)
occurred in CBF. At.this time, the entrance to the MCA was blocked.
The filament was fixed for 60 min and CBF was monitored at intervals
every 10 min. After 1h of occlusion, the filament was pulled out and
CCA was blocked, but the MCA was reperfused from Willis loop and
blood flow was returned to the near of initial CBF. Then, the incision
was closed and rats were killed 72 h after reperfusion for histological
analysis and TTC staining. Sham-operated animals were subjected to
the same anesthesia and surgical procedures but the catheter was not
inserted into the CCA. The rats with more than 65% reduction in CBF
were included in the study. On the other hand, the rat showed a sudden
CBF reduction in both hemisphere, as a sign of hemorrhage, were ex-
cluded from the experiment.

2.3. Isolation and characterization of rat BMSCs

BMSCs were obtained from the femur and tibia bones marrow of
male Wister rats by flushing method. First, the rats were deeply an-
esthetized with 10% chloral hydrate (3 mg/kg, intraperitoneal) and
decapitated. The femur and tibia bones were removed under sterile
conditions. Then, bone marrow was flushed out into a 50 ml falcon tube
using a syringe containing cell culture media. The cells were expanded
in a 75 cm? cell culture flask (SPL, Korea) by Dulbecco's modified
Eagle's medium (DMEM, Invitrogen, USA) that supplemented with 10%
fetal bovine serum (Invitrogen, USA) and penicillin/streptomycin
(Invitrogen, USA) and placed in an incubator (Memmert, Germany)
with 5% CO,, and 80% humidity at 37 °C temperature. After 24 h,
media and non-adherent cells were discarded and replaced with fresh
medium. Thus, BMSCs were isolated based on the capability of adherent
to plastic cell culture flasks. When the confluence of the cells reached
80%, they were removed by trypsin-EDTA (0.25%) and expanded in
two or more 75-cm? flasks. After three passages, cells were analyzed for
surface CD markers by flowcytometry. Also, the differentiation capacity
of extracted cells was examined for confirming that the cells are MSCs.
The expanded cells in passage three were subjected to a specific dif-
ferentiation media for differentiating to osteoblasts and adipocytes.
Adipogenic differentiation medium consists of low glucose DMEM
(Invitrogen, USA) supplemented with FBS and penicillin/streptomycin
(same as growth media), plus 50 ug/ml ascorbic acid- 2-phosphate,
100 nM dexamethasone and 50 pug/ml indomethacin (all from Sigma,
Germany) and Osteogenic differentiation medium consist of growth
media addition with 10 mM glycerol-2-phosphate, 50 pg/ml ascorbic
acid- 2-phosphate and 100nM dexamethasone (all from Sigma-
Aldrich). This medium was changed every 3 days. After 21 days, cells
were stained with oil red and alizarin red dyes to identify adipocytes
and osteoblasts, respectively. BMSCs were used for transplantation in
passages 3-5. A single dose of 1 x 10° BMSCs in 1 ml saline was in-
jected into the tail vein of rats in the cell therapy group. The rats in the
control group received 1 ml saline 3 h after tMCAO.



Z. Vahidinia, et al.

2.4. Flow cytometry analysis

Flow cytometry analysis has been used to confirm the presence or
absence of the six markers. Cells from the third passage were removed
by trypsin and cell suspensions were washed twice in PBS supplemented
with 0.5% (v/v) bovine serum albumin (BSA). Each one of antibodies
including: PE-conjugated anti-CD34 antibody (QBEnd10; Invitrogen,
Carlsbad, CA), FITC-conjugated anti-CD73 (SH-3) antibody
(CiniSciences, Nanterre, France), anti-CD44 antibody, anti-CD45 anti-
body, anti-CD90 antibody, and PE-conjugated anti-CD105 (SH-2) anti-
body (Every four of them from Abcam, Cambridge, UK), were added to
a suspension of 10° cells/ml PBS separately, and incubated for 30 min
at 4°C and protected from light. Finally, the cells were washed and
analyzed by a BD FACS Calibur flow cytometer (BD Biosciences, San
Jose, CA) and results were investigated by Flowjo 7.6.1 software.

2.5. Behavioral testing

Garsia behavioral tests with minor modifications were performed 24
and 72h after I/R as previously described [35]. Four motor tests in-
cluding spontaneous activity, walking, forepaw outstretching and
climbing and two sensory tests including body and head proprioception
were done in all of the animals by two blinded examiner. The total
scores of the tests (between 3and 18) were compared in all of animals
groups.

2.6. Cerebral infarction volume

TTC staining technique was performed to determine the infarct size.
Animals were deeply anesthetized with 10% chloral hydrate (400 mg/
kg, intraperitoneal) and decapitated 72h after I/R. Brains were re-
moved rapidly and placed in a brain matrix (Zivic Instruments, USA)
and cut into 2-mm thick coronal sections. Afterward, the brain sections
were stained by triphenyl tetrazolium chloride (TTC) 1% in PBS (W/V)
at 37° for 10 min. TTC was reduced to tri-phenyl formazan in the vital
cells and its deposition causes red color but the dead cells in infarcted
tissue remain pale. Then photograph was taken from tissue sections by a
digital camera (Canon, Japan). Infarct area was assessed by image
analysis software (Image J version 1.44p, USA). Infarcted areas of all
sections were measured (mm?), data summed and then multiplied by
the distance between the sections (2 mm) in order to get the total in-
farction volume [4].

2.7. Western blot analysis

For western blot analysis, animals were sacrificed and their brains
were removed quickly. The tissue of ischemic penumbra was dissected
from 3 groups and lysed in 800l radioimmunoprecipitation assay
buffer (RIPA buffer). An equal amount of proteins were separated in
10% SDS polyacrylamide gel. After electrophoresis, the proteins on the
gel were transferred on a PVDF membrane (Roche, Germany) using a
semidry transfer apparatus and blocked with 0.2% BSA in PBS for 1 h.
Blots were probed with primary antibodies against beta-actin (ab8226,
Abcam, 1:5.000) and pJNK (sc-6254, Santa Cruz Biotechnology, 1:200)
overnight at 4 °C and subsequently incubated with secondary antibodies
conjugated with horseradish peroxidase (anti-rabbit, Abcam, 1:3.000
and anti-mouse, Santa Cruz Biotechnology, 1:4.000) for 1 h. Finally,
labeled proteins were observed with the ECL detection system (Biorad,
USA). pJNK band density was normalized to the corresponding beta-
actin band as an internal control. Protein bands were quantified using
densitometry software (Image J version 1.44, USA).

2.8. Tissue preparation and immunohistochemistry

Animals were deeply anesthetized by intraperitoneal injection of
10% chloral hydrate (mg/kg,) and perfused through the left ventricle of
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the heart with saline and then fixed with 10% neutral-buffered formalin
(NBF) (pH = 7) at 72 h after reperfusion. The fixed brains were care-
fully removed from the skull, sectioned into 4 mm thick slices and kept
in the same fixative solution for 48 h post-fixation at room temperature.
After tissue processing, brains were embedded in paraffin, 5pum- thick
coronal sections were prepared using a microtome (Diapath, Italy) and
placed on silane-coated slides. Then, sections were deparaffinized, re-
hydrated and used for immunohistochemistry, TUNEL, and Nissl
staining.

For immunohistochemistry, rehydrated sections were immersed in
an antigen retrieval solution (pre-heated 0.1 M citrate buffer (pH = 6)
for 20 min. Non-specific antibody binding was blocked with a superb-
lock solution from IHC kit (UltraTek HRP-Anti Polyvalent, Scytek, USA)
for 7 min at room temperature. In the next step, slides were incubated
with primary antibodies overnight at 4 °C. The following primary an-
tibodies were used for this study: mouse monoclonal anti-pJNK (sc-
6254, Santa Cruz Biotechnology, USA) at 1:50 dilution, rabbit poly-
clonal anti-GFAP (32608, Encore, USA) at 1:1000 dilution. Then, sec-
tions were incubated in 10% H,0, in methanol for 10 min to quench
endogenous peroxidase activity. After several washing steps, sections
were treated with biotin-conjugated secondary antibodies and subse-
quently with a streptavidin-peroxidase conjugate solution for 10 min.
The color reaction was visualized using diaminobenzidine (DAB). For
negative controls, slides underwent identical preparation except for the
primary antibodies.

2.9. TUNEL staining

Neuronal apoptosis was delineated by using a TUNEL kit (Roche,
Germany). TUNEL staining was performed according to the manu-
facturer’s protocol. Briefly, after deparaffinization and rehydration,
sections were boiled in 0.1 M citrate buffer in a microwave (pH = 6) for
10 min. After rinsing with PBS, the TUNEL reaction mixture was added
on samples for 60 min in a 37 °C incubator. Samples were rinsed with
PBS before they were treated with Converter-POD solution for 30 min at
room temperature. DAB was used for the coloration of apoptotic cells.

2.10. Nissl staining

Initially 5 pm coronal sections were prepared for Nissl staining. The
sections were placed on the slides and paraffin was removed in xylene
and hydrated in ethanol. After rinsing by tap water and distilled water,
they were stained with 0.1% cresyl violet (Merck, Germany) for 3-
10 min, and then slides were dried and mounted. Intact neurons con-
tained large oval nuclei while the degenerated neurons showed
shrunken and pyknotic nuclei. Counts of intact-degenerating neurons
were performed in two sections per animal. All IHC-, TUNEL- and Nissl-
stained sections were mounted and analyzed with an inverted micro-
scope (Nikon Eclipse Ti-U, Japan).

2.11. Statistical analysis

All data are presented as means = SEM and analyzed with SPSS
software (version 22.0, USA). For comparison, the data related to CBF
repeated measurement ANOVA was used. The behavioral data were
analyzed by Kruskal-Wallis test. All of the other comparisons were
performed by one-way ANOVA and post-hoc Tukey's test. Differences
were considered to be statistically significant if P value was < 0.05.

3. Results
3.1. Isolation and characterization of BMSCs
BMSCs showed a characteristic fibroblast-like cell morphology

(FiglA). The capability of bone marrow extracted cells for differentia-
tion into osteoblasts and adipocytes were showed by culturing of the



Z. Vahidinia, et al.

Pathology - Research and Practice 215 (2019) 152519

i 97.5% ) I 99.8% : I 987%
;F| 5';! .31 _'!.II :l
it [
- | ' = e | | i ||
21 f] : (14 A 2 |
S\ SV IV o]y
; '.1’- 'I' |5 ? :-é xr. .:‘ 5' 1: x]'. il.
b ,:"'.l'n.. v',‘v . TEKL:";,‘ 'g.."\ -x': §> Il:'\.,
10° 10! 102 108 104 10° 10! 102 103 104 10° 10! 102 108 104
CD44- FITC CD73- FITC CD90- FITC
) 96.8% 4.54% 3.49%
{1
[ |
g - g g
@) IF' \ @) (@]
i o i ;
l[
:? IT‘.‘ .."I “. . '.." A
v, Y L~ ‘.'Q_l;:- F S
100 10! 102 108 104 100 10! 102 10° 10¢ 10 100 102 10° 104
CD105- PE CD34-PE CD45-FITC

Fig. 1. MSCs identification: Morphology of bone marrow extracted cells after 3 passage (A). Potential differentiation of MSCs to bone and fat cells (B &C).
Flowcytometry analysis: MSCs expressed markers CD90, CD73, CD44, and CD105 and were negative for the hematopoietic cell surface molecules CD45 and CD34

(D). Sample stained with FITC Conjugated Antibodies (green), PE conjugated Antibodies (Red), Negative Control (Black).

cells in the specific media were checked. After three weeks extra-cel-
lular calcium depositions were showed in osteogenic media by alizarin
red staining and fat vacuole were seen in adipogenic media by oil red
staining (FiglB and C). Before transplantation, the BMSCs were ana-
lyzed for cell surface markers at passage 3. Flow cytometry analysis
confirmed that BMSCs were positive for the surface antigens CD44
(97.5%), CD73 (99.8), CD 90 (98.7%), and CD105 (96.8%) which are
typically expressed in a variety of stem cells and had low expression for
hematopoietic cell surface antigens CD45 (2.62%) and CD34 (4.52%)
(Fig. 1D).

3.2. Infarct volume and behavioral scores

The infarct volume depends mainly on the blood perfusion and the
time of ischemia, but secondary factors, such as oxidative stress,

inflammation, and apoptosis expanded it. As expected, no infarct area
was seen in the sham group but it was clearly found in the saline group.
BMSCs significantly decreased the infarct volume 72h after I/R (P =
0.022).

Behavioral exam indicated that ischemic stroke significantly de-
creased sensory and motor test scores 24 and 72 h after I/R (P = 0.001)
but BMSCs transplantation significantly improved behavioral test 24 h
(P = 0.042) and 72 h (P = 0.016) after I/R in compared to saline
groups (Fig. 2).

3.3. MSCs therapy decreased cell death after ischemic stroke

To investigate the effect of BMSCs transplantation on apoptosis,
TUNEL staining was done 72 h after I/R. There were almost no TUNEL
positive cells in the sham group and contralateral hemisphere of saline
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Fig. 2.Ischemic stroke significantly decreased behavioral scores
(***P < 0.001). BMSCs improved the neurological deficits and behavioral
scores significantly increased 24 h (*P = 0.042) and 72 h ¥ P = 0.015) after I/
R in compared to the saline group.

group animals. After tMCAO, the number of TUNEL positive cells
massively increased but treatment with BMSCs prevented this induction
of apoptosis and reduced TUNEL positive cells (P = 0.025) (Figs. 3B
and D).

3.4. MSCs transplantation reduced astroglial reactivity

GFAP is the principal intermediate filament protein of mature as-
trocytes and serves as a hallmark for reactive astrogliosis after nervous
tissue injury [36]. In the sham group, most GFAP + astrocytes had thin
processes 72h after surgery (Fig. 4C), while in the control tMCAO
group, GFAP + astrocytes appeared hypertrophic with thickened pro-
cesses (Figs. 4A, B). The number of reactive GFAP + astrocytes was
significantly reduced within the boundary zone of ischemia in the
BMSCs-treated group compared with a control group 72h after I/R
reflecting a reduction in ischemia-induced astrogliosis after BMSCs
treatment (p < 0.001) (Fig. 4D). Our data suggest a novel role of
BMSCs in the modulating inflammatory responses associated with cer-
ebral ischemia.

3.5. Morphological analysis of ischemic neuronal damage

The degree of neuronal damage was evaluated by Nissl staining. In
the sham group, neurons appeared unaffected and showed round and
pale-stained nuclei (Fig. 5C). In contrast, many neurons in the pe-
numbra region of the tMCAO control group showed an aberrant mor-
phology with shrunken cell bodies, chromosome condensation and
nuclear pyknosis (Fig. 5A). Treatment with BMSCs reduced the number
of degenerating neurons and significantly preserved the intact structure
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of neurons (P < 0.001) (Fig. 5B and D).

3.6. MSCs reduced JNK activation after ischemia

To confirm whether the JNK pathway is activated in the brain after
focal ischemia, western blotting was performed with an antibody spe-
cific for the phosphorylated active form of JNK. Moreover, the p-JNK
positive cells were stained by immunohistochemistry and quantified in
the penumbra. I/R injury significantly induced activation of pJNK
(Fig. 6B and D) compared to the sham group (Fig. 6F). Western blot
analysis revealed approx.30% shorter protein levels of pJNK in the
MSCs group compared to the tMCAO control group (Fig. 6A). Western
blot results were qualitatively approved by immunohistochemistry of
pJNK in control and MSCs groups (Fig. 6B-E). The administration of
BMSCs significantly reduced the numbers of JNK-positive cells com-
pared to the saline (Figs. 6C and E, P = 0.011).

4. Discussion

In this study, we attempted to elucidate possible mechanisms un-
derlying the neuroprotective effects of BMSCs in an animal model of
focal cerebral ischemia. The main observation of our study is that in-
travenously transplanted BMSCs have the capability to modulate the
local inflammatory response and to decrease apoptosis in the ischemic
brain most likely through inhibition of the JNK signaling cascade.
tMCAO is a well-characterized stroke model inducing ischemia-related
neurodegeneration in rodents [37] and thus, allows for studying po-
tential therapeutic compounds and related molecular mechanisms.
Besides the many site-specific pathological processes occurring im-
mediately after and with a distinct time delay in the hypoxic brain area,
neuroinflammation and apoptosis appear to be the major destructive
events that mainly contribute to its pathogenic progression [38]. De-
spite the development of various therapeutic measures mainly arising
from animal studies, stroke still lacks an ideal brain-suited and effective
treatment [32]. MSCs have been proposed to have beneficial effects in
animal models of focal cerebral ischemia [18,19]. However, the me-
chanisms underlying the observed reduction of the infarct volume and
improvement of functional deficits are not understood.

As expected, our findings are consistent with previous reports which
have shown that the administration of MSCs can reduce the infarct
volume and improve the functional deficits after transient focal cerebral
ischemia [25,39-41]. Apoptosis plays a decisive role in mediating
neuronal death after cerebral ischemia [42] and the penumbra region is
particularly vulnerable to apoptosis in the early follow-up period
(hours) after the onset of reduced blood supply. Therefore, the
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Fig. 3. Infarct Volume: TTC-stained brain slices showed a massive infarct area (white zone) 72h after I/R. Treatment with BMSCs reduced the infarct volume.
Quantitative analysis of the cerebral infarct volume indicated a significant decrease by MSCs 72 h after I/R (*P = 0.022). St: striatum, Cx: cortex.
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Fig. 4. Effects of MSCs on apoptosis: TUNEL staining showed an increased number of apoptotic cells in the striatum in the saline group. BMSCs significantly

decreased the number of TUNEL-positive cells. (*P = 0.025).

attenuation of apoptosis in this brain region is one of the prime goals of
therapeutic interventions [43]. Previous studies have demonstrated a
protective role of MSCs transplantation against neuronal apoptosis in
both permanent and transient focal ischemia models [44,45]. Here, we
additionally report that BMSCs protect neurons against an ischemic
insult. Evidence of this protection is that BMSCs notably increased the

neuronal surviving- and decreased apoptosis rate. Isele et al. showed
that BMSCs secrete a combination of multiple growth factors and cy-
tokines that activate endogenous survival signaling pathways such as
PI3K/Akt and the MAPK/ERK1/2 cascade [46]. This is supported by
findings from another disease and animal model where MSCs provoke
anti-apoptotic effects after myocardial infarction. This protective effect

Fig. 5. MSCs therapy and astrocyte. Astrocytes
are visualized by anti-GFAP staining. Ischemia
significantly increased the number of reactive
GFAP-positive cells in the striatum at 72 h after
I/R in compared to the sham group (A, C)
(***P < 0.001). BMSCs significantly reduced
the number of GFAP-positive cells (**P =
0.002). The comparison of GFAP- positive cells
in the ischemic penumbra was done as a
number of cells/mm? (B, D).
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Fig. 6. Effects of BMSCs on JNK activation. (A) Western Blots result indicated a decreased expression of p-JNK in the MSCs group compared with the saline group
72 h after I/R. Immunohistochemistry results showed a lower expression of p-JNK in the penumbra region of the striatum in BMSCs treated group (C) compared to the
saline group (B) 72h after I/R (*P = 0.011) (D-E). CC: corpus callosum.

appeared to be mediated through the stimulation of mitogen-activated [49]. Astroglial reactivity in the peri-infarct region is also an interesting
protein kinases pathways, including JNK, extracellular signal-regulated and potential goal for therapeutic interventions [40]. In this study, we
kinase (ERK) and p38 [47,48]. indicated a decreased astroglial reactivity in the peri-infarct zone of

The astrocytes were activated by ischemia and converted to reactive BMSCs-treated animals compared to the control group. These results
astrocytes which have been identified to play a role in neurogenesis. are in line with a previous report by Pavlichenko et al [50] who
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observed the widest glial scar in the control group and moderate glial
scar in the MSCs therapy group in a rat stroke model. Another possible
mechanism has been proposed by Huang et al. who showed that
paracrine factors secreted by MSCs can promote astrocyte survival and
down-regulate GFAP expression via the suppression of p38 MAPK and
JNK [51]. Therefore, the anti-inflammatory properties of BMSCs might
be a major component of its beneficial effects against I/R injury [52].

To further pinpoint putative molecular mechanisms which are in-
volved in BMSCs-dependent neuroprotection, we investigated the JNK
signaling pathway that plays a major role in ischemia-induced neu-
roinflammation and cell death [33]. A previous study showed the role
of JNK signaling pathways in apoptosis of Jurkat T cell, which was
induced by adipogenic MSCs [53]. Although the MSCs im-
munomodulatory effects are well known, various molecular mechan-
isms are mentioned that need further investigation.

In this study, the administration of MSCs clearly inhibited the in-
crease in pJNK-expressing cells compared to tMCAO. The JNK has been
demonstrated as a crucial mediator in triggering neuronal apoptosis
following ischemia [30,54] and phosphorylation of the downstream
molecules like c-Jun involves in its pro-apoptotic function [55]. Acti-
vation of the JNK signaling results to cell death via not only intrinsic/
extrinsic apoptotic pathways, but also pro-inflammatory cytokine pro-
duction [30]. The JNK phosphorylation also appears to be linked to
astrocyte function/dysfunction in the penumbra after ischemia [56].
Therefore, The JNK activity seems to be important for both the immune
response and apoptosis. Thus, the blockade and attenuation of JNK
activation could be one pivotal mechanism against cerebral ischemia-
induced brain damage [31,57] and could prevent astroglial reactivity,
neuronal apoptosis [51,58].

In conclusion, the present data support the view that the adminis-
tration of BMSCs in focal brain ischemia-induced animals could be
neuroprotective. Taken together, our results suggested that anti-in-
flammatory and anti-apoptotic properties of MSCs are considerably
contributed to its protective effects via targeting JNK pathway. These
findings revealed, the JNK pathway may be introduced as an important
molecular mechanism in the ischemic stroke injury.
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