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A B S T R A C T

Radiotherapy is one of the most common treatment modalities for controlling a wide range of tumors. However,
it has been shown that radiotherapy alone is unable to completely eradicate some tumors and could be asso-
ciated with a high possibility of tumor recurrence. To date, various experimental and clinical studies have been
conducted to explore some efficient targets within tumor microenvironment (TME) to enhance tumor response to
radiotherapy; thus help eliminate or eradicate tumors. Although targeting DNA damage responses (DDRs) is
associated with severe toxicities, studies in recent decade suggest that inhibition of some apoptosis/survival
targets within TME is promising. This is also associated with changes in the numbers of T regulatory cells (Tregs)
and cytotoxic T lymphocytes (CTLs). The inhibition of cyclooxygenase-2 (COX-2), phosphoinositide 3-kinase
(PI3K), mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs) and vascular en-
dothelial growth factor (VEGF) have also shown promising results. The combination of receptor tyrosine kinase
(RTK) inhibitors with radiotherapy is interesting as well as the clinical use of some drugs and antibodies.
Epidermal growth factor receptor (EGFR) inhibitors are the most common RTK inhibitors. Some clinical trials in
recent years have shown very interesting results for immune checkpoint inhibitors (ICIs), especially programmed
death-ligand 1 (PD-L1) and CTLs–associated antigen 4 (CTLA-4) inhibitors. It has been suggested that admin-
istration of ICIs during or after hypofractionated radiotherapy could lead to best results. In this review, we
explain TME response to radiotherapy and potential targets for sensitization of cancer cells to radiotherapy.

1. Introduction

Radiotherapy is one of the main strategies for eradication of cancer
cells and preventing tumor growth. Radiotherapy has less systemic ef-
fects compared to chemotherapy [1]. Some studies have estimated that
50% to 70% of cancer patients undergo treatment with radiation during
their treatment course [2]. Although evidences show that radiotherapy
is able to control some tumors and increases survival of patients re-
markably; however, studies have also shown that treatment with
radiotherapy alone has a high risk of tumor relapse [3]. Furthermore,

experimental studies have suggested that radiotherapy may trigger
adaptive responses in tumor, which lead to resistance to subsequent
doses of radiation [4]. Thus, a large number of experimental studies
have been conducted to investigate the molecular, biochemical and
epigenetic modulations to improve the response of tumors to ionizing
radiation [5]. Therefore, identifying the mechanisms of tumor re-
sistance to radiotherapy and exploring effective targets for overcoming
these resistance mechanisms are some of the interesting aims in
radiobiology and radiation oncology. Despite the clinical applications
of some targets, further research is required in this area. Radiotherapy
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in combination with targeted therapy and immunotherapy is growing
and attracting interests in recent years. This review aimed to discuss the
promising targets that can be proposed for tumor radiosensitization as
well as having good chance for translation to clinical radiotherapy.

2. Tumor microenvironment (TME) and resistance to radiotherapy

Tumor contains various types of cells such as cancer cells, cancer
stem cells (CSCs), cancer associated fibroblasts (CAFs), regulatory T cells
(Tregs), macrophages, cytotoxic T lymphocytes (CTLs), natural killer
(NK) cells, neutrophils, myeloid-derived suppressor cells (MDSC) etc. [6].
Interactions between these cells and their secretions play a pivotal role in
tumor response to therapy. Radiotherapy induces some changes that may
increase or reduce resistance to subsequent doses of radiation [7]. It has
been suggested that exposure to a dose of radiation causes resistance to
subsequent doses; however, in recent years, some evidences show that
radiation may help better management of tumor growth through in-
duction of anti-tumor activity of the immune system [6].

2.1. Cancer cells

Cancer cells are among the most important targets within tumor.
Killing cancer cells by radiation can attenuate tumor growth. However,
cancer cells can release some factors in response to radiation to promote
growth and invasion of tumor [6]. Cancer cells have positive feedback
loop with other cells in favor of tumor growth. Cancer cell death fol-
lowing radiotherapy also triggers several signaling cascades to aid
survival and tumor growth. Apoptosis can trigger the release of anti-
inflammatory cytokines including TGF-β to help proliferation of cancer
cells and also suppression of CTL activity [8]. Autophagy and necrosis
can also trigger survival via supply of energy and suppression of death
pathways [7]. Immunogenic cell death including necrosis or necroptosis
can also cause the release of danger alarms which activate the immune
system against cancer cells. In this condition, danger alarms activate
dendritic cells to promote proliferation of anti-cancer natural killer
(NK) cells and cytotoxic T cells [9]. Activation of NK cells and cytotoxic
CD8+ T cells lead to the release of anti-tumor cytokines such as TNF-α,
IFN-γ and IL-2, which are able to promote apoptosis in cancer cells as
well as more proliferation of anti-tumor immune cells. These cytokines
also attenuate the proliferation and activation of CAF, Tregs and CSCs,
leading to the suppression of cancer growth factors such as TGF-β [10].
The balance between immunogenic and tolerogenic responses plays a
key role in the fate of tumor therapy by radiation. The interaction of
cancer cells with other cells within TME will be further discussed.

2.2. CAFs

It has been suggested that radiation augments survival of CAFs fol-
lowing upregulation of integrin [11]. Radiation also increases the release
of TGF-β that promotes differentiation of fibroblasts into CAFs [12]. These
CAFs further release more TGF-β to exacerbate tumor growing features.
An increase in the survival of CAFs could lead to more survival of cancer
cells through upregulation of the anti-apoptotic PI3K pathway [11]. CAFs
are also able to promote autophagy in cancer cells, which stimulates re-
currence and survival of cancer cells following exposure to radiation [13].
Results of irradiated lung tumors have shown that CAFs play a key role in
tumor survival because of its immune suppressive ability [14].

2.3. Tregs

Tregs play a central role in tumor resistance to various types of cancer
therapy, including radiotherapy. Tregs have a positive cross-talk with
immunosuppressive cells within TME. On the other hand, Tregs inhibit
the activities of CTL and NK cells. The expression of programmed death 1
(PD-1) plays a key role in this mechanism. The PD-L1 receptor PD-1
promotes proliferation of Treg; however, it prevents proliferation and

activation of naive T-cells and facilitates apoptosis of CTLs [15,16]. Tregs
are resistant cells to ionizing radiation. A study showed that Tregs are
able to survive even after exposure to high doses of ionizing radiation
[17]. This is because of lower incidence of apoptosis compared to their
proliferation during radiotherapy [18]. Tregs are recruited into tumor
following the release of some chemokines such as CCL5 and CCL22 [19].
Furthermore, the release of TGF-β by other cells like CAFs within TME
facilitates the conversion of CD4+ T helper cells to Tregs [19].
Tregs release immunosuppressive cytokines including IL-10 and

TGF-β into TME, thereby suppressing the activities of CTLs, and further
promotes proliferation of Tregs [19]. A study showed that irradiation of
different xenograft tumors with a high dose of radiation led to an in-
crease in the numbers of Tregs. Analyses showed that Tregs, after ir-
radiation, were active and able to suppress CTLs within TME. Inter-
estingly, neither TGF-β nor IL-33 which were increased following
irradiation have a role in activation of Tregs after irradiation [20]. It is
well-known that immune system responses are highly dependent on
radiation dose. In contrast to conventional radiotherapy, in hypo-
fractionated stereotactic radiation therapy (HSRT), patients receive
high doses of radiation in some lower fraction numbers. It has been
suggested that in contrast to lower doses of conventional radiotherapy,
a high dose of radiation in HSRT can augment numbers of CD8+ T
cells, attenuate release of TGF-β by CD4+ T cells, and also reduce the
number of Tregs [21]. Hence, using HSRT technique can be a useful
strategy for modification of immune system activity within TME.

2.4. Macrophages

Macrophages have different roles in tumor response to therapy. M1
macrophages are activated by inflammatory cytokines such as IFN-γ,
thereby activating immune responses. However, M2 macrophages are
activated by anti-inflammatory cytokines such as IL-4, IL-10 and IL-13,
leading to suppression of immune system [22]. The effect of radiotherapy
on polarization of macrophages in TME is complicated and may depend on
radiation dose and tumor type. Radiotherapy causes potent anti-tumor
effects, while it may trigger some mechanisms that stimulate angiogenesis
and tumor regrowth. In mice bearing prostate cancer cells (TRAMP-C1),
irradiation as both single dose and fractionated doses have been shown to
activate both M1 and M2 macrophages, leading to tumor growth [23]. A
study by Pinto et al. suggested that irradiation of macrophages with 10Gy
led to an increase in the number of M1, but a reduction in M2 cells. These
changes led to upregulation of pro-survival genes such as NFκB and Bcl-2,
as well as increasing invasion and metastasis phenotypes [24]. However,
exposure to a low dose of radiation may cause reprograming macrophages
to M1 cells, which triggers infiltration of CTL into TME [25]. Similar re-
sults have been observed by Prakash and colleagues. They showed that a
low dose of radiation causes induction of inflammatory responses and
shifting into M2 macrophages [26].
Monocytes and macrophages are radioresistant compared to other

types of immune cells [27]. The radiosensitivity of M2 macrophages
may be different from M1 macrophages. For example, in glioblastoma,
M2 cells are more resistant to radiation compared to M1 cells; thus the
ratio of M2 to M1 cells after radiotherapy may be increased [28]. Hy-
poxia also triggers macrophage polarization to M2; thus increases the
radioresistance of cancer cells [29]. Although radiotherapy may kill
some macrophages in TME, local irradiation causes infiltration of
monocytes to TME and polarization into macrophage; thereby pro-
moting macrophage enrichment [30]. Infiltration and macrophage po-
larization following radiotherapy may lead to a reduction in survival of
cancer patients [31,32].

2.5. Lymphocytes

CTLs are the most important anti-cancer cells within TME. These
immune cells are able to induce apoptosis in cancer cells. Impairment of
CTLs in TME leads to tumor immune escape during radiotherapy [33].
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CTLs are able to reprogram macrophages to M1 cells following the re-
lease of IFN-γ. These cells also have positive cross-talking with NK cells
within TME. Irradiation of tumor, similar to normal tissues lead to in-
filtration of lymphocytes [34]. Exposure to radiation leads to the release
of some chemokines that regulate recruitment of effector T cells to ir-
radiated area [35]. Exposure of TME to radiation causes secretion of IFN-
γ, which is associated with the expression of major histocompatibility
complex (MHC) antigen class I and vascular cell adhesion molecule
(VCAM)-1 [36]. This is linked to lymphocyte trafficking and increasing
anti-tumor immunity [37]. These changes are associated with increased
numbers of CTLs and induction of apoptosis in cancer cells [38]. Irra-
diation of twenty-three human carcinoma cell lines with 10 and 20Gy
radiation showed upregulation of CTL-mediated Fas expression [38].
Radiation has also been shown to activate lytic efficiency of CTLs [39].
Infiltration of lymphocytes to TME does not occur for all tumors and

patients. It has been suggested that tumors with high radioresistance
may prevent infiltration of lymphocytes to TME [40]. Furthermore,
remarkable reduction of different subtypes of lymphocytes especially
CD4+ CD8+ T cells is a concern for patients that undergo radio-
therapy, which lead to attenuation of immune system [41]. An in vitro
study suggested that T cells have a moderate radiosensitivity and dye
mainly via necrosis following exposure to ionizing radiation [27].

2.6. NK cells

NK cells are one of the key cells of the immune system that act
without deliberate immunization [42]. This property makes NK cells a
direct killer of cancer cells that do not express MHC class 1 [42]. NK
cells have positive cross-talking with other immune stimulator cells
within TME, including CTLs and M1 macrophages. This interaction is
activated via release of some pro-inflammatory cytokines such as IFN-γ
and IL-2 [42]. Activation of NK cells also triggers differentiation of
dendritic cells (DCs) [43]. It has been suggested that radiotherapy may
increase infiltration and activities of NK cells [44].

2.7. Dendritic cells (DCs)

DCs are an important part of antigen presenting cells (APCs) that
provide antigen presentation to CTLs [45]. The presentation of antigens

in TME by DCs can facilitate cytotoxicity of CTLs against cancer cells
[45]. Exposure of tumor to radiation may enhance anti-tumor activity
of DCs following upregulation of toll-like receptors (TLRs) [46]. This is
associated with higher presentation of damage-associated molecular
patterns (DAMPs) to CTLs, leading to more release of anti-cancer cy-
tokines [47]. Evidences have shown that exposure of DCs to a low dose
of radiation (such as seen in hyperfractionated radiotherapy) enhances
proliferation of CTLs, thus increasing the release of some anti-cancer
cytokines such as IL-2, IL-12 and IFN-γ [48,49]. Interestingly, an in vivo
study showed that although a low dose of radiation (0.1 or 0.25 Gy)
induces DCs activity, exposure to a conventional dose (2 Gy) may not
cause an increase in the presentation of DCs, and that CTL proliferation
was independent on DCs activity [50]. Some studies also suggested
reduced or no effect of irradiation on the activity of DCs, implying a
cancer type and dose dependent response of DCs to radiotherapy
[51,52]. Furthermore, it seems that high doses of radiation such as seen
in HSRT (like 10 Gy in each fraction) may further amplify the release of
immune stimulating antigens and more antigen presentation [53].

2.8. CSCs

As earlier mentioned, TME contains a range of cells with diverse
activities. Among these, CSCs are the most important clonogenic cells
that can generate new cells unlimitedly. The differentiated cancer cells
can divide limitedly. Thus, it seems that killing CSCs can effectively aid
tumor eradication. It has been suggested that exposure of differentiated
cancer cells to radiation may cause them to reprogram in order to
achieve CSCs function [54]. CSCs have some unique properties that
make them radioresistant cells. PTEN, one of the most frequent tumor
suppressor genes in cancer cells, may be mutated in CSCs. Suppression
of PTEN is associated with aberrant upregulation of PI3K/AKT/β-ca-
tenin pathway, which stimulates resistance to radiotherapy via inhibi-
tion of apoptosis and maintaining stemness [55]. One of the important
roles of CSCs in radiation resistance is triggering DNA damage re-
sponses (DDRs). The expression of DNA repair enzymes such as ATM,
PARP1 and H2AX is higher in CSCs [56]. In total, it seems that CSCs
have positive interactions with other cells within TME that increase
resistance to radiotherapy in a positive feedback loop (Figs. 1 and 2).

Fig. 1. TME including different cancerous and non-cancerous cells. CTLs, M1 macrophages and NK cells are the most important anti-cancer cells within TME. These
cells have positive cross-talks with each other through the release of some cytokines such as IFN-γ, TNF-α, IL-2 and IL-12. Tregs, M2 macrophages, cancer cells, CSCs
and CAFs also have positive cross-talks with each other to promote the proliferation and survival of cancer cells and CSCs.
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3. Dying cells following radiotherapy modulates responses in TME

Radiation-induced cell death plays a key role in immune system
shifting within TME. Although mitotic catastrophe is not immunogenic,
apoptosis, necrosis, senescence and autophagy are able to stimulate im-
mune cells within TME to release a wide range of chemokines and cyto-
kines [57]. Apoptosis occurs following damage to DNA, mitochondria, and
also oxidation of the membrane that leads to upregulation of apoptosis
receptors on the cell membrane or release of cytochrome c from the mi-
tochondria [58]. The most critical mediators for apoptosis are caspase
proteins. Caspases 2, 8, 9 and 10 are initiators, while caspases 3 and 7 are
activated later [58]. When caspase 3 is activated, apoptotic induction is
unavoidable. Development of apoptosome complex leads to degradation of
the genomic contents of cells, and generation of apoptotic bodies [58].
These bodies including cell cytoplasm do not trigger inflammatory re-
sponses [57]. Macrophages digest apoptotic bodies. Following this process,
macrophages release tolerogenic cytokines such as TGF-β and IL-10, which
lead to immune suppression within TME [57]. Apoptosis also has a direct
relation with triggering DNA repair. Caspase 3 is a potent stimulator for
repopulation of cancer cells [59]. Caspase 3 triggers the release of pros-
taglandin E2 (PGE2), which increases survival of cancer cells [59]. Cas-
pases 2 and 3 can also cleavage with Ku80, leading to stimulation of non-
homologous end-joining (NHEJ)-mediated repair of DNA [60]. Therefore,
apoptosis is a double-edged sword, which can cause reduction of viability,
as well as triggers repopulation in TME. Evidences have shown that se-
nescence has a similar effect to apoptosis. The incidence of senescence can
trigger the release of TGF-β, leading to upregulation of TGF-β–NOXs [61].
Upregulation of NOX genes such as NOX2 and NOX4 is associated with
resistance of cancer cells to radiotherapy [62].

Necrosis and necroptosis are other types of cell death associated
with the release of cell contents, including danger alarms from dying
cells. Necrosis is seen following exposure to a high dose of radiation,
which causes severe damage to membrane and other organelles such as
mitochondria. Necroptosis can also be seen when the apoptosis process
is overwhelming; thus cells are unable to complete apoptosis. Both
necrosis and necroptosis release danger alarms such as HMGB1, uric
acid, oxidized DNA etc. Some macrophages and DCs recognize these
danger alarms and present them to T cells. Toll like receptors (TLRs) are
able to recognize danger alarms. Overexpression of TLRs including
TLR2, TLR4, TLR5 and TLR9 leads to upregulation of inflammatory
mediators including STAT-3 and NFκB [63]. These transcription factors
mediate the release of several inflammatory cytokines, PGs, nitric oxide
synthase (NOS) enzymes etc.
Autophagy is another type of cell death after exposure to radiation.

Although the incidence of autophagy is lesser compared to necrosis and
apoptosis, evidences have shown that it plays a key role in resistance of
cancer cells [64]. Autophagy recycles dying cell contents as fuel for
other viable cancer cells. This helps proliferation of cancer cells, espe-
cially during hypoxia and nutrient deprivation [64].
Immunogenic and tolerogenic responses are highly dependent on

radiation dose and type, as well as fractionation. It has been reported
that proton particles are able to induce more necrosis and apoptosis in
cancer cells, which is associated with more release of danger alarms
from dying cells [65]. The presentation of danger alarms to T cells cause
the release of anti-tumor cytokines such as IFN-γ and TNF-α [66]. Using
hypofractionated radiotherapy with a high dose per fraction has also
shown more potent immunogenic effect against cancer cells. It has been
suggested that a radiation dose ranging between 5 and 12 Gy per

Fig. 2. Radiotherapy can affect the differentiation and proliferation of pro-tumor and anti-tumor cells via triggering release of pro-tumor or anti-tumor mediators.
Exposure to radiation upregulates the expression of pro-apoptosis receptors such as FasL, TRAIL and TNFR. These receptors trigger the expression of Bax and pro-
apoptotic caspase enzymes, which facilitate progression of apoptosis. On the other hand, upregulation of some factors such as EGFR and TGF-β stimulates anti-
apoptotic mediators such as NFκB, COX-2, and PI3K. Furthermore, they can stimulate angiogenesis and metastasis via triggering the expression of VEGF and MMP-9.
Targeting pro-tumor mediators such as VEGF, NFκB, COX-2, PI3K, EGFR and TGF-β are interesting for overcoming tumor resistance to radiotherapy.
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fraction is more effective for inducing immune system against cancer
cells. It seems that following exposure of tumor to these doses of io-
nizing radiation, an increase in the number of infiltrated CD8+ cyto-
toxic T cells and NK cells occur, while the number of Tregs reduces. This
is associated with more release of anti-cancer cytokines such as IFN-γ
and TNF-α, while the level of immune suppressor cytokines such as
TGF-β and IL-10 reduces. Lower doses of radiation do not cause enough
presentation of antigens to effectively infiltrate CD8+ cytotoxic T cells.
Also, higher doses of ionizing radiation may cause an increase in the
infiltration of Tregs, which cause suppression of immune system via
release of TGF-β and IL-10. This issue has been reviewed by Liu et al.
and Siva et al. [67,68].

4. Potential targets for tumor radiosensitization

To date, several experimental studies have been conducted to ex-
plore effective targets for sensitization of cancer cells to chemo- and/or
radiotherapy. An effective strategy is to use agents which sensitizes
cancer cells. Thus, deep knowledge about TME and response of different
cells within TME to radiotherapy is important. It seems that targeting
some DNA repair pathways and modulation of immune system within
TME are interesting approaches for overcoming tumor resistance.

4.1. Targeting DNA repair pathways

Radiotherapy and chemotherapy are two cancer therapy modalities
that cause cancer cell death through induction of DNA damage. This is
because of direct radiation interaction with DNA or generation of
highly reactive free radicals. DDR includes the different pathways for
base damage, single strand breaks (SSBs) and double strand breaks
(DSBs). In response to base damage, base-excision repair (BER), poly
(ADP-ribose) polymerase-1 (PARP-1) and apurinic/apyrimidinic en-
donuclease (APE1) play a key role in excision and replacement of da-
maged bases [69]. However, DSBs are repaired by either NHEJ or
homologous recombination (HR). The main DNA repair genes involved
in repair of DSBs include ataxia telangiectasia mutated (ATM), PARP-1,
the complex of MRE11–RAD50–NBS1 (MRN), DNA-PK catalytic subunit
(DNA-PKcs), the complex of Ku70/Ku80, BRCA1, and RAD51 [69]. In
some cancers, the response to DNA damage may be more active because
of aberrant upregulation of some DDR genes [70]. The high expression
of ATM in breast cancer has a direct relation with resistance to therapy,
and also metastasis [71]. Nowadays, some DNA repair inhibitors such
as olaparib and veliparib as inhibitors of PARP-1, and MSC2490484A as
inhibitor of DNA-PKcs have been proposed for sensitization of tumors to
radiotherapy [72]. However, it seems that inhibiting the pathway of
DDRs may lead to severe side effects in normal tissues and also increase
the risk of secondary cancers [72].

4.2. Targeting apoptosis/survival pathways

Increasing apoptosis incidence for cancer cells is an appropriate
strategy for improving tumor response to radiotherapy and also in-
creasing survival of cancer patients. Various mechanisms have been
suggested for stimulating apoptosis via modulation of genes involved in
this phenomenon. In most cancer cells, mutations in pro-apoptotic and
tumor suppressor genes such as PTEN and p53 lead to aberrant upre-
gulation of anti-apoptotic pathways. NFκB, COX-2, MAPKs and PI3K are
the most common anti-apoptotic mediators whose targeting has been
proposed for sensitization of tumors to radiotherapy.

4.2.1. NFκB
NFκB plays a central role in the survival of cancer cells. It has a

positive cross-talk with PI3K/Akt pathway that is also involved in re-
sistance to apoptosis [73]. NFκB also stimulates regulation of inhibitor
of apoptosis (IAP), leading to downregulation of pro-apoptotic genes
such as Bax and PUMA, as well as upregulation of anti-apoptotic Bcl-2

[74]. The expression of NFκB is upregulated in most types of cancer
cells. Exposure to radiation also further amplifies overexpression of
NFκB. It has been suggested that suppression of NFκB can reduce via-
bility of cancer cells, while it may not cause significant toxicity in
normal tissues [75]. Some studies have been conducted to sensitize
cancer cells to radiation via targeting NFκB. Natural and herbal derived
agents have potentials for this aim. Parthenolide is a herbal derived
agent that inhibits NFκB via direct binding to IkappaB kinase beta
(IKKbeta) [76]. In combination with radiation, parthenolide has been
shown to sensitize cancer cells via NFκB inhibition, which is associated
with upregulation of PTEN (suppressor of PI3K) [77,78]. Interestingly,
NFκB inhibition by parthenolide has been shown to protect normal
cells, while sensitizing prostate cancer cells to apoptosis [79].
Curcumin and resveratrol are other herbal NFκB inhibitors.

Curcumin prevents activation of NFκB and its translocation into the
nucleus. The direct effect of curcumin is mediated through IKK enzyme
[80]. Furthermore, both curcumin and resveratrol are able to prevent
the phosphorylation and degradation of inhibitor of NFκB (IκB) [81].
Curcumin has also been shown to suppress IL-1, leading to abrogation
of cross-talk between PI3K and NFκB, which finally cause down-
regulation of NFκB [82]. In combination with radiation, curcumin has
been shown to sensitize a wide range of cancer cells via increasing
apoptotic induction. It has been suggested that suppression of NFκB via
curcumin plays a key role in increasing apoptosis [83–85]. However,
some other mechanisms such as activation of redox reactions within
cancer cells may amplify apoptosis [86].

4.2.2. COX-2
COX-2 plays a pivotal role in inflammation and resistance to

apoptosis. Its activity can be stimulated following upregulation of
NFκB, extracellular signal–regulated kinase (ERK), p38, c-Jun N-term-
inal kinase (JNK), PI3K etc. COX-2 is mainly produced by cancer cells;
however, other immune cells such as macrophages and fibroblasts
amplify the release of COX-2 within TME [87]. It has been shown that
COX-2 is produced in a higher level in TME compared to normal tissues,
and plays a key role in the promotion of tumor growth and metastasis.
Targeting of COX-2 has been proposed for sensitization of cancer cells
to radiotherapy and chemotherapy [88]. It has been suggested that
inhibition of COX-2 does not have a remarkable effect on tumor re-
gression, while it can reduce tumor growth and proliferation of cancer
cells. It seems that stimulation of apoptosis is responsible for reduction
of tumor growth and proliferation [87].
Inhibition of COX-2 with celecoxib has been shown to increase

apoptotic induction following irradiation for some types of cancer cells
such as A549, murine mammary cancer cells (MCa-35), bladder carci-
noma [89–93]. However, for some cancer cells such as PC-3 and DU145
cells, inhibition of COX-2 may not cause radiosensitization [94]. In vivo
studies have also confirmed that COX-2 inhibition may lead to apoptosis
and attenuation of tumor growth in some types of cancers. Inoue et al.
examined the effect of diclofenac on COX-2 suppression as well as tumor
growth in a xenograft LNCaP model. This study showed that diclofenac
can reduce the level of COX-2, reduce tumor growth, and also induce
apoptosis. Molecular analyses showed that COX-2 inhibition with diclo-
fenac is associated with increased expression of TRAIL, an important
receptor of apoptosis on cell surface [95]. In some clinical studies, the
role of COX-2 in tumor resistance and regression have been confirmed.
Furthermore, suppression of COX-2 has shown promising results for in-
creasing survival and reducing tumor regression probability in patients
with breast and lung cancers [96–99]. However, targeting of COX-2 has
not shown suitable results in all clinical trials [100].

4.2.3. PI3K
The phosphatidylinositol 3–kinase (PI3K) is known as one of the

most important players in cancer cell survival and proliferation.
Overexpression of PI3K is associated with tumor growth and resistance
to chemo/radiation therapy. PI3K is mainly regulated oppositely via
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PTEN, a tumor suppressor gene. After p53, PTEN is the most frequently
mutated tumor suppressor genes. The mutation in PTEN and upregu-
lation of PI3K modulates regulation of some pro-apoptotic and anti-
apoptotic genes. Furthermore, some microRNAs such as miR-20, miR-
21, miR-106b miR-221 can suppress the expression of PTEN, leading to
upregulation of PI3K and induction of radioresistance [101–105]. In-
hibition of PI3K in combination with irradiation has also been shown to
attenuate DDR in cancer cells, leading to a remarkable increase in
apoptosis and reduced survival [106]. It seems that PI3K/Akt pathway
plays a key role in DDR, and resistance to radiation [107]. It has been
suggested that targeting this pathway leads to downregulation of ATM
and DNA-PKcs; thus reduces DNA repair activity [108–110].

4.3. mTOR

The mammalian target of rapamycin (mTOR) is a signaling down-
stream to PI3K/Akt pathway and is a more favourable target for cancer
therapy compared to PI3K or Akt. MTOR is involved in a wide range of
cell functions such as proliferation, cell growth, metabolism and death
[111]. MTOR is one of the important players in ribosomal biogenesis
and protein synthesis. It works via activation of S6K and inactivation of
4EBP1 [112]. Inhibition of mTOR has been suggested for suppression of
cancer cell proliferation in a wide range of cancer types [111]. Rapa-
mycin is the most common inhibitor of mTOR. The combination of
rapamycin and radiation can potentiate apoptosis in cancer cells [113].
Experimental studies performed so far have shown positive relationship
between mTOR activity with radiation resistance, and the effectiveness
of rapamycin application as an adjuvant for radiotherapy in multiplying
cancer cell death [114–119]. Suppression of mTOR has also been shown
to potentiate damage to tumor vascular [120]. Presently, rapamycin is
undergoing a clinical trial study for safety in patients with rectal cancer
(NCT00409994).

4.4. MAPKs

MAPKs include some subfamilies including JNK, ERK and p38 that
translocate signals from the membrane to nucleus. Among these sub-
families, JNK and p38 are mainly induced by cell death signals such as
tumor necrosis factor-α (TNF-α) and pro-apoptotic mediators, leading
to a reduction in cancer cell survival [121]. However, it has been
confirmed that p38 has a dual role and may trigger the survival of
cancer cells [122]. Targeting p38 in some cancers may help suppress
tumor growth [123]. NFκB is a potent suppressor of JNK, thus helps
survival of cancer cells [124]. In contrast to JNK, the expression of ERK
is stimulated following increased levels of cytokines and growth factors,
leading to the promotion of survival and proliferation [124]. As the
regulation of MAPKs is highly affected in cancer by ionizing radiation,
it has been suggested that modulation of these genes can change tumor
response to radiotherapy [124]. ERK is involved in resistance to
apoptosis, leading to resistance to cancer therapy modalities [125]. ERK
is activated secondary to application of MEK and BRAF inhibitors,
leading to therapy resistance. This is due to the negative feedback in-
teractions which exist between ERK with its upstream kinases (MEK and
BRAF). Thus, targeting ERK in combination with anti-BRAF agents may
be more useful for overcoming tumor resistance [125]. It has been
suggested that activation of ERK following radiation exposure may be
involved in DDR, activation of NFκB, inhibition of checkpoint kinase-1,
and upregulation of Bcl-2 [121,126,127]. The radiosensitizing effect of
ERK suppression has been observed for a large number of cell lines such
as rhabdomyosarcoma, breast cancer, B-cell lymphoma, A549, Mia-
PaCa2, and DU145 [126–131].
To date, some limited experimental studies have tried to improve

radiation response of some cancers via targeting MAPK subfamilies.
Zhao et al. showed promising results for combination of radiotherapy
and p38 inhibition. Their study showed a significant increase in the p38
regulation for resistant MCF-7 breast cancer cells compared to primary

cancer cells. They treated resistant MCF-7 cells with SB203580 to re-
duce phosphorylation of p38. Results showed that although irradiation
can attenuate proliferation of cells, the combined treatment with both
SB203580 and radiation can inhibit proliferation up to 3-fold [132].
Inhibition of JNK has also been shown to sensitize MDA-MB-231 and
MCF-7 breast cancer cells to radiation. It has been proposed that JNK
suppression enhances apoptosis and suppresses autophagy. It is possible
that suppression of autophagy following JNK targeting plays a role in
increasing apoptotic induction and radiosensitization of breast cancer
cells [133]. However, it has been reported that no conspicuous relation
exists between JNK inhibition and cell cycle arrest [134].
In contrast to mentioned studies, there are some evidences which

suggest the positive role of JNK activation in radiosensitization of
cancer cells. For example, in human cervical cancer cells, the upregu-
lation of JNK is involved in promotion of mitochondrial apoptosis by
radiation. Inhibition of JNK showed a remarkable downregulation of
FasL and Bak [135]. In addition to positive or negative roles of p38 and
JNK, it has been reported that these enzymes do not show a change
following exposure to radiation and have no role in apoptosis and
sensitization of non-small cell lung carcinoma (NSCLC) [136].

4.5. Targeting hypoxia

Tumor hypoxia is a common phenomenon in solid tumors. Hypoxia
can occur in the inner layers of a solid tumor due to oxygen con-
sumption by the outer layers of tumor cells. Furthermore, insufficient
angiogenesis can disrupt oxygen supply within tumor. Tumor stiffness
also increases pressure within tumor, which compresses vessels, leading
to limited blood supply. Oxygen deprivation triggers several changes in
metabolism and expression of genes involved in angiogenesis, cell
cycle, and adaptation to low levels of oxygen and nutrition. Hypoxia-
inducible factors (HIFs) are key regulators of adaptation of hypoxic
cells to low oxygen levels. HIF-1 is the most common subfamily of these
genes and regulates angiogenesis through upregulation of vascular en-
dothelial growth factor (VEGF) [137]. HIF-1 can also trigger activation
of rapamycin which inhibits mTOR; thus increases the incidence of
autophagy [138]. Oxygen deprivation and HIF-1 upregulation can also
cause a shift in oxidative phosphorylation (OXPHOS) to glycolysis,
which is associated with generation of lactic acid [139]. Tumor acidity
has a direct relation with poor survival of patients [139]. Hypoxia also
plays a role in acquisition and maintenance of CSCs. The mentioned
consequences of hypoxia show a potent relation with tumor resistance
and make it an interesting target for radiosensitization.
It has been suggested that HIF-1 is involved in both radioprotection

and radiosensitization. In irradiated cells, the expression of HIF-1 can
activate p53, leading to more apoptosis. However, HIF-1 is a potent
stimulator of VEGF; thus protects tumor via maintenance of endothelial
cells and promotion of vacuolization [140]. HIF-1 upregulation also
triggers mitotic activity following tumor irradiation. This results from
its role in energy supply during hypoxia [141]. The dual role of HIF-1
following irradiation suggests that the radiosensitization effect of HIF-1
targeting is highly dependent on p53 activity and its role in apoptosis
[142]. In some conditions like mutation and inactivation of p53, HIF-1
inhibition may be a promising strategy for sensitization of tumor to
radiotherapy [143].

4.6. Targeting angiogenesis

Angiogenesis is one of the most critical issues in cancer therapy.
Angiogenesis was known as a key player of tumor growth, when VEGF
was identified in 1970 [144,145]. VEGF proteins include VEGF-A,
VEGF-B, VEGF-C and VEGF-D [146]. VEGF applies its effect through its
receptors, including VEGF receptor 1–3 [144]. It is well known that
inhibition of angiogenesis via targeting angiogenesis stimulators such
as VEGFR1–3 is associated with inhibition of tumor growth and in-
creasing survival of cancer patients [146]. Upregulation of VEGF
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receptors especially VEGFR-2 is associated with tumor growth and
angiogenesis [144]. It has been suggested that the interaction of VEGF-
A with VEGFR2 plays a main role in angiogenesis [147]. In addition to
VEGF, some other factors such as fibroblast growth factors (FGFs),
matrix metalloproteinase (MMP), angiopoietin-1 and 2, and platelet-
derived growth factor (PDGF) are involved in generation of new vessels
[148]. Nowadays, the most common anti-angiogenesis and anti-VEGF
drug is bevacizumab, approved by FDA in 2004 [149]. It is a mono-
clonal antibody with ability to bind VEGF-A; thus reduces its binding to
VEGFR2. Some other anti-VEGF antibodies such as aflibercept, ramu-
cirumab and tanibirumab have also received FDA approval [150].
As the first FDA approved anti-VEGF, bevacizumab has been ad-

ministered in some clinical trials. A clinical trial which began in 2006
tried to evaluate using bevacizumab as adjuvant in combination with
hypofractionated stereotactic radiotherapy (HFSRT) for patients with
malignant glioma. Patients received bevacizumab at a dose of 10mg/
kg. Radiotherapy was administered as 30 Gy in five fractions. This study
reported well tolerated administration of bevacizumab without sig-
nificant toxicity [151]. In another study which used bevacizumab in
combination with temozolomide and radiotherapy, some side effects
such as fatigue, thrombosis, and myelotoxicity were reported. However,
authors claimed that the side effects were well tolerated [152]. These
studies as well as another study by Chinot et al. did not report a sig-
nificant effect for the combination of bevacizumab with radiotherapy
except for an increase in progression-free survival times (PFS) [153].
However, Cuneo et al. reported a significant increase in overall survival
[154]. The combination of bevacizumab with re-irradiation with
HFSRT (3×11 Gy) has been shown to be useful for increasing survival
in patients with recurrent glioblastoma [155].
To date, some studies have been conducted to determine the pos-

sible radiosensitization of some other anti-VEGF agents. As earlier
mentioned, hypoxia can cause resistance of tumor to radiotherapy.
Therefore, this issue may be a concern that inhibition of angiogenesis
may lead to hypoxia; thereby attenuating tumor response to radiation.
It has been confirmed that the combination of anti-VEGF and irradia-
tion cause reducing vascular density [156]. Concomitant irradiation
and treatment of colon and lung human tumor xenograft models with
AZD2171 (a potent anti-VEGF) showed improvement in radiation re-
sponse of tumor; however it was associated with increased hypoxia
[157]. AZD2171 (also known as cediranib) is able to inhibit both
VEGFR2 and VEGFR3 [158]. Concomitant irradiation of Calu-6 lung
xenografts in combination with AZD2171 also showed a significant
increase in apoptosis and necrosis in tumor. Although this was asso-
ciated with increased hypoxia, it seems that VEGF suppression pre-
vented repopulation of hypoxic cells [159]. Similar results were ob-
served for renal cell carcinoma [160].
In a human tumor xenograft model of lung carcinoma 54A it has

been shown that treatment of mice with 20 or 40mg/kg anti-VEGFR2
(DC101) and radiation can cause remarkable increase in tumor delay
compared to irradiation alone, while it was associated with developed
ascites in some mice [161]. Also, DC101 can reduce proliferation and
migration of endothelial cells following irradiation [162]. A study by
Winkler et al. reported that DC101 administration 4–6 days before ir-
radiation led to the most delay in tumor growth in mice-bearing human
glioblastoma xenografts. At day 5, the fraction of hypoxic cells reduced
dramatically. Also, increased apoptosis was observed 5 days after ad-
ministration of DC101. The expression of angiopoietin was increased
during some days after treatment with DC101, which caused oxyge-
nation of tumor cells [163]. Another study showed that using a lower
dose of DC101 (0.2mg) can reduce tumor growth and angiogenesis.
Irradiation of human-SSC-1 xenograft led to a 35% reduction in tumor
volume after 75 days; however, the combination with DC101 increased
it to 65% [164].
Although administering anti-angiogenesis drugs before irradiation has

shown promising results for clinical application, it has been suggested that
post-treatment injection may be more effective. This is as a result of

upregulation of angiogenesis genes after irradiation. Administering
ZD6474 (an inhibitor of VEGFR2 and EGFR) after irradiation showed more
suppression of angiogenesis and tumor growth [165].

4.7. EGFR agonists and other receptor tyrosine kinase (RTK) inhibitors

RTKs are cell surface receptors that are involved in transferring
several signals into cells [166]. Platelet-derived growth factor receptors
(PDGFR), fibroblast growth factor receptors (FGFRs) and epidermal
growth factor receptor (EGFR) are the most important subfamilies of
RTKs. EGFR is an important receptor on the surface of epithelial cells
that regulates proliferation and homeostasis [167]. Some mutations and
dimerization may cause aberrant upregulation of EGFR [168]. The
overexpression of EGFR in some malignancies such as breast as well as
head and neck cancers have been reported to predict poor survival
[169]. Targeting EGFR especially EGFR2 (HER2) has been studied in
several experimental and clinical studies. Herceptin is the most famous
anti-HER2 drug approved by FDA and is currently used for patients
with HER2-positive breast cancers [170].
Cetuximab is an anti-EGFR that has been used in combination with

radiotherapy and chemo-radiotherapy. Some clinical trials have shown
promising results for its combination with radiotherapy (NCT00004227).
Patients with grade 3–4 squamous-cell carcinoma of the head and neck
received cetuximab weekly during conventional radiotherapy. Results
showed no further toxicity with significant increase in the survival at 3
and 5 years follow-up [171,172]. Similar beneficial effects were observed
for other EGFR monoclonal antibody, nimotuzumab [173]. In a phase 2
clinical trial for cetuximab combination with cisplatin and radiotherapy
for head and neck carcinoma, an increase in survival was reported [174].
However, phase 3 clinical trial showed no increased survival. In addition,
this trial found more toxicity for cetuximab compared to chemo-radio-
therapy alone [175]. Similar results were also reported for patients who
received 5-FU chemoradiation with cetuximab [176]. In addition to ce-
tuximab, panitumumab as a monoclonal antibody have been used in
combination with chemoradiation and showed no satisfactory results
[177,178].
Clinical trials involving the combination of other tyrosine kinase

inhibitors with radiotherapy are ongoing. Sunitinib, regorafenib, sor-
afenib, erlotinib and imatinib are the most common tyrosine kinase
inhibitors that are used in combination with radiotherapy. These drugs
were approved by FDA for treatment of some cancer types. Results of
some clinical trial are presented in Table 2.

4.8. TGF-β

TGF-β is the most potent immunosuppressive cytokine. However, it
has been reported that TGF-β has a dual role in the initiation and
progression of cancer. It seems that TGF-β has a suppressive effect in
the initiation of tumorigenesis via induction of apoptosis and cell cycle
inhibition [8]. In contrast, TGF-β plays a key role in the progression and
metastasis of tumor [8]. The main source of TGF-β is CAFs; however, it
can be released by other tumor supportive cells such as cancer cells,
CSCs and Tregs. On the other hand, TGF-β helps resistance of CSCs to
anti-cancer drugs, stimulates differentiation of CD4+ helper lympho-
cytes to Tregs, and infiltration of CAFs into tumor. Suppression of TGF-
β can reduce the numbers of Tregs and increase the number of CD8+
cytotoxic lymphocytes within TME. The combination of radiation
therapy with TGF-β blockade has been proposed as a strategy for tumor
vaccination. In an animal model, it has been shown that inhibition of
TGF-β in combination with irradiation led to remarkable suppression of
tumor growth compared to irradiation alone. Further analyses showed
that TGF-β blockade increases the number of CD8+ T cells [179]. As
earlier mentioned, upregulation of PD-1 following irradiation may lead
to exhausting immune system activity via CD8+ T cells apoptosis.
Thus, dual inhibition of TGF-β and PD-1 after tumor irradiation can
cause more suppression of tumor and attenuates tumor regression
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probability [179]. Opposite results have been shown for MIA PaCa-2,
and p53 mutant pancreatic cancer cell. It has been shown that the loss
of TGF-β receptor II (RII) leads to resistance of MIA PaCa-2 to radiation.
However, activation of TGF-β and overexpression of RII leads to in-
duction of apoptosis and cell cycle arrest [180] (Fig. 2).

4.9. Targeting immune checkpoints

4.9.1. PD-1 – PDL-1 pathway
As earlier mentioned, Tregs play a key role in radioresistance of

tumors. The main effect of Tregs is suppression of immune responses
against cancer via inhibition of CTLs and NK cells [18]. CTLs are more
radiosensitive compared to Tregs in response to conventional radio-
therapy. Thus, tumor response is affected because of increasing Tregs to
CTLs ratio [19]. The main suppressive effect of Tregs on immune system
responses within TME is mediated via PD-1-PD-L1 pathway. PD-1 is
expressed on the surface of CD4+ and CD8+ cells, NK cells, B cells,
and DCs [181]. Thus, targeting this pathway in combination with
radiotherapy is an interesting strategy for boosting immune system and
exhausting Tregs within TME [182,183]. Exposure of cancer cells to
radiation may cause upregulation of PDL-1, leading to resistance to
subsequent doses of radiotherapy [184]. Irradiation of cancer cells like
Hela cancer cells showed an increased activity of Tregs and im-
munosuppression like decreased numbers of CD4+ and CD8+ cells.
This was associated with increased expression of PD-1 and PDL-1 [185].
Suppression of this pathway in irradiated Hela cells has been shown to
reverse immunosuppression and apoptosis in lymphocytes [185]. In-
hibition of PDL-1 can abrogate depletion of CD4 and CTLs, thus sensi-
tizes tumor to ionizing radiation [186]. In a murine model, it has been
shown that using dual inhibition of PDL-1 and T cell immunoglobulin
mucin-3 (TIM-3) in combination with radiation may be more efficient
for tumor control. Inhibition of PDL-1 in combination with radiation
showed an increase in TIM-3, leading to radioresistance of head and
neck squamous cell carcinoma (HNSCC). Results showed that when
both PDL-1 and TIM-3 were inhibited, the infiltration of CTLs increased,
while the number of Tregs reduced. This was associated with elevated
release of anti-tumor cytokines such as IFN-γ [187]. A clinical trial
study for HNSCC patients using dual inhibitors of PD-L1 (Durvalumab)
and CTLA-4 (Tremelimumab) is ongoing (NCT03426657).
Evidence from some radioresistant tumors show a high expression of

PDL-1 and infiltration of Tregs [187]. Furthermore, high expression of
PDL-1 in circulating cancer cells can predict poor survival of patients
with cancer [188]. For clinical applications, to date, some PD-1–PDL-1
inhibitors have been examined. In a phase 1 clinical trial, using antibody
of anti-PD-1 showed an increased response and tumor growth delay was
reported for some cancers including NSCLC, melanoma, and renal-cell
cancer [189]. Pembrolizumab (MK-3475) is a PDL-1 inhibitor approved
by FDA for patients with advanced NSCLC [190], and is under study in a
clinical trial for HNSCC patients (NCT03386357). In a clinical trial which
used this antibody, promising results were obtained with minimal side
effect [190]. Clinical trials for the combination of pembrolizumab with
radiotherapy, chemotherapy and stereotactic body radiotherapy (SBRT)
for patients with NSCLC and advanced Markel cell carcinoma are on-
going (NCT03924869, NCT03631784, and NCT03304639).
Nivolumab is another anti-PD-1 that has been approved by FDA for

patients with lung squamous cell carcinoma (LSCC) [191]. A case report
by Lazzari et al. reported the beneficial effect of adjuvant radiotherapy
in combination with nivolumab for a patient with advanced squamous
cell lung cancer. The existence of malignant nodules was confirmed in
the both sides of the lung. However, a 3–year follow-up after treatment
with radiotherapy and nivolumab showed no tumor regression [192]. A
clinical trial study has also reported no further toxicity for radiotherapy
and nivolumab combination [193]. Some clinical trials are ongoing for
the combination of nivolumab and radiotherapy in patients with me-
tastatic NSCLC, uveal melanoma, and brain metastasis (NCT02696993,
NCT02434081, and NCT02831933).

PDL-1 and CTLA-4 are the most interesting targets for cancer radio-
immunotherapy. It has been suggested that radiation plays a key role in
the upregulation of these antigens. It has been shown that the pro-
duction of IFN-γ by CD8+ cytotoxic T cells plays a central role for
triggering PD-1 [194]. It has been suggested that upregulation of PDL-1
is an important biomarker for using immunotherapy in combination
with radiotherapy. Increased expression of these immune checkpoints
depend on mutations in tumor and also exposure to ionizing radiation
[195]. An experimental study showed that irradiation of glioblastoma
and melanoma cancer cells with fractionated irradiation (5×2Gy)
induces upregulation of PD-1, while a single dose of 10 Gy has a lower
effect on the expression of PD-1 [195]. The evaluation of patients with
HNSCC and rectal cancer also confirmed an upregulation of PD-1 fol-
lowing chemotherapy or chemoradiation [196,197]. It has been sug-
gested that patients with overexpression of PD-1 are candidate for using
immune checkpoint inhibitors in combination with radiotherapy or
radio-chemotherapy [197].

4.9.2. CTLA-4
CTLA-4 is a glycoprotein which is expressed on the surface of

lymphocytes. Ligation of this ligand causes reduced activity of naive T
cells, thus it exhausts response of CTLs against cancer cells [181].
Targeting of CTLA-4 has been of interest in immunotherapy in recent
years. CTLA-4 antibodies are one of the most common ICIs approved by
FDA for suppression of Tregs and enhancement of immune system ac-
tivity within TME [198]. In recent years, the combination of CTLA-4
targeting with radiotherapy has attracted interest as a radio-im-
munotherapy method [181]. The synergic effect of radiotherapy and
CTLA-4 targeting has been reported in a case report in 2012, when a
patient with melanoma received ipilimumab and radiotherapy. The
patient's examinations showed a progression in disease following
treatment with ipilimumab alone. However, after radiotherapy, an in-
crease in tumor regression and increased number of CD4+ were re-
ported [199]. There are other reports which suggest that radiotherapy
in combination with ipilimumab triggers abscopal effect that aids
cancer treatment via modulation of immune system in melanoma and
lung cancer [200,201]. In a clinical trial conducted in 2014, ipilimumab
was administered after radiotherapy for metastatic prostate cancer
patients. The aim of this study was to evaluate the overall survival of
patients who received ipilimumab compared to placebo. Results of this
trial showed no significant difference; however, statistical analyses
suggested a reduced hazard ratio for patients who received ipilimumab.
This may indicate an increased survival at a longer time [202].
A study reported that the combination of radiotherapy with anti-

CTLA4 may not overcome tumor resistance in patients with metastatic
melanoma. Suppression of CTLA4 using anti-CTLA4 antibody in com-
bination with radiation in a mouse model resulted in major tumor re-
gression. Analyses showed that treatment with anti-CTLA4 antibody
and radiation led to overexpression of PDL-1, leading to CTLs exhaus-
tion. This study suggested that when an anti-PD-L1 antibody is added to
treated cells, the activity of immune system is augmented and response
of cancer cells increases remarkably [203] (Tables 1 and 2).

4.10. Dynamics of the immune responses in tumor after radiotherapy

Radiotherapy including hypofractionated techniques lead to serious
changes in the immune system in favor of both tumor growth and
suppression. The knowledge of changes in the expression of immune
mediators such as immune checkpoints and angiogenesis stimulators
can help control tumor growth. For example, it is known that angio-
genesis may be triggered during some days after irradiation, thus ad-
ministration of VEGF inhibitors starting after or during radiotherapy
may be more efficient compared to before irradiation [165]. Similar
results have also been suggested for immune checkpoint inhibitors. The
dynamic changes in the infiltration of immune cells and secretion of
cytokines may play a key role in the response of tumor to radiotherapy.
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Irradiation of colon cancer cells showed an increase in the infiltration of
macrophages between 5 and 10 days and infiltration of CD8+ T cells
after 8 days. Tregs and myeloid-derived suppressor cells (MDSCs) also
showed regular turnover [204]. Another study confirmed that the most
obvious increase in the CD8+ cytotoxic T cells to Tregs ratio occurs
5–8 days after hypofractionated irradiation [205]. In vivo studies sug-
gest that suppression of PD-1 and CTLA-4 starting some days after ir-
radiation is the most effective strategy for the prevention of CD8+
cytotoxic T cells exhausting [206–209]. However, clinical studies with
some months delay for starting immunotherapy after hypofractionated
radiotherapy have shown interesting results (Fig. 3) [210].

4.11. Conclusion

Response of TME to radiotherapy is critical for exploring new
strategies for improving tumor control. Radiotherapy is usually per-
formed using a dose of 2 Gy per fraction for some weeks. However, in
recent years, some studies suggested using new techniques such as
SBRT, which uses few fractions with a higher dose in each fraction. This
method is more suitable especially for brain tumors and has shown
better results. It has been suggested that a high dose of ionizing ra-
diation is more efficient to release immune antigen stimulators, leading
to more antigen cross-presentation. It seems that HSRT causes an in-
crease in the CTLs to Tregs ratio compared to conventional radio-
therapy, leading to more activity of immune system within TME.
Polarization of macrophages and their roles in tumor response to
radiotherapy is very complicated. Although M1 cells have anti-tumor
activity, in response to radiation, activation of both M1 and M2 mac-
rophages may trigger tumor regrowth following upregulation of anti-
apoptotic, angiogenesis and metastatic genes.
Inhibition of DNA repair may sensitize a wide range of tumors to

radiotherapy; however, this may cause severe toxicity in normal tissues
and also increase the risk of carcinogenesis. Stimulation of apoptosis is
an interesting strategy for suppression of tumor proliferation and in-
creasing survival of patients. NFκB and COX-2 is the most common
mediators that increase survival of cancer cells via inhibition of apop-
tosis. Inhibition of these mediators have been shown to sensitize cancer
cells, while it may not cause normal cells/tissues toxicity. In spite of

promising results, some animal and clinical studies have suggested no
remarkable improvement in tumor response following treatment with
celecoxib. TGF-β is another player in apoptosis induction in cancer
cells. In addition, it has a wide range of effects on the survival and
invasion of tumor. Thus, selective inhibition of this pathway may be
suitable for tumor control.
Results of MAPKs targeting show different roles for JNK and p38,

although it seems that ERK is a potential target for radiosensitization of
cancer cells. JNK and p38 may be involved in apoptotic induction via
triggering the release of cytochrome c and depolarization of mi-
tochondria. However, in other cancer cells, these genes may not cause a
remarkable change in survival, or may trigger survival. This suggests
that targeting JNK and p38 cannot be proposed for sensitization of
different types of cancers. Also, for a specific type of cancer there is a
need to detect the role of these genes in different cells lines. Similar
effects have been shown for HIF-1. It stimulates p53 and apoptosis, as
well as angiogenesis and protection of endothelium. Therefore, its tar-
geting may attenuate both apoptosis and angiogenesis. It seems that
direct targeting of angiogenesis in combination with radiotherapy is
more favourable for tumor growth inhibition. VEGF inhibition can re-
duce the density of vessels within tumor. This is associated with hy-
poxia within tumor. However, xenograft studies as well as clinical trials
have shown that inhibition of VEGF sensitizes tumor to radiotherapy.
As irradiation alone triggers upregulation of angiogenesis genes, it has
been proposed that administering anti-angiogenesis drugs post-irra-
diation may be more useful for the management of tumor vascular-
ization and growth. In clinical trials, no remarkable increase in survival
of patients with high grade glioblastoma was reported. However, it may
cause an increase in overall survival and may also be useful for com-
bination with re-irradiation for recurrent tumors.
The combination of SBRT with immune checkpoint inhibitors has

also attracted a lot of interest in recent years and some clinical trials
have been performed for some tumors, including glioblastoma and
NSCLC. PDL-1 and CTLA-4 are the most common immune checkpoints
for tumor targeting in combination with radiotherapy. Thus, inhibition
of PDL-1 or CTLA-4 may cause upregulation of another. It seems that
dual targeting of both PDL-1 and CTLA-4 is more effective for some
cancers. Emerging evidences have shown no further toxicity compared

Fig. 3. Boosting the immune system against cancer cells using immune checkpoint inhibition. The expression of PD-1 and CTLA-4 cause apoptosis of CTLs, leading to
exhaustion of the immune system. Inhibition of PD-1 and CTLA-4 can boost the activities of CTLs.
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to SBRT alone and suggest phase 3 clinical trials. In conclusion, the
combination of radiotherapy with immune targets is interesting for
more sensitization of a wide range of tumors. It seems that the com-
bination of ICIs with hypofractionated radiotherapy techniques is the
most promising strategy for treatment of cancer.
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