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Cancer is a disease of high complexity. Resistance to therapy is a major challenge in cancer targeted therapies.
Overcoming this resistance requires a deep knowledge of the cellular interactions within tumor. Natural killer
(NK) cells and cytotoxic T lymphocytes (CTLs) are the main anti-cancer immune cells, while T regulatory cells
(Tregs) and cancer associated fibroblasts (CAFs) facilitate immune escape of cancer cells. Melatonin is a natural
agent with anti-cancer functions that has also been suggested as an adjuvant in combination with cancer therapy
modalities such as chemotherapy, radiotherapy, immunotherapy and tumor vaccination. One of the main effects
of melatonin is regulation of immune responses against cancer cells. Melatonin has been shown to potentiate the
activities of anti-cancer immune cells, as well as attenuating the activities of Tregs and CAFs. It also has a potent

effect on the mitochondria, which may change immune responses against cancer. In this review, we explain the
mechanisms of immune regulation by melatonin involved in its anti-cancer effects.

1. Introduction

Cancer treatment is one of the most challenging issues in medicine.
Each year, millions of people are diagnosed with neoplastic diseases
which need immediate therapeutic strategies for increasing their
probability of survival [1]. Solid tumors are very complex. They contain
a pack of multi-tasking cells including immune system cells, cancer
clonogenic cells, fibroblasts, vascular, etc. [2]. Clonogenic cells are
responsible for the division and generation of new cells which lead to
tumor growth. However, besides cancer clonogenic cells, other cells
within the tumor such as fibroblasts, immune cells including dendritic
cells, macrophages and different subfamilies of lymphocyte-T cells play
key roles in tumor growth and response to different therapeutic mod-
alities [3].

Immune system within tumor has a pivotal role in both inhibition
and invasion of cancer cells. In response to apoptosis or necrosis of
cancer cells following radiotherapy or chemotherapy, several signaling
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pathways are activated after the interaction of apoptosis or necrosis
products with immune system cells. Responses of immune cells are
different depending on the type of cell death and interactions [4].
Usually, macrophages digest apoptotic bodies and release tolerogenic
cytokines which lead to the attenuation of immune system's activity
against tumor cells. Moreover, some secreted cytokines from macro-
phages or lymphocytes trigger the development of new vessels through
stimulation of angiogenesis factors [5,6]. Modulation of immune system
responses is an interesting strategy for suppressing tumor growth as
well as eradication of clonogenic cells within tumor, which can lead to
complete treatment of cancer [4]. In recent times, numerous experi-
mental studies have shown promising results for tumor inhibition by
targeting some immune mediators either alone or in combination with
radiotherapy or chemotherapy [7,8]. Natural agents are interesting for
targeting tumor invasion because of their high bioavailabilities and low
toxicities [9]. Melatonin is among the natural agents that has shown
interesting effects on immune system responses. Furthermore, the
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interesting properties of melatonin make it a promising agent for use as
an adjuvant for cancer immune modulation and improving tumor
control [10].

To date, numerous studies have been conducted to explain the im-
munoregulatory effects of melatonin in normal cells, and also in dif-
ferent type of cancers [11-13]. In the current review, we provide a
mechanistic viewpoint for immunomodulation of tumor by melatonin,
which may facilitate the response of cancer cells to radiotherapy, che-
motherapy and immunotherapy. For this aim, PubMed database was
searched to obtain the most suitable and recent related articles. The
criteria for selection of articles were based on the quality of studies and
journals.

1.1. Tumor resistance to therapy

Tumor microenvironment (TME) includes several types of cells such
as immune system cells. Cytotoxic T lymphocytes (CTLs) and natural
killer (NK) cells are the most common tumor suppressor cells [3]. In-
creased release of danger alarms such as heat shock protein 70 (HSP70),
adenosine triphosphate (ATP) and high mobility group box 1 (HMGB1)
stimulates proliferation and activation of CTLs. Activation of CTLs lead
to the release of anti-cancer cytokines such as interferon (IFN)-y and
tumor necrosis factor (TNF)-a, to induce apoptosis in cancer cells [3].
In contrast to CTLs, NK cells do not require danger alarms to act against
cancer cells. NK cells are able to kill cancer cells via detection of cell
membrane antigens (major histocompatibility complex (MHC) class 1).
Cancer cells usually lose MHC class 1. NK cells, in response to the ab-
sence of MHC class 1, release lytic enzymes including perforin and
granzymes. On the other hand, T regulatory cells (Tregs), M2 type of
macrophages, neutrophils and immature myeloid cells can promote
growth of tumor via regulating the proliferation of cancer stem cells
(CSCs) and angiogenesis [14]. Cancer cells are differentiated form of
CSCs; however, they have positive cross-talks with each other to sti-
mulate survival and proliferation of each other. Tregs play a central role
in the resistance of cancer cells to apoptosis. Tregs via release of im-
mune suppressor cytokines such as transforming growth factor-f3 (TGF-
B), interleukin (IL)-4 and IL-13 limit the anti-cancer activities of CTLs
and NK cells [15].

Increasing the activities of Tregs, CSCs, cancer cells and M2 mac-
rophages is critical for resistance of tumors to different cancer therapy
modalities such as radiotherapy, chemotherapy, targeted therapy and
immunotherapy [16]. It has been shown that in response to anti-cancer
agents such as radiation, Tregs release immunosuppressive cytokines
such as TGF-P to suppress proliferation of CTLs, and to promote pro-
liferation of CSCs and CD4+FOXP3+ Tregs [17-19]. TGF-$ can also
stimulate the polarization of macrophages towards M2 type. These
changes show that tumor promoting cells within TME amplify the ac-
tivities of each other to enhance proliferation of cancer cells and CSCs.
These responses lead to resistance of cancer cells to subsequent ther-
apeutic doses. In response to some chemotherapy drugs, immune re-
sponses within TME may shift in favour of Treg activation [20]. For
radiotherapy, the response of TME is highly dependent on the dose of
radiation in each fraction. Usually, using the conventional radiotherapy
dose (2 Gy per fraction) causes conquering of Tregs to CTLs and NK
cells, leading to further release of immunosuppressive cytokines. In
contrast, following irradiation with 10 Gy (which is a common dose for
stereotactic and grid radiotherapy), CTLs to Tregs ratio is high and
enhances killing of cancer cells [3]. In this situation, release of IFN-y
and TNF-a from CTLs induce apoptosis in CSCs and cancer cells more
potently, and also suppress activities of Tregs and M2 cells. Studies
have suggested that although this dose of radiation modulates the im-
mune system against cancer, after some days, Tregs release some factors
to suppress CTLs and also attenuate apoptotic induction in cancer cells
[3]. The most important factor released in this situation is programmed
cell death-1 (PD-1). PD-1 ligand (PDL-1) is expressed by some cells such
as cancer cells and CTLs within TME. The engagement of PD-1 with
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Fig. 1. Interactions of cancer cells with immune system within TME.

PDL-1 can abrogate the release of cytotoxic cytokines by CTLs [2].
Furthermore, this engagement is able to downregulate anti-apoptotic
phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) pathway,
leading to CTL apoptosis. On the other hand, cytotoxic T-lymphocyte
associated protein 4 (CTLA-4), a glycoprotein that is expressed on the
CTLs exerts long time activity of CTLs following exposure to danger
alarms and the expression of MHC1. For these reasons, boosting CTLs
and NK cells is a crucial issue in cancer therapy. Also, inhibition of
Tregs as well as polarization of macrophages into M1 type macrophages
are important strategies for suppressing tumor growth [3]. In recent
years, immunotherapy and immune checkpoint inhibitors provide a
new window for this aim. However, it seems that this strategy alone is
not sufficient to overcome tumor resistance (Fig. 1).

1.2. Melatonin

Melatonin (N-acetyl-5-methoxytryptamine) is a natural hormone
that has been recognized in nearly all existing organisms such as plants,
fungi and animals [21]. Melatonin is a chronobiotic hormone that is
mainly synthesized and secreted by the pineal gland from the amino
acid tryptophan. Its synthesis involves four essential enzymes: trypto-
phan-5-hydroxylase, 5-hydroxytryptophan decarboxylase, serotonin N-
acetyltransferase and hydroxyindole-O-methyltransferase [22]. Mela-
tonin is secreted in the evening with a robust circadian rhythm reaching
a maximum plasma peak in the middle of the night. Therefore, this
neurohormone is broadly involved in the regulation of circadian
rhythms, sleep, food intake, etc. [23]. Indeed, during the last decades,
different melatonin-rich foods such as rice, olive, fish and eggs which
aid sleep have been identified [24]. Moreover, melatonin is also pro-
duced in extra-pineal sites, tissues and organs where it acts as an au-
tocrine and paracrine signal [25]. Numerous studies have revealed
other effects of melatonin on cells [22]. Melatonin is a well-known
endogenous free radical scavenger, as well as an indirect antioxidant
involved in the regulation of cellular redox status [26]. Melatonin also
exhibits other activities, such as tumor growth inhibitor, boosting im-
mune defense, thermoregulation amongst others [27]. The effectiveness
of melatonin relies on its high lipophilicity and low hydrophobicity,
that allow it to pass through cellular membranes easily. Therefore, this
hormone is distributed throughout all the subcellular compartments,
mostly enriched in the nucleus and mitochondria [28]. The main effects
of melatonin are induced through its interaction with MT1 and MT2 G
protein-coupled receptors [22].



K. Mortezaee, et al.

1.3. Immune system and melatonin

Melatonin has a close relation with immune cells which is mediated
through melatonin receptors. It has been suggested that ablation of the
pineal gland is associated with loss of immune cells [29]. Some cyto-
kines and growth factors such as IFN-y, granulocyte-macrophage
colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating
factor (G-CSF) are able to stimulate melatonin secretion, while IL-1 may
inhibit it. It has been reported that immune cells such as CD4* T helper
cells and CTLs express melatonin receptors including MT1 and MT2.
Melatonin is able to stimulate the release of IL-2 by upregulation of
MT1, which ultimately leads to an increase in the number of NK cells
[29]. Melatonin also enhances antigen presentation by macrophages to
T-lymphocytes, leading to activation and proliferation of CTLs. Mela-
tonin via triggering the release of anti-tumor cytokines such as IFN-y,
TNF-a and IL-6 as well as suppression of IL-4 may help the proliferation
of CTLs and anti-cancer activity of immune system within TME [21].
The anti-cancer activity of melatonin in some cancers may be associated
with a reduction in the proliferation of CD4 " T helper cells to CD4(+)
CD25(+) Tregs [19]. The different effects of melatonin on the immune
system and immune responses within TME will be discussed in the
following sections.

1.4. Modulation of immune responses by melatonin against tumor

1.4.1. Melatonin modulates immune system through mitochondrial function
remodeling

Mitochondria have long been studied as essential organelles in eu-
karyotic cells for meeting the majority of cellular energy requirements.
The generation of metabolic energy is mainly produced by the mi-
tochondria through oxidative phosphorylation (OXPHOS) machinery
that sustains most physiological functions of the cell. Therefore, the
mitochondria play a crucial role in the regulation of wide range of cell
signaling events such as calcium metabolism, reactive oxygen species
(ROS) generation and apoptotic processes [30,31]. In addition, it has
been recently uncovered that a new connection exists between mi-
tochondrial and inflammatory responses. Mitochondria are organelles
with high dynamic plasticity that experience fusion and fission events
to rapidly adapt mitochondrial function and morphology in response to
different stimuli and cellular needs [32]. Studies have shown that mi-
tochondrial dynamics and its redistribution are dependent on antigen-
specific activation of immune responses [33]. Mitochondria are loca-
lized in sites with high ATP demand. Thus, movement of mitochondria
through microtubules and actin filaments is mediated by kinesin and
dynein protein families in response to physiological signals [34]. Acti-
vation and regulation of T-cell responses require two important hits,
involving the regulation of calcium balance and the antigen-specific
presentation. Mitochondria have a critical role for the maintenance of
both calcium homeostasis and immune synapse stability. Mitochondria
move towards the immune synapse mediated by integrin adhesion and
cell polarization [33,35,36]. Baixauli and colleagues demonstrated that
the fission factor dynamin-related protein 1 (Drpl) is involved in the
regulation of mitochondrial movement towards immune synapse. Ac-
tually, the lack of Drpl abolishes mitochondrial redistribution in re-
sponse to T-cell receptor assembly [35]. Consequently, altered plasticity
of mitochondria is not only associated with disrupted cellular bioe-
nergetics, but also favours tumor progression.

Cancer is associated with a metabolic reprogramming based on the
preferential use of glucose via aerobic glycolysis rather than mi-
tochondrial respiration [37]. The metabolic reprogramming exerted by
cancer cells impacts mitochondrial function. Altered mitochondrial
function contributes to tumor anabolism due to its direct involvement
in the regulation of intracellular redox status, calcium homeostasis and
cell death [38]. Although tumor-infiltrating T cells are identified in
several tumors, there are large number of tumors where T cells are
undetectable. Zhang et al. demonstrated that the presence of tumor-
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infiltrating T cells is correlated with improved clinical outcomes [39].
Given that the mitochondria exert control in the concomitant activation
and homeostasis of T cells, several cancer therapeutic strategies are
focused on modulating mitochondrial function and immune system
[40].

Recent findings have considered melatonin as a mitochondrial
protector due to its role as a metabolic regulator. Indeed, mitochondria
were found to be the main sites for melatonin synthesis and metabolism
[41,42]. These studies are supported by the fact that melatonin is ac-
cumulated in the mitochondria which drives the regulation of diverse
mechanisms [28]. Melatonin regulates several cellular functions with
pleiotropic effects on the immune system. Melatonin is involved in the
protection of electron transport chain (ETC) and the prevention of
mitochondrial oxidative damage, thereby regulating redox balance.
Hence, increased ATP generation by mitochondria also prevents the
decay of the membrane potential and regulates apoptotic responses
[43-45]. Furthermore, melatonin maintains mitochondrial bioener-
getics and redox homeostasis via controlling mitochondrial dynamics
[46]. Thus, melatonin is a master regulator of both mitochondrial
function and fusion-fission dynamics, and can be critical for boosting
the immune system and apoptotic processes in cancer.

Abundant evidence indicates that melatonin displays anticancer
properties via its effects on mitochondrial function regulation. It has
been demonstrated that melatonin repressed aerobic glycolysis, sur-
vival signaling and metastasis [47]. Regulation of pyruvate kinase
complex and the pyruvate dehydrogenase kinase are considered po-
tential therapeutic targets in cancer [48]. New research has proposed
that melatonin may improve TME through the inhibition of mi-
tochondrial enzyme pyruvate dehydrogenase kinase (PDK). Melatonin
was found to enhance mitochondrial oxidative phosphorylation; a re-
sponse that may reduce cancer proliferation and improve che-
motherapy outcomes [49]. Moreover, melatonin treatment prevented
pathophysiological alterations by modulating mitochondrial dynamics.
The restoration of mitochondrial network formation resulted in an in-
creased apoptosis that led to the reduction of cell growth in several
cancers such as lung, breast and colon [50-52]. However, the reg-
ulatory actions of melatonin should be selectively cytotoxic towards
cancer cells whereas they should protect healthy cells [53]. The phos-
phoinositide 3-kinase (PI3K)-AKT pathway is essential for regulation of
cell proliferation, mitochondrial dynamics and apoptosis and therefore
is critical for tumor development and maintenance [54]. AKT signaling
is commonly upregulated in cancer. It has been shown that inhibition of
AKT signaling reduces proliferation of cancer cells and promotes
apoptosis [55]. Especially, melatonin activates proliferative signaling
via PI3K-AKT pathway in healthy cells, whereas this hormone is able to
reduce cell viability and proliferation in cancer cells by blocking the
negative feedback from the downstream effector mammalian target of
rapamycin complex 1 (mTOR) [56-58]. Shen and colleagues suggested
that melatonin administration can be used as an adjuvant with rapa-
mycin because melatonin improves the effectiveness of treatment
through regulation of mitochondrial function and apoptotic responses
while preventing harmful effects [56]. It has been proposed that the
selective action of melatonin is due to the switching of G-protein be-
tween Gi and Gs influenced by calcium signaling [59,60]. Melatonin
receptors modulate PISK/AKT pathway, which is essential for reg-
ulating mitochondrial dynamics and apoptotic responses [61]. More-
over, PI3BK-AKT-mTOR axis is considered as a crossroad between cancer
and cellular immune system. PI3K signaling is involved in the mod-
ulation of immune cells’ effector function, in which the mitochondria
are vital [62]. However, future studies on the use of melatonin in dif-
ferent cancers should be carried out to further investigate the effects of
melatonin on mitochondrial dynamics, immune system and apoptotic
processes.
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1.4.2. Melatonin facilitates apoptosis via suppression of nuclear factor
kappa B (NF-xB) signaling

NF-kB is a key transcription gene that mediates regulation of several
signaling pathways such as proliferation, inflammation, DNA repair,
apoptosis and others [63,64]. It activates DNA repair responses in-
cluding homologous recombination (HR) following exposure to clasto-
genic agents [65]. Moreover, NF-xB through upregulation of cycloox-
ygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) promotes
proliferation and resistance to apoptosis, thus increases cell survival
[66,67]. COX-2 is an important inflammatory mediator which produces
prostaglandins (PGs) and ROS. Evidences from studies have shown that
most cancers have high expression of COX-2. This shows that COX-2
may be involved in the development and progression of cancers. In
addition, upregulation of COX-2 plays a key role in the resistance of
tumor cells to therapeutic modalities such as chemotherapy and
radiotherapy. Some studies have revealed that COX-2 upregulation is
associated with tumor proliferation and growth. PGs derived from COX-
2 triggers proliferation of CSCs, leading to tumor repopulation [24,68].
Moreover, COX-2 inhibits the activity of immune system against cancer
via attenuation of NK cells, dendritic cells and lymphocyte-T cells [69].
It has been proposed that targeting COX-2 can sensitize tumors to
radiotherapy and chemotherapy [70].

Melatonin as a potent anti-inflammatory agent is able to target NF-
kB-COX-2, thus ameliorates the production of PGs and facilitates
apoptosis. Apoptotic induction is one of the most promising strategies
for sensitizing tumor cells to anti-cancer agents. It has been shown that
suppression of NF-kB by melatonin has a direct relation with decreased
tumor volume [71]. Melatonin can abrogate binding of NF-kB to COX-2,
thus prevents upregulation of COX-2. Also, melatonin attenuates the
activity of p300 histone acetyltransferase (HAT), thus prevents acet-
ylation of p52, which is an activator of COX-2 [72]. Melatonin has
shown that through suppression of NF-kB-COX-2 pathway, potentiates
anti-tumor activity of curcumin on bladder cancer cells [73]. Similar
results have shown that melatonin via inhibiting binding of NF-xB to
COX-2, potentiates anti-tumor activity of fisetin and berberine through
activation of mitochondrial apoptotic pathway [74,75].

Melatonin is able to induce apoptosis in MDA-MB-231 cells when
combined with tunicamycin. Tunicamycin activates NF-kB and upre-
gulates COX-2 via stimulation of p38 mitogen activated protein kinase
(MAPK). However, its combination with melatonin leads to inhibition
of NF-xB and COX-2, leading to apoptotic induction [76]. The synergic
effect of melatonin in combination with chemotherapy and radio-
therapy has been confirmed to play a key role for targeting NF-xB and
its downstream genes. Gao et al. showed a synergic therapeutic effect of
melatonin on human colon cancer cell line when combined with 5-
Fluorouracil (5-FU), one of the most common chemotherapeutic drugs.
They found that melatonin potentiates apoptotic induction mediated
through activation of caspase and poly ADP ribose polymerase (PARP).
Further analyses showed that suppression of NF-xB and PI3K/AKT
pathway is responsible for the synergic role of melatonin. Melatonin
could prevent translocation and binding of NF-xB to iNOS promotor
[77].

In addition to chemotherapy, targeting NF-xB by melatonin has
been shown to be involved in tumor sensitization to ionizing radiation.
A study showed that melatonin suppresses cell viability and induces
apoptosis of thyroid cancer cell lines in a dose-dependent manner. This
study showed that while irradiation of thyroid cancer cells leads to
upregulation of NF-kB, treatment of cells with melatonin before irra-
diation causes potent suppression of NF-kB, leading to increasing
apoptosis. Interestingly, results showed that melatonin further amplifies
ROS production. In vivo evaluations have confirmed these results [78]
(Fig. 2).
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1.5. Regulation of immune cells within TME by melatonin

1.5.1. Melatonin enhances anti-tumor immunity via stimulation of NK cells

NK cells are at the first layer of immune system defense against
tumor development. It has been established that NK cells play a key role
in the lysis of cancer cells, especially hematopoietic origin malignancies
[79]. It has also been well-known for a long time that melatonin can
amplify lytic activity of NK cells [80]. IL-2 plays a central role in the
regulation of proliferation of NK cells. Melatonin also potentiates the
proliferation and activities of NK cells via triggering the release of IL-2.
Melatonin stimulates T helper type 1 lymphocytes and monocytes to
secrete IL-2 [81]. In an animal study, administration of melatonin for 1
or 2 weeks caused a significant increase in the number of NK cells in the
spleen and bone marrow. This study proposed that increased pro-
liferation of monocytes in the bone marrow triggers proliferation of NK
cells following treatment with melatonin [82]. In addition to IL-2, it has
been suggested that the release of other cytokines by monocytes and T
helper-1 lymphocytes such as IL-6, IL-12, IL-27 and IFN-y plays a key
role in the proliferation of NK cells [83,84]. Melatonin can augment the
release of these cytokines following enhancement of T helper-1 lym-
phocytes [21]. In a mice bearing leukemia model, it has been shown
that administration of melatonin can augment NK cell numbers and
improve the duration of survival [85]. A clinical study showed that
administration of 20 mg melatonin per day for patients who underwent
chemotherapy could not improve the recovery of NK cells [86]. There is
a need to explore possible effects of higher doses of melatonin for pa-
tients who undergo radiotherapy and/or chemotherapy.

1.5.2. Melatonin enhances anti-tumor immunity via stimulation of CTLs

Lymphocytes are able to secrete melatonin, which has a positive
effect on the activities of lymphocytes. It has been shown that mela-
tonin released by lymphocytes can abrogate the suppressive effect of
PGE2 on the release of IL-2 by lymphocytes [87]. Melatonin is able to
trigger the secretion of IL-2, which causes proliferation of CD8* cyto-
toxic T cells [88]. IL-2 prevents apoptosis of matured T cells in thymus
and provides a prolonged augment in the number of CTLs [88]. Mela-
tonin is able to trigger CD4™ T helper lymphocytes to release IFN-y and
TNF-a so as to potentiate the activity of CTLs [29]. It has been sug-
gested that melatonin can also increase the number and activity of
CD8™" cytotoxic T cells following stimulation of hematopoiesis in bone
marrow, while some clinical studies failed to confirm this effect of
melatonin [89,90]. In a rat model, it has been shown that a reduction in
the level of melatonin following pinealectomy leads to attenuation of T
cell maturation in thymus, which causes reduction of circulating CD8*
cytotoxic T cells [91]. RNA-Seq study showed that melatonin can up-
regulate the expression of TNF alpha-induced protein 8 like 2
(TNFAIP8L2) in TME. Upregulation of this gene can augment the ac-
tivities of CD8* and NK cells, while reducing the activity of myeloid-
derived suppressor cells (MDSCs) [92]. Melatonin can reduce epithelial
mesenchymal transition (EMT) in cancer cells via stimulation of this
gene [93]. This gene has shown high expression in the immune cells
and is involved in the suppression of tumor growth and metastasis via
phosphorylation of AKT and p38 [94].

1.5.3. Melatonin suppresses Tregs activity

Studies evaluating melatonin's effect on Tregs are very few. IFN-y is
a potent inhibitor of Tregs induced following administration of mela-
tonin, while important inducers of Tregs such as TGF-f and IL-4 are
suppressed by melatonin [95]. A study by Liu et al. attested the role of
melatonin on the function of Tregs. In this study, mice bearing gastric
cancer cells (murine foregastric carcinoma) were treated with different
doses of melatonin (25, 50 and 100 mg/kg) for 7 days. Results showed a
significant reduction in the tumor weight for 50 and 100 mg/kg mela-
tonin. Furthermore, the melatonin dose of 100 mg/kg showed a sig-
nificant effect on the reduction of Tregs ratio and Foxp3 expression in
murine tumors [96]. Administration of melatonin to patients with
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untreatable metastatic solid tumor has shown a reduction in Tregs [97].
However, there is the need for further studies to investigate the possible
role of melatonin on Tregs when combined with other cancer therapy
modalities such as chemotherapy and radiotherapy.

1.5.4. Melatonin and CAFs

TGF-f is one of the most potent immune suppressive cytokines
which aids tumor progression. Cancer associated fibroblasts (CAFs) are
one of the main sources for the release of TGF-f3 and PGE2 to TME [98].
These secretions attenuate the activity of anti-tumor cells like NK cells
and CD8™ cytotoxic T cells [99]. Therefore, attenuation of CAFs and
suppression of TGF-f can help eradicate cancer cells. Treatment of CAFs
isolated from breast tumors with melatonin has been shown to suppress
PGE2 and aromatase (an enzyme responsible for biosynthesis of estro-
gens, which also plays a key role in the progression of breast cancer)
[100]. An in vitro study also showed that treatment of breast cancer
cells co-cultured with CAFs led to reduction of angiogenesis factors
[101]. Studies exploring the direct effect of melatonin on CAFs are very
few. However, numerous studies have shown that melatonin is able to
reduce the level of PGE2 and TGF- in cancer cells following exposure
to anti-cancer agents including radio- and/or chemotherapy [27,102].

1.5.5. Melatonin may reduce stemness in cancer

Stemness is associated with cancer resistance, EMT, invasion and
metastasis. Some evidences have shown that melatonin reduces stem-
ness in cancers [103]. Treatment of ovarian cancer cells with melatonin
has been shown to reduce EMT and MMP-9, which are associated with
attenuation of CSCs invasion and migration. Melatonin has also shown
to reduce resistance to apoptosis in CSCs via downregulation of MAPKs
and PI3K [104]. Similar results were observed for colon and breast CSCs
[105,106]. A study showed that the suppressive effect of melatonin on
melanoma CSCs is mediated via suppression of NF-kB. This study
showed that inhibition of NF-xB p50/65 reduced iNOS and hTERT ac-
tivities, leading to reduction of stemness in melanoma cancer cells
[107].

1.6. Melatonin enhances therapeutic effect of inmunotherapy

Immunotherapy is one of the most promising strategies for eradi-
cation of cancer cells. The combination of melatonin with other agents
and therapeutic modalities may increase the chances of tumor control.
Melatonin has been used in combination with IL-2 for many years

[108]. Results suggested a better response of tumor and lower side ef-
fects compared to chemotherapy with cisplatin [109,110]. In recent
years, some studies have been conducted to investigate possible posi-
tive effects of melatonin combination with immunotherapy and tumor
vaccination. A study by Moreno et al. showed positive combination of
melatonin and gDE7-based vaccine in mice bearing tumors. Melatonin
was shown to amplify the release of IFN-y, thus increases the ther-
apeutic efficiency of tumor vaccination [111]. Also, melatonin in
combination with human papillomavirus (HPV)-16 E7 DNA vaccine can
amplify the anti-tumor activity of the immune system via triggering the
release of IFN-y and TNF-a, as well as increasing the number of CD8™*
cytotoxic T cells [112]. Melatonin has a role in increasing the number of
CD8™* cytotoxic T cells via suppressing PD-1 expression. Treatment of
hepatocellularcarcinoma cells (HCC) with melatonin causes the release
of some exosomes that suppress the regulation of PD-1 on macrophages
[113].

2. Conclusion

The immune system plays a central role in the elimination or era-
dication of cancer cells. Modulation of immune responses within TME is
one of the major mechanisms in cancer therapy. Radiotherapy, im-
munotherapy and tumor vaccination work via enhancing immune
system responses against cancer cells. Melatonin as a natural hormone
can modulate the immune system to aid eradication of cancer cells. It
can induce apoptosis in cancer cells via suppression of anti-apoptotic
mediators, especially via NF-kB and COX-2 signaling pathways. These
genes are able to stimulate DNA repair and upregulate survival of
cancer cells via suppression of pro-apoptotic genes. Melatonin can also
reduce survival of cancer cells via actions on mitochondrial function.
This is associated with downregulation of PI3K-AKT and mTOR path-
ways. In addition to direct effects of melatonin on cancer cells, it can
change immune response within TME. Melatonin is able to increase NK
and CD8* cytotoxic T cells via triggering the release of TNF-a and IFN-
vy, while it reduces Tregs because of suppression of TGF-f3. Melatonin
has also been shown to suppress PD-1 expression, thus further amplifies
the activity of CD8* cytotoxic T cells. These properties of melatonin
may enhance therapeutic efficiency of anti-cancer therapy modalities
such as immunotherapy. However, there is the need for further studies
to explain the mechanisms of immunoregulatory effects of melatonin in
combination with radiotherapy and chemotherapy.
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