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Abstract: Air pollution has many adverse effects on health and is associated with an increased risk
of mortality. Desert dust outbreaks contribute directly to air pollution by increasing particulate
matter concentrations. We investigated the influence of desert dust outbreaks on air quality in Santa
Cruz de Tenerife, a city located in the dust export pathway off the west coast of North Africa, using
air-quality observations from a six-year period (2012–2017). During winter intense dust outbreaks
PM10 mean (24-h) concentrations increased from 14 µg m−3 to 98 µg m−3, on average, and PM2.5

mean (24-h) concentrations increased from 6 µg m−3 to 32 µg m−3. Increases were less during
summer outbreaks, with a tripling of PM10 and PM2.5 daily mean concentrations. We found that
desert dust outbreaks reduced the height of the marine boundary layer in our study area by >45%, on
average, in summer and by ∼25%, on average, in winter. This thinning of the marine boundary layer
was associated with an increase of local anthropogenic pollution during dust outbreaks. NO2 and
NO mean concentrations more than doubled and even larger relative increases in black carbon were
observed during the more intense summer dust outbreaks; increases also occurred during the winter
outbreaks but were less than in summer. This has public health implications; local anthropogenic
emissions need to be reduced even further in areas that are impacted by desert dust outbreaks to
reduce adverse health effects.
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1. Introduction

It is well known that air pollution has many adverse effects on health [1,2], and recent research
suggests substantially higher health impacts than previously assumed, with a near doubling of the
global mortality rate attributable to ambient air pollution to 8.8 million [3]. Air pollution has been
classified as the biggest environmental risk to health [4], and a recent review highlights how children
are uniquely vulnerable to air pollution due to physiological, behavioural, and environmental factors
and how exposure to air pollution in early years can lead to a life-long health burden [5]. The World
Health Organisation (WHO) sets Air-Quality Guidelines (AQGs) for particulate matter (PM10 and
PM2.5), sulphur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) [6]. Globally, 91% of the world’s
population and 93% of children live in environments with air-pollution levels exceeding the WHO
guidelines [4,7].

Desert dust outbreaks contribute directly to air pollution by increasing particulate matter
concentrations, often by orders of magnitude [8–10]. Airborne desert dust impacts air quality on
both local and global scales as dust can be transported thousands of km in the atmosphere [11];
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airborne desert dust also has impacts on climate and biogeochemistry [8]. The most active global
dust source regions are located in a broad band or “dust belt” extending from the west coast of North
Africa through the Middle East to central Asia [9]. North Africa alone accounts for 55% of global
dust emissions while North Africa, the Middle East, and Asia together account for ∼87% of global
emissions [9].

The health effects of desert dust are more uncertain than those of, for example, carbonaceous
particulate matter, as most of the epidemiological studies of health effects of air pollution have been
conducted in urban areas dominated by anthropogenic particles [11,12]. However, various studies
have found associations between mortality and coarse particles and/or PM10 during dust outbreaks
in urban areas [13–16]. Recent studies in Tenerife found that exposure to Saharan dust may be a
precipitating factor of hospital admision due to heart failure [17], while a study in the capital cities
of both Tenerife and Gran Canaria (Canary Islands) found that fine and coarse particles and NO2

were associated with an increased risk of emergency hospital admission for respiratory diseases [18].
The processes involved in the adverse health effects of desert dust outbreaks are still being investigated.
Desert dust has been shown to be mixed with particulate pollutants as the dust plume encounters
polluted air masses, for example, on its way from North Africa to the Western Mediterranean [19]
and as it travels westward from North Africa to the North Atlantic [20]. The results of a study in two
regions of contrasting African influence found that the mechanism of pollution scavenging by dust
was more effective in the wet mode at sites further away from the desert dust source [19].

In addition to direct health effects of desert dust and the increasing particulate concentrations
from transport of desert dust, recent studies have indicated there are also indirect health effects of
dust outbreaks. For example, the adverse health effects or toxicity of the locally produced particulate
matter was also found to increase during dust outbreaks [21]. Studies in southern Europe (Barcelona
and Madrid, Spain) have found that the mixing layer height significantly decreased with increasing
intensity of Saharan dust events [22,23] and that an increased risk of mortality was observed with the
reduction in mixing layer height [22]. This thinning of the mixing layer leads to an accumulation of
local anthropogenic pollutants and may favour new particle formation or new species formed from
condensation of gaseous precursors on the surface of dust particles [22,24]. A study of PM10 chemical
composition in Seville (Spain) reported that, as well as the expected natural PM10 load increase during
Saharan dust outbreaks, the anthropogenic load also increased to twice the concentration observed in
non-dust outbreak days [25].

One of the challenges of investigating the health effect of dust outbreaks is having adequate
air-quality observations in dust outbreak regions [11,16,26]. In this study, we use air-quality observations
from Santa Cruz de Tenerife (Canary Islands, Spain) as an illustrative case of a city located close to
Saharan dust sources. The proximity of Santa Cruz de Tenerife to the west coast of North Africa (∼300 km)
in the desert dust export pathway to the North Atlantic (Figure 1) causes it to be frequently subjected
to dust outbreaks, which increase the particulate concentrations and affect the air quality. This desert
dust export from western Africa to the North Atlantic establishes a dry, warm, and dust-laden air layer
that is referred to as the Saharan Air Layer (SAL), which can expand westward to the Americas [27–30].
In winter and early spring, the Saharan Air Layer intrusions over the North Atlantic occur at low
altitude (0–3 km) [29,31,32], while in summer, the SAL and dust transport occurs at higher altitudes
(1–5 km) [29,33]. However, although the dust transport largely take place at altitude in the summer,
the impact on concentrations at lower altitudes can occur through gravitational settlement of the
dust [34].

Santa Cruz de Tenerife is a medium-size coastal city, and in addition to the impact of desert
dust particles, it has a mixture of anthropogenic sources of pollutants. Here, we combine air-quality
observations and data of the vertical structure of the atmosphere from 2012 to 2017, obtained from
both observations and a numerical weather prediction model, to investigate the direct and indirect
influence of desert dust outbreaks on air quality in urban areas.
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2. Materials and Methods

2.1. Study Area

Santa Cruz de Tenerife is the capital city of Tenerife (Canary Islands) and has 203,700 inhabitants.
It is a coastal city of complex topography, boarded by the Anaga peninsula to the NE (1024 m a.s.l.)
and built on a slope ranging up to 624 m a.s.l. in the NW direction (Figure A1). It has a mixture
of anthropogenic sources of pollutants (both on-road and maritime traffic and industrial emissions
from an oil refinery) [35–37]. In 2014, the Santa Cruz de Tenerife refinery ceased crude oil refining
operations; however, some industrial activity (water vapour production) continues at the refinery.
A strong and stable temperature inversion layer is present for most of the year in the Canary Islands
and in Tenerife due to quasi-permanent subsidence conditions in the dry free troposphere (FT) coupled
with frequent humid trade winds flow in the marine boundary layer (MBL) [38].

Figure 1. Annual mean distribution of dust extinction Aerosol Optical Thickness (AOT) in 2017,
highlighting the location of the dust belt, the westward transport of dust to the Americas, and the
location of Tenerife, Canary Islands: Data obtained from the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2).

2.2. Air-Quality and Meteorological Observations

Hourly ambient concentrations of PM10, PM2.5, NO2, NO, and O3 were obtained from the Canary
Islands’ ambient Air-Quality Monitoring Network for three urban measurement stations in Santa Cruz
de Tenerife for 2012–2017. The measurement sites used were as follows: (1) Tena Artigas (28.455 N,
16.277 W, 169 m a.s.l.); (2) Piscina Municipal (28.458 N, 16.263 W, 68 m a.s.l.); and (3) Vuelta Los Pájaros
(28.462 N, 16.276 W, 158 m a.s.l.). See Figure A1 in Appendix A for the location of the measurement sites.

The measurements were conducted following protocols and reference methods specified in
the European air-quality directives [39]. Measurements of PM10 and PM2.5 were conducted using
a Beta Attenuation Monitor (Met One Instruments-BAM 1020, Grants Pass, OR, USA), NO2 and NO
measurements were performed using chemiluminescence, and O3 measurements were made using UV
absorption. Hourly mass concentrations of black carbon (BC) in the PM10 fraction were also obtained for
the Tena Artigas measurement site during 2014–2017. These measurements were conducted with a Multi
Angle Absorption Photometer (Thermo Scientific-Carusso 5012, Waltham, MA, USA), (see Rodríguez et al.
for details [40]).

In addition, meteorological data was obtained from the State Meteorological Agency of Spain
(AEMET), Santa Cruz de Tenerife measurement site (C449C) (Figure A1). These measurements included
hourly measurements of wind speed and wind direction at 10 m, air temperature at 2 m, and precipitation.
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2.3. Marine Boundary Layer Height Determination

We obtained modelled data of the marine boundary layer height (BLH) from 2012 to 2017 from the
European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS)
numerical weather prediction model [41] for a grid point to the northeast of Tenerife (29.25 N, 15.75 W)
at six-hour intervals (00:00, 06:00, 12:00, and 18:00 UTC). In this study, we use the values at 12:00 UTC.
In the IFS model, the BLH is defined as the lowest height at which the bulk Richardson number reaches
the critical value of 0.25 [41,42]. The ECMWF IFS model was found to realistically simulate the BLH
over oceans in a recent evaluation against an extensive dataset of dropsonde observations [43].

In addition, we present data of the marine BLH from 2012 to 2017 from radiosonde observations
of vertical profiles of atmospheric pressure, temperature, and relative humidity. The radiosondes
(Vaisala, RS92, Vantaa, Finland) are launched daily at 00:00 and 12:00 UTC from the AEMET automatic
radiosonde station in Güímar, Tenerife (Global Climate Observing System, Upper-air Network station
#60018, 28.318 N, 16.382 W, 105 m a.s.l.). In this study, we use the values at 12:00 UTC and we utilise
the same methodology as described above for the IFS to calculate the BLH [42], the lowest height at
which the bulk Richardson number reaches a value of 0.25.

2.4. Determination of Desert Dust Outbreaks

The record of desert dust outbreaks affecting the Canary Islands for 2012 to 2017 was obtained from
the Spanish ministry responsible for the environment, which analyses and produces a report each year
of the natural particulate episodes that have occurred in Spain [44]. The analysis divides Spain up into
nine geographical areas, of which the Canary Islands is one area. The EU Directive [39] allows member
states to subtract the contribution of natural sources under certain conditions before comparing the
ambient air pollutant concentrations to the limit values. Guidelines are provided on which sources can
be regarded as natural and on methods to quantify and subtract the contribution of these sources [45].
Following these guidelines, natural particulate episodes that have occurred in Spain are identified
using a mix of ground-based particulate measurements, modelled particulate concentrations (using
numerical models such as BSC-DREAM8b, https://ess.bsc.es/bsc-dust-daily-forecast; NAAPS-NRL,
https://www.nrlmry.navy.mil/aerosol/; and SIKRON, http://forecast.uoa.gr/dustindx.php) satellite
imagery (e.g., from MODIS, https://modis.gsfc.nasa.gov/), and air mass back trajectory information
(e.g., from HYSPLIT, https://www.arl.noaa.gov/hysplit/hysplit/) [44,45].

A methodology was developed in Spain and Portugal to quantify the contribution of natural dust
to daily PM10 concentrations during dust outbreaks [46–48]. The methodology consists of calculating
the monthly moving 40th percentile of the PM10 time series at a regional background (RB) measurement
site after previously extracting days with desert dust outbreaks; this is then denoted the regional
background level. The daily net dust load in PM10 attributable to a desert dust outbreak in a given
region can subsequently be obtained by subtracting this daily regional background level from the
PM10 concentration value at the RB site [46]. This constitutes one of the official methods recommended
by the European Commission for quantifying the contribution of natural sources [45]. Following
this methodology, calculations of natural dust contributions to PM10 concentrations during dust
outbreaks are provided throughout Spain at regional background measurement sites [44]. We utilised
these calculations of natural dust contribution to daily PM10 concentrations during dust outbreaks
at the regional background measurement site located ∼40 km from Santa Cruz de Tenerife (El Rio
site, 28.145 N, 16.524 W, 500 m a.s.l.). This regional background measurement site has been used for
numerous studies and characterisations of desert dust outbreaks in the Canary Islands [31,34,49].

Once having established the record of desert dust outbreaks affecting the Canary Islands for
2012 to 2017, we followed a methodology similar to Pandolfi et al. [22] to determine the intensity of
these dust outbreaks. We defined moderate and intense desert dust outbreaks as those dust outbreaks
for which the natural dust contribution to PM10 concentrations are <75th percentile (p75) and >p75,
respectively. The 75th percentile of the natural dust contribution to daily PM10 concentrations in the
2012–2017 period in our study area was 34 µg m−3.

https://ess.bsc.es/bsc-dust-daily-forecast
https://www.nrlmry.navy.mil/aerosol/
http://forecast.uoa.gr/dustindx.php
https://modis.gsfc.nasa.gov/
https://www.arl.noaa.gov/hysplit/hysplit/
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3. Results and Discussion

3.1. PM10 and PM2.5 Concentrations

Dust outbreaks have a direct effect on air quality by increasing the particulate concentrations.
Although dust outbreaks contribute more in mass percentage terms to the particulate coarse mode
fraction (PM2.5−10), they do also increase the particulate fine fraction (PM2.5). We compared daily (24-h
mean) PM10 and PM2.5 concentrations at the three urban measurement sites in Tenerife for 2012–2017
with the record of desert dust outbreaks affecting the Canary Islands for the same period. Data for
2015 illustrates how all episodes of increased PM10 and PM2.5 concentrations and all the exceedances
of the WHO 24-h mean PM10 (50 µg m−3) and PM2.5 (25 µg m−3) Air-Quality Guideline occur during
dust outbreak days (Figure 2a,b). On average, 38% of days during 2012 to 2017 were affected by dust
outbreaks, with a maximum of 55% of days (201 days) in 2017. To assess the indirect influence of desert
dust outbreaks on air quality in urban areas, we use data of the marine BLH obtained from radiosonde
observations and from a numerical weather prediction model (see Section 2.3 for more details). We see
that that, during dust outbreak days, the BLH generally decreases (Figure 2c). Further analysis on this
thinning of the marine boundary layer during dust outbreak days is conducted in Section 3.3.

Figure 2. Daily (24-h mean) concentrations of (a) PM10 and (b) PM2.5 at three urban measurement sites
in Santa Cruz de Tenerife and (c) the boundary layer height (BLH), daily values at 12:00 UTC, obtained
from radiosonde observations and from the European Centre for Medium-Range Weather Forecasts
(ECMWF) Integrated Forecasting System (IFS) numerical weather prediction model for 2015: Also
shown in all panels are the desert dust outbreaks affecting the Canary Islands in 2015.
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3.2. Seasonal Variation of Desert Dust Outbreaks, PM10 Concentrations, and BLH in the Study Area

To assess the influence of desert dust outbreaks on air quality, it is useful to first analyse the
seasonal variability of the desert dust outbreaks and PM10 concentrations in the Canary Islands.
Examining the seasonal variability for the six-year period (2012 to 2017) demonstrates various features
(Figure 3). Firstly we observe that, on average, all months in the Canary Islands experience desert
dust outbreaks to a greater or lesser degree; there are no months which experience no dust outbreaks,
on average. However, secondly, we observe that desert dust outbreaks affecting the Canary Islands
can be divided into two main periods: (1) winter dust outbreaks which occur from December–March,
with a maximum observed during 2012 to 2017 in December (67% of days month−1), and (2) summer
dust outbreaks which occur largely in July–August (51% and 56% of days month−1, respectively).
The months of April to June, on average, experience less desert dust outbreaks with the minimum
percentage of desert dust outbreaks observed in May (15% of days month−1). This seasonal variation is
in agreement with previous studies [10,33,34]. PM10 mean monthly concentrations for 2012 to 2017 in
Santa Cruz de Tenerife demonstrate that they are consistent with the seasonal distribution of the desert
dust outbreaks with maximum concentrations observed in December and minimum concentrations
observed in May and June (Figure 3a).

Figure 3. Seasonal variability of (a) PM10 concentrations and (b) desert dust outbreaks for 2012 to 2017:
The error bars in Figure 3b represent the standard deviation in the mean monthly values.

The seasonal variability of the marine BLH in the Canary Islands demonstrated by radiosonde
observations and output from the ECMWF IFS numerical weather prediction model is characterized by
a maximum in winter and a minimum in summer (Figure 4). The monthly mean BLH is at a maximum
during November to February in both the observations (883 m to 930 m), and the model data (844 to
987 m) and the minimum monthly mean BLH is observed in August in both datasets (Obs: 606 m,
Model: 582 m). The model values are generally less dispersive than the radiosonde observations
(Figure 4). This is consistent with Lavers et al. [43], who concluded from a recent evaluation of the
ECMWF IFS model against an extensive dataset of dropsonde observations that the ECMWF IFS model
results did not capture all the dispersion in the observations and considered this to be largely due
to representativeness errors, as the ECMWF IFS model represents the grid box average rather than
capturing sub-grid atmospheric variability.
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Figure 4. Seasonal variability of marine boundary layer height (BLH) from (a) radiosonde observations
and (b) ECMWF IFS numerical weather prediction model for 2012 to 2017. The horizontal lines and the
squares within the box represent the median and mean values, respectively, while the bottom and top
of each box are the 25th and 75th percentiles. The whiskers are the 5th and 95th percentiles.

3.3. Thinning of Marine Boundary Layer

The following analysis was conducted separately for the two types of dust outbreaks observed
here in the Canary Islands: (1) Winter dust outbreaks (December–March) and (2) summer dust
outbreaks (July–August). As described in Section 2.4, we define moderate and intense desert dust
outbreaks as those dust outbreaks for which the natural dust contribution to PM10 concentrations are
<75th percentile (p75) and >p75, respectively.

We observe a reduction or “thinning” of the marine boundary layer height during desert dust
outbreaks in both the data from radiosonde observations and the ECMWF IFS model BLH data.
The mean and median BLH progressively decreased with increasing intensity of Saharan dust outbreaks
for both observations and modelled data (Figure 5). This “thinning” is observed in both winter dust
outbreaks (Figure 5a) and summer dust outbreaks (Figure 5b) with the effect being stronger in the
summer dust outbreaks (Figure 5 and Tables 1 and 2). In summer, a 45% and 49% reduction in median
BLH for more intense dust outbreak days compared to non-dust outbreak days is observed from
observations and modelled data, respectively. In winter, a 24% and 33% reduction in median BLH for
more intense dust outbreak days compared to non-dust outbreak days is observed from observations
and modelled data, respectively.
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Figure 5. Box plot of marine boundary layer height (BLH) from radiosonde observations and ECMWF
IFS numerical weather prediction model for (a) winter dust outbreaks (Dec–Mar) and (b) summer dust
outbreaks (Jul–Aug) calculated for all days, non-dust outbreak days, and different intensities of dust
outbreaks (2012 to 2017): The horizontal lines and the squares within the box represent the median
and mean values, respectively, while the bottom and top of each box are the 25th and 75th percentiles.
The whiskers are the 5th and 95th percentiles.

Table 1. Statistical metrics for marine boundary layer height (BLH) from radiosonde observations (Obs)
and the IFS model during non-dust outbreak days and for different intensities of dust outbreaks in the
Canary Islands for the winter season (December–March), 2012–2017: Standard deviation in the mean is
given in parentheses.

Statistic Non-Dust Days Moderate Dust Days Intense Dust Days

BLH (m) Obs Model Obs Model Obs Model

Mean (m) 937 (380) 962 (294) 822 (390) 805 (357) 703 (375) 673 (280)
Median (m) 894 952 794 760 681 636

n 359 375 243 254 77 82

Table 2. Same as Table 1 but for the summer season (July–August).

Statistic Non-Dust Days Moderate Dust Days Intense Dust Days

BLH Obs Model Obs Model Obs Model

Mean (m) 773 (270) 727 (178) 533 (201) 566 (181) 414 (152) 368 (131)
Median (m) 735 721 496 563 401 365

n 170 174 134 135 61 61

Vertical profiles of median relative humidity from the radiosonde observations (2012 to 2017) for
non-dust days and intense-dust days are shown in Figure 6. During non-dust days, a strong MBL
and very dry FT are observed in both winter and summer. This dry FT is a result of both a large-scale
subsidence regime associated with the descending branch of the Hadley cell above the subtropics
(∼30◦ N) [38] and the free troposphere subsident air masses originating from mid-high latitudes [50,51].
However, during dust days, the air masses come from the African continental boundary layer, which
have a higher humidity than the clean free troposphere over the ocean but a lower humidity than the
MBL [52,53]. Thus, the Saharan Air Layer dries the MBL and increases the relative humidity in the free
troposphere for both winter and summer dust outbreaks (Figure 6).
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Figure 6. Vertical profiles of median relative humidity (%) from radiosonde observations for non-dust
days and intense-dust days shown for (a) winter dust outbreaks (December–March) and (b) summer
dust outbreaks (July–August), 2012 to 2017.

Furthermore, these profiles show how the height of the humid MBL is reduced during the
dust outbreaks both in winter and summer. This was also observed in a campaign study in the
Canary Islands where the MBL was reduced down to 250 m in a particular Saharan dust episode [49].
In addition, the interaction of dust with radiation heats the lower atmosphere within the dust layer,
affecting the radiative budget and enhancing the atmospheric stability [29].

3.4. Increase of Particulate and Gaseous Pollutants during Dust Outbreaks

We examined the mean concentrations of both particulate and gaseous pollutants in non-dust
outbreak days compared to increasing intensity of desert dust outbreaks in 2012 to 2017 for both winter
and summer dust outbreaks (Figures 7 and 8). The particulate and gaseous pollutant data presented
in Figures 7 and 8 are the daily (24-h mean) data averaged for the three urban measurement sites for
2012–2017 except for black carbon data, which was only available at the Tena Artigas measurement
site. During winter dust outbreaks, PM10 mean (24-h) concentrations increased from 14 µg m−3 to
98 µg m−3 (an increase of ×7.1) and PM2.5 mean (24-h) concentrations increased from 6 µg m−3 to
32 µg m−3 (×5.3 increase), on average, during the more intense dust outbreaks compared to non-dust
outbreak days (Figure 7a,b). In addition, the mean concentrations of locally emitted anthropogenic
pollutants, NO2, NO, and BC, also increased with intensity of desert dust outbreaks. We observed
an increase in mean concentrations of NO2, NO and black carbon by factors of 1.7, 2.1, and 2.7,
respectively, during more intense dust outbreaks compared to non-dust outbreak days in winter
(Figure 7c–e). The mean O3 concentrations decreased by 21% (Figure 7f), consistent with titration by
the increasing NO concentrations.

During summer dust outbreaks, the particulate concentrations increased less than during the
winter dust outbreaks; PM10 mean (24-h) concentrations increased from 14 µg m−3 to 49 µg m−3

(×3.6 increase) and PM2.5 mean (24-h) concentrations increased from 6 µg m−3 to 19 µg m−3

(×3.4 increase), on average, during the more intense dust outbreaks compared to non-dust outbreak
days (Figure 8a,b). This is consistent with the dust transport largely taking place at high altitudes
in the summer and the impact on concentrations at lower altitudes being through gravitational
settlement of the dust rather than a result of direct transport intruding into the marine boundary
layer. In contrast, the mean concentrations of locally emitted anthropogenic pollutants increased more
during the summer dust outbreaks than during the winter dust outbreaks; the mean concentrations of
NO2, NO, and black carbon increased by factors of 2.7, 2.4, and 3.4, respectively, during more intense
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dust outbreaks compared to non-dust outbreak days (Figure 8c–e). This is consistent with the stronger
reduction of the marine boundary layer height during the summer dust outbreaks.

Figure 7. Mean (24-h) concentrations of (a) PM10; (b) PM2.5; (c) NO2; (d) NO; (e) Black Carbon (BC)
≤ 10 µm, and f) O3 calculated for all days, non-dust outbreak days, and different intensities of dust
outbreaks during winter (December–March): The horizontal lines and the squares within the box
represent the median and mean values, respectively, while the bottom and top of each box are the 25th
and 75th percentiles. The whiskers are the 5th and 95th percentiles. All data are for the 2012 to 2017
period except for black carbon data, which are for 2014–2017.
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Figure 8. Same as Figure 7 but for the summer season (July–August).

These increases of both particulate and gaseous pollutants observed during dust outbreaks in this
study are larger than those observed in the Barcelona study [22], where the mean concentrations of NO2

and NO increased by around 21% and 15%, respectively, during days with natural dust contribution
to PM10 concentrations in the >90th percentile compared to non-dust outbreak days. These large
increases of both particulate and gaseous pollutants during dust outbreaks in this study reflect both
the high frequency and high intensity of dust outbreaks experienced in the Canary Islands due to its
location in the dust export pathway from North Africa towards the subtropical North Atlantic.

In addition, the wet scavenging processes are less effective in the subtropical region where rainfall
is much lower and scarcer in summertime compared with mid-latitude sites, favouring the persistence
of particulate and gaseous pollutants in the ambient air. Climatological rainfall values (1981–2010)
for Santa Cruz de Tenerife (C449C) and Barcelona Airport (0076) meteorological stations (AEMET)
show that the December–March accumulated rainfall is identical (148 mm) while the July–August
accumulated rainfall is much less in Santa Cruz de Tenerife (2 mm) compared to Barcelona (83 mm)
(Table A1). In wintertime, we do observe rainfall events that reduce the persistence of gas and
particulate pollutants due to wet scavenging processes in contrast to the summertime. The mean daily
accumulated rainfall in Santa Cruz de Tenerife (C449C) decreased from 0.9 mm to 0.4 mm, a reduction
of 55%, during wintertime intense dust outbreaks compared to non-dust days in the 2012–2017 period
(data not shown).

We also examined the mean daily surface wind speed in non-dust outbreak days compared
to increasing intensity of desert dust outbreaks in 2012 to 2017 for both winter and summer dust
outbreaks (Figure A2). The mean daily wind speed decreased from 2.6 m s−1 to 1.9 m s−1, a reduction
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of 29%, during summertime intense dust outbreaks compared to non-dust days, while in wintertime,
we did not observe a change in mean daily wind speed between intense dust and non-dust days.

4. Conclusions

We combined air-quality observations and marine boundary layer height data for Santa Cruz
de Tenerife as an illustrative case of a city located close to and frequently impacted by desert dust
sources to address the question of both the direct and indirect influences of desert dust outbreaks on air
quality in urban areas. On average, 38% of days during 2012 to 2017 were affected by dust outbreaks,
with a maximum of 55% of days in 2017; this led to exceedances above the WHO PM10 and PM2.5 24-h
mean AQGs.

Thinning of the marine boundary layer occurred during dust outbreaks, with >45% reduction in
median marine boundary layer height in the more intense dust outbreaks during summer and ∼25%
reduction in median marine boundary layer height in the more intense dust outbreaks during winter.
Local anthropogenic pollution was shown to increase during dust outbreaks. We observed more than
a doubling of NO2 and NO mean concentrations and even larger relative increases in black carbon
during the more intense summer dust outbreaks. Increases in NO2, NO. and BC mean concentrations
by factors of 1.7, 2.1, and 2.7, respectively, were also observed during the winter outbreaks, but these
increases were less than in summer, consistent with the stronger reduction of the marine boundary
layer height in summer.

Desert dust outbreaks, through the effect of the reduction in the marine boundary layer height
can increase anthropogenic air pollution in urban areas, and it appears from recent health studies that
the resulting cocktail of desert dust and local anthropogenic pollutants has a greater effect than solely
local pollution or dust. This has public health implications; local anthropogenic emissions need to be
reduced even further in areas that are impacted by desert dust outbreaks if we are to achieve the health
benefits we expect from emission reductions and to reduce adverse health effects. This is contrary to
the current air-quality policy in the European Union, where, from a legislative point of view, the PM
concentrations can be discounted during these “natural” episodes [45]. In fact, the health outcomes
during desert dust outbreaks cannot be discounted [54] and, as shown here, the adverse health effects
can be exacerbated during these events.

Consequently, anthropogenic emissions need to be controlled more strongly in areas that are
impacted by desert dust outbreaks to counteract this detrimental coupling of dust outbreaks and
anthropogenic air-quality episodes. This is of particular importance for urban areas strongly and
frequently impacted by dust outbreaks, and these conclusions need to be taken account of in other
geographical areas strongly impacted by desert dust outbreaks such as the Mediterranean, North
Africa, the Middle East and Asia.
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Appendix A

Figure A1. (a) Location of the Canary Islands; (b) topographic map of Tenerife (Carta Digital v2.0);
and (c) plan view of Santa Cruz de Tenerife indicating the location of the air-quality measurement
sites (1) Tena Artigas, (2) Vuelta Los Pájaros, (3) Piscina Municipal, and (4) the meteorological station
(AEMET: C449C).

Table A1. Climatological rainfall values (1981–2010) for Santa Cruz de Tenerife (C449C) and Barcelona
Airport (0076) meteorological stations (AEMET).

Site Annual Rainfall (mm) Winter (December–March) Rainfall (mm) Summer (July–August) Rainfall (mm)

Santa Cruz 226 148 2
Barcelona 588 148 83

Figure A2. Mean daily surface wind speed (2012 to 2017) calculated for all days, non-dust outbreak
days, and different intensities of dust outbreaks during (a) winter (December–March) and (b) summer
(July–August): The horizontal lines and the squares within the box represent the median and
mean values, respectively, while the bottom and top of each box are the 25th and 75th percentiles.
The whiskers are the 5th and 95th percentiles.
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