St. Norbert College Digital Commons @ St. Norbert College

Faculty Creative and Scholarly Works

11-27-2013

The Elephants of Gash-Barka, Eritrea: Nuclear and Mitochondrial Genetic Patterns

Adam L. Brandt

Yohannes Hagos

Yohannes Yacob

Victor David

Nicholas J. Georgiadis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.snc.edu/faculty_staff_works

Authors

Adam L. Brandt, Yohannes Hagos, Yohannes Yacob, Victor David, Nicholas J. Georgiadis, Jeheskel Shoshani, and Alfred L. Roca

1 2	The elephants of Gash-Barka, Eritrea: Nuclear and mitochondrial genetic patterns
3 4 5 6	Authors: Adam L. Brandt ¹ , Yohannes Hagos ² , Yohannes Yacob ² , Victor David ³ , Nicholas J. Georgiadis ⁴ , Jeheskel Shoshani ⁵⁺ , and Alfred L. Roca ^{1,6*}
7 8 9	¹ Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
10 11	² Wildlife Conservation Division, Ministry of Agriculture, Asmara, Eritrea ³ Basic Research Laboratory, Center for Cancer Research, National Cancer Institute,
12 13 14	Frederick, MD 21702 USA ⁴ Puget Sound Institute, University of Washington, 326 East D St., Tacoma, WA 98421 USA
15 16	⁵ The Elephant Research Foundation, Bloomfield Hills, MI 48304 USA ⁶ Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
17 18	61801 USA ⁺ Deceased
19 20 21	*Corresponding Author
21 22 23	Alfred L. Roca Department of Animal Sciences
24 25	University of Illinois at Urbana-Champaign Urbana, Illinois 61801
26 27	Office phone: 217-244-8853 Department fax: 217-333-8286
28 29 30	Email: roca@illinois.edu
30 31 32 33	Keywords: fecal DNA, Loxodonta, microsatellites, mtDNA, SNPs, war elephants

- 34 Running title: The Elephants of Eritrea
- 35

36 Abstract

37 Eritrea marks the northern range boundary for African elephants. Only about 100 38 elephants persist in the Gash-Barka administrative zone. Elephants in Eritrea have 39 become completely isolated, with no gene flow from other elephant populations. The 40 conservation of Eritrean elephants would benefit from an understanding of their genetic 41 affinities to elephants elsewhere on the continent, and of the degree to which genetic 42 variation persists in the population. Using dung samples from Eritrean elephants, we 43 examined 18 species-diagnostic single nucleotide polymorphisms in 3 nuclear genes, 44 sequences of mitochondrial HVR1 and ND5, and genotyped 11 microsatellite loci. All 45 sampled Eritrean elephants carried nuclear and mtDNA markers establishing them as 46 savanna elephants, with closer genetic affinity to Eastern than to North-Central savanna 47 elephant populations, and contrary to speculation by some scholars that forest elephants were found in Eritrea. Mitochondrial DNA diversity was relatively low, while two 48 49 haplotypes unique to Eritrea predominated. STR genotypes could only be determined for 50 a small number of elephants, but suggested that the population suffers from low 51 diversity. Conservation efforts should aim to protect Eritrean elephants and their habitat 52 in the short run, with restoration of habitat connectivity and genetic diversity as long-term 53 goals.

54

55 Introduction

56	Eritrea marks the northern boundary of current African elephant distribution, with
57	elephants persisting in a small fragment of their formerly extensive range. African
58	elephants were once found throughout Eritrea, but by the early 20th century they were
59	believed to have been extirpated (Gowers, 1948), although a small population was found
60	to have persisted at low population densities in the southwest (Hagos, et al., 2003;
61	Yalden, Largen and Kock, 1986). The current distribution of elephants is restricted to a
62	5,293 km ² area of land in the Zoba Gash-Barka, one of the six administrative zones,
63	located in the southern part of western Eritrea (Figure 1) (Blanc, et al., 2007). Gash-
64	Barka is a dry region with habitat consisting mostly of doum palm, ziziphus bush, acacia
65	woodland and open grassland savanna (Hagos, et al., 2003). Most surveys report
66	sightings of only a few individuals (Barnes, et al., 1999; Litoroh, 1997). However, one
67	estimate suggested that 100 to 200 elephants persisted in the 1950s (Largen and Yalden,
68	1987; Leuenberger, 1955), while a recent aerial survey conducted in Gash-Barka between
69	2001 and 2003 estimated that ca. 100 African elephants remain in Eritrea (Hagos, et al.,
70	2003; Shoshani, et al., 2004). In 2012, the government of Eritrea indicated that the
71	numbers and range of elephants appear to be increasing, and that ca. 120 elephants persist
72	(Anonymous, 2013). Protecting elephant habitat is considered by the government to be a
73	priority for biodiversity conservation (Weldeyohannes and Siratu, 2010).
74	Within Eritrea, the geographic range of elephants is approximately 4,200 km ²
75	which includes narrow corridors connecting the northern and southern extents of their
76	range (Yacob, et al., 2004). During the wet season, some Eritrean elephants migrate into
77	northern Ethiopia (Shoshani, Hagos and Yacob, 2000; Shoshani, et al., 2004), utilizing

78	the additional range within the Tkezze Valley Wildlife Reserve, which is $1,130 \text{ km}^2$
79	(Blanc, et al., 2007). The study of these elephants is made difficult by their migrations
80	between Eritrea and Ethiopia. During a 27 month study, the mortality rate was estimated
81	to be 4.9% per year, which is comparable to the 14 year average of 4.71% in the Samburu
82	elephant population in northern Kenya (Wittemyer, Daballen and Douglas-Hamilton,
83	2013) and less than the mortality rate (17.1 % of juveniles or 10.5% of adults) that has
84	been estimated as necessary to prevent population growth in savanna elephants (Woolley,
85	et al., 2008). Many elephant deaths in Eritrea are attributable to the human presence in
86	the area, although ivory poaching has not been of major concern (Yacob, et al., 2004).
87	The Eritrean groups observed included a substantial proportion of infant and sub-adult
00	$\frac{1}{2}$
88	individuals (Hagos, <i>et al.</i> , 2003; Snosnani, <i>et al.</i> , 2004).
88 89	Elephants in the region are believed to be isolated, with the nearest other elephant
88 89 90	Elephants in the region are believed to be isolated, with the nearest other elephant population over 400 km away (Blanc, <i>et al.</i> , 2007). Eritrean elephants are thus vulnerable
88 89 90 91	Elephants in the region are believed to be isolated, with the nearest other elephant population over 400 km away (Blanc, <i>et al.</i> , 2007). Eritrean elephants are thus vulnerable to a decrease in fitness due to inbreeding and loss of genetic variation (Reed and
88 89 90 91 92	Elephants in the region are believed to be isolated, with the nearest other elephant population over 400 km away (Blanc, <i>et al.</i> , 2007). Eritrean elephants are thus vulnerable to a decrease in fitness due to inbreeding and loss of genetic variation (Reed and Frankham, 2003). Understanding the genetic diversity and affinities of this population,
88 89 90 91 92 93	Elephants in the region are believed to be isolated, with the nearest other elephant population over 400 km away (Blanc, <i>et al.</i> , 2007). Eritrean elephants are thus vulnerable to a decrease in fitness due to inbreeding and loss of genetic variation (Reed and Frankham, 2003). Understanding the genetic diversity and affinities of this population, and determining the effects of limited gene flow, can contribute to scientifically sound
 88 89 90 91 92 93 94 	Elephants in the region are believed to be isolated, with the nearest other elephant population over 400 km away (Blanc, <i>et al.</i> , 2007). Eritrean elephants are thus vulnerable to a decrease in fitness due to inbreeding and loss of genetic variation (Reed and Frankham, 2003). Understanding the genetic diversity and affinities of this population, and determining the effects of limited gene flow, can contribute to scientifically sound conservation practices to ensure their long-term persistence. We therefore examined
 88 89 90 91 92 93 94 95 	Elephants in the region are believed to be isolated, with the nearest other elephant population over 400 km away (Blanc, <i>et al.</i> , 2007). Eritrean elephants are thus vulnerable to a decrease in fitness due to inbreeding and loss of genetic variation (Reed and Frankham, 2003). Understanding the genetic diversity and affinities of this population, and determining the effects of limited gene flow, can contribute to scientifically sound conservation practices to ensure their long-term persistence. We therefore examined genetic markers previously characterized in elephants across Africa to examine the
 88 89 90 91 92 93 94 95 96 	Elephants in the region are believed to be isolated, with the nearest other elephant population over 400 km away (Blanc, <i>et al.</i> , 2007). Eritrean elephants are thus vulnerable to a decrease in fitness due to inbreeding and loss of genetic variation (Reed and Frankham, 2003). Understanding the genetic diversity and affinities of this population, and determining the effects of limited gene flow, can contribute to scientifically sound conservation practices to ensure their long-term persistence. We therefore examined genetic markers previously characterized in elephants across Africa to examine the genetic diversity and affinities of Eritrean elephants.

98 Material and Methods

99 Samples

100	This study was conducted in compliance with the University of Illinois
101	Institutional Animal Care and Use Committed (IACUC) approved protocol number
102	09036. Samples were obtained in full compliance with required permits. Thirty-three
103	dung samples were collected from elephants in the Gash-Barka region of Eritrea between
104	2001 and 2003 and stored in "blue" alcohol (ethanol with methanol additive). Dung was
105	collected as part of the elephant population census reported by Shoshani and others
106	(2004). The dung was collected in various geographic locations during this time period
107	(Table S1, Figure S1). To minimize the possibility of duplicate collection of samples,
108	exclusion criteria were used consisting of (1) ability of elephants to travel distances given
109	differences in time of sample collection; (2) similarity of herd or group composition; and
110	(3) similarity of markings including ear and body marks, tusk characters, and soleprints
111	(Hagos, et al., 2003; Shoshani, et al., 2004). A total of 83 distinct elephants were counted
112	during the census, though an additional 45 sightings of elephants were excluded from the
113	census total using these conservative exclusion criteria. None of the samples that were
114	successfully amplified (below) were from the potential duplicates, thus all sequences and
115	genotypes were from distinct individuals.

116

117 Mitochondrial and Nuclear DNA Amplification and Sequencing

DNA was extracted using the QIAamp DNA Stool Kit (Qiagen Inc., Valencia, CA) following the recommended protocol. Several DNA markers were unable to be amplified despite repeated attempts and utilization of techniques that typically increase PCR success rate; thus limiting the analyses possible for some individuals. Two regions of the mitochondrial genome were amplified and sequenced. A 319 bp region of the

- 123 mitochondrial *NADH dehydrogenase 5 (ND5)* was amplified as previously described
- 124 (Roca, Georgiadis and O'Brien, 2005). A 314 bp region of the hyper variable region 1

125 (HVR1) was amplified in two overlapping segments using a combination of four primers

- 126 developed for low quality DNA, CR-F1 (TGGTCTTGTAAGCCATAAATGAAA) with
- 127 CR-R1 (GCTTTAATGTGCTATGTAAGACTATG), and CR-F2
- 128 (TCGTGCATCACATTATTTACCC) with CR-R2
- 129 (TGGTCCTGAAGAAGAAGAACCAG). PCR was run with an initial step of 95°C for 9:45
- 130 min; with cycles of 20 sec at 94°C; followed by 30 sec at 60°C (first 3 cycles), 58°C
- 131 (next 5 cycles), 56°C (5 cycles), 54°C (5 cycles), 52°C (5 cycles), or 50°C (final 22
- 132 cycles); followed by 30 second extension at 72°C; with a final extension after the last
- 133 cycle of 7 min at 72°C. Short species-diagnostic regions of nuclear DNA sequences for
- 134 genes Biglycan (BGN), Phosphorylase kinase alpha subunit 2 (PHKA2) and Proteolipid
- 135 protein 1 (PLP) were amplified following methods previously described (Ishida, et al.,
- 136 2011a). All products were enzyme-purified (Hanke and Wink, 1994) then sequenced
- 137 using the BigDye Terminator system (ABI), purified, and resolved at the University of
- 138 Illinois at Urbana-Champaign Core Sequencing Facility. The software Sequencher (Gene
- 139 Codes Corporation, Ann Arbor, MI) was used to edit and concatenate sequences. There
- 140 were no indications of nuclear DNA sequences of mitochondrial origin (numts) among
- 141 the results (Brandt, et al., 2012; Roca, Georgiadis and O'Brien, 2007). Sequences of four
- 142 novel mtDNA haplotypes were submitted to GenBank (KC608163-KC608166).

143

144 Haplotype Analyses

145	Mitochondrial DNA sequences were aligned using CLUSTALW 2.0 (Larkin, et
146	al., 2007) with default parameters, in EBI Web Services (McWilliam, et al., 2009);
147	alignment output was visually inspected. Haplotype diversity indices were calculated
148	with ARLEQUIN v.3.5 (Excoffier and Lischer, 2010). HVR1 sequences were combined
149	with a larger dataset (Ishida, et al., 2013) and weighted maximum likelihood distances
150	were used to generate a median joining network using the software NETWORK v.4.6.1
151	(Bandelt, Forster and Rohl, 1999).
152	
153	SNP Analyses
154	The identities of nuclear DNA sequences were established using NCBI BLAST
155	(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) and were compared to published DNA
156	sequences from savanna elephant, forest elephant and Asian elephant (Roca, et al., 2005).
157	Species-specific diagnostic nucleotide sites for each gene (BGN, PHK and PLP) were
158	examined, as described previously (Ishida, et al., 2011a). Since the sex of the individuals
159	was not known, nuclear amplicons were conservatively estimated as representative of 1
160	rather than 2 X-chromosomes.
161	
162	Microsatellites
163	Eight microsatellite loci developed in savanna elephants: LAF10, LAF11, LAF12,
164	LAF13, LAF29, LAF37, LaT05, and LaT06 (Archie, Moss and Alberts, 2003; Ishida, et

al., 2011b) and 3 loci developed in Asian elephants: EMX3, EMX4, and EMX5

166 (Fernando, Vidya and Melnick, 2001), were amplified in the Eritrean samples by PCR.

167 Primers were tagged for fluorescence detection (Boutin-Ganache, et al., 2001) and

168	amplification followed a touchdown thermocycle profile previously described (Ishida, et
169	al., 2011b; Menotti-Raymond, et al., 2005). Samples were genotyped on an ABI 3100
170	Genetic Analyzer and scored using GeneScan 3.7 and Genotyper 2.5 software (Applied
171	Biosystems); alleles were subsequently binned using Allelogram (Morin, et al., 2009). To
172	verify genotypes and to check for allelic dropout or false alleles, samples were genotyped
173	at least 3 additional times; in no cases were allelic dropouts detected. PCR mixes
174	included 10-25 ug bovine serum albumin. Positive and negative controls were run. In
175	fulfillment of data archiving guidelines(Baker, 2013), we have deposited the primary data
176	underlying these analyses with Dryad.
177	The results for Eritrea are reported here for the first time. One amplification for
178	the Eritrean elephants was generated concurrent with and alongside an additional 555
179	African elephants from 23 locales that included both savanna elephants (Loxodonta
180	africana) and forest elephants (L. cyclotis), and followed procedures described therein
181	(Ishida, et al., 2011b), thus ensuring consistency in platforms and in allelic size
182	comparisons. Diversity indices for microsatellites were calculated using ARLEQUIN
183	v.3.5 (Excoffier and Lischer, 2010) and population structure was examined using the
184	software STRUCTURE 2.3.3 (Hubisz, et al., 2009). Four models (Pritchard, Stephens
185	and Donnelly, 2000) were used to examine the effects of various combinations of
186	assumptions of individual genetic ancestry and genetic relatedness among populations: 1)
187	admixture with correlated allele frequencies, 2) admixture with independent allele
188	frequencies, 3) no admixture with correlated allele frequencies and 4) no admixture with
189	independent allele frequencies. Each model was run 3 times using values of K (possible
190	number of populations) between 1 and 24 genetic clusters, which is the maximum

191	number of putative populations assigned a priori. Each analysis was run for a minimum
192	of 1 million Markov chain Monte Carlo steps following a burn-in of at least 100,000
193	steps. The uppermost hierarchical level of population structure was examined using the
194	ad hoc statistic delta K based on the rate of change in ln P (D) between successive K
195	values (Evanno, Regnaut and Goudet, 2005), implemented in Structure Harvester (Earl
196	and vonHoldt, 2012).
197	To identify the genetic affinity of Eritrean elephants, STR data from savanna
198	elephants from north central and east Africa were combined with data from Eritrean
199	elephants, and parameters of the STRUCTURE software were modified to allow for
200	"learning samples." Default parameters were used for migrant priors, allele frequencies
201	were only updated from north central and eastern savanna elephant populations, and an
202	admixture model with correlated allele frequencies and K=2 clusters was assumed.
203	
204	Results
205	A total of 33 elephant dung samples were collected in the Gash-Barka zone of
206	Eritrea. DNA extraction was attempted at least twice on all samples. The DNA proved to
207	be of low quality, since for 10 samples amplification was never successful for any locus.
208	Sequences of mtDNA were obtained for 21 samples and short nuclear fragments were
209	sequenced for 9 samples. However, only 3 individuals successfully amplified for at least
210	seven of the STR loci. Results were confirmed by repeated genotyping or sequencing.
211	
212	Mitochondrial Haplotypes

213	We successfully sequenced mtDNA ND5 in 20 samples. We identified a single
214	ND5 haplotype (GenBank accession number KC608166) for all; an NCBI BLAST search
215	revealed that this haplotype occurred in savanna elephants throughout eastern and
216	southern Africa (Ishida, et al., 2013; Roca, et al., 2005). Among 15 Eritrean elephant
217	samples that were successfully amplified and sequenced for HVR1, three unique
218	haplotypes were detected. These haplotypes were distinguished by only 2 polymorphic
219	nucleotide sites, so that the Eritrean elephant HVR1 haplotypes differed by 1 nucleotide
220	character state each (Figure 2). Thus at HVR1 the Eritrean elephants had low nucleotide
221	diversity ($\pi = 0.0015$; S.D. +/- 0.0016), and low haplotype diversity ($h = 0.4476$; S.D. +/-
222	0.1345). The three unique HVR1 Eritrean haplotypes were aligned with those previously
223	published for African elephants, and used to generate a median joining network (Figure
224	2A). Eight mtDNA groups had previously been identified by Ishida and colleagues
225	(Ishida, et al., 2013); the 3 Eritrean haplotypes were all within the "savanna wide" group
226	(Figure 2). One haplotype (found in 3 Eritrean samples) was identical to a previously
227	reported haplotype (Figure 2; GenBank accession number AY741325) (Nyakaana,
228	Arctander and Siegismund, 2002), which occurs in elephants from across Eastern and
229	Southern Africa (Debruyne, 2005; Eggert, Rasner and Woodruff, 2002; Johnson, et al.,
230	2007; Nyakaana, et al., 2002). The remaining 2 haplotypes (found in 1 and 11 samples)
231	were novel and confined to Eritrean elephants; they did not match sequences reported by
232	any previous study (Figure 2).
222	

233

234 Nuclear SNPs

235	Three X-linked nuclear genes (BGN, PHK, PLP) have nucleotide sites with fixed
236	character states that distinguish forest from savanna elephants (Roca, et al., 2005).
237	Primers for PCR amplification of very short fragments containing one or more of these
238	diagnostic sites have previously been developed for use with degraded DNA (Ishida, et
239	al., 2011a). Using these primers, we obtained at least one of the genic sequences for 9 of
240	the Eritrean samples (Table 1), generating a total of 21 unlinked sequences with sites that
241	distinguish forest from savanna elephants. At every one of these segments, savanna
242	elephant-specific nucleotide character states were present (Table 1); sequences with sites
243	that matched a character state typical of forest elephants were never found (Table 1).
244	Fisher's exact tests comparing these sites established that there were no significant
245	differences (p \approx 1.00) in the proportions of character states between Eritrean elephants
246	and savanna elephants (Ishida, et al., 2011a) (Table S2). By contrast, a Fisher's exact test
247	found highly significant differences ($p < 10^{-4}$) between the character states found in
248	Eritrean elephants and those in previously examined forest elephants (Ishida, et al.,
249	2011a).

250

251 Microsatellites

For microsatellites, only 3 elephants from Eritrea were successfully genotyped: 2 at 8 loci, and 1 at 7 loci. The low success rate may be attributable to degraded DNA, perhaps due to field or storage conditions. Allele scores were confirmed by repeated PCR and genotyping (at least 3 replicates), no allelic dropouts were detected. Within Eritrea, 5 of the loci were polymorphic and three were monomorphic, with an average number of alleles per locus of 1.46. Observed and expected heterozygosity were 0.36 and 0.29,

258	respectively; F _{IS} was -0.37 and all polymorphic loci were in Hardy-Weinberg
259	equilibrium. For these same loci, among savanna elephants from across the African
260	continent genotyped by a previous study (Ishida, et al., 2011b), the average number of
261	alleles per locus had been 9.88, while observed and expected heterozygosity had been
262	0.57 and 0.58 respectively. To account for the small sample size from Eritrea, 3
263	individuals from each non-Eritrean African savanna elephant population were randomly
264	chosen for analysis. In this analysis, elephants from the rest of Africa were still more
265	diverse than Eritrean elephants: the average number of alleles per locus per population
266	(for sample size n=3) was 1.97 (standard deviation of 0.21) while observed and expected
267	heterozygosity were 0.54 and 0.59, respectively.
268	Bayesian clustering analysis was performed using STRUCTURE (Pritchard, et
269	al., 2000) for two data sets that combined the Eritrean individuals with genotypes from a
270	larger group of elephants that had been previously reported (Ishida, et al., 2011b). The
271	analysis included 555 forest and savanna elephants from outside Eritrea. This supported
272	splitting Africa's elephants into two clusters ($K = 2$; Figure 3A, Figure S2 and Table S3),
273	one corresponding to African forest elephants, the other to African savanna elephants
274	(Ishida, et al., 2011b). Partitioning of the 3 Eritrean elephants identified them as savanna
275	elephants (Figure 3B). The overall proportion of the Eritrean elephants assigned to the
276	forest elephant partition was 0.08. This partitioning appeared to reflect local differences
277	in savanna elephant allele frequencies, rather than admixture from forest elephants. We
278	examined the data closely, finding three alleles present in Eritrea that were more common
279	in forest than savanna elephants (one allele at each of the loci LAF37, LaT06 and
280	EMX4). These alleles occurred at high frequencies or were fixed in Eritrean elephants.

Even so, these three alleles were also present in other savanna elephants, and no allele at any locus in Eritrean elephants fell outside the size range expected of savanna elephants. No allele in Eritrea had a size that was typical of only forest and not savanna elephants, in cases where the allelic size ranges vary between the species (Ishida, *et al.*, 2011b). With the caveat that DNA from only three individuals amplified, the close examination of STR allele sizes in Eritrea failed to find evidence for this population having any alleles that would be indicative of admixture from forest elephants.

288 A second STRUCTURE analysis included the three Eritrean elephants along with 289 previously published genotypes of only savanna elephants from north central Africa 290 (Cameroon) and from east Africa, in order to examine whether Eritrean elephants 291 genetically had a closer affinity to elephants from one region or the other. The parameters 292 of the STRUCTURE software were modified to allow for "learning samples" in which 293 north central and eastern savanna elephants were *a priori* assigned to their known region 294 of origin. The Eritrean elephants were not defined *a priori* as belonging to a population or 295 region. Despite this modification, partitioning between elephants in the two regions was 296 not complete, presumably due to limited differentiation between north central and eastern 297 savanna elephants. Different patterns between the north central and the eastern savanna 298 elephants were evident (Figure 3C). The patterns observed among Eritrean elephants 299 more closely resembled those of eastern than those of north-central savanna elephants 300 (Figure 3C). This suggests that Eritrean elephants have a greater nuclear genetic affinity 301 with East African than with North-Central African savanna elephants, consistent with the 302 finding that some Eritrean elephants share control region haplotypes with populations in

- 303 Eastern Africa, but are not known to share mtDNA haplotypes with Cameroon elephants304 (Figure 2).
- 305

306 Discussion

307	Some scholars have speculated that war elephants used in the 3 rd century BCE
308	that had been captured in Eritrea were forest rather than savanna elephants (Gowers,
309	1948). This was based on a written account of the battle of Raphia in 217 BCE, fought
310	between the armies of Ptolemy IV and Antiochus III during the Syrian Wars, and in
311	which African and Asian elephants met in combat. The Asian elephants used by
312	Antiochus are described as superior in size and strength over Ptolemy's African elephants
313	(Polybius, 1923). Since African savanna elephants are larger than Asian elephants, some
314	writers were led to conclude that the elephants used by Ptolemy could have been African
315	forest elephants (Gowers, 1948), which are smaller and have a more compact build than
316	savanna elephants (Grubb, et al., 2000).
317	Sequencing of diagnostic single nucleotide polymorphisms found only savanna
318	elephant and not forest elephant nuclear genotypes among the elephants of Eritrea (Figure
319	3, Table 1). Also, in Eritrea we detected only S clade mitochondrial DNA, which is
320	carried only by savanna elephants (Ishida, et al., 2011b). The mtDNA results may be
321	especially telling, because savanna elephants in eastern, southern, and north-central
322	Africa often carry F clade mitochondrial haplotypes that are geographically persistent and
323	may record the ancient presence of forest elephants in a locality (Roca et al., 2005). The
324	forest elephant mtDNA may be geographically persistent since female African elephants
325	are non-dispersing (Ishida, et al., 2011b). Although our results cannot completely rule out

326	the possibility that forest elephants may have existed somewhere in Eritrea in the past,
327	our data provide no support for this speculation. Eritrean elephants comprise a savanna
328	elephant population in which even the forest-derived F clade mtDNA carried by many
329	other savanna elephant populations was not detected. While not consistent with previous
330	speculation about the taxonomic affinity of Eritrean war elephants, our results are
331	consistent with the view that two and only two species of elephant occur in Africa, and
332	that currently hybrids between them are confined to a relatively narrow contact zone
333	between forest and savanna habitats (Ishida, et al., 2011b). Likewise, our results should
334	dispense with rumors that Asian elephants brought to Eritrea in 1868 had admixed with
335	African elephants in the region (Hagos, et al., 2003; Shoshani, et al., 2004).
336	Both nuclear and mitochondrial data support a closer relationship of Eritrean
337	elephants to savanna elephants in East Africa than to savanna elephants of the north-
338	central Sudanian/Sahelian region (Figures 2, 3). Of three HVR1 mitochondrial DNA
339	haplotypes carried by elephants in Eritrea, one is widespread, occurring throughout
340	eastern and southern Africa. The remaining 2 haplotypes are restricted to Eritrea, but
341	differ by a single nucleotide from haplotypes found in eastern but not north-central Africa
342	(Figure 2). The single ND5 haplotype present in Eritrea has also been detected across
343	eastern and southern Africa but not north central Africa (Ishida, et al., 2013; Roca, et al.,
344	2005). Although nuclear microsatellite genotypes were only successful for three Eritrean
345	elephants, each of these had a closer genetic affinity to eastern savanna elephants than to
346	the elephants of Cameroon (Figure 3).
347	Mitochondrial haplotype and nucleotide diversity were both low compared to

348 other savanna elephant populations. For elephants across Africa, average HVR1

349	haplotype diversity has been reported as 0.985 (Johnson, et al., 2007) or 0.85 (Nyakaana,
350	et al., 2002), about twice the 0.45 of Eritrea. Mitochondrial nucleotide diversity has been
351	reported as 0.030 (Johnson, et al., 2007) or 0.02 (Nyakaana, et al., 2002), also about
352	twice the 0.0015 observed in Eritrea. Variation among haplotypes in Eritrea was low, as
353	the three unique HVR1 haplotypes were defined by two nucleotide variable sites, and
354	only a single ND5 haplotype was detected. Nuclear diversity was also very low, a
355	previous study reported observed heterozygosity among all African elephant for the same
356	STR loci as 0.50 (Ishida, et al., 2011b), higher than the 0.36 observed in Eritrea.
357	The population of elephants in Eritrea is small; human-wildlife conflicts and
358	habitat loss are major concerns. Currently elephant migration into Ethiopia occurs only
359	during the wet season (Yacob, et al., 2004). This emphasizes the importance of the
360	habitat in Eritrea for sustaining this population. An increase in suitable and protected
361	habitat may be helpful to the long-term survival of Eritrean elephants. The Agriculture
362	Ministry of Eritrea is committed to preservation of the elephants while minimizing
363	human-elephant conflict, and recently reported that the numbers and range of elephants
364	appear to be increasing (Anonymous, 2013). Since the elephant population of Eritrea is
365	small and isolated, it may in the future require genetic management. In the absence of
366	habitat corridors that enable gene flow, genetic management or restoration may
367	eventually become necessary, in which case our results suggest that the Eritrean
368	population would best be augmented using individuals from eastern Africa.
369	

370 Acknowledgments

371	We thank Sandra L. Shoshani for permission to include the late Jeheskel Shoshani
372	as co-author. This study is part 5 of a series on the elephants of Gash-Barka, Eritrea. We
373	thank Jason Koontz for technical assistance. For samples, we thank the Ministry of
374	Agriculture, Government of Eritrea, in Asmara, Barentu and Haicota; the Elephant
375	Research Foundation; and the Laboratory of Genomic Diversity. For funding, we thank
376	the US Fish and Wildlife Service African Elephant Conservation Fund for Grant AFE-
377	0778-F12AP01143.

379 Literature Cited

- 380
- 381 ANONYMOUS. 2013. Laelai-Gash sub-zone registering significant accomplishment
- regarding forestry and wildlife [Internet]; [cited 2013 September 1]. Available from:
- 383 URL http://www.eritrea-chat.com/laelai-gash-sub-zone-registering-significant-
- 384 accomplishment-regarding-forestry-and-wildlife/.
- 385 ARCHIE EA, MOSS CJ, ALBERTS SC. 2003 Characterization of tetranucleotide
- 386 microsatellite loci in the African savannah elephant (Loxodonta africana africana).
- 387 Molecular Ecology Notes. 3(2):244-246.
- 388 BAKER CS. 2013 Journal of Heredity Adopts Joint Data Archiving Policy. Journal of
- 389 Heredity. 104(1):1-1.
- 390 BANDELT HJ, FORSTER P, ROHL A. 1999 Median-joining networks for inferring
- intraspecific phylogenies. Molecular Biology and Evolution. 16(1):37-48.
- 392 BARNES RFW, CRAIG GC, DUBLIN HT, OVERTON G, SIMONS W, THOULESS
- 393 CR. 1999 African elephant database 1998. Occasional Papers of the IUCN Species
- 394 Survival Commission. 22:i-vi, 1-249.
- 395 BLANC JJ, BARNES RFW, CRAIG GC, DUBLIN HT, THOULESS CR, DOUGLAS-
- 396 HAMILTON I, HART JA. 2007 African elephant status report 2007. An update from the
- 397 African elephant database. Occasional Papers of the IUCN Species Survival Commission.
- 398 33:i-vi, 1-275.
- 399 BOUTIN-GANACHE I, RAPOSO M, RAYMOND M, DESCHEPPER CF. 2001 M13-
- 400 tailed primers improve the readability and usability of microsatellite analyses performed
- 401 with two different allele-sizing methods. Biotechniques. 31(1):24-26, 28.

- 402 BRANDT AL, ISHIDA Y, GEORGIADIS NJ, ROCA AL. 2012 Forest elephant
- 403 mitochondrial genomes reveal that elephantid diversification in Africa tracked climate
- 404 transitions. Molecular Ecology. 21(5):1175-1189.
- 405 DEBRUYNE R. 2005 A case study of apparent conflict between molecular phylogenies:
- 406 the interrelationships of African elephants. Cladistics. 21:31-50.
- 407 EARL D, VONHOLDT B. 2012 STRUCTURE HARVESTER: a website and program
- 408 for visualizing STRUCTURE output and implementing the Evanno method.
- 409 Conservation Genetics Resources. 4(2):359-361.
- 410 EGGERT LS, RASNER CA, WOODRUFF DS. 2002 The evolution and phylogeography
- 411 of the African elephant inferred from mitochondrial DNA sequence and nuclear
- 412 microsatellite markers. Proc R Soc Lond B Biol Sci. 269(1504):1993-2006.
- 413 EVANNO G, REGNAUT S, GOUDET J. 2005 Detecting the number of clusters of
- 414 individuals using the software STRUCTURE: a simulation study. Mol Ecol. 14(8):2611-
- 415 2620.
- 416 EXCOFFIER L, LISCHER HEL. 2010 Arlequin suite ver 3.5: a new series of programs
- 417 to perform population genetics analyses under Linux and Windows. Molecular Ecology
- 418 Resources. 10(3):564-567.
- 419 FERNANDO PJ, VIDYA TNC, MELNICK DJ. 2001 Isolation and characterization of
- 420 tri- and tetranucleotide microsatellite loci in the Asian elephant, *Elephas maximus*.
- 421 Molecular Ecology Notes. 1(4):232-233.
- 422 GOWERS W. 1948 African Elephants and Ancient Authors. African Affairs London.
- 423 188(47):pp. 173-180.

- 424 GRUBB P, GROVES CP, DUDLEY JP, SHOSHANI J. 2000 Living African elephants
- 425 belong to two species: Loxodonta africana (Blumenbach, 1797) and Loxodonta cyclotis
- 426 (Matschie, 1900). Elephant. 2(4):1-4.
- 427 HAGOS Y, YACOB Y, GHEBREHIWET M, SHOSHANI J. 2003 The elephants
- 428 (Loxodonta africana) of Gash-Barka, Eritrea: Part. 1. historical perspective and related
- 429 findings. Pachyderm. 34:13-23.
- 430 HANKE M, WINK M. 1994 Direct DNA sequencing of PCR-amplified vector inserts
- 431 following enzymatic degradation of primer and dNTPs. Biotechniques. 17(5):858-860.
- 432 HUBISZ MJ, FALUSH D, STEPHENS M, PRITCHARD JK. 2009 Inferring weak
- 433 population structure with the assistance of sample group information. Molecular Ecology
- 434 Resources. 9(5):1322-1332.
- 435 ISHIDA Y, DEMEKE Y, DE GROOT PJV, GEORGIADIS NJ, LEGGETT KEA, FOX
- 436 VE, ROCA AL. 2011a Distinguishing forest and savanna African elephants using short
- 437 nuclear DNA sequences. Journal of Heredity. 102(5):610-616.
- 438 ISHIDA Y, GEORGIADIS NJ, HONDO T, ROCA AL. 2013 Triangulating the
- 439 provenance of African elephants using mitochondrial DNA. Evolutionary Applications.440 6(2):253-265.
- 441 ISHIDA Y, OLEKSYK TK, GEORGIADIS NJ, DAVID VA, ZHAO K, STEPHENS
- 442 RM, KOLOKOTRONIS SO, ROCA AL. 2011b Reconciling apparent conflicts between
- 443 mitochondrial and nuclear phylogenies in African elephants. Plos One. 6(6):16.
- 444 JOHNSON MB, CLIFFORD SL, GOOSSENS B, NYAKAANA S, CURRAN B,
- 445 WHITE LJ, WICKINGS JE, BRUFORD MW. 2007 Complex phylogeographic history

- 446 of central African forest elephants and its implications for taxonomy. BMC Evol Biol.
- 447 7(1):244.
- 448 LARGEN MJ, YALDEN DW. 1987 The decline of elephant and black rhinoceros in
- 449 Ethiopia. Oryx. 21(2):103-106.
- 450 LARKIN MA, BLACKSHIELDS G, BROWN NP, CHENNA R, MCGETTIGAN PA,
- 451 MCWILLIAM H, VALENTIN F, WALLACE IM, WILM A, LOPEZ R, THOMPSON
- 452 JD, GIBSON TJ, HIGGINS DG. 2007 Clustal W and clustal X version 2.0.
- 453 Bioinformatics. 23:2947-2948.
- 454 LEUENBERGER H. 1955 Aethiopien, Kaiserreich seit Salomon. Stauffacher-Verlag,
- 455 Zurich.
- 456 LITOROH MW. 1997 Aerial census of the Gash-Setit elephant population of Eritrea and
- 457 Ethiopia. Pachyderm. 23:12-18.
- 458 MCWILLIAM H, VALENTIN F, GOUJON M, LI WZ, NARAYANASAMY M,
- 459 MARTIN J, MIYAR T, LOPEZ R. 2009 Web services at the European Bioinformatics
- 460 Institute-2009. Nucleic Acids Research. 37:W6-W10.
- 461 MENOTTI-RAYMOND MA, DAVID VA, WACHTER LL, BUTLER JM, O'BRIEN SJ.
- 462 2005 An STR forensic typing system for genetic individualization of domestic cat (Felis
- 463 *catus*) samples. J Forensic Sci. 50(5):1061-1070.
- 464 MORIN PA, MANASTER C, MESNICK SL, HOLLAND R. 2009 Normalization and
- 465 binning of historical and multi-source microsatellite data: overcoming the problems of
- 466 allele size shift with allelogram. Molecular Ecology Resources. 9(6):1451-1455.

- 467 NYAKAANA S, ARCTANDER P, SIEGISMUND HR. 2002 Population structure of the
- 468 African savannah elephant inferred from mitochondrial control region sequences and
- 469 nuclear microsatellite loci. Heredity. 89(2):90-98.
- 470 POLYBIUS. 1923 The Histories: Volume III: Books 5-8. Harvard University Press.
- 471 PRITCHARD JK, STEPHENS M, DONNELLY P. 2000 Inference of population
- 472 structure using multilocus genotype data. Genetics. 155(2):945-959.
- 473 REED DH, FRANKHAM R. 2003 Correlation between fitness and genetic diversity.
- 474 Conservation Biology. 17(1):230-237.
- 475 ROCA AL, GEORGIADIS N, O'BRIEN SJ. 2005 Cytonuclear genomic dissociation in
- 476 African elephant species. Nat Genet. 37(1):96-100.
- 477 ROCA AL, GEORGIADIS N, O'BRIEN SJ. 2007 Cyto-nuclear genomic dissociation and
- 478 the African elephant species question. Quaternary International. 169-170:4-16.
- 479 SHOSHANI J, HAGOS Y, YACOB Y. 2000 Observations on elephant habitat and
- 480 conservation of elephants in Eritrea. Elephant. 2(4):14-19.
- 481 SHOSHANI J, HAGOS Y, YACOB Y, GHEBREHIWET M, KEBROM E. 2004
- 482 Elephants (Loxodonta africana) of Zoba Gash Barka, Eritrea: Part 2. Numbers and
- 483 distribution, ecology and behaviour and fauna and flora in their ecosystem. Pachyderm.
- 484 36:52-68.
- 485 WELDEYOHANNES M, SIRATU TG. 2010 The State of Eritrea. Ministry of Land,
- 486 Water and Environment. Department of Environment. The 4th National report to the
- 487 convention on
- 488 *biological diversity*. Asmara, Eritrea.

- 489 WITTEMYER G, DABALLEN D, DOUGLAS-HAMILTON I. 2013 Comparative
- 490 Demography of an At-Risk African Elephant Population. Plos One. 8(1).
- 491 WOOLLEY L-A, MACKEY RL, PAGE BR, SLOTOW R. 2008 Modelling the effect of
- 492 age-specific mortality on elephant *Loxodonta africana* populations: can natural mortality
- 493 provide regulation? Oryx. 42(1):49-57.
- 494 YACOB Y, SHOSHANI J, HAGOS Y, KEBROM E. 2004 The elephants (Loxodonta
- 495 *africana*) of Zoba Gash Barka, Eritrea: part 3. Ecological and other data from tusks, teeth
- 496 and carcasses. Pachyderm. 37:45-58.
- 497 YALDEN DW, LARGEN MJ, KOCK D. 1986 Catalog of the mammals of Ethiopia .6.
- 498 Perissodactyla, Proboscidea, Hyracoidea, Lagomorpha, Tubulidentata, Sirenia and
- 499 Cetacea. Monitore Zoologico Italiano-Italian Journal of Zoology. 21:31-103.
- 500

502 **Tables and Figures**

503

Figure 1. Map of Eritrea showing current African elephant distribution. The shaded 504 505 region pointed to by the arrow indicates the current range of elephants in Eritrea (Litoroh, 506 1997; Shoshani, et al., 2004). This map is from the IUCN African Elephant Specialist 507 Group – African Elephant Status Report (Blanc, et al., 2007), which permits reproduction 508 for educational purposes. 509 510 Figure 2. Relationships of Eritrean *HVR1* haplotypes to those previously reported 511 for African elephants. A median joining network was constructed from 314 bp 512 mitochondrial hypervariable region 1 (HVR1) sequences using elephants from across 513 Africa (Ishida, et al., 2013). (A) Eight subclades reported by Ishida et al. (2013) have 514 been color-coded. Haplogroups within the box have only been detected among savanna 515 elephants. (B) The northern-savanna, savanna-wide and southeast-savanna subclades are 516 shown, including the haplotypes carried by Eritrean elephants, numbered 1, 2 and 3. 517 Sizes of the circles representing haplotypes present in Eritrea are proportional to the 518 number of individuals from Eritrea carrying that haplotype. Haplotypes numbered 1 and 519 2 (Genbank accession numbers KC608163 and KC608165, respectively) were detected 520 only in Eritrea, number 3 was found in Eritrea and elsewhere, while numbers 4-9 are 521 haplotypes that differ by a single nucleotide from those present in Eritrea. Haplotypes 3 522 through 9 have been sequenced by previous studies (GenBank accession numbers 523 AY741325, AY742801, AF106236, AF106226, AF106239, AY741074, and AF106235 524 (Debruyne, 2005; Nyakaana, et al., 2002), respectively).

526	Figure 3. Species assignment and inferred population ancestry among African
527	elephants. Multi-locus genotype data were used to estimate population subdivision using
528	the program STRUCTURE, which applies a model-based clustering algorithm to identify
529	subgroups that have distinct allele frequencies (Pritchard, et al., 2000). (A) Two
530	partitions that distinguish African forest elephants (white partition) from African savanna
531	elephants (shaded partition) were successfully reconstructed (Ishida, et al., 2011b). Three
532	Eritrean elephants included in the dataset were assigned largely but not completely to the
533	savanna elephant partition. (B) An enlargement of STRUCTURE partitioning for the
534	Eritrean elephant individuals. Average assignment of Eritrean elephants to the partition
535	corresponding to forest elephants was ca. 0.08 likely due to different frequencies in
536	savanna elephant alleles for Eritrea, rather than admixture by forest elephants. (C)
537	Genetic affinity of Eritrean elephants was determined by modifying STRUCTURE
538	parameters to allow for "learning samples" where individuals can be assigned to pre-
539	defined populations. Savanna elephant from Cameroon (BE and WA) were defined as
540	belonging to a north central population while savanna elephants from Kenya and
541	Tanzania (KE, MK, AB, AM, SE, NG, TA) were defined as belonging to an eastern
542	population. The two partitions (lightly and darkly shaded) did not completely conform to
543	geographic regions (Cameroon and East Africa). The Eritrean elephants displayed
544	patterns more closely resembling those of East African than of Cameroon elephants,
545	indicating genetic similarity to the former. Locality abbreviations are as follows: SL-
546	Sierra Leone; LO-Lope, in Gabon; OD-Odzala, in Republic of the Congo; DS-Dzanga
547	Sangha, in Central African Republic; BF-Bili, GR-Garamba, in the Democratic Republic

- 548 of the Congo; BE-Benoue, WA-Waza in Cameroon; ER-Eritrea; KE-Central
- 549 Kenya/Laikipia, MK-Mount Kenya, AB-Aberdares, AM-Amboseli, in Kenya; SE-
- 550 Serengeti, NG-Ngorongoro, TA-Tarangire, in Tanzania; SW-Sengwa, ZZ-Zambezi, HW-
- 551 Hwange, in Zimbabwe; CH-Chobe, SA-Savuti, MA-Mashatu, in Botswana; KR-Kruger,
- 552 in South Africa; NA-Northern Namibia/Etosha.

Table 1. Spe	cies-di	agnos	tic nuc	cleotid	e sites	brest	ent in t	hree r	nuclea	r gene	exe se	mined	l in Eritr	ean el	ephar	nts					
	BGN												PHKA:	0				ЫР			
	=	287	304	308	472	485	499	508	513	515	516	570	۳ ۲	39	71	871	872	= Z	319	345	361
E. maximus	12	თ	ပ	ი	A	ပ	⊢	ი	A	Q∆	∇	⊢	12	ပ	ი	ပ	ი	12	ი	ပ	ი
L. cyclotis	116	ВA	ပ	С Ю	AG	ပ	∇	⊢	ი	\bigtriangledown	∇	⊢	71	ပ	∢	ပ	ВA	118	GА	⊢	ტ
L. africana	806	ტ	⊢	Ⴠ	∢	⊢	ΔT	G	വ	₽d	₽Q	ပ	721	⊢	۷	⊢	ი	661	ი	⊢	∢
ER0001		თ	⊢	თ	A	⊢	⊢	G	ი	U	ი	ပ		:	:	:	:		:	:	:
ER0002		ტ	⊢	ი	∢	⊢	⊢	G	വ	ഗ	ი	ပ		⊢	∢	⊢	ი		ი	⊢	∢
ER0003		ი	⊢	ი	A	⊢	⊢	G	വ	വ	ი	ပ		⊢	۷	⊢	ი		ი	⊢	۷
ER0004		ტ	⊢	ი	;	:	:	:	:	:	:	:		⊢	∢	⊢	ი		ი	⊢	∢
ER0007		ტ	⊢	ຒ	∢	⊢	⊢	G	വ	പ	ຒ	ပ		⊢	۷	⊢	ຒ		ຒ	⊢	۷
ER0008		ຒ	⊢	ຒ	:	:	:	:	:	:	;	;		⊢	∢	⊢	ს		ຒ	⊢	۷
ER0022		ტ	⊢	ຒ	∢	⊢	⊢	G	വ	പ	ຒ	ပ		⊢	۷	⊢	ຒ		ຒ	⊢	۷
ER0024		ł	:	:	:	:	:	:	:	:	;	;		⊢	∢	1	:		:	;	;
ER0025		1	:	:	:	:	:	:	1	:	:	:		⊢	A	1	:		:	:	:
Species diac 2011a) are ir	inostic idicate	nuclec d in b	otide s oldfact	sites ir e; at v	ר three ariable	e gene: e sites	s that both	distinç bases	guish ; are sl	savan hown.	na (L N is t	<i>afric</i> the nu	ana) fro mber o	m fore f chror	ist (L. nosor	cyclo nes se	<i>tis</i>) ele equenc	phants ced by	(Ishid previo	a et al us	
also shown f	or indiv	ron es ron	Eritre	u uu uu an elej	se spe phants	cies c	elepi BER).	Nucle	stilua	et al. site p	20116	a, Lei e Ns are	etal.∠u from R	losa et	uca e tal. (2	ו מו. בי 2005).	Dash	indicate), Iesu es that	ווג מום	
sequence wa	as not	genera	ated fc	or a sa	ample:	Δ indi	cates	a dele	știon.												

nar	
epl	
le (
ear	
ritre	
Ē	
dir	
ne	
ami	
exa	
es	
len	
ar ç	
sei	
nuc	
ee	
thre	
i Li	
ent	
es	
s pr	
ites	
e Si	
tide	
leo	
JUC	
ic 1	
ost	
agn	
-dia	
ies.	
ec.	
Sp	
-	
(1)	

This is an Accepted Manuscript of an article published by Oxford University Press in the Journal of Heredity, available online: <u>https://doi.org/10.1093/jhered/est078</u>.

The elephants of Gash-Barka, Eritrea: Nuclear and mitochondrial DNA genetic patterns

Supplementary Material

Adam L. Brandt¹, Yohannes Hagos², Yohannes Yacob², Victor David³, Nicholas J. Georgiadis⁴, Jeheskel Shoshani⁵⁺, and Alfred L. Roca^{1,6*}

¹Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
²Wildlife Conservation Division, Ministry of Agriculture, Asmara, Eritrea
³Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
⁴Puget Sound Institute, University of Washington, 326 East D St., Tacoma, WA 98421 USA
⁵The Elephant Research Foundation, Bloomfield Hills, MI 48304 USA
⁶Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
⁺Deceased

*Corresponding Author

Figure S1. Map of Gash-Barka, Eritrea, showing sampling locations, which were approximated by the name of the nearest town or village (dots) (Shoshani, *et al.*, 2004). Further details on sample collection can be found in Table S1.

Figure S2. Graphical plots for examining the number of genetic subdivisions (K) in African elephants (genus *Loxodonta*). Results shown are based on the *ad hoc* method of Evanno (Evanno, Regnaut and Goudet, 2005) as implemented in Structure Harvester (Earl and vonHoldt, 2012). Combinations of assumptions of individual genetic ancestry and genetic relatedness among populations were tested: A) admixture with correlated allele frequencies, B) admixture with independent allele frequencies, C) no admixture with correlated allele frequencies and D) no admixture with independent allele frequencies. For the approach assuming no admixture and independent allele frequencies, the standard deviation of Ln(K) was less than 10^{-7} and therefore K could not be estimated. For all other approaches, the Evanno method supported K = 2 clusters.

A) Admixture – Correlated L(K) (mean +- SD 3500 -14000 Mean of est. Ln prob of data 3000 -14500 2500 -15000 þ Delta K 2000 -15500 1500 -16000 1000 -16500 500 -17000 0 -17500 20 25 ō Κ **B)** Admixture – Independent L(K) (mean +- SD 25000 -14500 Mean of est. Ln prob of data 20000 -15000 -15500 15000 Delta K -16000 10000 -16500 5000 -17000 o -17500 25 x ō Κ

Delta K = mean (|L"(K)|) / sd (L(K))

Sample ID	Date Collected	Nearest Town / Village			
ER0001	2-Feb-02	Tekezu			
ER0002	24-Dec-01	Banegar			
ER0003	24-Dec-01	Banegar			
ER0004	21-Apr-01	Debero			
ER0005	21-Apr-01	Antore Laelay			
ER0006	23-Jun-03	Tekezu			
ER0007	22-Nov-02	Awtate River			
ER0008	27-Dec-03	Haricota			
ER0009	Unknown	Unknown			
ER0010	2-Feb-03	Kurkahebaye			
ER0011	9-May-03	Sefera Sona			
ER0012	27-Jan-03	Adi Merig			
ER0017	10-Feb-03	Antore Tahtay			
ER0022	7-May-03	Musse			
ER0024	12-Apr-03	Sefera Sona			
ER0025	8-Nov-02	Tekezu			
ER0026	22-Nov-02	Awtate River			
ER0027	14-Mar-02	Debero			
ER0029	13-Jun-02	Cikaba			
ER0030	26-May-03	Unknown			
ER0033	Uknown	Unknown			
Comunication of					

Table S1. Sampling data for Eritrean elephants

Sample locations are shown in Figure S1.

Table S2. Fisher's exact tests comparing Eritrean sequences to those of forest or savanna elephants

	BGN		PHKA2		PLP	
	<i>L. cyclotis</i> - typical sequences	<i>L. africana</i> - typical sequences	<i>L. cyclotis</i> - typical sequences	<i>L. africana</i> - typical sequences	<i>L. cyclotis</i> - typical sequences	L. africana - typical sequences
Eritrean elephants	0	7	0	8	0	6
Forest elephants	116	0	71	0	118	0
	P=	= 0.0000	P=	0.0000	P=	0.0000
Eritrean elephants	0	7	0	8	0	6
Savanna elephants	0	806	0	721	2	661
	P=	= 1.0000	P=	= 1.0000	P=	0.9821

Chromosome numbers are listed for each of three unlinked nuclear genes. Rows list the number of elephant chromosomes examined by the current study for elephant individuals from Eritrea vs. the number of chromosomes previously examined for either forest (*Loxodonta cyclotis*) or savanna (*L. africana*) elephants (Ishida et al. 2011a, Lei et al. 2009, Roca et al. 2001 and 2005). Columns show the number of chromosomal sequences that matched those previously shown to be typical for *L. cyclotis* or *L. africana*. Sex of the Eritrean elephants was unknown; therefore, nuclear amplicons were conservatively estimated as representative of 1 rather than 2 X-chromosomes. For the *PLP* gene, *Loxodonta africana* includes 2 putative hybrid elephants from Cameroon (Roca et al. 2005).

Table S3: Calculations to examine the number of elephant population subdivisions.

K	Reps	Mean LnP(K)	Stdev LnP(K)	Ln'(K)	Ln''(K)	Delta K
1	3	-17251.6	0.458258	—	_	—
2	3	-14511.03333	0.763763	2740.566667	2546.9	3334.674868
3	3	-14317.36667	1.357694	193.666667	91.133333	67.123612
4	3	-14214.83333	1.154701	102.533333	43.5	37.672105
5	3	-14155.8	2.306513	59.033333	22.766667	9.870602
6	3	-14119.53333	2.83784	36.266667	35	12.333326
7	3	-14118.26667	6.017752	1.266667	19.4	3.223795
8	3	-14136.4	10.049378	-18.133333	8.766667	0.872359
9	3	-14145.76667	5.53022	-9.366667	0.966667	0.174797
10	3	-14154.16667	9.303942	-8.4	24.833333	2.66912
11	3	-14187.4	21.589118	-33.233333	39.3	1.820362
12	3	-14259.93333	16.519786	-72.533333	3.7	0.223974
13	3	-14328.76667	1.550269	-68.833333	5.533333	3.569274
14	3	-14403.13333	16.163642	-74.366667	7.733333	0.47844
15	3	-14469.76667	17.86962	-66.633333	8.4	0.470072
16	3	-14544.8	29.247051	-75.033333	21.666667	0.740815
17	3	-14641.5	57.161963	-96.7	10.533333	0.184272
18	3	-14727.66667	62.716532	-86.166667	137.433333	2.191341
19	3	-14951.26667	15.267067	-223.6	186.466667	12.213654
20	3	-14988.4	30.831153	-37.133333	67.866667	2.201237
21	3	-15093.4	119.902002	-105	95.8	0.798986
22	3	-15294.2	102.302346	-200.8	62.166667	0.607676
23	3	-15557.16667	71.396242	-262.966667	337.933333	4.733209
24	3	-15482.2	67.000224	74.966667		_

Admixture - Correlated

Admixture - Independent

K	Reps	Mean LnP(K)	Stdev LnP(K)	Ln'(K)	Ln''(K)	Delta K
1	3	-17252.4	0.1	_	_	_
2	3	-14598.26667	0.11547	2654.133333	2645.5	22910.70206
3	3	-14589.63333	1.361372	8.633333	83.033333	60.992397
4	3	-14664.03333	1.569501	-74.4	112.8	71.869977
5	3	-14625.63333	1.096966	38.4	84.733333	77.243389
6	3	-14671.96667	14.365352	-46.333333	4.766667	0.331817
7	3	-14713.53333	9.282421	-41.566667	11.633333	1.253265
8	3	-14743.46667	4.62313	-29.933333	2.1	0.454238
9	3	-14775.5	6.657327	-32.033333	5.933333	0.891249
10	3	-14801.6	7.808329	-26.1	11.533333	1.477055
11	3	-14839.23333	8.894005	-37.633333	22.466667	2.526046
12	3	-14854.4	22.440811	-15.166667	20.9	0.931339
13	3	-14890.46667	10.96464	-36.066667	0.5	0.045601
14	3	-14926.03333	2.173323	-35.566667	21.866667	10.061397
15	3	-14939.73333	6.439203	-13.7	24.366667	3.784112
16	3	-14977.8	10.278132	-38.066667	23.266667	2.263706
17	3	-14992.6	16.284041	-14.8	23.333333	1.432896
18	3	-15030.73333	3.286842	-38.133333	20.466667	6.226847
19	3	-15048.4	13.383946	-17.666667	19.5	1.456969
20	3	-15085.56667	3.350124	-37.166667	13	3.880453
21	3	-15109.73333	3.652853	-24.166667	5.466667	1.496547
22	3	-15128.43333	6.296295	-18.7	15.133333	2.40353
23	3	-15162.26667	17.339358	-33.833333	2.633333	0.15187
24	3	-15198.73333	9.469072	-36.466667	_	_

Table S3: Continued.

Noadmixture - Correlated

17	-					
K	Reps	Mean LnP(K)	Stdev LnP(K)	Ln'(K)	Ln''(K)	Delta K
1	3	-17251.76667	0.152753	_	_	_
2	3	-14501.96667	0.305505	2749.8	2544.766667	8329.704197
3	3	-14296.93333	0.208167	205.033333	92.833333	445.956908
4	3	-14184.73333	0.51316	112.2	46	89.640633
5	3	-14118.53333	1.021437	66.2	20.3	19.873964
6	3	-14072.63333	0.416333	45.9	27.1	65.092095
7	3	-14053.83333	3.601851	18.8	14.266667	3.960926
8	3	-14049.3	4.340507	4.533333	0.933333	0.215029
9	3	-14045.7	3.315117	3.6	9.5	2.865661
10	3	-14051.6	3.835362	-5.9	22.833333	5.953371
11	3	-14080.33333	5.346338	-28.733333	26.466667	4.950429
12	3	-14135.53333	8.6031	-55.2	25	2.905929
13	3	-14215.73333	17.146525	-80.2	3.8	0.221619
14	3	-14299.73333	18.914104	-84	36.6	1.935064
15	3	-14420.33333	19.935981	-120.6	47.133333	2.364234
16	3	-14493.8	32.897264	-73.466667	72.766667	2.211937
17	3	-14640.03333	107.837115	-146.233333	65.866667	0.610798
18	3	-14720.4	23.84198	-80.366667	50.8	2.130696
19	3	-14851.56667	74.482638	-131.166667	102.833333	1.380635
20	3	-15085.56667	58.132636	-234	170.233333	2.928361
21	3	-15149.33333	114.366793	-63.766667	238.366667	2.08423
22	3	-15451.46667	161.061365	-302.133333	154.266667	0.957813
23	3	-15599.33333	154.876736	-147.866667	11.333333	0.073176
24	3	-15758.53333	294.328547	-159.2	_	_

The *ad hoc* method of Evanno et al. (2005) was used to examine the number of population subdivisions for elephants across Africa. The method was implemented in Structure Harvester (Earl et al. 2012). Calculations utilized the results from STRUCTURE software based on 1 million Markov chain Monte Carlo generations following a burn-in of 100,000 steps and 3 repetitions. Calculations for "Noadmixture - Independent" could not be performed since the standard deviation of the estimate of Ln Pr(Data) was less than 0.0000001. Highlighted rows indicate the most likely value of K.

Literature Cited

EARL D, VONHOLDT B. 2012 STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources. 4(2):359-361. EVANNO G, REGNAUT S, GOUDET J. 2005 Detecting the number of clusters of

individuals using the software STRUCTURE: a simulation study. Mol Ecol. 14(8):2611-2620.

ISHIDA Y, DEMEKE Y, DE GROOT PJV, GEORGIADIS NJ, LEGGETT KEA, FOX VE, ROCA AL. 2011a Distinguishing forest and savanna African elephants using short nuclear DNA sequences. Journal of Heredity. 102(5):610-616.

LEI R, BRENNEMAN RA, SCHMITT DL, LOUIS EE, JR. 2009 Detection of cytonuclear genomic dissociation in the North American captive African elephant collection. J Hered. 100(6):675-680.

ROCA AL, GEORGIADIS N, O'BRIEN SJ. 2005 Cytonuclear genomic dissociation in African elephant species. Nat Genet. 37(1):96-100.

ROCA AL, GEORGIADIS N, PECON-SLATTERY J, O'BRIEN SJ. 2001 Genetic evidence for two species of elephant in Africa. Science. 293(5534):1473-1477.

SHOSHANI J, HAGOS Y, YACOB Y, GHEBREHIWET M, KEBROM E. 2004 Elephants (*Loxodonta africana*) of Zoba Gash Barka, Eritrea: Part 2. Numbers and distribution, ecology and behaviour and fauna and flora in their ecosystem. Pachyderm. 36:52-68.