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Synthesis of nanomaterials within flames has been demonstrated as a highly scalable and versatile approach for obtaining a variety
of nanoparticles with respect to their chemistry, composition, size, morphology, and dimensionality. Its applicability can be ampli-
fied by exploring new material systems and providing further control over the particle characteristics. This study focused on iron-
incorporated SnO2 nanoparticles generated using an inverse coflow diffusion flame burner that supported a near-stoichiometric
methane-air combustion. A liquid organometallic precursor solution of Sn(CH3)4 and Fe(CO)5 was used to produce 11–
14 nm nanocrystalline particles. Synthesized particles were analyzed using TEM, XRD, and XEDS to characterize for size and
composition. A flame temperature field was obtained to map particle evolution within the flame. A range of conditions and para-
meters were studied to specifically generate targeted particles. The study augments related research towards increasing the pro-
duction potential of combustion synthesis.

1. Introduction

Nanoparticles are becoming increasingly valuable for appli-
cations in a wide range of engineering systems. In addi-
tion to uses in many electrical and catalytic applications,
nanoparticles such as tin dioxide (SnO2) show great potential
as sensing agents in solid-state gas detectors [1, 2]. High
aspect ratio SnO2 particles have been demonstrated to im-
prove sensitivity and selectivity of toxic gas detectors [3, 4].
Performance of these particles is highly dependent on mor-
phology, composition, and size [5–9]. For instance, iron-
doped SnO2 nanoparticles have been shown as strong candi-
dates for potent gas sensing materials with improved selec-
tivity towards methane, butane, and H2S [10, 11]. At the
same time, these nanoparticles are being actively researched
for their diluted magnetic semiconductor (DMS) properties
[12–14]. Current efforts are focused on the research of
effective production methods for such nanomaterials—
production methods that are facile and robust for scaleup.

Various chemical and physical synthesis methods have
been employed to generate composite or iron-doped SnO2

materials, including coprecipitation [10, 14], mechanical

alloying [12], cosputtering [1, 6], sol-gel method [13], and
others [11, 15]. However, the need for vacuum conditions
or solvents is a considerable hurdle for potential scaleup.
Combustions synthesis, on the other hand, offers many ad-
vantages over these methods [16–21]. The process is self-
purifying, continuous, and affords appreciably high produc-
tion rates. Current commercial production rates approach
several million metric tons/year [16, 17, 22]. Additionally,
one-dimensional iron-doped SnO2 structures [23] and thin
films [2] have already been successfully produced using com-
bustion synthesis approaches. These approaches, however,
use chloride-based precursors that can potentially poison
the product materials depending on the application [24, 25]
or require absorption of the hydrochloric acid as a bypro-
duct [23]. Though SnO2 and F2O3 nanoparticles have been
generated from organometallic precursors individually, a
combined combustion synthesis from these precursors has
yet to be investigated. As a result, there is a need to explore
other compatible precursors for synthesis of iron-doped
SnO2 nanoparticles, specifically structures other than com-
monly found composite nanoarchitectures.
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This paper describes a new method to produce iron-in-
corporated SnO2 which uses a combination of organometal-
lic precursors in a one-step solvent-free combustion synthe-
sis technique. A bench-top coflow diffusion flame burner
was designed for combustion synthesis and sampling of
nanoparticles. The facility was configured to deliver a pre-
mixed iron pentacarbonyl (IPC) and tetramethyl tin (TMT)
precursor solution to an inverse diffusion flame. Based on the
particle size, morphology, and chemical composition of the
product powders, a model of particle formation is suggested
that relies on the effects of flame environment on precursor
decomposition and the unique compositional features of the
nanoparticles. Therefore, the current work adds to the vast
library of nanomaterials that are feasible via combustion syn-
thesis.

2. Experimental Procedure

The facility was designed to provide a compact experimental
apparatus with a highly configurable flame environment.
The facility exhibited concentric steel tubes to support a
flame with four chambers corresponding to the flow of fuel,
oxidizer, precursor carrier gas, and the exterior shroud gas.
The combustion-synthesized particles were collected on a
water-cooled bulk sampling plate. Transmission Electron
Microscope (TEM) sampling was performed via pneumatic
piston-cylinder actuator. For these experiments, the nano-
powders were synthesized using a methane-air inverse diffu-
sion flame. Argon was used as a carrier gas to deliver the
liquid-phase precursor solution to the high-temperature re-
action zone.

2.1. Experimental Facility. Figure 1 presents a schematic of
the custom-built facility for combustion synthesis. The inner
diameter of the tube supplying the fuel was 7.6 mm, while
the inner diameter of the precursor delivery tube at the
burner exit was 1.7 mm. Omega FLD Series rotameters
were used to monitor flow rates of the reaction gases.
Methane (CH4, 99.99%, Praxair) flow rate was maintained
at 180 mL/min and argon carrier gas (Ar, 99.998%, GTS-
Welco) flow rate at 50 mL/min. Depending on the precursor
selection, compressed air (99.8%, GTS-Welco) flow rates
ranged from 1800 to 2300 mL/min. Gases were configured
to yield an inverse diffusion flame at the co-flow burner exit.
No shroud gas was used for these experiments. A steel tube
chimney with dimensions 108 mm diameter and 254 mm
height was used to improve collection efficiency of the pro-
ducts. The precursor reservoir with 21 mL capacity and
6.35 mm diameter glass beads was used to deliver vapor-
phase precursors simultaneously to the synthesis region by
bubbling argon through the precursor solution.

The synthesis products were collected in two ways.
TEM samples were collected using a compressed air piston-
cylinder actuator with a mounted 3 mm grid (300 mesh cop-
per grid with carbon film). Typical residence time for the col-
lection in the flame was 2 ms, measured using a high-speed
imaging camera. Bulk samples were thermophoretically col-
lected on microscope glass slides mounted on an aluminum
block that was maintained at a nominal temperature of 22◦C.

TC probe
Synthesis 
region

TEM sampling
actuator

Water-cooled
sampling plate

Precursor 
reservoir

Flow rotameters

Burner top 
view

Gas manifold
detail

Air Air
CH4

Ar

N2
CH4

N2

Figure 1: A custom-built bench-top coflow diffusion burner with
premixed precursor delivery bubbler unit. Piston-cylinder actuator
for TEM sampling and water-cooled bulk sampling plate for
nanopowder collection.

The bulk sampling plate was typically located at 120 mm
above the surface of the burner with a maximum collection
time of 10 mins. The flame region was characterized for aver-
age temperature at multiple locations along the vertical axis
of the burner using S-type thermocouple with a bead diam-
eter of 10 μm. The thermocouple was threaded through an
alumina sheathing for temperature measurements, and the
temperature readings were corrected to account for radia-
tive heat loss.

2.2. Chemistry. Synthesis of nanopowders was carried out by
combusting a solution of liquid-phase iron pentacarbonyl
(IPC, Fe(CO)5, >99.99% trace metals basis, Sigma Aldrich)
and tetramethyl tin (TMT, Sn(CH3)4, 95% purity, Sigma
Aldrich) precursors. Table 1 lists the relevant thermophysical
properties of these chemicals as obtained from the supplier.
Of interest are the boiling points, flash points, and phase
of the precursors. These properties were comparable for the
precursors considering the steep temperature gradients in the
flame which ensured the compatibility of these precursors
for the current premixed delivery system. In the delivery
system, the solution was contained in a bubbler reservoir,
where glass beads were included to facilitate evaporation
of the liquid mixture. Argon gas was bubbled through the
reservoir at room temperature. Low boiling points of the
precursors yielded nearly saturated argon gas flow. An en-
trained precursor solution of 2.5 at % IPC in TMT was
targeted for delivery to the burner exit.
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Table 1: Relevant thermophysical properties of tetramethyl tin
(TMT) and iron pentacarbonyl (IPC) with respect to the combus-
tion synthesis environment.

Property Sn(CH3)4 Fe(CO)5

Melting point −54◦C −20◦C

Boiling point 75◦C 103◦C

Flash point −12◦C −15◦C

Phase Liquid Liquid

Using global reactions for the stoichiometric combustion
of CH4, TMT, and IPC fuels, experiments were conducted
to yield near-stoichiometric combustion of all the fuels (or
precursors). Therefore, the air flow rate was adjusted for
complete oxidation of precursors while keeping the CH4 flow
rate constant.

2.3. Material Characterization. The solid-phase combustion
products were characterized for size, morphology, and chem-
ical composition using a variety of methods. Scanning elec-
tron microscopy (SEM, LEO 1530) was used for bulk mate-
rial morphology, while TEM imaging (Hitachi H-600AB)
was performed for detailed size and morphology analysis.
Particle size distributions were obtained using a semiauto-
mated MATLAB-based approach described in Bakrania et
al. [26] for particle counts exceeding 100. X-ray diffraction
(XRD) analysis on the powders was performed using Scintag
LT-801 with Cu-Kα X-ray source. Average crystallite size
was estimated using Scherrer crystallite size analysis. X-ray
energy dispersive spectroscopy (XEDS) was performed on
samples in conjunction with the SEM imaging, while in-
ductively coupled plasma (ICP) analysis was performed to
study the elemental composition of the products.

3. Results

3.1. Combustion Environment. The co-flow methane-air
inverse diffusion flame at the specified flow rates resulted in a
blue flame approximately 65 mm in height without the pre-
cursor solution present. As the precursor solution was intro-
duced through the central precursor tube, a yellow luminous
flame resulted indicating particle formation (see Figure 2).
To ensure both precursors were delivered to the flame region,
individual precursors (pure TMT and pure IPC) were tested
separately. The pure precursors yielded the distinct luminous
flames to produce respective iron oxide and tin dioxide as
demonstrated by several other studies [21, 22, 26–31]. To
introduce catalytic quantities of iron in the product powders,
2.5 at% IPC was added to TMT in the bubbler and sealed.
The introduction of this precursor solution produced a dis-
tinctly luminous flame compared to the pure TMT system.

Flame temperatures were measured along the height of
the flame at the central axis to characterize the reaction
zone using a thermocouple mounted to the sampling stand.
Temperatures were measured for three different systems for
comparison: methane-air flame without precursor solution,
pure TMT as the precursor, and a solution of 2.5 at% IPC
in TMT. Figure 3 presents the temperature profile with

(a) (b)

Figure 2: Images of the inverted diffusion flame (a) without
precursors and (b) with a mixture of 2.5 at% IPC in TMT present.
As a reference, the external diameter of the burner is 20.3 mm.

a rapid increase in temperature from just above the burner
surface to a gradual drop in temperature at higher locations
for all three systems. The peak temperature was observed at
approximately 23 mm above the burner for all three systems.
The flame without any precursor exhibited a peak tempera-
ture of ∼1100◦C, while the flame with pure TMT observed a
drop in peak temperature to ∼900◦C that can be attributed
to the cooling from the additional vapor-phase precursor
solution. The high peak temperature of ∼1300◦C for the
IPC-TMT system can be explained by the highly exothermic
decomposition of precursors which, as a result, yields rela-
tively higher temperatures in the product gases as well. The
temperatures were corrected for radiation, and the relative
uncertainty for the measured temperatures was estimated at
5%. Any inadvertent material deposits on the thermocouple
were cleared for accurate assessment of flame temperatures.

3.2. Material Characterization. The combustion-synthesized
powders were collected on microscope slides at a rate of 3–
5 mg/min. Grayish-white fine powders were obtained with
the IPC-TMT precursor solution at a height of 117 mm on
the water-cooled sampling plate. The tubular steel chimney
was only used for XRD sampling runs. Figure 4 presents an
XRD spectra of the 2.5 at% IPC-TMT precursor solution
product as obtained from the experiments. All the peaks
were identified for the cassiterite phase of SnO2 (JCPDS
Ref. No. 41–1445), while no peaks were attributed to any
iron or iron-based compounds. Scherrer crystallite size
analysis performed on the 110 peak of SnO2 yielded average
crystallite size of 16.4 nm for the SnO2 particles.

Figures 5(a) and 5(b) provide SEM images of the bulk
samples demonstrating granular structure at lower magnifi-
cation while a porous architecture is identified for the indi-
vidual grains, respectively. XEDS analysis conducted on the
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Figure 3: Radiation-corrected thermocouple temperature mea-
surements above the central axis of the burner. Plot includes
temperature profiles for the reaction zone without precursors, with
pure TMT, and with 2.5 at% IPC-TMT precursor solution.
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Figure 4: X-ray diffraction spectra of 2.5 at% IPC-TMT precursor
solution products. Peaks identified as cassiterite phase SnO2. No
peaks were attributed to the presence of any iron or iron-based
compounds.

SEM samples confirmed the presence of tin (Sn) and oxygen
(O), at the same time indicating presence of elemental iron
(Fe) at 3.3 wt% (6.8 at%). The presence of elemental iron
was also confirmed using inductively couple plasma (ICP)
analysis yielding atomic ratio of 0.069 for Fe : Sn (2.2 at%
Fe in SnO2 assuming stoichiometric oxygen content for tin),
which corroborates well with initial precursor concentration.
Figures 5(c) and 5(d) are TEM images of grid samples
collected using the actuated piston cylinder at a height
of 46 mm. These samples show typically spherical primary
nanoparticles forming agglomerated nanostructures.

TEM images were used to determine the particle size
distribution of the primary particles using a semiautomated
image analysis. Figure 6 provides a primary particle size
distribution obtained for multiple TEM images originating
from a single sampling at 64 mm height above the burner. As
seen, the geometric mean of 11.4 nm was calculated for the
precursor solution samples with over 150 particles counted.
A subsequent study on how the average primary particle
size varies above the height of the burner at three locations
(25 mm, 33 mm, and 41 mm) yielded average primary par-
ticle sizes of 6.8 nm, 8.7 nm, and 14.3 nm above the burner
surface, respectively, demonstrating an appreciable growth
as the particles move across the peak flame temperatures at
∼23 mm above the burner surface. The calculated average
primary particle sizes (11–14 nm) correspond well with
the XRD crystallite sizes analyzed (16 nm) using Scherrer
analysis considering differences in the two approaches—
suggesting majority of the primary particles exist as single
crystals.

3.3. Investigating Iron. Considering no iron compounds were
identified using XRD other than the elemental presence
detected using ICP and XEDS, two possibilities exist for the
ultimate fate of Fe presence in SnO2 nanoparticles: (a) the
iron compounds (most probably oxides) are at low enough
concentrations in the products that they cannot be distinctly
identified with XRD or (b) the iron is incorporated into the
SnO2 lattice, generating iron-doped tin dioxide nanopow-
ders. To investigate the first hypothesis, an increased concen-
tration of 10 at% IPC in TMT was tested to produce a higher
iron-based component within tin dioxide nanopowders to
assist XRD identification. Subsequent XRD analyses of the
products from 10 at% IPC yielded identical results when
compared to the 2.5 at% IPC—only cassiterite-phase tin
dioxide was identified while no peaks could be attributed
to any iron or iron based compound. These results are in
agreement with the recently published work by Alexandrescu
and co-workers [32] using IPC and TMT as precursors with
laser pyrolysis, where no iron compounds were identified.
Melghit and Bouziane [15] also demonstrated the absence of
iron-based compounds in tin dioxide powders and attributed
the outcome to Fe atoms substituting Sn in the lattice with
comparable iron concentrations to this study. Additionally,
the nanopowders with higher iron-content, when analyzed
with TEM image analysis, produced a mean primary particle
size of 13 nm with over 500 particles counted (sampled at
64 mm height). XRD analysis yielded crystallite diameter of
14.5 nm for these samples. Therefore, no appreciable change
in primary particle size was observed with increased IPC con-
centration.

4. Discussion

The literature presents several examples of precursor’s pro-
perties and chemistry influencing the resulting product ma-
terials in combustion synthesis [33–36]. Therefore, the
choice of specific precursors used in this study was deliberate
to ensure doped products as opposed to nanocomposites
metal oxides. Figure 7 presents a schematic of how a relatively
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Figure 5: SEM and TEM images of nanoparticle products from the combustion synthesis. The majority of the powders were identified as
tin dioxide using XEDS analysis.

large difference in decomposition temperatures of compo-
nent precursors in a solution can yield different nanoparticle
architectures: composites versus doped or solid-solution sys-
tems. When the decomposition temperatures are signifi-
cantly different (or involve varying phase precursors), the
subsequent particle formation is decoupled between the two
component systems leading to a composite system (left on
Figure 7), while a relatively similar decomposition temper-
ature and particle formation time scales can potentially lead
to a doped or a solid solution system (right on Figure 7).
A doped system also has to be favored by the atomic or
ionic radii interactions within the specific crystal structure
[1, 11]. On the other hand, higher doping levels can result
in phase segregation within a solid-solution to ultimately
yield a nanocomposite system that is commonly observed in
alloying [37]. For the current system, it can be assumed the
later scenarios dominate for the Fe-incorporated SnO2 mate-
rial obtained. Vapor-phase TMT decomposition can occur at
much lower temperatures than documented decomposition
temperatures [38] and IPC already exhibits decomposition
temperature that is as low as 200◦C. Therefore, early com-

parable decomposition locations for the two precursors and
subsequent particle formation steps can be attributed to the
observed particle composition.

More importantly, the absence of iron-based compounds
from XRD analysis can be sufficiently explained by a conclu-
sive investigation conducted by Castro and coworkers [39]
on SnO2-Fe2O3 nanopowders. Their work demonstrated and
confirmed surface segregation of iron phases as the concen-
tration of iron increased within SnO2. As a result of this
phenomenon, at lower concentrations of up to 30 mol % Fe,
no identifiable features of iron-based compounds are present
on X-ray spectra of SnO2. The eventual encapsulation of
SnO2 was supported by the combination of XEDS and
HRTEM analysis on the particles as a function of Fe con-
centration. The work by Castro et al. substantiates the ob-
servations on combustion-synthesized powders presented
here and results of other similar studies [15, 32].

The primary particle sizes for the combustion-
synthesized Fe-incorporated SnO2 were competitive to
nanoparticles obtained using other methods [2, 10, 11, 13].
With respect to the varying concentration of IPC in TMT,
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Figure 6: Particle size analysis of TEM samples. Particle size
distribution obtained using a semiautomated sizing approach.
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Figure 7: Potential pathways to composite or doped nanomaterial
formation as a function of temperature above the burner.

neither the crystallite size nor the primary particle sizes
indicated any significant changes in sizes. This result is in
contrast with other studies involving changing iron dopant
concentration in SnO2 that have observed a decrease in
particle size as concentrations of iron increases [11, 13,
32, 39]. On the other hand, a similar trend was exhibited
by Liu and coworkers where the increase in dopant concen-
tration yielded larger crystallite sizes [23]. However, the in-
crease in size was a result of producing high aspect ratio
Fe-doped SnO2 particles in Liu et al.’s study [23] whereas no
one-dimensional nanoparticles were identified in the cur-
rent system.

Considering, this study focused on catalytic quantities
of iron incorporated in SnO2 further experiments on high-
er concentrations of IPC in TMT are necessary. Such
an investigation can potentially yield core-shell structures

demonstrated by Castro et al. [39] while simultaneously est-
ablishing a clearer trend between dopant concentration and
particle size and morphology.

5. Conclusion

The demonstration of the new route to the synthesis of iron-
incorporated SnO2 in a combustion synthesis system adds to
several successful production examples of metal oxides with
metals in flames [23, 40–45]. Importantly, this work uses
precursors that do not add impurities such as chlorides to
the product materials—a feature that is well suited for con-
tinuous high-volume production of nanoparticles. The com-
bustion-synthesized nanoparticle properties such as size and
morphology are competitive with other synthesis approaches
that have demonstrated iron-incorporated SnO2 particles.
While the primary particle sizes are sufficiently small at 11–
13 nm, further control over particle dimensions and mor-
phology can significantly benefit their potential applications.
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