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Abstract

Food security is dependent on ecosystems including forests, lakes and wetlands,
which in turn depend on water availability and quality. The importance of water
availability and monitoring drought has been highlighted in the Sustainable Devel-
opment Goals (SDGs) within the 2030 agenda under indicator 15.3. In this context
the UN member countries, which agreed to the SDGs, have an obligation to report
their information to the UN. The objective of this research is to develop a method-
ology to monitor drought and help countries to report their findings to UN in a

cost-effective manner.

The Standard Precipitation Index (SPI) is a drought indicator which requires long-
term precipitation data collected from weather stations as per World Meteorological
Organization recommendation. However, weather stations cannot monitor large ar-
eas and many developing countries currently struggling with drought do not have
access to a large number of weather-stations due to lack of funds and expertise.

Therefore, alternative methodologies should be adopted to monitor SPI.

In this research SPI values were calculated from available weather stations in Iran
and New Zealand. By using Google Earth Engine (GEE), Sentinel-1 and Sentinel-
2 imagery and other complementary data to estimate SPI values. Two genetic
algorithms were created, one which constructed additional features using indices
calculated from Sentinel-2 imagery and the other data which was used for feature
selection of the Sentinel-2 indices including the constructed features. Followed by
the feature selection process two datasets were created which contained the Sentinel-
1 and Sentinel-2 data and other complementary information such as seasonal data

and Shuttle Radar Topography Mission (SRTM) derived information.

The Automated Machine Learning tool known as TPOT was used to create opti-

mized machine learning pipelines using genetic programming. The resulting models



yielded an average of 90 percent accuracy in 10-fold cross validation for the Sentinel-
1 dataset and an average of approximately 70 percent for the Sentinel-2 dataset. The
final model achieved a test accuracy of 80 percent in classifying short-term SPI (SPI-
1 and SPI-3) and an accuracy of 65 percent of SPI-6 by using the Sentinel-1 test
dataset. However, the results generated by using Sentinel-2 dataset was lower than
Sentinel-1 (45 percent for SPI-1 and 65 percent for SPI-6) with the exception of

SPI-3 which had an accuracy of 85 percent.

The research shows that it is possible to monitor short-term SPI adequately using
cost free satellite imagery in particular Sentinel-1 imagery and machine learning. In
addition, this methodology reduces the workload on statistical offices of countries
in reporting information to the SDG framework for SDG indicator 15.3. It emerged
that Sentinel-1 imagery alone cannot be used to monitor SPI and therefore comple-

mentary data are required for the monitoring process.

In addition the use of Sentinel-2 imagery did not result in accurate results for SPI-1
and SPI-6 but adequate results for SPI-3. Further research is required to investigate
how the use of Sentinel-2 imagery with Sentinel-1 imagery impact the accuracy of

the models.
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