

Traffic Classification for the Detection

of Anonymous Web Proxy Routing

Shane Miller

School of Computing, Engineering & Intelligent Systems

Faculty of Computing & Engineering

Ulster University, Magee

A thesis submitted in partial fulfilment of the requirements for the

degree of

Doctor of Philosophy

I confirm that the word count of this thesis is less than 100,000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287024801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Contents

CONTENTS .. 2

ACKNOWLEDGEMENTS .. 5

ABSTRACT .. 6

ABBREVIATIONS ... 7

LIST OF FIGURES ... 9

LIST OF TABLES ... 10

1. INTRODUCTION ... 11

1.1 DETECTING AND BLOCKING ANONYMOUS COMMUNICATIONS .. 13

1.2 PROBLEM STATEMENT .. 16

1.3 RESEARCH GOALS .. 16

1.4 THESIS CONTRIBUTIONS .. 18

1.5 THESIS OUTLINE .. 18

2. LITERATURE REVIEW ... 21

2.1 PROXIES ... 21

2.1.1 Content Filters ... 24

2.1.2 Document access controllers .. 25

2.1.3 Security Firewalls .. 26

2.1.4 Web Caches ... 27

2.1.5 Reverse Proxy .. 28

2.1.6 Content Router .. 29

2.1.7 Transcoder .. 30

2.1.8 Anonymous Proxies ... 30

2.1.9 Conclusion .. 32

2.2 VIRTUAL PRIVATE NETWORKS (VPNS) ... 33

2.2.1 Introduction .. 33

2.2.2 PPTP .. 34

2.2.3 L2TP... 35

2.2.4 IPsec .. 35

2.2.5 IKE ... 36

2.2.6 Secure Socket Layer (SSL)-based VPNs .. 37

2.2.7 OpenVPN ... 38

2.2.8 Conclusion .. 39

2.3 Intrusion Detection .. 39

3

2.3.1 Machine Learning in Intrusion Detection Systems .. 40

2.4 MACHINE LEARNING AND NEURAL NETWORKS .. 42

2.4.1 Machine Learning Methods .. 42

2.4.2 Neural Networks ... 43

2.5 Conclusion ... 46

3. DETECTION OF ANONYMISING PROXIES .. 47

3.1 INTRODUCTION .. 47

3.2 DATASET .. 48

3.2.1 Packet capture .. 51

3.2.2 Non-proxy data capture .. 57

3.3 EXPERIMENTS .. 58

3.3.1 Methodology ... 60

3.3.2 Two-Class Neural Network .. 61

3.3.3 Dataset upload and preparation... 64

3.3.4 Training and Testing ... 66

3.3.5 Results ... 68

3.4 SUMMARY .. 69

4. VPN CLASSIFICATION ... 71

4.1 INTRODUCTION .. 71

4.2 DATASET .. 72

4.2.1 Capture Method .. 72

4.2.2 NetMate .. 76

4.3 VPN SETUP: STREISAND ON AWS .. 78

4.4 WEKA EXPERIMENT .. 79

4.4.1 Feature Selection .. 81

4.4.2 Resampling the dataset into training, testing & validation sets .. 82

4.4.3 Neural Network Setup ... 83

4.4.4 Results ... 85

4.5 OPENVPN USING STUNNEL ... 88

4.5.1 Dataset.. 88

4.5.2 Feature Selection .. 89

4.5.3 Neural Network setup ... 90

4.5.4 Results ... 91

4.6 VALIDATION TESTING .. 96

4.7 SUMMARY .. 97

5. CONCLUSION AND FUTURE WORK .. 99

4

5.1 CONCLUDING SUMMARY ... 99

5.2 THESIS CONTRIBUTIONS .. 102

5.2.1 Proxy detection using Neural Network ... 102

5.2.2 VPN detection using Neural Network ... 103

5.3 FUTURE WORK .. 104

5.3.1 Capture of additional data to further test the hypothesis .. 104

5.3.2 Investigation of automatic hyperparameter tuning in Weka .. 104

5.3.3 Investigation of other machine learning techniques... 104

5.3.3 Obfsproxy with OpenVPN ... 105

5.3.4 Wireguard ... 105

5.3.5 Deeper classification with multiple kinds of VPN .. 106

REFERENCES ... 107

APPENDIX A – PACKET CAPTURE SCRIPT .. 124

5

Acknowledgements

I would like to take this opportunity to thank all of those who have, in some part, been

involved with my PhD in one form or another. Firstly, I would like to give my sincerest

thanks to my supervisors, Professor Kevin Curran and Dr Tom Lunney. Their

guidance, support and dedication have been invaluable over the course of my research

and have provided an excellent education in the many aspects of academic life.

I would like to extend many thanks to my colleagues and friends from Ulster

University who provided so much support and experience over the years. The time

spent with them discussing the various aspects of student and academic life made life

easier and encouraged me through the challenges of the PhD. They also gave me a

chance to break away from the rigors of research to relax and refresh myself

I would like to thank my family, in particular my brother Thomas, for supporting me

through the entire process with unwavering belief in me. This belief has helped me

achieve so much more than I expected and for that I’m eternally thankful.

Finally, I would like to dedicate this thesis my late mother Jennifer for believing in me

and for constantly pushing me to aim higher and achieve what she never had the

chance to.

6

Abstract

Network Proxies and Virtual Private Networks (VPN) are tools that are used every

day to facilitate various business functions. However, they have gained popularity

amongst unintended userbases as tools that can be used to hide mask identities while

using websites and web-services. Anonymising Proxies and/or VPNs act as an

intermediary between a user and a web server with a Proxy and/or VPN IP address

taking the place of the user’s IP address that is forwarded to the web server. For a

business whose primary service is hosted on the internet, such as Facebook or Netflix,

security systems are a vital part of these services; unauthorised user detection can be

a vital feature of such systems. The detection of unauthorised users can be problematic

for techniques that are available at present if the suspect users are using identity hiding

tools such as anonymising proxies or VPNs.

This work presents computational models based on intelligent machine learning

techniques to address the limitations currently experienced by unauthorised user

detection systems. A model to detect usage of anonymising proxies was developed

using a Multi-layered perceptron neural network that was trained using data found in

the Transmission Control Protocol (TCP) header of captured network packets. Two

models to detect usage of two different VPN configurations were also developed using

a similar Multi-layered Perceptron neural network and were trained using flow

statistics. The first model successfully classifies network traffic as either OpenVPN or

as non-VPN traffic; the second model successfully classifies network traffic as either

OpenVPN traffic that is tunnelled using Stunnel or as non-VPN traffic. Validation

testing showed that the presented models are capable of classifying network traffic in

a binary manner as direct (originating directly from a user’s own device) or indirect

(makes use of identity and location hiding features of proxies or VPNs) with high

degrees of accuracy.

The proxy detection model additionally showed strong generalisation abilities when

tested against multiple types of web-based anonymising proxies. These results

demonstrate a significant advancement in the detection of unauthorised user access

with evidence showing that there could be further advances for research in this field

particularly in the application of business security.

7

Abbreviations

ACL – Access Control List

ANN – Artificial Neural Network

ARFF – Attribute-Relation File Format

AUC – Area Under Curve

CA – Certificate Authority

CDN – Content Distribution

CGI – Common Gateway Interface

CNN – Convolutional Neural Network

CSV – Comma Separated Value

DDoS – Distributed Denial of Service

DGSOT – Dynamically Growing Self-Organising Tree

DH – Diffie-Hellman

DNN – Deep Neural Network

DPI – Deep Packet Inspection

EAP – Extensible Authentication Protocol

EC2 – Elastic Compute Cloud

GRE – Generic Routing Encapsulation

HMAC – Hash-based Message Authentication Codes

HTTP – Hypertext Transfer Protocol

HTTPS – Hypertext Transfer Protocol

ICN – Information-Centric Network

IKE – Internet Key Exchange

IKEv2- Internet Key Exchange Version 2

IP – Internet Protocol

IPSec – Internet Protocol Security

ISAKMP – Internet Security Association and Key Management Protocol

ISP – Internet Service Provider

KNN – k-Nearest Neighbour

L2F – Layer 2 Forwarding

8

L2TP – Layer 2 Tunnelling Protocol

L2TPv3 – Layer 2 Tunnelling Protocol Version 3

LOOCV – Leave One Out Cross Validation

MiTM – Man in The Middle

MLaaS – Machine Learning as a Service

MS-CHAP – Microsoft Challenge-Handshake Authentication Protocol

NBA – Network Based Analysis

PAP – Password Authentication Protocol

PPP – Point-to-Point Protocol

PPTP – Point-to-Point Tunnelling Protocol

PRF – Pseudorandom Function

RNN – Recurrent Neural Network

SOCKS – Socket Secure

SPI – Shallow Packet Inspection

SSL – Secure Socket Layer

SSTP – Secure Socket Tunnelling Protocol

SVM – Support Vector Machine

TCP – Transmission Control Protocol

TTL – Time To Live

UDP – User Datagram Protocol

VM – Virtual Machine

VPN – Virtual Private Network

VPS – Virtual Private Server

WEKA – Waikato Environment for Knowledge Analysis

XSS – Cross Site Scripting

9

List of Figures

FIGURE 2.1: HTTP PROXY INTERACTION ... 22

FIGURE 2.2: OSI 7 LAYER MODEL .. 23

FIGURE 2.3: DOCUMENT ACCESS CONTROLLER EXAMPLE ... 25

FIGURE 2.4: FIREWALL PROXY SEPARATING CLIENTS FROM INTERNET .. 26

FIGURE 2.7. NETWORK BASED INTRUSION DETECTION SYSTEM .. 40

FIGURE 3.1: TCP HEADER .. 49

FIGURE 3.2: FLOWCHART DESCRIBING AUTOMATIC BROWSING OF PROXY WEBSITES. .. 52

FIGURE 3.3: CODE SNIPPET FOR URL STRING ARRAY. ... 52

FIGURE 3.4: FLOWCHART DESCRIBING THE OPERATION OF THE PACKET CAPTURE SCRIPT .. 53

FIGURE 3.5: CODE SNIPPET FOR BROWSING TO AND INTERACTING WITH PROXY SITES.. 53

FIGURE 3.6: EXAMPLE BROWSER SOCKET CONNECTION .. 54

FIGURE 3.7: CREATION OF TCP CAPTURE SOCKET. ... 54

FIGURE 3.8: IP HEADER EXTRACTION .. 55

FIGURE 3.9: TCP HEADER EXTRACTION ... 55

FIGURE 3.10: OPENING CSV WRITER OBJECT .. 56

FIGURE 3.11: FILTERING TRAFFIC TO ONLY WRITE HTTP AND HTTPS PACKETS ... 57

FIGURE 3.12: NON-PROXY TARGET WEBSITES ... 58

FIGURE 3.13: AZURE NEURAL NETWORK MODULE .. 62

FIGURE 3.14: AZURE NEURAL NETWORK PARAMETERS ... 63

FIGURE 3.15: DATASET PREPARATION ... 66

FIGURE 3.16: TRAINING AND TESTING OF THE NEURAL NETWORK ... 66

FIGURE 3.17: FULLY CONNECTED EXPERIMENT .. 67

FIGURE 3.18: CONFUSION MATRIX AND RESULTS ... 68

FIGURE 3.19: ROC CURVE ... 69

FIGURE 4.1: FLOWCHART DECRIBING PACKET CAPTURE PROCESS .. 73

FIGURE 4.2: VPN CONNECTION COMMAND ... 73

FIGURE 4.3: CRONTAB FILE EXAMPLE .. 74

FIGURE 4.4: MODFIED BROWSING SCRIPT .. 75

FIGURE 4.5: NETMATE ATTRIBUTES .. 76

FIGURE 4.6: THE WEKA RESAMPLE DIALOGUE .. 83

FIGURE 4.7: NEURAL NETWORK WEKA CONFIGURATION .. 84

FIGURE 4.8: FULLY CONNECTED NEURAL NETWORK ... 85

FIGURE 4.9: FULLY CONNECTED NEURAL NETWORK FOR STUNNEL EXPERIMENT. ... 90

FIGURE 4.10: GRAPH COMPARING ACCURACIES OF DIFFERENT VALIDATION TECHNIQUES AGAINST ZERORULES 95

10

List of Tables

TABLE 3.1: LIST OF TPC FIELDS AND DESCRIPTION OF THEIR FUNCTION .. 50

TABLE 4.1: DESCRIPTION OF NETMATE STATISTICAL FEATURES. ... 77

TABLE 4.2: CORRELATION COEFFICIENTS FOR SELECTED ATTRIBUTES .. 82

TABLE 4.3: VALIDATION TEST RESULTS .. 86

TABLE 4.4: CONFUSION MATRIX FOR VALIDATION TEST .. 86

TABLE 4.5: TESTING RESULTS .. 87

TABLE 4.6: CONFUSION MATRIX FOR TESTING RESULTS .. 87

TABLE 4.7: CORRELATION COEFFICIENTS FOR SELECTED STUNNEL ATTRIBUTES .. 89

TABLE 4.8: 80/20 SPLIT VALIDATION TEST RESULTS ... 91

TABLE 4.9: 10 FOLD CROSS VALIDATION TEST RESULTS ... 92

TABLE 4.10: LEAVE ONE OUT CROSSVALIDATION TEST RESULTS ... 93

TABLE 4.11: CONFUSION MATRIX FOR 80/20 SPLIT VALIDATION TEST .. 93

TABLE 4.12: CONFUSION MATRIX FOR 10 FOLD CROSS VALIDATION TEST .. 94

TABLE 4.13: CONFUSION MATRIX FOR LEAVE ONE OUT CROSS VALIDATION TEST ... 94

11

1. Introduction

The Internet has become an important part of everyday life and its usage continues to

grow as more devices are released that have Internet connectivity. Internet usage in

developing countries is especially increasing with the arrival of affordable mobile

smartphones (Poushter, 2016). As more people use the Internet, governments seek to

implement controls on what their citizens can access, either for the protection of said

citizens against malware and identity theft or to suppress unacceptable parts of the

Internet (King et al., 2017; Fiaschi et al., 2017; Gebhart & Kohno, 2017; Akabogu,

2017; Tanash et al., 2017). This leads some people to become concerned for their

privacy as they do not want their online activities documented. Due to this and other

factors, usage of technologies designed to provide anonymity on the Internet has

increased (Anderson et al., 2017).

Anonymity technologies allow users of the Internet access to a level of privacy that

prevents the recording of information such as IP addresses, which could be used to aid

in the identification of the users. Users of these technologies will have varying

motivations for why they want to protect their privacy. Some use anonymity

technologies because they live in a country where their Internet usage is monitored

and the websites that they wish to access are blocked. In this situation, the anonymity

providing technology helps the user circumvent the blocks that have been imposed on

them. A similar use case is a user preventing their browsing habits from being tracked

by their Internet service provider (ISP). Some ISPs track browsing habits to improve

the services that they provide while some collect the data so that it can be forwarded

on to other third parties. These include advertisers who use it to produce targeted

advertisements or possibly security forces who use it to build a profile of the suspects

and determine whether they are adhering to a country’s laws involving Internet access.

Naturally, criminals want to avoid their identity being released to the police.

Therefore, they turn to anonymity providing technologies. Anonymity systems

transport network packets over intermediary relays so that no single system other than

the original machine has information that could identify the user. Since many people

can make use of these intermediary relays at the same time, the connection of the user

seeking anonymity is hidden amongst the network traffic of other Internet users (Li et

al., 2013). These different use-cases have led to anonymity on the Internet being a

12

divisive topic. On one side, anonymity technologies provide legitimate methods for

protecting freedom of speech and privacy, facilitating the transfer of anonymous tips

to law enforcement and bypassing state censorship. However, the same technologies

can be used to provide protection to criminals who are involved in information and

identity theft, spam emailing and even organised terrorism. Additionally, they can be

used for network abuse by bypassing Internet usage policies of organisations. This has

the potential to expose the internal workings of the organisation to malicious activities.

There are various types of anonymity technologies available with most being based

on networks called “mix” networks. Mix networks use a chain of proxy servers to

create communication pathways that are difficult to trace (Chaum, 1981). The

anonymous communication systems that resulted from this can be categorised into one

of two groups: message based/high-latency applications or flow based/low-latency

applications (Yang et al., 2015). High latency applications can include email and e-

voting systems. Low latency systems include the popular anonymous communication

system Tor as well as various kinds of HTTP/SOCKS proxy services and Virtual

Private Networks (VPNs) (Lee et al., 1996; Wood et al., 1988). Systems such as Tor

fall under the category of multi-hop anonymous communications models, while

HTTP/SOCKS proxies and VPNs generally fall under the category of single-hop

anonymous communication models. The focus of this thesis will be on these single-

hop anonymous communication models.

A proxy server is a server that acts as an intermediary for requests from clients for

resources located on other servers on a network or the Internet. A basic type of proxy

is a gateway which can be found on most consumer wireless routers. Another type of

proxy is a reverse proxy which is a server on an internal company network that acts as

an intermediary for other servers based on that network. Reverse proxies are typically

used as an Internet facing server that handles several different tasks, load balancing

being one of them. The proxy server distributes requests between several web servers

and acts as a cache for static content such as pictures and other graphical content.

Proxy servers that are used to provide anonymisation are based on another type of

proxy known as an “open” proxy. Open proxies are a proxy that is available to any

13

user on the Internet. They are mostly used to set up anonymous proxy websites and

categorised as a single-hop anonymous communication model.

There are several different implementations of VPNs for providing anonymous

communications (Lawas et al., 2016; Crist & Keijser, 2015; Rawat et al., 2001; Zorn

et al., 1999). The intended use for VPN implementations was to allow an

organisation’s workers to securely access internal network resources from outside of

the internal network i.e. remote access. This is achieved through setting up a

connection called a tunnel between the user’s PC and the organisations servers. VPNs

however can also be used as an anonymous communication system in an equivalent

manner to an anonymous proxy server. The main difference between the two methods

is in the VPN’s tunnelled connection. The tunnelled connection between the user and

the VPN server is encrypted.

1.1 Detecting and blocking anonymous communications

IP blocking is a basic technique used to combat malicious threats to networks and it is

one of the most common techniques for protecting networks (Thomas et al., 2011).

Using this method, an IP address or a range of IP addresses can be blocked from

accessing resources located on a web server or on an organisation’s internal network.

The IP block can be rendered ineffective by using proxies or VPNs. The user’s IP

address is typically sent out as a source IP address in the network packet containing

the request to a web server. However, when using a proxy or VPN, this request is first

sent to the proxy server which then forwards it on towards the web server. So, the

blocked IP address of the user is not actually making any direct contact with the web

server running the IP filter. The offending proxy or VPN IP address can be blocked,

but this act of blocking the IP address can be made redundant. Upon discovering that

their preferred proxy IP has been blocked, the user can simply switch to a different

proxy or VPN provider. Unless preventative action is taken, which will cost a

significant amount of time and effort, the user can continue to switch in order to

maintain their access.

14

Another method of securing networks is the use of Access Control Lists (ACL). These

are usually implemented alongside IP blocking techniques. An ACL scans network

traffic and filters which network packets are forwarded on through the network and

which are blocked at the router. Each packet is examined and compared to the policies

outlined in the ACL to determine whether it should be allowed or blocked (Cisco,

2006). This is a very rigid form of network security that relies on a lengthy setup.

Specifying what is acceptable and what is not takes a large amount of time due to the

complexity and sheer number of network protocols that exist. Filtering based on the

protocols included in the network packets can be rendered ineffective by VPNs due to

how they encapsulate protocols within other protocols. Depending on the exact

implementation of ACL, the network topology for the entire enterprise network will

not be defined so the ACL cannot determine what is a member of the network. Proxies

can easily take advantage of this and the ACL is also susceptible to the user switching

proxy provider to circumvent any blocks.

Software based packet inspection is another method that can be used to detect and

block usage of a proxy or a VPN. Deep Packet Inspection (DPI) is a popular method

for securing networks against network packets containing malicious items such as

viruses and other malware that are contained within payloads (Dharmapurikar et al.,

2003). DPI examines and manages network traffic as it enters the network in a form

of packet filtering that identifies, classifies and blocks packets that contain data (such

as the aforementioned viruses) within their payload that goes against pre-arranged

policies. This examination occurs at checkpoints located around the network and

decisions based on rules assigned by an organisation occur in real-time based on the

contents of the packet’s payload. Previously, packet scanning software had the

limitation of only scanning the packet’s header, which contains the information

necessary for transmission, but does not contain anything related to its contents. By

scanning the packets contents, messages and other information can be extracted and

used to identify the specific application or service it comes from. The rules that DPI

algorithms operate by were string based, however using regular expression matching

improves content scanning speeds (Yu et al., 2006). As powerful as DPI can be, it is

defeated by packets that make use of encryption to conceal their contents. VPNs are

15

particularly effective at bypassing DPI as well as some proxies which support HTTPS,

bringing the effectiveness of DPI into question (Sherry et al., 2015).

A field of research that has gained traction of late is the use of machine learning

algorithms for classification of network traffic (Bujlow et al., 2012; Dainotti et al.,

2012; Finamore et al., 2010; Nguyen & Armitage, 2006, 2008). Over the past decade

the research and networking communities have investigated and developed several

classification approaches based on multiple algorithms. This has come about because

the traditional approach of using TCP and UDP network ports to classify Internet

applications has become less accurate. Newer applications that are being developed

do not have ports registered to them by IANA and instead make use of ports that are

already registered to other applications. The exhaustion of IP version 4 addresses has

also contributed to this as organisations and application developers move to mitigate

the effect (Dainotti et al., 2012).

Classification algorithms typically require training based on previously labelled data.

For classification of network traffic, the network packets form the basis of the dataset.

The contents can consist of unedited packet headers, with the information contained

being used as the training features. They can also consist of statistical information

calculated from streams of packets called flows. Efforts to classify Internet

applications have largely been successful, with several datasets being created to

represent most of the applications available. However, datasets representing

anonymous communication systems are mostly non-existent and research into

classification of anonymous traffic is still an emerging research area. A major

limitation into classification of this type of network traffic is the use of encryption,

which renders the payload of packets unusable as a training feature. Using machine

learning capabilities and different feature formats, it should be possible to overcome

this limitation. Packet header information such as the sequence and acknowledgement

numbers and the general size of the data can potentially be used to train a machine

learning algorithm. There is also the option of using flow-based features to enhance

the potential training and detection accuracy of an algorithm (García-Teodoro et al.,

2009).

16

1.2 Problem Statement

A potential threat to large scale, enterprise networks are connections both from inside

and from outside the network which make use of anonymity techniques to hide their

identity. Modern network security systems require the capability to identify these

connections and to help the network controllers to mitigate the threats that could be

posed. If an enterprise network suffers a breach that results in information being stolen,

identifying who is responsible can be difficult if anonymity technologies are being

used.

With increasing volumes of internet traffic being generated on modern networks,

introducing techniques which can help network controllers and administrators identify

threats is essential (Cisco, 2017). These techniques should be able to accurately

identify threats in real time with a few false positive and negative results as possible.

1.3 Research Goals

This thesis aims to address the limitations of single-hop anonymous communication

method classification by proposing a machine learning based approach utilising TCP

header information and flow-based TCP statistics. The particular methods investigated

will be anonymous proxy servers and VPNs. A key goal in implementing this approach

will be high accuracy and keeping the number of false positives and false negatives to

an absolute minimum. Classifying legitimate network packets as having originated at

an anonymous communication system could be catastrophic to an organisation that

depends on high volumes of traffic reaching their site. Similarly, classifying

anonymous communication traffic as legitimate could open up an organisations

internal network to malicious activity where the identity of the perpetrator is unknown.

Having the ability to accurately determine which class the network traffic falls into

can be a step towards allowing a network manager to secure an internal network,

especially when combined with other security tools.

17

 The overall aims of the research presented in this thesis is as follows:

• Review proxy and VPN architectures and functionality.

• Review current methodologies for detecting proxy and VPN activity (without

utilising machine learning approaches).

• Review traffic classification literature to develop knowledge of the area and

get an understanding of how machine learning is applied to this problem.

• Review literature based on applying machine learning methodologies to proxy

and VPN detection. The goal here will be to gain an understanding of the

potential techniques that can be utilised.

• Gather network traffic from multiple proxy and VPN sources to construct two

datasets, one for proxy traffic and one for VPN traffic. Both datasets will

contain control traffic to facilitate comparison

• Develop a machine learning approach for distinguishing between proxy and

non-proxy traffic accurately.

• Develop an approach for distinguishing between VPN and non-VPN traffic

accurately.

• Develop an approach for further investigating VPN traffic with a focus on

Stunnel.

18

1.4 Thesis Contributions

The research presented in this thesis provides a substantial and novel contribution to

the area of proxy and VPN based network traffic detection and classification. The

work has been peer reviewed in three published conference papers (Miller et al.,

2015a, 2016, 2018) and has contributed towards journal publications (Miller et al.,

2015b and Miller et al., 2019). The primary contributions of the thesis are:

1. The creation of three datasets in the ARFF format containing captured network

traffic, one consisting of proxy network traffic and non-proxied control traffic,

a second consisting of VPN network traffic and non-VPN control traffic and a

third consisting of VPN network traffic tunnelled through Stunnel and non-

VPN control traffic.

2. A machine learning based approach for accurately detecting and classifying

proxy network traffic.

3. A machine learning based approach for accurately detecting and classifying

VPN network traffic.

4. A machine learning based approach for accurately detecting and classifying

VPN network traffic that is tunnelled through Stunnel.

1.5 Thesis Outline

Chapters two through to five present the research undertaken and the experimental

work involved with chapter six drawing conclusions and suggesting future work. A

brief summary of the chapters is outlined as follows:

• Chapter 2 reviews the current literature with regards to detection of proxy and

VPN network traffic. Current proxy and VPN architectures are described along

with current network intrusion detection techniques. A review of machine

learning is presented with a focus on its potential for network traffic

19

classification. Current network traffic classification techniques are reviewed

and evaluated.

• Chapter 3 provides the methodology involved in creating a dataset and

populating it with network traffic collected using a number of proxy websites.

Also included in the dataset is network traffic that was not collected using

proxy websites to act as a control comparison. The chapter then progresses to

describe the methodology for using the Azure Machine Learning studio to

create, train and test an artificial neural network for the purpose of classifying

whether the network traffic contained in the dataset originated from a proxy

website or not. The results of this testing are detailed at the end of the chapter

and they show that the neural network was able to classify a large number of

instances correctly.

• Chapter 4 provides the main methodology used to create a dataset for training

and testing and the methodology for creating, training and testing an artificial

neural network designed to classify network traffic as originating from a VPN

or not. The dataset is populated with network traffic that was collected using

an OpenVPN connection and network traffic that was collected when not using

a VPN connection. The chapter then describes the methodology for using the

WEKA suite of machine learning tools for the creation, training and testing of

an artificial neural network. The results are then outlined at the end and they

show that the neural network that was created was able to classify most of the

testing instances correctly.

• Chapter 5 concludes the thesis by documenting the main contributions of the

research and suggesting potential future research in the area of proxy and VPN

based network traffic detection and classification. Future research includes the

capture of additional data for the datasets to strengthen the findings and

investigation into the use of automatic hyperparameter tuning in Weka to find

the best possible setup of the models used. Also included is a discussion on

newer VPN targets that could be used instead of OpenVPN such as Wireguard

and potential investigation into other types of machine learning algorithm

20

including Ensemble Learning, Transductive machine learning and deep

learning algorithms.

21

2. Literature review

This chapter provides a background on the technologies involved in the thesis as well

as a review of the current literature in detecting the use of both Anonymising Proxies

and VPNs. The background information is given in an attempt to give the reader a

better understanding of the technologies that are being investigated in this thesis. A

review of current literature is given to help show the reader what other research has

been done in this area and to show where inspiration is being taken for the techniques

being described in Chapter 3.

2.1 Proxies

Web proxy servers are a computer network system or application that acts as an

intermediary for requests from clients seeking resources such as files, web pages or

other resources from other servers on the internet. They were invented to add structure

and encapsulation to distributed systems and to help control complex. Proxies

normally operate under 2 different protocols, Hypertext Transfer Protocol (HTTP) and

Socket Secure (SOCKS) (Ligh et al., 2010).

HTTP is a protocol that allows a user to send requests for resources on the internet. It

is the foundation of data-exchange on the Web. It is a client-server protocol which

means that requests are initiated by the receiver, usually a web browser but it could be

a robot that automatically explores the internet to populate and maintain a search

engine such as Google search. Each individual client request is sent to a server, which

handles it and provides an answer, called the response. Between the client and the

server there can be other entities. These entities are referred to as Proxies and they

perform different operations such as acting as gateways, caches or as a method of

anonymising the client. Whilst HTTP is not designed solely for proxy communication,

proxies still use it because it supports both encrypted and unencrypted traffic as well

as the ability to allow non-HTTP traffic to pass-through a proxy-server.

SOCKS is a protocol that exchanges network packets between a client and server

through a dedicated proxy server. It is known as a circuit level proxy intended for use

with applications. The SOCKS protocol consists of 3 major versions - SOCKSv4,

SOCKSv4a and SOCKSv5. SOCKSv4 is a protocol that is designed for proxy-based

applications. The other two versions are extensions of it that provide extra features

22

and support for other protocols with SOCKSv5 providing support for the user

datagram protocol (UDP), IPv6 and strong authentication (Lee et al., 1996).

Figure 2.1: HTTP Proxy Interaction

During a normal HTTP interaction, a client will communicate directly with a server

over HTTP. When a web proxy is involved the client will instead send its traffic to the

proxy, which itself will communicate with the target server on the client’s behalf. An

example of this is shown in figure 2.1. This means that web proxies have two roles to

fulfil themselves, that of a HTTP client and that of a HTTP server. This is because the

client is sending request messages to the proxy that are intended for the target web

server. The proxy server must be able to handle and process those requests properly

and the subsequent responses to facilitate a successful connection with the client. At

the same time, the proxy itself must send requests to the target server, therefore it must

be able to send requests and receive responses just like a normal HTTP client.

SOCKS proxies operate at a lower level of the OSI layer model than HTTP, as shown

in Figure 2.2, and differs in their operation. Where an HTTP proxy acts as a middle

man or stepping stone between a client and server by forwarding the HTTP requests,

SOCKS proxies relay communications via TCP connections at a firewall gateway to

allow a user application transparent access through the firewall (Lee et al., 1996). To

use a SOCKS proxy connection, a client must have SOCKS client and server software

installed on the user’s machine. This can be in the form of an application such as

PuTTY1 or a web browser, or it can be installed in the TCP/IP stack. The client

software’s main function is to redirect network packets into a SOCKS tunnel. The

SOCKS client then initiates a connection to a SOCKS server. The proxy server then

1 http://www.putty.org/

Web ServerClient Proxy Server

23

acts as the client and communicates with an external web server. This external server

is only aware of the proxy server and not the original client that initiated the

connection.

A SOCKS proxy is different from a HTTP proxy because they are application proxies.

For example, when using a HTTP proxy, the HTTP request itself is being forwarded

and the proxy server then performs the request on the client’s behalf. A SOCKS proxy

server doesn’t forward request but instead negotiates a proxy connection by

exchanging messages between the client and server. When a connection is established,

the client communicates with the SOCKS server using the SOCKS protocol. The

external server then communicates with the SOCKS server as if it were the actual

client.

Figure 2.2: OSI 7 Layer Model

There are two overall types of proxy server; those dedicated to a single client and those

that are shared among many clients (Gourley & Totty, 2002). Proxy servers that are

dedicated to a single client are referred to as private proxies and those that are available

to multiple clients are public or shared proxies. Private proxies perform a few

specialised tasks, mainly when they are run directly on client computers. ISP services

run small proxies to provide certain services such as extended browser features and to

host advertising. Public or shared proxies are more common as they are usually

Application Layer
SMTP (Email)

Presentation Layer
JPG, GIF, HTTP & HTTPS, SSL, TLS

Session Layer
NetBIOS, PPTP, SOCKS

Transport Layer
TCP, UDP

Network Layer
Routers, Layer 3 Switches

Data Link Layer
Standard Swithes

Phyical Layer
Hubs, NICS, Cable1

2

3

4

5

6

7

24

accessible from the Internet. These types of proxy are more popular due to their

accessible nature and are easier and cheaper to administer. There are also a number of

sub-types of proxy in addition to the two overall types. These sub-type Proxies have a

designated role or job. These roles include Content Filters, Document Access

Controllers, Security Firewalls, Web Caches, Reverse Proxies, Content Routers,

Transcoders and Anonymizing Proxies. A number of these are usually limited to

enterprise networks, but some can be found on home networks as built-in modules of

the gateway router supplied by an Internet Service Provider (ISP) and others, like

anonymizing proxies, can be found openly on the Internet.

2.1.1 Content Filters

Content filter proxies provide administrative control over client transactions as they

happen at the application protocol layer of the network stack (Luotonen & Altis, 1994).

This is commonly used in both commercial and non-commercial organisations,

especially in schools as a method to control access to the Internet. Requests may be

filtered using several methods, such as URL blacklists, URL regex filtering or content

keyword filtering. More in-depth filtering can be accomplished by analysing the

content of requests to discern whether they should be allowed or not. If the requested

URL passes these filters, the filter proxy then proceeds to fetch the website, usually

over HTTP. On the return path, dynamic filtering can be applied to block specific

elements of a webpage, such as embedded videos or JavaScript. A drawback to content

filtering proxies is that they cannot, normally, scan websites that are transmitted over

an encrypted, HTTPS session where the chain of trust for the website in question has

not been tampered with. The chain of trust refers to the use of certificates in the

implementation of SSL/TLS connections. These certificates are issued by root

Certificate Authorities (CAs) who can attest to the legitimacy of the website. However,

content proxies can generate their own root certificate and inject that into the

communications as a trusted root certificate. With this certificate in place, the content

filter can decrypt requests in order to scan the normally encrypted content. In this

situation, the filter is effectively operating what is known as a Man in The Middle

(MiTM) attack.

25

2.1.2 Document access controllers

Document access controllers are proxy servers that have the role of implementing a

uniform access control policy across a larger network of web servers and resources

(Gourley & Totty, 2002). This eliminates the need for multiple access control systems

and simplifies the administration of access control as all the controls can be configured

on a centralized proxy server. This is particularly useful when used in a large data

centre that makes use of servers of many different types and models which all have

slightly different methods of applying access control.

Figure 2.3: Document Access Controller Example

Figure 2.3 shows an example network which contains a Document access controller.

It shows three client pcs that are connected to the controller and it show some example

content that the proxy controls access to. Server A contains non-restricted content

therefore all of the clients can access this resource. Some of the clients will require

access to the Internet and the controller regulates this access, only allowing the clients

that have the required permissions to access it. Server B contains restricted content

and by default none of the clients can access this unless they have been authenticated

and have the required permissions.

Server A

Server B

Client 1

Client 2

Client 3

Document Access Control Proxy Internet

Non-restricted
Content

Restricted
Content

26

2.1.3 Security Firewalls

A significant security problem for business type networks is hostile or unwanted

access by users or software (Stallings & Lawrie, 2008). Unwanted user access (an

intrusion) can be in the form of unauthorised logon to a machine or gaining the ability

to perform higher privilege actions than what is normally authorised. Unwanted

software access can take the form of a virus, Trojan horse or other form of malware

(Wang et al., 2013). A firewall is defined as a component or set of components that

restrict access between a protected network and external networks (Kumar et al.,

2014). There are a few different types of firewall. These are: packet filtering firewalls,

stateful inspection firewalls, application-level gateway, circuit-level gateway and

proxy firewalls (see figure 2.4).

Figure 2.4: Firewall Proxy separating clients from Internet

Packet filtering firewalls apply a set of rules to incoming and out-coming IP packets,

any packets that adhere to those rules are forwarded on to their destination and any

that don’t are discarded (Ali et al., 2015). A stateful inspection firewall reviews the

same packet information as a packet filtering firewall, but also records information

about the TCP connections that are sending and receiving the packets as well. Some

also keep track of the TCP connection sequence numbers to prevent attacks that

depend on the imposters using a sequence number, such as session hijacking (Ali et

al., 2015).

Client 1

Client 2

Client 3

InternetFirewall

Firewall

Firewall

FirewallFirewall Proxy

27

An Application-level gateway acts as a relay for application-level traffic. A user will

contact the gateway using a TCP/IP application such as FTP or Telnet and the gateway

asks for the name of the remote host to be accessed. When the user responds with the

name of the remote host and provides a valid ID and authentication information, the

gateway contacts the application on the remote host and relays application data

between the two. If the gateway does not support the application, the service is not

supported and cannot be forwarded across the firewall. Application-level gateways

tend to be more secure than packet filtering firewalls as they only scrutinise a few

allowable applications. A circuit-level gateway can be a stand-alone system or it can

be part of a specialised function performed by an application-level gateway. A circuit-

level gateway operates in much the same way as an application-level gateway

however, once it sets up the TCP connections, it does not examine the contents. The

security function consists of determining which connections will be allowed (Ali et

al., 2015). Proxy firewalls are a network security application that filters network

packets at the application layer and they are the most secure type of firewall at the

expense of speed and functionality of the network because they can limit the

applications that are supported on the network. Proxy firewalls act just like standard

proxy servers in that they act as an intermediary between a client computer and a

destination web server. They are also the only machine on a proxy firewall protected

network to have a direct connection to the Internet. This means that any other machine

that wants to access a resource from the Internet will have to use the proxy firewall as

a gateway. As the proxy firewall receives every request travelling to and from the

network, it is able to filter and log requests based upon inspection of their packets. An

added benefit to this type of proxy is that content that is being requested by multiple

clients can be cached locally to increase the access time for the content. However, on

networks with large amounts of traffic, the proxy firewall could be the cause of a

reduction in performance due to the creation of a bottleneck or increasing the risk to

the network by becoming a single point of failure.

2.1.4 Web Caches

Alongside security proxy firewalls, there are also dedicated web caching proxy

servers. Web caching is the temporary storage of popular remote web resources on a

28

local server (Ponnusamy & Karthikeyan, 2013; Singh et al., 2011). These proxy caches

are used to reduce the strain of repeated requests for the same resource on web servers

and network bandwidth providers (Cobb & ElAarag, 2008). Figure 2.5 shows a

common Web Cache Proxy setup. Caching proxies can be configured in one of two

ways. The first way positions one or more servers on the network between a web server

or (more commonly in a datacentre) a group of web servers and incoming network

traffic from the Internet. This is designed to reduce the load on the web servers.

Figure 2.5: Standard setup of a Web Cache Proxy

The second configuration is designed with a focus on reducing congestion on the

network. With this approach the proxy cache is located on the same network as the

client machines making requests. As the request comes in, the proxy first determines

if it has the requested material is stored locally. If the material is stored locally, it

replies to the quest and delivers the material. If not, it initiates a connection with the

web server to access the material and fetches the materials on behalf of the client and

potentially caches it.

2.1.5 Reverse Proxy

A reverse proxy is a server that transparently hands off requests to another server

(Reese, 2008). Contrary to the normal operation of a proxy server where the server

acts as an intermediary between clients and servers, the reverse proxy itself appears to

the client as a web server, acting as an intermediary for its associated servers to be

contacted by any client even if the servers are behind a firewall. An example can be

seen in figure 2.6.

Client Web ServerProxy Cache

29

Figure 2.6: Reverse Proxy with JavaScript Scanner acting as a load balancer

Reverse proxies can also be used as a load-balancer among several back-end servers

or to provide caching for a single server to reduce the load of commonly requested

data on the target server. In this latter implementation the reverse proxy can be referred

to as a server accelerator (Gourley & Totty, 2002). The popular Content Distribution

Network (CDN) and Distributed Denial of Service (DDoS) protection company

Cloudflare provides its services by acting as a reverse proxy (Durumeric et al., 2017).

When a client visits a site that is protected by Cloudflare’s services, instead of

connecting directly to the web server that is hosting the website, the client connects to

one of Cloudflare’s servers which serves a cached version of the site or proxies the

connection to the origin server. Another use case of reverse proxies can be in the

mitigation of attacks against websites. (Wurzinger et al., 2009) describe their method

of mitigating Cross Site Scripting (XSS) attacks using a reverse proxy to relay traffic

to and from the web server that is being protected. Each response made by the web

server is forwarded by the reverse proxy to a JavaScript scanning component which

scans the response for harmful scripts. If detected the proxy blocks the response from

being delivered and instead notifies the client of the attempted attack.

2.1.6 Content Router

Content Routers are proxy servers that have the ability to redirect requests as part of

an information-centric network (ICN). In a simple ICN setting, requests for content

Client 1 Reverse Proxy acting as
Ordinary Web server

JavaScript
Scanner

Web
Servers

30

are generated and sent by end users. Each request consists of a content name, whole

controls access to the content and the location from which it can be accessed (Kurose,

2014). These requests are forwarded among content routers towards the location and

controller of the content. Before a content router forwards a content request, it first

checks its own local cache store for the requested content. If the content router has the

content stored locally, the router itself can satisfy the request for that content, sending

it to the requestor. As content is sent along its path from controller to requestor, each

content router on the way stores a copy of the content in its local cache. This ensures

that repeat requests for that same content can be detoured to content routers which

may have the requested content, helping reduce the congestion on the network that

would be created by having to forward requests directly to the content’s controlling

server (Wong et al., 2011).

2.1.7 Transcoder

Transcoding can be defined as the transformation that is used to convert a multimedia

object from one form to another (Chang & Chen, 2003). Based on where the actual

transcoding takes place, different technologies can be classified as belonging to server-

based, client-based or proxy-based approaches (Cardellini et al., 2000). Transcoding

proxy servers can modify the format of content before it is delivered to the destination.

They can convert images from one filetype to another to reduce size and modify the

image itself to make it fit onto different types of screen, for example when accessing

a desktop website from a smartphone or similar device. They also have the ability to

modify text files in a similar method, even translating the text into different languages

based on the country ID of the user requesting the content (Gourley & Totty, 2002).

This can be particularly useful when attempting to provide content for an international

community where everyone may not understand or speak the original language of the

content.

2.1.8 Anonymous Proxies

Anonymity technologies allow Internet users to maintain their privacy by preventing

the collection of identifying information such as IP addresses. Due to an increasing

awareness of what is shared and collected online, Internet users are growing more

concerned with their privacy and are turning to the use of technologies such as

31

anonymous proxies (Li et al., 2013). Anonymous Proxies are one of the easier to

deploy technologies for anonymity on the Internet and are generally access through a

web browser (Edman & Yener, 2009). They are proxy servers that are based on the

open Internet and are accessible to the general userbase of the Internet. The aim of an

anonymous proxy is to make a user’s Internet activity untraceable by acting as an

intermediary between the user’s client pc and the rest of the Internet. Anonymity is

provided by the proxy server by processing client requests using the proxy server’s IP

address rather than the user’s IP address. The server relays requests from the user to

their destinations and delivers the responses back to the user. This provides a basic

level of anonymity. However, the proxy servers can see both the source (client IP

address) and destination (resource IP address) and therefore can track user activities

and what is being relayed between the source and destination.

There are multiple ways of setting up a proxy server. Two examples of some of the

more popular technologies for setting up proxy servers are PHP and Common

Gateway Interface (CGI) based scripts. Both provide the required functionality that

anonymous proxy servers rely on and they have the benefit of being supported across

multiple operating systems. Glype is a PHP based script and is one of the most

common and popular web proxy scripts available on the Internet. Setting up a proxy

server using the Glype proxy is accomplished by downloading the script files from the

Glype website and then relocating those files to the correct directories on the

webserver. This may appeal to user’s who have access to web capable servers that are

located on a different local network, such as owning a Virtual Server hosted by a server

hosting company. However, a simpler option would be to access one of the many

existing proxy sites already available. A study done in 2011 on the geo-location of

public proxy servers found that there were 7,246 proxy servers available (Li et al.,

2013). A list found on the Glype proxy website listed 3,389 unique servers that were

running the Glype script (Miller et al., 2016). A more recent list showed that there

were 50,824 individual web proxies2. This presents a problem when trying to block

access to these proxies because there are so many that when one server is blocked, it’s

a simple case of accessing another proxy server. The difficulty lies in compiling a

complete list to add to an IP block list or Access Control List. Due to the ease of setting

2 https://proxy.org/web_proxies.shtml

32

up new proxy servers, new proxy servers are being added all the time. URL filtering

is defeated by the proxy server’s use of encoding to obfuscate and hide the actual URL

from the filters.

For example, when encoding is applied, the URL:

http://www.radiocarb.com/p/browse.php5?u=https://www.wikipedia.org/

becomes:

http://www.radiocarb.com/p/browse.php5?u=czovL3d3dy53aWtpcGVkaWEub3JnL

w%3D%3D&b=13

This is an example of the base64 encoding scheme, however some PHP based proxies

also make use of the simple ROT13 encoding scheme, which is based on the Caesar

encryption cipher using a key of 13. CGI proxies make use of the Common Gateway

Interface which is a standardised protocol created to enable web servers to execute

console/terminal style applications. The most common use of these is to generate web

pages dynamically each time a request for that web page is received. CGI proxies use

this type of script to perform the act of proxying a connection. Proxy clients send a

request containing the URL of the website they wish to visit embedded in the data

portion of an HTTP request. The proxy server pulls the destination information from

the embedded data and uses it to send its own HTTP request to the destination.

Whenever the result is returned from the destination web server, it is forwarded to the

proxy user (Leberknight et al., 2010). An example of a CGI proxy script that is

available for download is CGIProxy3 by James Marshall (Marshall, 2002). While

Glype proxies enable URL obfuscation by default, the CGIProxy script does not.

ROT13 encoding can be enabled by removing the line comments for the methods

proxy_encode() and proxy_decode() in the script. The script also provides support for

custom encoding code to be added such as hexadecimal encoding.

2.1.9 Conclusion

This section of the literature review has provided background on the different types

and functions of Proxy servers, highlighting that there are a number of legitimate tasks

3 https://www.jmarshall.com/tools/cgiproxy/

33

that proxy servers accomplish some of which are necessary to the continued operation

of the internet. Details are given on how each different proxy task operates, what the

results of the task are and how the results affect the internet with some examples given

of real-world application. Anonymising proxies are detailed at the end of the section

providing a background into how some of the more popular anonymising proxy scripts

operate, highlighting how easy it is to access or even set up an anonymising proxy

server. This type of proxy is the focus of this thesis as the other types of proxy are

seldom used to commit criminal acts. Also described is the methods that the scripts

use to hide themselves from detection through the use of URL obfuscation via

encoding algorithms. Techniques that typically block access to websites fail to keep

up with how quickly new proxy servers can be created which lends weight to the

argument that new techniques need to be developed to detect the use of proxies and

enable administrators to take effective action.

2.2 Virtual Private Networks (VPNs)

2.2.1 Introduction

A Virtual Private Network (VPN) is the use of varied techniques to provide private

networks of resources and information over any public network (Hawkes-Robinson,

2002). They enable organisations and individuals alike to connect their resources over

the Internet, but control access to those resources by only making them available to

those that are part of the VPN. Normally, without the use of a VPN, to achieve such a

private connection would require a great investment in time, finances and work to

setup a dedicated line of communication. Instead, by using VPNs it is possible to

extend private networks and allow the sharing of data as if the computing devices

attached to the VPN were all directly connected to a local network (Mason, 2004).

The data of the private network is said to be “tunnelled” inside a public network packet

(Hawkes-Robinson, 2002). It enables a remote machine on network X to tunnel traffic,

that might not normally be able to be sent across the Internet, to a gateway machine

on network Y and appear to be sitting, with an internal IP address, on network Y. The

gateway machine receives traffic to this internal IP address, and sends it back to the

remote machine on network X (Schneier & Mudge, 1998). This itself does not provide

34

much security. Intercepting these tunnelled packets would still allow for the contents

of the private packets to be intercepted and exposed by a third party.

To overcome this, the private packets need to be encrypted and above that, some form

of authentication needs to be used. VPN protocols vary in their support for encryption

and authentication schemes. Each of the following sections will discuss some example

algorithms and schemes supported by each VPN protocol.

2.2.2 PPTP

The Point-to-Point Tunnelling Protocol (PPTP) is a link layer VPN protocol that is

designed to tunnel Point-to-Point Protocol (PPP) connections through an IP network,

creating a VPN connection (Zorn et al., 1999; Schneier & Mudge, 1998). PPTP

encapsulates the virtual network packets inside of PPP packets, which are then

encapsulated in Generic Routing Encapsulation (GRE) packets (Farinacci et al., 1994).

The final packets are sent over IP from the client to the gateway PPTP server and back

again. PPTP does not provide any methods for keeping data confidential or for

providing strong authentication. The Microsoft implementation that was included with

Windows NT provides a framework for negotiating authentication and encryption

algorithms between server and client which relies upon existing negotiations contained

within extensions and enhancements of PPP (Simpson, 1996). Some example

authentication algorithms are the Password Authentication Protocol (PAP), the

Challenge-Handshake Authentication Protocol (CHAP), MS-CHAPv1/v2,

Microsoft’s implementations of CHAP, and Extensible Authentication Protocol

(EAP). CHAP and MS-CHAPv1/v2 have faced extensive scrutiny over the years

(Microsoft, 2012; Schmidt, 2012; Hawkes-Robinson, 2002; Schneier et al., 1999;

Schneier & Mudge, 1998). PAP transmits the username and password from the client

through an unencrypted channel which leaves it vulnerable to eavesdropping attacks.

This leaves it in the position where it can only be used as a last resort. Due to the

vulnerabilities that have been found in the authentication and encryption algorithms it

uses, PPTP does not see widespread use anymore.

35

2.2.3 L2TP

The Layer 2 Tunnelling Protocol (L2TP) is also a link layer VPN that extends the PPP

model by combining features of PPTP with features of the Layer 2 Forwarding (L2F)

protocol. (Townsley et al., 1999). L2TP functions similarly to PPTP. Higher level

protocols, commonly PPP connections, are encapsulated within an L2TP tunnel by

setting up an L2TP session. The L2TP packets in turn, including both the payload and

the L2TP header are transported within a UDP packet. L2TP is also similar to PPTP

in that it does not provide any methods for confidentiality or authentication and instead

inherits existing protections from PPP. A protocol suite called IPsec was introduced

to provide improved authentication and confidentiality over the PPP methods (Patel et

al., 2001). The original PPP methods used by L2TP were found to be vulnerable to a

Denial of Service (Dos) attack which involved transmitting a request to stop the

connection using the correct identification in order to terminate the VPN session (Kara

et al., 2004). This was a vulnerability that was solved in an updated version of L2TP

called L2TP version 3 (L2TPv3). The new version included an optional authentication

and integrity check that nullified the vulnerability. L2TP is often combined with

another authentication and encryption protocol suite called Internet Protocol security

(IPSec) (Kent & Atkinson, 2005).

2.2.4 IPsec

IPsec includes a collection of standardised protocols for mutual authentication

between two hosts at the beginning of a VPN session and for the negotiation of

cryptographic keys used to enable encryption for the session (Kent & Atkinson, 2005).

Data is kept secure by authenticating network packets to make sure of the integrity of

the packet and that encapsulation has been implemented correctly. There are two

modes in which IPsec can provide this functionality: transport mode and tunnel mode

(Berger, 2006). In transport mode, the original packet is edited to include a new IPsec

header in the original IP header. This additional header contains the information

needed to perform authentication and integrity checking. In comparison, tunnel mode

provides more flexibility. In tunnel mode, the entirety of each original IP packet is

encapsulated inside a new IP packet consisting of a new IP header and the IPsec header

(Kent & Atkinson, 2005). This adds a layer of abstraction from the original IP packet’s

36

contents therefore providing confidentiality for the payload. To determine which mode

is to be used during a connection, security information defining the modes that each

end point supports needs to be exchanged. This is referred to as a security association

(Berger, 2006). It contains information on the mode of IPsec to be used, the encryption

algorithms to be used and the encryption keys used to set up the encryption. Exchange

of this information is completed using the Internet Key Exchange (IKE) protocol

(Harkins & Carrel, 1998).

2.2.5 IKE

IKE is used as part of IPsec to negotiate and establish connections by sharing

authentication data and encryption keys between two hosts (Harkins & Carrel, 1998).

In IKE version 1, IKE messages are sent between the hosts using UDP packets on port

500 and form the basis of a two-stage negotiation. This exchange of messages relies

on the Internet Security Association and Key Management Protocol (ISAKMP)

(Maughan et al., 1998). The first stage involves the setup of the IPsec security

association. At this point there is no encryption of data or authentication of either host.

Therefore, the two hosts attempt to authenticate themselves by sending their respective

encryption public keys via the Diffie-Hellman (DH) key exchange method (Diffie &

Hellman, 1976). Once the keys have been exchanged and the two hosts have been

successfully authenticated, stage one is complete and stage two begins. In stage two

of the negotiation, the two hosts work out the parameters for the VPN tunnel or tunnels

that will be setup. These include the symmetric encryption keys and their expiry

information, the security policies of the connection, the network routes and other

information pertaining to the connection. Once worked out, the connection between

the two hosts will be complete and data can be exchanged in a secure way (Berger,

2006). Internet Key Exchange version 2 (IKEv2) is an update that combines the

contents of the multiple protocols and methods the IKEv1 uses to accomplish its tasks

into one overall standard (Kaufman et al., 2014).

37

2.2.6 Secure Socket Layer (SSL)-based VPNs

Secure Socket Layer (SSL)-based VPNs operate on the transport level of the OSI

network layer model as opposed to IPSec, L2TP and PPTP which operate on the link

layer. This is due to their use of SSL/TLS to provide authentication and confidentiality

and HTTPS for transferring data. Reliable transmission is available without any extra

effort due to the position of SSL/TLS on the network layer model as TCP is also

located on the transport level (Rowan, 2007). SSL VPNs are often called clientless

VPNs because they do not need any additional client software to be installed in order

to use them. They however do rely on web browsers to handle the client side of the

tunnel as most web browsers have SSL protocol support built in. This has an added

benefit of making the SSTP VPN platform agnostic, enabling users to access resources

from a variety of platforms running on different operating systems. Use of HTTPS

enables connections to be made through most firewalls.

One example of an SSL-based VPN is Microsoft’s Secure Socket Tunnel Protocol

(SSTP) (Jain et al., 2011). SSTP provides an encrypted tunnel by means of the

SSL/TLS protocol. PPP network traffic is encapsulated in this tunnel and transferred

over a HTTPS. When a client establishes an SSTP-based VPN connection, it first

establishes a TCP connection to the SSTP server over TCP port 443. The SSL/TLS

handshake process used for transferring keys and authenticating and encrypting the

connection occurs over this TCP connection. After the successful negotiation of

SSL/TLS, the client sends an HTTP request with content length encoding and a large

content length on the SSL protected connection. The server sends back an HTTPs

response with the HTTP 200 OK status if everything is in order. Once the HTTPS

connection is established successfully the client can send and receive SSTP Control

packets and SSTP Data Packets. SSTP control packets contain messages to negotiate

parameters and to ensure there is no untrusted man-in-the-middle (MITM). SSTP data

packets contain the encapsulated PPP traffic as a payload.

38

2.2.7 OpenVPN

OpenVPN4 is a well-known and popular VPN protocol (Feilner, 2006). Due to its very

simple configuration and the mixture of enterprise-level security, usability and other

features, plus its support for most of the operating systems that are available, it is

widely regarded as among the best VPN solutions (Pohl & Schotten, 2017; Crist &

Keijser, 2015). It falls loosely into the SSL-based VPN category due to its use of the

SSL/TLS protocol to secure connections. However, OpenVPN also makes use of

Hash-based message authentication codes (HMAC) in combination with the SHA1

hashing algorithm for ensuring packet integrity. OpenVPN has two authentication

modes. In mode one a pre-shared static key is used to provide authentication and

encryption. In mode two, SSL/TLS mechanisms are used for authentication and key

exchange5 (Feilner, 2006). In static key mode, a pre-shared key is shared between both

hosts before the tunnel is set up. This static key contains four independent sub-keys:

HMAC send, HMAC receive, encrypt and decrypt. The preferred mode of operation

is mode two which uses SSL/TLS. In this mode an SSL session is established requiring

both hosts to present their own authentication certificate. If the authentication of the

hosts succeeds, negotiation and exchange of the encryption/decryption and HMAC

keys begins. Rather than the keys being static as in mode 1, in mode 2 the keys are

randomly generated either by OpenSSL’s RAND_bytes function or by using the TLS

pseudorandom function (PRF) alongside random source material from both hosts. The

keys are then exchanged over the SSL/TLS connection and the tunnel forwarding

process begins. The data to be encrypted and transferred in the tunnel includes a 64-

bit sequence number and the payload data consisting of an IP packet or Ethernet frame.

Encryption of the tunnel packets is carried out using the Blowfish secret key block

cipher (Schneier, 1994). OpenVPN then multiplexes the SSL/TLS session that is used

for authentication and key exchange with the encrypted tunnel data. SSL/TLS is

designed to operate using a reliable transport protocol so OpenVPN provides a reliable

transport layer on top of UDP. The actual IP packets are tunnelled over UDP without

an added reliability layer after they have been encrypted and signed with an HMAC

as the IP packet forwarder has been designed to operate over an unreliable transport

layer.

4 https://openvpn.net/
5 https://openvpn.net/index.php/open-source/documentation/security-overview.html

39

2.2.8 Conclusion

In this section a detailed background is given on various VPN technologies which

shows how VPNs have been developed and improved over time. The information

provided helps explain why VPNs were developed is and how they operate. It also

shows that there are multiple uses for VPNs when it comes to computer networks.

Some of these uses are entirely legitimate and necessary to the continued functioning

of business networks by allowing employees to access company resources over a

secure connection from a remote location. There are however criminals who make use

of these same technologies to hide their identity to avoid getting caught when

committing cyber-crimes. For this reason, there is a need to develop techniques to

detect the usage of VPN technologies to add to the other network information

gathering and recording tools that are available. This thesis will focus on OpenVPN

as it is easy to set up a VPN server and to then make use of its capabilities. This will

form the basis for further research into other more complex techniques.

2.3 Intrusion Detection

Intrusion detection is the process of monitoring connections coming to and leaving

from a computer or network and then analysing those connections for signs of potential

violations or incidents that go against security guidelines and acceptable use policies

(Scarfone & Mell, 2007). Causes of these incidents can include attackers gaining

unauthorised access to systems, malware such as spyware and Trojan viruses and

misuse of system privileges by users or attempts to gain additional privileges. An

intrusion detection system is the software that automates this process. When detecting

possible incidents, an IDS can take several actions. One would be to report the incident

to a system security administrator, who could then initiate a response to mitigate the

effects of the incident. Alongside alerting an administrator, the IDS could also keep a

record of incidents that could be referenced later and to help prevent future cases of

that incident.

40

Figure 2.7. Network Based Intrusion Detection System

There are several different types of Intrusion Detection System (IDS) which can be

classified as Network based, Host based, Network Behaviour and Wireless (Scarfone

& Mell, 2007). Network based systems monitor the traffic of a network using sensors

placed at certain parts of the network and IDS management servers. They analyse the

activity recorded by the sensors to identify incidents of intrusion. Figure 2.7 shows the

typical layout of a network that includes a network-based IDS. Host based systems

differ from network-based systems by monitoring a single host. Network Based

Analysis (NBA) systems monitor network traffic in order to identity threats that

generate unusual traffic flows such as malware or port scanning attempts. Wireless

IDSs apply similar techniques to network-based systems specifically to wireless

network traffic that makes use of wireless networking protocols.

2.3.1 Machine Learning in Intrusion Detection Systems

Integrating machine learning techniques into IDSs is a method of increasing the power

and accuracy of the detection system. Machine learning techniques include various

kinds of artificial neural networks and classification techniques as well as genetic

algorithms and fuzzy logic. There has been various research studies looking into

integrating machine learning into IDSs with the recent trend being improving the

machine learning aspect by combining different techniques to increase detection

41

accuracy and to decrease the computational effort required to train the systems. (Lin

et al., 2015) proposed a feature representation technique using a combination of the

cluster centre and nearest neighbour approaches. Experiments that were carried out

made use of the KDD-Cup99 dataset and showed that the approach required less

computational effort to provide similar levels of accuracy to k-NN. (Xiang et al., 2008)

proposed a multiple level hybrid classifier that combined supervised tree classifiers

with unsupervised Bayesian clustering. Performance of this approach was also

measured using the KDD-Cup99 dataset and experiments showed that it provided a

low false negative rate of 3.23% and a false positive rate of 3.2% with a high detection

rate for both known and unknown attacks. (Khan et al, 2007) made use of a Support

Vector Machine (SVM) for classification and a clustering tree technique called

Dynamically Growing Self-Organising Tree (DGSOT) to improve the training times

of the SVM. Experiments were carried out using the DARPA98 dataset and showed

that using a clustering tree helped to increase the accuracy rate of the SVM and lower

the rates of false positives and false negatives.

(Özyer et al., 2007) provided a system that made use of both genetic algorithms and

fuzzy logic to create a genetic fuzzy classifier to predict different behaviours in

networked computers. Their results showed that there was a benefit to using fuzzy

logic to pre-screen rules before classifying with the genetic algorithm as it decreased

the time needed to train the system. However, the systems accuracy in detection did

not show much increase and showed a decrease in accuracy in some classes compared

to other approaches. An earlier study used 3 different anomaly detection techniques

for classifying program behaviour (Ghosh et al., 1999). These techniques were an

equality matching algorithm for determining what was and wasn’t anomalous

behaviour, a feed forward backpropagation neural network for learning the program

behaviour and the third being a recurrent neural network called an Elman network for

recognising recurrent features of program behaviour. Their study showed that the

performance of intrusion detection benefited greatly from the use of the

backpropagation network and the Elman network. The consensus that can be gathered

from these studies is that the use of machine learning techniques does improve the

accuracy and performance of intrusion detection systems.

42

2.4 Machine Learning and Neural Networks

2.4.1 Machine Learning Methods

Machine learning is an area of study that evolved from research into the areas of

pattern recognition and computational learning theory with regards to artificial

intelligence with the term being coined for the first time in 1959 by Arthur Samuel

(Samuel, 1959). Machine learning research aims to explore the construction and

development of algorithms that can learn from the massive sources of data that

surround us. Such algorithms operate by building a model based on making

predictions or decisions determined by the inputs that it receives, rather than following

a strictly programmed set of instructions.

There are two broad categories of machine learning which depend on how the training

data is constructed and presented to the learning algorithm. These are known as

supervised learning and unsupervised learning. Supervised learning involves the

learning of a function that maps the values of a given input to an output based on

example input-outputs in a labelled dataset (Khriplovich & Pomeranskii, 1998). The

algorithms task when being trained with supervised learning is to learn the most

efficient way in which to map a set of inputs to a set of outputs based on examples of

inputs and their desired outputs, otherwise known as training data (Russel & Norvig,

2010). To test whether the algorithm generalises well based on the training data, a set

of data that is distinct to the training set is typically kept back and used as a form of

test dataset. In unsupervised learning, the algorithm is not present with any training

data and is left on its own to find a structure to the inputs that it is receiving. The most

common machine learning task that involves unsupervised learning is that of

clustering where data is given to the algorithm as input and it groups instances of the

data together in clusters based on their attribute or features (Russel & Norvig, 2010).

Clustering is just one of many different applications that machine learning can be

applied to. There is also classification and regression. In classification, inputs are

divided into classes, typically 2 (known as binary classification) however there can be

more classes depending on the data. The goal of the machine learning algorithm is to

produce a model that can assign a class label to new, unseen data based on the patterns

43

that it has learned from being trained in a supervised way. Regression is another

example of a supervised learning approach. The difference between it and

classification is that the output from a regression algorithm can be continually updated

with different values rather than being limited to a set of class labels. The purpose of

regression is to learn patterns from input data and then use the patterns it has learned

to produce predicted values for future instances of the data.

2.4.2 Neural Networks

Neural networks are defined as an interconnected system that produces an output

pattern when presented with an input pattern (Wade, 2010). In computing, Artificial

Neural Networks (ANN) are learning algorithms that are inspired by the biological

neural networks that make up the majority of animal brains and they deal mostly with

the problem of classification (Haykin, 2004). The first instance of a mathematical

model that is considered to be a neural network loosely based on neuroscience is called

threshold logic (McCulloch & Pitts, 1943). This model led to the creation of two

approaches to neural network research: one focusing on researching the biological

processes of the brain and one focusing on the application of neural networks to

artificial intelligence.

A learning hypothesis based on neural plasticity became known as Hebbian learning

(Attneave, 1950). This is an example of unsupervised learning. In 1958 an algorithm

called the Perceptron was created (Rosenblatt, 1958). This was an algorithm devoted

to pattern recognition and is an example of a supervised learning algorithm. The

perceptron is an example of a single layer neural network. This is a network comprised

of an input layer and a single layer of perceptron neurons.

44

Figure 2.8: Example of a single layer neural network with a single neuron

In figure 2.8, 3 inputs with 3 weights are shown. These feed into the perceptron neuron

which modifies the values using the weights provided. It then sums together all the

values along with an added offset called bias. Finally, the summed signal is sent to an

activation function which determines what the output is.

Figure 2.9 shows a fully connected multilayered perceptron neural network. The

biggest difference between the single layered network and the multilayered network

is in the addition of the hidden layer in the middle which contains five perceptrons.

The output layer contains two perceptrons, signifying that there are two possible

classification results i.e. binary classification. Each of the perceptrons in this model

function the same as the single layered model by summing the weights and bias,

passing the result to an activation function and then passing that on. The difference

this time is that the output layer takes the adjusted values from the hidden layer and

input.

Input
1

Input
2

Input
3

Perceptron

w1

w2

w3

45

Figure 2.9: Multi-layered Perceptron neural network

Research into neural networks stagnated in 1959 after two key discoveries with the

computational machines that processed neural networks (Minsky & Papert, 1972). It

was found that the basic perceptrons that were being used were incapable of processing

an exclusive-or circuit and that the machines used to process the neural networks

struggled when presented with larger networks. In 1975 the exclusive-or problem was

solved through the introduction of the backpropagation algorithm (Werbos, 1975).

This had the bonus of accelerating the rate at which neural networks were trained.

Backpropagation calculates the error difference between the input and output layers

and passes the value back through the layers of the network. The error is used to

repeatedly adjust the weights of connection in the network to minimise the difference

between the input and the output, therefore reducing the size of the error (Rumelhart

et al., 1985). In the model shown in figure 2.9, back propagation is used to adjust the

weights for the connections between the output and hidden layers will be modified

first, then the weights between the hidden layer and input layer.

Recent research has focused on the effect that adding more hidden layers has on the

result of a neural network classification. Neural networks that have more than one

hidden layer are referred to as Deep Neural Networks (DNN) (Schmidhuber, 2015;

Bengio, 2009). The extra layers enable the model to perform classifications on

complex non-linear data. Two implementations of a DNN are the recurrent neural

network and the convolutional neural network (Krizhevsky et al., 2012; Mikolov et

al., 2010).

Input
1

Input
2

Input
3

H3

H4

H2

H1

H5

O1

O2

Input Layer

Hidden Layer

Output Layer

46

2.5 Conclusion

Chapter 2 has provided a background on the technologies and techniques used in the

rest of this thesis as well as providing a review of the current literature in detecting the

usage of Anonymising proxies and VPNs. The technical background provided allows

for an understanding of how Anonymising proxies and VPNs operate which will help

in the development of solutions to detect the usage of both. The literature review gives

descriptions of various techniques used in general network Intrusion Detection

Systems, including the integration of machine learning techniques into Intrusion

Detection systems. It also provides a review of machine learning techniques with a

more in depth look into Neural Networks. Looking at the previous research conducted

on network traffic classification, it can be seen that there has been a lot of success in

classifying traffic using Multi-layered Neural Networks that are trained on the network

packet data and also trained on time-based TCP flow statistics. Based on this

information a hypothesis was formed that a Multi-layered Neural Network trained on

TCP packet data would be capable of classifying network traffic as originating from

an Anonymising Proxy/VPN or from a non-anonymising source.

47

3. Detection of Anonymising Proxies

This chapter aims to develop a strategy for distinguishing between TCP network

packets that originate from a proxy server and packets which do not. The model

developed in this implementation chapter is based on a Multi-layered perceptron

neural network that is trained on captured network packets. Section 3.1 provides an

overview of the hardware & software environment, Section 3.2 details the capture of

the required types of network packet and their subsequent compilation into training

and testing datasets. Section 3.3 provides a brief overview of the Azure machine

learning studio upon which the experiments were run.

3.1 Introduction

The client machine used to initiate connections and send requests through the web

proxies is a virtual machine (VM) hosted using the desktop virtualisation software

VirtualBox6. The host system used to run the VM is equipped with a quad core Intel

i7 processor and 24GB of DDR3 RAM. The VM has access to 4 threads from the

processor and 6GB of RAM. The operating system chosen for the VM was Ubuntu

16.04 and this was later upgraded to 17.10. A Linux operating system was chosen

because of the ease of automation for the capture of data and then packaging it into a

suitable format. It was also a preferred choice due to the ease of programming with

python using the built-in terminal command prompt. For capturing the network data,

the VirtualBox network interfaces needed to be set up. VirtualBox provides up to eight

virtual PCI Ethernet cards for each virtual machine. For each card, the individual

hardware that is virtualised and the mode in which it is virtualised can be selected,

with respect to the physical interface on the host machine. Each of the virtual network

hardware types represents a different physical hardware PCI Ethernet card, with each

card having different compatibilities with various operating systems. For the purposes

of capturing network data from an Ubuntu VM, the Intel PRO/1000 MT Desktop

virtual network card was left as the default choice. Each network adapter can also be

configured to operate in a different mode. The mode selected for capturing the network

data was the Bridged Networking mode. When this mode is enabled, the VM connects

6 https://www.virtualbox.org/

48

directly to the host machines network card and exchanged packets directly,

circumventing the host operating systems network stack.

3.2 Dataset

When training neural networks, a dataset containing example data is required. The

data included in the dataset can either be labelled or unlabelled, but for the purposes

of training a neural network, which is a supervised learning model, the data needs to

be labelled. For the purposes of these experiments, there are two labels. Data generated

from anonymising web proxies is given a label of ‘1’ and traffic that is not generated

from the proxies is given a label of ‘0’.

The first step in compiling training and testing datasets is gathering the actual raw

data. The data being used for these experiments will be in the form of Transmission

Control Protocol (TCP) network packets excluding the payload section. Figure 3.1

shows a representation of a TCP header, giving an overview of what is transmitted by

the protocol. The choice to exclude the payload of the TCP packet was made after

researching methods to decrypt packets in order to scan their contents and finding that,

whilst there are methods available to accomplish this, they have their own security

risks as they involve man in the middle (MiTM) style attacks which could expose

sensitive information such as encryption certificates.

Figure 3.1 shows the fields of the TCP header and a short description of what the

purpose of the field is. Also included in the data will be fields from the IP header.

However, these fields are for organising the data and won’t be included in the neural

network training. This is to ensure that the neural network does not overfit the data by

focusing on the IP addresses of the web proxies.

49

F
ig

u
re 3

.1
: T

C
P

 H
ead

er

50

Table 3.1: List of TPC fields and description of their function

TCP Field Usage

Source Port The Source Port is the port number used by the computer sending the TCP

segment and is usually a number above 1024 (but not always).

Destination Port The Destination Port is the port number used by the computer receiving the

TCP packet and is usually a number below 1024 (but not always).

Sequence Number The sequence number helps the TCP software on both sides keep track of

how much data has been transferred and to put the data back into the correct

order if it is received in the wrong order, and to request data when it has been

lost in transit.

Acknowledgement

number

The acknowledgement number acknowledges receipt of data that has been

received, if any. It also indicates the value of the next sequence number that

the receiver is expecting.

Data Offset Specifies the size of the TCP header in 32-bit words

 Reserved Set aside for future use and should be zero

URG Urgent Flag: Used to indicate if “urgent” data is contained in the packet

ACK Acknowledgement Flag: Used during 3-way handshake and data transfers.

PSH Push Flag: Used for TCP push, which returns the buffer to the user

application. Used primarily in streaming.

RST Reset Flag: Used to reset a TCP connection

SYN Synchronise Flag: Used during 3-way handshake

FIN Indicates end of the TCP session

Window Number of octets in the TCP header

Checksum This field is used by the receiver to verify the integrity of the data in the TCP

payload and rejects data that fails the CRC check.

Urgent Pointer Points to the end of "urgent" data in the packet, but this field only exists if the

URG flag is set.

Options Used to indicate the options used, if any.

Padding Used to ensure that the TCP header ends on a 32-bit boundary.

Data This field contains a segment of data from the user application, such as part

of an email or web page.

51

3.2.1 Packet capture

To gather network packets that originated from a proxy service for use with the dataset,

a list of such proxy sites needed to be collected. The best source for this was the various

“proxy lists” available on the internet. These websites collect together a recent list of

known proxy servers that are available for use with an interest in advertising their own

services. Some of the lists only show sites that require payment to access the proxy

service, some sites list a mix of paid and free proxy services and others list only those

that are free from charge. One such list7 is operated by a company called UpsideOut

who operate their own proxy service called Proxify. At the time of writing, the site is

listing 50,824 different web proxies. After a short review, it was discovered that not

every site on this list is actually online, however a list of sites that were accessible at

the time of the experiments was gathered.

Generating the network traffic required for the dataset involves using the proxy sites

to visit websites. Doing this manually would have taken a large amount of time so a

solution was developed to automate the browsing. It was decided that the scripting

language Python would be used for development. Python has great support for

working with networks and automation of functions, which is exactly what is required

to generate this dataset. Familiarity with the language also played a part as there are

other languages which are useful for the purposes of handling data, such as R, but

would have taken time to learn. The python library selenium includes a package called

Splinter which allows a python script to interact with an installed web browser.

Splinter allows a python script to interact with elements contained within the HTML

code of websites, such as filling out text fields or clicking buttons. URL addresses are

provided in the form of a string containing the full address, for example:

“https://www.website.com/”. Figure 3.2 shows a flowchart which describes operation

of the automated browsing script. Figure 3.4 goes on to elaborate on the packet capture

script that is used to capture, process and record the network traffic for the dataset. To

create a script capable of browsing multiple sites, a string array can be used, as shown

in Figure 3.3. A selection of the web proxy sites used is also shown.

7 https://proxy.org/web_proxies.shtml

52

Figure 3.2: Flowchart describing automatic browsing of proxy websites.

Figure 3.3: Code snippet for URL string array.

The code used to browse to and interact with the sites shown in Figure 3.3 can be seen

in figure 3.4. The first thing that is accomplished is actually browsing to the site. What

site is being browsed to is determined by the for loops position in the string array. The

script is then instructed to sleep for two seconds to allow the site to fully load before

moving on to the next part. This next part finds the text input field of the proxy server

by its CSS id, which was determined to be “input” on most of the Glype, PHP and

CGI proxy servers. The site that is the target site for the proxies is

“www.whatismyipaddress.com”. This is a website that displays the connecting

machine’s IP address, which in the case of the script would be the IP address of the

proxy server that is acting as an intermediator.

53

Figure 3.4: Flowchart describing the operation of the packet capture script

Figure 3.5: Code snippet for browsing to and interacting with proxy sites.

The script is then instructed to wait for one second before finding and clicking the

submit button which initiates the connection to the target site. Some of the proxy sites

used do not support the use of SSL encryption, so when browsing to a website that

does make use of encryption, which the target site does, the proxy will display a

warning page informing the user that the connection will not be encrypted. Below the

54

warning, a button is provided which allows the user to continue on despite the lack of

security. The script checks for this warning and if it is found, it proceeds to locate the

continue button and click it. The full browsing script can be found in appendix A.

#create an INET, streaming socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

#connect to web server on TCP port 80

s.connect((“www.examplewebsite.com”, 80))

Figure 3.6: Example browser socket connection

The capture of the packets and compilation into a Comma Separated Value (CSV)

dataset is also handled with a python script. There are various packet capture tools

available. The script makes use of python’s socket library which allows for the

programming of various sockets. Sockets are one of the most popular methods of inter

process communication and are used extensively in network communications.

Browsers make use of sockets whenever they attempt to connect to a website. An

example browser connection is shown in figure 3.6.

Figure 3.7: Creation of TCP capture socket.

For the purposes of data capture, a socket can be opened specifying that the socket

listen for every raw TCP packet that arrives at the machines network card.

55

 Figure 3.8: IP header extraction

Figure 3.8 shows how the socket is set up in the python packet capture script. To

receive the packet data and assign it to a variable the line packet = s.recvfrom(65565)

is used. This assigned the raw packet data to a variable which can then be used to

extract details from the packet. Normally the ethernet header would also be captured,

but because of the way the socket is setup, the ethernet header is omitted from the

captured data. The IP header of the packet takes up the first 20 bytes, so the variable

ip_header is assigned that data, as can be seen in figure 3.8. Figure 3.9 shows the

extraction of the TCP header. For both headers, the data is unpacked from the bytes

format, which allows for the accurate placement of individual sections of the header

to the appropriate variables.

Figure 3.9: TCP header extraction

56

Following the extraction of the header details, the script then determines where the

TCP flags are stored and assigns those bits to a variable. An if statement compares the

value stored in the variable to a known list of hexadecimal values that represent each

TCP flag and then assigns the value of the found flag to a string variable. To handle

transferring the captured network data to a format suitable for storing and working

with datasets, the script uses the “csv” import option to create a writer object. The

code used is shown in figure 3.10.

Figure 3.10: Opening csv writer object

First the destination file for the data is defined, in this case it is “vpntraffictest.csv”.

This creates a Comma Separated Value (CSV) file in the same directory that the packet

capture script is stored in. This file needs to be created before the writer object is

created so that the writer knows where its output destination is otherwise an error will

occur. The writer is created by calling the writer from the CSV library and passing the

outputFile variable to it. Before the packet capture begins, the CSV writer writes the

first row of the dataset which are the names of each part of the TCP packets that are

being captured.

57

Figure 3.11: Filtering traffic to only write HTTP and HTTPS packets

Once a packet has been captured and processed by the script, the details of the packet

are written to the output file. The traffic that is being investigated is Hypertext Transfer

Protocol (HTTP) or Hypertext Transfer Protocol Secure (HTTPS) web traffic,

however the packet capture script captures all TCP traffic. To strip out the unwanted

traffic and only record the HTTP/HTTPS traffic, the TCP source port is used. Figure

3.11 shows an if statement which instructs the CSV writer to only write the details of

the TCP header to the output file if the source port is either port 80 (representing HTTP

traffic) or port 443 (representing HTTPS).

3.2.2 Non-proxy data capture

Training a binary class classification algorithm requires two different classes of data

to be provided. As a comparison to the proxy network packet data, packets were

captured from the same system without the use of a proxy. To do this, the automated

web browsing python script which first visited a proxy site then used the proxy to

browse to “whatismyipaddress.com” was modified as shown in figure 3.12.

58

Figure 3.12: Non-proxy target websites

The code instructing the browser to visit the proxy site were removed. The URL list

was populated with a variety of sites from the Alexa top 500 index8. The script then

instructs the browser to visit each of the sites repeatedly until the execution is manually

cancelled. The same packet capture script that is used to capture the proxy network

packets is also used to capture the non-proxy data and write it out to a CSV file.

3.3 Experiments

There are a few different technologies and platforms that can be used to conduct the

experiments. These are the cloud computing platforms (in the form of Machine

Learning as a Service (MLaaS)) of AWS9, Google Cloud10, IBM11, Azure12 and the

local platforms Scikit-Learn and MATLAB. Local platforms have a range of benefits

that leverage the underlying hardware of the local machine however this has the

undesired effect of being dependent on the hardware available. This dependency lead

to the development of distributed techniques which later evolved into what is known

today as cloud computing.

Cloud computing is defined as a general computing model for enabling convenient,

on-demand access to a shared pool of configurable, distributed computing resources

that can be quickly and efficiently provisioned with minimal oversight or interaction

8 https://www.alexa.com/topsites
9 https://aws.amazon.com/machine-learning/#
10 https://cloud.google.com/ml-engine/
11 https://www.ibm.com/uk-en/cloud/machine-learning
12 https://azure.microsoft.com/en-gb/services/machine-learning-studio/

59

with the service provider (Mell & Grance, 2011). With the rise in popularity of

machine learning in research, cloud computing providers have fully integrated

machine learning into their cloud platforms. A key advantage that cloud computing

provides for this research was the removal of hardware concerns and enabled the

pursuit of more accurate results.

Amazon’s machine learning service (Amazon ML) is designed for users who have no

previous knowledge of machine learning. This can be a key advantage for enterprise

users, but in the context of this research it is quite limiting in what can be explored

using the platform. For example, because the user is not required to have any

knowledge of machine learning techniques, the service restricts the choice of the

machine learning method used to one of the platforms choosing through analysis of

the data provided.

Google Cloud’s machine learning service resembled Amazon ML in that it was aimed

at novice users and restricted the choice of machine learning algorithms even for

machine learning engineers. The Google service is based around the TensorFlow suite

which is a library maintained by Google that has the reputation being powerful but is

accompanied by a steep learning curve and is designed for machine learning tasks

which rely on specific neural network architectures.

Azure’s machine learning service (ML Studio) was found to provide machine learning

tools to both novices and experienced data scientists. In comparison to both Amazon

and Google, Azure offers a larger variety of algorithms to accomplish machine

learning tasks and doesn’t restrict the choice of which algorithm is used. Furthermore,

it allows for the creation of original machine learning algorithms and is not restricted

to out-of-the-box algorithms. This advantage alone makes Azure the obvious choice

to pursue in the following experiments because of the need for highly accurate results

without the restriction to algorithm choice.

Azure Machine Learning studio is a cloud service that provides an IDE-like workspace

to allow for easier building, testing and deployment of predictive analytic models.

Models can be constructed by dragging and dropping dataset and analysis modules

into a workspace area. Modules can be added iteratively to help pinpoint problems.

Predictive analysis helps you predict what will happen in the future. It is used to

predict the probability of an uncertain outcome. Azure offers various types of

60

statistical and machine learning algorithms aimed at predictive analysis such as neural

networks, boosted decision trees and linear regression. Azure outlines a 5-step process

to building an experimental predictive model: gather raw data, pre-process the data to

clear the data of missing values or other mistakes, define the features that the model

will be trained on, choose and train a learning algorithm, test the algorithm (Fontama

et al., 2014). Once the model is trained and is predicting the test data accurately it can

be deployed as a web service. Azure replaces the original dataset with a module to

allow input from the web. Using the C#, python or R programming languages in

conjunction with the URL of the deployed web service and a generated key, data can

be sent to the web service to be analysed.

The features offered by Azure Machine Learning studio were a large reason that Azure

was chosen to conduct the experiments in this chapter. Another big factor in the

decision was the ease of use that the IDE style workspace and drag and drop

construction offered. This allowed for quick and easy re-configuration of experiments

to try out different algorithms and methods for parameter tuning.

3.3.1 Methodology

There have been a number of recent studies that have made use of Azure’s machine

learning studio. (Bihis & Roychowdhury, 2015) proposed a generalised flow within

Azure that would accept multi-class and binary classification datasets and process

them to maximise the overall classification accuracy. Two sets of experiments were

run. The first was to benchmark the Azure machine learning platform using three

public datasets. The second was to evaluate the proposed generalised flow using a

generated multi-class dataset. The results showed that the generalised flow improved

accuracy in all but one of the comparisons with prior work.

(Pathak et al., 2015) describes a methodology to obtain a real-time view of traffic

issues in a city using status updates, tweets and comments on social media networks

using state of the art machine learning. The machine learning capability was provided

by Azure machine learning studio. Data from various social networks is polled

continuously by a worker role process hosted in Azure. The machine learning studio

61

is used to process the data and analyse the text being imported. For the experiment

they annotated 1100 social network feeds for 4 cities. This data was then split into

training, cross validation and testing datasets that were used to train and test the

machine learning algorithms in Azure machine learning studio. Classification

accuracy for one social network ranged from 90-95% whereas on another the accuracy

was just higher than 75%. (Krithika & Narayanan, 2015) proposed a method aimed at

grading short test answers using machine learning techniques implemented in Azure.

Experiments were run using 152 samples of student answers to a computer science

question. The experiment showed that the system was able to grade all of the answers

correctly after testing. (Tselykh & Petukhov, 2015) proposed an anti-fraud web

service that employed machine learning algorithms for predictive analytics in order to

reduce the costs of infrastructure and software. Azure machine learning studio was

used to provide the machine learning aspect. When building the machine learning

model in Azure, they experimented with several algorithms for two-class

classification. Using Azure’s built in Score Model module, they were able to achieve

an accuracy of 88% and went on to publish the model as a web service that was capable

of performing anti-fraud activities whilst reducing the cost of such a service to

virtually zero.

3.3.2 Two-Class Neural Network

The algorithm that was selected for classification of proxy network traffic was the

Azure module “Two-Class Neural Network”. There is also a module provided for a

multiple class application however that doesn’t apply for this task.

The decision to use a Multi-layered Neural Network was based both on the review of

prior literature on network traffic classification and on early test experiments run using

a selection of the other machine learning algorithms including Bayes Point Machine,

Support Vector Machine, Logistic Regression, Decision Forest and Boosted Decision

Tree. These early experiments showed that the Two-Class Neural Network module

provided the best base for improvement when compared to the other results. Other

machine learning techniques such as Fuzzy Logic or Genetic Algorithms were ruled

out as they were found to be inappropriate for the problem of classifying network

traffic based on the packet data. Classical logic only permits results which are either

62

true or false. However, with some problems there is the potential for the result to be

within a range between completely true or completely false. Fuzzy logic is the solution

for such problems, but for the classification of network traffic as belonging to an

Anonymising Proxy or not the result is a simple binary which Fuzzy logic is unsuited

for. In addition, it was found that a genetic algorithm was unnecessarily complex for

this experiment, although it may have a place in some future work which will be

addressed in Chapter 5.

Figure 3.13 shows how this module appears in the Azure machine learning studio

interface. To aid the configuration of the different algorithms that Azure has Microsoft

provides an extensive documentation resource.

Figure 3.13: Azure Neural Network module

The documentation for the two-class neural network module offers information on

how to configure the parameters of the algorithm for two scenarios; whenever the

parameter configuration is already known and when the optimal parameters are still

unknown.13

Figure 3.14 is a screen capture of the parameter options available for the two-class

neural network module. The parameters that can be seen starts with the trainer mode.

The trainer mode is the parameter that sets the algorithm up for one of the two

scenarios that were mentioned. It contains two options, “Single Parameter” and

“Parameter Range”. The Single Parameter option allows the user to enter a single

value for each of the parameters whereas the Parameter Range option allows for

multiple value ranges to be used. The latter was the selected option for the proxy

classification problem as the optimal parameter values were unknown beforehand.

This is then combined with the module “Tune model hyperparameters” module which

performs a parameter sweep over the specified settings and learns an optimal set of

hyperparameters. This process is referred to as “tuning”.

13 https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-neural-

network

63

Figure 3.14: Azure neural network parameters

Figure 3.14 shows the ranges chosen for both the learning rate and the number of

training iterations of the model. When the model is being tuned, these ranges instruct

the tuning module what parameter values should be used during the parameter sweep.

The specification of the hidden layer can either be a fully connected instance, as

selected, or it can be defined using a custom script written in the Net# language. The

default, fully connected case uses a pre-defined specification for the hidden layer. This

results in a neural network which has one hidden layer, an output layer that is fully

connected to the hidden layer which is in turn fully connected to the input layer. The

number of nodes in the input layer equals the number of features used in the training

data and the number of nodes in the hidden layer is defined by the user in the parameter

option.

The number of nodes in the output layer equals the number of classes, which for a

two-class network means that all inputs will map to one of two nodes. The custom

64

definition script is useful for when a more complex network is required, such as when

deep learning is being implemented.

3.3.3 Dataset upload and preparation

To use a dataset with Azure it first needs to be uploaded to the machine learning studio.

Azure supports multiple dataset types including CSV files. Before uploading the entire

dataset samples randomly removed which were then used to compile a separate testing

dataset. This left a training dataset of 5954 samples and a testing set of 1002 samples

which were to be kept separate from the training process. Once uploaded, the datasets

can then be added to the Azure interface and can then be further prepared for training

and testing the neural network. The first preparation steps are in adjusting the metadata

of the dataset so the model understands what fields are training features and what are

class labels in the data. This is metadata that would not be readily available as part of

the CSV format. The metadata is adjusted using the “Edit Metadata” module. In this

module, the field that is to be edited is first selected and then there are four changes

that can be made. The first deals with the data type of the field, for example, string or

integer. If the field is already defined as being the data type required or simply does

not need a type associated with it, there is the option to leave it unchanged. This applies

to the first three modifications available. The second defines the field as either being

a categorical field or not. If the field is already as required there is the option to leave

it unchanged. The third modification allows the user to change whether the field

contains a feature, a label or a weight. Again, there is the option to leave it unchanged

and there are also options available to clear a previous definition. The fourth and final

modification allows the user to enter new column names for the selected fields.

For feature selection, Azure machine learning studio provides three modules: “Filter

Based Feature Selection”, “Fisher Linear Discriminant Analysis” and “Permutation

Feature Importance”. For the purposes of this experiment however, feature selection

was performed manually as there were only twelve features to select from. Some

features were removed from the training dataset because they did not offer any value

to the training. These were the Version number, Protocol identifier and the Time To

65

Live (TTL). These fields contained the same value for each row of the dataset and

therefore would have affected the computation time with no benefit gained.

The source and destination IP addresses were removed as these could very well cause

the network to overfit to the problem during training as the Neural Network would

associate the IP address values with the training label. If the network focuses too much

on the IP addresses then the system would operate like an over-complicated IP

blacklist rather than an intelligent system. From there, experimentation was used to

ascertain what features would cause the network to either overperform or

underperform. This involved the systematic removal of features and observing what

effect this had on the training of the network. Whilst this was a slower technique, this

was offset again by the small number of features and also provided information on the

effect each feature had on the training allowing for more informed choices to be made.

For example, through this method it was found that the feature that had the most

influence over the training was the TCP Acknowledgement number whilst the feature

that seemed to have the least influence was the feature that noted whether HTTP or

HTTPS were used. The module used to select and remove features from the training

is the “Select Columns in Dataset” module. All of the desired training features plus

the classification label are selected using this module. The features that were used to

train the network were: Source Port number, Destination Port number, TCP Sequence

number, TCP Acknowledgement number, TCP Flag, Data size in bytes and whether

HTTPS or HTTP were used. To eliminate underperformance of the model, the hyper-

parameter tuning mentioned at the end of section 3.3.2 was used.

66

Figure 3.15: Dataset preparation

The final step before training and tuning commenced was to split the training dataset

to provide both a training dataset and a training validation dataset. This is

accomplished using the “Split Data” module and an 80/20 split was used which

resulted in a final training dataset of 4763 and a validation set of 1191. Figure 3.15

shows the dataset preparation as it is represented in Azure. Also shown on the right-

hand side is the 1002 sample testing dataset which is also going through the same

preparation as the training dataset. This is so it can be successfully tested against as

otherwise Azure will throw an error.

3.3.4 Training and Testing

Figure 3.16 shows the training and testing portion of the experiment as it is represented

on the Azure machine learning studio.

Figure 3.16: Training and testing of the neural network

67

Figure 3.17 shows the entire experiment. Once the data has been fully prepared, it is

connected to the tuning module as the training dataset. The two-class neural network

model is also connected to the tuning module at this time. At this point the experiment

can be run with the tuning module’s default settings, however these settings were

modified slightly. By default, the tuning module will only perform 5 parameter

sweeps.

This was changed to 50 sweeps, so the final model could be as close to the best model

as possible. Training time for this model lasted for approximately one hour. This could

be considered a consequence of the use of Azure, specifically the use of the free

workspace, as there was no control over what hardware was used in order to train the

model. The studio workspace used is in the South-Central US region which could also

add latency to the connection, further slowing the process. It is possible to purchase a

subscription to Azure which unlocks a far greater feature set. This was deemed

unnecessary for this experiment as the resources provided were enough.

Figure 3.17: Fully connected experiment

68

Once tuning is finished, the tuning module outputs a trained version of the best model

it found. For this experiment, the best model used a learning rate of 0.0441313, a

Squared Error loss function and was trained over 433 iterations. To score and evaluate

the model based on the validation dataset and then the separate training dataset, the

“Score” and “Evaluate” modules are used sequentially.

The score module scores the classification predictions for the trained model and the

outputs those results as a scored dataset. The scored dataset is then passed to the

evaluate module which calculates a range of metrics based on the results. These

metrics include: Accuracy, Precision, Recall, F-score, Area Under Curve (AUC),

Average Log Loss and Training Log Loss.

3.3.5 Results

The results gathered from the separate testing set are shown in figure 3.18 along with

the confusion matrix. The ROC curve is shown in figure 3.19. The AUC for the test

was 0.988

Figure 3.18: Confusion Matrix and Results

The results in figure 3.18 show an overall classification accuracy of 94.6% for 1002

samples. There were only 13 false positive classifications, which is relatively low.

However, there were 41 false negatives which is quite high. This may be due to the

higher amount of negative (i.e. non-proxy) samples than positive samples at 473

positives to 529 negatives. In the context of this model being used as a proxy detection

system on a live network, 41 proxy packets in every 1002 (0.04%) packets would

possibly avoid detection and 13 in every 1002 (0.013%) normal, non-proxy packets

would be possibly detected erroneously.

69

Figure 3.19: ROC Curve

Overall there is the possibility for approximately 50 errors in every 1000 packets.

Whilst that may warrant worry, it is something that could possibly be improved upon

and overall the results seem be an indication that the model has the capability of

detecting proxy network packets.

A drawback of this approach is that the dataset used is relatively small at

approximately 7000 samples. Unfortunately, due to the nature of the packet capture

and the tools available, the capture was time consuming. Another potential drawback

is the use of TCP header details as training features. As there are only 12 features total,

which are then reduced to 7, there is not much leeway given to the possibility that

some features may not be suitable for classification at times, depending on the network

conditions. Some solutions to these problems are discussed in section 5, future work.

3.4 Summary

This chapter has explored the development of a neural network model capable of

classifying TCP network packets as either web proxy traffic or not using the data

contained within the TCP header. Section 3.2 describes the capture of network packets

from both proxy and non-proxy sources with details given about the python scripts

70

created. Section 3.3 describes the client machine used to generate the network traffic

captured. Section 3.4 then gives an overview of the Azure machine learning studio

with examples of research conducted with it. The section follows on with details about

the experiment conducted in this thesis using the machine learning studio. Feature

selection, setup of the neural network model and how the model was trained are all

discussed. Finally, the results from the experiment are described.

71

4. VPN classification

4.1 Introduction

In the previous chapter, classification of network traffic that was being passed through

a web-proxy was investigated using back-propagation artificial networks with a focus

on using the TCP header details from captured network traffic as the dataset. This

chapter aims to investigate the classification of VPNs using a similar neural network,

albeit this time not using the cloud machine learning service from Azure.

Virtual Private Networks (VPNs) are quickly becoming a popular method for

criminals and other bad actors to hide their online activities (Harmening, 2013). This

is helped along by the increase in ease of use of VPNs; they are no longer just a tool

for remotely accessing enterprise resources when travelling for work or when working

from home. In fact, this could be a use-case for a criminal. If they wish to remotely

access an enterprise network in order to steal company and trade secrets, they can use

a VPN (or multiple VPNs) in order to hide their own location or to make it appear as

if someone else was infiltrating the network (Geetha & Phamila, 2016). There have

been a few notable cases of this happening in recent years, such as the Sony Pictures

incident from 2014, where confidential data including personal information about

employees was stolen (Peterson, 2014). It is likely that the attackers used a VPN to

hide their location and identity as, to this date, no one has been officially charged with

the crime and brought in front of a court (Pagliery, 2014).

Other attacks of note are the various data breaches which have been occurring for the

last number of years, such as the LinkedIn breach of 2012 which was only discovered

in 2016 (Hunt, 2016). Approximately 167 million account details including emails and

passwords were stolen. It is not known whether the attacker(s) were using a VPN

service to hide their location. The ability to detect whether a VPN has been used or

not could be helpful in the pursuit of attackers such as those just mentioned.

72

The classification method described in this chapter is envisaged as a step towards the

creation of a VPN detection framework that could be used to help law enforcement

officials track down those responsible for attacks.

4.2 Dataset

The dataset for the previous chapter consisted of TCP packet data. The results

indicated that this dataset provided enough data to train a Neural Network to recognise

the different patterns between traffic that was using a proxy and traffic that was not.

Moving forward from this work, it was decided to attempt a similar approach in order

to train a Neural Network to classify VPN based traffic. A dataset consisting of TCP

packets captured using the packet analysis tool Wireshark from an OpenVPN

connection was created and tested using the exact same Azure machine learning tools.

The results for this showed that the network was overfitting the problem as it was

achieving 100% classification accuracy for both VPN traffic and non-VPN traffic. In

external validation tests, the network was essentially guessing, as it was classifying

every sample as having come from a VPN. In order to overcome this problem, a new

dataset consisting of TCP flow records/statistics was proposed as more appropriate for

analysis. This decision to form a new dataset was inspired by previous works of

(Draper-Gil et al., 2016; Stevanovic & Pedersen, 2014; Soysal & Schmidt, 2010), with

particular note to the work of (Draper-Gil et al., 2016) which presented a flow-based

classification model to classify encrypted and VPN traffic using only time-related

features. Flow statistics provide a high-level view of network communications by

reporting the addresses, ports and byte and packet counts contained in those

communications (Cisco, 2018). This data can be especially valuable when network

traffic is being encrypted which can be the case with VPN traffic. More detail is

provided regarding the production of the flow records used for this piece of work in

section 4.2.2.

4.2.1 Capture Method

Wireshark formed the basis of the packet capture for this newer dataset as was also

the case for the first dataset. The computer system used to capture the traffic was an

Ubuntu 16.04 based virtual machine running on a Windows 10 host. The network

connection used in the experiment is a virtualised Intel PRO gigabit ethernet card

73

although this shouldn’t have any effect on the results. While Linux might not be a

mainstream operating system for the standard user, it is popular among “bad actors”

because of its ability to be heavily customised according to the user’s preferences. It

allows for a finer degree of control over some of the internal systems included such as

networking stack. Figure 4.1 shows a flowchart which describes the entire packet

capture process used for building the VPN dataset. Using some built in tools, it is easy

to automate connections and disconnections to different networks and different

network interfaces. This was a particularly helpful feature when dealing with the

capture of VPN based packets. In normal operation, a connection to a VPN starts with

a typical TCP “hello” sequence and key exchange. Once the connection is setup, it is

only taken down whenever the user stops using the VPN. The connection is one long

TCP connection between the user’s machine and the VPN server. This created some

problems with the NetMate flow statistic calculation tool, which is also discussed in

section 4.2.2. The problem with NetMate was solved using a Linux bash shell script

and the Linux system’s automatic task scheduling tool; cron. The shell script contains

a one-line command that initiates a connection to the VPN and sets a timeout value of

590 seconds. The full command is shown in figure 4.2.

Figure 4.1: Flowchart decribing packet capture process

timeout 590s openvpn /etc/openvpn/<openvpn config file>.ovpn

Figure 4.2: VPN connection command

The ‘timeout’ causes the command to quit after the set amount of time and ‘openvpn’

is the command that will be affected by ‘timeout’. Openvpn is a type of VPN server

that can be installed easily on many systems. In this command ‘openvpn’ initiates the

connection to the Openvpn server that is described in the config file i.e. <openvpn

config file>.ovpn. Combining this command with the automatic scheduling tool cron

74

is straightforward. The goal was to have this command run every ten minutes, so the

timeout value is set to 590 seconds which leaves enough time for the connection to

completely close. Then, 10 seconds later the command is run once again. This will

repeat indefinitely as long as the command is listed in cron. To instruct cron to run

this command as required, the file /etc/crontab is edited with administrative privileges.

A line is added to the file detailing the command to be run and how often it should be

run. The line added in order to run the connection shell script every 10 minutes is

shown in figure 4.3.

m h dom mon dow user command

*/10 * * * * root sh /path-to-file/connect.sh

Figure 4.3: Crontab file example

From left to right, the headings of the crontab file stand for: minutes, hour, day of

month, month, week of month, user to run command under and the actual command.

This will instruct cron to run the shell script every 10 minutes of every day of every

month as the user ‘root’. With the connection to the VPN automated and refreshing

every ten minutes, the next task was to generate the network traffic to be captured by

Wireshark. There are tools available to generate random packets based on specific

attributes to simulate certain network environments. However, it is much better if the

data could be captured from realistic browsing practices. Due to the amount of data

that would be required, it would be infeasible for a person to sit and visit websites for

24 hours a day, 7 days a week. A modified version of the automated browsing Python

script from the proxy detection work was used in conjunction with a small selection

of the most popular Alexa top 500 sites14. This script can be seen in figure 4.4.

14 https://www.alexa.com/topsites

75

Figure 4.4: Modfied browsing script

This ensures that the browsing involves some of the more recent and publicly available

sites on the web as well as some of the more popular. For the script to browse sites in

a relatively realistic fashion, the sleep method is used in conjunction with the randint

method. The sleep function pauses the execution of the entire script. When combined

with randint, it is possible to pseudo-randomly set the pause time for each occurrence

of sleep. With the VPN connecting and disconnecting every 10 minutes, the randint

method’s minimum value was set to 10 seconds and the maximum value set to 300

seconds. This means that the website that is visited by the script will be displayed for

a minimum of ten seconds and no longer than 5 minutes. In their paper, (Liu et al.,

2010) showed that users judged web pages harshly in the first 10-30 seconds. After

this time had passed it was likely that users would spend upwards of 2 minutes on the

page. During the 10-minute VPN connection period, the browse script would visit a

minimum of 2 web pages.

For complete training of the network, more than one class of data is required so it was

necessary to capture network traffic that did not originate from a VPN connection.

This capture was accomplished in much the same way as with the capture of the VPN

traffic. The browsing script used was exactly the same and Wireshark was again used

to capture the traffic. The only difference in this instance was that the automatic

connection/disconnection to the VPN was removed. This was simply accomplished by

adding a “#” to the start of the Crontab line shown in figure 4.3. This defines the line

as a programming comment and is ignored by the Crontab parser. This task can also

be accomplished by deleting the line from the file.

76

4.2.2 NetMate

NetMate is a bidirectional flow exporter and analyser tool used to convert capture files

of network traffic into flow records (Haddadi & Zincir-Heywood, 2016). A TCP flow

is a sequence of packets between two endpoints as defined by their source IP address

and port to a destination IP address and port over a certain length of time (Stibler et

al., 1999). A sequence like this will only be considered a flow if it is monitored in both

directions. The packets captured from Wireshark meet this requirement, so they are

compatible with NetMate. The particular version of NetMate used for this dataset is

developed by former NIMS lab member; Daniel Arndt. This version is called Netmate-

flowcalc which is a bundle comprising of NetMate v0.9.5 packaged with NetAI

modules from v0.1 (Arndt, 2011). The output, if using one of the included rules files,

takes the form of a comma separated list of values. Each column corresponds to an

attribute or feature of the output. These attributes are defined using an Attribute-

Relation File Format (ARFF) header as pictured in figure 4.5.

Figure 4.5: NetMate attributes

The first five attributes on this list are taken directly from the TCP packet header. They

include the source IP address and port number; the destination IP address and port

number and the protocol being used. The rest of the attributes on this list are flow

statistics that are calculated by NetMate. The statistics calculated for the majority of

the remaining attributes are the minimum, mean, maximum and standard deviation.

@RELATION <44-flow-features>

@ATTRIBUTE srcip STRING

@ATTRIBUTE srcport NUMERIC

@ATTRIBUTE dstip STRING

@ATTRIBUTE dstport NUMERIC

@ATTRIBUTE proto NUMERIC

@ATTRIBUTE total_fpackets NUMERIC

@ATTRIBUTE total_fvolume NUMERIC

@ATTRIBUTE total_bpackets NUMERIC

@ATTRIBUTE total_bvolume NUMERIC

@ATTRIBUTE min_fpktl NUMERIC

@ATTRIBUTE mean_fpktl NUMERIC

@ATTRIBUTE max_fpktl NUMERIC

@ATTRIBUTE std_fpktl NUMERIC

@ATTRIBUTE min_bpktl NUMERIC

@ATTRIBUTE mean_bpktl NUMERIC

@ATTRIBUTE max_bpktl NUMERIC

@ATTRIBUTE std_bpktl NUMERIC

@ATTRIBUTE min_fiat NUMERIC

@ATTRIBUTE mean_fiat NUMERIC

@ATTRIBUTE max_fiat NUMERIC

@ATTRIBUTE std_fiat NUMERIC

@ATTRIBUTE min_biat NUMERIC

@ATTRIBUTE mean_biat NUMERIC

@ATTRIBUTE max_biat NUMERIC

@ATTRIBUTE std_biat NUMERIC

@ATTRIBUTE duration NUMERIC

@ATTRIBUTE min_active NUMERIC

@ATTRIBUTE mean_active NUMERIC

@ATTRIBUTE max_active NUMERIC

@ATTRIBUTE std_active NUMERIC

@ATTRIBUTE min_idle NUMERIC

@ATTRIBUTE mean_idle NUMERIC

@ATTRIBUTE max_idle NUMERIC

@ATTRIBUTE std_idle NUMERIC

@ATTRIBUTE sflow_fpackets NUMERIC

@ATTRIBUTE sflow_fbytes NUMERIC

@ATTRIBUTE sflow_bpackets NUMERIC

@ATTRIBUTE sflow_bbytes NUMERIC

@ATTRIBUTE fpsh_cnt NUMERIC

@ATTRIBUTE bpsh_cnt NUMERIC

@ATTRIBUTE furg_cnt NUMERIC

@ATTRIBUTE burg_cnt NUMERIC

@ATTRIBUTE total_fhlen NUMERIC

@ATTRIBUTE total_bhlen NUMERIC

77

Names and descriptions of the full list can be found in table 4.1. These features are

similar to those produced by another project named “flowtbag” which contains a more

detailed description of the features found in table 1 and can be located on Daniel’s

personal GitHub15.

Attribute

Name

Attribute Description

total_fpackets Totals packets in the forward direction.

total_fvolume Total bytes in the forward direction.

total_bpackets Total packets in the backward direction.

total_bvolume Total bytes in the backward direction.

fpktl The min, mean, max and standard deviation from the mean of

packet sizes in the forward direction.

bpktl The min, mean, max and standard deviation from the mean of

packet sizes in the backward direction.

fiat The min, mean, max and standard deviation from the mean of

time between two packets in the forward direction.

biat The min, mean, max and standard deviation from the mean of

time between two packets in the backward direction.

duration Total duration of the flow in microseconds.

active The min, mean, max and standard deviation from the mean of

time that the flow was active before going idle.

idle The min, mean, max and standard deviation from the mean of

time that the flow was idle before going active.

sflow_fpackets Average number of packets in a sub flow in the forward

direction.

sflow_fbytes Average number of bytes in a sub flow in the forward direction.

sflow_bpackets Average number of packets in a sub flow in the backward

direction.

sflow_bbytes Average number of bytes in a sub flow in the backward

direction.

fpsh_cnt Number of PSH flags set in packets in the forward direction.

bpsh_cnt Number of PSH flags set in packets in the backward direction.

furg_cnt Number of URG flags set in packets in the forward direction.

burg_cnt Number of URG flags set in packets in the backward direction.

total_fhlen Total bytes used for headers in the forward direction.

total_bhlen Total bytes used for headers in the backward direction.

Table 4.1: Description of NetMate statistical features.

15 https://github.com/DanielArndt/flowtbag

78

The overall size of the dataset captured and processed through NetMate was 9829

flows with 3569 flows representing VPN traffic and 6260 flows representing Non-

VPN traffic. These were labelled vpn and normal. This overall dataset was split into

three separate sets; one for training, one for testing and one for validation of the trained

model. The original set was split into 80% training and 20% testing as this was

regarded as a generally popular split according to the literature. The resulting testing

set was then split further following the same original split, 80/20, resulting in the final

testing and validation datasets. The training dataset contained 7863 instances, the final

testing dataset contained 1257 instances and the validation dataset contained 253

instances. More detail is provided on the techniques used to accomplish this in section

4.4.2.

4.3 VPN Setup: Streisand on AWS

In the previous chapter, the Azure cloud computing platform was utilised. Specifically,

the Azure machine learning studio was used to run machine learning experiments. For

this chapter, the cloud platform AWS is used. However, instead of running machine

learning experiments, the AWS platform is used to host a virtual machine which acts

as a VPN server. The server that was chosen was the t2.micro Elastic Compute Cloud

(EC2) instance which is one of the more basic types, but more than adequate to run a

fully featured VPN server. It contains one virtual CPU core and one gigabyte of RAM.

The software used to setup the server to allow it to provide VPN functionality is called

Streisand16. Streisand sets up a new remote server with the Ubuntu 16.04 operating

system that can run various services such as L2TP/IPsec, OpenVPN and other methods

of tunnelling network traffic via VPN. The setup is heavily automated, relying on an

automation tool named Ansible that is typically used to provision and configure files

and packages on remote servers. The only input required from the user is to choose a

cloud provider, physical region for the server and the API information for the cloud

platform that the user wishes to set the server up on.

Once this information has been provided, the script begins the creation and initial setup

process for the remote server, installing the required software and tools needed. Once

16 https://github.com/StreisandEffect/streisand

79

the server has been fully set up, a number of local files are created on the user’s local

computer which contain instructions on getting started. There is also an option to forgo

the cloud providers and perform the setup on a local computer, however this was not

investigated. For the experiments run as part of this chapter, the OpenVPN protocol is

the type of VPN being tested. The reason for choosing OpenVPN is because it is quite

popular in part due to its simple configuration. Servers and clients are widely

supported across many different platforms i.e. an OpenVPN server running on a

Linux/Unix based host can be accessed by a Windows client and vice versa. There are

also client applications available for mobile platforms such as Android and iOS,

making it suitable for on-the-go VPN use.

4.4 Weka Experiment

For the development of a VPN classifier, it was decided that a change of platform was

required. During the early testing mentioned in section 4.2 it was found that Azure

Machine Learning studio tended to overfit during training even with the updated TCP

flow statistics dataset. This issue was likely a result of the continuous development of

the Azure platform and until this unique issue could be resolved, the Azure platform

was not able to handle the algorithm being researched in the context of this experiment.

The Waikato Environment for Knowledge Analysis (Weka) workbench was the option

chosen based on its reputation as a very powerful tool for understanding and analysing

machine learning algorithms. Even though in chapter 3, cloud computing was found

to be a preferable choice of platform for the experiments conducted in this research,

because Azure was found to be lacking in this situation, no other cloud platform was

capable of dealing with the task at hand. Given this it was determined to go with a

local platform because although these are often limited to the hardware doing the

computations, it meant that during the experiment, access to robust machine learning

algorithms was ensured.

The Weka workbench is a collection of standard machine learning algorithms and data

pre-processing tools. It is designed to allow researchers to quickly apply existing

methods of machine learning to new datasets (Frank et al., 2016). Weka includes

methods for many types of machine learning problem including: regression,

classification, clustering and attribute selection. Weka includes a number of ways of

80

setting up experiments: Explorer, Knowledge Flow, Experimenter and Workbench.

Explorer is a graphical user interface which provides access to all of the facilities of

Weka using menu selection and forms. Knowledge flow is an interface that allows you

to visualise and control the stream of data when using larger datasets. A drawback of

Explorer is that datasets are loaded in their entirety to the computers RAM, meaning

that datasets that need a larger amount of memory than the computer can provide will

not be able to be used. Knowledge flow enables a researcher to specify a data stream

by connecting components representing data sources, pre-processing tools, learning

algorithms, evaluation methods and visualisation modules. If the filters and learning

algorithms are capable of incremental learning, then the dataset will be loaded into

memory in increments causing memory to be saved. Experimenter is designed to

answer the question of which learning algorithms and parameters values work best for

the given problem. This can be accomplished manually using Explorer. However,

Experimenter allows the researcher to automate the process by making it easy to run

different classifiers with different parameters on multiple datasets, collect the results

and performance statistics and then analyse them to see what combination works best

for the given problem. The last interface is called Workbench. It is a unified graphical

interface which incorporates features from the other three into one application. It is

highly configurable and allows for the creation of a highly tailored interface.

The method used for experiments described in this chapter is based on Explorer. This

is the most straight-forward interface to using Weka and can be used to load in

datasets, run experiments and analyse the results. Weka’s native data storage method

is the ARFF format, however it provides methods to convert data to ARFF from

spreadsheets and databases. It can also accept comma-separated value (CSV) files,

ASCII MATLAB files, LIBSVM etc. and also provides methods to convert them to

the ARFF format. CSV files that have had the ARFF attribute information added to

them manually can also be accepted as long as Weka is able to interpret the ARFF

headers correctly. The ARFF header helps Weka to identify what is an attribute, what

is an instance of the data and what are the classes (if any).

Once the data has been loaded into Weka, it can be modified using the Pre-process

tab. Modifications include the ability to remove attributes, add instances manually and

apply various filters to the entire dataset. Modified versions of the dataset can be saved

81

to their own file, leaving the original dataset intact for future use or modification. One

of the most useful modifications is the ability to split the original dataset into separate

training, testing and validation sets using the provided filters which is discussed in

section 4.4.2. The next tab is Classify and it is here that the various machine learning

algorithms are trained to perform classification or regression and evaluate the results.

The dataset that is loaded into the pre-process tab is seamlessly transferred across to

the classify tab. If not already done, the dataset can be split into training and testing

here using the “Test options” selections or, if already completed, the test set can be

specified.

The type of classification or regression algorithm can be chosen here as well as from

the large selection that Weka provides, including Linear Regression, Multilayer

Perceptron, Naïve Bayes and C4.5 decision tree algorithms. All of the classifiers are

adjustable via another Weka dialogue which enables customisation via drop down

menus and textboxes. Once setup the algorithm can be trained and tested by pressing

the start button and once the model has been successfully trained and tested, the results

are shown in the “Classifier output”. The Cluster and Associate tabs were not used

during the experiments described in this chapter. The Select attributes tab gives access

to several methods for attribute selection. This involves an attribute evaluator and a

searching method. Both are selected and configured in the same way that options are

chosen and configured in the other tabs. Selection can be performed using either the

full dataset or by using cross-validation. The full dataset option was used for this

chapter’s experiments. This allows the researcher to perform feature selection using a

number of different feature selection algorithms. The feature selection performed on

the dataset used in this chapter is discussed further in section 4.4.1.

4.4.1 Feature Selection

The feature selection model used was the Weka model CorrelationAttributeEval

which is a model that is based on Pearson’s Correlation Coefficient model. This is a

measure of the linear correlation between two variables. The output of the model is a

value between +1 and -1, where +1 is total positive linear correlation, 0 is no linear

correlation and -1 is total negative linear correlation. In Weka, the search method

82

Ranker is required to run CorrelationAttributeEval. Ranker ranks attributes by their

individual evaluations i.e. from highest positive linear correlation to lowest negative

linear correlation. It provides options to set a threshold by which attributes can be

discarded, with the default being that no attributes are discarded. Through trial and

error, the threshold for the experiments run in this chapter was set to 0.5. This

threshold is the cut-off point for whether an attribute of the data is kept as a feature or

discarded.

Attribute Name Correlation Coefficient

total_fpackets 0.561

total_fvolume 0.544

max_fpktl 0.644

max_bpktl 0.724

duration 0.742

mean_active 0.677

max_active 0.57

std_active 0.55

fpsh_cnt 0.587

total_fhlen 0.561

Table 4.2: Correlation Coefficients for selected attributes

The result of this selection was a reduction from 44 features to the 10 features that

were calculated to have a linear correlation above 5, a list of which is shown in table

4.2. The lowest correlation was 0.544 for total_fvolume and the highest was 0.742 for

duration.

4.4.2 Resampling the dataset into training, testing & validation sets

The resample filter can be found under the “instance” folder under the “supervised”

folder. The original, full dataset was edited to create a training dataset of 7863 by

resampling using the options outlined in figure 4.6. The 80/20 percent split can be seen

in sampleSizePercent as “80”.

83

Figure 4.6: The Weka Resample dialogue

To create the testing dataset, the original dataset was again resampled using the same

criteria, but the invertSelection option was changed from false to true. This gives the

opposite output of the first run and the output is a dataset of 1510 instances which is

the 20% from the 80/20 split. These instances were then again resampled following

the above steps in order to create the final testing dataset and the final validation

dataset. Again, this followed the 80/20 percent split, with the 80% split being the

testing set and the remaining the 20% being the validation set. The resulting datasets

were 1257 instances for the testing dataset, or approximately 12% of the original

dataset, and 253 instances for the validation dataset, approximately 2-3% of the

original dataset.

4.4.3 Neural Network Setup

The Weka model used for classifying whether the instances from the dataset are traffic

coming from a VPN or not is the MultilayerPerceptron model. This model is based on

a standard artificial Neural Network that is trained using back propagation. This model

offers a large amount of customisation, with options to build a network by hand, let

an algorithm build the network or a mixture of both. Figure 4.7 shows the

84

configuration used to setup the neural network model used for the classification

experiments.

Figure 4.7: Neural Network Weka Configuration

This setup was found to be the best performing configuration when compared to other

networks with different configurations with regards to accuracy, training time and

avoiding the problem of overfitting the data. Ideally for this model to be used in a real-

world application, the training time needs to be kept to a minimum whilst preserving

as much accuracy as possible. For the purposes of classifying VPN and non-VPN

traffic it was decided to allow Weka to create a fully connected network in order to

leverage all of the data instead of having parts of the data be degraded from the

network over time. Semi-connected networks are capable of answering questions in a

more creative or chaotic way, but tend to lose focus on the overall problem (Theiler,

2014). For a binary classification problem, it is often better to pursue simpler models

as less ambiguity is injected into the networks learning phase.

This is accomplished by using the two options autoBuild and hiddenLayers. Autobuild

is the option which instructs Weka whether to build a fully connected network or not

85

with the two options being true or false. HiddenLayers is where the hidden nodes of

the network are defined.

The value shown in figure 4.6 is one of the provided wildcard values. ‘a’ creates a

hidden layer by summing together the number of attributes and classes and then

dividing the total in half. So, for 10 attributes and two classes, the number of hidden

layers is set to six. Figure 4.8 shows the completed network, ready to be trained using

the training dataset.

Figure 4.8: Fully connected Neural Network

Once the model is configured, it is ready to train using the dataset currently loaded

into the “Preprocess” tab. This network was trained using the above options and the

total time taken to train the network and build the classification model was

approximately 10 seconds using an 8-core processor. Testing was completed a few

seconds later using the testing dataset. Validation of the result using the validation

dataset was completed by loading it in as a test set and then re-evaluating the already

trained model.

4.4.4 Results

Tables 4.3 and 4.5 show the results as measured by Weka for the validation tests and

for the final blind test respectively. Tables 4.4 and 4.6 display the confusion matrices

for the two sets.

86

Correctly Classified Instances 1178 / 1257 (93.7152%)

Incorrectly Classified Instances 79 / 1257 (6.2848%)

Average True Positive Rate 0.937

Average False Positive Rate 0.081

Average Precision 0.937

Average Recall 0.937

Average F-Measure 0.937

Table 4.3: Validation test results

The results shown in table 4.3 shows that the overall accuracy of detection for the

neural network in the post-training test was approximately 94%. That is 1178 correctly

classified instances out of a testing set of 1257.

Classified as VPN Normal

VPN 408 48

Normal 31 770

Table 4.4: Confusion Matrix for Validation test

Table 4.4 shows the confusion matrix for the validation test. It provides details on the

correctly and incorrectly classified instances and how they are distributed as true

positive and negative and false positive and negative. The goal is to keep the false

positive and false negative as low as possible and table 4.4 shows that this has indeed

been accomplished. The number of false positives (i.e. Normal traffic that has been

incorrectly classified as a VPN) was 31 instances. The number of false negatives (i.e.

VPN traffic that has been incorrectly classified as Normal) was 48 instances.

87

Correctly Classified Instances 232 / 253 (91.6996%)

Incorrectly Classified Instances 21 / 253 (8.3004%)

Average True Positive Rate 0.917

Average False Positive Rate 0.113

Average Precision 0.917

Average Recall 0.917

Average F-Measure 0.916

Table 4.5: Testing results

Table 4.5 shows the results for the final blind test results. The training test was

performed on data that had been kept separate from the training process. The data was

classified by the trained model as new data that it had never encountered before,

therefore imitating real world conditions. The result was an accuracy rating of

approximately 92% or 232 correctly classified instances out of 253.

Classified as VPN Normal

VPN 78 14

Normal 7 154

Table 4.6: Confusion Matrix for Testing results

Table 4.6 shows the confusion matrix for the training test. As explained for table 4.4,

this provides details on the correctly and incorrectly classified instances and how they

are distributed as true positive and negative and false positive and negative. The

number of false positives for the validation test was seven and the number of false

negatives was 14.

In the context of this model operating under real-world conditions on a live network,

the validation results show that for every 100 network packets classified by the model,

approximately 94 of them will be classified correctly and 6 will be classified

incorrectly. For the separate training test results, there would be approximately 8

88

errors. As with the proxy detection model discussed in chapter 3, the model is shown

to be slightly too lenient in classifying positive instances, with more false negatives

than there are false positives.

4.5 OpenVPN using Stunnel

Stunnel17 is an open source, multiplatform application that is designed to add SSL/TLS

encryption capability to clients and servers that do not natively support the SSL/TLS

protocols. While OpenVPN itself has support for SSL/TLS, techniques such as Deep

Packet Inspection (DPI) have the potential to detect OpenVPN when using SSL/TLs

(Kazemi & Fanian, 2015; Deri et al., 2014). Stunnel can be used to overcome this and

present the traffic to DPI frameworks as normal SSL web traffic running on port 443.

This gave rise to the question of whether a similar method of classification that was

used to classify OpenVPN traffic using a neural network could also be trained to

recognize OpenVPN traffic that was using Stunnel. To use Stunnel, the user must

install and configure the application on both the OpenVPN server and on whatever

OpenVPN client they are using to connect to the VPN. On Linux this involves

installing the application by downloading the stunnel4 package, creating and sharing

a new OpenSSL certificate between the client and the server, creating and editing

Stunnel config files and configuring the firewalls of both the server and client to allow

the Stunnel traffic to be transported.

4.5.1 Dataset

As with the previous experiments, a dataset containing network traffic from Stunnel

OpenVPN connections and non-VPN traffic is required to train the neural network.

With the ground work already done with the setup of the OpenVPN server on AWS

for the previous experiment, this was relatively simple. The Streisand VPN package

also contained everything necessary to setup Stunnel for use with OpenVPN, only

requiring a few configuration files to be modified. Once the VPN was setup and the

connection stable, capture of the network traffic began using the same method as used

for the OpenVPN data capture. Wireshark was used to capture network packets; the

17 https://www.stunnel.org/

89

VPN was set to disconnect and reconnect every 10 minutes and automatic browsing

script was used to generate traffic from the same selection of websites. Once the

packets were captured, they were processed using the TCP flow export tool NetMate

in order to gain flow statistics of the new data. The result of this data capture was a

total dataset of 3,952 samples, of which 1,931 were Stunnel OpenVPN and 2,021 were

non-VPN. This dataset was then loaded into Weka.

4.5.2 Feature Selection

Feature selection was applied to the capture data in order to reduce the number of

features produced by NetMate. Again, the same Weka technique used for the

OpenVPN experiment was used. This was the CorrelationAttributeEval model which

was also operating under the same threshold of 0.5. The resulting features are

displayed in Table 4.7.

Attribute Name Correlation Coefficient

min_fpktl 0.992

duration 0.937

max_fpktl 0.913

max_idle 0.78

max_biat 0.763

std_idle 0.719

max_fiat 0.673

mean_idle 0.575

min_idle 0.562

mean_fpktl 0.561

mean_active 0.512

max_active 0.511

std_fpktl 0.506

Table 4.7: Correlation Coefficients for selected Stunnel attributes

90

The feature selection for the Stunnel data appears to be largely different to the features

selected for the original VPN dataset. Some attributes make a reappearance, such as

duration, but with a different correlation coefficient. Some of the attributes selected

this time haven’t been seen before which would seem to indicate that there is a

difference in how Stunnel modifies the OpenVPN connection. Following the same

steps used in the previous experiment, the dataset was resampled into separate training,

testing and validation sets. The training set contains 3160 samples, the testing set

contains 633 samples and the validation set contains 127 samples after resampling.

4.5.3 Neural Network setup

For this experiment the goal was to examine how well the model developed in the

previous experiment could also perform the same with network traffic from a different

source. Therefore, the neural network model used in the previous experiment was

reused without any modification. Figure 4.6 shows the configuration of this model.

Weka was instructed to create a fully connected network with the hidden layer being

defined by a. ‘a’ is a provided wildcard which creates a hidden layer by summing

together the number of attributes with the number of classes and divide the result by

2. In this instance there are 13 attributes and 2 classes which results in 15 divided by

2 which is 7.5. Weka rounds down to the nearest whole number so the number of

hidden nodes is set to 7. Figure 4.9 shows this completed network.

Figure 4.9: Fully connected Neural Network for Stunnel experiment.

91

Once at this stage the model is ready to be trained using the dataset. In the previous

experiment, the model was trained, tested and validated using three resampled sets of

data. The same method was used for this model with additional tests being run using

10-fold cross-validation and Leave One Out Cross Validation (LOOCV). On initial

testing using these validation methods, the results gathered showed that the model was

getting unrealistically high accuracy, possibly showing signs of overfitting of the

model to the problem. To remedy this, the learning rate and then the momentum of the

model were lowered from 0.1 to 0.01.

4.5.4 Results

Tables 4.8, 4.9 and 4.10 show the results of each validation method used once the

neural network had been finally trained using the updated configuration. Tables 4.11,

4.12 and 4.13 show the confusion matrices for each of the tests. Figure 4.10 shows a

bar chart comparing the overall accuracies of each test to a test run without any rules

applied.

The ZeroRules method in Weka displays what the results would be in the event where

everything is classified as one of the classes, in this case that was the normal class.

Compared to the zero rules result, the neural network performs very well.

Correctly Classified Instances 125 / 127 (98.4252%)

Incorrectly Classified Instances 2 / 127 (1.5748%)

Average True Positive Rate 0.968

Average False Positive Rate 0.000

Average Precision 1.000

Average Recall 0.968

Average F-Measure 0.984

Table 4.8: 80/20 split Validation test results

92

Table 4.8 shows the results gathered from Weka for the test that used an 80/20

percentage split on the dataset to create separate training, testing and validation sets.

The results shown are taken from the final validation set test, which uses data that was

kept separate from the training and tuning of the model in order to simulate as close

as possible the real-world performance of the model. The overall accuracy of the

model was shown to be 98.42%.

Correctly Classified Instances 3869 / 3952 (97.8998%)

Incorrectly Classified Instances 83 / 3952 (2.1002%)

Average True Positive Rate 0.969

Average False Positive Rate 0.012

Average Precision 0.987

Average Recall 0.969

Average F-Measure 0.978

Table 4.9: 10 fold Cross Validation test results

Table 4.9 shows the results gathered from the test that used 10-fold cross validation to

validate the model. For validation of this model the dataset was split into 10 equally

sized subsamples or folds. Of these 10 subsamples, one is retained as the validation

data for testing of the model and the remaining 9 subsamples are used as training data.

This process is then repeated 10 times so that each of the folds is exactly once as the

validation data. These results are then averaged to provide a single estimation of the

performance of the model. The overall accuracy as shown by this validation is shown

to be 97.89%.

93

Correctly Classified Instances 3866 / 3958 (97.8239%)

Incorrectly Classified Instances 86 / 3952 (2.1761%)

Average True Positive Rate 0.968

Average False Positive Rate 0.012

Average Precision 0.987

Average Recall 0.968

Average F-Measure 0.978

Table 4.10: Leave One Out CrossValidation test results

Table 4.10 shows the results gathered from the test that used Leave One Out cross

validation to validate the model. LOOCV involves a similar process to 10-fold Cross

Validation where, instead of splitting the data into equal sized folds, only one sample

is retained as the validation data, with the rest being used as training data. This process

is repeated as many times as there are samples in the dataset i.e. until every single

sample has been used as the validation data once. The overall accuracy achieved using

this validation method was found to be 97.82%.

Classified as VPN Normal

VPN 60 2

Normal 0 65

Table 4.11: Confusion Matrix for 80/20 split Validation test

Table 4.11 shows the confusion matrix for the test that used an 80/20 percentage split

on the dataset. It shows 60 samples were correctly identified as VPN, 65 samples were

correctly identified as non-VPN and 2 were incorrectly identified as non-VPN.

Interesting is the lack of samples that were incorrectly identified as VPN.

94

Classified as VPN Normal

VPN 1872 59

Normal 24 1997

Table 4.12: Confusion Matrix for 10 fold Cross Validation test

Table 4.12 shows the confusion matrix for the test that used 10-fold cross validation.

It shows 1872 samples were correctly identified as VPN, 1997 samples were correctly

identified as non-VPN, 24 samples were incorrectly identified as VPN and 59 samples

were incorrectly identified as non-VPN.

Classified as VPN Normal

VPN 1870 61

Normal 25 1996

Table 4.13: Confusion Matrix for Leave One Out Cross Validation test

Table 4.13 shows the confusion matrix for the test that used LOOCV for validating

the model. It shows 1870 samples were correctly identified as VPN, 1996 samples

were correctly identified as non-VPN, 25 samples were incorrectly identified as VPN

and 61 samples were incorrectly identified as non-VPN.

95

Figure 4.10: Graph comparing accuracies of different validation techniques against

ZeroRules

As shown in table 4.8, the 80/20 split validation method was able to achieve an

accuracy rate of 98.43%. Initially this would suggest that the 80/20 training and test

split provides the best model, because the overall number of samples in the validation

set is comparatively low, the results may not be reliable. This leaves the two types of

cross validation to be compared to each other. 10-fold cross validation is one of the

more popular forms of cross validation and is widely used. LOOCV is essentially cross

validation where the number of folds that the data is sub-divided into is the same as

the total number of samples in the dataset, in this case that would be 3952 folds. In the

results the overall accuracies of the two methods are very close to one another.

However, LOOCV has a much higher computation time when compared to 10-fold

cross validation despite the individual fold computation time being lower. When 10-

fold validation is used the model only has to be trained and tested once for each of the

10 folds, the model in this case must be trained and tested 3952 times when using

LOOCV. Because the results of the two validation techniques are so close to one

another, this means the benefits of LOOCV are possibly worthless.

So, if we take the result of the 10-fold cross validation of 97.89% as the best indicator,

it can be said that the neural network has the ability to accurately distinguish between

an OpenVPN connection making use of Stunnel and normal non-VPN traffic.

96

However, as noticed with the previous OpenVPN experiment, the confusion matrices

for all of the validation methods used this time round show that the model is slightly

too lenient, with a higher number of false negatives than false positives.

4.6 Validation testing

The work that will form the basis of this comparison will be that of (Draper-Gil et al.,

2016) previously mentioned in the introduction to this chapter. This work introduces

a classification method for classifying encrypted and VPN traffic from various

sources, the main focus being Voice over Internet Protocol (VoIP). Additionally, the

paper also evaluates the performance of the approach on other types of Internet traffic

such as browser-based, mail-based and peer-to-peer traffic. The paper uses two

different machine learning algorithms, C4.5 and k-nearest neighbour (KNN).

The results of the browser-based approach presented in (Draper-Gil et al., 2016) are

the only results used for validation of the models presented in Section 4.4.3 and 4.5.3

as browser-based traffic is the primary scope of the research conducted using the

developed models. In the experiments carried out in (Draper-Gil et al., 2016), two

scenarios is examined.

In the first scenario where the goal is to classify encrypted traffic as well as identifying

whether the source was a VPN by first distinguishing between VPN and Non-VPN

traffic following by classifying the traffic into one of several sub-types. To accomplish

this, the dataset used was split into two separate datasets with one containing Non-

VPN traffic and the other containing VPN traffic. In the second scenario a dataset

combining the two sets of data from the first scenario are used, with the VPN

identification and classification of traffic being accomplished at the same time.

The results for the first scenario highlight the precision and recall of the classification

of the different types of traffic. For browser-based traffic, the best results obtained

were from the C4.5 algorithm. The precision obtained was approximately 0.88 and

0.93 for the VPN and Non-VPN classifiers respectively giving a mean average

97

precision of 0.905 that was calculated from the results presented in (Draper-Gil et al.,

2016).

The results for the second scenario highlight the precision and recall of the

classification of whether the traffic in question originated from a VPN and what type

of traffic it is. For browser-based traffic, the best results attained were again obtained

from the C4.5 algorithm with the precision being approximately 0.81 and 0.82 for the

VPN and Non-VPN classification respectively giving a mean average precision of

0.815 that was again calculated from the results presented in (Draper-Gil et al., 2016).

These results show that the approach can produce a classifier to characterise encrypted

non-VPN and VPN traffic.

The goals of the experiments conducted in Chapter 4 of this thesis were the creation

of machine learning models based on neural networks that were capable of

characterising VPN and non-VPN traffic. The first model that was developed focused

on classifying normal and standard OpenVPN traffic. The second model that was

developed focused on classifying normal and Stunnel OpenVPN traffic. The results

obtained for the first model show an average precision of 0.917 when classifying

traffic as either VPN or non-VPN. The results obtained for the second model show an

average precision of 0.987 when classifying traffic as either Stunnel VPN or non-VPN.

Comparing the results obtained from (Draper-Gil et al., 2016) and the ones obtained

from the two proposed models, it is clear that the proposed models perform better

when applied to the selected scenario.

4.7 Summary

This chapter explored the development of a neural network model that was capable of

classifying network traffic as VPN traffic or not by using TCP flow statistics. Section

4.2 describes the capture of network packets and the further processing applied to them

using NetMate to create flow statistics that can then be compiled into a dataset. Section

4.3 describes the setup of the AWS Virtual Private Server (VPS) used to host the target

OpenVPN server.

98

Section 4.4 follows on from that to describe the experiments carried out using the

WEKA machine learning tool. It features an overview of the tool itself and its

capabilities, then goes on to describe how it was used to perform feature selection, the

setup of the neural network and finally displays and describes the results of the

classification.

Section 4.5 then continues the previous work and attempts to apply the same method

to a different implementation of OpenVPN which uses the Stunnel application to

provide SSL encryption for the VPN. An overview of the dataset captured is given,

with details provided on the neural network configuration and how it differs from the

original configuration. The results of the classification and different forms of

validation and then given.

Section 4.6 presents a validation test using a known state-of-the-art approach as a

baseline for the performance of the proposed models.

99

5. Conclusion and Future Work

5.1 Concluding Summary

The aim of this thesis was to investigate methods that would aid in the detection of

anonymising web proxies and VPN technologies that are being used to hide an

attacker’s identity. While proxies and VPNs have legitimate uses, such as connecting

to a business network from a remote location, they are still abused by criminals who

use them as a way to commit crimes whilst remaining undetected and unidentified.

Without a method to identify when a Proxy or VPN is connecting to a web facing

server, businesses could be vulnerable to having their network breached and having

data stolen whilst being hindered in their ability to confidently say who stole it. This

can be particularly detrimental to websites who deal with customer details and

financial records.

There are methods available for inspecting network traffic at the point of ingress and

egress. An example of one of these methods is Deep Packet Inspection (DPI). It is

closely related to another method called Shallow Packet Inspection (SPI), however

SPI only has the ability to inspect the headers of network packets that are used to

transport the packets to their destination. DPI goes a step further and inspects those

headers and the actual content of the packet, which in the case of a HTTP packet could

be a request for data from a website. A counter to DPI is the use of end to end

encryption on the content of packets in order to hide those contents from prying eyes.

This is done innocently enough with the goal being to stop potential man in the middle

attacks from stealing sensitive data such as usernames and passwords or financial

details as they are being transmitted. However, proxy and VPN technologies also have

the ability to use encryption technologies with the use of IPSec and SSL/TLS. This

increases the need for a method to identify these types of network traffic. Machine

learning techniques are one way in which to accomplish this.

The chapters detail the steps taken to develop a machine learning technique for

identifying proxy and VPN network traffic. These chapters are summarised below.

100

Chapter 2 provides a background of the technologies investigated as well as the state

of the art in the use of them and detecting their use. The chapter first gives a

background on the various types of Proxy that are available and explaining how Proxy

have both legitimate and illegitimate uses. A number of different anonymising Proxy

technologies were described with some details given on how they are developed. The

second section of the chapter is focused on giving a background of different VPN

technologies and how they’ve been developed and improved. Next a background on

Intrusion Detection Systems is provided with a review on how machine learning

techniques have been integrated with them to improve their detection rates. Finally, a

background is provided for Neural Networks to aid in the understanding of how they

operate.

Chapter 3 created the neural network model that was capable of classifying

Anonymising Proxy network traffic versus normal traffic not being routed through an

Anonymising Proxy. The chapter begins by outlining the hardware setup used to

generate network traffic and the reasons for the choices made. Then the chapter begins

describing the steps taken to generate the dataset needed to train and test the neural

network model. This involved using the Proxy client described in the hardware setup

section to generate and capture network traffic from anonymising web traffic sources

and network traffic from non-Proxy sources. The capture used automated browsing

and capture scripts that were written in Python. The features of the dataset resulting

from the network traffic capture took the form of TCP header details. This dataset was

used alongside the Microsoft Azure Machine Learning Studio to train, tune and test a

binary class Multi-layered Perceptron Neural Network.

As tuning of the model progressed, it was found that some features were causing the

model to overfit to the data and these were then removed. Once overfitting was

reduced a completed model could be trained and was tested on data from the dataset

that had purposely been kept separate from the training and tuning processes to reduce

any bias that may have formed in the model. The results of the validation test showed

that the model was capable of classifying network traffic as either Anonymising Proxy

traffic or as non-Proxy traffic and the concluding results section details the results

obtained.

101

Chapter 4 involves a follow-up investigation of whether similar techniques to those

used in Chapter 3 could be used to identify and classify network traffic belonging to a

VPN. The chapter begins by outlining how VPNs can be problematic when used as an

identity hiding tool and gives justification for the investigation. Discussed next is the

need for an additional dataset which is needed to train the Neural Network model. The

tools used to capture it were a Virtual Machine running Ubuntu 18.04, Wireshark and

a variation of the automated browsing script from chapter 3. This dataset was initially

based off the same theory as the one underlying the Proxy dataset, that the TCP header

details would provide enough of a pattern to allow for detection of VPN network

traffic.

However, the Neural Network model was unable to correctly classify the traffic. This

led to the decision to investigate the use of TCP flow statistics as features rather than

the header details. The flow statistics were calculated by processing the captured

network traffic using an application called NetMate. The output of this was a series of

features that calculated various time and size related data. The Weka machine toolset

was used for all the pre-processing of the flow statistic dataset and for the training and

testing of the Neural Network model. The chapter describes in detail the configuration

used for the Neural Network experiment and the feature selection process used. The

Section 4.4.4 describes the results obtained from this series of experiments.

Building off this initial VPN experiment, Section 4.5 explores the problem further by

using a different variation of OpenVPN which uses an application called Stunnel to

provide an encrypted connection. Another dataset was captured containing new traffic

data which was processed through NetMate to obtain flow statistics. Weka was used

again to process the dataset and a Neural Network was trained and tested from the

data. The concluding results section describes the results of this further test which

show that the slightly modified model was able to classify the Stunnel OpenVPN

traffic with a high percentage of accuracy.

102

5.2 Thesis Contributions

With regards to the objectives laid out in the beginning of this thesis, all have been

met in the course of the work undertaken. A full investigation into the detection and

classification of Anonymising Proxy and VPN traffic was conducted using a Multi-

layered Perceptron Neural Network for the classification of the traffic. From the

experiments conducted the Neural Network was found to be able to classify

Anonymising Proxy traffic correctly with an overall accuracy of 94.6%. The

experiments conducted to classify OpenVPN usage found that the Neural Network

was able to correctly identify the VPN traffic with an overall accuracy of 93.71%. The

further work done to classify Stunnel OpenVPN usage found that the Neural Network

was able to correctly identify VPN traffic with an overall accuracy of 97.82% accuracy

when using 10-fold cross validation. This final experiment also provided an

observation of 3 different validation techniques and the different accuracy results

obtained.

5.2.1 Proxy detection using Neural Network

The first part of this contribution was the generation of a dataset containing traffic

from browser sessions using several anonymising proxies and sessions that were not

using anonymising proxies. The traffic was labelled as either anonymising proxy

traffic or as normal, non-anonymising proxy traffic. The features used were the details

of the TCP header contained within each network packet.

The second part of this contribution was the creation of a machine learning model for

classification of proxy and non-proxy network traffic trained on the aforementioned

dataset. Through the experimental work carried out, it was proven that a neural

network was capable of classifying network traffic as either Anonymising Proxy

traffic or as non-Proxy traffic. The tests were carried out in such a way that bias was

removed where possible when conducting validation tests. Data from the captured

network traffic was specifically kept separate from the training and tuning phases of

the model creation in order to simulate as close to possible real-world data that the

model had not encountered before.

103

5.2.2 VPN detection using Neural Network

The first part of this contribution was the generation of a dataset containing traffic

from browser sessions that were conducted using a VPN connection and sessions that

were not conducted using a VPN connection. The traffic was labelled as either VPN

traffic or as normal, non-VPN traffic. The features used were statistics gathered from

TCP-flows which measured both the number of bytes transferred in both directions as

well as the time take to transfer the bytes.

The second part of this contribution was the development of a machine learning model

for classification of VPN and non-VPN network traffic trained on the dataset of TCP

flow statistics.

Upon successful experiments conducted for the detection of Anonymising Proxy

traffic, the focus was extended to include VPN traffic. The VPN technology OpenVPN

was chosen as the focus for the experiments, which in turn found that the Neural

Network was capable of classifying network traffic as either VPN traffic or as non-

VPN traffic.

A further set of experiments which attempted to classify a form of OpenVPN traffic

that made use of Stunnel to provide encryption. To facilitate these experiments, a third

dataset consisting of TCP flow statistics captured from a combination of normal non-

VPN traffic and OpenVPN traffic that was tunneled through Stunnel was created.

Using this dataset, the model developed for standard OpenVPN data was trained and

tested again on the Stunnel OpenVPN data. Early results showed that this model was

overfitting the data, so it was modified to account for this. Once the model was

modified, this set of experiments found that a Neural Network trained on the Stunnel

OpenVPN data could classify network traffic as either VPN traffic or non-VPN traffic.

Again, the experiments were conducted in such as fashion as to eliminate bias where

possible. This included keeping a portion of the captured dataset away from the

training and tuning phases so it could be used to simulate real world data that the model

had never seen before.

104

5.3 Future Work

This thesis presents a substantial body of work and the research contained within

provides novel contributions to the detection of both Anonymising Proxies and VPNs.

There are however several directions in which this work could be extended. These are

outlined in sections 5.3.1 through to 5.3.5.

5.3.1 Capture of additional data to further test the hypothesis

The datasets captured in the process of the work undertaken for the thesis have been

of varying sizes, with the largest being approximately 11000 samples. Time played a

large part in how much data was feasible to capture. Going forward, a recommendation

could be made to increase the size of the datasets in order to further test the strength

of the models created.

5.3.2 Investigation of automatic hyperparameter tuning in Weka

An improvement to the experiments conducted in chapter 4 would be the use of an

automatic hyperparameter tuning method similar to that used in the Azure experiments

of chapter 3. One such method is provided in the Weka add-on module Auto-WEKA

(Thorton et al, 2013). The use of Auto-WEKA has only just been considered because

the project has matured to a stable usable point.

5.3.3 Investigation of other machine learning techniques

An advancement of the techniques used in this research would be to investigate the

use of Ensemble Learning. Similar to voting systems developed in other fields,

Ensemble Learning takes the idea of using the output of multiple base algorithms

together into what is known as an ensemble. The benefit of using Ensemble Learning

is that more accurate results can be gained as opposed to using each base learning

algorithm in isolated fashion. This is due to the diverse nature of ensembles.

One emerging method for forming an ensemble is one known as Stacking. Stacking

involves the use of multiple base algorithms which are all trained on the same set of

data. The outputs of each base algorithm are aggregated with the actual class and

predicted probabilities for an instance. The aggregated outputs are fed into a regression

model for each class. The final output of the regression models is combined to form

the final classification result (Milliken et al, 2015).

105

Another possible avenue to explore is the role that Transductive and Matched-Pair

machine learning can play individually as well as combined together in this problem

as they allow for better metadata to formed from input data (Theiler, 2014).

5.3.3 Obfsproxy with OpenVPN

In order to improve its undetectability against the many forms of censorship, the Tor

project set about developing the pluggable transports project (Mazurczyk et al., 2016).

One of the results of this project was the pluggable transport Obfsproxy. Obfsproxy is

an additional software package that was originally developed to work alongside Tor.

Its role was to obfuscate Tor packets by re-encrypting them to conceal the Tor-specific

fingerprints that may be present. Today, is can be used as a standalone software that

changes traffic signatures to look like traffic that is not normally blocked by methods

such as DPI. It can be used in this way to help prevent OpenVPN packets from being

detected by DPI. Therefore, some work could be done to investigate whether the

methods described in this thesis for detecting OpenVPN could also be applied to

detecting the use of OpenVPN alongside Obfsproxy. There is also the possibility of

investigating whether it is possible to classify Tor traffic using the same techniques.

5.3.4 Wireguard

Wireguard18is a relatively new VPN technology developed to be faster and simpler

than IPSec while being more performant than OpenVPN. It is a secure network tunnel

that operates at layer three of the network stack implemented as a kernel virtual

network interface for Linux (Donenfeld, 2017). There is currently no windows client

yet available which limits its popularity, but the author claims to be working on a

client. Despite this, Wireguard is gaining traction in industry19 as well as possible

government support in the USA20. It may be worth attempting to apply the techniques

developed in this thesis to identify Wireguard traffic.

18 https://www.wireguard.com/
19https://arstechnica.com/gadgets/2018/08/wireguard-vpn-review-fast-connections-amaze-but-

windows-support-needs-to-happen/
20 https://www.xda-developers.com/us-senator-pushes-government-use-wireguard-vpn/

106

5.3.5 Deeper classification with multiple kinds of VPN

The work completed in this thesis focused purely on binary classification of VPN and

non-VPN traffic. Another direction that this research could would be investigating the

classification of multiple kinds of VPN against non-VPN traffic. This could prove to

be a complex task for a standard neural network so it would be worth considering the

use of deep learning algorithms such as Convolutional Neural Networks (CNN) or

Recurrent Neural Networks (RNN). In recent years deep learning artificial neural

networks have won numerous competitions in pattern recognition and machine

learning when pitted against more traditional neural networks. (Schmidhuber, 2015).

The problem of classifying network traffic boils down to an advanced pattern

recognition problem, therefore deep learning artificial neural networks may be well

suited to a more complex multiple VPN classification.

Several future areas and directions of work have been identified however there are

countless directions that this research could take. The scope of the research could be

changed for any network traffic classification problem, provided the dataset is there to

train the network. Multi-class classification using deep learning neural network could

be a very interesting and useful direction for research to take. However, results

obtained over the course of the work undertaken are very positive, with the results of

the Stunnel OpenVPN experiment of 97.82% showing that the model is in a good

position for evaluation in a real-world VPN detection environment.

107

References

• Akabogu, C. (2017). Implications Of Mass Media Censorship On The Individual

And The Nigerian Society. International Journal of Communication. 1(1). 66–

74.

• Ali, A. A., Darwish, S. M. & Guirguis, S. K. (2015). An Approach for

Improving Performance of a Packet Filtering Firewall Based on Fuzzy Petri Net.

Journal of Advances in Computer Networks. 3(1). 67–74.

• Anderson, E. L., Steen, E. & Stavropoulos, V. (2017). Internet Use and

Problematic Internet Use: A Systematic Review of Longitudinal Research

Trends in Adolescence and Emergent Adulthood. International Journal of

Adolescence and Youth. 22(4). 430–454.

• Arndt, D. (2011). NetMate-Flowcalc [online]. Daniel Arndt. [October 4, 2017].

Available from: https://dan.arndt.ca/projects/netmate-flowcalc/

• Attneave, F. & B., M. (1950). The Organization of Behavior; A

Neuropsychological Theory. The American Journal of Psychology. 63(4). 633–

642.

• Bengio, Y. & others. (2009). Learning Deep Architectures for AI. Foundations

and trends® in Machine Learning, 2(1), 1–127.

• Berger, T. (2006). Analysis of Current VPN Technologies, in: First

International Conference on Availability, Reliability and Security (ARES’06)

[online]. Vienna, Austria: IEEE. Available from: DOI: 10.1109/ARES.2006.30

108

• Bihis, M. & Roychowdhury, S. (2015). A Generalized Flow for Multi-Class and

Binary Classification Tasks: An Azure ML Approach, in: 2015 IEEE

International Conference on Big Data (Big Data) [online]. Santa Clara, USA:

IEEE. Available from: DOI: 10.1109/BigData.2015.7363944

• Bujlow, T., Riaz, T. & Pedersen, J. M. (2012). A Method for Classification of

Network Traffic Based on C5.0 Machine Learning Algorithm, in: 2012

International Conference on Computing, Networking and Communications,

ICNC’12 [online]. IEEE. [March 5, 2018]. Available from:

http://ieeexplore.ieee.org/document/6167418/

• Cardellini, V., Yu, P. S. & Huang, Y.-W. (2000). Collaborative Proxy System

for Distributed Web Content Transcoding, in: Proceedings of the ninth

international conference on Information and knowledge management - CIKM

’00 [online]. New York, New York, USA: ACM Press. [December 13, 2017],

Available from: http://portal.acm.org/citation.cfm?doid=354756.354861

• Chang, C. Y. & Chen, M. S. (2003). On Exploring Aggregate Effect for

Efficient Cache Replacement in Transcoding Proxies. IEEE Transactions on

Parallel and Distributed Systems [online]. 14(6). 611–624. [December 13,

2017]. Available from: http://ieeexplore.ieee.org/document/1206507/

• Chaum, D. L. (1981). Untraceable Electronic Mail, Return Addresses, and

Digital Pseudonyms. Communications of the ACM, 24(2), 84–90. [March 3,

2018]. Available from: http://portal.acm.org/citation.cfm?doid=358549.358563

• Cisco. (2006). Access Control Lists: Overview and Guidelines [online]. Cisco.

Available from:

http://www.cisco.com/c/en/us/td/docs/ios/12_2/security/configuration/guide/fsec

ur_c/scfacls.html

109

• Cisco. (2017). The Zettabyte Era: Trends and Analysis [online]. Cisco. [May 2,

2018]. Available from:

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/vni-hyperconnectivity-wp.html#_Toc484556819

• Cisco. (2018). Encrypted Traffic Analytics [online]. Cisco. [January 12, 2018].

Available from:

https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-

networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf

• Cobb, J. & ElAarag, H. (2008). Web Proxy Cache Replacement Scheme Based

on Back-Propagation Neural Network. Journal of Systems and Software

[online]. 81(9). 1539–1558. [March 30, 2017]. Available from:

http://www.sciencedirect.com/science/article/pii/S016412120700249X

• Crist, E. F. & Keijser, J. J. (2015). Mastering OpenVPN. Packt Publishing Ltd.

• Dainotti, A., Pescape, A. & Claffy, K. (2012). Issues and Future Directions in

Traffic Classification. IEEE Network [online]. 26(1). 35–40. [March 5, 2018].

Available from: http://ieeexplore.ieee.org/document/6135854/

• Deri, L., Martinelli, M., Bujlow, T. & Cardigliano, A. (2014). NDPI: Open-

Source High-Speed Deep Packet Inspection, in: 2014 International Wireless

Communications and Mobile Computing Conference (IWCMC) [online]. (pp.

617–622). Nicosia, Cyprus: IEEE. [September 12, 2018]. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6906427

• Dharmapurikar, S., Krishnamurthy, P., Sproull, T. & Lockwood, J. (2003). Deep

Packet Inspection Using Parallel Bloom Filters. IEEE Micro [online]. 52–61.

[March 5, 2018]. Available from: http://ieeexplore.ieee.org/document/1231477/

110

• Diffie, W. & Hellman, M. (1976). New Directions in Cryptography. IEEE

transactions on Information Theory. 22(6). 644–654.

• Donenfeld, J. A. (2017). WireGuard: Next Generation Kernel Network Tunnel.

in: 24th Annual Network and Distributed System Security Symposium (NDSS

2017), San Diego, USA [online]. NDSS. Available from: DOI:

10.14722/ndss.2017.23160

• Draper-Gil, G., Lashkari, A. H., Mamun, M. S. I. & A. Ghorbani, A. (2016).

Characterization of Encrypted and VPN Traffic Using Time-Related Features,

in: Proceedings of the 2nd International Conference on Information Systems

Security and Privacy [online]. (pp. 407–414). SCITEPRESS - Science and and

Technology Publications. [January 17, 2018]. Available from:

http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/00057407040

70414

• Durumeric, Z., Ma, Z., Springall, D., Barnes, R., Sullivan, N., Bursztein, E.,

Bailey, M., Halderman, J. A. & Paxson, V. (2017). The Security Impact of

HTTPS Interception, in: Proc. Network and Distributed Systems Symposium

(NDSS) [online]. (pp. 1–14). San Diego, USA. [June 22, 2017]. Available from:

https://jhalderm.com/pub/papers/interception-ndss17.pdf

• Edman, M. & Yener, B. (2009). On Anonymity in an Electronic Society. ACM

Computing Surveys, 42(1). 1–35. [February 18, 2018]. Available from:

http://portal.acm.org/citation.cfm?doid=1592451.1592456

• Farinacci, D., Traina, P., Hanks, S. & Li, T. (1994). Generic Routing

Encapsulation over IPv4 Networks [online]. RFC1702. 1–4. Retrieved January

17, 2018, Available from: https://tools.ietf.org/html/rfc1702

• Feilner, M. (2006). OpenVPN : Building and Integrating Virtual Private

Networks. Packt Publishing Ltd.

111

• Fiaschi, D., Giuliani, E. & Nieri, F. (2017). Overcoming the Liability of Origin

by Doing No-Harm: Emerging Country Firms’ Social Irresponsibility as They

Go Global. Journal of World Business [online]. 52(4). 546–563. Available from:

https://www.sciencedirect.com/science/article/pii/S1090951616301006

• Finamore, A., Mellia, M., Meo, M. & Rossi, D. (2010). KISS: Stochastic Packet

Inspection Classifier for UDP Traffic. IEEE/ACM Transactions on Networking

[online]. 18(5). 1505–1515. [March 5, 2018]. Available from:

http://ieeexplore.ieee.org/document/5443713/

• Fontama, V., Barga, R. & Tok, W. H. (2014). Predictive Analytics with

Microsoft Azure Machine Learning. Apress.

• Frank, E., Hall, M. A. & Witten, I. H. (2016). Data Mining: Practical Machine

Learning Tools and Techniques. 4th ed.Morgan Kaufmann.

• García-Teodoro, P., Díaz-Verdejo, J., Maciá-Ferná Ndez, G. & Vá Zquez, E.

(2009). Anomaly-Based Network Intrusion Detection: Techniques, Systems and

Challenges. Computers & Security. 28(1). 18–28.

• Gebhart, G. & Kohno, T. (2017). Internet Censorship in Thailand: User

Practices and Potential Threats, in: Proceedings - 2nd IEEE European

Symposium on Security and Privacy, EuroS and P 2017 [online]. (pp. 417–432).

IEEE. Available from: http://ieeexplore.ieee.org/document/7961994/

• Geetha, S. & Phamila, A. V. (2016). Combating Security Breaches and Criminal

Activity in the Digital Sphere. IGI Global.

• Ghosh, A. K., Schwartzbard, A. & Schatz, M. (1999). Learning Program

Behavior Profiles for Intrusion Detection. in: Workshop on Intrusion Detection

and Network Monitoring. 51462, 1-13

112

• Gourley, D. & Totty, B. (2002). HTTP: The Definitive Guide. Beijing. O’Reilly.

• Haddadi, F. & Zincir-Heywood, A. N. (2016). Benchmarking the Effect of Flow

Exporters and Protocol Filters on Botnet Traffic Classification. IEEE Systems

Journal [online]. 10(4), 1390–1401. [May 23, 2017]. Available from:

http://ieeexplore.ieee.org/document/6963332/

• Harkins, D. & Carrel, D. (1998). The Internet Key Exchange (IKE) [online].

RFC2409. Available from: https://tools.ietf.org/html/rfc2409

• Harmening, J. T. (2013). Virtual Private Networks, in: Computer and

Information Security Handbook. (pp. 855–867). Elsevier.

• Hawkes-Robinson, W. (2002). SANS Institute - Microsoft PPTP VPN

Vulnerabilities - Exploits in Action [online]. Available from:

https://www.researchgate.net/publication/235927650_SANS_Institute_-

_Microsoft_PPTP_VPN_Vulnerabilities_-_Exploits_in_Action

• Haykin, S. (2004). A Comprehensive Foundation. Neural Networks [online].

2(2004). 41. Available from: http://dl.acm.org/citation.cfm?id=521706

• Hunt, T. (2016). Observations and Thoughts on the LinkedIn Data Breach

[online]. troyhunt.com. [December 6, 2017]. Available from:

https://www.troyhunt.com/observations-and-thoughts-on-the-linkedin-data-

breach/

• Jain, V., Appiah, M., Vanniarajan, K. C. & Jain, S. (2011). Secure Tunnel over

HTTPS Connection. U.S. Patent 8,086,845.

113

• Kara, A., Suzuki, T., Takahashi, K. & Yoshikawa, M. (2004). A DoS-

Vulnerability Analysis of L2TP-VPN. The Fourth International Conference

onComputer and Information Technology, 2004. CIT ’04. [online]. 397–402.

[January 31, 2018]. Available from:

http://ieeexplore.ieee.org/document/1357228/

• Kaufman, C., Hoffman, P., Nir, Y., Eronen, P. & Kivinen, T. (2014). Internet

Key Exchange Protocol Version 2 (IKEv2) [online] RFC7296. Available from:

https://tools.ietf.org/html/rfc7296

• Kazemi, K. & Fanian, A. (2015). Tunneling Protocols Identification Using Light

Packet Inspection. in: 2015 12th International Iranian Society of Cryptology

Conference on Information Security and Cryptology (ISCISC) [online]. (pp.

110–115). Rasht, Iran: IEEE. Available from:

http://ieeexplore.ieee.org/document/7387907/

• Kent, S. & Atkinson, R. (2005). Security Architecture for the Internet Protocol

[online] RFC4301. Available from: https://tools.ietf.org/html/rfc4301

• Khan, L., Awad, M. & Thuraisingham, B. (2007). A New Intrusion Detection

System Using Support Vector Machines and Hierarchical Clustering. The VLDB

Journal [online]. 16(4). 507–521. [November 2, 2015]. Available from:

http://link.springer.com/10.1007/s00778-006-0002-5

• Khriplovich, I. B. & Pomeranskii, A. A. (1998). Equations of Motion of

Spinning Relativistic Particle in Electromagnetic and Gravitational Fields.

Journal of Experimental and Theoretical Physics [online]. 86(5). 839–849.

Retrieved from http://arxiv.org/abs/gr-qc/9809069

114

• King, G., Pan, J. & Roberts, M. E. (2017). How the Chinese Government

Fabricates Social Media Posts for Strategic Distraction, Not Engaged Argument.

American Political Science Review [online]. 111(3). 484–501. [March 1, 2018].

Available from:

https://www.cambridge.org/core/product/identifier/S0003055417000144/type/jo

urnal_article

• Krithika, R. & Narayanan, J. (2015). Learning to Grade Short Answers Using

Machine Learning Techniques, in: Proceedings of the Third International

Symposium on Women in Computing and Informatics - WCI ’15 [online]. (pp.

262–271). New York, New York, USA: ACM Press. [February 25, 2016]

Available from: http://dl.acm.org/citation.cfm?id=2791405.2791508

• Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). Imagenet Classification

with Deep Convolutional Neural Networks. in: Advances in neural information

processing systems. (pp. 1097–1105).

• Kumar, S. T. V., Khanna, S. O. S., Reddy, S. M. P., Reddy, S. G. S. & Reddy, S.

G. R. S. (2014). Overview of Emerging Trends in Network Security and

Cryptography. IJEIR [online]. 3(1). 51–56. Available from:

http://www.ijeir.org/index.php/issue?view=publication&task=show&id=250

• Kurose, J. (2014). Information-Centric Networking: The Evolution from

Circuits to Packets to Content. Computer Networks [online]. 66. 112–120.

[January 11, 2018]. Available from:

http://www.sciencedirect.com/science/article/pii/S1389128614001455#f0010

• Lawas, J. B. R., Vivero, A. C. & Sharma, A. (2016). Network Performance

Evaluation of VPN Protocols (SSTP and IKEv2), in: 2016 Thirteenth

International Conference on Wireless and Optical Communications Networks

(WOCN) [online]. (pp. 1–5). IEEE. [February 1, 2018]. Available from:

http://ieeexplore.ieee.org/document/7759880/

115

• Leberknight, C. S., Chiang, M., Poor, H. V. & Wong, F. (2010). A Taxonomy of

Internet Censorship and Anti-Censorship. In Fifth International Conference on

Fun with Algorithms [online]. Available from:

http://www.princeton.edu/~chiangm/anticensorship.pdf

• Lee, Y.-D., Leech, M., Ganis, M., Kuris, R., Koblas, D. & Jones, L. (1996).

SOCKS: A Protocol for TCP Proxy across Firewalls [online]. RFC1928.

Available from: https://www.rfc-editor.org/rfc/rfc1928.txt

• Li, B., Erdin, E., Gunes, M. H., Bebis, G. & Shipley, T. (2013). An Overview of

Anonymity Technology Usage. Computer Communications [online]. 36(12)

1269–1283. [February 18, 2018]. Available from:

https://www.sciencedirect.com/science/article/pii/S0140366413001096#b0115

• Ligh, M., Adair, S., Hartstein, B. & Richard, M. (2010). Malware Analyst’s

Cookbook and DVD: Tools and Techniques for Fighting Malicious Code. Wiley

Publishing.

• Lin, W.-C., Ke, S.-W. & Tsai, C.-F. (2015). CANN: An Intrusion Detection

System Based on Combining Cluster Centers and Nearest Neighbors.

Knowledge-Based Systems [online]. 78. 13–21. [September 30, 2015] Available

from: http://www.sciencedirect.com/science/article/pii/S0950705115000167

• Liu, C., White, R. W. & Dumais, S. (2010). Understanding Web Browsing

Behaviors through Weibull Analysis of Dwell Time, in: Proceeding of the 33rd

international ACM SIGIR conference on Research and development in

information retrieval - SIGIR ’10 [online]. (p. 379). New York, New York,

USA: ACM Press. [October 4, 2017], Available from:

http://portal.acm.org/citation.cfm?doid=1835449.1835513

116

• Luotonen, A. & Altis, K. (1994). World Wide Web Proxies, in: Computer

Networks and ISDN Systems, First International Conference on WWW,

April[online]. (pp. 1–8). Geneva, Switzerland. [March 10, 2017] Available from:

http://courses.cs.vt.edu/~cs4244/spring.09/documents/Proxies.pdf

• Marshall, J. (2002). CGIProxy [online]. CGIProxy. Available from:

https://www.jmarshall.com/tools/cgiproxy/

• Mason, A. G. (2004). CCSP Self-Study: Cisco Secure Virtual Private Networks

(CSVPN). Pearson Higher Education.

• Maughan, D., Schertler, M., Schneider, M. & Turner, J. (1998). Internet Security

Association and Key Management Protocol (ISAKMP) [online]. [February 1,

2018]. Available from: https://tools.ietf.org/html/rfc2408

• Mazurczyk, W., Wendzel, S., Zander, S., Houmansadr, A. & Szczypiorski, K.

(2016). Information Hiding in Communication Networks : Fundamentals,

Mechanisms, Applications, and Countermeasures. Wiley Publishing.

• McCulloch, W. S. & Pitts, W. (1943). A Logical Calculus of the Ideas

Immanent in Nervous Activity. The bulletin of mathematical biophysics, 5(4),

115–133.

• Mell, P. and Grance, T., (2011). The NIST definition of cloud computing

• Microsoft. (2012). Microsoft Security Advisory 2743314 | Microsoft Docs.

Microsoft Security Advisory [online]. Microsoft. [January 12, 2018]. Available

from: https://docs.microsoft.com/en-us/security-

updates/SecurityAdvisories/2012/2743314

117

• Mikolov, T., Karafiát, M., Burget, L., Černock\`y, J. & Khudanpur, S. (2010).

Recurrent Neural Network Based Language Model, in: Eleventh Annual

Conference of the International Speech Communication Association. (pp. 1045–

1048). Makuhari, Chiba, Japan.

• Miller, S., Curran, K. & Lunney, T. (2015a). Securing the Internet through the

Detection of Anonymous Proxy Usage. in: 2015 World Congress on Internet

Security, WorldCIS 2015. (pp. 153–158).

• Miller, S., Curran, K. & Lunney, T. (2015b). Traffic Classification for the

Detection of Anonymous Web Proxy Routing. IJISR [online]. 5(1) 538–545.

[March 27, 2018]. Available from: http://infonomics-society.ie/wp-

content/uploads/ijisr/published-papers/volume-5-2015/Traffic-Classification-

for-the-Detection-of-Anonymous-Web-Proxy-Routing.pdf

• Miller, S., Curran, K. & Lunney, T. (2016). Cloud-Based Machine Learning for

the Detection of Anonymous Web Proxies, in: 2016 27th Irish Signals and

Systems Conference, ISSC 2016 [online]. (pp. 1–6). IEEE. [February 18, 2018].

Available from: http://ieeexplore.ieee.org/document/7528443/

• Milliken, M., Bi, Y., Galway, L. and Hawe, G., (2015). Ensemble learning

utilising feature pairings for intrusion detection, in: 2015 World Congress on

Internet Security, WorldCIS (pp. 24-31). IEEE

• Minsky, M. L. & Papert, S. (1972). Perceptrons : An Introduction to

Computational Geometry. MIT Press.

• Nguyen, T. T. T. & Armitage, G. (2006). Training on Multiple Sub-Flows to

Optimise the Use of Machine Learning Classifiers in Real-World IP Networks,

in: Proceedings - Conference on Local Computer Networks, LCN [online]. (pp.

369–376). IEEE. [March 5, 2018]. Available from:

http://ieeexplore.ieee.org/document/4116573/

118

• Nguyen, T. T. T. & Armitage, G. (2008). A Survey of Techniques for Internet

Traffic Classification Using Machine Learning. IEEE Communications Surveys

& Tutorials [online]. 10(4). 56–76. [March 5, 2018]. Available from:

http://ieeexplore.ieee.org/document/4738466/

• Özyer, T., Alhajj, R. & Barker, K. (2007). Intrusion Detection by Integrating

Boosting Genetic Fuzzy Classifier and Data Mining Criteria for Rule Pre-

Screening. Journal of Network and Computer Applications [online]. 30(1), 99–

113. [October 5, 2015]. Available from:

http://www.sciencedirect.com/science/article/pii/S1084804505000433

• Pagliery, J. (2014). What Caused Sony Hack: What We Know Now [online].

CNN. [December 6, 2017]. Available from:

http://money.cnn.com/2014/12/24/technology/security/sony-hack-facts/

• Patel, B., Aboba, B., Dixon, W., Zorn, G. & Booth, S. (2001). Securing L2TP

Using IPsec [online]. RFC3193. [January 30, 2018]. Available from:

https://www.rfc-editor.org/info/rfc3193

• Pathak, A., Patra, B. K., Chakraborty, A. & Agarwal, A. (2015). A City Traffic

Dashboard Using Social Network Data, in: Proceedings of the 2nd IKDD

Conference on Data Sciences - CODS-IKDD ’15 [online]. (pp. 1–4). New York,

New York, USA: ACM Press. [February 25, 2016]. Available from:

http://dl.acm.org/citation.cfm?id=2778865.2778873

• Peterson, A. (2014). The Sony Pictures Hack, Explained [online]. Washington

Post. Available from: https://www.washingtonpost.com/news/the-

switch/wp/2014/12/18/the-sony-pictures-hack-explained/

119

• Pohl, F. & Schotten, H. D. (2017). Secure and Scalable Remote Access Tunnels

for the IIoT: An Assessment of OpenVPN and IPsec Performance. in European

Conference on Service-Oriented and Cloud Computing (pp. 83–90). Springer,

Cham.

• Ponnusamy, S. P. & Karthikeyan, E. (2013). Cache Optimization on Hot-Point

Proxy Caching Using Weighted-Rank Cache Replacement Policy. ETRI

Journal. 35(4). 687–696.

• Poushter, J. (2016). Smartphone Ownership and Internet Usage Continues to

Climb in Emerging Economies. Pew Research Center, 22. 1-44.

• Rawat, V., Tio, R., Nanji, S. & Verma, R. (2001). Layer Two Tunneling

Protocol {(L2TP)} over Frame Relay [online]. RFC3070. [February 13, 2017].

Available from: https://2rfc.net/3070

• Reese, W. (2008). Nginx: The High-Performance Web Server and Reverse

Proxy |Linux Journal. Linux Journal, 2008(173), 2.

• Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information

Storage and Organization in the Brain. Psychological Review, 65(6), 386–408.

• Rowan, T. (2007). VPN Technology: IPSEC vs SSL. Network Security,

2007(12), 13–17.

• Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1985). Learning Internal

Representations by Error Propagation. Defense Technical Information Center

[online]. Available from: http://www.dtic.mil/docs/citations/ADA164453

• Russel, S. J. & Norvig, P. (2010). Artificial Intelligence: A Modern Approach.

Malaysia: Pearson Education Limited.

120

• Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of

Checkers. IBM Journal of Research and Development. 3(3). 210–229.

• Scarfone, K. & Mell, P. (2007). Guide to Intrusion Detection and Prevention

Systems (Idps). NIST special publication, 800(2007), 94.

• Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview.

Neural Networks, 61, 85–117.

• Schmidt, J. (2012). A Death Blow for PPTP - The H Security: News and

Features [online]. H-Online. [January 19, 2018]. Available from: http://www.h-

online.com/security/features/A-death-blow-for-PPTP-1716768.html

• Schneier, B. (1994). Description of a New Variable-Length Key, 64-Bit Block

Cipher (Blowfish), in: (pp. 191–204). Springer, Berlin, Heidelberg.

• Schneier, B. & Mudge. (1998). Cryptanalysis of Microsoft’s Point-to-Point

Tunneling Protocol (PPTP). 5th ACM Conference on Computer and

Communications Security, 132–141. ACM.

• Schneier, B., Mudge & Wagner, D. (1999). Cryptanalysis of Microsoft’s PPTP

Authentication Extensions (MS-CHAPv2), in: International Exhibition and

Congress, Secure Networking, (pp. 192–203). Duesseldorf: Springer

International Publishing.

• Sherry, J., Lan, C., Popa, R. A., Ratnasamy, S., Sherry, J., Lan, C., Popa, R. A.

& Ratnasamy, S. (2015). BlindBox. ACM SIGCOMM Computer

Communication Review. 45(5). 213–226.

• Simpson, W. (1996). PPP CHAP [online]. RFC1994. [January 19, 2018].

Available from: https://tools.ietf.org/rfc/rfc1994.txt

121

• Singh, D. D., Kumar, S. & Kapoor, S. (2011). An Explore View of Web

Caching Techniques. International Journal of Advances in Engineering

Sciences. 1(3). 38–43.

• Soysal, M. & Schmidt, E. G. (2010). Machine Learning Algorithms for Accurate

Flow-Based Network Traffic Classification: Evaluation and Comparison.

Performance Evaluation [online]. 67(6). 451–467. [January 30, 2018]. Available

from: https://www.sciencedirect.com/science/article/pii/S0166531610000027

• Stallings, W. & Lawrie, B. (2008). Computer Security. Pearson Education.

• Stevanovic, M. & Pedersen, J. M. (2014). An Efficient Flow-Based Botnet

Detection Using Supervised Machine Learning, in: 2014 International

Conference on Computing, Networking and Communications (ICNC) [online].

(pp. 797–801). IEEE. [March 15, 2016]. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6785439

• Stibler, S., Brownlee, N. & Ruth, G. (1999). RTFM: New Attributes for Traffic

Flow Measurement [online]. RFC2724. [September 19, 2017]. Available from:

https://tools.ietf.org/html/rfc2724

• Tanash, R., Chen, Z., Wallach, D. & Marschall, M. (2017). The Decline of

Social Media Censorship and the Rise of Self-Censorship after the 2016 Failed

Turkish Coup, in: 7th {USENIX} Workshop on Free and Open Communications

on the Internet ({FOCI} 17). Vancouver, BC: {USENIX} Association.

• Theiler, J., (2014). Transductive and matched-pair machine learning for difficult

target detection problems, in: Algorithms and Technologies for Multispectral,

Hyperspectral, and Ultraspectral Imagery (Vol. 9088, p. 90880E). International

Society for Optics and Photonics.

122

• Thomas, K., Grier, C., Ma, J., Paxson, V. & Song, D. (2011). Design and

Evaluation of a Real-Time URL Spam Filtering Service, in: Proceedings - IEEE

Symposium on Security and Privacy, (pp. 447–462).

• Thornton, C., Hutter, F., Hoos, H.H. and Leyton-Brown, K., (2013). Auto-

WEKA: Combined selection and hyperparameter optimization of classification

algorithms, in: Proceedings of the 19th ACM SIGKDD international conference

on Knowledge discovery and data mining (pp. 847-855). ACM.

• Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn, G. & Palter, B. (1999).

Layer Two Tunneling Protocol L2TP Status [online]. RFC2661. [January 11,

2018]. Available from: http://www.rfc-editor.org/rfc/rfc2661.txt

• Tselykh, A. & Petukhov, D. (2015). Web Service for Detecting Credit Card

Fraud in near Real-Time, in: Proceedings of the 8th International Conference on

Security of Information and Networks - SIN ’15. (pp. 114–117). New York, New

York, USA: ACM Press.

• Wade, J. (2010). A Biologically Inspired Training Algorithm for Spiking Neural

Networks. PhD thesis, University of Ulster

• Wang, P., González, M., Menezes, R., Barabási, A.L. (2013) Understanding the

spread of malicious mobile-phone programs and their damage potential.

International journal of information security, Vol. 12, No. 5, pp: 383-392

• Werbos, P. (1975). Beyond Regression: New Tools for Prediction and Analysis

in the Behavioral Sciences. PhD thesis, Harvard University, (April).

• Wong, W., Giraldi, M., Magalhães, M. F. & Kangasharju, J. (2011). Content

Routers: Fetching Data on Network Path. in: IEEE International Conference on

Communications (ICC 2011). (pp. 1–6). IEEE.

123

• Wood, D., Stoss, V., Chan-Lizardo, L., Papacostas, G. S. & Stinson, M. E.

(1988). Virtual Private Networks. in: 1988 International Conference on Private

Switching Systems and Networks (ICPSSN 1988). (pp. 132–136).

• Wurzinger, P., Platzer, C., Ludl, C., Kirda, E. & Kruegel, C. (2009). SWAP:

Mitigating XSS Attacks Using a Reverse Proxy. in: Proceedings of the 2009

ICSE Workshop on Software Engineering for Secure Systems, SESS 2009, (pp.

33–39). IEEE Computer Society.

• Xiang, C., Yong, P. C. & Meng, L. S. (2008). Design of Multiple-Level Hybrid

Classifier for Intrusion Detection System Using Bayesian Clustering and

Decision Trees. Pattern Recognition Letters. 29(7). 918–924.

• Yang, M., Luo, J., Ling, Z., Fu, X. & Yu, W. (2015). De-Anonymizing and

Countermeasures in Anonymous Communication Networks. IEEE

Communications Magazine. 53(4). 60–66.

• Yu, F. Y. F., Chen, Z. C. Z., Diao, Y. D. Y., Lakshman, T. V. & Katz, R. H.

(2006). Fast and Memory-Efficient Regular Expression Matching for Deep

Packet Inspection. 2006 Symposium on Architecture For Networking And

Communications Systems, 1–10.

• Zorn, G., Pall, G. S., Hamzeh, K., Verthein, W., Taarud, J. & Litte, W. (1999).

Point-to-Point Tunneling Protocol (PPTP) [online]. RFC 2637. [January 12,

2018]. Available from: https://tools.ietf.org/html/rfc2637

124

Appendix A – Packet Capture Script

Packet capture script for chapter 3

Packetcap.py - Script to capture HTTP and HTTPS packets and log them

to a .CSV file.

import socket

import sys

import csv

from struct import *

Create an INET, STREAMing socket

try:

 s = socket.socket(socket.AF_INET, socket.SOCK_RAW,

socket.IPPROTO_TCP)

except socket.error:

 print('Socket could not be created.')

 sys.exit()

outputFile = open('vpntraffictest.csv', 'w', newline='')

writer = csv.writer(outputFile)

Write out the top row

writer.writerow(['Version', 'Protocol', 'TTL', 'SrcAddr', 'DestAddr',

 'SrcPort', 'DestPort', 'SeqNum', 'AckNum', 'Flag', 'dataSize',

 'Service', 'Label'])

receive a packet

while True:

 packet = s.recvfrom(65565)

 # Transfer tuple contents to string type.

 packet = packet[0]

 # Take first 20 bytes for the ip header.

 # Ethernet header is usually before, but we aren't capturing that.

 ip_header = packet[0:20]

 # Unpack from bytes format

 iph = unpack('!BBHHHBBH4s4s', ip_header)

 version_ihl = iph[0]

 version = version_ihl >> 4

 ihl = version_ihl & 0xF

 iph_length = ihl * 4

 ttl = iph[5]

 protocol = iph[6]

 s_addr = socket.inet_ntoa(iph[8])

 d_addr = socket.inet_ntoa(iph[9])

 # TCP header starts right after IP header and is usually

 # 20 bytes long

 tcp_header = packet[20:40]

125

 # Unpack from bytes format

 tcph = unpack('!HHLLBBHHH', tcp_header)

 source_port = tcph[0]

 dest_port = tcph[1]

 sequence = tcph[2]

 acknowledgement = tcph[3]

 doff_reserved = tcph[4]

 tcph_length = doff_reserved >> 4

 h_size = iph_length + tcph_length * 4

 data_size = len(packet) - h_size

 # Select bytes containing tcp flags and label them

 tcpFlag = packet[33:34].hex()

 if tcpFlag == "01":

 Flag = "FIN"

 elif tcpFlag == "02":

 Flag = "SYN"

 elif tcpFlag == "03":

 Flag = "FIN-SYN"

 elif tcpFlag == "08":

 Flag = "PSH"

 elif tcpFlag == "09":

 Flag = "FIN-PSH"

 elif tcpFlag == "0A":

 Flag = "SYN-PSH"

 elif tcpFlag == "10":

 Flag = "ACK"

 elif tcpFlag == "11":

 Flag = "FIN-ACK"

 elif tcpFlag == "12":

 Flag = "SYN-ACK"

 elif tcpFlag == "18":

 Flag = "PSH-ACK"

 else:

 Flag = "OTH"

 # If statement to select only HTTP and HTTPS packets for

 # logging

 if source_port == 80 or source_port == 443:

 if source_port == 80:

 writer.writerow([str(version), str(protocol),

 str(ttl), str(s_addr),

 str(d_addr), str(source_port),

 str(dest_port), str(sequence),

 str(acknowledgement), Flag,

 str(data_size), "HTTP", "0"])

126

 print("Packet Captured")

 else:

 writer.writerow([str(version), str(protocol),

 str(ttl), str(s_addr),

 str(d_addr), str(source_port),

 str(dest_port), str(sequence),

 str(acknowledgement), Flag,

 str(data_size), "HTTPS", "0"])

 print("Packet Captured")

outputFile.close()

Automatic browsing script for chapter 3

import time

from splinter import Browser

Create instance of Browser object

b = Browser()

url = ["http://whatismyipaddress.com/"]

List of glype proxy sites to be visited

"http://www.blackhost.xyz/glype/", "http://proxy.lelouet.fr/",

url = [

 "https://secure.cogsoz.com/proxy/",

 "http://samstevenm.net/prox/", "https://muadness.com/proxy/",

 "http://www.radiocarb.com/p/", "http://proxy.rimmer.su/",

 "https://awssl.com/", "https://moka4.com/",

 "https://webproxy.stealthy.co/", "http://bvpn.win/", "http://www.emuby.com/",

 "http://www.docoja.com/blue/index.php"]

for site in url:

 # Visit the site using Browser

 b.visit(site)

 time.sleep(2)

 # Find and fill the textbox then find the submit button and 'click' it

 b.find_by_id('input').fill('www.whatismyipaddress.com')

 time.sleep(1)

 if b.is_element_present_by_css('input.button'):

 goButton = b.find_by_css('input.button')

 goButton.click()

 elif b.is_element_present_by_css('input.submitbutton'):

 goButton = b.find_by_css('input.submitbutton')

 goButton.click()

 time.sleep(2)

127

 # Deal with SSL warning page if it appears

 sslWarningPage = b.find_by_text('Warning!')

 if sslWarningPage is not None:

 print('Warning encountered, dealing with it...')

 continueButton = b.find_by_css('input')[1]

 continueButton.click()

b.quit

