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Abstract 

Network Proxies and Virtual Private Networks (VPN) are tools that are used every 

day to facilitate various business functions. However, they have gained popularity 

amongst unintended userbases as tools that can be used to hide mask identities while 

using websites and web-services. Anonymising Proxies and/or VPNs act as an 

intermediary between a user and a web server with a Proxy and/or VPN IP address 

taking the place of the user’s IP address that is forwarded to the web server.  For a 

business whose primary service is hosted on the internet, such as Facebook or Netflix, 

security systems are a vital part of these services; unauthorised user detection can be 

a vital feature of such systems. The detection of unauthorised users can be problematic 

for techniques that are available at present if the suspect users are using identity hiding 

tools such as anonymising proxies or VPNs. 

 

This work presents computational models based on intelligent machine learning 

techniques to address the limitations currently experienced by unauthorised user 

detection systems. A model to detect usage of anonymising proxies was developed 

using a Multi-layered perceptron neural network that was trained using data found in 

the Transmission Control Protocol (TCP) header of captured network packets. Two 

models to detect usage of two different VPN configurations were also developed using 

a similar Multi-layered Perceptron neural network and were trained using flow 

statistics. The first model successfully classifies network traffic as either OpenVPN or 

as non-VPN traffic; the second model successfully classifies network traffic as either 

OpenVPN traffic that is tunnelled using Stunnel or as non-VPN traffic. Validation 

testing showed that the presented models are capable of classifying network traffic in 

a binary manner as direct (originating directly from a user’s own device) or indirect 

(makes use of identity and location hiding features of proxies or VPNs) with high 

degrees of accuracy.  

The proxy detection model additionally showed strong generalisation abilities when 

tested against multiple types of web-based anonymising proxies. These results 

demonstrate a significant advancement in the detection of unauthorised user access 

with evidence showing that there could be further advances for research in this field 

particularly in the application of business security.  
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1.  Introduction 

The Internet has become an important part of everyday life and its usage continues to 

grow as more devices are released that have Internet connectivity. Internet usage in 

developing countries is especially increasing with the arrival of affordable mobile 

smartphones (Poushter, 2016). As more people use the Internet, governments seek to 

implement controls on what their citizens can access, either for the protection of said 

citizens against malware and identity theft or to suppress unacceptable parts of the 

Internet (King et al., 2017; Fiaschi et al., 2017; Gebhart & Kohno, 2017; Akabogu, 

2017; Tanash et al., 2017). This leads some people to become concerned for their 

privacy as they do not want their online activities documented. Due to this and other 

factors, usage of technologies designed to provide anonymity on the Internet has 

increased (Anderson et al., 2017).  

 

Anonymity technologies allow users of the Internet access to a level of privacy that 

prevents the recording of information such as IP addresses, which could be used to aid 

in the identification of the users. Users of these technologies will have varying 

motivations for why they want to protect their privacy. Some use anonymity 

technologies because they live in a country where their Internet usage is monitored 

and the websites that they wish to access are blocked. In this situation, the anonymity 

providing technology helps the user circumvent the blocks that have been imposed on 

them. A similar use case is a user preventing their browsing habits from being tracked 

by their Internet service provider (ISP). Some ISPs track browsing habits to improve 

the services that they provide while some collect the data so that it can be forwarded 

on to other third parties. These include advertisers who use it to produce targeted 

advertisements or possibly security forces who use it to build a profile of the suspects 

and determine whether they are adhering to a country’s laws involving Internet access. 

Naturally, criminals want to avoid their identity being released to the police. 

Therefore, they turn to anonymity providing technologies. Anonymity systems 

transport network packets over intermediary relays so that no single system other than 

the original machine has information that could identify the user. Since many people 

can make use of these intermediary relays at the same time, the connection of the user 

seeking anonymity is hidden amongst the network traffic of other Internet users (Li et 

al., 2013). These different use-cases have led to anonymity on the Internet being a 
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divisive topic. On one side, anonymity technologies provide legitimate methods for 

protecting freedom of speech and privacy, facilitating the transfer of anonymous tips 

to law enforcement and bypassing state censorship. However, the same technologies 

can be used to provide protection to criminals who are involved in information and 

identity theft, spam emailing and even organised terrorism. Additionally, they can be 

used for network abuse by bypassing Internet usage policies of organisations. This has 

the potential to expose the internal workings of the organisation to malicious activities. 

 

There are various types of anonymity technologies available with most being based 

on networks called “mix” networks. Mix networks use a chain of proxy servers to 

create communication pathways that are difficult to trace (Chaum, 1981). The 

anonymous communication systems that resulted from this can be categorised into one 

of two groups: message based/high-latency applications or flow based/low-latency 

applications (Yang et al., 2015). High latency applications can include email and e-

voting systems. Low latency systems include the popular anonymous communication 

system Tor as well as various kinds of HTTP/SOCKS proxy services and Virtual 

Private Networks (VPNs) (Lee et al., 1996; Wood et al., 1988). Systems such as Tor 

fall under the category of multi-hop anonymous communications models, while 

HTTP/SOCKS proxies and VPNs generally fall under the category of single-hop 

anonymous communication models. The focus of this thesis will be on these single-

hop anonymous communication models. 

 

A proxy server is a server that acts as an intermediary for requests from clients for 

resources located on other servers on a network or the Internet. A basic type of proxy 

is a gateway which can be found on most consumer wireless routers. Another type of 

proxy is a reverse proxy which is a server on an internal company network that acts as 

an intermediary for other servers based on that network. Reverse proxies are typically 

used as an Internet facing server that handles several different tasks, load balancing 

being one of them. The proxy server distributes requests between several web servers 

and acts as a cache for static content such as pictures and other graphical content. 

Proxy servers that are used to provide anonymisation are based on another type of 

proxy known as an “open” proxy. Open proxies are a proxy that is available to any 
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user on the Internet. They are mostly used to set up anonymous proxy websites and 

categorised as a single-hop anonymous communication model. 

 

There are several different implementations of VPNs for providing anonymous 

communications (Lawas et al., 2016; Crist & Keijser, 2015; Rawat et al., 2001; Zorn 

et al., 1999). The intended use for VPN implementations was to allow an 

organisation’s workers to securely access internal network resources from outside of 

the internal network i.e. remote access. This is achieved through setting up a 

connection called a tunnel between the user’s PC and the organisations servers. VPNs 

however can also be used as an anonymous communication system in an equivalent 

manner to an anonymous proxy server. The main difference between the two methods 

is in the VPN’s tunnelled connection. The tunnelled connection between the user and 

the VPN server is encrypted. 

 

1.1  Detecting and blocking anonymous communications 

IP blocking is a basic technique used to combat malicious threats to networks and it is 

one of the most common techniques for protecting networks (Thomas et al., 2011). 

Using this method, an IP address or a range of IP addresses can be blocked from 

accessing resources located on a web server or on an organisation’s internal network. 

The IP block can be rendered ineffective by using proxies or VPNs. The user’s IP 

address is typically sent out as a source IP address in the network packet containing 

the request to a web server. However, when using a proxy or VPN, this request is first 

sent to the proxy server which then forwards it on towards the web server. So, the 

blocked IP address of the user is not actually making any direct contact with the web 

server running the IP filter. The offending proxy or VPN IP address can be blocked, 

but this act of blocking the IP address can be made redundant. Upon discovering that 

their preferred proxy IP has been blocked, the user can simply switch to a different 

proxy or VPN provider. Unless preventative action is taken, which will cost a 

significant amount of time and effort, the user can continue to switch in order to 

maintain their access.  
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Another method of securing networks is the use of Access Control Lists (ACL). These 

are usually implemented alongside IP blocking techniques. An ACL scans network 

traffic and filters which network packets are forwarded on through the network and 

which are blocked at the router. Each packet is examined and compared to the policies 

outlined in the ACL to determine whether it should be allowed or blocked (Cisco, 

2006). This is a very rigid form of network security that relies on a lengthy setup. 

Specifying what is acceptable and what is not takes a large amount of time due to the 

complexity and sheer number of network protocols that exist. Filtering based on the 

protocols included in the network packets can be rendered ineffective by VPNs due to 

how they encapsulate protocols within other protocols. Depending on the exact 

implementation of ACL, the network topology for the entire enterprise network will 

not be defined so the ACL cannot determine what is a member of the network. Proxies 

can easily take advantage of this and the ACL is also susceptible to the user switching 

proxy provider to circumvent any blocks. 

 

Software based packet inspection is another method that can be used to detect and 

block usage of a proxy or a VPN. Deep Packet Inspection (DPI) is a popular method 

for securing networks against network packets containing malicious items such as 

viruses and other malware that are contained within payloads (Dharmapurikar et al., 

2003). DPI examines and manages network traffic as it enters the network in a form 

of packet filtering that identifies, classifies and blocks packets that contain data (such 

as the aforementioned viruses) within their payload that goes against pre-arranged 

policies. This examination occurs at checkpoints located around the network and 

decisions based on rules assigned by an organisation occur in real-time based on the 

contents of the packet’s payload. Previously, packet scanning software had the 

limitation of only scanning the packet’s header, which contains the information 

necessary for transmission, but does not contain anything related to its contents. By 

scanning the packets contents, messages and other information can be extracted and 

used to identify the specific application or service it comes from. The rules that DPI 

algorithms operate by were string based, however using regular expression matching 

improves content scanning speeds (Yu et al., 2006). As powerful as DPI can be, it is 

defeated by packets that make use of encryption to conceal their contents. VPNs are 
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particularly effective at bypassing DPI as well as some proxies which support HTTPS, 

bringing the effectiveness of DPI into question (Sherry et al., 2015).   

 

A field of research that has gained traction of late is the use of machine learning 

algorithms for classification of network traffic (Bujlow et al., 2012; Dainotti et al., 

2012; Finamore et al., 2010; Nguyen & Armitage, 2006, 2008). Over the past decade 

the research and networking communities have investigated and developed several 

classification approaches based on multiple algorithms. This has come about because 

the traditional approach of using TCP and UDP network ports to classify Internet 

applications has become less accurate. Newer applications that are being developed 

do not have ports registered to them by IANA and instead make use of ports that are 

already registered to other applications. The exhaustion of IP version 4 addresses has 

also contributed to this as organisations and application developers move to mitigate 

the effect (Dainotti et al., 2012).   

 

Classification algorithms typically require training based on previously labelled data. 

For classification of network traffic, the network packets form the basis of the dataset. 

The contents can consist of unedited packet headers, with the information contained 

being used as the training features. They can also consist of statistical information 

calculated from streams of packets called flows. Efforts to classify Internet 

applications have largely been successful, with several datasets being created to 

represent most of the applications available. However, datasets representing 

anonymous communication systems are mostly non-existent and research into 

classification of anonymous traffic is still an emerging research area. A major 

limitation into classification of this type of network traffic is the use of encryption, 

which renders the payload of packets unusable as a training feature. Using machine 

learning capabilities and different feature formats, it should be possible to overcome 

this limitation. Packet header information such as the sequence and acknowledgement 

numbers and the general size of the data can potentially be used to train a machine 

learning algorithm. There is also the option of using flow-based features to enhance 

the potential training and detection accuracy of an algorithm (García-Teodoro et al., 

2009). 
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1.2  Problem Statement 

A potential threat to large scale, enterprise networks are connections both from inside 

and from outside the network which make use of anonymity techniques to hide their 

identity. Modern network security systems require the capability to identify these 

connections and to help the network controllers to mitigate the threats that could be 

posed. If an enterprise network suffers a breach that results in information being stolen, 

identifying who is responsible can be difficult if anonymity technologies are being 

used.  

 

With increasing volumes of internet traffic being generated on modern networks, 

introducing techniques which can help network controllers and administrators identify 

threats is essential (Cisco, 2017). These techniques should be able to accurately 

identify threats in real time with a few false positive and negative results as possible. 

 

1.3  Research Goals 

This thesis aims to address the limitations of single-hop anonymous communication 

method classification by proposing a machine learning based approach utilising TCP 

header information and flow-based TCP statistics. The particular methods investigated 

will be anonymous proxy servers and VPNs. A key goal in implementing this approach 

will be high accuracy and keeping the number of false positives and false negatives to 

an absolute minimum. Classifying legitimate network packets as having originated at 

an anonymous communication system could be catastrophic to an organisation that 

depends on high volumes of traffic reaching their site. Similarly, classifying 

anonymous communication traffic as legitimate could open up an organisations 

internal network to malicious activity where the identity of the perpetrator is unknown. 

Having the ability to accurately determine which class the network traffic falls into 

can be a step towards allowing a network manager to secure an internal network, 

especially when combined with other security tools.  

  



17 

 

 

 

 The overall aims of the research presented in this thesis is as follows: 

• Review proxy and VPN architectures and functionality.  

• Review current methodologies for detecting proxy and VPN activity (without 

utilising machine learning approaches). 

• Review traffic classification literature to develop knowledge of the area and 

get an understanding of how machine learning is applied to this problem. 

• Review literature based on applying machine learning methodologies to proxy 

and VPN detection. The goal here will be to gain an understanding of the 

potential techniques that can be utilised. 

• Gather network traffic from multiple proxy and VPN sources to construct two 

datasets, one for proxy traffic and one for VPN traffic. Both datasets will 

contain control traffic to facilitate comparison 

• Develop a machine learning approach for distinguishing between proxy and 

non-proxy traffic accurately. 

• Develop an approach for distinguishing between VPN and non-VPN traffic 

accurately. 

• Develop an approach for further investigating VPN traffic with a focus on 

Stunnel. 
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1.4  Thesis Contributions 

The research presented in this thesis provides a substantial and novel contribution to 

the area of proxy and VPN based network traffic detection and classification. The 

work has been peer reviewed in three published conference papers (Miller et al., 

2015a, 2016, 2018) and has contributed towards journal publications (Miller et al., 

2015b and Miller et al., 2019). The primary contributions of the thesis are: 

 

1. The creation of three datasets in the ARFF format containing captured network 

traffic, one consisting of proxy network traffic and non-proxied control traffic, 

a second consisting of VPN network traffic and non-VPN control traffic and a 

third consisting of VPN network traffic tunnelled through Stunnel and non-

VPN control traffic. 

 

2. A machine learning based approach for accurately detecting and classifying 

proxy network traffic. 

 

3. A machine learning based approach for accurately detecting and classifying 

VPN network traffic. 

 

4. A machine learning based approach for accurately detecting and classifying 

VPN network traffic that is tunnelled through Stunnel.  

 

1.5  Thesis Outline 

Chapters two through to five present the research undertaken and the experimental 

work involved with chapter six drawing conclusions and suggesting future work. A 

brief summary of the chapters is outlined as follows: 

 

• Chapter 2 reviews the current literature with regards to detection of proxy and 

VPN network traffic. Current proxy and VPN architectures are described along 

with current network intrusion detection techniques. A review of machine 

learning is presented with a focus on its potential for network traffic 
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classification. Current network traffic classification techniques are reviewed 

and evaluated. 

 

• Chapter 3 provides the methodology involved in creating a dataset and 

populating it with network traffic collected using a number of proxy websites. 

Also included in the dataset is network traffic that was not collected using 

proxy websites to act as a control comparison. The chapter then progresses to 

describe the methodology for using the Azure Machine Learning studio to 

create, train and test an artificial neural network for the purpose of classifying 

whether the network traffic contained in the dataset originated from a proxy 

website or not. The results of this testing are detailed at the end of the chapter 

and they show that the neural network was able to classify a large number of 

instances correctly. 

 

• Chapter 4 provides the main methodology used to create a dataset for training 

and testing and the methodology for creating, training and testing an artificial 

neural network designed to classify network traffic as originating from a VPN 

or not. The dataset is populated with network traffic that was collected using 

an OpenVPN connection and network traffic that was collected when not using 

a VPN connection. The chapter then describes the methodology for using the 

WEKA suite of machine learning tools for the creation, training and testing of 

an artificial neural network. The results are then outlined at the end and they 

show that the neural network that was created was able to classify most of the 

testing instances correctly. 

 

• Chapter 5 concludes the thesis by documenting the main contributions of the 

research and suggesting potential future research in the area of proxy and VPN 

based network traffic detection and classification. Future research includes the 

capture of additional data for the datasets to strengthen the findings and 

investigation into the use of automatic hyperparameter tuning in Weka to find 

the best possible setup of the models used. Also included is a discussion on 

newer VPN targets that could be used instead of OpenVPN such as Wireguard 

and potential investigation into other types of machine learning algorithm 
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including Ensemble Learning, Transductive machine learning and deep 

learning algorithms.  
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2.  Literature review  

This chapter provides a background on the technologies involved in the thesis as well 

as a review of the current literature in detecting the use of both Anonymising Proxies 

and VPNs. The background information is given in an attempt to give the reader a 

better understanding of the technologies that are being investigated in this thesis. A 

review of current literature is given to help show the reader what other research has 

been done in this area and to show where inspiration is being taken for the techniques 

being described in Chapter 3. 

2.1  Proxies 

Web proxy servers are a computer network system or application that acts as an 

intermediary for requests from clients seeking resources such as files, web pages or 

other resources from other servers on the internet. They were invented to add structure 

and encapsulation to distributed systems and to help control complex. Proxies 

normally operate under 2 different protocols, Hypertext Transfer Protocol (HTTP) and 

Socket Secure (SOCKS) (Ligh et al., 2010). 

HTTP is a protocol that allows a user to send requests for resources on the internet. It 

is the foundation of data-exchange on the Web. It is a client-server protocol which 

means that requests are initiated by the receiver, usually a web browser but it could be 

a robot that automatically explores the internet to populate and maintain a search 

engine such as Google search. Each individual client request is sent to a server, which 

handles it and provides an answer, called the response. Between the client and the 

server there can be other entities. These entities are referred to as Proxies and they 

perform different operations such as acting as gateways, caches or as a method of 

anonymising the client. Whilst HTTP is not designed solely for proxy communication, 

proxies still use it because it supports both encrypted and unencrypted traffic as well 

as the ability to allow non-HTTP traffic to pass-through a proxy-server. 

SOCKS is a protocol that exchanges network packets between a client and server 

through a dedicated proxy server. It is known as a circuit level proxy intended for use 

with applications. The SOCKS protocol consists of 3 major versions - SOCKSv4, 

SOCKSv4a and SOCKSv5. SOCKSv4 is a protocol that is designed for proxy-based 

applications. The other two versions are extensions of it that provide extra features 
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and support for other protocols with SOCKSv5 providing support for the user 

datagram protocol (UDP), IPv6 and strong authentication (Lee et al., 1996).  

 

 

Figure 2.1: HTTP Proxy Interaction 

 

During a normal HTTP interaction, a client will communicate directly with a server 

over HTTP. When a web proxy is involved the client will instead send its traffic to the 

proxy, which itself will communicate with the target server on the client’s behalf. An 

example of this is shown in figure 2.1. This means that web proxies have two roles to 

fulfil themselves, that of a HTTP client and that of a HTTP server. This is because the 

client is sending request messages to the proxy that are intended for the target web 

server. The proxy server must be able to handle and process those requests properly 

and the subsequent responses to facilitate a successful connection with the client. At 

the same time, the proxy itself must send requests to the target server, therefore it must 

be able to send requests and receive responses just like a normal HTTP client.  

 

SOCKS proxies operate at a lower level of the OSI layer model than HTTP, as shown 

in Figure 2.2, and differs in their operation. Where an HTTP proxy acts as a middle 

man or stepping stone between a client and server by forwarding the HTTP requests, 

SOCKS proxies relay communications via TCP connections at a firewall gateway to 

allow a user application transparent access through the firewall (Lee et al., 1996). To 

use a SOCKS proxy connection, a client must have SOCKS client and server software 

installed on the user’s machine. This can be in the form of an application such as 

PuTTY1 or a web browser, or it can be installed in the TCP/IP stack. The client 

software’s main function is to redirect network packets into a SOCKS tunnel. The 

SOCKS client then initiates a connection to a SOCKS server. The proxy server then 

                                                 
1 http://www.putty.org/ 

Web ServerClient Proxy Server
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acts as the client and communicates with an external web server. This external server 

is only aware of the proxy server and not the original client that initiated the 

connection. 

 

A SOCKS proxy is different from a HTTP proxy because they are application proxies. 

For example, when using a HTTP proxy, the HTTP request itself is being forwarded 

and the proxy server then performs the request on the client’s behalf. A SOCKS proxy 

server doesn’t forward request but instead negotiates a proxy connection by 

exchanging messages between the client and server. When a connection is established, 

the client communicates with the SOCKS server using the SOCKS protocol. The 

external server then communicates with the SOCKS server as if it were the actual 

client. 

 

 

Figure 2.2: OSI 7 Layer Model 

 

There are two overall types of proxy server; those dedicated to a single client and those 

that are shared among many clients (Gourley & Totty, 2002). Proxy servers that are 

dedicated to a single client are referred to as private proxies and those that are available 

to multiple clients are public or shared proxies. Private proxies perform a few 

specialised tasks, mainly when they are run directly on client computers. ISP services 

run small proxies to provide certain services such as extended browser features and to 

host advertising. Public or shared proxies are more common as they are usually 
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accessible from the Internet. These types of proxy are more popular due to their 

accessible nature and are easier and cheaper to administer. There are also a number of 

sub-types of proxy in addition to the two overall types. These sub-type Proxies have a 

designated role or job. These roles include Content Filters, Document Access 

Controllers, Security Firewalls, Web Caches, Reverse Proxies, Content Routers, 

Transcoders and Anonymizing Proxies. A number of these are usually limited to 

enterprise networks, but some can be found on home networks as built-in modules of 

the gateway router supplied by an Internet Service Provider (ISP) and others, like 

anonymizing proxies, can be found openly on the Internet. 

 

2.1.1  Content Filters 

Content filter proxies provide administrative control over client transactions as they 

happen at the application protocol layer of the network stack (Luotonen & Altis, 1994). 

This is commonly used in both commercial and non-commercial organisations, 

especially in schools as a method to control access to the Internet. Requests may be 

filtered using several methods, such as URL blacklists, URL regex filtering or content 

keyword filtering. More in-depth filtering can be accomplished by analysing the 

content of requests to discern whether they should be allowed or not. If the requested 

URL passes these filters, the filter proxy then proceeds to fetch the website, usually 

over HTTP. On the return path, dynamic filtering can be applied to block specific 

elements of a webpage, such as embedded videos or JavaScript. A drawback to content 

filtering proxies is that they cannot, normally, scan websites that are transmitted over 

an encrypted, HTTPS session where the chain of trust for the website in question has 

not been tampered with. The chain of trust refers to the use of certificates in the 

implementation of SSL/TLS connections. These certificates are issued by root 

Certificate Authorities (CAs) who can attest to the legitimacy of the website. However, 

content proxies can generate their own root certificate and inject that into the 

communications as a trusted root certificate. With this certificate in place, the content 

filter can decrypt requests in order to scan the normally encrypted content. In this 

situation, the filter is effectively operating what is known as a Man in The Middle 

(MiTM) attack. 
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2.1.2  Document access controllers 

Document access controllers are proxy servers that have the role of implementing a 

uniform access control policy across a larger network of web servers and resources 

(Gourley & Totty, 2002). This eliminates the need for multiple access control systems 

and simplifies the administration of access control as all the controls can be configured 

on a centralized proxy server. This is particularly useful when used in a large data 

centre that makes use of servers of many different types and models which all have 

slightly different methods of applying access control. 

 

 

Figure 2.3: Document Access Controller Example 

 

Figure 2.3 shows an example network which contains a Document access controller. 

It shows three client pcs that are connected to the controller and it show some example 

content that the proxy controls access to. Server A contains non-restricted content 

therefore all of the clients can access this resource. Some of the clients will require 

access to the Internet and the controller regulates this access, only allowing the clients 

that have the required permissions to access it. Server B contains restricted content 

and by default none of the clients can access this unless they have been authenticated 

and have the required permissions. 
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2.1.3  Security Firewalls 

A significant security problem for business type networks is hostile or unwanted 

access by users or software (Stallings & Lawrie, 2008). Unwanted user access (an 

intrusion) can be in the form of unauthorised logon to a machine or gaining the ability 

to perform higher privilege actions than what is normally authorised. Unwanted 

software access can take the form of a virus, Trojan horse or other form of malware 

(Wang et al., 2013). A firewall is defined as a component or set of components that 

restrict access between a protected network and external networks (Kumar et al., 

2014). There are a few different types of firewall. These are: packet filtering firewalls, 

stateful inspection firewalls, application-level gateway, circuit-level gateway and 

proxy firewalls (see figure 2.4).  

 

 

Figure 2.4: Firewall Proxy separating clients from Internet 

 

Packet filtering firewalls apply a set of rules to incoming and out-coming IP packets, 

any packets that adhere to those rules are forwarded on to their destination and any 

that don’t are discarded (Ali et al., 2015). A stateful inspection firewall reviews the 

same packet information as a packet filtering firewall, but also records information 

about the TCP connections that are sending and receiving the packets as well. Some 

also keep track of the TCP connection sequence numbers to prevent attacks that 

depend on the imposters using a sequence number, such as session hijacking (Ali et 

al., 2015).  
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An Application-level gateway acts as a relay for application-level traffic. A user will 

contact the gateway using a TCP/IP application such as FTP or Telnet and the gateway 

asks for the name of the remote host to be accessed. When the user responds with the 

name of the remote host and provides a valid ID and authentication information, the 

gateway contacts the application on the remote host and relays application data 

between the two. If the gateway does not support the application, the service is not 

supported and cannot be forwarded across the firewall. Application-level gateways 

tend to be more secure than packet filtering firewalls as they only scrutinise a few 

allowable applications. A circuit-level gateway can be a stand-alone system or it can 

be part of a specialised function performed by an application-level gateway. A circuit-

level gateway operates in much the same way as an application-level gateway 

however, once it sets up the TCP connections, it does not examine the contents. The 

security function consists of determining which connections will be allowed (Ali et 

al., 2015). Proxy firewalls are a network security application that filters network 

packets at the application layer and they are the most secure type of firewall at the 

expense of speed and functionality of the network because they can limit the 

applications that are supported on the network. Proxy firewalls act just like standard 

proxy servers in that they act as an intermediary between a client computer and a 

destination web server. They are also the only machine on a proxy firewall protected 

network to have a direct connection to the Internet. This means that any other machine 

that wants to access a resource from the Internet will have to use the proxy firewall as 

a gateway. As the proxy firewall receives every request travelling to and from the 

network, it is able to filter and log requests based upon inspection of their packets. An 

added benefit to this type of proxy is that content that is being requested by multiple 

clients can be cached locally to increase the access time for the content. However, on 

networks with large amounts of traffic, the proxy firewall could be the cause of a 

reduction in performance due to the creation of a bottleneck or increasing the risk to 

the network by becoming a single point of failure. 

 

2.1.4  Web Caches 

Alongside security proxy firewalls, there are also dedicated web caching proxy 

servers. Web caching is the temporary storage of popular remote web resources on a 
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local server (Ponnusamy & Karthikeyan, 2013; Singh et al., 2011). These proxy caches 

are used to reduce the strain of repeated requests for the same resource on web servers 

and network bandwidth providers (Cobb & ElAarag, 2008). Figure 2.5 shows a 

common Web Cache Proxy setup. Caching proxies can be configured in one of two 

ways. The first way positions one or more servers on the network between a web server 

or (more commonly in a datacentre) a group of web servers and incoming network 

traffic from the Internet. This is designed to reduce the load on the web servers. 

 

 

 

Figure 2.5: Standard setup of a Web Cache Proxy 

 

The second configuration is designed with a focus on reducing congestion on the 

network. With this approach the proxy cache is located on the same network as the 

client machines making requests. As the request comes in, the proxy first determines 

if it has the requested material is stored locally. If the material is stored locally, it 

replies to the quest and delivers the material. If not, it initiates a connection with the 

web server to access the material and fetches the materials on behalf of the client and 

potentially caches it. 

 

2.1.5  Reverse Proxy 

A reverse proxy is a server that transparently hands off requests to another server 

(Reese, 2008). Contrary to the normal operation of a proxy server where the server 

acts as an intermediary between clients and servers, the reverse proxy itself appears to 

the client as a web server, acting as an intermediary for its associated servers to be 

contacted by any client even if the servers are behind a firewall. An example can be 

seen in figure 2.6.  

Client Web ServerProxy Cache



29 

 

 

 

 

Figure 2.6: Reverse Proxy with JavaScript Scanner acting as a load balancer 

 

Reverse proxies can also be used as a load-balancer among several back-end servers 

or to provide caching for a single server to reduce the load of commonly requested 

data on the target server. In this latter implementation the reverse proxy can be referred 

to as a server accelerator (Gourley & Totty, 2002). The popular Content Distribution 

Network (CDN) and Distributed Denial of Service (DDoS) protection company 

Cloudflare provides its services by acting as a reverse proxy (Durumeric et al., 2017). 

When a client visits a site that is protected by Cloudflare’s services, instead of 

connecting directly to the web server that is hosting the website, the client connects to 

one of Cloudflare’s servers which serves a cached version of the site or proxies the 

connection to the origin server. Another use case of reverse proxies can be in the 

mitigation of attacks against websites. (Wurzinger et al., 2009) describe their method 

of mitigating Cross Site Scripting (XSS) attacks using a reverse proxy to relay traffic 

to and from the web server that is being protected. Each response made by the web 

server is forwarded by the reverse proxy to a JavaScript scanning component which 

scans the response for harmful scripts. If detected the proxy blocks the response from 

being delivered and instead notifies the client of the attempted attack.  

 

2.1.6  Content Router  

Content Routers are proxy servers that have the ability to redirect requests as part of 

an information-centric network (ICN). In a simple ICN setting, requests for content 
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are generated and sent by end users. Each request consists of a content name, whole 

controls access to the content and the location from which it can be accessed (Kurose, 

2014). These requests are forwarded among content routers towards the location and 

controller of the content. Before a content router forwards a content request, it first 

checks its own local cache store for the requested content. If the content router has the 

content stored locally, the router itself can satisfy the request for that content, sending 

it to the requestor. As content is sent along its path from controller to requestor, each 

content router on the way stores a copy of the content in its local cache. This ensures 

that repeat requests for that same content can be detoured to content routers which 

may have the requested content, helping reduce the congestion on the network that 

would be created by having to forward requests directly to the content’s controlling 

server (Wong et al., 2011).  

2.1.7  Transcoder 

Transcoding can be defined as the transformation that is used to convert a multimedia 

object from one form to another (Chang & Chen, 2003). Based on where the actual 

transcoding takes place, different technologies can be classified as belonging to server-

based, client-based or proxy-based approaches (Cardellini et al., 2000). Transcoding 

proxy servers can modify the format of content before it is delivered to the destination. 

They can convert images from one filetype to another to reduce size and modify the 

image itself to make it fit onto different types of screen, for example when accessing 

a desktop website from a smartphone or similar device. They also have the ability to 

modify text files in a similar method, even translating the text into different languages 

based on the country ID of the user requesting the content (Gourley & Totty, 2002). 

This can be particularly useful when attempting to provide content for an international 

community where everyone may not understand or speak the original language of the 

content. 

2.1.8  Anonymous Proxies 

Anonymity technologies allow Internet users to maintain their privacy by preventing 

the collection of identifying information such as IP addresses. Due to an increasing 

awareness of what is shared and collected online, Internet users are growing more 

concerned with their privacy and are turning to the use of technologies such as 
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anonymous proxies (Li et al., 2013). Anonymous Proxies are one of the easier to 

deploy technologies for anonymity on the Internet and are generally access through a 

web browser (Edman & Yener, 2009). They are proxy servers that are based on the 

open Internet and are accessible to the general userbase of the Internet. The aim of an 

anonymous proxy is to make a user’s Internet activity untraceable by acting as an 

intermediary between the user’s client pc and the rest of the Internet. Anonymity is 

provided by the proxy server by processing client requests using the proxy server’s IP 

address rather than the user’s IP address. The server relays requests from the user to 

their destinations and delivers the responses back to the user. This provides a basic 

level of anonymity. However, the proxy servers can see both the source (client IP 

address) and destination (resource IP address) and therefore can track user activities 

and what is being relayed between the source and destination.  

 

There are multiple ways of setting up a proxy server. Two examples of some of the 

more popular technologies for setting up proxy servers are PHP and Common 

Gateway Interface (CGI) based scripts. Both provide the required functionality that 

anonymous proxy servers rely on and they have the benefit of being supported across 

multiple operating systems. Glype is a PHP based script and is one of the most 

common and popular web proxy scripts available on the Internet. Setting up a proxy 

server using the Glype proxy is accomplished by downloading the script files from the 

Glype website and then relocating those files to the correct directories on the 

webserver. This may appeal to user’s who have access to web capable servers that are 

located on a different local network, such as owning a Virtual Server hosted by a server 

hosting company. However, a simpler option would be to access one of the many 

existing proxy sites already available. A study done in 2011 on the geo-location of 

public proxy servers found that there were 7,246 proxy servers available (Li et al., 

2013). A list found on the Glype proxy website listed 3,389 unique servers that were 

running the Glype script (Miller et al., 2016). A more recent list showed that there 

were 50,824 individual web proxies2. This presents a problem when trying to block 

access to these proxies because there are so many that when one server is blocked, it’s 

a simple case of accessing another proxy server. The difficulty lies in compiling a 

complete list to add to an IP block list or Access Control List. Due to the ease of setting 

                                                 
2 https://proxy.org/web_proxies.shtml 
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up new proxy servers, new proxy servers are being added all the time. URL filtering 

is defeated by the proxy server’s use of encoding to obfuscate and hide the actual URL 

from the filters.  

 

For example, when encoding is applied, the URL:  

http://www.radiocarb.com/p/browse.php5?u=https://www.wikipedia.org/ 

becomes: 

http://www.radiocarb.com/p/browse.php5?u=czovL3d3dy53aWtpcGVkaWEub3JnL

w%3D%3D&b=13 

 

This is an example of the base64 encoding scheme, however some PHP based proxies 

also make use of the simple ROT13 encoding scheme, which is based on the Caesar 

encryption cipher using a key of 13. CGI proxies make use of the Common Gateway 

Interface which is a standardised protocol created to enable web servers to execute 

console/terminal style applications. The most common use of these is to generate web 

pages dynamically each time a request for that web page is received. CGI proxies use 

this type of script to perform the act of proxying a connection. Proxy clients send a 

request containing the URL of the website they wish to visit embedded in the data 

portion of an HTTP request. The proxy server pulls the destination information from 

the embedded data and uses it to send its own HTTP request to the destination. 

Whenever the result is returned from the destination web server, it is forwarded to the 

proxy user (Leberknight et al., 2010). An example of a CGI proxy script that is 

available for download is CGIProxy3 by James Marshall (Marshall, 2002). While 

Glype proxies enable URL obfuscation by default, the CGIProxy script does not. 

ROT13 encoding can be enabled by removing the line comments for the methods 

proxy_encode() and proxy_decode() in the script. The script also provides support for 

custom encoding code to be added such as hexadecimal encoding. 

2.1.9 Conclusion 

This section of the literature review has provided background on the different types 

and functions of Proxy servers, highlighting that there are a number of legitimate tasks 

                                                 
3 https://www.jmarshall.com/tools/cgiproxy/ 
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that proxy servers accomplish some of which are necessary to the continued operation 

of the internet. Details are given on how each different proxy task operates, what the 

results of the task are and how the results affect the internet with some examples given 

of real-world application. Anonymising proxies are detailed at the end of the section 

providing a background into how some of the more popular anonymising proxy scripts 

operate, highlighting how easy it is to access or even set up an anonymising proxy 

server. This type of proxy is the focus of this thesis as the other types of proxy are 

seldom used to commit criminal acts. Also described is the methods that the scripts 

use to hide themselves from detection through the use of URL obfuscation via 

encoding algorithms. Techniques that typically block access to websites fail to keep 

up with how quickly new proxy servers can be created which lends weight to the 

argument that new techniques need to be developed to detect the use of proxies and 

enable administrators to take effective action.  

2.2  Virtual Private Networks (VPNs) 

2.2.1  Introduction 

A Virtual Private Network (VPN) is the use of varied techniques to provide private 

networks of resources and information over any public network (Hawkes-Robinson, 

2002). They enable organisations and individuals alike to connect their resources over 

the Internet, but control access to those resources by only making them available to 

those that are part of the VPN. Normally, without the use of a VPN, to achieve such a 

private connection would require a great investment in time, finances and work to 

setup a dedicated line of communication. Instead, by using VPNs it is possible to 

extend private networks and allow the sharing of data as if the computing devices 

attached to the VPN were all directly connected to a local network (Mason, 2004).  

 

The data of the private network is said to be “tunnelled” inside a public network packet 

(Hawkes-Robinson, 2002). It enables a remote machine on network X to tunnel traffic, 

that might not normally be able to be sent across the Internet, to a gateway machine 

on network Y and appear to be sitting, with an internal IP address, on network Y. The 

gateway machine receives traffic to this internal IP address, and sends it back to the 

remote machine on network X (Schneier & Mudge, 1998). This itself does not provide 
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much security. Intercepting these tunnelled packets would still allow for the contents 

of the private packets to be intercepted and exposed by a third party.  

 

To overcome this, the private packets need to be encrypted and above that, some form 

of authentication needs to be used. VPN protocols vary in their support for encryption 

and authentication schemes. Each of the following sections will discuss some example 

algorithms and schemes supported by each VPN protocol. 

 

2.2.2  PPTP  

The Point-to-Point Tunnelling Protocol (PPTP) is a link layer VPN protocol that is 

designed to tunnel Point-to-Point Protocol (PPP) connections through an IP network, 

creating a VPN connection (Zorn et al., 1999; Schneier & Mudge, 1998). PPTP 

encapsulates the virtual network packets inside of PPP packets, which are then 

encapsulated in Generic Routing Encapsulation (GRE) packets (Farinacci et al., 1994). 

The final packets are sent over IP from the client to the gateway PPTP server and back 

again. PPTP does not provide any methods for keeping data confidential or for 

providing strong authentication. The Microsoft implementation that was included with 

Windows NT provides a framework for negotiating authentication and encryption 

algorithms between server and client which relies upon existing negotiations contained 

within extensions and enhancements of PPP (Simpson, 1996). Some example 

authentication algorithms are the Password Authentication Protocol (PAP), the 

Challenge-Handshake Authentication Protocol (CHAP), MS-CHAPv1/v2, 

Microsoft’s implementations of CHAP, and Extensible Authentication Protocol 

(EAP). CHAP and MS-CHAPv1/v2 have faced extensive scrutiny over the years 

(Microsoft, 2012; Schmidt, 2012; Hawkes-Robinson, 2002; Schneier et al., 1999; 

Schneier & Mudge, 1998). PAP transmits the username and password from the client 

through an unencrypted channel which leaves it vulnerable to eavesdropping attacks. 

This leaves it in the position where it can only be used as a last resort. Due to the 

vulnerabilities that have been found in the authentication and encryption algorithms it 

uses, PPTP does not see widespread use anymore. 
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2.2.3  L2TP  

The Layer 2 Tunnelling Protocol (L2TP) is also a link layer VPN that extends the PPP 

model by combining features of PPTP with features of the Layer 2 Forwarding (L2F) 

protocol.  (Townsley et al., 1999). L2TP functions similarly to PPTP. Higher level 

protocols, commonly PPP connections, are encapsulated within an L2TP tunnel by 

setting up an L2TP session. The L2TP packets in turn, including both the payload and 

the L2TP header are transported within a UDP packet. L2TP is also similar to PPTP 

in that it does not provide any methods for confidentiality or authentication and instead 

inherits existing protections from PPP. A protocol suite called IPsec was introduced 

to provide improved authentication and confidentiality over the PPP methods (Patel et 

al., 2001). The original PPP methods used by L2TP were found to be vulnerable to a 

Denial of Service (Dos) attack which involved transmitting a request to stop the 

connection using the correct identification in order to terminate the VPN session (Kara 

et al., 2004). This was a vulnerability that was solved in an updated version of L2TP 

called L2TP version 3 (L2TPv3). The new version included an optional authentication 

and integrity check that nullified the vulnerability. L2TP is often combined with 

another authentication and encryption protocol suite called Internet Protocol security 

(IPSec) (Kent & Atkinson, 2005). 

 

2.2.4  IPsec 

IPsec includes a collection of standardised protocols for mutual authentication 

between two hosts at the beginning of a VPN session and for the negotiation of 

cryptographic keys used to enable encryption for the session (Kent & Atkinson, 2005). 

Data is kept secure by authenticating network packets to make sure of the integrity of 

the packet and that encapsulation has been implemented correctly. There are two 

modes in which IPsec can provide this functionality: transport mode and tunnel mode 

(Berger, 2006). In transport mode, the original packet is edited to include a new IPsec 

header in the original IP header. This additional header contains the information 

needed to perform authentication and integrity checking. In comparison, tunnel mode 

provides more flexibility. In tunnel mode, the entirety of each original IP packet is 

encapsulated inside a new IP packet consisting of a new IP header and the IPsec header 

(Kent & Atkinson, 2005). This adds a layer of abstraction from the original IP packet’s 
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contents therefore providing confidentiality for the payload. To determine which mode 

is to be used during a connection, security information defining the modes that each 

end point supports needs to be exchanged. This is referred to as a security association 

(Berger, 2006). It contains information on the mode of IPsec to be used, the encryption 

algorithms to be used and the encryption keys used to set up the encryption. Exchange 

of this information is completed using the Internet Key Exchange (IKE) protocol 

(Harkins & Carrel, 1998). 

 

2.2.5  IKE 

IKE is used as part of IPsec to negotiate and establish connections by sharing 

authentication data and encryption keys between two hosts (Harkins & Carrel, 1998). 

In IKE version 1, IKE messages are sent between the hosts using UDP packets on port 

500 and form the basis of a two-stage negotiation. This exchange of messages relies 

on the Internet Security Association and Key Management Protocol (ISAKMP) 

(Maughan et al., 1998). The first stage involves the setup of the IPsec security 

association. At this point there is no encryption of data or authentication of either host. 

Therefore, the two hosts attempt to authenticate themselves by sending their respective 

encryption public keys via the Diffie-Hellman (DH) key exchange method (Diffie & 

Hellman, 1976). Once the keys have been exchanged and the two hosts have been 

successfully authenticated, stage one is complete and stage two begins. In stage two 

of the negotiation, the two hosts work out the parameters for the VPN tunnel or tunnels 

that will be setup. These include the symmetric encryption keys and their expiry 

information, the security policies of the connection, the network routes and other 

information pertaining to the connection. Once worked out, the connection between 

the two hosts will be complete and data can be exchanged in a secure way (Berger, 

2006). Internet Key Exchange version 2 (IKEv2) is an update that combines the 

contents of the multiple protocols and methods the IKEv1 uses to accomplish its tasks 

into one overall standard (Kaufman et al., 2014).  
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2.2.6  Secure Socket Layer (SSL)-based VPNs 

Secure Socket Layer (SSL)-based VPNs operate on the transport level of the OSI 

network layer model as opposed to IPSec, L2TP and PPTP which operate on the link 

layer. This is due to their use of SSL/TLS to provide authentication and confidentiality 

and HTTPS for transferring data. Reliable transmission is available without any extra 

effort due to the position of SSL/TLS on the network layer model as TCP is also 

located on the transport level (Rowan, 2007). SSL VPNs are often called clientless 

VPNs because they do not need any additional client software to be installed in order 

to use them. They however do rely on web browsers to handle the client side of the 

tunnel as most web browsers have SSL protocol support built in. This has an added 

benefit of making the SSTP VPN platform agnostic, enabling users to access resources 

from a variety of platforms running on different operating systems. Use of HTTPS 

enables connections to be made through most firewalls.  

 

One example of an SSL-based VPN is Microsoft’s Secure Socket Tunnel Protocol 

(SSTP) (Jain et al., 2011). SSTP provides an encrypted tunnel by means of the 

SSL/TLS protocol. PPP network traffic is encapsulated in this tunnel and transferred 

over a HTTPS. When a client establishes an SSTP-based VPN connection, it first 

establishes a TCP connection to the SSTP server over TCP port 443. The SSL/TLS 

handshake process used for transferring keys and authenticating and encrypting the 

connection occurs over this TCP connection. After the successful negotiation of 

SSL/TLS, the client sends an HTTP request with content length encoding and a large 

content length on the SSL protected connection. The server sends back an HTTPs 

response with the HTTP 200 OK status if everything is in order. Once the HTTPS 

connection is established successfully the client can send and receive SSTP Control 

packets and SSTP Data Packets. SSTP control packets contain messages to negotiate 

parameters and to ensure there is no untrusted man-in-the-middle (MITM). SSTP data 

packets contain the encapsulated PPP traffic as a payload. 
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2.2.7  OpenVPN 

OpenVPN4 is a well-known and popular VPN protocol (Feilner, 2006). Due to its very 

simple configuration and the mixture of enterprise-level security, usability and other 

features, plus its support for most of the operating systems that are available, it is 

widely regarded as among the best VPN solutions (Pohl & Schotten, 2017; Crist & 

Keijser, 2015). It falls loosely into the SSL-based VPN category due to its use of the 

SSL/TLS protocol to secure connections. However, OpenVPN also makes use of 

Hash-based message authentication codes (HMAC) in combination with the SHA1 

hashing algorithm for ensuring packet integrity. OpenVPN has two authentication 

modes. In mode one a pre-shared static key is used to provide authentication and 

encryption. In mode two, SSL/TLS mechanisms  are used for authentication and key 

exchange5 (Feilner, 2006). In static key mode, a pre-shared key is shared between both 

hosts before the tunnel is set up. This static key contains four independent sub-keys: 

HMAC send, HMAC receive, encrypt and decrypt. The preferred mode of operation 

is mode two which uses SSL/TLS. In this mode an SSL session is established requiring 

both hosts to present their own authentication certificate. If the authentication of the 

hosts succeeds, negotiation and exchange of the encryption/decryption and HMAC 

keys begins. Rather than the keys being static as in mode 1, in mode 2 the keys are 

randomly generated either by OpenSSL’s RAND_bytes function or by using the TLS 

pseudorandom function (PRF) alongside random source material from both hosts. The 

keys are then exchanged over the SSL/TLS connection and the tunnel forwarding 

process begins. The data to be encrypted and transferred in the tunnel includes a 64-

bit sequence number and the payload data consisting of an IP packet or Ethernet frame. 

Encryption of the tunnel packets is carried out using the Blowfish secret key block 

cipher (Schneier, 1994). OpenVPN then multiplexes the SSL/TLS session that is used 

for authentication and key exchange with the encrypted tunnel data. SSL/TLS is 

designed to operate using a reliable transport protocol so OpenVPN provides a reliable 

transport layer on top of UDP. The actual IP packets are tunnelled over UDP without 

an added reliability layer after they have been encrypted and signed with an HMAC 

as the IP packet forwarder has been designed to operate over an unreliable transport 

layer. 

                                                 
4 https://openvpn.net/ 
5 https://openvpn.net/index.php/open-source/documentation/security-overview.html 
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2.2.8 Conclusion 

In this section a detailed background is given on various VPN technologies which 

shows how VPNs have been developed and improved over time. The information 

provided helps explain why VPNs were developed is and how they operate. It also 

shows that there are multiple uses for VPNs when it comes to computer networks. 

Some of these uses are entirely legitimate and necessary to the continued functioning 

of business networks by allowing employees to access company resources over a 

secure connection from a remote location. There are however criminals who make use 

of these same technologies to hide their identity to avoid getting caught when 

committing cyber-crimes. For this reason, there is a need to develop techniques to 

detect the usage of VPN technologies to add to the other network information 

gathering and recording tools that are available. This thesis will focus on OpenVPN 

as it is easy to set up a VPN server and to then make use of its capabilities. This will 

form the basis for further research into other more complex techniques. 

2.3  Intrusion Detection  

Intrusion detection is the process of monitoring connections coming to and leaving 

from a computer or network and then analysing those connections for signs of potential 

violations or incidents that go against security guidelines and acceptable use policies 

(Scarfone & Mell, 2007). Causes of these incidents can include attackers gaining 

unauthorised access to systems, malware such as spyware and Trojan viruses and 

misuse of system privileges by users or attempts to gain additional privileges. An 

intrusion detection system is the software that automates this process. When detecting 

possible incidents, an IDS can take several actions. One would be to report the incident 

to a system security administrator, who could then initiate a response to mitigate the 

effects of the incident. Alongside alerting an administrator, the IDS could also keep a 

record of incidents that could be referenced later and to help prevent future cases of 

that incident. 
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Figure 2.7. Network Based Intrusion Detection System 

 

There are several different types of  Intrusion Detection System (IDS) which can be 

classified as Network based, Host based, Network Behaviour and Wireless (Scarfone 

& Mell, 2007). Network based systems monitor the traffic of a network using sensors 

placed at certain parts of the network and IDS management servers. They analyse the 

activity recorded by the sensors to identify incidents of intrusion. Figure 2.7 shows the 

typical layout of a network that includes a network-based IDS. Host based systems 

differ from network-based systems by monitoring a single host. Network Based 

Analysis (NBA) systems monitor network traffic in order to identity threats that 

generate unusual traffic flows such as malware or port scanning attempts. Wireless 

IDSs apply similar techniques to network-based systems specifically to wireless 

network traffic that makes use of wireless networking protocols. 

 

2.3.1  Machine Learning in Intrusion Detection Systems 

Integrating machine learning techniques into IDSs is a method of increasing the power 

and accuracy of the detection system. Machine learning techniques include various 

kinds of artificial neural networks and classification techniques as well as genetic 

algorithms and fuzzy logic. There has been various research studies looking into 

integrating machine learning into IDSs with the recent trend being improving the 

machine learning aspect by combining different techniques to increase detection 
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accuracy and to decrease the computational effort required to train the systems. (Lin 

et al., 2015) proposed a feature representation technique using a combination of the 

cluster centre and nearest neighbour approaches. Experiments that were carried out 

made use of the KDD-Cup99 dataset and showed that the approach required less 

computational effort to provide similar levels of accuracy to k-NN. (Xiang et al., 2008) 

proposed a multiple level hybrid classifier that combined supervised tree classifiers 

with unsupervised Bayesian clustering. Performance of this approach was also 

measured using the KDD-Cup99 dataset and experiments showed that it provided a 

low false negative rate of 3.23% and a false positive rate of 3.2% with a high detection 

rate for both known and unknown attacks. (Khan et al, 2007) made use of a Support 

Vector Machine (SVM) for classification and a clustering tree technique called 

Dynamically Growing Self-Organising Tree (DGSOT) to improve the training times 

of the SVM. Experiments were carried out using the DARPA98 dataset and showed 

that using a clustering tree helped to increase the accuracy rate of the SVM and lower 

the rates of false positives and false negatives.  

 

(Özyer et al., 2007) provided a system that made use of both genetic algorithms and 

fuzzy logic to create a genetic fuzzy classifier to predict different behaviours in 

networked computers. Their results showed that there was a benefit to using fuzzy 

logic to pre-screen rules before classifying with the genetic algorithm as it decreased 

the time needed to train the system. However, the systems accuracy in detection did 

not show much increase and showed a decrease in accuracy in some classes compared 

to other approaches. An earlier study used 3 different anomaly detection techniques 

for classifying program behaviour (Ghosh et al., 1999). These techniques were an 

equality matching algorithm for determining what was and wasn’t anomalous 

behaviour, a feed forward backpropagation neural network for learning the program 

behaviour and the third being a recurrent neural network called an Elman network for 

recognising recurrent features of program behaviour. Their study showed that the 

performance of intrusion detection benefited greatly from the use of the 

backpropagation network and the Elman network. The consensus that can be gathered 

from these studies is that the use of machine learning techniques does improve the 

accuracy and performance of intrusion detection systems. 
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2.4  Machine Learning and Neural Networks 

2.4.1  Machine Learning Methods 

Machine learning is an area of study that evolved from research into the areas of 

pattern recognition and computational learning theory with regards to artificial 

intelligence with the term being coined for the first time in 1959 by Arthur Samuel 

(Samuel, 1959). Machine learning research aims to explore the construction and 

development of algorithms that can learn from the massive sources of data that 

surround us. Such algorithms operate by building a model based on making 

predictions or decisions determined by the inputs that it receives, rather than following 

a strictly programmed set of instructions.  

 

There are two broad categories of machine learning which depend on how the training 

data is constructed and presented to the learning algorithm. These are known as 

supervised learning and unsupervised learning. Supervised learning involves the 

learning of a function that maps the values of a given input to an output based on 

example input-outputs in a labelled dataset (Khriplovich & Pomeranskii, 1998). The 

algorithms task when being trained with supervised learning is to learn the most 

efficient way in which to map a set of inputs to a set of outputs based on examples of 

inputs and their desired outputs, otherwise known as training data  (Russel & Norvig, 

2010). To test whether the algorithm generalises well based on the training data, a set 

of data that is distinct to the training set is typically kept back and used as a form of 

test dataset. In unsupervised learning, the algorithm is not present with any training 

data and is left on its own to find a structure to the inputs that it is receiving. The most 

common machine learning task that involves unsupervised learning is that of 

clustering where data is given to the algorithm as input and it groups instances of the 

data together in clusters based on their attribute or features (Russel & Norvig, 2010). 

 

Clustering is just one of many different applications that machine learning can be 

applied to. There is also classification and regression. In classification, inputs are 

divided into classes, typically 2 (known as binary classification) however there can be 

more classes depending on the data. The goal of the machine learning algorithm is to 

produce a model that can assign a class label to new, unseen data based on the patterns 
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that it has learned from being trained in a supervised way. Regression is another 

example of a supervised learning approach. The difference between it and 

classification is that the output from a regression algorithm can be continually updated 

with different values rather than being limited to a set of class labels. The purpose of 

regression is to learn patterns from input data and then use the patterns it has learned 

to produce predicted values for future instances of the data.  

 

2.4.2  Neural Networks 

Neural networks are defined as an interconnected system that produces an output 

pattern when presented with an input pattern (Wade, 2010). In computing, Artificial 

Neural Networks (ANN) are learning algorithms that are inspired by the biological 

neural networks that make up the majority of animal brains and they deal mostly with 

the problem of classification (Haykin, 2004). The first instance of a mathematical 

model that is considered to be a neural network loosely based on neuroscience is called 

threshold logic (McCulloch & Pitts, 1943). This model led to the creation of two 

approaches to neural network research: one focusing on researching the biological 

processes of the brain and one focusing on the application of neural networks to 

artificial intelligence.  

 

A learning hypothesis based on neural plasticity became known as Hebbian learning 

(Attneave, 1950). This is an example of unsupervised learning. In 1958 an algorithm 

called the Perceptron was created (Rosenblatt, 1958). This was an algorithm devoted 

to pattern recognition and is an example of a supervised learning algorithm. The 

perceptron is an example of a single layer neural network. This is a network comprised 

of an input layer and a single layer of perceptron neurons. 
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Figure 2.8: Example of a single layer neural network with a single neuron 

 

In figure 2.8, 3 inputs with 3 weights are shown. These feed into the perceptron neuron 

which modifies the values using the weights provided. It then sums together all the 

values along with an added offset called bias. Finally, the summed signal is sent to an 

activation function which determines what the output is.  

 

Figure 2.9 shows a fully connected multilayered perceptron neural network. The 

biggest difference between the single layered network and the multilayered network 

is in the addition of the hidden layer in the middle which contains five perceptrons. 

The output layer contains two perceptrons, signifying that there are two possible 

classification results i.e. binary classification. Each of the perceptrons in this model 

function the same as the single layered model by summing the weights and bias, 

passing the result to an activation function and then passing that on. The difference 

this time is that the output layer takes the adjusted values from the hidden layer and 

input. 
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Figure 2.9: Multi-layered Perceptron neural network 

 

Research into neural networks stagnated in 1959 after two key discoveries with the 

computational machines that processed neural networks (Minsky & Papert, 1972). It 

was found that the basic perceptrons that were being used were incapable of processing 

an exclusive-or circuit and that the machines used to process the neural networks 

struggled when presented with larger networks. In 1975 the exclusive-or problem was 

solved through the introduction of the backpropagation algorithm (Werbos, 1975). 

This had the bonus of accelerating the rate at which neural networks were trained. 

Backpropagation calculates the error difference between the input and output layers 

and passes the value back through the layers of the network. The error is used to 

repeatedly adjust the weights of connection in the network to minimise the difference 

between the input and the output, therefore reducing the size of the error (Rumelhart 

et al., 1985). In the model shown in figure 2.9, back propagation is used to adjust the 

weights for the connections between the output and hidden layers will be modified 

first, then the weights between the hidden layer and input layer. 

Recent research has focused on the effect that adding more hidden layers has on the 

result of a neural network classification. Neural networks that have more than one 

hidden layer are referred to as Deep Neural Networks (DNN) (Schmidhuber, 2015; 

Bengio, 2009). The extra layers enable the model to perform classifications on 

complex non-linear data. Two implementations of a DNN are the recurrent neural 

network and the convolutional neural network (Krizhevsky et al.,  2012; Mikolov et 

al., 2010). 
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2.5 Conclusion 

Chapter 2 has provided a background on the technologies and techniques used in the 

rest of this thesis as well as providing a review of the current literature in detecting the 

usage of Anonymising proxies and VPNs. The technical background provided allows 

for an understanding of how Anonymising proxies and VPNs operate which will help 

in the development of solutions to detect the usage of both. The literature review gives 

descriptions of various techniques used in general network Intrusion Detection 

Systems, including the integration of machine learning techniques into Intrusion 

Detection systems. It also provides a review of machine learning techniques with a 

more in depth look into Neural Networks. Looking at the previous research conducted 

on network traffic classification, it can be seen that there has been a lot of success in 

classifying traffic using Multi-layered Neural Networks that are trained on the network 

packet data and also trained on time-based TCP flow statistics. Based on this 

information a hypothesis was formed that a Multi-layered Neural Network trained on 

TCP packet data would be capable of classifying network traffic as originating from 

an Anonymising Proxy/VPN or from a non-anonymising source. 
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3.  Detection of Anonymising Proxies  

This chapter aims to develop a strategy for distinguishing between TCP network 

packets that originate from a proxy server and packets which do not. The model 

developed in this implementation chapter is based on a Multi-layered perceptron 

neural network that is trained on captured network packets. Section 3.1 provides an 

overview of the hardware & software environment, Section 3.2 details the capture of 

the required types of network packet and their subsequent compilation into training 

and testing datasets. Section 3.3 provides a brief overview of the Azure machine 

learning studio upon which the experiments were run. 

3.1  Introduction 

The client machine used to initiate connections and send requests through the web 

proxies is a virtual machine (VM) hosted using the desktop virtualisation software 

VirtualBox6. The host system used to run the VM is equipped with a quad core Intel 

i7 processor and 24GB of DDR3 RAM. The VM has access to 4 threads from the 

processor and 6GB of RAM. The operating system chosen for the VM was Ubuntu 

16.04 and this was later upgraded to 17.10. A Linux operating system was chosen 

because of the ease of automation for the capture of data and then packaging it into a 

suitable format. It was also a preferred choice due to the ease of programming with 

python using the built-in terminal command prompt. For capturing the network data, 

the VirtualBox network interfaces needed to be set up. VirtualBox provides up to eight 

virtual PCI Ethernet cards for each virtual machine. For each card, the individual 

hardware that is virtualised and the mode in which it is virtualised can be selected, 

with respect to the physical interface on the host machine. Each of the virtual network 

hardware types represents a different physical hardware PCI Ethernet card, with each 

card having different compatibilities with various operating systems. For the purposes 

of capturing network data from an Ubuntu VM, the Intel PRO/1000 MT Desktop 

virtual network card was left as the default choice. Each network adapter can also be 

configured to operate in a different mode. The mode selected for capturing the network 

data was the Bridged Networking mode. When this mode is enabled, the VM connects 

                                                 
6 https://www.virtualbox.org/ 
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directly to the host machines network card and exchanged packets directly, 

circumventing the host operating systems network stack. 

 

3.2  Dataset 

When training neural networks, a dataset containing example data is required. The 

data included in the dataset can either be labelled or unlabelled, but for the purposes 

of training a neural network, which is a supervised learning model, the data needs to 

be labelled. For the purposes of these experiments, there are two labels. Data generated 

from anonymising web proxies is given a label of ‘1’ and traffic that is not generated 

from the proxies is given a label of ‘0’.  

The first step in compiling training and testing datasets is gathering the actual raw 

data. The data being used for these experiments will be in the form of Transmission 

Control Protocol (TCP) network packets excluding the payload section. Figure 3.1 

shows a representation of a TCP header, giving an overview of what is transmitted by 

the protocol. The choice to exclude the payload of the TCP packet was made after 

researching methods to decrypt packets in order to scan their contents and finding that, 

whilst there are methods available to accomplish this, they have their own security 

risks as they involve man in the middle (MiTM) style attacks which could expose 

sensitive information such as encryption certificates.  

Figure 3.1 shows the fields of the TCP header and a short description of what the 

purpose of the field is. Also included in the data will be fields from the IP header. 

However, these fields are for organising the data and won’t be included in the neural 

network training. This is to ensure that the neural network does not overfit the data by 

focusing on the IP addresses of the web proxies. 
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Table 3.1: List of TPC fields and description of their function  

TCP Field Usage 

Source Port The Source Port is the port number used by the computer sending the TCP 

segment and is usually a number above 1024 (but not always). 

Destination Port The Destination Port is the port number used by the computer receiving the 

TCP packet and is usually a number below 1024 (but not always). 

Sequence Number The sequence number helps the TCP software on both sides keep track of 

how much data has been transferred and to put the data back into the correct 

order if it is received in the wrong order, and to request data when it has been 

lost in transit. 

Acknowledgement 

number 

The acknowledgement number acknowledges receipt of data that has been 

received, if any. It also indicates the value of the next sequence number that 

the receiver is expecting. 

Data Offset Specifies the size of the TCP header in 32-bit words 

 Reserved  Set aside for future use and should be zero  

URG Urgent Flag: Used to indicate if “urgent” data is contained in the packet 

ACK Acknowledgement Flag: Used during 3-way handshake and data transfers. 

PSH Push Flag: Used for TCP push, which returns the buffer to the user 

application. Used primarily in streaming. 

RST Reset Flag: Used to reset a TCP connection 

SYN Synchronise Flag: Used during 3-way handshake 

FIN Indicates end of the TCP session 

Window Number of octets in the TCP header 

Checksum This field is used by the receiver to verify the integrity of the data in the TCP 

payload and rejects data that fails the CRC check. 

Urgent Pointer Points to the end of "urgent" data in the packet, but this field only exists if the 

URG flag is set. 

Options  Used to indicate the options used, if any. 

Padding  Used to ensure that the TCP header ends on a 32-bit boundary. 

Data This field contains a segment of data from the user application, such as part 

of an email or web page. 
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3.2.1  Packet capture 

To gather network packets that originated from a proxy service for use with the dataset, 

a list of such proxy sites needed to be collected. The best source for this was the various 

“proxy lists” available on the internet. These websites collect together a recent list of 

known proxy servers that are available for use with an interest in advertising their own 

services. Some of the lists only show sites that require payment to access the proxy 

service, some sites list a mix of paid and free proxy services and others list only those 

that are free from charge. One such list7 is operated by a company called UpsideOut 

who operate their own proxy service called Proxify. At the time of writing, the site is 

listing 50,824 different web proxies. After a short review, it was discovered that not 

every site on this list is actually online, however a list of sites that were accessible at 

the time of the experiments was gathered.  

 

Generating the network traffic required for the dataset involves using the proxy sites 

to visit websites. Doing this manually would have taken a large amount of time so a 

solution was developed to automate the browsing. It was decided that the scripting 

language Python would be used for development. Python has great support for 

working with networks and automation of functions, which is exactly what is required 

to generate this dataset. Familiarity with the language also played a part as there are 

other languages which are useful for the purposes of handling data, such as R, but 

would have taken time to learn. The python library selenium includes a package called 

Splinter which allows a python script to interact with an installed web browser. 

Splinter allows a python script to interact with elements contained within the HTML 

code of websites, such as filling out text fields or clicking buttons. URL addresses are 

provided in the form of a string containing the full address, for example: 

“https://www.website.com/”. Figure 3.2 shows a flowchart which describes operation 

of the automated browsing script. Figure 3.4 goes on to elaborate on the packet capture 

script that is used to capture, process and record the network traffic for the dataset. To 

create a script capable of browsing multiple sites, a string array can be used, as shown 

in Figure 3.3. A selection of the web proxy sites used is also shown. 

  

                                                 
7 https://proxy.org/web_proxies.shtml 
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Figure 3.2: Flowchart describing automatic browsing of proxy websites. 

 

 

Figure 3.3: Code snippet for URL string array. 

 

The code used to browse to and interact with the sites shown in Figure 3.3 can be seen 

in figure 3.4.  The first thing that is accomplished is actually browsing to the site. What 

site is being browsed to is determined by the for loops position in the string array. The 

script is then instructed to sleep for two seconds to allow the site to fully load before 

moving on to the next part. This next part finds the text input field of the proxy server 

by its CSS id, which was determined to be “input” on most of the Glype, PHP and 

CGI proxy servers. The site that is the target site for the proxies is 

“www.whatismyipaddress.com”. This is a website that displays the connecting 

machine’s IP address, which in the case of the script would be the IP address of the 

proxy server that is acting as an intermediator.  
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Figure 3.4: Flowchart describing the operation of the packet capture script 

  

 

Figure 3.5: Code snippet for browsing to and interacting with proxy sites. 

 

The script is then instructed to wait for one second before finding and clicking the 

submit button which initiates the connection to the target site. Some of the proxy sites 

used do not support the use of SSL encryption, so when browsing to a website that 

does make use of encryption, which the target site does, the proxy will display a 

warning page informing the user that the connection will not be encrypted. Below the 
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warning, a button is provided which allows the user to continue on despite the lack of 

security. The script checks for this warning and if it is found, it proceeds to locate the 

continue button and click it. The full browsing script can be found in appendix A. 

 

#create an INET, streaming socket 

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

#connect to web server on TCP port 80 

s.connect((“www.examplewebsite.com”, 80)) 

Figure 3.6: Example browser socket connection 

 

The capture of the packets and compilation into a Comma Separated Value (CSV) 

dataset is also handled with a python script. There are various packet capture tools 

available. The script makes use of python’s socket library which allows for the 

programming of various sockets. Sockets are one of the most popular methods of inter 

process communication and are used extensively in network communications. 

Browsers make use of sockets whenever they attempt to connect to a website. An 

example browser connection is shown in figure 3.6. 

 

 

Figure 3.7: Creation of TCP capture socket. 

 

For the purposes of data capture, a socket can be opened specifying that the socket 

listen for every raw TCP packet that arrives at the machines network card.   
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 Figure 3.8: IP header extraction 

 

Figure 3.8 shows how the socket is set up in the python packet capture script. To 

receive the packet data and assign it to a variable the line packet = s.recvfrom(65565) 

is used. This assigned the raw packet data to a variable which can then be used to 

extract details from the packet. Normally the ethernet header would also be captured, 

but because of the way the socket is setup, the ethernet header is omitted from the 

captured data. The IP header of the packet takes up the first 20 bytes, so the variable 

ip_header is assigned that data, as can be seen in figure 3.8. Figure 3.9 shows the 

extraction of the TCP header. For both headers, the data is unpacked from the bytes 

format, which allows for the accurate placement of individual sections of the header 

to the appropriate variables. 

 

 

Figure 3.9: TCP header extraction 
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Following the extraction of the header details, the script then determines where the 

TCP flags are stored and assigns those bits to a variable. An if statement compares the 

value stored in the variable to a known list of hexadecimal values that represent each 

TCP flag and then assigns the value of the found flag to a string variable. To handle 

transferring the captured network data to a format suitable for storing and working 

with datasets, the script uses the “csv” import option to create a writer object. The 

code used is shown in figure 3.10. 

 

 

 

Figure 3.10: Opening csv writer object 

 

First the destination file for the data is defined, in this case it is “vpntraffictest.csv”. 

This creates a Comma Separated Value (CSV) file in the same directory that the packet 

capture script is stored in. This file needs to be created before the writer object is 

created so that the writer knows where its output destination is otherwise an error will 

occur. The writer is created by calling the writer from the CSV library and passing the 

outputFile variable to it. Before the packet capture begins, the CSV writer writes the 

first row of the dataset which are the names of each part of the TCP packets that are 

being captured.  
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Figure 3.11: Filtering traffic to only write HTTP and HTTPS packets 

 

Once a packet has been captured and processed by the script, the details of the packet 

are written to the output file. The traffic that is being investigated is Hypertext Transfer 

Protocol (HTTP) or Hypertext Transfer Protocol Secure (HTTPS) web traffic, 

however the packet capture script captures all TCP traffic. To strip out the unwanted 

traffic and only record the HTTP/HTTPS traffic, the TCP source port is used. Figure 

3.11 shows an if statement which instructs the CSV writer to only write the details of 

the TCP header to the output file if the source port is either port 80 (representing HTTP 

traffic) or port 443 (representing HTTPS). 

3.2.2  Non-proxy data capture 

Training a binary class classification algorithm requires two different classes of data 

to be provided. As a comparison to the proxy network packet data, packets were 

captured from the same system without the use of a proxy. To do this, the automated 

web browsing python script which first visited a proxy site then used the proxy to 

browse to “whatismyipaddress.com” was modified as shown in figure 3.12. 
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Figure 3.12: Non-proxy target websites 

 

The code instructing the browser to visit the proxy site were removed. The URL list 

was populated with a variety of sites from the Alexa top 500 index8. The script then 

instructs the browser to visit each of the sites repeatedly until the execution is manually 

cancelled. The same packet capture script that is used to capture the proxy network 

packets is also used to capture the non-proxy data and write it out to a CSV file. 

3.3  Experiments 

There are a few different technologies and platforms that can be used to conduct the 

experiments. These are the cloud computing platforms (in the form of Machine 

Learning as a Service (MLaaS)) of AWS9, Google Cloud10, IBM11, Azure12 and the 

local platforms Scikit-Learn and MATLAB. Local platforms have a range of benefits 

that leverage the underlying hardware of the local machine however this has the 

undesired effect of being dependent on the hardware available. This dependency lead 

to the development of distributed techniques which later evolved into what is known 

today as cloud computing. 

Cloud computing is defined as a general computing model for enabling convenient, 

on-demand access to a shared pool of configurable, distributed computing resources 

that can be quickly and efficiently provisioned with minimal oversight or interaction 

                                                 
8 https://www.alexa.com/topsites 
9 https://aws.amazon.com/machine-learning/# 
10 https://cloud.google.com/ml-engine/ 
11 https://www.ibm.com/uk-en/cloud/machine-learning 
12 https://azure.microsoft.com/en-gb/services/machine-learning-studio/ 
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with the service provider (Mell & Grance, 2011). With the rise in popularity of 

machine learning in research, cloud computing providers have fully integrated 

machine learning into their cloud platforms. A key advantage that cloud computing 

provides for this research was the removal of hardware concerns and enabled the 

pursuit of more accurate results.  

Amazon’s machine learning service (Amazon ML) is designed for users who have no 

previous knowledge of machine learning. This can be a key advantage for enterprise 

users, but in the context of this research it is quite limiting in what can be explored 

using the platform. For example, because the user is not required to have any 

knowledge of machine learning techniques, the service restricts the choice of the 

machine learning method used to one of the platforms choosing through analysis of 

the data provided. 

Google Cloud’s machine learning service resembled Amazon ML in that it was aimed 

at novice users and restricted the choice of machine learning algorithms even for 

machine learning engineers. The Google service is based around the TensorFlow suite 

which is a library maintained by Google that has the reputation being powerful but is 

accompanied by a steep learning curve and is designed for machine learning tasks 

which rely on specific neural network architectures. 

Azure’s machine learning service (ML Studio) was found to provide machine learning 

tools to both novices and experienced data scientists. In comparison to both Amazon 

and Google, Azure offers a larger variety of algorithms to accomplish machine 

learning tasks and doesn’t restrict the choice of which algorithm is used. Furthermore, 

it allows for the creation of original machine learning algorithms and is not restricted 

to out-of-the-box algorithms. This advantage alone makes Azure the obvious choice 

to pursue in the following experiments because of the need for highly accurate results 

without the restriction to algorithm choice. 

 

Azure Machine Learning studio is a cloud service that provides an IDE-like workspace 

to allow for easier building, testing and deployment of predictive analytic models. 

Models can be constructed by dragging and dropping dataset and analysis modules 

into a workspace area. Modules can be added iteratively to help pinpoint problems. 

Predictive analysis helps you predict what will happen in the future. It is used to 

predict the probability of an uncertain outcome.  Azure offers various types of 
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statistical and machine learning algorithms aimed at predictive analysis such as neural 

networks, boosted decision trees and linear regression. Azure outlines a 5-step process 

to building an experimental predictive model: gather raw data, pre-process the data to 

clear the data of missing values or other mistakes, define the features that the model 

will be trained on, choose and train a learning algorithm, test the algorithm (Fontama 

et al., 2014). Once the model is trained and is predicting the test data accurately it can 

be deployed as a web service. Azure replaces the original dataset with a module to 

allow input from the web. Using the C#, python or R programming languages in 

conjunction with the URL of the deployed web service and a generated key, data can 

be sent to the web service to be analysed.  

 

The features offered by Azure Machine Learning studio were a large reason that Azure 

was chosen to conduct the experiments in this chapter. Another big factor in the 

decision was the ease of use that the IDE style workspace and drag and drop 

construction offered. This allowed for quick and easy re-configuration of experiments 

to try out different algorithms and methods for parameter tuning.  

 

3.3.1  Methodology 

There have been a number of recent studies that have made use of Azure’s machine 

learning studio. (Bihis & Roychowdhury, 2015) proposed a generalised flow within 

Azure that would accept multi-class and binary classification datasets and process 

them to maximise the overall classification accuracy. Two sets of experiments were 

run. The first was to benchmark the Azure machine learning platform using three 

public datasets. The second was to evaluate the proposed generalised flow using a 

generated multi-class dataset. The results showed that the generalised flow improved 

accuracy in all but one of the comparisons with prior work.  

 

(Pathak et al., 2015) describes a methodology to obtain a real-time view of traffic 

issues in a city using status updates, tweets and comments on social media networks 

using state of the art machine learning. The machine learning capability was provided 

by Azure machine learning studio. Data from various social networks is polled 

continuously by a worker role process hosted in Azure. The machine learning studio 
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is used to process the data and analyse the text being imported. For the experiment 

they annotated 1100 social network feeds for 4 cities. This data was then split into 

training, cross validation and testing datasets that were used to train and test the 

machine learning algorithms in Azure machine learning studio. Classification 

accuracy for one social network ranged from 90-95% whereas on another the accuracy 

was just higher than 75%.  (Krithika & Narayanan, 2015) proposed a method aimed at 

grading short test answers using machine learning techniques implemented in Azure. 

Experiments were run using 152 samples of student answers to a computer science 

question. The experiment showed that the system was able to grade all of the answers 

correctly after testing.  (Tselykh & Petukhov, 2015) proposed an anti-fraud web 

service that employed machine learning algorithms for predictive analytics in order to 

reduce the costs of infrastructure and software. Azure machine learning studio was 

used to provide the machine learning aspect. When building the machine learning 

model in Azure, they experimented with several algorithms for two-class 

classification. Using Azure’s built in Score Model module, they were able to achieve 

an accuracy of 88% and went on to publish the model as a web service that was capable 

of performing anti-fraud activities whilst reducing the cost of such a service to 

virtually zero. 

 

3.3.2  Two-Class Neural Network 

The algorithm that was selected for classification of proxy network traffic was the 

Azure module “Two-Class Neural Network”. There is also a module provided for a 

multiple class application however that doesn’t apply for this task.  

The decision to use a Multi-layered Neural Network was based both on the review of 

prior literature on network traffic classification and on early test experiments run using 

a selection of the other machine learning algorithms including Bayes Point Machine, 

Support Vector Machine, Logistic Regression, Decision Forest and Boosted Decision 

Tree. These early experiments showed that the Two-Class Neural Network module 

provided the best base for improvement when compared to the other results. Other 

machine learning techniques such as Fuzzy Logic or Genetic Algorithms were ruled 

out as they were found to be inappropriate for the problem of classifying network 

traffic based on the packet data. Classical logic only permits results which are either 
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true or false. However, with some problems there is the potential for the result to be 

within a range between completely true or completely false. Fuzzy logic is the solution 

for such problems, but for the classification of network traffic as belonging to an 

Anonymising Proxy or not the result is a simple binary which Fuzzy logic is unsuited 

for. In addition, it was found that a genetic algorithm was unnecessarily complex for 

this experiment, although it may have a place in some future work which will be 

addressed in Chapter 5. 

Figure 3.13 shows how this module appears in the Azure machine learning studio 

interface. To aid the configuration of the different algorithms that Azure has Microsoft 

provides an extensive documentation resource.  

 

Figure 3.13: Azure Neural Network module 

 

The documentation for the two-class neural network module offers information on 

how to configure the parameters of the algorithm for two scenarios; whenever the 

parameter configuration is already known and when the optimal parameters are still 

unknown.13  

Figure 3.14 is a screen capture of the parameter options available for the two-class 

neural network module. The parameters that can be seen starts with the trainer mode. 

The trainer mode is the parameter that sets the algorithm up for one of the two 

scenarios that were mentioned. It contains two options, “Single Parameter” and 

“Parameter Range”. The Single Parameter option allows the user to enter a single 

value for each of the parameters whereas the Parameter Range option allows for 

multiple value ranges to be used. The latter was the selected option for the proxy 

classification problem as the optimal parameter values were unknown beforehand. 

This is then combined with the module “Tune model hyperparameters” module which 

performs a parameter sweep over the specified settings and learns an optimal set of 

hyperparameters. This process is referred to as “tuning”.  

                                                 
13 https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-neural-

network 
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Figure 3.14: Azure neural network parameters 

 

Figure 3.14 shows the ranges chosen for both the learning rate and the number of 

training iterations of the model. When the model is being tuned, these ranges instruct 

the tuning module what parameter values should be used during the parameter sweep. 

The specification of the hidden layer can either be a fully connected instance, as 

selected, or it can be defined using a custom script written in the Net# language. The 

default, fully connected case uses a pre-defined specification for the hidden layer. This 

results in a neural network which has one hidden layer, an output layer that is fully 

connected to the hidden layer which is in turn fully connected to the input layer. The 

number of nodes in the input layer equals the number of features used in the training 

data and the number of nodes in the hidden layer is defined by the user in the parameter 

option. 

 

The number of nodes in the output layer equals the number of classes, which for a 

two-class network means that all inputs will map to one of two nodes. The custom 
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definition script is useful for when a more complex network is required, such as when 

deep learning is being implemented.  

 

3.3.3  Dataset upload and preparation 

To use a dataset with Azure it first needs to be uploaded to the machine learning studio. 

Azure supports multiple dataset types including CSV files. Before uploading the entire 

dataset samples randomly removed which were then used to compile a separate testing 

dataset. This left a training dataset of 5954 samples and a testing set of 1002 samples 

which were to be kept separate from the training process. Once uploaded, the datasets 

can then be added to the Azure interface and can then be further prepared for training 

and testing the neural network. The first preparation steps are in adjusting the metadata 

of the dataset so the model understands what fields are training features and what are 

class labels in the data. This is metadata that would not be readily available as part of 

the CSV format. The metadata is adjusted using the “Edit Metadata” module. In this 

module, the field that is to be edited is first selected and then there are four changes 

that can be made. The first deals with the data type of the field, for example, string or 

integer. If the field is already defined as being the data type required or simply does 

not need a type associated with it, there is the option to leave it unchanged. This applies 

to the first three modifications available. The second defines the field as either being 

a categorical field or not. If the field is already as required there is the option to leave 

it unchanged. The third modification allows the user to change whether the field 

contains a feature, a label or a weight. Again, there is the option to leave it unchanged 

and there are also options available to clear a previous definition. The fourth and final 

modification allows the user to enter new column names for the selected fields. 

 

For feature selection, Azure machine learning studio provides three modules: “Filter 

Based Feature Selection”, “Fisher Linear Discriminant Analysis” and “Permutation 

Feature Importance”. For the purposes of this experiment however, feature selection 

was performed manually as there were only twelve features to select from. Some 

features were removed from the training dataset because they did not offer any value 

to the training. These were the Version number, Protocol identifier and the Time To 
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Live (TTL). These fields contained the same value for each row of the dataset and 

therefore would have affected the computation time with no benefit gained.  

 

The source and destination IP addresses were removed as these could very well cause 

the network to overfit to the problem during training as the Neural Network would 

associate the IP address values with the training label. If the network focuses too much 

on the IP addresses then the system would operate like an over-complicated IP 

blacklist rather than an intelligent system. From there, experimentation was used to 

ascertain what features would cause the network to either overperform or 

underperform. This involved the systematic removal of features and observing what 

effect this had on the training of the network. Whilst this was a slower technique, this 

was offset again by the small number of features and also provided information on the 

effect each feature had on the training allowing for more informed choices to be made. 

For example, through this method it was found that the feature that had the most 

influence over the training was the TCP Acknowledgement number whilst the feature 

that seemed to have the least influence was the feature that noted whether HTTP or 

HTTPS were used. The module used to select and remove features from the training 

is the “Select Columns in Dataset” module. All of the desired training features plus 

the classification label are selected using this module. The features that were used to 

train the network were: Source Port number, Destination Port number, TCP Sequence 

number, TCP Acknowledgement number, TCP Flag, Data size in bytes and whether 

HTTPS or HTTP were used. To eliminate underperformance of the model, the hyper-

parameter tuning mentioned at the end of section 3.3.2 was used.  
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Figure 3.15: Dataset preparation 

 

The final step before training and tuning commenced was to split the training dataset 

to provide both a training dataset and a training validation dataset. This is 

accomplished using the “Split Data” module and an 80/20 split was used which 

resulted in a final training dataset of 4763 and a validation set of 1191. Figure 3.15 

shows the dataset preparation as it is represented in Azure. Also shown on the right-

hand side is the 1002 sample testing dataset which is also going through the same 

preparation as the training dataset. This is so it can be successfully tested against as 

otherwise Azure will throw an error.  

3.3.4  Training and Testing 

Figure 3.16 shows the training and testing portion of the experiment as it is represented 

on the Azure machine learning studio.  

 

 

Figure 3.16: Training and testing of the neural network 
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Figure 3.17 shows the entire experiment. Once the data has been fully prepared, it is 

connected to the tuning module as the training dataset. The two-class neural network 

model is also connected to the tuning module at this time. At this point the experiment 

can be run with the tuning module’s default settings, however these settings were 

modified slightly. By default, the tuning module will only perform 5 parameter 

sweeps.  

 

This was changed to 50 sweeps, so the final model could be as close to the best model 

as possible. Training time for this model lasted for approximately one hour. This could 

be considered a consequence of the use of Azure, specifically the use of the free 

workspace, as there was no control over what hardware was used in order to train the 

model. The studio workspace used is in the South-Central US region which could also 

add latency to the connection, further slowing the process. It is possible to purchase a 

subscription to Azure which unlocks a far greater feature set. This was deemed 

unnecessary for this experiment as the resources provided were enough.  

 

 

Figure 3.17: Fully connected experiment 
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Once tuning is finished, the tuning module outputs a trained version of the best model 

it found. For this experiment, the best model used a learning rate of 0.0441313, a 

Squared Error loss function and was trained over 433 iterations. To score and evaluate 

the model based on the validation dataset and then the separate training dataset, the 

“Score” and “Evaluate” modules are used sequentially.  

 

The score module scores the classification predictions for the trained model and the 

outputs those results as a scored dataset. The scored dataset is then passed to the 

evaluate module which calculates a range of metrics based on the results. These 

metrics include: Accuracy, Precision, Recall, F-score, Area Under Curve (AUC), 

Average Log Loss and Training Log Loss.  

3.3.5  Results 

The results gathered from the separate testing set are shown in figure 3.18 along with 

the confusion matrix. The ROC curve is shown in figure 3.19. The AUC for the test 

was 0.988 

 

 

Figure 3.18: Confusion Matrix and Results 

 

The results in figure 3.18 show an overall classification accuracy of 94.6% for 1002 

samples. There were only 13 false positive classifications, which is relatively low. 

However, there were 41 false negatives which is quite high. This may be due to the 

higher amount of negative (i.e. non-proxy) samples than positive samples at 473 

positives to 529 negatives. In the context of this model being used as a proxy detection 

system on a live network, 41 proxy packets in every 1002 (0.04%) packets would 

possibly avoid detection and 13 in every 1002 (0.013%) normal, non-proxy packets 

would be possibly detected erroneously.  
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Figure 3.19: ROC Curve 

 

Overall there is the possibility for approximately 50 errors in every 1000 packets. 

Whilst that may warrant worry, it is something that could possibly be improved upon 

and overall the results seem be an indication that the model has the capability of 

detecting proxy network packets. 

 

A drawback of this approach is that the dataset used is relatively small at 

approximately 7000 samples. Unfortunately, due to the nature of the packet capture 

and the tools available, the capture was time consuming. Another potential drawback 

is the use of TCP header details as training features. As there are only 12 features total, 

which are then reduced to 7, there is not much leeway given to the possibility that 

some features may not be suitable for classification at times, depending on the network 

conditions. Some solutions to these problems are discussed in section 5, future work. 

 

3.4  Summary 

This chapter has explored the development of a neural network model capable of 

classifying TCP network packets as either web proxy traffic or not using the data 

contained within the TCP header. Section 3.2 describes the capture of network packets 

from both proxy and non-proxy sources with details given about the python scripts 
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created. Section 3.3 describes the client machine used to generate the network traffic 

captured. Section 3.4 then gives an overview of the Azure machine learning studio 

with examples of research conducted with it. The section follows on with details about 

the experiment conducted in this thesis using the machine learning studio. Feature 

selection, setup of the neural network model and how the model was trained are all 

discussed. Finally, the results from the experiment are described. 
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4.  VPN classification 

4.1  Introduction 

In the previous chapter, classification of network traffic that was being passed through 

a web-proxy was investigated using back-propagation artificial networks with a focus 

on using the TCP header details from captured network traffic as the dataset. This 

chapter aims to investigate the classification of VPNs using a similar neural network, 

albeit this time not using the cloud machine learning service from Azure. 

 

Virtual Private Networks (VPNs) are quickly becoming a popular method for 

criminals and other bad actors to hide their online activities (Harmening, 2013). This 

is helped along by the increase in ease of use of VPNs; they are no longer just a tool 

for remotely accessing enterprise resources when travelling for work or when working 

from home. In fact, this could be a use-case for a criminal. If they wish to remotely 

access an enterprise network in order to steal company and trade secrets, they can use 

a VPN (or multiple VPNs) in order to hide their own location or to make it appear as 

if someone else was infiltrating the network (Geetha & Phamila, 2016). There have 

been a few notable cases of this happening in recent years, such as the Sony Pictures 

incident from 2014, where confidential data including personal information about 

employees was stolen (Peterson, 2014). It is likely that the attackers used a VPN to 

hide their location and identity as, to this date, no one has been officially charged with 

the crime and brought in front of a court (Pagliery, 2014).  

 

Other attacks of note are the various data breaches which have been occurring for the 

last number of years, such as the LinkedIn breach of 2012 which was only discovered 

in 2016 (Hunt, 2016). Approximately 167 million account details including emails and 

passwords were stolen. It is not known whether the attacker(s) were using a VPN 

service to hide their location. The ability to detect whether a VPN has been used or 

not could be helpful in the pursuit of attackers such as those just mentioned.  
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The classification method described in this chapter is envisaged as a step towards the 

creation of a VPN detection framework that could be used to help law enforcement 

officials track down those responsible for attacks.  

4.2  Dataset 

The dataset for the previous chapter consisted of TCP packet data. The results 

indicated that this dataset provided enough data to train a Neural Network to recognise 

the different patterns between traffic that was using a proxy and traffic that was not. 

Moving forward from this work, it was decided to attempt a similar approach in order 

to train a Neural Network to classify VPN based traffic. A dataset consisting of TCP 

packets captured using the packet analysis tool Wireshark from an OpenVPN 

connection was created and tested using the exact same Azure machine learning tools. 

The results for this showed that the network was overfitting the problem as it was 

achieving 100% classification accuracy for both VPN traffic and non-VPN traffic. In 

external validation tests, the network was essentially guessing, as it was classifying 

every sample as having come from a VPN. In order to overcome this problem, a new 

dataset consisting of TCP flow records/statistics was proposed as more appropriate for 

analysis. This decision to form a new dataset was inspired by previous works of 

(Draper-Gil et al., 2016; Stevanovic & Pedersen, 2014; Soysal & Schmidt, 2010), with 

particular note to the work of (Draper-Gil et al., 2016) which presented a flow-based 

classification model to classify encrypted and VPN traffic using only time-related 

features. Flow statistics provide a high-level view of network communications by 

reporting the addresses, ports and byte and packet counts contained in those 

communications (Cisco, 2018). This data can be especially valuable when network 

traffic is being encrypted which can be the case with VPN traffic. More detail is 

provided regarding the production of the flow records used for this piece of work in 

section 4.2.2. 

4.2.1  Capture Method 

Wireshark formed the basis of the packet capture for this newer dataset as was also 

the case for the first dataset. The computer system used to capture the traffic was an 

Ubuntu 16.04 based virtual machine running on a Windows 10 host. The network 

connection used in the experiment is a virtualised Intel PRO gigabit ethernet card 
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although this shouldn’t have any effect on the results. While Linux might not be a 

mainstream operating system for the standard user, it is popular among “bad actors” 

because of its ability to be heavily customised according to the user’s preferences. It 

allows for a finer degree of control over some of the internal systems included such as 

networking stack. Figure 4.1 shows a flowchart which describes the entire packet 

capture process used for building the VPN dataset. Using some built in tools, it is easy 

to automate connections and disconnections to different networks and different 

network interfaces. This was a particularly helpful feature when dealing with the 

capture of VPN based packets. In normal operation, a connection to a VPN starts with 

a typical TCP “hello” sequence and key exchange. Once the connection is setup, it is 

only taken down whenever the user stops using the VPN. The connection is one long 

TCP connection between the user’s machine and the VPN server. This created some 

problems with the NetMate flow statistic calculation tool, which is also discussed in 

section 4.2.2. The problem with NetMate was solved using a Linux bash shell script 

and the Linux system’s automatic task scheduling tool; cron. The shell script contains 

a one-line command that initiates a connection to the VPN and sets a timeout value of 

590 seconds. The full command is shown in figure 4.2. 

 

Figure 4.1: Flowchart decribing packet capture process 

 

timeout 590s openvpn /etc/openvpn/<openvpn config file>.ovpn 

Figure 4.2: VPN connection command 

 

The ‘timeout’ causes the command to quit after the set amount of time and ‘openvpn’ 

is the command that will be affected by ‘timeout’. Openvpn is a type of VPN server 

that can be installed easily on many systems. In this command ‘openvpn’ initiates the 

connection to the Openvpn server that is described in the config file i.e. <openvpn 

config file>.ovpn. Combining this command with the automatic scheduling tool cron 
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is straightforward. The goal was to have this command run every ten minutes, so the 

timeout value is set to 590 seconds which leaves enough time for the connection to 

completely close. Then, 10 seconds later the command is run once again. This will 

repeat indefinitely as long as the command is listed in cron. To instruct cron to run 

this command as required, the file /etc/crontab is edited with administrative privileges. 

A line is added to the file detailing the command to be run and how often it should be 

run. The line added in order to run the connection shell script every 10 minutes is 

shown in figure 4.3. 

 

# m h dom mon dow user command 

*/10 *     *  *  *      root    sh /path-to-file/connect.sh 

Figure 4.3: Crontab file example 

 

From left to right, the headings of the crontab file stand for: minutes, hour, day of 

month, month, week of month, user to run command under and the actual command. 

This will instruct cron to run the shell script every 10 minutes of every day of every 

month as the user ‘root’. With the connection to the VPN automated and refreshing 

every ten minutes, the next task was to generate the network traffic to be captured by 

Wireshark. There are tools available to generate random packets based on specific 

attributes to simulate certain network environments. However, it is much better if the 

data could be captured from realistic browsing practices. Due to the amount of data 

that would be required, it would be infeasible for a person to sit and visit websites for 

24 hours a day, 7 days a week. A modified version of the automated browsing Python 

script from the proxy detection work was used in conjunction with a small selection 

of the most popular Alexa top 500 sites14. This script can be seen in figure 4.4.  

 

                                                 
14 https://www.alexa.com/topsites 
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Figure 4.4: Modfied browsing script 

 

This ensures that the browsing involves some of the more recent and publicly available 

sites on the web as well as some of the more popular. For the script to browse sites in 

a relatively realistic fashion, the sleep method is used in conjunction with the randint 

method. The sleep function pauses the execution of the entire script. When combined 

with randint, it is possible to pseudo-randomly set the pause time for each occurrence 

of sleep. With the VPN connecting and disconnecting every 10 minutes, the randint 

method’s minimum value was set to 10 seconds and the maximum value set to 300 

seconds. This means that the website that is visited by the script will be displayed for 

a minimum of ten seconds and no longer than 5 minutes. In their paper, (Liu et al., 

2010) showed that users judged web pages harshly in the first 10-30 seconds. After 

this time had passed it was likely that users would spend upwards of 2 minutes on the 

page. During the 10-minute VPN connection period, the browse script would visit a 

minimum of 2 web pages. 

For complete training of the network, more than one class of data is required so it was 

necessary to capture network traffic that did not originate from a VPN connection. 

This capture was accomplished in much the same way as with the capture of the VPN 

traffic. The browsing script used was exactly the same and Wireshark was again used 

to capture the traffic. The only difference in this instance was that the automatic 

connection/disconnection to the VPN was removed. This was simply accomplished by 

adding a “#” to the start of the Crontab line shown in figure 4.3. This defines the line 

as a programming comment and is ignored by the Crontab parser. This task can also 

be accomplished by deleting the line from the file. 
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4.2.2  NetMate 

NetMate is a bidirectional flow exporter and analyser tool used to convert capture files 

of network traffic into flow records (Haddadi & Zincir-Heywood, 2016). A TCP flow 

is a sequence of packets between two endpoints as defined by their source IP address 

and port to a destination IP address and port over a certain length of time (Stibler et 

al., 1999). A sequence like this will only be considered a flow if it is monitored in both 

directions. The packets captured from Wireshark meet this requirement, so they are 

compatible with NetMate. The particular version of NetMate used for this dataset is 

developed by former NIMS lab member; Daniel Arndt. This version is called Netmate-

flowcalc which is a bundle comprising of NetMate v0.9.5 packaged with NetAI 

modules from v0.1 (Arndt, 2011). The output, if using one of the included rules files, 

takes the form of a comma separated list of values. Each column corresponds to an 

attribute or feature of the output. These attributes are defined using an Attribute-

Relation File Format (ARFF) header as pictured in figure 4.5.  

 

 

Figure 4.5: NetMate attributes 

 

The first five attributes on this list are taken directly from the TCP packet header. They 

include the source IP address and port number; the destination IP address and port 

number and the protocol being used. The rest of the attributes on this list are flow 

statistics that are calculated by NetMate. The statistics calculated for the majority of 

the remaining attributes are the minimum, mean, maximum and standard deviation. 

@RELATION <44-flow-features>

@ATTRIBUTE srcip STRING

@ATTRIBUTE srcport NUMERIC

@ATTRIBUTE dstip STRING

@ATTRIBUTE dstport NUMERIC

@ATTRIBUTE proto NUMERIC

@ATTRIBUTE total_fpackets NUMERIC

@ATTRIBUTE total_fvolume NUMERIC

@ATTRIBUTE total_bpackets NUMERIC

@ATTRIBUTE total_bvolume NUMERIC

@ATTRIBUTE min_fpktl NUMERIC

@ATTRIBUTE mean_fpktl NUMERIC

@ATTRIBUTE max_fpktl NUMERIC

@ATTRIBUTE std_fpktl NUMERIC

@ATTRIBUTE min_bpktl NUMERIC

@ATTRIBUTE mean_bpktl NUMERIC

@ATTRIBUTE max_bpktl NUMERIC

@ATTRIBUTE std_bpktl NUMERIC

@ATTRIBUTE min_fiat NUMERIC

@ATTRIBUTE mean_fiat NUMERIC

@ATTRIBUTE max_fiat NUMERIC

@ATTRIBUTE std_fiat NUMERIC

@ATTRIBUTE min_biat NUMERIC

@ATTRIBUTE mean_biat NUMERIC

@ATTRIBUTE max_biat NUMERIC

@ATTRIBUTE std_biat NUMERIC

@ATTRIBUTE duration NUMERIC

@ATTRIBUTE min_active NUMERIC

@ATTRIBUTE mean_active NUMERIC

@ATTRIBUTE max_active NUMERIC

@ATTRIBUTE std_active NUMERIC

@ATTRIBUTE min_idle NUMERIC

@ATTRIBUTE mean_idle NUMERIC

@ATTRIBUTE max_idle NUMERIC

@ATTRIBUTE std_idle NUMERIC

@ATTRIBUTE sflow_fpackets NUMERIC

@ATTRIBUTE sflow_fbytes NUMERIC

@ATTRIBUTE sflow_bpackets NUMERIC

@ATTRIBUTE sflow_bbytes NUMERIC

@ATTRIBUTE fpsh_cnt NUMERIC

@ATTRIBUTE bpsh_cnt NUMERIC

@ATTRIBUTE furg_cnt NUMERIC

@ATTRIBUTE burg_cnt NUMERIC

@ATTRIBUTE total_fhlen NUMERIC

@ATTRIBUTE total_bhlen NUMERIC
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Names and descriptions of the full list can be found in table 4.1. These features are 

similar to those produced by another project named “flowtbag” which contains a more 

detailed description of the features found in table 1 and can be located on Daniel’s 

personal GitHub15.  

 

Attribute 

Name 

Attribute Description 

total_fpackets Totals packets in the forward direction. 

total_fvolume Total bytes in the forward direction. 

total_bpackets Total packets in the backward direction. 

total_bvolume Total bytes in the backward direction. 

fpktl The min, mean, max and standard deviation from the mean of 

packet sizes in the forward direction. 

bpktl The min, mean, max and standard deviation from the mean of 

packet sizes in the backward direction. 

fiat The min, mean, max and standard deviation from the mean of 

time between two packets in the forward direction. 

biat The min, mean, max and standard deviation from the mean of 

time between two packets in the backward direction. 

duration Total duration of the flow in microseconds. 

active The min, mean, max and standard deviation from the mean of 

time that the flow was active before going idle. 

idle The min, mean, max and standard deviation from the mean of 

time that the flow was idle before going active. 

sflow_fpackets Average number of packets in a sub flow in the forward 

direction. 

sflow_fbytes Average number of bytes in a sub flow in the forward direction. 

sflow_bpackets Average number of packets in a sub flow in the backward 

direction. 

sflow_bbytes Average number of bytes in a sub flow in the backward 

direction. 

fpsh_cnt Number of PSH flags set in packets in the forward direction. 

bpsh_cnt Number of PSH flags set in packets in the backward direction. 

furg_cnt Number of URG flags set in packets in the forward direction. 

burg_cnt Number of URG flags set in packets in the backward direction. 

total_fhlen Total bytes used for headers in the forward direction. 

total_bhlen Total bytes used for headers in the backward direction. 

 

Table 4.1: Description of NetMate statistical features. 

                                                 
15 https://github.com/DanielArndt/flowtbag 
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The overall size of the dataset captured and processed through NetMate was 9829 

flows with 3569 flows representing VPN traffic and 6260 flows representing Non-

VPN traffic. These were labelled vpn and normal. This overall dataset was split into 

three separate sets; one for training, one for testing and one for validation of the trained 

model. The original set was split into 80% training and 20% testing as this was 

regarded as a generally popular split according to the literature. The resulting testing 

set was then split further following the same original split, 80/20, resulting in the final 

testing and validation datasets. The training dataset contained 7863 instances, the final 

testing dataset contained 1257 instances and the validation dataset contained 253 

instances. More detail is provided on the techniques used to accomplish this in section 

4.4.2. 

 

4.3  VPN Setup: Streisand on AWS  

In the previous chapter, the Azure cloud computing platform was utilised. Specifically, 

the Azure machine learning studio was used to run machine learning experiments. For 

this chapter, the cloud platform AWS is used. However, instead of running machine 

learning experiments, the AWS platform is used to host a virtual machine which acts 

as a VPN server. The server that was chosen was the t2.micro Elastic Compute Cloud 

(EC2) instance which is one of the more basic types, but more than adequate to run a 

fully featured VPN server. It contains one virtual CPU core and one gigabyte of RAM. 

The software used to setup the server to allow it to provide VPN functionality is called 

Streisand16. Streisand sets up a new remote server with the Ubuntu 16.04 operating 

system that can run various services such as L2TP/IPsec, OpenVPN and other methods 

of tunnelling network traffic via VPN. The setup is heavily automated, relying on an 

automation tool named Ansible that is typically used to provision and configure files 

and packages on remote servers. The only input required from the user is to choose a 

cloud provider, physical region for the server and the API information for the cloud 

platform that the user wishes to set the server up on.  

 

Once this information has been provided, the script begins the creation and initial setup 

process for the remote server, installing the required software and tools needed. Once 

                                                 
16 https://github.com/StreisandEffect/streisand 
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the server has been fully set up, a number of local files are created on the user’s local 

computer which contain instructions on getting started. There is also an option to forgo 

the cloud providers and perform the setup on a local computer, however this was not 

investigated. For the experiments run as part of this chapter, the OpenVPN protocol is 

the type of VPN being tested. The reason for choosing OpenVPN is because it is quite 

popular in part due to its simple configuration. Servers and clients are widely 

supported across many different platforms i.e. an OpenVPN server running on a 

Linux/Unix based host can be accessed by a Windows client and vice versa. There are 

also client applications available for mobile platforms such as Android and iOS, 

making it suitable for on-the-go VPN use. 

 

4.4  Weka Experiment 

For the development of a VPN classifier, it was decided that a change of platform was 

required. During the early testing mentioned in section 4.2 it was found that Azure 

Machine Learning studio tended to overfit during training even with the updated TCP 

flow statistics dataset. This issue was likely a result of the continuous development of 

the Azure platform and until this unique issue could be resolved, the Azure platform 

was not able to handle the algorithm being researched in the context of this experiment.  

The Waikato Environment for Knowledge Analysis (Weka) workbench was the option 

chosen based on its reputation as a very powerful tool for understanding and analysing 

machine learning algorithms. Even though in chapter 3, cloud computing was found 

to be a preferable choice of platform for the experiments conducted in this research, 

because Azure was found to be lacking in this situation, no other cloud platform was 

capable of dealing with the task at hand. Given this it was determined to go with a 

local platform because although these are often limited to the hardware doing the 

computations, it meant that during the experiment, access to robust machine learning 

algorithms was ensured.  

The Weka workbench is a collection of standard machine learning algorithms and data 

pre-processing tools. It is designed to allow researchers to quickly apply existing 

methods of machine learning to new datasets (Frank et al., 2016). Weka includes 

methods for many types of machine learning problem including: regression, 

classification, clustering and attribute selection. Weka includes a number of ways of 
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setting up experiments: Explorer, Knowledge Flow, Experimenter and Workbench. 

Explorer is a graphical user interface which provides access to all of the facilities of 

Weka using menu selection and forms. Knowledge flow is an interface that allows you 

to visualise and control the stream of data when using larger datasets. A drawback of 

Explorer is that datasets are loaded in their entirety to the computers RAM, meaning 

that datasets that need a larger amount of memory than the computer can provide will 

not be able to be used. Knowledge flow enables a researcher to specify a data stream 

by connecting components representing data sources, pre-processing tools, learning 

algorithms, evaluation methods and visualisation modules. If the filters and learning 

algorithms are capable of incremental learning, then the dataset will be loaded into 

memory in increments causing memory to be saved. Experimenter is designed to 

answer the question of which learning algorithms and parameters values work best for 

the given problem. This can be accomplished manually using Explorer. However, 

Experimenter allows the researcher to automate the process by making it easy to run 

different classifiers with different parameters on multiple datasets, collect the results 

and performance statistics and then analyse them to see what combination works best 

for the given problem. The last interface is called Workbench. It is a unified graphical 

interface which incorporates features from the other three into one application. It is 

highly configurable and allows for the creation of a highly tailored interface. 

 

The method used for experiments described in this chapter is based on Explorer. This 

is the most straight-forward interface to using Weka and can be used to load in 

datasets, run experiments and analyse the results. Weka’s native data storage method 

is the ARFF format, however it provides methods to convert data to ARFF from 

spreadsheets and databases. It can also accept comma-separated value (CSV) files, 

ASCII MATLAB files, LIBSVM etc. and also provides methods to convert them to 

the ARFF format. CSV files that have had the ARFF attribute information added to 

them manually can also be accepted as long as Weka is able to interpret the ARFF 

headers correctly. The ARFF header helps Weka to identify what is an attribute, what 

is an instance of the data and what are the classes (if any). 

Once the data has been loaded into Weka, it can be modified using the Pre-process 

tab. Modifications include the ability to remove attributes, add instances manually and 

apply various filters to the entire dataset. Modified versions of the dataset can be saved 
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to their own file, leaving the original dataset intact for future use or modification. One 

of the most useful modifications is the ability to split the original dataset into separate 

training, testing and validation sets using the provided filters which is discussed in 

section 4.4.2. The next tab is Classify and it is here that the various machine learning 

algorithms are trained to perform classification or regression and evaluate the results. 

The dataset that is loaded into the pre-process tab is seamlessly transferred across to 

the classify tab. If not already done, the dataset can be split into training and testing 

here using the “Test options” selections or, if already completed, the test set can be 

specified.  

 

The type of classification or regression algorithm can be chosen here as well as from 

the large selection that Weka provides, including Linear Regression, Multilayer 

Perceptron, Naïve Bayes and C4.5 decision tree algorithms. All of the classifiers are 

adjustable via another Weka dialogue which enables customisation via drop down 

menus and textboxes. Once setup the algorithm can be trained and tested by pressing 

the start button and once the model has been successfully trained and tested, the results 

are shown in the “Classifier output”. The Cluster and Associate tabs were not used 

during the experiments described in this chapter. The Select attributes tab gives access 

to several methods for attribute selection. This involves an attribute evaluator and a 

searching method. Both are selected and configured in the same way that options are 

chosen and configured in the other tabs. Selection can be performed using either the 

full dataset or by using cross-validation. The full dataset option was used for this 

chapter’s experiments. This allows the researcher to perform feature selection using a 

number of different feature selection algorithms. The feature selection performed on 

the dataset used in this chapter is discussed further in section 4.4.1.  

 

4.4.1  Feature Selection 

The feature selection model used was the Weka model CorrelationAttributeEval 

which is a model that is based on Pearson’s Correlation Coefficient model. This is a 

measure of the linear correlation between two variables. The output of the model is a 

value between +1 and -1, where +1 is total positive linear correlation, 0 is no linear 

correlation and -1 is total negative linear correlation. In Weka, the search method 
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Ranker is required to run CorrelationAttributeEval. Ranker ranks attributes by their 

individual evaluations i.e. from highest positive linear correlation to lowest negative 

linear correlation. It provides options to set a threshold by which attributes can be 

discarded, with the default being that no attributes are discarded. Through trial and 

error, the threshold for the experiments run in this chapter was set to 0.5. This 

threshold is the cut-off point for whether an attribute of the data is kept as a feature or 

discarded.  

Attribute Name Correlation Coefficient 

total_fpackets 0.561 

total_fvolume 0.544 

max_fpktl 0.644 

max_bpktl 0.724 

duration 0.742 

mean_active 0.677 

max_active 0.57 

std_active 0.55 

fpsh_cnt 0.587 

total_fhlen 0.561 

 

Table 4.2: Correlation Coefficients for selected attributes 

The result of this selection was a reduction from 44 features to the 10 features that 

were calculated to have a linear correlation above 5, a list of which is shown in table 

4.2. The lowest correlation was 0.544 for total_fvolume and the highest was 0.742 for 

duration. 

 

4.4.2 Resampling the dataset into training, testing & validation sets 

The resample filter can be found under the “instance” folder under the “supervised” 

folder. The original, full dataset was edited to create a training dataset of 7863 by 

resampling using the options outlined in figure 4.6. The 80/20 percent split can be seen 

in sampleSizePercent as “80”. 
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Figure 4.6: The Weka Resample dialogue 

 

To create the testing dataset, the original dataset was again resampled using the same 

criteria, but the invertSelection option was changed from false to true. This gives the 

opposite output of the first run and the output is a dataset of 1510 instances which is 

the 20% from the 80/20 split. These instances were then again resampled following 

the above steps in order to create the final testing dataset and the final validation 

dataset. Again, this followed the 80/20 percent split, with the 80% split being the 

testing set and the remaining the 20% being the validation set. The resulting datasets 

were 1257 instances for the testing dataset, or approximately 12% of the original 

dataset, and 253 instances for the validation dataset, approximately 2-3% of the 

original dataset. 

 

4.4.3  Neural Network Setup 

The Weka model used for classifying whether the instances from the dataset are traffic 

coming from a VPN or not is the MultilayerPerceptron model. This model is based on 

a standard artificial Neural Network that is trained using back propagation. This model 

offers a large amount of customisation, with options to build a network by hand, let 

an algorithm build the network or a mixture of both. Figure 4.7 shows the 



84 

 

 

 

configuration used to setup the neural network model used for the classification 

experiments. 

 

 

Figure 4.7: Neural Network Weka Configuration 

 

This setup was found to be the best performing configuration when compared to other 

networks with different configurations with regards to accuracy, training time and 

avoiding the problem of overfitting the data. Ideally for this model to be used in a real-

world application, the training time needs to be kept to a minimum whilst preserving 

as much accuracy as possible. For the purposes of classifying VPN and non-VPN 

traffic it was decided to allow Weka to create a fully connected network in order to 

leverage all of the data instead of having parts of the data be degraded from the 

network over time. Semi-connected networks are capable of answering questions in a 

more creative or chaotic way, but tend to lose focus on the overall problem (Theiler, 

2014). For a binary classification problem, it is often better to pursue simpler models 

as less ambiguity is injected into the networks learning phase.  

This is accomplished by using the two options autoBuild and hiddenLayers. Autobuild 

is the option which instructs Weka whether to build a fully connected network or not 
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with the two options being true or false. HiddenLayers is where the hidden nodes of 

the network are defined.  

The value shown in figure 4.6 is one of the provided wildcard values. ‘a’ creates a 

hidden layer by summing together the number of attributes and classes and then 

dividing the total in half. So, for 10 attributes and two classes, the number of hidden 

layers is set to six. Figure 4.8 shows the completed network, ready to be trained using 

the training dataset. 

 

 

Figure 4.8: Fully connected Neural Network 

 

Once the model is configured, it is ready to train using the dataset currently loaded 

into the “Preprocess” tab. This network was trained using the above options and the 

total time taken to train the network and build the classification model was 

approximately 10 seconds using an 8-core processor. Testing was completed a few 

seconds later using the testing dataset. Validation of the result using the validation 

dataset was completed by loading it in as a test set and then re-evaluating the already 

trained model. 

 

4.4.4  Results 

Tables 4.3 and 4.5 show the results as measured by Weka for the validation tests and 

for the final blind test respectively. Tables 4.4 and 4.6 display the confusion matrices 

for the two sets.  
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Correctly Classified Instances 1178 / 1257 (93.7152%) 

Incorrectly Classified Instances 79 / 1257 (6.2848%) 

Average True Positive Rate 0.937 

Average False Positive Rate 0.081 

Average Precision 0.937 

Average Recall 0.937 

Average F-Measure 0.937 

 

Table 4.3: Validation test results 

 

The results shown in table 4.3 shows that the overall accuracy of detection for the 

neural network in the post-training test was approximately 94%. That is 1178 correctly 

classified instances out of a testing set of 1257.  

 

Classified as  VPN Normal 

VPN 408 48 

Normal 31 770 

 

Table 4.4: Confusion Matrix for Validation test 

 

Table 4.4 shows the confusion matrix for the validation test. It provides details on the 

correctly and incorrectly classified instances and how they are distributed as true 

positive and negative and false positive and negative. The goal is to keep the false 

positive and false negative as low as possible and table 4.4 shows that this has indeed 

been accomplished. The number of false positives (i.e. Normal traffic that has been 

incorrectly classified as a VPN) was 31 instances. The number of false negatives (i.e. 

VPN traffic that has been incorrectly classified as Normal) was 48 instances. 
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Correctly Classified Instances 232 / 253 (91.6996%) 

Incorrectly Classified Instances 21 / 253 (8.3004%) 

Average True Positive Rate 0.917 

Average False Positive Rate 0.113 

Average Precision 0.917 

Average Recall 0.917 

Average F-Measure 0.916 

 

Table 4.5: Testing results 

 

Table 4.5 shows the results for the final blind test results. The training test was 

performed on data that had been kept separate from the training process. The data was 

classified by the trained model as new data that it had never encountered before, 

therefore imitating real world conditions. The result was an accuracy rating of 

approximately 92% or 232 correctly classified instances out of 253. 

 

Classified as  VPN Normal 

VPN 78 14 

Normal 7 154 

 

Table 4.6: Confusion Matrix for Testing results 

 

Table 4.6 shows the confusion matrix for the training test. As explained for table 4.4, 

this provides details on the correctly and incorrectly classified instances and how they 

are distributed as true positive and negative and false positive and negative. The 

number of false positives for the validation test was seven and the number of false 

negatives was 14.  

 

In the context of this model operating under real-world conditions on a live network, 

the validation results show that for every 100 network packets classified by the model, 

approximately 94 of them will be classified correctly and 6 will be classified 

incorrectly. For the separate training test results, there would be approximately 8 
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errors. As with the proxy detection model discussed in chapter 3, the model is shown 

to be slightly too lenient in classifying positive instances, with more false negatives 

than there are false positives.  

 

4.5  OpenVPN using Stunnel 

Stunnel17 is an open source, multiplatform application that is designed to add SSL/TLS 

encryption capability to clients and servers that do not natively support the SSL/TLS 

protocols. While OpenVPN itself has support for SSL/TLS, techniques such as Deep 

Packet Inspection (DPI) have the potential to detect OpenVPN when using SSL/TLs 

(Kazemi & Fanian, 2015; Deri et al., 2014). Stunnel can be used to overcome this and 

present the traffic to DPI frameworks as normal SSL web traffic running on port 443. 

This gave rise to the question of whether a similar method of classification that was 

used to classify OpenVPN traffic using a neural network could also be trained to 

recognize OpenVPN traffic that was using Stunnel. To use Stunnel, the user must 

install and configure the application on both the OpenVPN server and on whatever 

OpenVPN client they are using to connect to the VPN. On Linux this involves 

installing the application by downloading the stunnel4 package, creating and sharing 

a new OpenSSL certificate between the client and the server, creating and editing 

Stunnel config files and configuring the firewalls of both the server and client to allow 

the Stunnel traffic to be transported. 

 

4.5.1  Dataset 

As with the previous experiments, a dataset containing network traffic from Stunnel 

OpenVPN connections and non-VPN traffic is required to train the neural network. 

With the ground work already done with the setup of the OpenVPN server on AWS 

for the previous experiment, this was relatively simple. The Streisand VPN package 

also contained everything necessary to setup Stunnel for use with OpenVPN, only 

requiring a few configuration files to be modified. Once the VPN was setup and the 

connection stable, capture of the network traffic began using the same method as used 

for the OpenVPN data capture. Wireshark was used to capture network packets; the 

                                                 
17 https://www.stunnel.org/ 
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VPN was set to disconnect and reconnect every 10 minutes and automatic browsing 

script was used to generate traffic from the same selection of websites. Once the 

packets were captured, they were processed using the TCP flow export tool NetMate 

in order to gain flow statistics of the new data. The result of this data capture was a 

total dataset of 3,952 samples, of which 1,931 were Stunnel OpenVPN and 2,021 were 

non-VPN. This dataset was then loaded into Weka. 

 

4.5.2  Feature Selection 

Feature selection was applied to the capture data in order to reduce the number of 

features produced by NetMate. Again, the same Weka technique used for the 

OpenVPN experiment was used. This was the CorrelationAttributeEval model which 

was also operating under the same threshold of 0.5. The resulting features are 

displayed in Table 4.7.  

Attribute Name Correlation Coefficient 

min_fpktl 0.992 

duration 0.937 

max_fpktl 0.913 

max_idle 0.78 

max_biat 0.763 

std_idle 0.719 

max_fiat 0.673 

mean_idle 0.575 

min_idle 0.562 

mean_fpktl 0.561 

mean_active 0.512 

max_active 0.511 

std_fpktl 0.506 

 

Table 4.7: Correlation Coefficients for selected Stunnel attributes 

 



90 

 

 

 

The feature selection for the Stunnel data appears to be largely different to the features 

selected for the original VPN dataset. Some attributes make a reappearance, such as 

duration, but with a different correlation coefficient. Some of the attributes selected 

this time haven’t been seen before which would seem to indicate that there is a 

difference in how Stunnel modifies the OpenVPN connection. Following the same 

steps used in the previous experiment, the dataset was resampled into separate training, 

testing and validation sets. The training set contains 3160 samples, the testing set 

contains 633 samples and the validation set contains 127 samples after resampling. 

 

4.5.3  Neural Network setup 

For this experiment the goal was to examine how well the model developed in the 

previous experiment could also perform the same with network traffic from a different 

source. Therefore, the neural network model used in the previous experiment was 

reused without any modification. Figure 4.6 shows the configuration of this model. 

Weka was instructed to create a fully connected network with the hidden layer being 

defined by a. ‘a’ is a provided wildcard which creates a hidden layer by summing 

together the number of attributes with the number of classes and divide the result by 

2. In this instance there are 13 attributes and 2 classes which results in 15 divided by 

2 which is 7.5. Weka rounds down to the nearest whole number so the number of 

hidden nodes is set to 7. Figure 4.9 shows this completed network. 

 

 

Figure 4.9: Fully connected Neural Network for Stunnel experiment. 
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Once at this stage the model is ready to be trained using the dataset. In the previous 

experiment, the model was trained, tested and validated using three resampled sets of 

data. The same method was used for this model with additional tests being run using 

10-fold cross-validation and Leave One Out Cross Validation (LOOCV). On initial 

testing using these validation methods, the results gathered showed that the model was 

getting unrealistically high accuracy, possibly showing signs of overfitting of the 

model to the problem. To remedy this, the learning rate and then the momentum of the 

model were lowered from 0.1 to 0.01.  

 

4.5.4  Results 

Tables 4.8, 4.9 and 4.10 show the results of each validation method used once the 

neural network had been finally trained using the updated configuration. Tables 4.11, 

4.12 and 4.13 show the confusion matrices for each of the tests. Figure 4.10 shows a 

bar chart comparing the overall accuracies of each test to a test run without any rules 

applied.  

 

The ZeroRules method in Weka displays what the results would be in the event where 

everything is classified as one of the classes, in this case that was the normal class. 

Compared to the zero rules result, the neural network performs very well. 

 

Correctly Classified Instances 125 / 127 (98.4252%) 

Incorrectly Classified Instances 2 / 127 (1.5748%) 

Average True Positive Rate 0.968 

Average False Positive Rate 0.000 

Average Precision 1.000 

Average Recall 0.968 

Average F-Measure 0.984 

 

Table 4.8: 80/20 split Validation test results 
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Table 4.8 shows the results gathered from Weka for the test that used an 80/20 

percentage split on the dataset to create separate training, testing and validation sets. 

The results shown are taken from the final validation set test, which uses data that was 

kept separate from the training and tuning of the model in order to simulate as close 

as possible the real-world performance of the model. The overall accuracy of the 

model was shown to be 98.42%. 

 

Correctly Classified Instances 3869 / 3952 (97.8998%) 

Incorrectly Classified Instances 83 / 3952 (2.1002%) 

Average True Positive Rate 0.969 

Average False Positive Rate 0.012 

Average Precision 0.987 

Average Recall 0.969 

Average F-Measure 0.978 

 

Table 4.9: 10 fold Cross Validation test results 

 

Table 4.9 shows the results gathered from the test that used 10-fold cross validation to 

validate the model. For validation of this model the dataset was split into 10 equally 

sized subsamples or folds. Of these 10 subsamples, one is retained as the validation 

data for testing of the model and the remaining 9 subsamples are used as training data. 

This process is then repeated 10 times so that each of the folds is exactly once as the 

validation data. These results are then averaged to provide a single estimation of the 

performance of the model. The overall accuracy as shown by this validation is shown 

to be 97.89%. 
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Correctly Classified Instances 3866 / 3958 (97.8239%) 

Incorrectly Classified Instances 86 / 3952 (2.1761%) 

Average True Positive Rate 0.968 

Average False Positive Rate 0.012 

Average Precision 0.987 

Average Recall 0.968 

Average F-Measure 0.978 

 

Table 4.10: Leave One Out CrossValidation test results 

 

Table 4.10 shows the results gathered from the test that used Leave One Out cross 

validation to validate the model. LOOCV involves a similar process to 10-fold Cross 

Validation where, instead of splitting the data into equal sized folds, only one sample 

is retained as the validation data, with the rest being used as training data. This process 

is repeated as many times as there are samples in the dataset i.e. until every single 

sample has been used as the validation data once. The overall accuracy achieved using 

this validation method was found to be 97.82%.  

 

Classified as  VPN Normal 

VPN 60 2 

Normal 0 65 

 

Table 4.11: Confusion Matrix for 80/20 split Validation test 

 

Table 4.11 shows the confusion matrix for the test that used an 80/20 percentage split 

on the dataset. It shows 60 samples were correctly identified as VPN, 65 samples were 

correctly identified as non-VPN and 2 were incorrectly identified as non-VPN. 

Interesting is the lack of samples that were incorrectly identified as VPN.  
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Classified as  VPN Normal 

VPN 1872 59 

Normal 24 1997 

 

Table 4.12: Confusion Matrix for 10 fold Cross Validation test 

 

Table 4.12 shows the confusion matrix for the test that used 10-fold cross validation. 

It shows 1872 samples were correctly identified as VPN, 1997 samples were correctly 

identified as non-VPN, 24 samples were incorrectly identified as VPN and 59 samples 

were incorrectly identified as non-VPN. 

 

Classified as  VPN Normal 

VPN 1870 61 

Normal 25 1996 

 

Table 4.13: Confusion Matrix for Leave One Out Cross Validation test 

 

Table 4.13 shows the confusion matrix for the test that used LOOCV for validating 

the model. It shows 1870 samples were correctly identified as VPN, 1996 samples 

were correctly identified as non-VPN, 25 samples were incorrectly identified as VPN 

and 61 samples were incorrectly identified as non-VPN. 
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Figure 4.10: Graph comparing accuracies of different validation techniques against 

ZeroRules 

 

As shown in table 4.8, the 80/20 split validation method was able to achieve an 

accuracy rate of 98.43%. Initially this would suggest that the 80/20 training and test 

split provides the best model, because the overall number of samples in the validation 

set is comparatively low, the results may not be reliable. This leaves the two types of 

cross validation to be compared to each other. 10-fold cross validation is one of the 

more popular forms of cross validation and is widely used. LOOCV is essentially cross 

validation where the number of folds that the data is sub-divided into is the same as 

the total number of samples in the dataset, in this case that would be 3952 folds. In the 

results the overall accuracies of the two methods are very close to one another. 

However, LOOCV has a much higher computation time when compared to 10-fold 

cross validation despite the individual fold computation time being lower. When 10-

fold validation is used the model only has to be trained and tested once for each of the 

10 folds, the model in this case must be trained and tested 3952 times when using 

LOOCV. Because the results of the two validation techniques are so close to one 

another, this means the benefits of LOOCV are possibly worthless.  

 

So, if we take the result of the 10-fold cross validation of 97.89% as the best indicator, 

it can be said that the neural network has the ability to accurately distinguish between 

an OpenVPN connection making use of Stunnel and normal non-VPN traffic. 



96 

 

 

 

However, as noticed with the previous OpenVPN experiment, the confusion matrices 

for all of the validation methods used this time round show that the model is slightly 

too lenient, with a higher number of false negatives than false positives. 

 

4.6  Validation testing 

The work that will form the basis of this comparison will be that of (Draper-Gil et al., 

2016) previously mentioned in the introduction to this chapter. This work introduces 

a classification method for classifying encrypted and VPN traffic from various 

sources, the main focus being Voice over Internet Protocol (VoIP). Additionally, the 

paper also evaluates the performance of the approach on other types of Internet traffic 

such as browser-based, mail-based and peer-to-peer traffic. The paper uses two 

different machine learning algorithms, C4.5 and k-nearest neighbour (KNN). 

 

The results of the browser-based approach presented in (Draper-Gil et al., 2016) are 

the only results used for validation of the models presented in Section 4.4.3 and 4.5.3 

as browser-based traffic is the primary scope of the research conducted using the 

developed models. In the experiments carried out in (Draper-Gil et al., 2016), two 

scenarios is examined.  

 

In the first scenario where the goal is to classify encrypted traffic as well as identifying 

whether the source was a VPN by first distinguishing between VPN and Non-VPN 

traffic following by classifying the traffic into one of several sub-types. To accomplish 

this, the dataset used was split into two separate datasets with one containing Non-

VPN traffic and the other containing VPN traffic. In the second scenario a dataset 

combining the two sets of data from the first scenario are used, with the VPN 

identification and classification of traffic being accomplished at the same time. 

 

The results for the first scenario highlight the precision and recall of the classification 

of the different types of traffic. For browser-based traffic, the best results obtained 

were from the C4.5 algorithm. The precision obtained was approximately 0.88 and 

0.93 for the VPN and Non-VPN classifiers respectively giving a mean average 
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precision of 0.905 that was calculated from the results presented in (Draper-Gil et al., 

2016).  

 

The results for the second scenario highlight the precision and recall of the 

classification of whether the traffic in question originated from a VPN and what type 

of traffic it is. For browser-based traffic, the best results attained were again obtained 

from the C4.5 algorithm with the precision being approximately 0.81 and 0.82 for the 

VPN and Non-VPN classification respectively giving a mean average precision of 

0.815 that was again calculated from the results presented in (Draper-Gil et al., 2016). 

These results show that the approach can produce a classifier to characterise encrypted 

non-VPN and VPN traffic. 

 

The goals of the experiments conducted in Chapter 4 of this thesis were the creation 

of machine learning models based on neural networks that were capable of 

characterising VPN and non-VPN traffic. The first model that was developed focused 

on classifying normal and standard OpenVPN traffic. The second model that was 

developed focused on classifying normal and Stunnel OpenVPN traffic. The results 

obtained for the first model show an average precision of 0.917 when classifying 

traffic as either VPN or non-VPN. The results obtained for the second model show an 

average precision of 0.987 when classifying traffic as either Stunnel VPN or non-VPN. 

 

Comparing the results obtained from (Draper-Gil et al., 2016) and the ones obtained 

from the two proposed models, it is clear that the proposed models perform better 

when applied to the selected scenario.  

 

4.7  Summary 

This chapter explored the development of a neural network model that was capable of 

classifying network traffic as VPN traffic or not by using TCP flow statistics. Section 

4.2 describes the capture of network packets and the further processing applied to them 

using NetMate to create flow statistics that can then be compiled into a dataset. Section 

4.3 describes the setup of the AWS Virtual Private Server (VPS) used to host the target 

OpenVPN server.  
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Section 4.4 follows on from that to describe the experiments carried out using the 

WEKA machine learning tool. It features an overview of the tool itself and its 

capabilities, then goes on to describe how it was used to perform feature selection, the 

setup of the neural network and finally displays and describes the results of the 

classification.  

 

Section 4.5 then continues the previous work and attempts to apply the same method 

to a different implementation of OpenVPN which uses the Stunnel application to 

provide SSL encryption for the VPN. An overview of the dataset captured is given, 

with details provided on the neural network configuration and how it differs from the 

original configuration. The results of the classification and different forms of 

validation and then given.  

 

Section 4.6 presents a validation test using a known state-of-the-art approach as a 

baseline for the performance of the proposed models. 
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5.  Conclusion and Future Work 

5.1  Concluding Summary 

The aim of this thesis was to investigate methods that would aid in the detection of 

anonymising web proxies and VPN technologies that are being used to hide an 

attacker’s identity. While proxies and VPNs have legitimate uses, such as connecting 

to a business network from a remote location, they are still abused by criminals who 

use them as a way to commit crimes whilst remaining undetected and unidentified. 

Without a method to identify when a Proxy or VPN is connecting to a web facing 

server, businesses could be vulnerable to having their network breached and having 

data stolen whilst being hindered in their ability to confidently say who stole it. This 

can be particularly detrimental to websites who deal with customer details and 

financial records.  

 

There are methods available for inspecting network traffic at the point of ingress and 

egress. An example of one of these methods is Deep Packet Inspection (DPI). It is 

closely related to another method called Shallow Packet Inspection (SPI), however 

SPI only has the ability to inspect the headers of network packets that are used to 

transport the packets to their destination. DPI goes a step further and inspects those 

headers and the actual content of the packet, which in the case of a HTTP packet could 

be a request for data from a website. A counter to DPI is the use of end to end 

encryption on the content of packets in order to hide those contents from prying eyes. 

This is done innocently enough with the goal being to stop potential man in the middle 

attacks from stealing sensitive data such as usernames and passwords or financial 

details as they are being transmitted. However, proxy and VPN technologies also have 

the ability to use encryption technologies with the use of IPSec and SSL/TLS. This 

increases the need for a method to identify these types of network traffic. Machine 

learning techniques are one way in which to accomplish this.  

 

The chapters detail the steps taken to develop a machine learning technique for 

identifying proxy and VPN network traffic. These chapters are summarised below. 
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Chapter 2 provides a background of the technologies investigated as well as the state 

of the art in the use of them and detecting their use. The chapter first gives a 

background on the various types of Proxy that are available and explaining how Proxy 

have both legitimate and illegitimate uses. A number of different anonymising Proxy 

technologies were described with some details given on how they are developed. The 

second section of the chapter is focused on giving a background of different VPN 

technologies and how they’ve been developed and improved. Next a background on 

Intrusion Detection Systems is provided with a review on how machine learning 

techniques have been integrated with them to improve their detection rates. Finally, a 

background is provided for Neural Networks to aid in the understanding of how they 

operate. 

 

Chapter 3 created the neural network model that was capable of classifying 

Anonymising Proxy network traffic versus normal traffic not being routed through an 

Anonymising Proxy. The chapter begins by outlining the hardware setup used to 

generate network traffic and the reasons for the choices made. Then the chapter begins 

describing the steps taken to generate the dataset needed to train and test the neural 

network model. This involved using the Proxy client described in the hardware setup 

section to generate and capture network traffic from anonymising web traffic sources 

and network traffic from non-Proxy sources. The capture used automated browsing 

and capture scripts that were written in Python. The features of the dataset resulting 

from the network traffic capture took the form of TCP header details. This dataset was 

used alongside the Microsoft Azure Machine Learning Studio to train, tune and test a 

binary class Multi-layered Perceptron Neural Network.  

 

As tuning of the model progressed, it was found that some features were causing the 

model to overfit to the data and these were then removed. Once overfitting was 

reduced a completed model could be trained and was tested on data from the dataset 

that had purposely been kept separate from the training and tuning processes to reduce 

any bias that may have formed in the model. The results of the validation test showed 

that the model was capable of classifying network traffic as either Anonymising Proxy 

traffic or as non-Proxy traffic and the concluding results section details the results 

obtained. 
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Chapter 4 involves a follow-up investigation of whether similar techniques to those 

used in Chapter 3 could be used to identify and classify network traffic belonging to a 

VPN. The chapter begins by outlining how VPNs can be problematic when used as an 

identity hiding tool and gives justification for the investigation. Discussed next is the 

need for an additional dataset which is needed to train the Neural Network model. The 

tools used to capture it were a Virtual Machine running Ubuntu 18.04, Wireshark and 

a variation of the automated browsing script from chapter 3. This dataset was initially 

based off the same theory as the one underlying the Proxy dataset, that the TCP header 

details would provide enough of a pattern to allow for detection of VPN network 

traffic.  

 

However, the Neural Network model was unable to correctly classify the traffic. This 

led to the decision to investigate the use of TCP flow statistics as features rather than 

the header details. The flow statistics were calculated by processing the captured 

network traffic using an application called NetMate. The output of this was a series of 

features that calculated various time and size related data. The Weka machine toolset 

was used for all the pre-processing of the flow statistic dataset and for the training and 

testing of the Neural Network model. The chapter describes in detail the configuration 

used for the Neural Network experiment and the feature selection process used. The 

Section 4.4.4 describes the results obtained from this series of experiments.  

 

Building off this initial VPN experiment, Section 4.5 explores the problem further by 

using a different variation of OpenVPN which uses an application called Stunnel to 

provide an encrypted connection. Another dataset was captured containing new traffic 

data which was processed through NetMate to obtain flow statistics. Weka was used 

again to process the dataset and a Neural Network was trained and tested from the 

data. The concluding results section describes the results of this further test which 

show that the slightly modified model was able to classify the Stunnel OpenVPN 

traffic with a high percentage of accuracy. 
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5.2  Thesis Contributions 

With regards to the objectives laid out in the beginning of this thesis, all have been 

met in the course of the work undertaken. A full investigation into the detection and 

classification of Anonymising Proxy and VPN traffic was conducted using a Multi-

layered Perceptron Neural Network for the classification of the traffic. From the 

experiments conducted the Neural Network was found to be able to classify 

Anonymising Proxy traffic correctly with an overall accuracy of 94.6%. The 

experiments conducted to classify OpenVPN usage found that the Neural Network 

was able to correctly identify the VPN traffic with an overall accuracy of 93.71%. The 

further work done to classify Stunnel OpenVPN usage found that the Neural Network 

was able to correctly identify VPN traffic with an overall accuracy of 97.82% accuracy 

when using 10-fold cross validation. This final experiment also provided an 

observation of 3 different validation techniques and the different accuracy results 

obtained.  

 

5.2.1  Proxy detection using Neural Network 

The first part of this contribution was the generation of a dataset containing traffic 

from browser sessions using several anonymising proxies and sessions that were not 

using anonymising proxies. The traffic was labelled as either anonymising proxy 

traffic or as normal, non-anonymising proxy traffic. The features used were the details 

of the TCP header contained within each network packet.  

 

The second part of this contribution was the creation of a machine learning model for 

classification of proxy and non-proxy network traffic trained on the aforementioned 

dataset. Through the experimental work carried out, it was proven that a neural 

network was capable of classifying network traffic as either Anonymising Proxy 

traffic or as non-Proxy traffic. The tests were carried out in such a way that bias was 

removed where possible when conducting validation tests. Data from the captured 

network traffic was specifically kept separate from the training and tuning phases of 

the model creation in order to simulate as close to possible real-world data that the 

model had not encountered before. 
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5.2.2  VPN detection using Neural Network 

The first part of this contribution was the generation of a dataset containing traffic 

from browser sessions that were conducted using a VPN connection and sessions that 

were not conducted using a VPN connection. The traffic was labelled as either VPN 

traffic or as normal, non-VPN traffic. The features used were statistics gathered from 

TCP-flows which measured both the number of bytes transferred in both directions as 

well as the time take to transfer the bytes.  

 

The second part of this contribution was the development of a machine learning model 

for classification of VPN and non-VPN network traffic trained on the dataset of TCP 

flow statistics. 

 

Upon successful experiments conducted for the detection of Anonymising Proxy 

traffic, the focus was extended to include VPN traffic. The VPN technology OpenVPN 

was chosen as the focus for the experiments, which in turn found that the Neural 

Network was capable of classifying network traffic as either VPN traffic or as non-

VPN traffic.  

 

A further set of experiments which attempted to classify a form of OpenVPN traffic 

that made use of Stunnel to provide encryption. To facilitate these experiments, a third 

dataset consisting of TCP flow statistics captured from a combination of normal non-

VPN traffic and OpenVPN traffic that was tunneled through Stunnel was created. 

Using this dataset, the model developed for standard OpenVPN data was trained and 

tested again on the Stunnel OpenVPN data. Early results showed that this model was 

overfitting the data, so it was modified to account for this. Once the model was 

modified, this set of experiments found that a Neural Network trained on the Stunnel 

OpenVPN data could classify network traffic as either VPN traffic or non-VPN traffic. 

Again, the experiments were conducted in such as fashion as to eliminate bias where 

possible. This included keeping a portion of the captured dataset away from the 

training and tuning phases so it could be used to simulate real world data that the model 

had never seen before.  
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5.3  Future Work 

This thesis presents a substantial body of work and the research contained within 

provides novel contributions to the detection of both Anonymising Proxies and VPNs. 

There are however several directions in which this work could be extended. These are 

outlined in sections 5.3.1 through to 5.3.5. 

5.3.1  Capture of additional data to further test the hypothesis 

The datasets captured in the process of the work undertaken for the thesis have been 

of varying sizes, with the largest being approximately 11000 samples. Time played a 

large part in how much data was feasible to capture. Going forward, a recommendation 

could be made to increase the size of the datasets in order to further test the strength 

of the models created. 

5.3.2 Investigation of automatic hyperparameter tuning in Weka 

An improvement to the experiments conducted in chapter 4 would be the use of an 

automatic hyperparameter tuning method similar to that used in the Azure experiments 

of chapter 3. One such method is provided in the Weka add-on module Auto-WEKA 

(Thorton et al, 2013). The use of Auto-WEKA has only just been considered because 

the project has matured to a stable usable point.  

5.3.3  Investigation of other machine learning techniques 

An advancement of the techniques used in this research would be to investigate the 

use of Ensemble Learning. Similar to voting systems developed in other fields, 

Ensemble Learning takes the idea of using the output of multiple base algorithms 

together into what is known as an ensemble. The benefit of using Ensemble Learning 

is that more accurate results can be gained as opposed to using each base learning 

algorithm in isolated fashion. This is due to the diverse nature of ensembles.  

One emerging method for forming an ensemble is one known as Stacking. Stacking 

involves the use of multiple base algorithms which are all trained on the same set of 

data. The outputs of each base algorithm are aggregated with the actual class and 

predicted probabilities for an instance. The aggregated outputs are fed into a regression 

model for each class. The final output of the regression models is combined to form 

the final classification result (Milliken et al, 2015). 
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Another possible avenue to explore is the role that Transductive and Matched-Pair 

machine learning can play individually as well as combined together in this problem 

as they allow for better metadata to formed from input data (Theiler, 2014). 

5.3.3  Obfsproxy with OpenVPN 

In order to improve its undetectability against the many forms of censorship, the Tor 

project set about developing the pluggable transports project (Mazurczyk et al., 2016). 

One of the results of this project was the pluggable transport Obfsproxy. Obfsproxy is 

an additional software package that was originally developed to work alongside Tor. 

Its role was to obfuscate Tor packets by re-encrypting them to conceal the Tor-specific 

fingerprints that may be present. Today, is can be used as a standalone software that 

changes traffic signatures to look like traffic that is not normally blocked by methods 

such as DPI. It can be used in this way to help prevent OpenVPN packets from being 

detected by DPI. Therefore, some work could be done to investigate whether the 

methods described in this thesis for detecting OpenVPN could also be applied to 

detecting the use of OpenVPN alongside Obfsproxy. There is also the possibility of 

investigating whether it is possible to classify Tor traffic using the same techniques. 

5.3.4  Wireguard 

Wireguard18is a relatively new VPN technology developed to be faster and simpler 

than IPSec while being more performant than OpenVPN. It is a secure network tunnel 

that operates at layer three of the network stack implemented as a kernel virtual 

network interface for Linux (Donenfeld, 2017). There is currently no windows client 

yet available which limits its popularity, but the author claims to be working on a 

client. Despite this, Wireguard is gaining traction in industry19 as well as possible 

government support in the USA20. It may be worth attempting to apply the techniques 

developed in this thesis to identify Wireguard traffic. 

                                                 
18 https://www.wireguard.com/ 
19https://arstechnica.com/gadgets/2018/08/wireguard-vpn-review-fast-connections-amaze-but-

windows-support-needs-to-happen/ 
20 https://www.xda-developers.com/us-senator-pushes-government-use-wireguard-vpn/ 
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5.3.5  Deeper classification with multiple kinds of VPN 

The work completed in this thesis focused purely on binary classification of VPN and 

non-VPN traffic. Another direction that this research could would be investigating the 

classification of multiple kinds of VPN against non-VPN traffic. This could prove to 

be a complex task for a standard neural network so it would be worth considering the 

use of deep learning algorithms such as Convolutional Neural Networks (CNN) or 

Recurrent Neural Networks (RNN). In recent years deep learning artificial neural 

networks have won numerous competitions in pattern recognition and machine 

learning when pitted against more traditional neural networks. (Schmidhuber, 2015). 

The problem of classifying network traffic boils down to an advanced pattern 

recognition problem, therefore deep learning artificial neural networks may be well 

suited to a more complex multiple VPN classification.  

 

Several future areas and directions of work have been identified however there are 

countless directions that this research could take. The scope of the research could be 

changed for any network traffic classification problem, provided the dataset is there to 

train the network. Multi-class classification using deep learning neural network could 

be a very interesting and useful direction for research to take. However, results 

obtained over the course of the work undertaken are very positive, with the results of 

the Stunnel OpenVPN experiment of 97.82% showing that the model is in a good 

position for evaluation in a real-world VPN detection environment.  
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Appendix A – Packet Capture Script 

Packet capture script for chapter 3 

# Packetcap.py - Script to capture HTTP and HTTPS packets and log them 

# to a .CSV file. 

import socket 

import sys 

import csv 

from struct import * 

# Create an INET, STREAMing socket 

try: 

    s = socket.socket(socket.AF_INET, socket.SOCK_RAW, 

socket.IPPROTO_TCP) 

except socket.error: 

    print('Socket could not be created.') 

    sys.exit() 

outputFile = open('vpntraffictest.csv', 'w', newline='') 

writer = csv.writer(outputFile) 

# Write out the top row 

writer.writerow(['Version', 'Protocol', 'TTL', 'SrcAddr', 'DestAddr', 

                 'SrcPort', 'DestPort', 'SeqNum', 'AckNum', 'Flag', 'dataSize', 

                 'Service', 'Label']) 

# receive a packet 

while True: 

    packet = s.recvfrom(65565) 

    # Transfer tuple contents to string type. 

    packet = packet[0] 

    # Take first 20 bytes for the ip header. 

    # Ethernet header is usually before, but we aren't capturing that. 

    ip_header = packet[0:20] 

    # Unpack from bytes format 

    iph = unpack('!BBHHHBBH4s4s', ip_header) 

    version_ihl = iph[0] 

    version = version_ihl >> 4 

    ihl = version_ihl & 0xF 

    iph_length = ihl * 4 

    ttl = iph[5] 

    protocol = iph[6] 

    s_addr = socket.inet_ntoa(iph[8]) 

    d_addr = socket.inet_ntoa(iph[9]) 

    # TCP header starts right after IP header and is usually 

    # 20 bytes long 

    tcp_header = packet[20:40] 
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    # Unpack from bytes format 

    tcph = unpack('!HHLLBBHHH', tcp_header) 

    source_port = tcph[0] 

    dest_port = tcph[1] 

    sequence = tcph[2] 

    acknowledgement = tcph[3] 

    doff_reserved = tcph[4] 

    tcph_length = doff_reserved >> 4 

    h_size = iph_length + tcph_length * 4 

    data_size = len(packet) - h_size 

    # Select bytes containing tcp flags and label them 

    tcpFlag = packet[33:34].hex() 

    if tcpFlag == "01": 

        Flag = "FIN" 

    elif tcpFlag == "02": 

        Flag = "SYN" 

    elif tcpFlag == "03": 

        Flag = "FIN-SYN" 

    elif tcpFlag == "08": 

        Flag = "PSH" 

    elif tcpFlag == "09": 

        Flag = "FIN-PSH" 

    elif tcpFlag == "0A": 

        Flag = "SYN-PSH" 

    elif tcpFlag == "10": 

        Flag = "ACK" 

    elif tcpFlag == "11": 

        Flag = "FIN-ACK" 

    elif tcpFlag == "12": 

        Flag = "SYN-ACK" 

    elif tcpFlag == "18": 

        Flag = "PSH-ACK" 

    else: 

        Flag = "OTH" 

    # If statement to select only HTTP and HTTPS packets for 

    # logging 

    if source_port == 80 or source_port == 443: 

        if source_port == 80: 

            writer.writerow([str(version), str(protocol), 

                             str(ttl), str(s_addr), 

                             str(d_addr), str(source_port), 

                             str(dest_port), str(sequence), 

                             str(acknowledgement), Flag, 

                             str(data_size), "HTTP", "0"]) 
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            print("Packet Captured") 

        else: 

            writer.writerow([str(version), str(protocol), 

                             str(ttl), str(s_addr), 

                             str(d_addr), str(source_port), 

                             str(dest_port), str(sequence), 

                             str(acknowledgement), Flag, 

                             str(data_size), "HTTPS", "0"]) 

            print("Packet Captured") 

outputFile.close() 

 

Automatic browsing script for chapter 3 

import time 

from splinter import Browser 

 

# Create instance of Browser object 

b = Browser() 

url = ["http://whatismyipaddress.com/"] 

# List of glype proxy sites to be visited 

# "http://www.blackhost.xyz/glype/", "http://proxy.lelouet.fr/",  

url = [ 

       "https://secure.cogsoz.com/proxy/", 

       "http://samstevenm.net/prox/", "https://muadness.com/proxy/", 

       "http://www.radiocarb.com/p/", "http://proxy.rimmer.su/", 

       "https://awssl.com/", "https://moka4.com/", 

       "https://webproxy.stealthy.co/", "http://bvpn.win/", "http://www.emuby.com/",  

       "http://www.docoja.com/blue/index.php"] 

for site in url: 

    # Visit the site using Browser 

    b.visit(site) 

    time.sleep(2) 

    # Find and fill the textbox then find the submit button and 'click' it 

    b.find_by_id('input').fill('www.whatismyipaddress.com') 

    time.sleep(1) 

    if b.is_element_present_by_css('input.button'): 

        goButton = b.find_by_css('input.button') 

        goButton.click() 

    elif b.is_element_present_by_css('input.submitbutton'): 

        goButton = b.find_by_css('input.submitbutton') 

        goButton.click() 

    time.sleep(2) 
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    # Deal with SSL warning page if it appears 

    sslWarningPage = b.find_by_text('Warning!') 

    if sslWarningPage is not None: 

        print('Warning encountered, dealing with it...') 

 

        continueButton = b.find_by_css('input')[1] 

        continueButton.click() 

     

b.quit 

 


