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Summary 

Amphibian skin secretions are a rich source of biomolecules (peptides, alkaloids and 

biogenic amines) which play a significant role in protecting the host from predators and 

microbial attack. Peptides from frog skin secretions have shown antimicrobial activity 

against a wide range of microorganisms. Also, these peptides have been shown to 

possess anticancer, immunomodulatory and insulinotropic activities. In this thesis, 

peptides from skin secretions of frogs belonging to the family of Alytidae, Hylidae, 

Pipidae, and Ranidae were examined for insulinotropic and antidiabetic activities. 

Frenatin 2D and its synthetic analogues from Discoglossus sardus, [A14K] and [S4K] 

analogues of PGLa-AM1 and CPF-AM1 respectively from Xenopus amieti, temporin 

peptides from Rana temporaria and esculentin-1 from Rana esculenta demonstrated 

concentration-dependent insulinotropic activities in rat clonal pancreatic beta cells 

(BRIN-BD11) and human-derived pancreatic beta cells (1.1B4). Insulinotropic 

activities of the esculentin-1 peptides were associated with an increase in membrane 

potential and intracellular calcium, whereas frenatin 2D and temporin peptides had no 

effect on these parameters. In BRIN-BD11 cells, frenatin 2D peptides produced a 

significant increase in cAMP production and its insulin-releasing activity was abolished 

in PKA downregulated cells. In addition to their insulinotropic activities, these peptides 

protected BRIN-BD11 cells against cytokine-induced apoptosis as well as stimulated 

proliferation of beta-cell.  Frenatin 2D and its synthetic analogues [D1W] and [G7W], 

temporin G and esculentin (1-21)1c improved blood glucose and increased insulin 

concentration in lean mice.  

In genetically obese-diabetic mice (db/db), frenatin 2D, [A14K] PGLa-AM1 and [S4K] 

CPF-AM1 improved blood glucose, insulin sensitivity, insulin secretory responses of 

islets to glucose and established insulin secretagogues, lipid profile and both kidney and 
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liver function. The gradual demise of beta cells and a decrease of circulating insulin in 

db/db mice was delayed significantly by these peptides. Also, genes involved in both 

insulin signalling and secretion were improved.  

In conclusion, this thesis highlights the potential of frog skin peptides belonging to the 

family of Alytidae, Hylidae, Pipidae and Ranidae for further development into 

therapeutic agents for type 2 diabetes. 
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1.1 Diabetes mellitus 

 

Diabetes mellitus is a group of metabolic diseases characterised by high blood glucose 

level (hyperglycaemia). In diabetes, blood glucose level escalates either due to 

pancreatic beta cell dysfunction or inability of the body to respond to available insulin 

or both. Diabetes and its related complications can be managed and delayed by making 

lifestyle changes (such as healthy diet, regular exercise) and using appropriate 

pharmacological interventions. 

As a result of the global rise in the rate of prevalence, mortality and morbidity together 

with increasing costs of treatment, diabetes has become one of the most significant 

healthcare problems. Rapid urbanisation, excessive calorie intake and increasingly 

sedentary lifestyle have resulted in a diabetes epidemic (Basu et al., 2013). According 

to the International Diabetes Federation (IDF) report, in 2017 more than 425 million 

people were affected by diabetes globally. This figure could rise to 629 million in 2045 

if no urgent actions are taken to improve diabetes outcome. In the UK alone, the 

diabetes population has increased from 1.8 million to 3.7 million in last two decade, 

according to a recent analysis by Diabetes UK. Due to the exponential rise in the 

prevalence of diabetes, healthcare expenditure globally has reached USD 727 billion 

per/annum. Despite spending such a considerable amount, there is still a large 

proportion of the worldwide diabetes population with no access to antidiabetic drugs, 

particularly in developing nations (IDF, 2017).  

 

 

1.1.1 History of diabetes 

 

The following scheme summarizes the history of diabetes and the manufacturing of 

first human insulin.  
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1500 BC 

 

Characteristic similar to diabetes mellitus were described by ancient 

Hindu and Egyptians scholar. 

 

250 BC  

 

Apollonius of Memphis coined term Diabetes. 

450-500AD 

 

 

 

Ancient Indian Scholar Sushruta called it Madhumeha (honey urine).   

Sushruta (Physician) and Charaka (Surgeon), the early pioneers of 

treating diabetes, identified two types of diabetes (now known by 

type1 and type 2 diabetes). 

980-1037  

 

Persian physician Avicenna, not only observed abnormal appetite and 

diabetic gangrene but also used plants seeds (lupin, fenugreek, 

zedoary) for treatment. 

 

1776 

 

Matthew Dobson confirmed that diabetes patient has excess sugar in 

urine and blood. 

 

1798 British Surgeon-General John Rollo coined the term mellitus (Latin, 

‘sweet like honey’ or sweet urine). 

 

1857 

 

 

Claude Bernard established the role of the liver in diabetes 

 

1869 

 

Paul Langerhans, observed clusters of cells scattered all over 

pancreas 

 

1889 

 

Joseph von Mering and Oskar Minkowski discovered the role of the 

pancreas in diabetes. 

 

1916 

 

Sir Edward Albert Sharpey-Schafer coined the word “insulin”. 
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1919 

 

Dr Frederick Allen, introduced starvation treatment to manage 

diabetes 

 

1923 

 

Dr Fredrick Banting and Prof John James Rickard Macleod received 

Nobel Prize for the discovery of insulin. 

 

1936 

 

British Scientist Sir Harold Percival (Harry) Himsworth, in his work, 

distinguished two main types of diabetes. 

 

1959 British biochemist Frederick Sanger received Nobel Prize for his 

work on the structure of human insulin. 

 

1978 David Goeddel produced synthetic “human” insulin using 

recombinant DNA technology 

 

The data in the above scheme is adapted from Ahmed, 2003, Das & Shah et al., 2011, 

Lakhtakia, 2013, Vecchio et al., 2018. 

 

1.1.2 Classification of Diabetes Mellitus  

 

Diabetes is classified mainly into two main types:  

A) Type1 diabetes mellitus (T1DM).  

B) Type 2 diabetes mellitus (T2DM). 

 

1.1.2.1 Type 1 diabetes mellitus (T1DM) 

In T1DM, insulin-producing pancreatic beta cells are challenged by the body’s 

immune system resulting in insulin deficiency (Maahs et al., 2012). Such individuals 

depend on external insulin source to maintain healthy blood sugar levels. It is a severe 

and permanent condition that can be developed at any stage of life, but more frequently 
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occurs in children (Frese & Sandholzer, 2013).  For these reasons, T1DM was also 

called “insulin-dependent diabetes” or “juvenile-onset diabetes. T1DM can be 

managed by proper insulin treatment, regular monitoring of blood sugar and 

maintaining a healthy lifestyle. According to the International Diabetes Federation, in 

2017 about 1 million children and adolescent (below age 20) were projected to have 

T1DM. In some parts of the world such as Europe, North America and Caribbean was 

recorded with the highest number of T1DM patient (below age 20). In high-income 

countries, the prevalence of T1DM was estimated between 7-12% of the total diabetes 

population (WHO, 2016). 

The cause of T1DM is not entirely understood, but it has been suggested that the 

genetic and environmental factors may activate an immune system that destroys beta 

cells population (Atkinson & Eisenbarth, 2001, Patterson et al., 2014). The 

polymorphism in Human leukocyte antigen (HLA) genes located on chromosome 

6p21 that encodes major histocompatibility complex, is considered as one of the main 

inherited factors that may contribute to T1DM. Mainly, the HLA alleles DR4-DQ8 & 

DR3-DQ2 account for 40-50% of heritable risk (Hirschhorn, 2003). It has also been 

proposed that environmental factors including toxins and virus may trigger this gene 

to produce antibodies that attack beta cells (You & Henneberg, 2016). Auto-antibodies 

to islet cells, insulin, glutamate decarboxylase, tyrosine phosphatase (IA-2a and IA-

2b) and zinc transporter 8 (ZnT8) have been reported that facilitate the destruction of 

pancreatic beta cells (Daneman, 2006, American Diabetes Association, 2015). 

 

1.1.2.2 Type 2 diabetes mellitus (T2DM) 

In T2DM, pancreatic beta cells fail to meet body requirement for insulin or the body 

loses its efficiency to utilise available insulin or both, resulting in hyperglycaemia. 
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This type is most prevalent among adults and accounts for 90% of the total diabetes 

population. T2DM is also seen occurring in children and young adults. This is mainly 

due to rapid urbanisation, the rising level of obesity, high energy intake and physical 

inactivity (Basu et al., 2013). According to the International Diabetes Federation 

(IDF), in 2015, more than 400 million people were affected by T2DM, and this figure 

will rise to 629 million by 2045. The incidence of T2DM population has been high, 

particularly in developing nations, which account for 80% of global diabetes 

population. T2DM can be managed by adopting a healthy lifestyle (healthy diet and 

physical exercise) and by taking appropriate medical treatment such as (metformin, 

sulphonylureas, thiazolidinediones, acarbose, GLP-1 agonists, DPP-4 inhibitors, 

SGLT2 inhibitors or insulin). If affected individuals did not receive appropriate 

treatment, they are at high risk of developing complications associated with diabetes 

such as microvascular (nephropathy, neuropathy, and retinopathy) and macrovascular 

complications (cardiovascular diseases) (Van Dieren & Beulens, 2010). 

T2DM is a complex disease and has multiple factors contributing to its development. 

Among these, genetic predisposition and environmental factors are the important ones, 

which interacts to cause T2DM. Genetic factors have a major influence on 

susceptibility to develop T2DM, which is supported by studies in monozygotic twins 

and certain ethnic groups (Rimoin, 1969, Poulsen et al., 1999). Further studies 

identified multiple genetic variants that increase the risk of T2DM (McCarthy, 2010). 

A study conducted by Grant et al., 2006, identified variants in transcription factor 7-

like 2 (TCF7L2) gene in Iceland individuals with T2DM. A similar finding was 

replicated in T2DM individuals from various ethnic groups (Cauchi et al., 2007). 

Some examples of genes associated with T2DM risk are: INS (insulin), IRS1 (insulin 

receptor substrate 1), PPARγ (peroxisome proliferator-activated receptor gamma), 
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KCNJ11 (potassium inwardly rectifying channel, subfamily J, member 11), ABCC8 

(ATP-binding cassette transporter sub-family C member 8),  SLC30A8 (solute carrier 

family 30 member 8), PCSK1 (proprotein convertase subtilisin/kexin type 1), KCNQ1 

(potassium voltage-gated channel subfamily Q member 1) (McCarthy, 2010, Wen et 

al., 2012, Grarup et al., 2014). Environmental factors such as excess body fat, 

overweight, obesity, high energy intake and physical inactivity, increase the risk of 

T2DM (Forouzanfar et al., 2015). Beyond these factors, differences in the gut flora 

and also socioeconomic status could play a role in the development of T2DM 

(Moreno-Indias et al., 2014). 

 

1.2 Pancreas 

The pancreas is an elongated organ, about 14-20 cm long, that lies horizontally in the 

upper abdomen behind the peritoneum. It is divided into four main parts head, neck, 

body and tail. The pancreas has two main components, exocrine pancreas and 

endocrine pancreas. Exocrine pancreas accounts for 98% of the pancreatic mass and 

is composed of acinar and ductal epithelial cells which produce digestive enzymes 

such as amylase, lipases and protease. These digestive enzymes travel through 

pancreatic duct into the duodenum where they digest macromolecules. Endocrine 

pancreas (2% of pancreatic mass) is composed of alpha (α) beta (β), delta (δ), epsilon 

(ε) and pancreatic polypeptide (PP) cells which produce important hormones 

glucagon, insulin, somatostatin, ghrelin and pancreatic polypeptide respectively 

(Longnecker, 2014). These hormones are released into the bloodstream to regulate 

metabolic function. The endocrine cells are present in the form of clusters surrounded 

by acinar cells, and these clusters are called islets of Langerhans. 
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1.2.1 Islets of Langerhans 

In 1869, Paul Langerhans was first to observe clusters of cells scattered all over 

pancreas. The French pathologist and histologist Laguesse proposed that secretion 

from these cluster of cells could play a key role in digestion and decided to name these 

cells after the name of Langerhans in 1893. The function of the pancreas in diabetes 

first was established by Von Mering and Minkowski in 1889. They observed a rise in 

blood glucose level in dogs after surgical removal of the pancreas (Xavier et al., 2018). 

In 1921, Frederick Banting and Charles Best discovered insulin and showed that 

insulin produced by pancreas reduces blood glucose level. Frederick Banting further 

collaborated with John Macleod for the clinical development of insulin.  In 1923, 

Frederick Banting along with John Macleod were awarded Nobel Prize in the field of 

Medicine. Since then, the focus has been directed towards islet biology (Xavier et al., 

2018).  

In humans, it is estimated that pancreas has about 1million islets (Ionescu-Tirgoviste 

et al., 2015). The average size of islets varies between 50-250 μM in diameter. Alpha 

(α), beta (β), delta (δ) and pancreatic polypeptide (PP) cells are the four major cells 

that constitute the islets of Langerhans (Figure 1). ε-cells are also present in islets but 

present in few numbers. The composition of these cells, as well as the structure of 

islet, vary between and within species (Kim et al., 2009). Human islets are composed 

of 52-74% insulin producing β-cells, ~20% glucagon-producing α-cells, ~5% 

somatostatin-producing δ-cells, 1-2% pancreatic polypeptide-producing PP cells and 

very few ghrelin-producing ε-cells (Powers and Stein, 2012). In humans, these cells 

are populated randomly throughout the islet, whereas in rodents insulin-producing 

beta cells occupy the core of the islet surrounded by other endocrine cells (Kim et al., 
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2009, Steiner et al., 2010, Xavier et al., 2018). In addition to these cells, islet also 

contains other cells such as immune cells, vascular cells and neural elements.  

Insulin and glucagon produced by beta and alpha cells respectively have opposite 

effects on blood glucose. These hormones are released in response to a change in blood 

glucose. Insulin not only mediates glucose uptake but also promote synthesis of 

glycogen, fats and proteins and inhibit hepatic glucose production. Glucagon, on the 

other hand, increases blood glucose by increasing hepatic glucose production and 

regulating the breakdown of glycogen and fats. Somatostatin expressed by delta cells 

inhibits the release of insulin, glucagon and pancreatic polypeptide (Kailey et al., 

2012). Ghrelin acts directly on the delta cell and promotes the release of somatostatin 

(Adriaenssens et al., 2016). Pancreatic polypeptide cells (also called F cells), majorly 

found in the head region of a pancreas release pancreatic polypeptide that reduces 

appetite and has also shown to inhibit glucagon release at low glucose (Tan & Bloom, 

2013). Ghrelin produced by epsilon cells has been identified to inhibit insulin secretion 

during fasting (Broglio et al., 2013). Moreover, ghrelin has been proposed for its role 

in beta cell function and survival (Andralojc et al. 2009). In both T1DM and T2DM, 

not only islet architecture is disrupted but also communication between islet cells type 

(Brereton et al., 2015). 
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Figure 1: Schematic representation of islet (Adapted from Efrat and Russ, 2012) 

 

1.2.2 Insulin synthesis 

Insulin hormone, which regulates carbohydrates, protein and fats metabolism, is 

synthesised in a significant quantity by beta cells of islets of Langerhans. The 

synthesised insulin contains 51 amino acids in two polypeptide chains [Chain A (21 

amino acids) and chain B (30 amino acids)] (Figure 2) and has a molecular weight of 

5.8KDa. The two polypeptide chains (A chain and B chain) are linked by two 

disulphide bonds at position A7-B7 and A20-B19, and an additional disulphide bond 

is found at position A6-A11 within A the chain (Chang et al., 2003, van Lierop et al., 

2017).  
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Figure 2: Primary structure of insulin (Adapted from Belgi et al., 2011) 

 

The insulin gene present on chromosome 11 in beta cells of the pancreas encodes 

insulin precursor known as preproinsulin. Preproinsulin contains 110 amino acids in 

four polypeptide chain (A chain, B chain, signal peptide and C-peptide). The signal 

recognition particles (SRP), a cytosolic ribonucleoprotein facilitate transportation of 

synthesised preproinsulin by interacting with hydrophobic N-terminal signal peptide 

into the endoplasmic reticulum lumen (Wolin & Walter, 1993). On translocation, the 

signal peptide is cleaved from preproinsulin by a signal peptidase to produce 

proinsulin. In the endoplasmic reticulum lumen, chaperone proteins assist rapid 

folding of proinsulin and formation of three disulphide bonds. The three-dimensional 

structure of proinsulin is further translocated to the Golgi complex, where proinsulin 

is believed to form hexamers around Zn+2 ions (Haataja et al., 2013, Liu et al., 2014). 

Proinsulin is further processed by prohormone convertase (PC1 and PC2) and 

carboxypeptidase E in secretory granules to yield insulin and C-peptide (Davidson, 

2004). The schematic representation of insulin biosynthesis is shown in Figure 3. 



12 
 

 

Figure 3: Insulin biosynthesis (Adapted from Skelin et al., 2010) 

 

1.2.3 Biology of insulin secretion 

Insulin secretion from beta cells is initiated by the sequential activation of multiple 

metabolic pathways. The macronutrients like glucose, proteins and fatty acids play a 

vital role in the release of insulin from pancreatic beta cells. A study conducted by 

Chang et al., 1978 has shown that the amount of insulin release by beta cells in 

response to oral glucose is more significant than protein and fatty acids when taken in 

the same amount. Glucose is taken up by beta cell by facilitated diffusion through 

GLUT2 transporter protein (GLUT1 in humans) and metabolised to pyruvate in the 

cytoplasm by glycolytic enzymes.  Pyruvate is further transported to mitochondria and 

oxidised to acetyl CoA by pyruvate dehydrogenase enzyme. Acetyl CoA enters the 

kerbs cycle and produces a reduced electron carrier (NADH & FADH2), which further 

undergoes oxidative phosphorylation to generate ATP. The depolarization of the cell 

membrane occurs when the generated ATP block the potassium channel followed by 

the opening of voltage-dependent calcium channel. This event leads to the elevation 
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of intracellular Ca2+, which subsequently triggers insulin release from secretory 

granules by exocytosis (Rorsman & Aschcroft, 2018). The intermediate of Krebs cycle 

like NADPH, malonyl-CoA, and glutamate have been reported to further amplify the 

insulin secretion from beta cells (Maechler & Wollheim, 2009). The schematic 

representation of insulin secretion is shown in Figure 4. 

Previous studies have confirmed that some amino acids also stimulate insulin release 

from beta cells. Amino acids including alanine, asparagine, tryptophan and glycine 

stimulate insulin release in the presence of glucose by membrane depolarization 

(Newsholme et al., 2006, Newsholme & Krause, 2012). Glutamine demonstrated 

insulinotropic effects only in combination with leucine (Dixon et al., 2003). Amino 

acids like alanine and glutamine elevate blood glucose level by stimulating the release 

of glucagon. This elevated glucose, in turn, triggers insulin secretion.  

GLP-1 (glucagon-like peptide) and GIP (glucose-dependent insulinotropic 

polypeptide) are incretin hormones produced by intestinal tract in response to food 

intake. These hormones act directly on pancreatic beta cells by binding to their 

receptors and subsequently activating adenylate cyclase enzyme that elevates the 

concentration of cAMP generated from ATP. In turn, cAMP activates protein kinase 

A (PKA) and type 2 ryanodine receptor (RY2) protein, which promotes insulin release 

via increasing intracellular Ca2+ concentration. Activated protein kinase A also 

influences insulin synthesis by preventing degradation of insulin mRNA gene by 

transporting phosphorylated polypyrimidine tract binding protein (PTBP-1) to the 

nucleus (Knoch et al., 2006). 

Previous studies have demonstrated that free fatty acids also promote insulin secretion 

from beta cells (Haber et al., 2003).  At low glucose concentrations, free fatty acids 

are used as a source of energy by pancreatic islets. Free fatty acids are converted to 
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long-chain acyl CoA by acyl CoA synthase. Long-chain acyl CoA is further oxidised 

by the mitochondrial enzyme carnitine palmitoyl transferase 1 (CPT-1) to generate 

energy and to release insulin. However, high glucose concentrations, due to 

inactivation of CPT-1 activity, long chain acyl CoA accumulate which induce insulin 

release by increasing intracellular Ca2+ concentration (Newsholme & Krause, 2012).    

Hormones like acetylcholine and cholecystokinin stimulate insulin release by 

activation of phospholipase C. Phospholipase C is ubiquitous, membrane-associated 

enzyme, which on activation cleaves phospholipid phosphatidylinositol 4,5-

bisphosphate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG).  

IP3 promotes insulin release by mobilising intracellular Ca2+ and DAG by activating 

protein kinase C (PKC) (Berridge et al., 2003). Other hormones like estrogen 

potentiate insulin release by KATP channel-dependent pathway (Nadal et al., 1998). 

 

Figure 4: Schematic representation of insulin secretion (Adapted from Seino 2012) 
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1.2.4 Insulin action 

Insulin hormone, synthesised and released by pancreatic beta cells, initiate its action 

by binding to its transmembrane receptor present on target cells (Kido et al., 2001, De 

Meyts et al., 2013). Insulin receptor belongs to the receptor tyrosine kinase family, 

consisting of two α subunit (insulin binding domains) and two β subunits (signal 

transduction domains) (Menting et al., 2013).  The extracellular alpha subunit 

undergoes conformational changes on interaction with insulin. These conformational 

changes in alpha subunit allow binding of ATP to intracellular beta subunit which 

activates tyrosine kinase. On activation of tyrosine kinase, beta subunit undergoes 

autophosphorylation, which further propagates phosphorylation of other endogenous 

substrate or other insulin signalling molecules such as insulin receptor substrate (IRS), 

phosphatidylinositol 3 kinase (PI(3)K), protein kinase A (PKA), Protein kinase B 

(PKB) and mitogen-activated protein (MAP) kinase. These activated signalling 

molecules in turn directly or indirectly regulate metabolic functions (Saltiel & Kahn 

et al., 2001). The schematic representation of insulin action is shown in Figure 5. 

Insulin mediates glucose uptake in skeletal muscles, liver and adipose tissue by 

recruiting GLUT4 transporter protein from cytoplasm to the cell surface, which 

regulate the entry of glucose inside cells (Huang & Michael, 2007, Bogan et al., 2012, 

Atkinson et al., 2013). At an elevated concentration of glucose, insulin promotes 

storage of glucose in the form of glycogen in liver and muscles cells by upregulating 

key enzyme involved in glycogenesis pathway such as glycogen synthase (Samuel & 

Shulman, 2012).  Activated PI(3)K and Akt increase the activity of glycogen synthase 

by restricting the activity of glycogen synthase kinase by phosphorylation. After 

entering the cells, glucose is converted to glucose 6 phosphate by cytosolic hexokinase 

enzyme. Glucose 6 phosphate is further metabolised to UDP glucose by 
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phosphoglucomutase and glucose 1-phosphate uridylyltransferase. By the action of 

glycogen synthase, UDP glucose is converted to glycogen (Bouskila et al., 2008). 

Insulin also limits the production and release of glucose from the liver by inhibiting 

the expression of enzymes of gluconeogenesis and glycogenolysis pathways 

(Ramnanan et al., 2010). Transcription of the genes encoding for 

phosphoenolpyruvate carboxylase, fructose 1,6 bisphosphates and glucose 6 

phosphatases gene transcription is reduced, while transcription of glycolytic and 

lipogenic enzymes is increased by insulin (Hall et al., 2007). 

In adipocytes, insulin promotes the synthesis of lipids from glucose by activation of 

fatty acid synthase and acetyl-CoA carboxylase enzymes (Saltiel & Kahn et al., 2001, 

Samuel & Shulman, 2012). Insulin also inhibits the degradation of lipid by limiting 

the activity of lipase enzyme by dephosphorylation (Zimmermann et al., 2009, Lass 

et al., 2011). These effects of insulin decrease the flow of free fatty acids to the liver, 

thus reducing gluconeogenesis, ketogenesis, as well as the production of very low-

density lipoproteins (VLDL) (Keller et al., 1988, Fukao et al., 2004). Insulin also 

stimulates protein synthesis by facilitating the transport of amino acids and regulating 

the translation of mRNA (Hyde et al., 2002, Proud, 2006, Drummond et al., 2010). In 

addition, insulin has paracrine effects on other hormone-producing cells of pancreatic 

islets. Insulin decreases the release of glucagon by directly acting on alpha cells, which 

in turn augments the metabolic effects of insulin (Briant et al., 2016).   
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Figure 5: Schematic representation of insulin action (Adapted from Saltiel & Kahn 

2001) 

 

1.3 Beta-cell dysfunction 

Insulin hormone, produced by the beta cells of the pancreas, perform an important 

function in maintaining the blood glucose level within a normal physiological range. 

In healthy individuals, when the insulin resistance occurs, the beta cell population is 

increased to compensate for the insulin demand and maintain normal glycemia. 

However, when the beta cells fail to compensate for increased insulin demand, it 

results in a rise of blood glucose and free fatty acids which further induces structural 

and functional changes contributing to beta cell dysfunction, followed by beta cell 

death (Tan et al., 2013). The schematic representation of islet beta cell dysfunction is 

shown in Figure 6. 

Several studies have highlighted the detrimental effects of high blood glucose on 

pancreatic beta cells function, and the process is termed as glucotoxicity. This includes 
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impaired insulin release in response to intravenous glucose and non-glucose 

secretagogues, a decrease in intracellular storage of insulin due to beta cell exhaustion 

and a decrease in insulin production due to damage of cellular components by 

increased ROS level (Robertson & Harmon, 2003, Cernea & Dobreanu, 2013). 

Hyperglycaemia is also believed to be an important factor that contributes to beta cell 

dedifferentiation by altering important transcription factor FOXO1, where beta cells 

lose their identity and functions and get converted to other endocrine cells.  (Talchai 

et al., 2012, Taylor et al., 2013, Puri et al., 2013, Guo et al., 2013, Wang et al., 2014).  

Studies have also reported adverse effects of elevated free fatty acids on beta-cell 

function, and the process is termed as lipotoxicity. Impaired glucose-stimulated insulin 

release and decreased insulin production was observed in pancreatic beta cells after 

chronic exposure to free fatty acids. It promotes beta cell loss by increasing expression 

of cytokines (such as TNFα and IL-2) and by activating ER stress by diminishing ER 

calcium store (DeFronzo, 2004, Cernea & Dobreanu, 2013, Sharma & Alonso, 2014) 

Islet amyloid polypeptide (IAPP, or amylin) secreted together with insulin by 

pancreatic beta cells, maintain glucose homeostasis by delaying gastric emptying and 

promoting satiety. Recent studies have reported that deposited islet amyloid 

polypeptide (IAPP) has cytotoxic properties which contribute to β-cell dysfunction 

and death (Akter et al., 2016).   
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Figure 6: Schematic representation of islet beta cell dysfunction (Adapted from 

Prentki et al., 2006) 

 

1.4 Insulin resistance 

Insulin resistance is when the body fails to use insulin effectively or respond weakly 

to available insulin, resulting in hyperglycaemia (American Diabetes Association, 

2010). As the insulin resistance progresses, pancreatic beta cells increase the 

production of insulin to compensate insulin demand, further contributing to 

hyperinsulinemia. The prevalence of insulin resistance among obese individuals is 

well documented, and these individuals are at high risk of developing T2DM. In 

addition, insulin resistance also occurs in old age, pregnant women and sometimes 

individuals at puberty (Buchanan et al., 1990, Sonagra et al., 2014). In obese 

individuals, it is believed that the accumulation of fat in the abdominal area influences 

the early development of insulin resistance. These fats are less sensitive to the 
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antilipolytic effects of insulin and results in an increase in the level of non-esterified 

fatty acids (NEFA) in the blood. Studies conducted by Roden et al., 1997, observed 

the development of insulin resistance and impaired glucose tolerance with rising 

plasma NEFA levels in humans. In obese and diabetic individuals, a decrease in insulin 

sensitivity was observed with rising NEFA level (Zeirath et al., 1998). NEFA enters 

the cells and undergoes oxidation to produce diacylglycerol, fatty acyl CoA and 

ceramides metabolites. These metabolites further activate serine/threonine kinase 

cascade, which phosphorylates serine/threonine residue of insulin receptor substrate-

1 (IRS1) and insulin receptor substrate-2 (IRS-2). In their phosphorylated form, IRS1 

and IRS2 fail to activate other molecules of insulin signalling and this results in loss 

of glucose entry in the cells. An alternative mechanism involves an increase in acetyl 

CoA/CoA and NADH/NAD+ ratio after fatty acid oxidation that leads to inactivation 

of pyruvate dehydrogenase enzyme and accumulation of citrate which subsequently 

inactivate glycolytic enzymes including phosphofructokinase and hexokinase enzyme. 

Inactivation of glycolytic enzymes results in the accumulation of glucose inside cells 

thereby affecting glucose uptake (Randle et al., 1963, Shulman, 2000). 

Proinflammatory cytokines such as tumour necrosis factor-α (TNF-α), interleukin-6 

(IL-6) release from adipose tissue also play a vital role in the development of insulin 

resistance by diminishing insulin signalling events (Kahn et al., 2006, 

Tangvarasittichai et al., 2016). 

 

1.5 Current Therapies for Diabetes 

1.5.1 Lifestyle modification 

The progression of T2DM can be prevented or delayed by following a healthy lifestyle 

(Miller et al., 2014).  Studies have demonstrated that following a healthy diet, regular 
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exercise and weight management can help to keep blood glucose under control (Chong 

et al., 2017).  A study conducted by Tuomileho et al., 2001, has shown that regular 

physical exercise helps to maintain a healthy blood glucose level and reduces the risk 

of secondary complications in people with T2DM.  The risk of onset of T2DM in 

patients with impaired glucose tolerance was significantly reduced by following a 

strict diet which is low in saturated and total fat and rich in carbohydrate and dietary 

fibre (Liu et al., 2015). Knowler et al., 2002, reported that lifestyle intervention is 

more effective than metformin in treating T2DM. 

 

1.5.2 Metformin 

The oral glucose-lowering agent Metformin, derived from plant Galega officinalis, 

was first reported by Dr Jean Sterne and his colleagues in 1950 (Rojas et al., 2013). 

After the UK Prospective Diabetes Study (UKPDS) in 1998, metformin was used as 

first-line treatment for T2DM. Also, according to clinical practice guidelines by the 

American Diabetes Association (2015), metformin was recommended as an initial 

treatment for managing T2DM. Traditionally, metformin is believed to control blood 

glucose level by suppressing gluconeogenesis and glycogenolysis pathways in the 

liver (Rena et al., 2017). Recent studies have also shown that metformin treatment 

also controls blood sugar level by improving 1) insulin sensitivity, 2) lipid metabolism 

and 3) islet insulin secretory responses (Kashi et al., 2016, Kocer et al., 2014). Further 

studies have also shown that metformin could also lower the risk of cardiovascular 

diseases associated with diabetes (Holman et al., 2008). At the molecular level, 

metformin has shown to demonstrate its effects via both AMP-activated protein kinase 

(AMPK)-dependent and an independent mechanism (Rena et al., 2017). Metformin 
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treatment can cause side effects such as abdominal pain, lactic acidosis and diarrhoea 

(Kalantar-Zadeh et al., 2013, DeFronzo et al., 2016). 

 

1.5.3 Insulin 

The discovery of Insulin by Dr Fredrick Bathing and his colleagues in 1921, was one 

of the important breakthroughs in the history of medicine. In T1DM patients, the 

pancreas does not produce insulin due to the destruction of beta cells. Such patients 

have to take insulin from external source multiple times a day to maintain near-normal 

blood sugar levels. Also, in T2DM as the diseases progress, the pancreas does not 

produce enough insulin due to loss of beta cell mass and function. In such 

circumstances, oral antidiabetic agents become therapeutically ineffective for the 

treatment. Eventually, many patients with T2DM will depend on external insulin to 

improve hyperglycaemia and complications associated with diabetes (Home et al., 

2014). Insulin demonstrates its glucose-lowering effects a) by recruiting GLUT4 

transporter protein to the plasma membrane, b) stimulating synthesis of glycogen, fatty 

acid and triacylglycerol c) inhibiting gluconeogenesis and glycogenolysis (Dimitriadis 

et al., 2011). Currently, several types of insulin are available such as rapid-acting, 

short-acting, mixed, intermediate-acting and long-acting insulin. Hypoglycaemia and 

weight gain are the main side effects associated with insulin treatment (Nansel et al., 

2013, Boucher-Berry1 et al., 2016). 

 

1.5.4 Amylin  

Amylin is a 37-amino acid peptide that is synthesised by pancreatic beta cells and co-

secreted with insulin. Amylin controls blood glucose by several mechanisms including 

suppressing postprandial glucagon secretion, reducing hepatic glucose production and 
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food intake and by slowing down gastric emptying. Pramlintide, a synthetic version 

of amylin, controls blood glucose by a similar mechanism. Additionally, pramlintide 

has been shown to improve lipid metabolism in both T1DM and T2DM (Hoogwerf et 

al., 2008).  Nausea is commonly observed in pramlintide treated patient. Other side 

effects such as anorexia and hypoglycaemia were also reported (Nogid and Pam, 

2006). 

 

1.5.5 Thiazolidinedione (glitazones) 

Thiazolidinediones (TZD) are oral hypoglycemic agents and were first approved for 

the treatment of T2DM in 1966 by the Food and Drug Administration (FDA) (Kendall, 

2006).  TZDs control blood glucose by improving insulin action in the muscle, liver 

and adipose tissue, thus, allowing insulin produced pancreas to work effectively 

(Davidson et al., 2017). TZDs demonstrate its efficacy by targeting peroxisome 

proliferator-activated receptor γ (PPARγ), which in turn activates genes involved in 

glucose and lipid metabolism. The expression of proinflammatory cytokines which 

contribute to insulin resistance was significantly downregulated by TZD treatment. 

Pioglitazone is the only thiazolidinedione, currently available for the treatment. 

Troglitazone followed by rosiglitazone, were withdrawn from the market because of 

its toxic effects (Jaeschke, 2007, Hemmeryckx et al., 2013). TZD is prescribed for the 

treatment of T2DM patient if other oral antidiabetic agents (e.g. metformin and 

sulfonylureas) fail to lower blood glucose level. Side effects of TZD may include 

weight gain, liver failure, heart problems and bone fractures (Rizos et al., 2009) 

 

1.5.6 Sulfonylureas 
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Sulfonylureas and their hypoglycemic effects were first reported in 1942 by Janbon 

and his colleagues. Sulfonylureas class of drugs (e.g., tolbutamide, gliclazide, 

glibenclamide) increase plasma insulin concentration by stimulating the release of 

insulin from beta cells of the pancreas by KATP channel-dependent pathway (Sola et 

al., 2013). Sulfonylureas act directly on beta cells by binding to the sulfonylurea 

receptor (SUR-1) present on the cell membrane. In treated patients, a decrease in blood 

HbA1C level and improvement of secondary complications were observed (Nathan et 

al., 2009). These drugs demonstrate insulinotropic effects in a glucose-independent 

manner. As a result, treated patients run a high risk of hypoglycaemia, and which is 

augmented in patients with kidney diseases (Dalem et al., 2013). The potency of 

sulfonylureas depends on beta cell function. Hence this drug is only effective or should 

be recommended only at an early stage of T2DM (Kalra et al., 2016). Side effects 

including cardiovascular diseases, weight gain and beta-cell dysfunction were noticed 

in sulfonylureas treatment (Thulé & Umpierrez, 2014, Maedler et al., 2015, Kalra et 

al., 2016). 

 

1.5.7 Meglitinides 

Meglitinides are short-acting insulin secretagogues, which control blood glucose by 

increasing plasma insulin levels. This class of drug induces its effects by blocking 

KATP channels in beta cells resulting in an increase in Ca2+ influx and insulin secretion.  

Meglitinides such as repaglinide and nateglinide were approved by the FDA in 1997 

and 2000 respectively for the treatment of T2DM (Stein et al., 2013). In several 

clinical studies, a decrease in blood HbA1C was observed in repaglinide-treated 

patients. However, this class of drugs is, like sulfonylureas, associated with the risk of 

hypoglycaemia (Wu et al., 2018).  
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1.5.8 Alpha-glucosidase inhibitors (AGIs) 

Alpha-glucosidase inhibitors like acarbose, miglitol and voglibose are oral antidiabetic 

agents. This class of drugs demonstrates glucose lowering effects by suppressing the 

activity of the alpha-glucosidase enzyme, which subsequently delays the digestion of 

carbohydrate to glucose (He et al., 2014). Moreover, AGI treatment has shown to 

improve body weight, lipid metabolism and blood pressure (Hanefeld & Schaper, 

2008). Beneficial effects of AGIs were observed on cardiovascular events in treated 

diabetes patients. However, this class of drugs demonstrated poor glycaemic control 

compared to metformin and sulfonylureas and caused gastrointestinal complaints 

(Standl and Schnell, 2012). 

 

1.5.9 GLP-1 analogues and DPP-4 inhibitors 

Glucagon-like peptide-1 (GLP-1) and GIP are incretin hormones, synthesised by 

enteroendocrine cells in the intestine and released following food intake. Studies have 

shown that GLP-1 maintains glucose homeostasis through several mechanisms: 1) 

stimulated release of insulin from beta cells in a glucose-dependent manner, 2) delayed 

gastric emptying, 3) decreased energy intake and 4) reduced postprandial glucagon 

level (Tasyurek et al., 2014). Furthermore, GLP-1 has been shown to improve beta 

cell proliferation, survival, and beta cell mass by inhibiting apoptosis (Lee et al., 

2016). GLP-1 has a short half-life (less than 2 min) and is degraded by dipeptidyl 

peptidase-IV (DPP-IV). Because of this, the clinical efficacy of native GLP-1 is 

limited (Manandhar & Ahn, 2014). Research overcame this limitation by developing 

two pharmacological approaches: 1) synthesising GLP-1 analogues with improved 

half-life and 2) suppressing activity of DPP4 enzyme to improve endogenous GLP-1 

level (Chon & Gauiter, 2016).  
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To date, six GLP-1 analogues including exenatide, liraglutide, albiglutide, dulaglutide, 

lixisenatide and semaglutide are in used for the treatment of T2DM. According to 

guidelines of the National Institute for Health and Care Excellence, this class of drugs 

is considered for the treatment in combination with metformin and sulfonylureas. The 

risk of hypoglycaemia associated with this class of drugs is limited, as their insulin-

releasing effects are glucose dependent. Moreover, improvement in glycaemic 

response, a decrease in glucagon release, reduction in energy intake and weight loss 

were observed with GLP-1 analogues treatment (Lepsen et al., 2015). Nausea, 

vomiting and gastrointestinal problems were the main side effects associated with this 

class of drugs (Bettge et al., 2017). 

DPP-4 inhibitors (gliptins) are oral antidiabetic agents that increase the level of the 

endogenous GLP-1 level (2-3 fold) by suppressing the activity of DPP-4 enzyme. To 

date, five DPP4 inhibitors including sitagliptin, vildagliptin, saxagliptin, alogliptin, 

linagliptin are in clinical use. DPP4 inhibitors can be used as monotherapy in patients 

who may not be able to take metformin due to renal dysfunction or in combination 

with other oral antidiabetic agents such as metformin and sulfonylureas for the 

management of T2DM (Dicker, 2011). Unlike some of the other oral antidiabetic 

drugs, DDP-4 inhibitors have low hypoglycaemia risk profile and are weight neutral 

(Aschner et al., 2006, Malmgren & Ahrén, 2015). A headache, nasopharyngitis, upper 

respiratory tract infection, urinary tract infection was most common adverse reaction 

observed in a treated patient (Amori et al., 2007, Yazbeck et al., 2007, Richter et al., 

2008). 

 

1.5.10 SGLT2 Inhibitors 
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SGLT2 inhibitors are a new class of oral glucose-lowering agents for the treatment of 

T2DM (Karla, 2014). SGLT2 inhibitors target sodium-dependent glucose co-

transporter 2 (SGLT-2) proteins, which are exclusively expressed on proximal tubule 

of the nephron in the kidney. SGLT2 inhibitors, lower blood glucose through 

suppressing glucose reabsorption by blocking SGLT-2 transporter proteins (Lee et al., 

2007, Hummel et al., 2011). Dapagliflozin and canagliflozin are two popular SGLT2 

inhibitor drugs that have been approved by the regulatory agency for the treatment of 

T2DM. In SGLT-2 inhibitor treatment, reduction in glycated haemoglobin, body 

weight and blood pressure were observed in patients.  Recent studies have issued 

warning that SGLT2 inhibitors treatment could increase the risk of diabetic 

ketoacidosis, pancreatitis and bone fracture (FDA, 2015, Chowdhary et al., 2015, 

Fadini et al., 2017, Hsia et al., 2017). Other side effects associated with SGLT-2 

inhibitor are urinary tract infection and polyurea (Geerlings et al., 2014). 

 

1.5.11 Bariatric surgery for the treatment of diabetes 

Research studies have confirmed the beneficial effects of weight loss surgery (bariatric 

surgeries) in patients with gross obesity and T2DM (Kassem et al., 2017). Bariatric 

surgery has been shown to improve glucose homeostasis through several mechanisms 

including increasing insulin secretion, insulin sensitivity, satiation and weight loss 

(Cummings and Cohen, 2016, Rubino et al., 2016). Additionally, bariatric surgery has 

resulted in a dramatic reduction in cardiovascular diseases risk. According to NICE 

guidelines, a patient is considered for bariatric surgery assessment if BMI ranges 

between 30.0-34.9. For BMI above 50, bariatric surgery is recommended as a 

treatment option. The four main bariatric procedures are: 1) Vertical sleeve 

gastrectomy (VSG), 2) Laparoscopic adjustable gastric banding (LAGB), 3) 
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Laparoscopic Roux-en-Y gastric bypass surgery (RYGB), 4) Biliopancreatic 

Diversion (BPD). These procedures are mainly classified into restrictive (decrease 

gastric capacity) or malabsorptive (decrease absorptive capacity). RYGB is the most 

popular restrictive and malabsorptive procedure, which had shown an 88% diabetes 

remission rate and 50-84% reduction in CV risk. However, despite these beneficial 

effects, bariatric surgeries are associated with high cost and complications such as 

abdominal pain and nutritional deficiencies (Abdeen and le Roux, 2016)  

 

1.5.12 New medications for diabetes 

In the last 12 years, several new drugs, including oral and injectables, were approved 

by the European Medicines agency for the treatment of diabetes (Figure: 7).  

Oral drugs include: 

• Xigduo: Xigduo from AstraZeneca contains metformin (biguanides) and 

dapagliflozin (SGLT2 inhibitors).  

• Qtern: Qtern form AstraZeneca is a combination of dapagliflozin and 

saxagliptin. 

• Segluromet: Steglujan from Merck Sharp & Dohme B.V is a combination of 

ertugliflozin and metformin hydrochloride 

• Steglujan: Steglujan from Merck Sharp & Dohme B.V, combined 

ertugliflozin with sitagliptin. 

 

Injectable drugs include: 

• Soliqua: Soliqua from Sanofi contain long-acting insulin glargine and 

lixisenatide. 

• Ozempic: Ozempic from Novo Nordisk is a GLP-1 receptor agonist 
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Figure 7: Antidiabetic drugs approved by European Medicines Agencies since 2006, 

(Adapted from Blind et al., 2018). 

 

1.6 New treatments 

According to the IDF, diabetes is one of the leading health problems affecting 8.8% 

of the global population, of whom about 80% live in low and middle-income nations. 

The cost for the treatment has reached USD 727 billion per annum and is expected to 

rise dramatically due to the growing diabetes population particularly in developing 

nations (IDF, 2017). Although many classes of glucose-lowering drugs are available, 

none of them has shown the ability to achieve long-term glycaemic control, prevent 

secondary complications and restore pancreatic beta cell function. Moreover, these 

drugs are often given in combination to bring down blood glucose, which makes the 

treated patient susceptible to more side effects associated with drugs.  Further, the 

increasing cost of the treatment is imposing a heavy financial burden on the world 
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economy. Therefore, the search for new alternative therapies that are cost-effective 

and can overcome the limitations of existing drugs are required. 

 

1.7 Amphibian Skin secretions 

The name Amphibian was first coined by Linnaeus, to introduce to that class of 

vertebrates which is in-between fish and reptiles. In 1931, Nobel referred to 

amphibians as cold-blooded vertebrates that live in the aquatic and terrestrial 

environment. Amphibians are grouped in 3 classes Anura, Urodeles and 

Gymnophions. 

The skin of amphibians is a complex organ rich in glands which play an essential role 

in the amphibian survival under different environmental conditions. The primary roles 

of amphibian skin include respiration, water regulation, defence, temperature control, 

reproduction and excretion.  It consists of two main glands, mucus and granular 

glands, which are connected to the skin surface by secretory ductus (Wells, 2007). 

Mucus glands produce mucopolysaccharides that keep the skin moist, smooth, prevent 

loss of water, protect skin from mechanical damage and trap the pathogens. Granular 

glands (also known as poison glands) are present below the skin surface across the 

body, secrete chemical compounds that play a crucial role in host defence against 

microbial and fungal infection, as well as against predators. The secretions of granular 

glands, which are controlled by sympathetic nerves, are rich in peptides, bufotoxins 

(steroids), alkaloids, amines and bufogenines, and released during stress/injuries 

(Clark et al., 1997). 

In many ancient cultures, skin secretions of amphibians were used in the preparation 

of medicine for the treatment of diseases. Secretions of dried toad skin were used in 

Chinese traditional medicine for the treatment of arthritis. Chan Su, prepared from 
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skin glands of Chinese toad, is Chinese traditional medicine, was used for the 

treatment of heart diseases, leukaemia, rhinosinusitis and other diseases (Gomes et al., 

2007). 

In early 1970, research work by scientist Vittorio Erspamer and his colleagues 

identified several peptides in the skin secretions of amphibians (listed below). 

Sr no Peptide Amphibian Year 

1 Bradykinin Phyllomedusae and 

Ranae species 

1962 

2 Caerulein Hyla caerulea 1966 

3 Bombesin Bombina bombina 

Bombina variegata 

1971 

 

These peptides were found to be identical to mammalian peptides and hormones found 

in the gastrointestinal and central nervous system. For example, Caerulein isolated 

from frog Litoria caerulea, which has been shown to stimulate secretion of insulin, 

glucagon and calcitonin, was homologues of cholecystokinin and gastrin, and 

bombesin from genus bombina was found similar to gastrin-releasing peptides (GRP), 

which act on smooth muscles of gut (Pukala et al., 2006, Ohki-Hamazaki et al., 2005). 

After these discoveries, the search for amphibian skin peptides has gained momentum 

(Wang et al., 2009). The isolation and characterization of magainins from South 

African clawed frog Xenopus levis, is considered as a significant finding, which has 

resulted in the isolation of several other bioactive peptides from skin secretions of 

frogs/amphibian (Clarke 1997, Rinaldi, 2002). Isolated magainins demonstrated low 

or moderate potency against both gram-positive (Streptococcus, Staphylococcus) and 

gram-negative (Escherichia, Pseudomonas, Acinetobacter and Helicobacter) bacteria. 

As well they displayed low haemolytic activity against human erythrocytes (Zasloff, 

1987). Several recent studies have also revealed that magainin-2 peptides exhibit 

bactericidal activities by forming pores in lipid membranes (Imura et al., 2008, Tamba 
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et al., 2010).  The biological activity of amphibian skin peptides is not only confined 

to antimicrobial activity. Research has confirmed the presence of bufalin, and other 

antineoplastic and immunostimulatory agents in Chan Su medicine (Bhuiyan et al., 

2003, Shimizu & Inoue, 2004, Ko et al., 2005). Recent studies have also reported a 

wide range of biological activities of amphibian/frog skin peptides (Gomes et al., 

2007, Conlon et al., 2012a, Conlon & Mechkarska, 2014). 

Earlier, methanolic extraction method was used to separate peptides from sun-dried 

amphibian skins (Tyler et al., 1992). This method involves the killing of frogs, sun 

drying of skin and grinding of dried skin. Due to these multiple steps, the methanolic 

extraction method is more prone to contamination with foreign substances and peptide 

degradation. Hence using this method to isolate pure peptide is not considered 

desirable. In another method of extraction, frog skin is homogenised in sodium acetate 

containing protease inhibitors. However, this method is time-consuming and not 

feasible economically. The use of mild electric stimulation and injection of 

norepinephrine are considered as a most effective and non-harmful method for the 

isolation of pure compounds from skin secretions (Conlon et al., 2007a, Zahid et al., 

2011). 

 

1.7.1 Biological properties of amphibian skin peptides 

Peptides found in skin secretions of frogs vary in size from 8 to 63 amino acid residues. 

Sequence analysis revealed that these peptides do not have a conserved domain 

connected with their biological properties. However, these peptides are rich in 

positively charged amino acids including lysine, arginine and histidine and contain 

nearly 40-70% of hydrophobic amino acids. Due to the presence of multiple positive 

amino acids, these peptides carry positive charge between +2 and +6 at pH 7. In 
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aqueous solution, these peptides do not have any stable secondary structure, but in the 

vicinity of a phospholipid, bilayer peptides tend to form amphipathic alpha helix 

structure (Conlon & Mechkarska, 2014).   

Zasloff and his colleagues were first to report the antibacterial activity of peptides 

found in skin secretions of frogs (Andrade, 2015). Magainins peptides isolated from 

Xenopus levis demonstrated antimicrobial activity against both gram-positive and 

gram-negative bacteria. Subsequently, other antimicrobial peptides were isolated from 

X.levis and termed peptide glycine-leucine amide (PGLa), caerulein precursor 

fragment (CPF) and xenopsin precursor fragment (XPF) (Gibson et al., 1986, Soravia 

et al., 1988, Conlon & Mechkarska, 2014). Orthologues of these peptides were found 

in several species of frogs belonging to genus Xenopus. Both PGLa-AM1 and CPF-

AM1 from X. amieti, demonstrated broad-spectrum bactericidal activity against 

Escherichia coli and Staphylococcus aureus. Also, frog skin peptides showed activity 

against microorganisms that are resistance to currently available antibiotics. PGLa has 

an inhibitory effect against amphotericin B-resistant Candida albicans, and 

fluconazole-resistant Candida glabrata isolate (Helmerhorst et al., 1999). CPF-AM1 

displayed an inhibitory effect against the colistin-resistant strain of (clinical isolates 

of multidrug-resistant) Acinetobacter baumannii (Conlon Mechkarska, 2014). 

Temporin-Dra from Rana draytonii, and Frenatin 2.1S and Frenatin 2.2S from 

Sphaenorhynchus lacteus were effective against methicillin-resistant strains of 

Staphylococcus aureus (MRSA) (Conlon et al., 2011, 2014b).  

In addition to antimicrobial activity, frog skin peptides also showed cytotoxic potency 

against a variety of tumour cell lines. Ascaphin-8 from Ascaphus truei, Peptide XT7 

from Silurana tropicalis and Dermaseptin L1 and Phylloseptin L1 from Agalychnis 

lemur, showed cytotoxicity against hepatocarcinoma HepG2 cells (Conlon et al., 
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2007b, Conlon et al., 2008). Esculentin-2CHa from Lithobates chiricahuensis and 

Hymenochirin 1B from Hymenochirus boettgeri were active against lung 

adenocarcinoma (Attoub et al., 2013a, b). Magainin-2 from Xenopus laevis 

demonstrated tumoricidal activity against lung cancer cell line, bladder cancer cell line 

and hematopoietic cell line (Cruciani et al., 1991, Ohsaki et al., 1992, Lehmann et al., 

2006). Temporin-1CEa from Chinese brown frog Rana chensinensis and 

Hymenochirin 1B from Hymenochirus boettgeri, displayed cytotoxic activity against 

a human breast cancer cell line (Wang et al., 2013, Attoub et al., 2013a). Dermaptin 

B2 & B3 from Phyllomedusa bicolor demonstrated both cytotoxic and angiostatic 

properties against prostatic adenocarcinoma PC3 cells (Van Zoggel et al., 2012). 

Recent studies have shown antiviral activities of several frog skin peptide. Magainin-

1 and -2 from Xenopus levis, Dermaseptins S1–S5 from Phyllomedusa sauvagei and 

Brevinin-1 from Pelophylax porosus were effective inhibitors against herpes simplex 

virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) (Matanic et al., 2004, 

Belaid et al.,2002, Bergaoui et al., 2013). PGLa-AM1 and CPF-AM1 from Xenopus 

amieti showed antiviral properties against HSV-1, Caerin 1.1, 1.9, and maculatin 1.1 

from Australian tree frogs demonstrated antiviral activity against HIV infection 

(VanCompernolle et al., 2005). 

Frog skin peptides have also been shown to possess immunomodulatory activities. The 

synthetic analogues of ascaphin-8, temporin-Dra, XT-7 and hymenochirin-1B 

peptides enhanced the release proinflammatory cytokines while demonstrating 

antimicrobial activity, suggesting a possible role in protection from inflammation 

(Pantic et al., 2017b). Frenatin 2.1S from Sphaenorhynchus lacteus displayed 

antimicrobial activity by promoting immune cells including NK (Natural Killer cells), 
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NKT (Natural Killer T cells) and macrophages (Waldhauer & Steinle, 2008, Vivier et 

al., 2008).   

 

1.7.2 Insulin-releasing peptides from skin secretion of frogs 

The search for antidiabetic peptides from animal sources has gained momentum after 

the approval of exenatide, isolated from the venom of Heloderma suspectum, for the 

treatment of T2DM. The peptides found in skin secretions of frogs, which were 

initially characterised based on antimicrobial activity showed the ability to 

demonstrate insulin-releasing activity. Studies conducted in our laboratory have 

identified insulin releasing peptides derived from skin secretion of frogs belonging to 

Ranidae, Hylidae, Dicroglossidae, Leptodactylidae, Bombinatoridae & Pipidae 

families (Table 1.1). The isolated frog skin peptides demonstrated insulin release in 

vitro using rat clonal pancreatic beta cells (BRIN-BD11 cells), human-derived 

pancreatic beta cells (1.1B4), primary islet cells and in vivo in lean and high fat fed 

mice. 

Marenah et al., 2004b, demonstrated insulin-releasing activity of skin secretion of frog 

Rana palustri.  The isolated active compound, which demonstrated concentration-

dependent insulin release, exhibited 48% identity with brevinin-1, an antimicrobial 

peptide found in the skin secretion of various Rana species. Hence the peptide was 

named as brevinin-1. Subsequently, novel insulin releasing peptide (24 amino acid) 

was isolated from skin secretion of Rana pipiens. This peptide showed 100% 

homology to pipinin-1, which was initially characterised as an antimicrobial peptide 

(Marenah et al., 2005). Similarly, four insulinotropic peptides were isolated from skin 

secretions of Rana saharica that were identical to antimicrobial esculentin-1, 

esculentin-1B brevinin-1E and brevinin-2EC (Marenah et al., 2006).  
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Antimicrobial peptides belonging to the temporin family have also demonstrated 

insulin-releasing activity. Temporin-Oe, Temporin -Vb, Temporin -DRb, and 

Temporin -TGb isolated from Rana ornativentris, Lithobates virgatipes, Rana 

draytonii and Rana tagoi respectively, stimulated dose-dependent insulin release from 

BRIN-BD11 cells without affecting cell viability. Temporin-Oe was potent and 

displayed a 2.6-fold increase in insulin release compared to control (Abdel-Wahab et 

al., 2007). Seven peptides isolated from norepinephrine stimulated skin secretions of 

the Lithobates catesbeianus, potentiated insulin release from BRIN-BD11 cells with 

no release of LDH enzyme (Mechkarska et al., 2011). 

Peptides belonging to the Phylloseptin family also produced significant insulinotropic 

effects. Phylloseptin-L2 (a 15 amino acid peptide) from H. lemur stimulated insulin 

release from BRIN-BD11 cells by KATP channel-independent pathway (Abdel-Wahab 

et al., 2008b). Furthermore, this peptide also improved glucose tolerance in healthy 

mice by increasing insulin concentrations. Peptides with insulin releasing properties 

were also identified in the skin secretions of frogs belong to the subfamily 

Phyllomedusinae. RK-13 peptide from skin secretions of A. calcarifer stimulated 

insulin release in a dose-dependent manner from BRIN-BD11 cells without affecting 

cell viability. Early mechanistic studies revealed that peptide might stimulate insulin 

release cells by activation of protein kinase A (PKA) pathway (Abdel-Wahab et al., 

2005). 

 A recent study has described insulinotropic effects of Tigerinin-1R peptide 

(RVCSAIPLPICH.NH2) found in the skin secretions of frog Hoplobatrachus 

rugulosus (formerly known by Rana rugulosa).  The insulinotropic effects of the 

peptide were not associated with the release of LDH enzyme, suggesting the integrity 

of the plasma membrane. The maximum response produced by tigerinin-1R was 
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greater than that produced by GLP-1 and GIP under the same experimental condition. 

Like KCl and alanine, tigerinin-1R depolarised BRIN-BD11 beta cells and increased 

intracellular Ca2+. This study also revealed that C- terminal amidation is essential for 

good insulinotropic potency. Acute administration of Tigernin-1R significantly 

enhanced insulin release and improved glycaemic response in high-fat-fed mice (Ojo 

et al., 2015b). 

More recently, Owolabi et al., 2015 reported the dose-dependent insulin-releasing 

effects of Hymenochirin-1B, isolated from Hymenochirus boettgeri, in BRIN-BD11 

and isolated mouse islets. Preliminary mechanistic studies revealed that peptide might 

stimulate insulin release by PKA pathway. In high-fat-fed mice Hymenochirin-1B, 

significantly improved glycaemic control with a concomitant increase in insulin 

release after acute administration.  

 

1.7.3 Frog species studied in this thesis 

1.7.3.1 Discoglossus sardus 

Discoglossus sardus, also known as Tyrrhenian painted frog, is a medium-sized frog 

(up to 75 mm in length) that belong to the family Alytiade. Their population is 

scattered on Mediterranean islands but predominantly found on the island of Sardinia 

and Corsica. They are naturally found in a wide range of aquatic and terrestrial 

habitats. Unlike other frog skin peptides, the peptides found in the norepinephrine-

stimulated skin secretions of D. sardus did not exhibit antimicrobial or haemolytic 

activity. The peptidomic analysis of the norepinephrine-stimulated skin secretions 

revealed the presence of peptides that showed structural similarity to frenatin 2 

peptides found in the skin secretions of Australian frog Litoria infrafrenata. 

Henceforth, isolated peptides were termed as frenatin 2D, and frenatin 2D.1 Frenatin 
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2D predominately displayed immunostimulatory activities as demonstrated by 

enhancing the production of proinflammatory cytokines (TNF-α, IL-1β) by 

stimulating macrophages. Also, frenatin 2D has been shown to increase the production 

of IL-12 in LPS-stimulated and unstimulated macrophages (Lin & Karin, 2008, 

Conlon et al., 2013). 

 

1.7.3.2 Sphaenorhynchus lacteus 

Sphaenorhynchus lacteus (also referred as Orinoco Lime Treefrog), belonging to the 

family Hylidae, is found in the Amazon basin of South America and on the islands of 

Trinidad and Tobago (Frost, 2014). In norepinephrine-stimulated granular glands 

secretions of this frog species, three host defence peptides were found identical to 

frenatin 2. Hence these peptides were named as frenatin 2.1S, frenatin 2.2S and 

frenatin 2.3S. The former two are rich in glycine/leucine amino acids and α-amidation 

at C-terminal, while later lacks a α-amidation at C-terminus. Unlike frenatin 2D, 

frenatin 2.1S and frenatin 2.2S exhibited antimicrobial activity against gram-positive 

bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and 

Staphylococcus epidermidis. Also, both of these peptides demonstrated 

immunostimulatory activity (Conlon et al., 2014b, Pantic et al., 2017a).  

 

1.7.3.3 Xenopus amieti 

Xenopus amieti (also known by Volcano clawed frog), belongs to family Pipidae is 

majorly populated in volcanic highland areas of western Cameroon. Their skin 

secretions are an abundant source of peptides with antimicrobial and cytotoxicity 

properties. Nine peptides identified in norepinephrine-stimulated skin secretions of X. 

amieti, demonstrated differential antimicrobial activity against Staphylococcus aureus 
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and Escherichia coli. These peptides shared a high degree of structural similarity with 

peptides (magainin, PGLa, CPF, XPF) isolated from X. laevis and Silurana (formerly 

Xenopus) tropicalis (Conlona et al., 2010).  

A PGLa-AM1 peptide isolated from X. amieti, demonstrated broad-spectrum 

bactericidal activity against Escherichia coli and Staphylococcus aureus, and potent 

growth-inhibitory activity against colistin resistant Acinetobacter baumannii, with low 

haemolytic activity (Conlon & Mechkarska 2014). Also, PGLa-AM1 stimulated the 

release of GLP-1 from GLUTag cells (Ojo et al., 2013a). In a recent study, PGLa-

AM1 produced a dose-dependent stimulation of insulin release from rat clonal 

pancreatic beta cells (BRIN-BD11 cells) without the release of lactate dehydrogenase 

enzyme (LDH) indicating lack of cytotoxicity at concentrations up to 3μM.  Its 

cationic analogues [A14K] & [A20K], containing L-lysine substitution at 14th and 20th 

position respectively, demonstrated superior insulinotropic potency than parent 

peptide in BRIN-BD11 cells, and primary mouse islets. Acute administration of 

[A14K] & [A20K] improved glucose tolerance and increased plasma insulin level both 

in healthy lean and high fat-fed mice (Owolabi et al., 2017).   

Like PGLa-AM1, CPF-AM1 (isolated from Xenopus amieti) exhibited antimicrobial 

activity against Escherichia coli, Staphylococcus aureus and clinical isolates of 

Acinetobacter baumannii combined with moderate haemolytic activity. It also 

significantly stimulated release GLP-1 from GLUTag cells (Conlon Mechkarska, 

2014, Ojo et al., 2013a). In recent studies, CPF-AM1 showed concentration-dependent 

insulinotropic effects in BRIN-BD11 cells (Ojo et al., 2012). Its four cationic 

analogues produced by substitution of amino acids at the 4th and 14th position with 

either L lysine or L arginine demonstrated significant insulinotropic effects without 

causing beta cell cytotoxicity. The [S4K] analogue was the most potent, producing 
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greater stimulatory response both in BRIN-BD11 and isolate mouse islets than the 

parent peptide. Also, in acute in vivo studies, the [S4K] analogue appeared to be more 

potent than the native peptide at improving glucose tolerance and increasing plasma 

insulin level in high fat fed mice (unpublished data). 

 

1.7.3.4 Rana temporaria 

Rana temporaria also referred to as the European common frog, belongs to the family 

Ranidae. Their population is scattered in Great Britain, Europe and north-west Asia. 

They are naturally found near mountain lakes.  Rana temporaria is one of the two 

amphibian species that inhabit regions north of the Arctic Circle (Ludwiga et al., 

2015). Temporin peptides were first isolated from skin secretions of R.temporaria 

(Slmmaco et al., 1996). Subsequently, peptides showing structural similarity to 

temporins were identified in other frogs’ species of both American and Eurasian origin 

(Rinaldi et al., 2013). The members of temporin family have demonstrated activity 

against both gram-positive and gram-negative bacteria (Wade et al., 2000, Mangoni 

et al., 2013. Temporin A and Temporin B have shown potent growth-inhibitory 

activity against multidrug-resistant clinical isolates of Staphylococcus aureus, without 

affecting infected cells (Grazia et al., 2014). In addition, a few members of temporin 

family including Temporin-1Vb, -1Oe, -1DRb, and -1TGb demonstrated insulin-

releasing activity without cell cytotoxicity (Abdel Wahab et al., 2007).  

 

1.7.3.5 Rana esculenta 

Rana esculenta is a hybrid of Pelophylax lessonae (Pool frog) & Pelophylax 

ridibundus (marsh frog) (Conlon, 2008). Peptides from the skin secretions of these 

hybrid frogs mainly belong to brevinine 1, brevinine 2, esculentin 1 & esculentin 2 
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peptide family.  Esculentin 1 was first isolated from the skin secretions of this frog 

and subsequently identified in other frog species.  Esculentin 1 is one of the largest 

antimicrobial peptides comprised of 46 amino acids. It has demonstrated potent 

inhibitory activity against Pseudomonas aeruginosa, Candida albicans and 

Saccharomyces cerevisiae (Simmaco et al., 1994, Islas-Rodrìguez et al., 2009, Kang 

et al., 2010). The antibacterial activity of the N-terminal 1–18 amino acids of 

esculentin-1 was found similar to that of the intact peptide, suggesting that N terminal 

region is important for antimicrobial activity (Mangoni et al., 2003). 

 

1.7.4 Peptide Analogues 

The therapeutic potential of bioactive peptides isolated from natural sources (plants, 

animals or humans) is often challenged by poor oral availability, short/reduced 

metabolic stability, rapid degradation by digestive enzymes, lack of selective binding 

(interaction with nonspecific receptors), rapid renal clearance, risk of immunogenic 

effects and cytotoxicity (Lau and Dunn, 2018). The progress in peptide synthesis 

technology made it possible for the researchers to minimise these shortcomings by 

design and synthesising the analogues of the peptide with enhanced pharmaceutical 

properties. Several structure-activity relationship studies of host defence peptides 

helped to understand the importance of cationicity, hydrophobicity, amphipathicity, 

helicity and angle subtended by charged residue on biological activities of peptides. 

Based on this knowledge, several cytotoxic peptides with lower antimicrobial potency 

from skin secretion of frogs were modified to produce promising antimicrobial agents 

through the design and synthesis of their analogues (Conlon and Mechkarska, 2014). 

Analogues of frog skin peptides magainins, CPF peptides and hymenochirin-1B 

peptide have shown strong antimicrobial potency against multidrug-resistant 
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microorganism, with reduced haemolytic activity (Zasloff et al., 1998, Cuervo et al., 

1988, Conlon et al., 2008, Mechkarska et al., 2013). For example, a synthetic analogue 

of Hymenochirin-1B, [E6k, D9k] hymenochirin-1B, was designed to exhibit increased 

cationicity while maintaining amphipathicity, by substituting Glu6 and Asp9 by D-

Lysine, which produced high potency against multidrug resistant clinical isolate and 

low haemolytic activity (Mechkarska et al., 2013).  

Using a similar approach, insulin-releasing peptides were transformed into analogues 

which displayed potent insulinotropic activities both in vitro and in vivo. The insulin 

releasing potency of Pseudin-2 from paradoxical frog Pseudis paradoxa was enhanced 

by designing an analogue with increased cationicity. The analogue designed by 

substituting Leu18 → Lys, produced a 215% increase in insulin release at 10-6 M 

concentration in BRIN-BD11 cells, with no adverse effect on the integrity of plasma 

membrane (Abdel-Wahab et al., 2008a). Structure-activity study of alyteserin-2a 

(ILGKLLSTAAGLLSNLa), by Ojo et al., 2013b, demonstrated that cationic 

analogues containing L-lysine and D-lysine substitution show greater insulinotropic 

potency than the native peptide at 3 µM concentration. Acute administration of [G11k] 

alyteserin-2a (75 nmol/ kg body weight), resulted in a significant increase in insulin 

release and improved blood glucose in high fat fed mice. Structure-activity studies of 

Hymenochirin-1B (isolated from Hymenochryus begiottri) demonstrated that [P5K] 

and [D9k] analogues, nontoxic up to 3 µM concentration, produced maximum rate of 

insulin release than native from isolated mouse islets, and also improved glycaemic 

response with a concomitant increase in insulin secretion in high fat fed mice. 

Treatment of high fat fed mice for 28 days with [P5K] hymenochirin–1B, (75 nmol/kg 

body weight) significantly decreased blood glucose which was associated with 

enhanced insulin secretion. Molecular studies confirmed that genes involved in insulin 
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signalling (muscles) and secretion (isolated islets) were improved significantly in 

treated mice (Owolabi et al., 2015). 

The improvement in the insulinotropic activity of peptide analogue containing 

tryptophan substitution was also observed (Srinivasan et al., 2015). The recent study 

demonstrated that Trp10 substituted analogue of tigerinin-1R, produced greater 

insulinotropic potency both in BRIN-BD11 cells and primary isolated islet, in 

comparison with native peptide. Furthermore, twice daily intraperitoneal 

administration of Trp10 Tigerinin-1R (75 nmol/kg bw) in high-fat-diet-induced 

diabetic mice for 28 days, improved insulin sensitivity, islet insulin secretory 

responses, and glycaemic control (Srinivasan et al., 2015).  In another study, the 

insulinotropic activity of the frog skin peptide was enhanced by designing analogues 

containing fatty acid moiety. Vasu et al., 2017 designed stable analogues of esculentin-

2CHa(1–30) peptide by covalently attaching fatty acid (l-octanoate) to Lys at 15th 

position. In comparison with native peptide, [Lys15-octanoate]-esculentin-2Cha (1–

30) exhibited resistance to degradation by plasma peptidases and demonstrated potent 

insulin-releasing effects in BRIN-BD11, 1.1B4 and primary mouse islets. Treatment 

of high fat fed mice with [Lys15-octanoate]-esculentin-2Cha (1–30) for 28 days, 

produced significant improvements in glucose tolerance, insulin sensitivity and 

decreased HbA1C level similar to exendin-4 treated mice. 

 

1.8 Objectives and Aims 

1.8.1 General Objectives 

The primary objectives of this thesis were to characterise the bioactive peptides with 

insulinotropic and antidiabetic properties from skin secretions of selected frog species 

(listed in Table 1.2) and to assess the metabolic effects and potential role in 
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transdifferentiation of glucagon producing alpha cells to insulin producing beta cells 

of substituted analogue of PGLa-AM1 and CPF-AM1, from skin secretions of 

Xenopus amieti (Family: Pipidae), in different mice models of diabetes. 

 

1.8.2 Aims 

 1.8.2.1 In vitro studies 

• Synthesis of frog skin bioactive peptides and designing synthetic analogues of 

these peptides with enhanced insulinotropic activity. 

• Confirmation of purity & identity of peptides using reverse-phase high-

performance liquid chromatography (HPLC) & Matrix Assisted Laser 

Desorption Ionisation-Time of Flight (MALDI-TOF) respectively.  

• Assessment of acute concentration-dependent insulin-releasing effects of 

peptides in rat clonal beta cells (BRIN-BD11), human clonal beta cells (1.1B4) 

and isolated mouse islets, and cell cytotoxicity studies by lactate 

dehydrogenase assay. 

• Preliminary studies to delineate mechanism of insulinotropic action of peptides 

by assessing their effects on membrane potential and intracellular calcium, 

cAMP production, insulin release in the presence of known insulin 

secretagogues and calcium-free buffer, as well as in PKA/PKC downregulated 

cells.  

• Assessing the effects of active peptides on apoptosis and cell proliferation in 

BRIN‑BD11 cells, and glucose uptake using C2C12 muscle cells. 

• Investigation of metabolic stability of active peptide in mouse plasma. 
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1.8.2.2 In vivo studies 

• Investigation of acute in vivo effects of the active peptide on glucose tolerance, 

plasma insulin and food intake in lean mice to identify most promising peptide 

that can be used as templet for further modifications. 

• Evaluating the metabolic effects of long-term (28 days) administration of 

active peptides on energy intake, body weight, water intake, blood glucose, 

plasma insulin, blood HbA1C, glucose tolerance, insulin sensitivity, fat 

composition, liver and kidney functions, plasma lipid profile, islet morphology 

and genes involved in glucose homeostasis in diabetic mice model (db/db 

mice).  

• Investigating the effects of [A14K] PGLa-AM1 and [S4K] CPF-AM1 peptides 

on the regeneration of insulin-producing beta cells through and 

transdifferentiation of glucagon-producing alpha cells using GluCre-

ROSA26EYFP mice. 



46 
 

Table 1.1 List of amphibian skin peptides with insulinotropic activities from families Pipidae, Leptodactylidae, Hylidae, Ranidae, 

Bombinatoridae and Dicroglossidae 

Species Family Peptide Primary structure 

Xenopus borealis  Pipida Caerulein-B1  <EQDY(SO3)GTGWMDFa  

Xenopus amieti  Pipidae  Xenopsin  <EGKRPWIL  

Xenopus amieti  Pipidae   Xenopsin-AM2  <EGRRPWIL 

Xenopus amieti  Pipidae   CPF-AM1 GLGSVLGKALKIGANLLa 

Xenopus amieti  Pipidae   PGLa-AM1 GMASKAGSVLGKVAKVALKAALa 

Leptodactylus laticeps  Leptodactylidae  Ocellatin-L2  GVVDILKGAAKDLAGHLATKVMDKLa  

Agalychnis lemur Hylidae Phylloseptin L2   FLSLIPHVISALSSLa  

Agalychnis litodryas Hylidae  Dermaseptin-L11 AVWKDFLKNIGKAAGKAVLNSVTDMVNE 

Pseudis paradoxa Hylidae Pseudin-2  GLNALKKVFQGIHEAIKLINNHVQ  

Rana ornativentris  Ranidae Temporin-Oe   ILPLLGNLLNGLLa  

Lithobates catesbeianus Ranidae Ranatuerin-2CBd GFLDIIKNLGKTFAGHMLDKIRCTIGTCPPSP  

Lithobates catesbeianus Ranidae Brevinin-1CBb    FLPFIARLAAKVFPSIICSVTKKC  

Lithobates septentrionalis  Ranidae  Brevinin-2-related peptide GIWDTIKSMGKVFAGKILQNLa  

Rana pipiens Ranidae Brevinin-1Pa    FLPIIAGVAAKVFPKIFCAISKKC  

Rana palustris Ranidae Palustrin-1C    ALSILRGLEKLAKMGIALTNCKATKKC  

Bombina variegata Bombinatoridae   Bombesin   <EQRLGNQWAVGHLMa  

Bombina variegata Bombinatoridae Bombesin-related peptide    <EQRLGHQWAVGHLMa  

Bombina variegata  IN-21  Bombesin-related peptide  IYNAICPCKHCNKCKPGLLAN    

Hoplobatrachus rugulosus  Dicroglossidae Tigerinin-1R   RVCSAIPLPICHa  

Adapted from Ojo (2013). a = C-terminal α amidation. 
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Table 1.2: List of selected frog species and peptide studied in this thesis 

 

 

 

  

 

 

 

 

 

 

 

Sr no Frog species   Family Peptide 

1 Discoglossus sardus Alytidae ▪ Frenatin 2D 

2 Sphaenorhynchus lacteus Hylidae ▪ Frenatin 2.1S 

▪ Frenatin 2.2S 

▪ Frenatin 2.3S 

3 Rana temporaria Ranidae ▪ Temporin A 

▪ Temporin B 

▪ Temporin C 

▪ Temporin E 

▪ Temporin F 

▪ Temporin G 

▪ Temporin H 

▪ Temporin K 

4 Rana esculenta Ranidae • Esculentin-1a(1-21) 

• Esculentin-1a(1-14) 

• Esculentin-1a(9-21) 

• Esculentin-1b(1-18) 
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2.1 Materials 

The chemical reagents, assay kits and peptides used in experiments and their supplier 

are listed in the appendices. 

 

2.2 Peptides from skin secretions of frogs 

Peptides from skin secretions of frog Discoglossus sardus, Sphaenorhynchus lacteus, 

Rana temporaria and Rana esculenta were kindly provided in pure form by Professor 

J.M. Conlon. Synthetic peptides were supplied in crude as well as in >95% pure form 

by SynPeptide Co Ltd. (China). The procedure from the collection of skin secretions 

to structural characterisation of peptides is as follows:  

Collection of skin secretion from Norepinephrine (injected/immersed) stimulated 

frogs 

 

Partial purification of secretions using Sep-Pak C18 cartridges 

 

Investigating insulinotropic activity of each fraction in BRIN-BD11 cells 

 

Separation of peptide components from desired fractions using reversed-phase 

HPLC on C18 columns 

 

Investigating insulinotropic activity of each purified peptide components in BRIN-

BD11 cells 

 

Structural characterisation of the purified peptide by sequencing and mass 

spectrometry 

 

Synthesis of peptide and analogues 
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Insulin-releasing studies In vivo and In vitro 

 

2.2.1 Reverse-phase high-performance liquid chromatography (RP-HPLC) 

2.2.1.1 Purification of peptides 

Synthetic peptides supplied in crude form by SynPeptide Co Ltd. (China), were 

purified using Reverse phase-HPLC (Thermo Fisher Scientific Inc. Waltham, 

Massachusetts, USA). The representative image of Reversed-phase HPLC is shown in 

Figure 2.5. The crude peptide (5 mg) was dissolved in 1 ml of 0.1% (v/v) TFA/water 

and injected into Vydac 218TP1022 (C-18) reversed-phase HPLC column at the flow 

rate of 6 ml/min. Acetonitrile/water/TFA (70:29.9:0.1 v/v/v) concentration in the 

eluting solvent was increased to 30% over 10 min and to 70% over a period of 60 min. 

The absorbance was set at 214 nm to detect peptide.  The selected peaks were collected 

in 15 ml centrifuge tubes and subjected to vacuum concentrator SPD2010 (Integrated 

SpeedVac Systems, MA, USA) to remove acetonitrile. The purity of purified peptide 

and also those peptides that received in >95% pure form, was determined by Luna 5u 

C8 250x4.6mm column using a gradient from 0 to 100% acetonitrile over 28 min, and 

MALDI-TOF MS. 

 

2.2.2 Determination of molecular mass of peptides by matrix-assisted laser 

desorption ionisation time of flight mass spectrometry (MALDI-TOF MS) 

The molecular mass of purified peptide was determined using an analytical device 

Voyager-DE Bio spectrometry Workstation (PerSeptive Biosystems, Framingham, MA, 

USA). First, the instrument was calibrated with a peptide of known molecular mass in the 

range of 2000-4000 Da. After calibration, peptide sample (1.5 µl) was mixed with equal 
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volume of matrix solution [prepared by dissolving 10 mg of α-Cyano-4-hydroxycinnamic 

acid in 1 ml of acetonitrile/ethanol (1/1 ratio)] and placed on 100-well stainless-steel plate. 

After complete drying of the samples, the MALDI plate was injected into a Voyager DE-

PRO instrument, which calculates the molecular mass of peptide as a mass-to-charge 

(m/z) ratio. The experimental molecular mass of peptide obtained was compared with the 

theoretical mass of the peptide.  

 

2.3 Cell Culture 

2.3.1 Culturing of insulin-secreting cell lines (BRIN-BD11 and 1.1 B4 cells) 

BRIN-BD11 and 1.1B4 cells are insulin-secreting cell lines, the former was produced 

by electrofusion of RINm5f cells with New England Deaconess Hospital rat pancreatic 

islet cells (McClenaghan et al., 1996). The latter was generated by electrofusion of 

primary culture of human beta cells with PANC-1, a human pancreatic ductal 

carcinoma cell line (McCluskey 2011). These cell lines were stored in liquid nitrogen, 

in the cryogenic vials (1x106 cells/vial) containing freezing medium (10% DMSO, 

10% RPMI-1640 medium and 80% foetal bovine serum). For culturing of cells, 

cryovial was taken out from liquid nitrogen and immediately kept in the icebox. After 

thawing, the cell suspension was transferred to 15 ml of centrifuge tube and pre-

warmed warm media RPMI-1640 media (10 ml) containing foetal bovine serum 10% 

(v/v) (FBS) and 1% (v/v) antibiotics – penicillin (100 U/ml) and streptomycin (0.1 

mg/l), was slowly added to avoid osmotic shock to cells. The tube was then 

centrifugation at 900 rpm for 5 min; the supernatant was discarded and fresh 10 ml 

pre-warmed RPMI-1640 (supplemented like previously described) media was added. 

Cells were homogenously distributed by pipetting and transferred to a sterile tissue 

culture flask (75 cm2, Nunc, Roskilde, Denmark). Additional 15 ml of pre-warmed 
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RPMI-1640 media was added. The flask was then kept in a CO2 incubator at 37°C, 

5% CO2 and 95% air (LEEC secure CO2 incubator, LEEC, Nottingham) until 80% 

confluent with cells. These cells attach to the surface of the flask and grow as a 

monolayer with epithelioid characteristics. For subculturing, media was discarded 

from the flask and cells were washed with HBSS solution (1X concentration). 

Monolayer formed cells were detached by incubating with 3 ml of trypsin (0.25% 

(w/v) containing 1 mM EDTA) at 37°C for 3 min. After 3 min incubation, pre-warmed 

RPMI-1640 medium (10 ml) was added (FBS in media inhibit the action of trypsin), 

and the cell suspension was centrifuged at 900 rpm for 5 min. The supernatant was 

discarded, and 30 ml of RPMI-1640 medium was added to cell pellets. Cell population 

in 100 µl of cell suspension was determined by mixing with an equal volume of trypan 

blue dye (0.4%).  The viable cells (unstained and bright) were counted using Neubauer 

haemocytometer under a microscope (magnification 10X). Cells were maintained by 

transferring 1 ml of cell suspension back to the flask with an additional 25 ml of pre-

warmed RPMI-1640 medium and incubated in a CO2 incubator at 37°C for further 

experiments. The image of BRIN-BD11 cells growing in culture media is shown in 

Figure 2.4 (A).  

 

2.3.2 Culturing and differentiation of a skeletal muscle cell line (C2C12 cells) 

The skeletal muscle cell line (C2C12 cells) obtained from the Sigma-Aldrich 

(Catalogue number: 91031101-1VL) were maintained in growth media [D-MEM 

(Dulbecco’s modified Eagle’s medium: high glucose (4500 mg/L) + glutamine, no 

sodium pyruvate) supplemented with 20% FBS and 1% Pen/Strip] at 37°C with 95% 

air and 5% CO2 incubator until they reached 50–60% confluence. Differentiation was 

induced by replacing growth media with differentiation medium [D-MEM 
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(Dulbecco’s modified Eagle’s medium: high glucose + glutamine, no sodium 

pyruvate) supplemented with 2% donor equine serum and 1% Pen/Strip] 

(Balasubramanian et al., 2014). Differentiation media was changed every 24 hrs up to 

3 days. Before experiments, differentiated cells were serum starved for 12 hrs.  

 

2.4 In vitro insulin-release studies 

2.4.1 Insulin release studies using BRIN-BD11 and 1.1B4 cells 

2.4.1.1 Acute in vitro insulin releasing studies in BRIN-BD11 and 1.1B4 cells 

Acute insulin-releasing effects of frog skin peptides were assessed according to the 

method described by Owolabi et al., 2017. After harvesting and counting (as described 

in Section 2.3.1), cells were seeded at a density of 150,000 cells/well in 24 well plates 

(Nunc, Roskilde, Denmark) and incubated for 18 hr in a CO2 incubator at 37°C to form 

a monolayer. Following 18 hr incubation, culture media was replaced by 1 ml of 

preincubation buffer i.e. Krebs–Ringer bicarbonate buffer (KRBB- 115 mmol/l NaCl, 

4.7 mmol/l KCl, 1.2 mmol/l MgSO4 7H2O,, 1.28 mmol/l CaCl2 2H2O, 1.2 mmol/l 

KH2PO4, 20 mmol/l HEPES and 25 mmol/l NaHCO3, containing 0.5% (w/v) BSA, pH 

7.4) supplemented with 1.1 mM glucose. After 40 min, preincubation buffer was 

replaced by 1 ml of test peptides (ranging concentration from 3x10-6 to 10-12 M) insulin 

secretagogues prepared in KRBB buffer [supplemented with glucose (5.6 mmol/l or 

16.7 mmol/l)], and plates were incubated at 37°C for 20 min. After incubation, a test 

solution (950 µl) was transferred to LP4 tubes and stored at -20°C to measure insulin 

concentration using radioimmunoassay (RIA) (described in Section 2.4.3). 

 

2.4.1.2 Acute insulin release studies in the presence of modulators of insulin 

release 
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The mechanism of insulinotropic action of frog skin peptides was determined by using 

known modulators of insulin release (Srinivasan et al., 2013). In the presence or 

absence of frog skin peptides, BRIN-BD11 cells were incubated with either insulin 

modulators such as verapamil (50 µM, block calcium channel), diazoxide (300 µM, 

open ATP sensitive potassium channel), IBMX (200 µM, increase activity of 

adenylate cyclase), tolbutamide (200 µM, block ATP sensitive potassium channel) or 

DIDS (0.66 Mm, block chloride channel) prepared in KRB buffer supplemented with 

5.6 mM glucose. In another set of experiments, BRIN-BD11 cells were incubated with 

KCl (30 mM) prepared in KRB buffer supplemented with 16.7 mM glucose in the 

presence or absence of frog skin peptides. The procedure to perform the acute test is 

detailed in Section 2.4.1.1.  

 

2.4.1.3 Acute insulin release studies in the absence of extracellular calcium  

Effects of extracellular calcium on the insulinotropic activity of the peptide was 

investigated by incubating BRIN-BD11 cells with calcium-free KRB buffer [115 mM 

NaCl, 4.7 mM KCl, 1.28 mM CaCl2, 1.2 mM MgSO4, 1.2 mM KH2PO4, 20 mM 

HEPES, 25 mM NaHCO3, 0.1 mM EGTA and 0.1% BSA (pH 7.4)] (Srinivasan et al., 

2013). First, cells were preincubated for 40 min at 37°C with calcium-free KRB buffer 

supplemented with 1.1 mM glucose. After 40 min, the preincubation buffer was 

replaced by 1 ml of calcium-free KRB buffer supplement with 5.6 mM glucose in the 

presence or absence of frog skin peptides and incubated for 20 min at 37°C. The 

experimental protocol is detailed in Section 2.4.1.1. 

 

2.4.2 Insulin-release studies in primary islet cells isolated from the mouse 

2.4.2.1 Isolation of pancreatic islets 
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Islets were isolated from mice (NIH Swiss or C57 or db/db mice) pancreatic tissue by 

collagenase digestion method adapted from Lacy and Kostianovsky (1967). Hank’s 

Balanced Salt Solution (HBSS) was freshly prepared by dissolving 8 g/l NaCl, 0.4 g/l 

KCl, 0.14 g/l CaCl2, 0.1 g/l MgSO4.7H2O, 0.1 g/l MgCl2.6H2O, 0.06 g/l 

Na2HPO4.H2O, 0.006 g/l, KH2PO4, 1 g/l glucose, 0.02 g/l phenol red, 0.35 g/l NaHCO3 

in distilled water. Wash buffer and collagenase solution were prepared by dissolving 

BSA (0.1%) and collagenase (1.4 mg/ml) in stock HBSS buffer, respectively, and kept 

in the icebox for further use. After the above preparations, mice were sacrificed by 

cervical dislocation methods by following procedure approved by the U.K. Animals 

(Scientific Procedures) Act 1986. The abdominal cavity of mice was opened with 

scissors, and pancreatic tissue was dissected from the spleen and bile duct. The 

dissected pancreas was kept in a collagenase solution (5 ml/pancreas) and chopped 

with scissors. To accelerate tissue digestion process tubes were placed in a water bath 

for 8-9 min at 37°C followed by intermediate shaking. After incubation, cold wash 

buffer was added to slow down the activity of collagenase, this prevents tissue from 

over digestion, and preserved viability of islet cells. Further, tubes were centrifuged at 

1200 rpm for 2 min; the supernatant was discarded, and a fresh wash buffer was added. 

This washing process was repeated twice, at the third washing step solution was 

filtered using a strainer to separate undigested tissue. Wash buffer was added to the 

filtrate and centrifuged again for 2 min at 1200 rpm. The supernatant was discarded, 

and pre-warmed RPMI-1640 media supplemented with 10% BSA, 1% 

penicillin/streptomycin was added to the cell pellet. By pipetting, the cell pellet was 

homogenously distributed in media and transferred to a petri dish, which was further 

kept in 5% CO2 incubator (Laboratory technical engineering, Nottingham, UK) at 

37°C. The islets obtained were used to study the acute effects of peptides/insulin 
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secretagogues on insulin release within 72 hr of their isolation. The image of islet cells 

growing in culture media is shown in Figure 2.4 (B). 

 

2.4.2.2 Acute insulin release studies from isolated mouse islets 

Islets isolated from mice pancreatic tissue (described in Section 2.4.2.1) were used to 

investigate the acute effects of frog skin peptides and insulin secretagogues on insulin 

release. After 48 hr culturing of cells in RPMI-1640 media, fifteen islets were picked 

from Petri dish and transferred to a 1.5 ml Eppendorf tube. After the transfer of cells, 

tubes were centrifuged (1200 rpm for 5 min) to remove excess of media, followed by 

1 hr preincubation of cells with 500 µl of KRBB buffer containing 1.4 Mm glucose at 

37°C. After preincubation, tubes were centrifuged (1200 rpm for 5 min) and cells were 

test incubated for 1 h at 37°C with peptides (10- 6 M and 10- 8 M) and insulin 

secretagogues prepared in KRBB buffer supplemented with 16.7 mM glucose. After 

1 hr of incubation, the tubes were centrifuged, the supernatant was aliquoted in LP3 

tubes and stored at -20°C to measure insulin by dextran-coated charcoal 

radioimmunoassay as described in Section 2.4.4. 

 

2.4.2.3 Terminal islet studies 

The long-term effects of peptide administration on beta cell function were investigated 

in an animal model of diabetes (db/db). Following 28 days of treatment with peptide, 

pancreases were excised from sacrificed db/db mice and islets were isolated as 

described in Section 2.4.2.1. The isolated islets were incubated with insulin 

secretagogues such as alanine (10 mM), arginine (10 mM), KCl (10 mM), GLP-1 

(1µM) and GIP (1µM), to test insulin secretory response (experimental procedure 

described in Section 2.4.2.2). 
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2.4.2.4 Measurement of total insulin content of islets 

Total insulin content of islet was measured using the acid ethanol method as described 

by Otani et al., 2003. After performing islet acute insulin release studies, test solutions 

were retrieved, and islet cells were incubated with 500 µl of acid-ethanol solution 

(1.5% HCl, 75% ethanol and 23.5% H2O), overnight at 4°C. On the following day, 

samples/tubes were centrifuged at 1200 rpm for 2 min at 4°C, and the supernatant was 

aliquoted in LP3 tubes. Tubes were stored at -20°C for measuring insulin 

concentration by radioimmunoassay (described in Section 2.4.4). 

 

2.4.3 Iodination of insulin 

The method of iodination was first developed by Fraker and Speck in 1978. Iodination 

of bovine insulin was performed in RIA (radioimmunoassay) suite at Ulster 

University, as per the procedure established by Diabetes Research Group (DRG). In 

this experiment, iodogen (1,3,4,6-tetrachloro-3α,6α-diphenyl glycoluril) was used to 

catalyse iodination of bovine insulin. The iodogen solution was prepared fresh, by 

dissolving 2 mg of iodogen in 10 ml of dichloromethane. After preparation, 200 μl 

aliquot of iodogen solution was dispensed in a series of clear bottom 1.5 ml Eppendorf 

tubes.  Tubes were kept in a water bath for 5 min at 37°C to allow the solvent to 

evaporate and to form a uniform coating of iodogen. Insulin solution which was 

prepared by dissolving 1 mg of bovine insulin in 1 ml of 10 mM HCl, was further 

diluted to 125 µg/ml (1:8) in 500 mM phosphate buffer (pH 7). The reaction mixture 

was prepared by adding 20 μl of bovine insulin (125 μg/ml) and 5 μl of sodium iodide 

(Na125I 100 mCi/ml stock, Perkin Elmer, Cambridge, UK) to iodogen tubes. All 

additions were performed inside the standard laboratory chemical fume hood in RIA 

suite. After additions, iodogen tubes were kept in the icebox for 15 min with gentle 
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agitation by tapping with fingers every 3-4 min. The reaction mixture was transferred 

to clean 1.5 ml Eppendorf tubes, and 500 μl of 50 mM sodium phosphate buffer was 

added to stop the reaction. From the reaction mixture, iodinated 125I - bovine insulin 

was separated from unbound Sodium iodide (Na125I) by Vydac C-8 (4.6 x 250 mm) 

analytical reverse phase HPLC column (LKB Bromma, Sweden), operated at a flow 

rate of 1 ml/min. In the elution solvent, the concentration of organic modifier 

(acetonitrile) was increased from 0 to 56% over a period of 50 min and from 56% to 

70% over a period of 10 min. During 67 min HPLC run, fractions were collected into 

LP5 tubes by fraction collector (Frac-100, LKB) which was set at 1-min intervals. 

HPLC profile of iodinated bovine insulin is shown in Figure 2.1. The radioactivity of 

each fraction was measured by running 5 µl sample from each on Wizard™ 1470 

automatic gamma counter (Perkin Elmer, USA). Selected fractions were diluted with 

equal volume working RIA buffer and proceed for the binding test using different 

antibody dilutions (1:25,000, 1:35,000,1:45,000). Desired fractions were pooled 

together and stored at 4°C. 

 

2.4.4 Insulin radioimmunoassay (RIA) 

Dextran-coated charcoal radioimmunoassay (RIA) developed by Flatt and Bailey 

(1981), was used to measure insulin concentration in acute test and plasma samples. 

This assay was performed using a stock buffer for RIA contain disodium hydrogen 

orthophosphate (40 mM), thimerosal (0.2 g/l) and NaCl (0.3% (w/v). The pH of the 

stock RIA buffer was adjusted to 7.4 by adding sodium dihydrogen orthophosphate 

(40 mM). Working RIA buffer was prepared by dissolving bovine serum albumin 

(BSA) 0.5% (w/v) to stock RIA buffer. After preparation of buffer, insulin standards, 

ranging concentration from 20 ng/ml to 0.039 ng/ml were made by serial diluting rat 
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insulin (stock: 40 ng/ml) in working RIA buffer. Guinea pig anti-porcine antibody 

dilution was prepared from 1:25000 to 1:45000 in working RIA buffer to obtain 40% 

binding. Radiolabelled insulin (125I-insulin) was made up in assay buffer to achieve 

~10,000 counts per minute (CPM) /100 µl of assay buffer. Insulin standards and 

unknown samples (200 µl) were aliquoted in triplicates and duplicates respectively in 

LP3 tubes. 100 µl each of guinea pig anti-porcine antibody and 125I-insulin was added 

to standard (triplicates), unknown samples (duplicates) tubes and control tube (200 µl 

of assay buffer). The tube for total count contains the only 100 µl of the label, while 

the nonspecific binding tube, contains 300 µl of assay buffer and 100 µl of the 125I-

insulin. After all additions, tubes were incubated at 4°C for 48 hr.  Stock dextran-

coated charcoal (DCC) was made up by suspending 5 gm of dextran T 70 and 50 gm 

charcoal in 40 mM sodium phosphate buffer (1 litre). Stock DCC was further diluted 

with assay buffer (1:5) to make working DCC and stirrer for 30 min before use. After 

48 hr incubation, 1 ml of working DCC was added to the reaction mixture tubes 

(except tube for the total count) and incubated for 20 min at 4°C. The tubes were then 

centrifuged (Model J-6B centrifuge, Beckman Instruments Inc., UK) at 2500 rpm for 

20 min, the supernatant was discarded, and radioactivity of the pellet (which contain 

free radiolabelled insulin) was recorded by gamma counter (Perkin Elmer Wallac 

Wizard 1470 Automatic Gamma Counter). The gamma counter used a spline-curve 

fitting algorithm to determine insulin concentration against the known values of 

standard insulin. 

 

2.5 Cytotoxicity studies  

Lactate dehydrogenase (LDH) assay was performed to determine the cytotoxic effects 

of frog skin peptides. LDH is a cytosolic enzyme when the cell membrane is 
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compromised or damaged, this enzyme is released into extracellular space. LDH 

enzyme was measured using the CytoTox 96® non-radioactive cytotoxicity kit 

(Promega, UK), following the protocol provided in the kit. The test was performed in 

96 well plates. Acute test samples (50 µl) were mixed with an equal volume of light-

sensitive substrate mixture. The plate was covered with foil and incubated at room 

temperature for 30 min followed by addition of 50 µl of stop solution to stop the 

reaction. The chemical compound tetrazolium salt present in substrate mixture, get 

converted to red coloured formazan product in the presence of LDH. The change is 

colour was analysed by measuring absorbance at 490 nm, using VersaMax™ 

Microplate Reader (Molecular Device). 

 

2.6 Effects of peptides on beta cell membrane potential 

Change in membrane potential in peptide-treated BRIN-BD11 cells was determined 

using FLIPR membrane potential assay kit and Flex Station scanning fluorimeter 

(Molecular assay devices, USA), as previously described by Mathews et al., 2006. 

The assay kit was provided with a fluorescent dye (anionic and lipophilic by nature), 

which can move across the cell membrane, and emit a fluorescent signal on the 

increase in membrane potential. BRIN-BD11 cells were seeded at a density of 10000 

cells/well in 96 well microplates (Costar, Roskilde, Denmark) and incubated overnight 

at 37°C in 5% CO2 incubator. After overnight incubation, FLIPR membrane potential 

dye and test peptides (5X concentration) were prepared in fresh KRB buffer 

(supplemented with 5.6 mM glucose). Culture media was discarded and cells were 

incubated with 100 μl of KRB buffer (supplemented with 5.6 mM glucose) for 10 min 

at 37°C and subsequently with 100 μl of FLIPR membrane potential dye (prepared in 

KRB buffer) for 60 min. Following settings were made in flex station to measure the 
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change in membrane potential: 1) Excitation and the emission wavelength was set to 

530 nm and 565 nm respectively. 2) The interval between each reading: 1.52 seconds. 

3) Transfer of test solution to the reading plate was set to 50 μl. The test solution was 

added 20 sec after the start of data acquisition at a rate of ~62 μl/sec. After incubation 

with dye, the plate was subjected to flex station, and fluorescent signals were recorded. 

Membrane depolarising agent KCl (30 mM) was used as positive control. 

 

2.7 Effects of peptides on intracellular Ca2+ 

The assay protocol for measuring intracellular calcium in peptide treated BRIN-BD11 

cells is very similar to that used for measuring the change in membrane potential 

(described in Section 2.6). The experiment was performed using intracellular Ca2+ 

assay kit and KRBB buffer supplemented with 500 µmol/l probenecid, 1.28 mM CaCl2 

and 10nM NaHCO3. The assay kit consists of calcium indicators dye which emits a 

fluorescent signal on binding to intracellular Ca2+ only. The probenecid in assay buffer 

improves intracellular retention of the dye. Alanine (10 mM) was used as positive 

control and peptide concentration used is mentioned in corresponding chapters. Also, 

the settings in flux station for measuring intracellular Ca2+ is the same as that set for 

measuring membrane potential except excitation and the emission wavelength, which 

is set to 485 nm and 525 nm respectively 

 

2.8 Effects of peptide on adenosine 3’5’-cyclic monophosphate (cAMP) level 

The cAMP level in peptide treated BRIN-BD11 cells was determined as previously 

described by Owolabi et al., 2015. BRIN-BD11 cells were seeded in 24-well plate at 

a density of 200000 cells per well and cultured for 18 hr at 37°C. After preincubation 

with KRB buffer as described in Section 2.4.1.1, cells were treated with test solutions 
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for 20 min, which was prepared in KRB buffer supplemented with glucose (5.6 mM) 

and 3-isobutyl-1-methylxanthine (200 µM). After 20 min incubation, the supernatant 

was aliquoted in LP4 tubes for measuring insulin concentration by radioimmunoassay 

(described in Section 2.4.4). Cells were lysed by adding 200 µl of lysis buffer 

(provided in the cAMP assay kit) and stored at -70°C in 1.5 ml Eppendorf tubes. The 

cAMP was measured in cell lysate by following the instruction provided in the cAMP 

assay kit (R&D system parameter, Abingdon, UK). The standard curve for the cAMP 

assay is shown in Figure 2.3. 

 

2.9 Effects of downregulation of protein kinase A (PKA) or protein kinase C 

(PKC) pathway on the insulinotropic activity of frog skin peptides 

Forskolin (25 µM, Sigma-Aldrich, UK) and phorbol 12-myristate 13-acetate (PMA 10 

nM, Sigma-Aldrich, UK) stimulate insulin release by activation of PKA and PKC 

pathway respectively. However, after the overnight incubation of BRIN-BD11 cells 

with forskolin or PMA or both, downregulation of PKA or PKC or both were observed 

respectively (Owolabi et al., 2015). Either or both of these pathways were down-

regulated to investigate the mechanism of insulinotropic actions of peptides. To 

perform this experiment BRIN-BD11 cells were seeded in 24 well plates at a density 

of 15000 cells/well and incubated with either forskolin or PMA or both for 18 hr at 

37°C in an atmosphere of 5% CO2 and 95% air. After incubation media was discarded 

and cell were treated with preincubation buffer for 40 min followed by 20 min 

incubation with test solutions as described in Section 2.4.1.1. GLP-1 (10 nM), CCK8 

(10 nM), Forskolin (25 µM), PMA (10 nM) and forskolin (25 µM) + PMA (10 nM) 

were used as controls in experiments.  
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2.10 Effects of peptides on cytokine-induced apoptosis and proliferation in 

BRIN-BD11 cells  

The ability of frog skin peptides to protect cells against cytokine-induced DNA 

damage was analysed by using In situ Cell Death Detection Kit (Roche Diagnostics, 

Burgess Hill, UK) following the manufacturer’s instructions. BRIN-BD11 cells were 

harvested from the flask and counted using hemocytometer as described in Section 

2.3.1. BRIN-BD11 cells were seeded at a density of 4 x 104 cells on sterilised glass 

coverslips in 12 well plates for 18 h at 37°C with or without cytokine mixture, in the 

presence or absence of peptide/GLP-1 (1 µM). Cytokine mixture contained 200 U/ml 

tumour-necrosis factor-α, 20 U/ml interferon-γ and 100 U/ml interleukin-1β. All the 

treatment conditions were prepared in RPMI-1640 media. Following incubation, 

media was decanted, and the cells were washed with 0.9% phosphate-buffered saline 

(PBS) and fixed using 4% paraformaldehyde (Sigma Aldrich). After fixing, the 

permeability of cells was improved by treatment with 0.1 M sodium citrate buffer (pH 

6.0) at 94°C for 20 min in a water bath. The plates were removed from the water bath 

and allowed to cool for 20 min at room temperature. Sodium citrate buffer was 

decanted and cells were incubated with TUNEL reaction mixture (50 µl/well) for 1 hr 

at 37°C. Following incubation, the TUNEL reaction mixture was decanted, and the 

cells were washed with phosphate buffer solution (PBS) thrice for 5 min. A small drop 

of mounting media (prepared by mixing equal volume glycerol and PBS) was put on 

the slide. With the help of forceps, the coverslip was removed carefully from the well 

and placed cell-side down onto mountant. Two coverslips were mounted on a single 

glass slide. Slides were viewed using a fluorescent microscope with 488 nm filter 

(Olympus System Microscope, model BX51; Southend-on-Sea, UK) and 

photographed by a DP70 camera adapter system.  
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The positive effect of the peptide on β-cell proliferation was investigated by using Ki-

67 primary antibody (Abcam, Cambridge, UK). BRIN-BD11 cells were seeded as 

outlined above in 12 well plates containing sterilised coverslip and incubated with 

either peptide (1 µM) or GLP-1 (1 µM) for 18 hr at 37°C. As mentioned above after 

incubation, cells were fixed and permeabilised by using 4% paraformaldehyde and 0.1 

M sodium citrate buffer (pH 6.0), respectively. To avoid nonspecific antibody binding 

cells were treated with 300 µl of 1.1% BSA for 30 min, followed by treatment with 

rabbit anti-Ki-67 primary antibody for 2 hr at 37°C. After treatment with primary 

antibody, cells were washed thrice with PBS for 5 min and subsequently treated with 

Alexa Fluor 594 secondary antibody, which stains proliferating cells in red (Abcam. 

Cambridge, UK). As described above, two coverslips were mounted on a single glass 

slide. Approximately 150 cells per replicate were analysed, and proliferation 

frequency was expressed as % of total cells analysed. 

 

2.11 Effects of peptides on glucose uptake in C2C12 

Acute effects of frog skin peptides on glucose uptake in C2C12 cells were examined 

using Cell-Based assay kit (Cayman Chemicals), which is supplied with fluorescent 

glucose (2-NDBG) that emit a fluorescent signal at 485 nm. After attaining 50-60% 

confluent, C2C12 cells were harvested from the flask and counted as described in 

Section 2.3.1. C2C12 cells were then seeded into 96-well clear bottom plates at a 

density of 5 × 104 cells/well and maintained in growth media followed by 

differentiation media and serum-free media as described in Section 2.3.2. Peptides (1 

µM) were tested both in the presence and absence of insulin (10-6 M).  Test solutions 

were prepared in DMEM-No glucose media supplemented with 2-NDBG (150 µg/ml). 

Serum-starved media was replaced by 100 μl of test solutions, and the plates were 
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incubated for 30 min at 37°C with 95% air and 5% CO2 incubator.  After incubation 

plate was centrifuged for 5 min at 400 rpm at RT and supernatant was discarded. The 

assay buffer (200 μl) was added to each well and plates were again centrifuged. After 

centrifugation supernatant was discarded and 100 μl of assay buffer was added to each 

well and plates were subjected to flex station to record fluorescent signals. In the 

experiment, apigenin (50 µM) was used as negative control and insulin (10-6 M) as a 

positive control. 

 

2.12 Assessment of plasma degradation of the peptide 

The stability of peptide in plasma was investigated by following the procedure 

described by Ojo et al., 2015. Briefly, 100 µg of test peptide was incubated with 10 µl 

of mouse plasma and 395 µl of 50 mM triethanolamine-HCl (pH 7.8) and kept on a 

shaker at 37°C. The reaction was stopped by adding 10% trifluoroacetic acid (TFA) at 

0 min and 4 hr. The samples stopped at time point 0 and 4 hr were run separately on 

reverse phase HPLC column equilibrated with 0.1% TFA at the flow rate of 1 ml/min, 

to separated degraded and intact peptide. The collected peaks were subjected to the 

bioanalytical device MALDI-TOF, to determine molecular weight as described in 

Section 2.2.2. 

 

2.13 In vivo studies 

In vivo insulin-releasing activity of frog skin peptides were studied using normal mice 

(NIH swiss TO mice) and diabetic mice (db/db mice). All the animals were handled 

by following the guidelines according to the U.K. Animals (Scientific Procedures) Act 

1986. 
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2.13.1 Animal models 

2.13.1.1 NIH Swiss mice   

Male NIH Swiss mice (6-8 weeks) were purchased from Envigo, Huntingdon, UK. 

After arrival of mice to Ulster University’s Behavioural and Biomedical Research Unit 

(BBRU), they were housed individually with access to water and standard laboratory 

chow (10% fat, 30% protein, 60% carbohydrate; percentage of total energy 12.99 

KJ/g; Trouw Nutrition, Cheshire, UK) in air-conditioned room (22 ± 2°C) and with a 

12:12-h light-dark cycle. Mice were kept for 1-week acclimation period before the 

start of the experiment. For acute feeding studies, mice were trained to have a time-

restricted 3-hour feeding at a specific time (10 am to 1 pm) every day. 

 

2.13.1.2 Diabetic (db/db) mice 

Diabetic mice (db/db, BKS.Cg-+Leprdb/+Leprdb/OlaHsd) and normal littermates 

(BKS.Cg-(Lean)/OlaHsd) were purchased from Envigo, Huntingdon, UK. As the 

name suggests, db/db mice show symptoms of diabetes like polyurea, hyperglycaemia, 

hyperinsulinemia and obesity, and hence were used to investigate the antidiabetic 

potential of peptides. This mouse model which was first described in 1966 by Hummel 

et al., were derived from an autosomal recessive mutation in the leptin receptor gene 

located on chromosome 4. Gly to Thr mutation in the leptin receptor gene results in 

the production of a non-functional Ob-R protein (an isoform of the leptin receptor), 

which lead to severe metabolic changes as mentioned above. The db/db mice exhibit 

hyperglycemia within 4-8 week after birth (Yang et al., 2015). 

The procedure described in Section 2.13.1.1 were followed after the arrival of animals 

at Ulster University’s Behavioural and Biomedical Research Unit (BBRU). Prior to 

initiation of the treatment, blood glucose and body weight of mice were measured and 



67 
 

grouped accordingly to ensure that no statistical difference is observed in these 

parameters between the groups.  

 

2.13.1.3 GluCre-ROSA26EYFP mouse model 

Glu-CreROSA26EYFP is a transgenic mouse model developed by crossing ROSA26-

EYFP and glucagon-Cre mice (Quoix et al., 2007). These mice express the yellow 

fluorescent protein (EYFP) in pancreatic islet alpha cells. Before commencement of 

studies, male animals were housed individually with access to water and standard 

laboratory chow (10% fat, 30% protein, 60% carbohydrate; percentage of total energy 

12.99 KJ/g; Trouw Nutrition, Cheshire, UK). Tamoxifen (~32 mg/kg bw) was given 

to all non-fasted mice intraperitoneally to induce the expression of the yellow 

fluorescent protein.  After tamoxifen dose, animals were monitored five days for any 

adverse effects. On 5th day onwards, animals were given a low dose of streptozotocin 

(50 mg/kg bw) injection for the five consecutive days. Before injecting streptozotocin 

(STZ), animals were fasted overnight for 12 hr, and STZ was prepared fresh in citrate 

buffer, pH 4.5 on each occasion. Animals were monitored for 10 consecative days for 

hyperglycemia and body weight. Once diabetes was established, animals were 

grouped with matching average body weights and blood glucose prior to initiation of 

treatment. 

 

2.13.2 Glucose tolerance test (intraperitoneal and oral) 

Acute in vivo effects of the peptides on blood glucose and plasma insulin concentration 

was investigated by intraperitoneal administration of glucose alone (18 mmol/kg bw) 

or in combination with test peptides (25/50/75 nmol/kg bw) or GLP-1 (25 nmol/kg 

bw) to overnight fasted lean mice. Blood glucose was collected into heparinised 
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microcentrifuge tubes (Sarstedt, Germany) by tail bleeding at time points 0, 15, 30, 60 

and 90 min.  

Following 28 days of treatment with peptides, IPGTT and OGTT were performed in 

db/db mice. Glucose alone (18 mmol/kg bw) was administered intraperitoneally or 

orally to overnight fasted db/db mice and blood was collected by tail bleeding at time 

points 0, 15, 30 and 60 min. The collected blood was further analysed for glucose and 

insulin concentration (Section 2.13.5).  

 

2.13.3 Insulin sensitivity test 

Insulin sensitivity test was performed at the end of the treatment period. The body 

weight of db/db mice was measured and the insulin dose (50 U/kg bw) was 

administered accordingly. Blood glucose was measured prior to (t=0) and after 

intraperitoneal administration of bovine insulin at time points 15, 30 and 60 min. The 

improvement in insulin resistance was also determined by the homeostatic model 

assessment (HOMA). Blood was collected from 18 hr fasted db/db mice and analysed 

for glucose (Section 2.13.5) and insulin concentration (Section 2.13.6). The measured 

glucose and insulin concentration were used in the homeostatic model assessment 

(HOMA) formula to calculate insulin resistance: 

HOMA-IR = fasting plasma glucose x fasting plasma insulin/22.5 

 

2.13.4 Acute feeding studies (trained animals) 

Anti-obesity effects of the peptides were investigated by performing feeding studies 

in fasted (21 hours) NIH Swiss male mice that were housed individually. These mice 

had been trained to feed at 10 am to 1 pm for 3 hr each day. After intraperitoneal 

administration with either saline or test peptide (75 nmol/kg bw), mice were given the 
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known amount of food (i.e. pre-weighed), and food weight was measured at timepoint 

0, 30, 60, 90, 120, 150 and 180 min. 

 

2.13.5 Measurement of blood and plasma glucose, and plasma insulin 

concentrations 

The glucose concentration in blood (collected by tail bleeding) was measured in whole 

blood using Ascenacia Counter Blood Glucose Meter (Bayer, Newbury, UK). Blood 

was also collected in fluoride micro-centrifuge tubes (Sarstedt, Numbrecht, Germany) 

and centrifuged at 13000 rpm for 3 min at 4°C to separate plasma. Plasma was 

transferred to 0.5 ml fresh eppendorf tubes and stored at -20°C to perform biochemical 

tests. Plasma glucose was also sometimes measured by the GOD-PAP method (GL 

364, Randox Laboratories Ltd., UK). First, the working reagent was prepared by 

mixing buffer with GOD-PAP reagent (provided in the kit). The test was performed 

in 96 well plates. Blood sample (2.5 µl) was mixed with freshly prepared working 

reagent (250 µl) and incubated for 10 min at RT. After incubation, the plate was 

subjected to VersaMax™ Microplate Reader (Molecular Devices, US) and absorbance 

was measured at 505 nm. A standard curve for glucose by GOD-PAP reagent is shown 

in Figure 2.2. Briefly, glucose oxidase enzyme converts glucose in plasma to gluconic 

acid and hydrogen peroxide (H2O2). In the presence of peroxidase, hydrogen peroxide 

(H2O2) react with 4-aminophenazone and phenol to form a red-violet quinonimine dye. 

The amount of dye produced is directly proportional to glucose concentration in the 

sample. The intensity of colour was measured at 505 nm. For measuring plasma 

insulin, plasma samples were diluted with working RIA buffer (1:10 dilution) and 

measured for insulin concentration by radioimmunoassay as described in Section 

2.4.4.  



70 
 

2.13.6 Assessment of long-term (28 days) in vivo effects of the peptide in db/db 

mice 

Grouped male db/db mice received twice daily intraperitoneal injection of saline or 

peptide (75 nmol/kg bw) for 28 consecutive days. The dose of peptide was selected 

based on preliminary studies. Before commencement of treatment, mice were 

acclimatised to handling and injection by injecting twice daily with saline for 3 days. 

After the initiation of the treatment, body weight, food intake, water intake and blood 

glucose (once every 3 days) were monitored, and blood was collected by tail bleeding 

and analysed for insulin concentration by RIA (Section 2.13.6). After the end of the 

treatment period, terminal blood was collected, and animals were sacrificed by 

cervical dislocation and tissues were excised for further studies.  

 

2.13.7 Assessment of long-term (11 days) in vivo effects of the peptide in GluCre-

ROSA26EYFP mice 

For 11 consecutive days, GluCre mice received twice daily intraperitoneal injections 

of saline or test peptide (75 nmol/kg bw). During the treatment period every 3 days 

interval, non-fasting blood glucose, body weight, food intake and water intake were 

recorded. Blood samples collected at the start and end of the experiment were analysed 

for insulin concentration using RIA, as described previously in section 2.13.6. After 

the treatment, animals were sacrificed by cervical dislocation, and pancreatic tissues 

were excised and processed for histological staining as described in Sections 2.14 and 

2.14.1.  

 

2.13.8 Assessment of body fat composition by DXA scanning  
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Effects of chronic treatment of peptide on bone mineral density (BMD), bone mineral 

composition (BMC), bone area and body fat composition (lean body mass and % of 

body fat) in db/db mice were assessed using Dual-energy X-ray absorptiometry 

(DXA) PIXImus densitometer (Lunar Corp, Madison, Wisconsin). DXA measure 

these parameters by producing two different energy levels, 40 and 70 keV photons, 

which passes through only soft tissue (Rothney et al., 2009). DXA instrument was 

calibrated using a phantom mouse supplied by the manufacturer, and mice were 

sacrificed and positioned on a specimen tray for scanning. The data generated by 

densitometer for tissue and bone were analysed separately by Lunar Software version 

2.0. The representative image of DXA PIXImus densitometer is shown in Figure 2.6. 

 

2.13.9 HbA1c measurement 

After long-term treatment of peptides for 28 days, the HbA1c levels were measured in 

db/db mice using A1cNow+ kits (PTS diagnostics, IN, USA) by following the 

manufacturer’s instructions. 

 

2.13.10 Tissue excision 

After chronic treatment with peptides, terminal blood was collected, and mice were 

sacrificed by cervical dislocation. The abdominal cavity of mice was opened with 

scissors to dissect tissues (pancreas, adipose tissue, skeletal muscle, intestine and 

liver). Dissected tissues were covered in aluminium foil, labelled and snapped frozen 

in liquid nitrogen. Samples were then stored at -70°C to measure hormone content and 

to study the expression of key genes involved in glucose homeostasis. In addition, 

pancreatic tissue was processed for histological staining as described in Sections 2.14 

and 2.14.1.  
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2.13.11 Pancreatic insulin content 

Insulin content in the pancreas of saline and peptide-treated mice was measured by 

acid ethanol method. The pancreas was weighed and homogenised in 5 ml of freshly 

made acid ethanol using a VWR VDI 12 handheld homogenizer (VWR, UK). Tubes 

then centrifuged for 20 min at 5000 rpm, and the supernatant was transferred to a 15 

ml tube. 10 ml of tris base (pH 7) was added to supernatant and tubes were kept in 

speed wax overnight until the solution evaporates. The powder obtained was dissolved 

in 2 ml Tris base (pH 7) and stored at -20°C. 5 µl of the pancreatic extract was 

aliquoted in LP3 tubes and diluted to 200 µl using working RIA buffer and measured 

for insulin by radioimmunoassay (described in Section 2.4.4).  

 

2.13.12 Effects of the peptide on lipid profile, liver and kidney function, and 

amylase activity 

Plasma retrieved from terminal blood as described in the Section 2.13.5, was measured 

for total cholesterol, HDL cholesterol, and plasma triglycerides, creatinine, alanine 

transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) level 

and amylase activity by following the procedure described in assay kits from suppliers. 

LDL cholesterol was determined by the de Cordova equation: 3/4 (total cholesterol - 

HDL-c). 

 

2.14 Immunohistochemistry 

Pancreatic tissues were excised from treated and untreated animals and fixed in 4% 

paraformaldehyde at 4°C for 48 h. Pancreatic tissues were processed using an 

automated tissue processor (Leica TP1020, Leica Microsystems, Nussloch, Germany). 

Tissues were embedded in paraffin wax and sectioned with a microtome (Shandon 
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finesse 325, Thermo Scientific, UK) to produce 7 μm thick sections. The section at an 

interval of 10 sections was placed on the same Polysine slide (Thermo Scientific, UK) 

and allowed to dry overnight on a hotplate (Thermo Scientific). 

 

2.14.1 Immunohistochemical staining for analysis of islet morphology 

The sections of processed pancreatic tissue were stained for insulin and glucagon as 

described previously by Vasu et al., 2014. First, sections were dewaxed and rehydrated 

using xylene (Sigma Aldrich, Dorset, UK) and an ethanol solution (100% for 5 min, 

95% for 5 min and 80% for 5 min), respectively. The sections were then incubated in 

sodium citrate buffer (10mM sodium citrate, 0.05% Tween 20, pH 6.0) at 94°C for 20 

min for the retrieval of antigen. To prevent nonspecific binding, sections were blocked 

using 2% BSA for 30 min. Three different types of double staining were performed 

depending on experiments: A) insulin-glucagon staining, B) insulin-GFP staining, C) 

glucagon-GFP staining. Slides were incubated with primary antibody [mouse anti-

insulin antibody (1:400; Abcam, ab6995) for insulin, guinea-pig anti-glucagon 

antibody (PCA2/4, 1:50; raised in-house) for glucagon and rabbit anti-GFP (1/400) for 

GFP] overnight at 4 °C. After overnight incubation with primary antibody, sections 

were washed twice with phosphate buffer solution (PBS) and incubated with 

secondary antibody (Alexa Fluor 488 goat anti-mouse-1/400, 594 goat anti-guinea 

pig-1/400 and 594 rabbit anti-GFP-1/400) for 45 min at 37°C. After treatment with 

secondary antibody, slides were washed with PBS, and nuclear staining was 

performed by incubating slides with 4',6-diamidino-2-phenylindole (DAPI) stain for 

15 min at 37°C. Following nuclear staining, the slide was washed with PBS and 

mounted using the anti-fade mounting medium. The slides were then viewed using a 

fluorescent microscope (Olympus System Microscope BX51, Olympus instruments, 
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UK), using a FITC filter (488 nm) and TRITC filter (594 nm). The images were 

captured using a DP70 camera adapter system as described by Vasu et al., 2013. Using 

Cell^F imaging software (Olympus System Microscope BX51, Olympus instruments, 

UK) islet number, islet area, beta cell area, alpha cell area and islet size distribution 

were measured. The representative image of the fluorescent microscope is shown in 

Figure 2.7. 

 

2.15 Gene expression studies 

2.15.1 RNA extraction 

RNA was isolated from the skeletal muscle tissue and islet cells of the treated and 

untreated animal using TriPure Isolation reagent (Roche, UK). 50-100 gm of tissue 

was added to 1 ml of tripure reagent in Biju tubes and homogenised using VWR VDI 

12 handheld homogeniser (VWR, UK). The homogenate was kept at room 

temperature for 5 min to dissolve the nucleoprotein complex. Chloroform (0.2 ml) was 

added to the homogenate, shaken vigorously for 15 sec and incubated for 10 min at 

20°C. The homogenate was transferred to the 1.5 ml centrifuge tubes, and tubes were 

centrifuged at 12000 rpm for 15 min at 4°C. Chloroform separates RNA, DNA and 

protein into aqueous, interphase and organic phase respectively. The aqueous phase 

(containing RNA) was transferred to RNase free tubes. After the addition of 

isopropanol (0.5 ml), tubes were mixed by inversion and incubated for 10 min at 20°C 

followed by centrifugation at 12000 rpm for 15 min at 4°C. Isopropanol precipitates 

RNA, hence after centrifugation supernatant was discarded. The pellet obtained was 

washed with 75% ethanol (1 ml) made in diethylpyrocarbonate (DEPC) treated water 

followed by centrifugation at 7500 rpm for 5 min. After centrifugation supernatant 

was discarded and pellets were air dried and resuspended in DEPC treated water (30 
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µl). RNA concentration in the samples was measured by Nanodrop (absorbance at 260 

nm) and stored at -20°C for cDNA synthesis.  

 

2.15.2 cDNA synthesis 

 RNA isolated from skeletal muscle tissue and islet cells was converted to cDNA using 

SuperScript II reverse transcriptase (Invitrogen, Life Technologies, UK) following the 

manufacturer’s instruction. Using Nanodrop, the concentration of RNA in the sample 

was calculated, and 3 µg of RNA was converted to cDNA using a three-step reaction 

in a thermocycler (G-STORM, UK). For the first step, reaction volume was prepared 

in RNase free tube by adding 1 µl of the Oligodt (Invitrogen, Life Technologies), a 

sample containing 3 µg of RNA and the volume was adjusted to 12 µl by adding the 

appropriate volume of RNase free water. In thermocycler tubes were heated at 70°C 

for 10 min.  In the second step, tubes were incubated at 42°C for 2 min after adding 4 

µl of 5 X First strand buffer, 2 µl of 0.1 M of DTT (Invitrogen, Life Technologies) 

and 1 µl of 10 mM dNTP to the reaction volume. Finally, in the third step, SuperScript 

II RT (1 µl) was added, and tubes were incubated at 42°C for 50 min followed by 70°C 

for 15. After completion of the third step, tubes were stored at -20°C until needed for 

PCR. 

 

2.15.3 Gene amplification 

Amplification of genes was carried out using real-time polymerase chain reaction Bio-

Rad MJ Mini personal Thermal cycler (Bio-Rad Laboratories, UK). The reaction 

mixture (10.5 µl) for PCR was prepared in 8 well PCR tube strips by adding the 

following components: 
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1 Quantifast SYBR green PCR mix 4.5 µl 

2  Forward primers 1 µl 

3 Reverse primers 1 µl 

4 c-DNA 3 µl 

5 RNase free water 1 µl 

 

(Forward and reverse primers are listed in Table 1 and 2) 

After preparation of the reaction mixture, PCR condition was set as follows: 

• Initial denaturation at 95°C for 5 min 

• A 40 cycle of cDNA amplification. 

• Final denaturation at 95°C for 30 Sec 

• Annealing temperature at 58°C for 30 sec 

• Final extension at 72°C for 30 sec (SYBR Green fluorescence was read after 

each cycle for amplification curve). 

Genes studied for the expression and the primer used are listed in table 1. All the genes 

were normalised to β-actin (Actb) expression and analysed using the ΔΔCt method. 

 

2.16 Statistical Analysis  

The experimental data were analysed using GraphPad Prism (Version 3). Acute in 

vitro insulin secretion studies for test peptides with 8 technical replicates and acute 

and long-term in vivo studies with 6 and 8 biological replictaes respectively, were 

performed. Values were expressed as mean ± SEM for a given number of replicates 

(n). Data were compared using unpaired Students t-test (non-parametric), with two-

tailed P values and 95% confidence interval) and one-way ANOVA followed by 
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student Newman-Keuls post hoc test.  Using the trapezoidal rule with baseline 

subtraction, the area under curve was calculated from data obtained. Group of datasets 

were considered to be significantly different if P<0.05.
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Table 1: List of the primers and their sequence for gene expression studies in islets 

 

Sr 

no 

Gene Common name Forward Primer sequence Reverse Primer sequence 

1 Ins1 Mus musculus insulin 1  AAG CTG GTG GGC ATC CAG TA 

 

GAC AAA AGC CTG GGT GGG TT 

2 Slc2α2  Glucose transporter 2 GAA GAA GAG TGG TTC GGC CC CGC ACA CCG AGG AAG GAA TC 

3 

 

Gck Glucokinase, Transcript variant 1 AGG CCC TGA CAG GAG ACA TC 

 

GCC TCT AGA CGG ACT CAG CA 

 

4 Abcc8 ATP-binding cassette, sub-family C 

(CFTR/MRP), member 8 

TGA AGC GCA TCC ACA CAC TC 

 
 

ATC TTC TGT CCT GGG GCG AT 

 

5 Kcnj11 

 

Potassium inwardly-rectifying channel, 

subfamily J, member 11 (Transcript 

variant 1) 

TGG GTT GGG GGC TCA GTA AG 

 

 

ACC TCT AGG CTG GTA TGC CC 

 

6 Cacna1c Calcium channel,voltage-dependent, L-

type, alpha 1C subunit 

ACA TGC TTT TCA CCG GCC TC 

 

GCT CCC AAT GAC GAT GAG GAA G 

 

7 Glp1r Glucagon-1 like peptide receptor GCT GAG GGT CTC TGG CTA CA GGG ACA GGA GCT GTT CCT CA 

 

8 Gipr Gastric inhibitory polypeptide receptor TGC CCC GAC TAC CGA CTA AG 

 

GCC TTC AAC CTG TTC CTC CG 

9 Pdx1 Pancreatic and duodenal homeobox 1 CCT AGG CGT CGC ACA AGA AG 

 

TCG CTT GGC ATC AGA AGC AG 

 

10  Gcg Proglucagon gene GCC ACC AGG GAC TTC ATC AAC 
 

CAA GTG ACT GGC ACG AGA TGT  
 

11 Stat1 Signal transducer and activator of 

transcription 1, isoform 1 

CAT CCC GCA GAG AGA ACG C GGT GCA GGT TCG GGA TTC AA 
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Table 2: List of the primers and their sequence for gene expression studies in skeletal muscle tissue. 

 

Sr 

no 
Gene Common name Forward Primer sequence Reverse Primer sequence 

1 Irs1 Insulin receptors substrate AGG ACC TCA CGT CTT CCT CTT 

 

TTC CGG TGT CAC AGT GCT TTC 

2 Insr Insulin receptor GCA GGA AAT GGC TCC TGG AC GGG GTC CAA TGA TAA TTT TGG CAA T 

3 Ptb1 Protein phosphatase 1B TCG CCT GCG CAT TTG TAC TC TGA GTT TTC CAG TGC CCC AAA 
 

4 Pdk1 3-phosphoinositide dependent 
protein kinase 1 

TGG GTC CAG TGG ATA AGC GAA 
 

 

CCG GTA ATT ACA TCG TGT GGA CAA 
 

5 Pik3Ca Phosphatidylinositol 3-Kinase, 
catalytic, alpha polypeptide 

ACA GAG ACA GAG CAC GAT CCA TCC ACG TGC TGT GAG GTT TC 
 

6 Akt1 Protein kinase B alpha GCC GCC TGA TCA AGT TCT CC CAG CGC ATC CGA GAA ACA AAA C 

7 Slc2α4 Glucose transporter 4 (Glut4) ACT AGA TCC CGG AGA GCC TGG  

 

TGG AAA CCC GAC GGC ATC TT 
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Figures 2.1 HPLC Separation of iodinated bovine insulin 
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Iodinated 125I - bovine insulin was purified from the reaction mixture by reversed-phase 

HPLC, operated at a flow rate of 1 ml/min. All fractions were collected using an 

automated fraction collector. Radioactivity of each fraction was determined by running 5 

µl sample from each on Wizard™ 1470 automatic gamma counter (Perkin Elmer, USA), 

gamma counter. Fractions collected between 5-7 min (Peak A) contain unbound Sodium 

iodide (Na125I), and hence it was disposed off. Whereas the fraction between 21-26 min 

(Peak B) contained iodinated insulin which was selected to perform antibody binding test.  
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Figure 2.2 Standard curve for glucose analysis by GOD-PAP reagent 
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Standard curve of glucose was prepared over a concentration range of 0-60 mmol/lit. O.D. 

was measured at 505 nm. 
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Figure 2.3 A typical standard curve for cAMP assay 
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A standard curve of stock solution (provided in kit) was prepared over a concentration 

range of 240-3.75 pmol/ml. O.D. was measured at 450 and 540 nm. 
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Figures 2.4 BRIN-BD11 Cells (A) and Islet cells (B) growing in culture 

A) 

 

 

 

B) 
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Figure 2.5 Reversed-phase HPLC 
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Figure 2.6 Dual-energy X-ray Absorptiometry (DXA) PIXImus densitometer 

 

 

 

 

 

 

 

 



86 
 

Figure 2.7 Fluorescent microscope (Olympus System Microscope BX51, Olympus 

instruments, UK). 
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Chapter 3 

 

Insulinotropic, glucose-lowering and beta-cell anti-apoptotic 

actions of temporin and esculentin peptides from skin 

secretions of frogs belonging to family of Ranidae 
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3.1 Summary  

The present Chapter evaluated whether temporin and esculentin-1 peptides, identified in 

skin secretion of frog Rana temporaria and Rana esculenta, respectively, could represent 

a template for the design of new types of drugs for use in T2DM therapy. Temporin A, 

temporin F, and temporin G, and Esculentin-1a (1-21).NH2,  esculentin-1b(1-18).NH2, 

and esculentin-1a(1-14).NH2 evoked concentration-dependent stimulation of insulin 

release from BRIN-BD11 rat clonal β-cells, 1.1B4 human-derived pancreatic β-cells and 

isolated mouse islets with no cytotoxicity at concentrations up to 3 μM. In contrast, 

temporin B, C, E, and analog [D-Lys14, D-Ser17] esculentin-1a (1-21).NH2 (esculentin (1-

21)-1c) were less potent and, temporin H, K and esculentin-1a(9-21) were inactive. The 

data indicate that cationicity, hydrophobicity, and the angle subtended by the charged 

residues in the temporin, and helicity in the esculentin-1 peptides are important 

determinants for in vitro insulinotropic activity. The mechanism of insulinotropic action 

of esculentin-1 peptides involved membrane depolarization and an increase in 

intracellular Ca2+ concentrations, whereas temporin peptides had no effect on these 

parameters. Temporin A, temporin F, esculentin-1a (1-21) NH2 and esculentin (1-21)-1c 

(1 µM) protected BRIN-BD11 cells against cytokine-induced apoptosis to a similar extent 

as GLP-1 (1 µM). In contrast, the protective effects of esculentin-1b (1-18).NH2 and 

esculentin-1a (1-14).NH2 were comparably less, whereas temporin G failed to show any 

effect. Temporin A, temporin F and esculentin (1-21)-1c (1 µM) also augmented 

proliferation of the cells to a similar extent as GLP-1. In contrast proliferative effect of 

esculentin-1a (1-21)NH2 was less significant, while temporin G, esculentin-1b (1-

18).NH2, and esculentin-1a (1-14).NH2 failed to show any positive effects. Intraperitoneal 

injection of either temporin G or esculentin (1-21)-1c together with an intraperitoneal 

glucose load (18 mmol/kg bw) in NIH Swiss mice improved glucose tolerance with a 
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concomitant increase in insulin secretion. Whereas temporin A, temporin F, esculentin-

1a (1-21).NH2, esculentin-1b (1-18).NH2 and esculentin-1a (1-14)  administration was 

without significant effect on plasma glucose levels. 

 

3.2 Introduction 

 The global rise in the prevalence of Type 2 diabetes mellitus (T2DM) has mandated a 

search for new therapeutic options for treating patients with the disease (Ríos et al., 2015). 

After the discovery of insulin therapy, scientists have shown immense interest in 

exploring peptides with antidiabetic properties from natural sources. Many frog-skin 

peptides that were first identified on the basis of their ability to inhibit the growth of 

bacteria and regulate cytokine production have subsequently been shown to evoke insulin 

release from clonal β-cells in vitro and lower blood glucose concentrations in mouse 

models of T2DM (Conlon et al., 2014a. 2018).  

Temporin and esculentin-1 peptides were identified in frogs belonging to the extensive 

family Ranidae of both Eurasian and N. American (Conlon et al., 2009, Xu & Lai, 2015). 

The genes encoding a family of such peptides were identified in a cDNA library from the 

skin of the European common frog Rana temporaria (Simmaco et al., 1996) and Rana 

esculenta (Simmaco et al., 1994). Temporins are small (8 - 17 amino acid residues), C-

terminally α-amidated peptides, while esculentin-1 peptide is relatively large size, 

containing a cystine-bridged, cyclic domain rendering them difficult to synthesize. These 

peptides are best known for their ability to inhibit the growth of the microorganism (Ponti 

et al., 1999, Mangoni et al., 2016). The N-terminal fragments of the esculentin-1 peptide, 

esculentin-1b (1-18) (Mangoni et al., 2003, Marcellini et al., 2009, Maisetta et al., 2009, 

Luca et al., 2014) and esculentin-1a (1-21) (Luca et al., 2014, Mangoni et al., 2015) also 

retain the full antimicrobial activity of the intact peptides and showed reduced cytotoxic 
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activity against eukaryotic cells. The certain members of the temporin family have been 

shown to display chemoattractive (Chen et al., 2004, Di Grazia et al., 2014) anti-

inflammatory (Capparelli 2009), and vasorelaxant and antitumour activity (Kim et al., 

2000). Recent studies have shown that the truncated forms of the esculentin-1 peptide and 

the C-terminally α-amidated esculentin-1a (1-21).NH2  play a significant role in 

promoting wound healing and in treating Pseudomonas aeruginosa infections in patients 

with cystic fibrosis (Cappiello et al., 2016) and keratitis (Kolar et al., 2015, Casciaro et 

al., 2017) as well as clinical mastitis caused by bacteria in dairy cows (Islas-Rodrìguez et 

al., 2009). The therapeutic effects of esculentin-1a (1-21).NH2  were augmented by 

incorporation of D-amino acids at positions 11th and 14th position and the resulting 

analogue, termed Esc(1-21)-1c), showed greater stability in serum, reduced cytotoxicity 

towards mammalian cells, increased activity against the biofilm form of P. aeruginosa, 

and increased ability to promote migration of lung epithelial cells  (Di Grazia et al., 2015, 

Loffredo et al., 2017). 

Preliminary studies have shown that temporins from Rana ornativentris and Lithobates 

virgatipes and Lithobates catesbeianus (Abdel-Wahab et al., 2007, Mechkarska et al., 

2011) and, esculentin 1a and esculentin 1b peptides isolated from Rana saharica 

(Marenah et al., 2006), demonstrated insulinotropic activity in glucose-responsive rat 

clonal β-cells BRIN-BD11. The present study aimed to investigate the insulin-releasing 

ability of a series of temporins and synthetic N-terminal fragments of esculentin-1a and -

1b peptides in vitro using established rat and human clonal β-cell lines and freshly 

prepared mouse pancreatic islets. Effects of these peptides on glucose tolerance and 

insulin release in vivo also were investigated in overnight fasted lean mice (NIH Swiss 

mice).  It has recently been shown that the frog skin-derived peptide PGLa-AM1 also 

protects against cytokine-induced DNA damage as well as promotes β-cell proliferation 
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(Owolabi et al., 2017). Consequently, the effects of the temporin and esculentin-1 

peptides on these parameters were also investigated using BRIN-BD11 cells. 

 

3.3 Materials and Methods 

3.3.1 Reagents 

All reagents used in this study are listed in Chapter 2, Section 2.1. 

 

3.3.2 Peptides 

The purity and identity of peptides were confirmed by reversed-phase HPLC (Chapter 2, 

Section 2.2.1.1) and MALDI-TOF mass spectrometry (Chapter 2, Section 2.2.2) 

respectively. The primary structures, calculated isoelectric points (pI), and Grand 

Average of Hydropathy (GRAVY), calculated using the hydrophobicity scale of Kyte and 

Doolittle. The secondary structures of esculentin-1 peptides were predicted using the  

AGADIR program. 

 

3.3.3 Acute in vitro insulin release studies using BRIN-BD11 and 1.1B4 cells 

The culturing of rat clonal pancreatic β-cells (BRIN-BD11) and human-derived 

pancreatic β-cells (1.1B4) is described in detail in Chapter 2, Section 2.3.1. The acute 

insulin-releasing effects of temporin and esculentin-1 peptides (3 x 10-6 - 10-12 M; n = 8) 

were performed by incubating with cells for 20 min at 37°C using KRB buffer 

supplemented with 5.6 mM glucose. The procedure for measuring acute releasing effects 

of peptides is described in Chapter 2 Section 2.4.1.1. Control incubations were carried 

out by incubating cells with human GLP-1 (10 nM) and alanine (10 mM). After 

incubation, the cell supernatant was collected for measuring insulin (Chapter 2, Section 

2.4.4) and LDH concentration (Chapter 2, Section 2.5). 
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3.3.4 Cytotoxicity assay  

The cytotoxic effects of peptides (3 x 10-6 - 10-12 M; n = 4) on BRIN-BD11 cells were 

measured using a CytoTox 96 non-radioactive cytotoxicity assay kit, as previously 

described in Chapter 2, Section 2.5. 

 

3.3.5 Insulin release studies using isolated mouse islets 

The procedure for pancreatic islets isolation from an adult, male National Institutes of 

Health (NIH) Swiss mice (Harlan Ltd, Bicester, UK) is outlined in Chapter 2 Section 

2.4.2.1. After isolation, islets were cultured for 48 hr under the same conditions as used 

for BRIN-BD11 and 1.1B4 cells. The experimental procedure for measuring the acute 

effects of peptides on the rate of insulin release has been described in Chapter 2, Section 

2.4.2.2. After incubating islets with peptides (10-8 and 10-6 M) made in KRB buffer 

supplemented with 16.7 mM glucose, for 1 hr at 37°C, the supernatant was removed and 

measured for insulin by radioimmunoassay as outlined in Chapter 2, Section 2.4.4. The 

islet cells were then subjected to acid ethanol treatment for measuring total insulin content 

as previously described in Chapter 2, Section 2.4.2.4. GLP-1 (10 nM) and alanine (10 

mM) were used as a positive control in the experiment. 

 

3.3.6 Effect of temporin and esculentin-1 peptides on membrane potential and 

intracellular calcium ([Ca2+]i) concentrations 

Effects of the temporin and esculentin-1-derived peptides (1 µM) on membrane potential 

and intracellular Ca2+ concentrations in BRIN-BD11 cells were investigated using 

membrane potential and intracellular Ca2+assay kits (Molecular Devices, Sunnyvale, CA, 

USA). The experimental procedure is described in detail in Chapter 2, Section 2.6 and 

2.7. BRIN-BD11 cells were incubated with peptides (10-6 M) at 37C in 5.6 mM glucose 
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for 5 min, and information was acquired using a Flex Station scanning fluorimeter 

(Molecular Devices).  Control incubation: 5.6 mM glucose only, Positive control for 

membrane potential: 5.6 mM glucose plus 30 mM KCl and Positive control for 

intracellular calcium: 5.6 mM glucose plus 10 mM alanine were also carried out. 

 

3.3.7 Effects of the temporin and esculentin-1 peptides on cytokine-induced 

apoptosis in BRIN-BD11 cells 

The protective effects of temporin and esculentin-1 peptides against cytokine-induced 

DNA damage was investigated by exposing BRIN-BD11 cells (seeded at a density of 5 x 

104 cells per well) for 18 hr at 37°C to cytokine mixture (200 U/ml tumour-necrosis 

factor-a, 20 U/ml interferon-g, and 100 U/ml interleukin-1b) in the presence and absence 

of peptides (10-6 M). GLP-1 (10-6 M) was used as a positive control. The experimental 

procedure is outlined in Chapter 2, Section 2.10. Cells were washed with phosphate-

buffered saline (PBS) and fixed immediately using 4 % paraformaldehyde. After fixation, 

cells were permeabilised by treatment with 0.1 M sodium citrate buffer, pH 6.0 at 94°C 

for 20 min and then incubated with TUNEL reaction mixture1 hr at 37°C.  After 

incubation, cells were washed again with PBS and slides were viewed using a fluorescent 

microscope with 488 nm filter (Olympus System Microscope, model BX51; Southend-

on-Sea, UK). 

 

3.3.8 Effects of the temporin and esculentin-1 peptides on proliferation in BRIN-

BD11 cells 

The positive effect of temporin and esculentin-1 peptides on β-cell proliferation was 

investigated by using Ki-67 primary antibody (Abcam, Cambridge, UK). BRIN-BD11 

cells were incubated with 1 µM of test peptide for 18 hr at 37°C as previously described 
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in Chapter 2, Section 2.10. GLP-1 (10-6 M) was used as a positive control. After 

immediate fixing and permeabilization, cells were subjected to treatment with rabbit anti-

Ki-67 primary antibody and subsequently with Alexa Fluor 594 secondary antibody, 

which stains proliferating cells in red. Approximately 150 cells per replicate were 

analysed. 

 

3.3.9 Acute in vivo insulin release studies 

All animal experiments were carried out by the UK Animals (Scientific Procedures) Act 

1986 and EU Directive 2010/63EU for animal experiments and approved by Ulster 

University Animal Ethics Review Committee. All necessary precaution steps were taken 

to protect the animal from any potential suffering. Healthy adult (8 weeks old) NIH Swiss 

mice (Harlan Ltd, Bicester, UK), were housed separately and maintained in an air-

conditioned room (22 ± 2°C) with a 12-h light: 12- h dark cycle. The procedure for 

investigating acute in vivo effects of the peptide on glucose and insulin concentration is 

described in Chapter 2, Section 2.13.2. Overnight fasted were injected intraperitoneally 

with glucose alone (18 mmol/kg bw) or together with the test peptide (75 nmol/ bw). 

GLP-1 (25 nmol/kg bw) was used as positive control.  Blood samples were collected by 

tail bleeding, before and after peptide injection at time point 15, 30 and 60 min. Blood 

glucose was measured using an Ascencia Contour Blood Glucose Meter and plasma 

insulin by radioimmunoassay (Chapter 2, Section 2.13.5).  

 

3.3.10 Statistical Analysis 

Experimental data were analysed using GraphPad PRISM (Version 3). Results were 

expressed as means ± SEM and data compared using unpaired Student's t-test 

(nonparametric, with two-tailed P values and 95% confidence interval) and one-way 
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ANOVA with Bonferroni post-hoc test wherever applicable. Group of datasets were 

considered to be significantly different if P<0.05.  

 

3.4 Results 

3.4.1 Peptides 

Temporin and esculentin-1petides were supplied in pure form (>95%) by Prof Michael 

Conlon. The purity peptides were confirmed using reverse phase HPLC (Figure 3.1-3.4). 

The molecular weight of peptides confirmed by MALDI- TOF (Figure 3.5-3.8). The 

primary structures of the peptides investigated in this study, their molecular charge at pH 

7, Grand Average of Hydropathy (GRAVY), calculated using the hydrophobicity scale 

of Kyte and Doolittle, and predicted secondary structures of esculentin-1, determined 

using AGADIR program, are shown in Table 3.3 and 3.4.  

 

3.4.2 Effects of temporin and esculentin-1 peptides on insulin release from BRIN 

BD11 and 1.1B4 cells 

As expected, alanine (10 mM) and GLP-1 (10 nM) produced a significant (P<0.001) 

increase (approximately 2.5 - 7 folds) in the rate of insulin release on incubation with 

BRIN-BD11 cells compared with the rate in the presence of glucose alone. The insulin-

releasing effects of temporin and esculentin-1a peptides are summarised in Table 3.5 & 

3.6 respectively. The experimental data shows that, among temporin peptides, temporin 

A, F, and G were the most potent with a threshold concentration of 0.1 nM and produced 

>2-fold increase in the rate of insulin release at a concentration of 3 µM (Figure 3.9). A 

similar increase in the rate of insulin release was also produced by esculentin-1a (1-

21).NH2, esculentin-1a (1-14).NH2 and esculentin-1b (1-18).NH2 at 3 µM concentration 

on incubation with BRIN-BD11 cells. The stimulatory effects of these active esculentin-
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1a peptides were observed up to 1 nM concentration (Figure 3.11). There was no 

statistical difference in the responses produced by analogue esculentin (1-21)-1c and the 

other active esculentin-1a peptides at 3 µM concentration, however, the stimulatory 

response was observed up to 10 nM concentration. Neither temporin nor esculentin-1 

peptides produced a significant increase in the rate of release of the cytosolic enzyme 

LDH from BRIN-BD11 cells, at concentrations up to and including 3 µM (Figure 3.10 & 

3.12), suggesting that integrity of plasma membrane is intact. In the presence of DMSO 

(100%), significant increase (P<0.001) in LDH release was observed. 

The insulin-releasing effects of active temporin and esculentin-1 peptides were also 

reflected in a glucose-responsive 1.1B4 cell line (Figure 3.13 & 3.14). Temporin G on 

incubation with 1.1B4 cells produced a significant (P<0.05) increase in the rate of insulin 

release at concentrations ≥ 0.1 nM. On the other hand, the threshold concentration for 

temporin A and F was 1 nM.  The response produced by temporin G at 3 µM 

concentration was comparable to that produced by 10 nM GLP-1. Esculentin-1a (1-

21).NH2, esculentin-1a(1-14).NH2 and esculentin-1b (1-18).NH2 demonstrated increase 

in the rate of insulin release up 0.1 nM concentration. Whereas, the threshold 

concentration of analogue esculentin (1-21)-1C was 10-fold less compared to other active 

esculentin-1a peptides. Similar to temporin G, the response produced by 3 μM esculentin-

1a (1-21).NH2 was comparable to that produced by 10 nM GLP-1. 

 

3.4.3 Effects of temporin and esculentin-1 peptides on insulin release from isolated 

mouse islets 

Incubation of active temporins (temporins A, F & G) and esculentin-1 [esculentin-1a (1-

21).NH2, Esc(1-21)-1c, esculentin-1b (1-18).NH2 & esculentin-1a (1-14).NH2] peptides 

(10 nM and 1 µM) peptides with isolated islets from NIH Swiss mice produced a 
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significant (P<0.05 - P<0.001) and dose-dependent increase in the rate of insulin release 

compared with the rate in the presence of 16.7 mM glucose alone (Figure 3.15 & 3.16). 

However, the magnitude of increase in insulin release by active temporin and esculentin-

1 peptides was less than that demonstrated by the same concentration of GLP-1.  

 

3.4.4 Effects of temporin and esculentin-1 peptides on membrane depolarization and 

intracellular calcium ([Ca2+]i) in BRIN-BD11 cells 

Incubation of cells with insulin secretagogues, 30 mM KCl and alanine (10 mM) 

produced an immediate and sustained increase in membrane potential (Figure 3.17 & 

3.19) and intracellular calcium respectively (Figure 3.18 & 3.20). In contrast, 1 µM of 

active temporin peptides (temporin A, F & G) which were added 20 sec after start of data 

acquisition at a rate of ~62 μl/sec, produced no significant effects on membrane 

depolarization (Figure 3.17) and [Ca2+]i (Figure 3.18) compared with 5.6 mM glucose 

only. On the other hand, 1 µM of esculentin-1a (1-21).NH2, esculentin-1b (1-18).NH2 and 

esculentin-1a (1-14).NH2 produced significant increases in both membrane potential 

(Figure 3.19) and [Ca2+]i  (Figure 3.20) compared with control (5.6 mM glucose alone). 

However, in case of analogue esculentin (1-21)-1c, on incubation with cells did not lead 

to a significant increase in both membrane potential and [Ca2+]i compared to control. 

 

3.4.5 Effects of temporin and esculentin-1 peptides on cytokine-induced apoptosis 

and proliferation in BRIN-BD11 cells  

As shown in Figure 3.21, treatment of BRIN-BD11 cells with 1 µM concentration of 

temporin A and F, and GLP-1 alone, had no significant effect on the number of cells 

displaying DNA damage. In agreement, the number of apoptotic cells increased 

significantly (P<0.001) by 3-fold on incubation with proinflammatory cytokines mixture. 
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However, when the BRIN-BD11 cells co-incubated with temporin A and the cytokine 

mixture, the number of apoptotic cells was reduced significantly (P<0.01) by 37%. The 

corresponding value for temporin F was 42% (P<0.001). The degree of protection 

provided by temporin A and temporin F were comparable to that provided by the same 

concentration of concentration of GLP-1 (40%; P <0.01). On the other hand, temporin G 

failed to provide any protection to cell against cytokine mixture. In similar fashion, 

treatment of BRIN-BD11 cells with temporin A and temporin F (1 µM) resulted 

significant (P<0.01, P<0.001) increased in proliferating cells by 49% and 80% 

respectively, which were comparable to that produced by 1 µM GLP-1 (65 % increase; 

P<0.01). In temporin G treated cells, no significant effects on cell proliferation was 

observed (Figure 3.22). 

As shown in Figure 3.23, no adverse effects were observed in BRIN-BD11 cells treated 

with active esculentin-1 peptides. The number of cells exhibiting DNA damage was 

comparable to control.  However, all active esculentin-1 peptides have shown to protect 

BRIN-BD11 cells against cytokine-induced DNA damage. The degree of protection 

provided by esculentin-1a (1-21).NH2  and esculentin (1-21)-1c were comparable to that 

provided by the same concentration of GLP-1 (39%; P<0.01).  Esculentin-1b (1-18).NH2 

and esculentin-1a (1-14).NH2, also protected cells against cytokines but the effect was 

comparatively less than GLP-1. Similarly, incubation of cells with esculentin-1a (1-

21).NH2  and esculentin (1-21)-1c peptides resulted in significant (P<0.01) increase in the 

number of the proliferating cells (Figure 3.24). The increase produced by esculentin (1-

21)-1c was comparable to that produced by the same concentration of GLP-1. In the case 

of esculentin-1b (1-18).NH2 and esculentin-1a (1-14).NH2, no effects on proliferating 

cells were observed. 
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3.4.6 Effects of temporin and esculentin-1 peptides on glucose tolerance and insulin 

concentrations in mice  

No adverse effects were observed in the animals following intraperitoneal injection of the 

temporin and esculentin-1 peptides. Blood glucose concentrations in lean NIH Swiss mice 

receiving glucose plus temporin G (75 nmol/kg bw) or esculentin (1-21)-1c (75 nmol/kg 

bw) were significantly (P<0.05, P<0.01) lower at 15 min and 30 min after injection 

compared with animals receiving glucose only (Figure 3.25A & 3.27A). Similarly, the 

overall response of blood glucose (area under the curve) over 60 min was significantly 

(P<0.05) decreased after administration of the temporin G or esculentin (1-21)-1c (Figure 

3.25 B & 3.27B). These glucose-lowering effects of peptides were associated with a 

significant increase in plasma insulin concentration. Plasma insulin concentrations were 

significantly (P<0.05) higher at 15 min after glucose administration in animals receiving 

temporin G or esculentin (1-21)-1c compared with animals receiving glucose only (Figure 

3.25 C & 3.27C) and the integrated response i.e. total amount of insulin released over 60 

min was significantly greater  (P<0.05) (Figure 3.25 D & 3.27D). In contrast, no 

significant effects on blood glucose were observed at any time point after co-injection of 

temporin A, temporin F, esculentin-1a (1-21), esculentin-1b (1-18).NH2 and esculentin-

1a (1-14) with glucose compared to injection of glucose only (Figure 3.26 & 3.28). 

 

3.5 Discussion 

This study has identified temporins (Temporin A, B, F and G) and peptides derived from 

the N-terminal domain of the host-defence peptides esculentin-1a and -1b [esculentin-1a 

(1-21).NH2, esculentin-1b (1-18).NH2 and esculentin-1a (1-14).NH2] that stimulated the 

release of insulin from rodent and human clonal β-cells and isolated mouse islets at low 

concentrations without apparent toxicity.  
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Although the factors that influence the antimicrobial and cytotoxic activities of small 

peptides are reasonably well understood (Conlon et al., 2007a, Grieco et al., 2011, 

Mojsoska &, Jenssen 2015, Ramesh et al., 2016), the structural determinants of insulin-

releasing activity are largely unknown. Among temporin peptides, temporin A and G with 

a calculated pI of 10.06 and temporin F with a calculated pI of 8.86 were the most potent 

with a threshold concentration of 10-9 M (Table 3.5).  On the other hand, temporin B 

peptide also produced a significant increase in the rate of insulin release at 10-9 M but the 

maximum effects of the peptide was appreciably less than that of temporin A, F, and G. 

The significant, albeit weak  insulin-releasing activity of anionic peptides, temporin C 

and E with a threshold concentration of 10-7 M, demonstrates that a net positive charge at 

physiological pH is not a mandatory requirement. Similarly, cationicity is not the only 

parameter influencing this activity as temporin H and K with a calculated pI of 8.86 

lacked insulin-releasing actions at concentrations up to and including 3 x 10-6 M. This 

suggests that peptide hydrophobicity is also an important determinant of activity as these 

peptides were appreciably more hydrophilic than the other temporins. Despite having the 

same isoelectric point and similar hydrophobicities, temporin B peptide displayed 

reduced insulinotropic activity compared with temporin F.  In a cationic, amphipathic α-

helical peptide, the polar angle (Ф) subtended by the positively charged amino acids is an 

important determinant of antimicrobial and hemolytic activity (Dathe et al., 2004). In the 

case of temporin-1DRa analogues, increasing the polar angle to 180o by appropriate 

substitutions by L-lysine produced inactive components (Conlon et al., 2007a). As shown 

in Fig. 3.29, the angle subtended by the positive charge on the α-amino group of the N-

terminal residue and the positive charge on the ε-amino group of the lysine residue is 180o 

for temporin B and 120o for temporin F. This could be the reason for the reduced insulin-

releasing activity of temporin B compared with temporin F. 
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The present study has provided evidence that the degree of helicity is of particular 

importance is determining the insulin-releasing activity of the esculentin-1 peptides. 

Consistent with secondary structure predictions using the AGADIR algorithm (Kyte, & 

Doolittle, 1982) (Table 3.4), circular dichroism (Grazia et al., 2015) and NMR (Ghosh et 

al., 2016) studies have shown that esculentin-1a (1-21).NH2 possess a random coil 

structure in aqueous solution but adopts a predominantly α-helical conformation in the 

environment of lysophosphatidylcholine and lipopolysaccharide micelles. A similar 

investigation of the preferred conformation of esculentin-1b (1-18).NH2 has demonstrated 

that the N-terminal domain of this peptide (Phe3 -Leu11) adopts a stable α-helical 

structure in the membrane-mimetic solvent 50% trifluoroethanol-water while the more 

hydrophobic C-terminal portion is unstructured (Manzo et al., 2012). The presence of 

helix-destabilizing D-amino acid residues in esculentin (1-21)-1c means that the α-helical 

domain is confined to the N-terminal region of the peptide (Muller et al., 2005). While 

the cationicity and hydrophobicity of the diastereomer are the same as the native peptide, 

this reduction in helicity results in a decrease in the in vitro insulinotropic activity. 

Similarly, the molecular charge of esculentin-1a (1-14).NH2 and esculentin-1a (9-21) are 

the same, and their hydrophobicities are very similar, but the AGADIR programme 

predicts that the former peptide has the propensity to adopt a stable α-helical 

conformation whereas the latter is unstructured in solution. In consequence, esculentin-

1a (1-14).NH2 is equipotent and equally effective as esculentin-1a (1-21).NH2 in 

stimulating insulin release whereas esculentin-1a (9-21) is inactive (Table 3.6). 

Insulin secretion from pancreatic beta cells is regulated by the KATP channel-dependent 

and KATP channel-independent pathway (Henquin, 2000, 2004). In the former pathway, 

ATP molecule generated from glucose metabolism depolarize the cell by blocking the 

ATP-sensitive potassium channel. As a result, calcium ion influx through the opening of 
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voltage-dependent channels, which induce the beta cell to release insulin. Previous 

studies have reported that naturally occurring frog skin-derived peptides such as 

alyteserin-2a (Ojo et al. 2013b), tigerinin-1R (Ojo et al. 2011), and CPF-6 (Srinivasan et 

al. 2013) stimulate insulin release by depolarising membrane of BRIN-BD11 cells with 

a significant increase in intracellular Ca2+, suggesting that these peptides operate via the 

KATP channel-dependent pathway. In common with these peptides, incubation of BRIN-

BD11 cells with esculentin-1 peptides resulted in a significant increase in membrane 

potential and intracellular calcium. In contrast, hymenochirin 1B (Owolabi et al., 2015), 

phylloseptin-L2 (Abdel-Wahab et al., 2008b) pseudin-2 (Abdel-Wahab et al., 2008a) 

peptide did not affect these parameters when incubated with BRIN-BD11 cells under the 

same condition. Consistent with these, incubation of temporin A, F and G with BRIN-

BD11 cells did not have any effects on either membrane depolarization or intracellular 

calcium suggesting that the insulinotropic action of peptides is mediated via a calcium-

independent pathway.  

The progression of type 2 diabetes is linked to the loss of beta cell mass as well as beta 

cell function, which may contribute to impaired insulin secretion (Cantley & Ashcroft, 

2015, Arden, 2018). In this regard, we further investigated the proliferative and anti-

apoptotic effects of active temporin and esculentin-1 peptides. Consistent with previous 

reports (Yabe et al., 2011, Lee et al., 2014), GLP-1 protected the beta cell against 

cytokines induced apoptosis as well as significantly improved proliferation of beta cells. 

The present study has shown that the proliferative activity of temporin A and temporin F, 

and esculentin (1-21)-1c was comparable to that of GLP-1. Furthermore, these peptides, 

including esculentin-1a (1-21) were equally effective as GLP-1 in protecting the beta cell 

against cytokines induced apoptosis. On the other hand, temporin G, esculentin-1a (1-14) 

and esculentin-1b (1-18) peptides failed to show any positive effect of beta cell 
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proliferation. However, the latter two peptides showed weakly, but significant protective 

effects against cytokines induced beta-cell apoptosis cells. 

After demonstrating positive effects on insulin release in BRIN-BD11, 1.1B4 and primary 

islet cells, active temporin and esculentin-1 peptides were further investigated for their 

effects on glucose tolerance in lean mice. Temporin A, temporin F, esculentin-1a (1-21), 

esculentin (1-14) and esculentin (1-18) despite their high insulinotropic potency in vitro, 

failed to lower blood glucose when administered interpretationally to overnight fasted 

mice. The reason for the loss of activity could be rapid degradation or clearance of these 

peptides from the circulation. Therefore, it is necessary to design long-acting analogues 

if these peptides are to find application as incretins in T2DM therapy. The D-amino acid 

substituted analogue esculentin (1-21)-1c, although a less potent insulin secretagogue in 

vitro, has been shown to possess increased stability in serum (Grazia et al., 2015). 

Administration of this peptide to mice under the same conditions significantly improved 

glucose tolerance and increased circulating insulin concentrations. Analogues of the frog 

skin-derived peptide esculentin-2Cha (1-30) containing D-amino acids have also been 

designed that exhibit increased resistance to degradation by serum peptidases and 

consequently show improved glucose-lowering properties in insulin-resistant high fat fed 

mice compared with the unsubstituted peptide (Vasu et al., 2017). It is well established 

that individuals with T2DM are more prone to microbial infections than healthy subjects 

(Muller et al., 2005). Esculentin (1-21)-1c displays potent broad-spectrum antimicrobial 

activity (Grazia et al., 2015, Loffredo et al., 2017) so that regular injections of the peptide 

as a part of a therapeutic strategy may have a prophylactic effect on preventing infection 

as well as promoting glucose homeostasis in these patients. Temporin G (75 nmol/kg bw) 

also significantly stimulated insulin release and lowered blood glucose concentrations in 
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vivo when administered to mice, however, the effects were less than that produced by 

GLP-1 (25 nmol/kg bw). 

In conclusion, the study has shown the insulinotropic activity of temporin and esculentin-

1 peptides and its analogue esculentin (1-21)-1c as well as their positive effects on beta 

cell proliferation and survival. These peptides could represent a template for the design 

of new types of drugs for use in T2DM therapy. Further studies are warranted to develop 

longer-acting forms of peptides for assessment in appropriate animal models of T2DM, 

such as the insulin-resistant, glucose-intolerant, high fat fed mouse. 
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Table 3.1 Amino acid sequence of temporin and esculentin-1 peptides 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sr. 

No 

Peptide Sequence 

 

1 

 

Temporin A 
 

 

FLPLIGRVLSGIL-NH2 

 

2 

 

Temporin B 
 

 

LLPIVGNLLKSLL-NH2 

 

3 

 

Temporin C 

 

 

LLPILGNLLNGL-NH2 

 

4 

 

Temporin E 

 

 

VLPIIGNLLLNS-NH2 

 
5 

 
Temporin F 

 

 
FLPLIGKVLSGIL-NH2 

 

6 

 

Temporin G 
 

 

FFPVIGRILNGIL-NH2 

 

7 

 

Temporin H 
 

 

LSPNLLKSLL-NH2 

 

8 

 

Temporin K 

 

 

LLPNLLKSLL-NH2 

 

9 

 

Esculentin-1a (1-21) 

 

 

GlFSKLAGKKlKNLLlSGLKG-NH2   

 
10 

 
Esculentin (1-21)-1C 

 

 
GIFSKLAGKKlKNLLlSGLKG-NH2   

 

11 

 

Esculentin-1a (1-14) 

 

 

GlFSKLAGKKlKNL 
 

 

12 

 

Esculentin-1a (9-21) 
 

 

KKlKNLLlSGLKG 
 

 

13 

 

Esculentin-1b (1-18) 

 

 

GlFSKLAGKKLKNLLlSG-NH2 
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Table 3.2 Reverse phase HPLC, retention time and MALDI-TO MS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sr. 

No 

Peptide Molecular 

weight Da 

(Theoretical) 

Molecular 

weight Da 

(Experimental) 

Retention 

time (min) 

 
1 

 
Temporin A 

 

 
1397 

 
1397.4 

 
28.4 

 
2 

 
Temporin B 

 

 
1392 

 
1392.7 

 
28.2 

 

3 

 

Temporin C 
 

 

1362 

 

1362.2 

 

27.5 

 

4 

 

Temporin E 

 

 

1378 

 

1377.9 

 

27.1 

 

5 

 

Temporin F 

 

 

1369 

 

1368.9 

 

28.7 

 
6 

 
Temporin G 

 

 
1458 

 
1458.1 

 
27.3 

 
7 

 
Temporin H 

 

 
1113 

 
1113.2 

 
25.1 

 

8 

 

Temporin K 
 

 

1123 

 

1122.7 

 

28.7 

 

9 

 

Esculentin-1a (1-21) 

 

 

2184 

 

2183.3 

 

26.4 

 

10 

 

Esculentin (1-21)-1C 

 

 

2184 

 

2184.1 

 

26.3 

 
11 

 
Esculentin-1a (1-14) 

 

 
1516 

 
1516.2 

 
26.8 

 
12 

 
Esculentin-1a (9-21) 

 

 
1411 

 
1412 

 
26.2 

 

13 

 

Esculentin-1b (1-18) 

 

 

1886 

 

1886.1 

 

26.6 
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Table 3.3 Primary structure and physicochemical properties of the temporin 

peptides used in this study 

 

Peptide           Primary structure     Calc. pI         GRAVY 
 

Temporin A        FLPLIGRVLSGIL.NH2     10.06     1.81 

 

Temporin B        LLPIVGNLLKSLL.NH2     8.86      1.64  

 

Temporin C        LLPILGNLLNGLL.NH2     5.28      1.67 

  

Temporin E        VLPIIGNLLLNSL.NH2     5.28      1.55 

 

Temporin F        FLPLIGKVLSGIL.NH2     8.86      1.85  

 

Temporin G        FFPVIGRILNGIL.NH2     10.06     1.58 

 

Temporin H        LSP***NLLKSLL.NH2     8.86      0.84  

 

Temporin K        LLP***NLLKSLL.NH2     8.86      1.30 

 

 

Calc.pI refers to calculated isoelectric point and GRAVY represents Grand Average of 

Hydropathy determined using the hydrophobicity scales of Kyte and Doolittle. 
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Table 3.4 Primary structure and physicochemical properties of the esculentin-1 

peptides used in this study 

  

Peptide         Primary structure        Charge  GRAVY Helical              

                                                        Domain             

 

Esc-1a(1-21)       GIFSKLAGKKIKNLLISGLKGa       +6    0.34    5-14 

 

Esc-1a(1-21-1C   GIFSKLAGKKIKNlLIsGLKGa     +6      0.34    ND 

 

Esc-1a(1-14)     GIFSKLAGKKIKNLa           +4    0.04    5-11 

  

Esc-1a(9-21)     KKIKNLLISGLKG             +4   -0.02 Nonhelical                     

                                                      

Esc-1b(1-18)     GIFSKLAGKKLKNLLISGa          +5     0.38    5-14 

 

              

 
a denotes C-terminal α-amidation. Charge refers to the net charge at pH 7.0 and GRAVY 

represents Grand Average of Hydropathy determined using the hydrophobicity scales of 

Kyte and Doolittle.  Secondary structure (extent of the helical domain) was predicted 

using the AGADIR algorithm. ND not determined. 
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Table 3.5 Effects of temporin peptides on the rate of insulin release from BRIN-

BD11 and 1.1B4 clonal β-cells 

 

                BRIN-BD11                                                  1.1B4 
 

Peptide Threshold  

Conc.(M) 

Insulin release at 3 µM 

Conc.  

ng/106 cells/20min 

Threshold  

Conc.(M) 

Insulin release at 3 µM 

Conc.  

ng/106 cells/20min 

 

None 

 

 
NA 

 
0.73 ± 0.08  

 

 

NA 
 

0.09 ± 0.01 

 

 

Temporin A 

 

 

10-9 

 

 

1.92 ± 0.20*** 

 

10-9* 

 

 

0.18 ± 0.01 

 

Temporin B 

 

 

10-9 

 

 

1.25 ± 0.07*** 

 

10-8* 

 

 

ND 

 

Temporin C 

 

 

10-7 

 

 

1.11 ± 0.12** 

 

10-7* 

 

 

ND 

 

Temporin E 

 

 

10-7 

 

 

1.10 ± 0.08** 

 

10-7* 

 

 

ND 

 

 

Temporin F 

 

 

10-9 
 

 

1.85 ± 0.20*** 

 

10-9** 
 

 

0.17 ± 0.01  

 

Temporin G 

 

 

10-9 

 

 

1.73 ± 0.17*** 

 

10-10* 

 

 

0.21 ± 0.01 

 

Temporin H 

 

 

NA 

 

No effect 

 

ND 

 

ND 

 

Temporin K 

 

 

NA 

 

No effect 

 

ND 

 

ND 

 

 

Threshold concentration refers to the minimum concentration of peptide producing a 

significant increase in the rate of insulin release compared with the rate in the presence 

of glucose only. Max, effect refers to the rate of insulin release in the presence of 3 µM 

peptide. NA: not applicable; ND: not determined. *P<0.05, **P<0.01, ***P<0.001 vs 5.6 

mM glucose alone. 
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Table 3.6 Effects of the esculentin-1 peptides on the rate of insulin release from 

BRIN-BD11 and 1.1B4 clonal β-cells 

 

                       BRIN-BD11                                  1.1B4 
 

Peptide Threshold  

Conc.  (M) 

Insulin release at 3 

µM Conc  

ng/106 cells/20min  

Threshold  

Conc. (M) 

Insulin release at 3 

µM Conc  

ng/106 cells/20min  

 
None 

 
NA 

 
    1.29 ± 0.08  

 

NA 
 

0.04 ± 0.01 

 
Esculentin-1a(1-21)a 

 

 

10-9* 

 

 

2.53 ± 0.05*** 

 

10-10* 

 

 

0.07 ± 0.01*** 

 

       Esculentin (1-

21)- 1C 

 

 

10-8* 

 

 

2.63 ± 0.12*** 

 

10-9* 

 

0.07 ± 0.01*** 

 

Esculentin-1a (1-14)a 

 

 

10-9* 

 

 

2.67 ± 0.03*** 

 

10-10* 

 

0.07 ± 0.01*** 

 
Esculentin-1a (9-21) 

 

NA 

 

 

1.29 ± 0.08 

 

ND 

 

ND 

 
Esculentin-1b (1-18)a 

 

 

10-9** 

 

 

2.81 ± 0.08*** 

 

10-9** 

 

 

0.07 ± 0.01*** 

 

 

Threshold concentration refers to the minimum concentration of peptide producing a 

significant increase in the rate of insulin release compared with the rate in the presence 

of glucose only. Max. effect refers to the rate of insulin release in the presence of 3 µM 

peptide. NA: not applicable; ND: not determined. *P<0.05, **P<0.01, ***P<0.001 vs 5.6 

mM glucose alone. 
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Figure 3.1 Representative reverse-phase HPLC profile of temporin peptides 

 

C-8 analytical column was used to obtain a profile using a gradient from 0 to 100 % acetonitrile over 28 min. 

 



112 
 

Figure 3.2 Representative reverse-phase HPLC profile of temporin peptides 

 

C-8 analytical column was used to obtain a profile using a gradient from 0 to 100 % acetonitrile over 28 min. 
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Figure 3.3 Representative reverse-phase HPLC profile of esculentin-1 peptides 

 

C-8 analytical column was used to obtain a profile using a gradient from 0 to 100 % acetonitrile over 28 min. 
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Figure 3.4 Representative reverse-phase HPLC profile of esculentin-1 peptides 

 

 

C-8 analytical column was used to obtain a profile using a gradient from 0 to 100 % acetonitrile over 28 min. 
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Figure 3.5 Representative MALDI-TOF spectra of temporin peptides 

 

Matrix α-cyano cinnamic acid (1.5 µl) was mixed with purified peptide (1.5 µl) and left to dry on the MALDI plate. After drying, MALDI plate 

was applied to Voyager DE Bio spectrometry workstation. The mass-to-charge ratio versus peak intensity was recorded. 
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Figure 3.6 Representative MALDI-TOF spectra of temporin peptides 

 

Matrix α-cyano cinnamic acid (1.5 µl) was mixed with purified peptide (1.5 µl) and left to dry on the MALDI plate. After drying, MALDI plate 

was applied to Voyager DE Bio spectrometry workstation. The mass-to-charge ratio versus peak intensity was recorded. 
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Figure 3.7 Representative MALDI-TOF spectra of esculentin-1 peptides 

 

Matrix α-cyano cinnamic acid (1.5 µl) was mixed with purified peptide (1.5 µl) and left to dry on the MALDI plate. After drying, MALDI plate 

was applied to Voyager DE Bio spectrometry workstation. The mass-to-charge ratio versus peak intensity was recorded. 
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Figure 3.8 Representative MALDI-TOF spectra of esculentin-1 peptides 

 

 

Matrix α-cyano cinnamic acid (1.5 µl) was mixed with purified peptide (1.5 µl) and left to dry on the MALDI plate. After drying, MALDI plate 

was applied to Voyager DE Bio spectrometry workstation. The mass-to-charge ratio versus peak intensity was recorded. 
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Figure 3.9 Effects of temporin peptides on insulin release from BRIN-BD11 rat 

clonal β-cells. 
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Effects of A) Temporin A, B) Temporin F and C) Temporin G on insulin release from 

BRIN-BD11 rat clonal β-cells. Values are mean ± SEM for n = 8. *P<0.05, **P<0.01, 

and ***P<0.001 compared to 5.6 mM glucose alone.  
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Figure 3.10 Effects of temporin peptides on LDH release from BRIN-BD11 rat 

clonal β-cells  
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Effects of A) Temporin A, B) Temporin F, and C) Temporin G on LDH release from 

BRIN-BD11 rat clonal β-cells. DMSO (100%) was used as positive control. Values 

are Mean ± SEM with n=4 for LDH. 
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Figure 3.11 Effects of esculentin-1 peptides on insulin release from BRIN-BD11 

rat clonal β-cells 

0

1

2

3

4

5 Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

Glucose (5.6 mM) + GLP-1 (10-8 M)

Glucose (5.6 mM) + Esculentin-1a(1-21)

3x10-6 10-6 10-7 10-8 10-9 10-10 10-11 10-12

Peptide concentration [M]

***

*** *** ** * *

***

A)

In
su

lin
 re

lea
se

(n
g/

10
6  ce

lls
/20

 m
in

)

 

 

0

1

2

3

4

5 Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

Glucose (5.6 mM) + GLP-1 (10-8 M)

Glucose (5.6 mM) + Esculentin (1-21)-1C

3x10-6 10-6 10-7 10-8 10-9 10-10 10-11 10-12

Peptide concentration [M]

***

***
*** ** *

***

B)

In
su

lin
 re

lea
se

(n
g/

10
6  ce

lls
/20

 m
in

)

 

 

0

1

2

3

4

5 Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

Glucose (5.6 mM) + GLP-1 (10-8 M)

Glucose (5.6 mM) + Esculentin-1a(1-14)

3x10-6 10-6 10-7 10-8 10-9 10-10 10-11 10-12

Peptide concentration [M]

***

***
*** ** *

***

*

C)

In
su

lin
 re

lea
se

(n
g/

10
6  ce

lls
/20

 m
in

)

 

 

0

1

2

3

4

5 Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

Glucose (5.6 mM) + GLP-1 (10-8 M)

Glucose (5.6 mM) + Esculentin-1b(1-18)

3x10-6 10-6 10-7 10-8 10-9 10-10 10-11 10-12

Peptide concentration [M]

***

***
***

*** ** **
**

D)

In
su

lin
 re

lea
se

(n
g/

10
6  ce

lls
/20

 m
in

)

 

Effects of A) Esculentin-1a (1-21), B) Esculentin (1-21)-1C, C) Esculentin-1a (1-14) 

and D) Esculentin-1b (1-18) on insulin release from BRIN-BD11 rat clonal β-cells. 

Values are mean ± SEM for n = 8. *P<0.05, **P<0.01, and ***P<0.001 compared to 

5.6 mM glucose alone.  
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Figure 3.12 Effects of esculentin-1 peptides on LDH release from BRIN-BD11 

rat clonal β-cells 
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Effects of A) Esculentin-1a (1-21), B) Esculentin (1-21)-1C, C) Esculentin-1a (1-14) 

and D) Esculentin-1b (1-18) on LDH release from BRIN-BD11 rat clonal β-cells. 

DMSO (100%) was used as positive control. Values are Mean ± SEM with n=4 for 

LDH. 
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Figure 3.13 Effects of temporin peptides on insulin release from 1.1B4 human 

clonal β-cells 
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Effects of A) Temporin A, B) Temporin F, and C) Temporin G on insulin release from 

1.1B4 human clonal β-cells. Values are mean ± SEM for n = 8. **P<0.01 and 

***P<0.001 compared to 5.6 mM glucose alone.  
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Figure 3.14 Effects of esculentin-1 peptides on insulin release from 1.1B4 

human clonal β-cells 
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Effects of A) Esculentin-1a (1-21), B) Esculentin (1-21)-1C, C) Esculentin-1a (1-14) 

and D) Esculentin-1b (1-18) on insulin release from 1.1B4 human clonal β-cells. 

Values are mean ± SEM for n = 8. *P<0.05, **P<0.01, and ***P<0.001 compared to 

5.6 mM glucose alone.  
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Figure 3.15 Effects of temporin peptides on insulin release from release from 

isolated mouse islets 
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Effects of A) Temporin A, B) Temporin F, and C) Temporin G on insulin release from 

isolated mouse islets. Values are mean ± SEM for n = 8. *P<0.05, **P<0.01, and 

***P<0.001 compared to 5.6 mM glucose alone.  
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Figure 3.16 Effects of esculentin-1 peptides on insulin release from release from 

isolated mouse islets 

0

5

10

15

20

25

1.4 mM glucose

16.7 mM glucose
16.7 mM glucose + Alanine (10 nM)

10-6 10-8

***

***

******

**

**

10-6

16.7 mM glucose + GLP-1

10-8

16.7 mM glucose + Esculentin-1a(1-21)

A)

Peptide concentration [M]

In
su

lin
 re

le
as

e
(%

of
 to

ta
l in

su
lin

co
nt

en
t)

0

5

10

15

20

25

1.4 mM glucose

16.7 mM glucose

16.7 mM glucose + Alanine (10 nM)

10-6 10-8

***

***

******

*

**

10-6

16.7 mM glucose + GLP-1

10-8

16.7 mM glucose + Esculentin (1-21)-1C

B)

Peptide concentration [M]

In
su

lin
 re

le
as

e
(%

of
 to

ta
l i

ns
ul

in
co

nt
en

t)

 

0

5

10

15

20

25

1.4 mM glucose
16.7 mM glucose
16.7 mM glucose + Alanine (10 nM)

10-6 10-8

***

***

******

***

**

10-6

16.7 mM glucose + GLP-1

10-8

16.7 mM glucose + Esculentin-1a(1-14)

C)

Peptide concentration [M]

In
su

lin
 re

le
as

e
(%

of
 to

ta
l in

su
lin

co
nt

en
t)

 

0

5

10

15

20

25

1.4 mM glucose

16.7 mM glucose
16.7mM glucose + Alanine (10 nM)

10-6 10-8

***

***

******

**

**

10-6

16.7mM glucose + GLP-1

10-8

16.7mM glucose + Esculentin-1b(1-18)

D)

Peptide concentration [M]

In
su

lin
 re

le
as

e
(%

of
 to

ta
l i

ns
ul

in
co

nt
en

t)

 

Effects of A) Esculentin-1a (1-21), B) Esculentin (1-21)-1C , C) Esculentin-1a (1-14) 

and D) Esculentin-1b (1-18) on insulin release from isolated mouse islets. Values are 

mean ± SEM for n = 8. *P<0.05, **P<0.01 and ***P<0.001 compared to 5.6 mM 

glucose alone.  
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Figure 3.17 Effects of temporin peptides on membrane potential in BRIN-BD11 

cells expressed as a line graph (A, C, E) and area under the curve (B, D, F) 
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Effects of Temporin A, Temporin F and Temporin G on membrane potential in BRIN-

BD11 cells expressed as relative fluorescence units, RFU as a function of time (A, C, 

E) and the integrated response (area under the curve) (B, D, F) for respective peptide. 

Peptides were added 20 sec after start of data acquisition at a rate of ~62 μl/sec. Values 

are mean ± SEM (n = 6).  ***P<0.001 compared with 5.6 mM glucose alone. 
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Figure 3.18 Effects of temporin peptides on intracellular calcium in BRIN-BD11 

cells (A, C, E) and area under the curve (B, D, F) 
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Effects of Temporin A, Temporin F and Temporin G on intracellular calcium in BRIN-

BD11 cells expressed as relative fluorescence units, RFU as a function of time (A, C, 

E) and the integrated response (area under the curve) (B, D, F) for respective peptide. 

Peptides were added 20 sec after start of data acquisition at a rate of ~62 μl/sec. Values 

are mean ± SEM (n = 6).  ***P<0.001 compared with 5.6 mM glucose alone. 
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Figure 3.19 Effects of esculentin-1 peptides on membrane potential in BRIN-

BD11 cells expressed as a line graph (A, C, E, G) and area under the curve (B, D, 

F, H) 
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Effects of Esculentin-1a (1-21), Esculentin (1-21)-1C, Esculentin-1a (1-14) and 

Esculentin-1b (1-18) on membrane potential in BRIN-BD11 cells expressed as relative 

fluorescence units, RFU as a function of time (A, C, E, G) and the integrated response 

(area under the curve) (B, D, F, H) for respective peptide. Peptides were added 20 sec 

after start of data acquisition at a rate of ~62 μl/sec. Values are mean ± SEM (n = 6). 

*P<0.05, **P<0.01 and ***P<0.001 compared with 5.6 mM glucose alone. 
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Figure 3.20 Effects of esculentin-1 peptides on intracellular Ca2+ in BRIN-BD11 

cells expressed as line graph (A, C, E, G) and area under the curve (B, D, F, H) 

100 200 300
-0.25

2.25

4.75

7.25
Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

Glucose (5.6 mM) + Esculentin-1a (1-21) (10 -6 M)

A)

Time (s)

In
tr

a
c

e
ll
u

la
r 

C
a

lc
iu

m

(R
F

U
)

0

300

600

900

1200

Glucose (5.6 mM) + Esculentin-1a (1-21) (10 -6 M)

***

Alanine Esculentin-1a (1-21)

Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

B)

*

Additions

A
re

a
 u

n
d

e
r 

th
e
 c

u
rv

e

(A
U

C
)

100 200 300
-0.25

2.25

4.75

7.25

Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

Glucose (5.6 mM) + Esculentin (1-21)-1C (10 -6 M)

C)

Time (s)

In
tr

a
c

e
ll
u

la
r 

C
a
lc

iu
m

(R
F

U
)

0

600

1200

***

Alanine Esculentin (1-21)-1C

Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

Glucose (5.6 mM) + Esculentin (1-21)-1C (10 -6 M)

D)

Additions

A
re

a
 u

n
d

e
r 

th
e
 c

u
rv

e

(A
U

C
)

100 200 300

-2.5

0.0

2.5

5.0

7.5 Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

Glucose (5.6 mM) + Esculentin-1a (1-14)  (10 -6 M)

E)

Time (s)

In
tr

a
c

e
ll
u

la
r 

C
a
lc

iu
m

(R
F

U
)

0

600

1200

***

Alanine Esculentin-1a (1-14)

Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

Glucose (5.6 mM) + Esculentin-1a (1-14) (10 -6 M)

F)

*

Additions

A
re

a
 u

n
d

e
r 

th
e
 c

u
rv

e

(A
U

C
)

100 200 300
-0.25

2.25

4.75

7.25

Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

Glucose (5.6 mM) + Esculentin-1b (1-18)  (10 -6 M)

G)

Time (s)

In
tr

a
c

e
ll
u

la
r 

C
a
lc

iu
m

(R
F

U
)

0

600

1200

***

Alanine Esculentin-1b (1-18)

Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

Glucose (5.6 mM) + Esculentin-1b (1-18) (10 -6 M)

H)

*

Additions

A
re

a
 u

n
d

e
r 

th
e
 c

u
rv

e

(A
U

C
)

 

Effects of Esculentin-1a (1-21), Esculentin (1-21)-1C, Esculentin-1a (1-14) and 

Esculentin-1b (1-18) on intracellular calcium in BRIN-BD11 cells expressed as 

relative fluorescence units, RFU as a function of time (A, C, E, G) and the integrated 

response (area under the curve) (B, D, F, H) for respective peptide. Peptides were 

added 20 sec after start of data acquisition at a rate of ~62 μl/sec. Values are mean ± 

SEM (n = 6).  *P<0.05 and ***P<0.001 compared with 5.6 mM glucose alone. 
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Figure 3.21 Effect of temporin peptides on cytokine-induced apoptosis in BRIN-

BD11 cells 
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Effects of 1 µM A) Temporin A, B) Temporin F and C) Temporin G on apoptosis in 

BRIN-BD11 cells compared with 1 µM GLP-1. Values are mean ± SEM for n=3. 

**P<0.01 and ***P<0.001 compared with incubation in culture medium alone, 
ΔΔP<0.01 and ΔΔΔP<0.001 compared with incubation in the cytokine-containing 

medium.  
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Figure 3.22 Effect of temporin peptides on proliferation in BRIN-BD11 cells 
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Effects of 1 µM A) Temporin A, B) Temporin F and C) Temporin G on proliferation 

in BRIN-BD11 cells compared with 1 µM GLP-1. Values are mean ± SEM Values are 

mean ± SEM for n=3. **P<0.01, ***P<0.001 compared with incubation in culture 

medium alone, ΔΔΔP<0.001 compared to GLP-1 treated cells. 
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Figure 3.23 Effect of esculentin-1 peptides on cytokine-induced apoptosis in 

BRIN-BD11 cells 
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Effects of 1 µM A) Esculentin-1a (1-21), B) Esculentin (1-21)-1C, C) Esculentin-1a 

(1-14) and D) Esculentin-1b (1-18) on apoptosis in BRIN-BD11 cells compared with 

1 µM GLP-1. Values are mean ± SEM for n=3. **P<0.01, ***P<0.001 compared with 

incubation in culture medium alone, ΔP<0.05, ΔΔP<0.01 compared with incubation in 

cytokine-containing medium.  
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Figure 3.24 Effect of esculentin-1 peptides on proliferation in BRIN-BD11 cells 
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Effects of 1 µM A) Esculentin-1a (1-21), B) Esculentin (1-21)-1C, C) Esculentin-1a 

(1-14) and D) Esculentin-1b (1-18) on proliferation in BRIN-BD11 cells compared 

with 1 µM GLP-1. Values are mean ± SEM Values are mean ± SEM for n=3. **P<0.01 

compared with incubation in culture medium alone, ΔΔP<0.01 and ΔΔΔP<0.001 

compared to GLP-1 treated cells. 
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Figure 3.25 Effects of temporin G on glucose tolerance and insulin concentrations 

in mice 
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Effects of intraperitoneal administration of Temporin G Peptide (75 nmol/kg bw) and 

GLP-1 (25 nmol/kg bw) on blood glucose (panels A and B) and plasma insulin (panels 

C and D) concentrations in lean mice after co-injection of glucose (18 mmol/ kg bw). 

Values are mean ± SEM for n = 6). *P<0.05, **P<0.01 and ***P<0.001 compared 

with glucose alone, ΔP<0.05 compared with the effect of GLP-1. 
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Figure 3.26 Effects of temporin A and temporin F on glucose tolerance in mice 
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Effects of intraperitoneal administration of Temporin A, Temporin F (75 nmol/kg bw) 

and GLP-1 (25 nmol/kg bw) on blood glucose (panels A and B) in lean mice after co-

injection of glucose (18 mmol/ kg bw). Values are mean ± SEM for n = 6). ***P<0.001 

compared with glucose alone, ΔP<0.05 and ΔΔP<0.01 compared with the effect of 

GLP-1. 
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Figure 3.27 Effects of esculentin (1-21)-1C on glucose tolerance and insulin 

concentrations in mice 
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Effects of intraperitoneal administration of esculentin (1-21)-1C peptide (75 nmol/kg 

bw) and GLP-1 (25 nmol/kg bw) on blood glucose (panels A and B) and plasma insulin 

(panels C and D) concentrations in lean mice after co-injection of glucose (18 mmol/ 

kg bw). Values are mean ± SEM for n = 6. *P<0.05, **P<0.01 and ***P<0.001 

compared with glucose alone. 
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Figure 3.28 Effects of esculentin-1a (1-21), esculentin-1a (1-14) and esculentin-

1b (1-18) on glucose tolerance in mice 
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Effects of intraperitoneal administration of esculentin-1a (1-21), esculentin-1a (1-14) 

and esculentin-1b (1-18) peptide (75 nmol/kg bw) and GLP-1 (25 nmol/kg bw) on 

blood glucose (panels A & B) concentrations in lean mice after co-injection of glucose 

(18 mmol/ kg bw). Values are mean ± SEM for n = 6. ***P<0.001 compared with 

glucose alone, ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared with the effect of GLP-1. 
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Figure 3.29 A Schiffer-Edmundson helical wheel projection of the temporin B 

and temporin F structures 

 

 

 

The arrows illustrate the angle (Ф) subtended by the positive charge on the α-amino 

group of the N-terminal residue and the positive charge on the ε-amino group of the 

lysine residue. 
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Chapter 4 

 

In vitro and in vivo antidiabetic effects of Frenatin 2D 

peptide and its synthetic analogues 
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4.1 Summary  

Four naturally occurring frenatin peptides [frenatin 2.1S 

(GLVGTLLGHIGKAILG.NH2), frenatin 2.2S (GLVGTLLGHIGKAILS.NH2) and 

frenatin 2.3S (GLVGTLLGHIGKAILG.COOH) from Sphaenorhynchus lacteus and 

frenatin 2D (DLLGTLGNLPLPFI.NH2) from Discoglossus sardus] were tested for 

insulin-releasing effects from BRIN-BD11 rat clonal β-cells cells. Frenatin 2D was 

the most promising and effective in releasing insulin in a concentration-dependent 

manner without displaying cytotoxicity. The strategy to replace each amino acid 

residue in frenatin 2D by a bulky, hydrophobic tryptophan (W) did not lead to the 

design of analogues with increased insulinotropic activity, but the [D1W] and [G7W] 

analogues were as potent and effective as the native peptide. Also, deletion of the C-

terminal α-amide group did not affect the activity. Frenatin 2D and its synthetic 

analogues [D1W] and [G7W] also stimulated insulin release from 1.1B4 human-

derived clonal β-cells and isolated mouse islets. The insulinotropic activity of these 

peptides was not associated with membrane depolarization or an increase in 

intracellular [Ca2+]. Frenatin 2D and its synthetic analogues [(D1W and (G7W)] 

maintained their activities in the presence of verapamil, diazoxide and 4,4-

diisothiocyanostilbene-2,2-disulfonic acid (DIDS). Incubation of frenatin 2D and its 

synthetic analogues [(D1W and (G7W)] (1μM) with BRIN-BD11 cells produced a 

modest, but significant, increase in cAMP production. Stimulation of insulin release 

was abolished in protein kinase A-downregulated cells but maintained in protein 

kinase C-downregulated cells. Frenatin 2D and its synthetic analogues [(D1W and 

(G7W)] (1μM) also stimulated proliferation of BRIN-BD11 cells and provided 

significant protection to the cells against cytokine-induced apoptosis. Furthermore, 

[G7W] frenatin 2D, significantly suppressed appetite in overnight fasted mice (18 hr). 
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Acute in vivo administration of frenatin 2D and its synthetic analogues [(D1W and 

(G7W)] also improved glucose tolerance concomitant with increased circulating 

insulin concentrations in mice. However, [D1W] frenatin 2D was most effective, and 

hence it was chosen for further studies. We then assessed long-term treatment (28 

days) of [D1W] frenatin 2D (75 nmol/kg bw) analogue in genetically obese-diabetic 

mice (db/db), in comparison to native peptide frenatin 2D (75 nmol/kg bw) and 

exenatide (25 nmol/kg bw). Blood glucose, HbA1c, glycaemic response to 

intraperitoneal glucose challenge and insulin sensitivity were improved significantly 

in all treated groups. Plasma insulin level remained unchanged in [D1W] frenatin 2D 

treatment but improved significantly in frenatin 2D and exenatide-treated groups. 

Liver and kidney functions were improved in all treated groups. Plasma triglycerides 

and low-density lipoprotein level were decreased with both frenatin 2D and [D1W] 

frenatin 2D treatment, but not to the same extent as in exenatide treatment. Amylase 

activity was unaltered by frenatin 2D and [D1W] frenatin 2D treatment. However, it 

was increased significantly by exenatide treatment group. Frenatin 2D and [D1W] 

frenatin 2D treatment exhibited a beneficial effect on islet morphology by preventing 

a loss of large and medium-size islet in db/db mice. Furthermore, all peptides tested 

exerted a positive effects on expression of genes involved in glucose homeostasis both 

in muscle and islets. Taken together, these data suggest that frenatin 2D peptides exert 

beneficial metabolic effects in genetically obese-diabetic mice (db/db). 

 

4.2 Introduction 

 

The dramatic global increase in the incidence of T2DM in the past decade has 

necessitated the search for new naturally occurring therapeutic agents that regulate 

glucose concentrations and prevent the complications associated with the disease. The 
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discovery of exendin-4 in the venom of a reptile, the Gila monster Heloderma 

suspectum (Eng et al., 1992) highlights the importance of non-mammalian sources in 

the search for new antidiabetic peptides. Exendin-4 is an agonist at the glucagon-like 

peptide-1 (GLP-1) receptor (GLP1R) that stimulates glucose-dependent insulin 

release and improves pancreatic β-cell function (Fehse et al., 2005). Exendin-4 is more 

potent and longer-acting in vivo than GLP-1 and is used in routine clinical practice in 

T2DM therapy (Bunck et al., 2011). The skin secretions of many frog species contain 

bioactive peptides that play an important contributory role in protecting the host from 

invasion by a pathogenic microorganism in the environment and ingestion by 

predators (Raaymakers et al., 2017). These peptides are multifunctional and may 

possess antimicrobial, antifungal, antiviral, anticancer and immunomodulatory 

activities (reviewed in (Conlon et al., 2014a, Xu & Lai et al., 2015)]. Additionally, 

several host defence peptides that were first identified on the basis of their 

antimicrobial properties have been shown to stimulate insulin release from clonal β-

cells and isolated pancreatic islets and improve glucose tolerance following 

intraperitoneal administration in mice and so represent agents with therapeutic 

potential for treatment of patients with T2DM [reviewed in (Conlon et al., 2018)].  

The frenatins are a family of structurally related small peptides that were first 

identified in skin secretions of the Australian treefrog Litoria infrafrenata (reclassified 

as Nyctimystes infrafrenatus) (Pelodryadidae) (Raftery et al., 1996) Subsequently, 

frenatin 2D [DLLGTLGNLPLPFI.NH2] was isolated from skin secretions of the 

Tyrrhenian painted frog Discoglossus sardus (Alytidae) (Conlon et al., 2013) and 

frenatin 2.1S [GLVGTLLGHIGKAILG.NH2], frenatin 2.2S 

[GLVGTLLGHIGKAILS.NH2] and frenatin 2.3S [GLVGTLLGHIGKAILG] from 

the Orinoco lime frog Sphaenorhynchus lacteus (Hylidae) (Conlon et al., 2014b).  
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Frenatin 2D lacked antimicrobial activity but stimulated the production of the 

proinflammatory cytokines TNF-α, and IL-1β by mouse peritoneal macrophages 

suggesting that the peptide may act on macrophages in frog skin to produce a cytokine-

mediated stimulation of the adaptive immune system in response to invasion by 

microorganisms (Conlon et al., 2013). In contrast, frenatin 2.1S and 2.2S show potent 

antimicrobial activity against Gram-negative bacteria and are cytotoxic to non-small 

cell lung adenocarcinoma A549 cells (Conlon et al., 2014b). Frenatin 2.1S also 

stimulates the production of pro-inflammatory cytokines by mouse peritoneal 

macrophages and downregulates production of the anti-inflammatory cytokine IL-10 

by lipopolysaccharide-stimulated cells. A single injection of frenatin 2.1S (100 μg) in 

BALB/c mice enhances the activation state and homing capacity of Th1 type 

lymphocytes (Pantic et al., 2015) and led to a marked increase in the number and 

tumoricidal capacity of activated peritoneal natural killer (NK) cells (Pantic et al., 

2017a) in the peritoneal cavity suggesting that the peptide should be regarded as a 

candidate for antitumor immunotherapy. Activity against yellow fever virus has also 

been reported for the frenatin 2 peptides present in S. lacteus skin secretions (Muñoz-

Camargo et al., 2016). 

Certain frog skin peptides, such as esculentin-2cha (1-30) from Chiricahua leopard 

frog Lithobates chiricahuensis (Vasu et al., 2017), tigerinin-1R from Haplobatrachus 

rugulosus (Ojo et al., 2015b), CPF-SE1 from Silurana epitropicalis (Srinivasan et al., 

2015), Magainin related peptides from Xenopus amieti (Ojo et al., 2015a) have shown 

to improve glycaemic control, glucose tolerance, insulin sensitivity and pancreatic 

beta cell function in animal model of T2DM. The present study aimed to investigate 

the therapeutic potential of frenatin 2D, 2.1S. 2.2S, and 2.3S (Table 4.1 for the 

structure of peptides) for development into agents for the treatment of patients with 
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T2DM. Their ability to stimulate insulin release in vitro was evaluated using BRIN-

BD11 rat clonal β-cells (McClenaghan et al., 1996), 1.1 B4 human clonal β-cells 

(McCluskey et al., 2011) and isolated mouse islets. Their ability to lower blood 

glucose concentration and stimulate insulin release in vivo was determined in 

overnight-fasted, male NIH Swiss TO mice.  Also, the effects of frenatin 2D on β- cell 

proliferation and its ability to inhibit cytokine-induced apoptosis was studied in BRIN-

BD11 cells. The antidiabetic effects of frenatin 2D peptides were also studied in db/db 

mice, in comparison to the established antidiabetic agent, exenatide. 

 

4.3 Materials and Methods 

4.3.1 Reagents 

All the chemical reagents used in the experiments were of analytical grade and listed 

in Chapter 2, Section 2.1. Synthetic frenatin peptides were purchased from SynPeptide 

(China) and GL Biochem Ltd (Shanghai, China). Cytotoxicity Assay kit (Catalogue 

number: G1780) was supplied by Promega (Southampton, UK).  Intracellular calcium 

assay kit (Catalogue number: R8041) and membrane potential assay kit (Catalogue 

number: R8042) were purchased from Molecular Device (Berkshire, UK). Apoptosis 

and proliferation experiments were performed using IN SITU Cell Death Fluorescein 

kit (Sigma-Aldrich, Catalogue number: 11684795910) and Rabbit polyclonal to Ki67 

(Abcam, Catalogue number: ab15580) respectively. Masterclear Cap Strips and real-

time PCR TubeStrips (Catalogue number: 0030132890) purchased from Mason 

Technology Ltd (Dublin, Ireland). 

 

4.3.2 Peptide synthesis and purification 
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Frenatin 2D and its tryptophan-containing analogues, as well as non-amidated frenatin 

2D and its tryptophan-containing analogues (listed in Table 4.1), were supplied in 

crude form by SynPeptide Ltd (Shanghai, China).  Frenatin 2.1S, 2.2S, and 2.3S were 

supplied in crude form by GL Biochem Ltd (Shanghai, China). The peptides were 

purified to near homogeneity (>98 % purity) by reversed-phase HPLC as previously 

described in Chapter 2, Section 2.2.1.1. The identity of all peptides was confirmed by 

MALDI-TOF mass spectrometry (Chapter 2, Section 2.2.2) using a Voyager DE-PRO 

instrument (Applied Biosystems, Foster City, USA). 

 

4.3.3 Insulin release studies using clonal beta cells  

The culture of BRIN-BD11 rat clonal β-cells and 1.1B4 human-derived pancreatic β-

cells and the method for measuring the effects of peptides on the release of insulin has 

been described in Chapter 2, Section 2.3.1 and 2.4.1.1, respectively. Incubations with 

the frenatin peptides (3 x 10-6 - 10-12 M; n = 8) were carried out for 20 min at 37°C in 

Krebs-Ringer bicarbonate (KRB) buffer, pH 7.4 supplemented with 5.6 mM glucose. 

Control incubations were carried out in the presence of GLP-1 (10 nM), exendin-4 (10 

nM) and alanine (10 mM). After incubation, aliquots of cell supernatant were removed 

for measurement of insulin by radioimmunoassay as outlined in Chapter 2, Section 

2.4.4. In order to determine cytotoxicity, the effects of the frenatin peptides (10-12 M - 

3 x 10-6 M; n = 4) on the rate of lactate dehydrogenase (LDH) release from BRIN-

BD11 cells were measured using a CytoTox 96 non-radioactive cytotoxicity assay kit 

(Promega, Southampton, UK) according to the manufacturer’s instructions Chapter 2, 

Section 2.5.  

In the second series of experiments designed to investigate mechanisms of action, 

incubations of BRIN-BD11 cells with frenatin 2D and its analogues (1 µM) were 
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carried out in the presence of known modulators of insulin release (Chapter 2, Section 

2.4.1.2): the K+ channel activator diazoxide (300 µM), the L-type voltage-dependent 

Ca2+ channel blocker verapamil (50 μM), depolarizing stimulus KCl (30 mM) and a 

and chloride channel blocker 4,4-diisothiocyanostilbene-2,2-disulfonic acid (0.66 

mM). To determine the role of extracellular calcium in mediating the insulinotropic 

activity of the peptide, cells were pre-incubated in calcium-free KRB buffer (pH 7.4) 

supplemented with 1.1 mM glucose and 1 mM EGTA for 1 hr at 37°C (Chapter 2, 

Section 2.4.1.3). After pre-incubation, cells were incubated for 20 min at 37°C with 

frenatin 2D (1 µM) in calcium-free KRB buffer containing 5.6 mM glucose. 

 

4.3.4 Insulin release studies using isolated mouse islets 

The preparation of isolated pancreatic islets from an adult, male National Institutes of 

Health NIH Swiss mice (Harlan Ltd, Bicester, UK) and the procedure for determining 

the effects of peptides on the rate of insulin release have been described in Chapter 2, 

Section 2.4.2.2.  The islets were incubated for 1 hr at 37°C with synthetic peptides (10-

8 and 10-6 M) in KRB buffer supplemented with 16.7 mM glucose. Supernatants were 

removed for determination of insulin by radioimmunoassay (Chapter 2, Section 2.4.4). 

The islet cells were retrieved and extracted with acid-ethanol to determine total insulin 

content as previously described in Chapter 2, Section 2.4.2.4. 

 

4.3.5 Effects of peptides on membrane potential and intracellular Ca2+ 

concentrations 

Changes in membrane potential and intracellular Ca2+ concentrations in response to 

incubation with either frenatin 2D or its analogue (1 µM) were determined 

fluorimetrically with monolayers of BRIN-BD11 cells using a FLIPR Membrane 
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Potential Assay Kit and a FLIPR Calcium 5 Assay Kit (Molecular Devices, Sunnyvale, 

CA, USA) according to the manufacturer’s recommended protocols as described in 

Chapter 2, Section 2.6 and 2.7. Cells were incubated in 5.6 mM glucose with peptide 

at 37C for 5 min and data were acquired using a Flex Station scanning fluorimeter 

with integrated fluid transfer workstation (Molecular Devices).  Control incubations 

with 5.6 mM glucose alone, 5.6 mM glucose plus 30 mM KCl, and 5.6 mM glucose 

plus 10 mM alanine) were also carried out.  

 

4.3.6 Effects of peptides on cyclic AMP production 

The procedure for determining the effects of frenatin 2D and its analogues (1 µM) on 

the production of cAMP by BRIN-BD11 cells has been described in Chapter 2, Section 

2.8. Incubations were carried out for 20 min in KRB buffer supplemented with 5.6 

mM glucose and the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine 

(IBMX; 200µM). cAMP concentrations in the cell lysate were measured using a 

Parameter kit (R & D Systems, Abingdon, UK) following the manufacturer’s 

recommended protocol. Control incubations in the presence of 5.6 mM glucose alone 

and GLP-1 (10 nM) were also carried out. 

 

4.3.7 Effects of down-regulation of the PKA and PKC pathways on insulin release 

In order to investigate further the mechanism of insulinotropic action of frenatin 2D 

and its analogues, BRIN-BD11 cells were incubated for 18 hr at 37°C in an atmosphere 

of 5 % CO2 and 95 % air with 25 µM forskolin (Sigma-Aldrich, UK) to downregulate 

the PKA pathway or with 10 nM phorbol 12-myristate 13-acetate (PMA; Sigma-

Aldrich, UK) to downregulate the PKC pathway or with 25 µM forskolin plus 10 nM 

PMA to downregulate both pathways. Details of the experimental procedure have been 
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described in Chapter 2, Section 2.9. Cells were preincubated for 40 min at 37°C with 

KRB buffer, pH 7.4 supplemented with 1.1 mM glucose and 0.1 % bovine serum 

albumin followed by a 20 min incubation with (a) either frenatin 2D or its analogue (1 

µM), (b) GLP-1 (10 nM) and (c) CCK-8 (10 nM) in KRB buffer supplemented with 

5. 6 mM glucose. Control incubations with forskolin alone (25 µM), PMA (10 nM) 

alone and forskolin (25 µM) + PMA (10 nM) alone were also carried out. Aliquots of 

the cell supernatants were removed for measurement of insulin by radioimmunoassay 

(Chapter 2, Section Section 2.4.4).  

 

4.3.8 Effects of the peptides on cytokine-induced apoptosis and proliferation  

The ability of frenatin 2D and its analogues to protect against cytokine-induced DNA 

damage was analysed by incubating BRIN-BD11 cells, seeded at a density of 5 x 104 

cells per well, for 18 hr at 37°C with a cytokine mixture  (200 U/ml tumour-necrosis 

factor-a, 20 U/ml interferon-γ and 100 U/ml interleukin-1β), in the presence and 

absence of either frenatin 2D (1 µM)  or its analogues (1 µM) or GLP-1 (1 µM).  The 

details of the experimental procedure have been described in Chapter 2, Section 2.10.  

To study effects on β-cell proliferation, BRIN-BD11 cells were incubated with either 

frenatin 2D (1 µM) or its analogues (1 µM) or GLP-1 (1 µM) for 18 hr at 37°C as 

described in Chapter 2, Section 2.10. 

 

4.3.9 Assessments of plasma degradation of the frenatin 2D peptide. 

The metabolic stability of frenatin 2D was evaluated by incubating peptide with 

murine plasma. The experimental procedure is described in Section 2.12. 

 

4.3.10 Effects of peptides on glucose uptake in C2C12 cells 
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The procedure for determining the effects of peptides on the glucose uptake in C2C12 

cells is described in Chapter 2, Section 2.11. 

 

4.3.11 Acute in vivo effects of peptides on food intake 

After i.p injection of saline and test peptide, food intake was measured in overnight 

(21 hr) fasted mice as described in Chapter 2, Section 2.13.4.   

 

4.3.12 Acute in vivo insulin release studies 

All animal experiments were carried out by the UK Animals (Scientific Procedures) 

Act 1986 and EU Directive 2010/63EU for animal experiments and approved by 

Ulster University Animal Ethics Review Committee. All necessary steps were taken 

to prevent any potential animal suffering. Eight-week-old male NIH Swiss TO mice 

(Harlan Ltd, Bicester, UK), were housed separately and maintained in an air-

conditioned room (22 ± 2 °C) with a 12-hr light: 12-hr dark cycle. The procedure for 

determining the effects of intraperitoneal administration glucose alone (18 mmol/kg 

bw) and in combination with frenatin 2D or its analogues (75 nmol/kg bw) or GLP-1 

(25 nmol/kg bw) has been described in Chapter 2, Section 2.13.2. Blood samples were 

collected and measured for glucose concentrations using an Ascencia Contour Blood 

Glucose Meter and plasma insulin by radioimmunoassay (Chapter 2, Section 2.13.5). 

In another set of experiments, in overnight (21 hr) fasted mice, food intake was 

measured after i.p injection of saline and test peptides as described in Chapter 2, 

Section 2.13.4.   

 

4.3.13 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D in db/db mice 



151 
 

Before the initiation of treatment with peptides, db/db mice were injected twice daily 

with saline (0.9 % w/v) for 3 days to adapt mice to handling and injection stress.  

During this period mice were monitored for body weight, energy intake, glucose and 

insulin. Mice (db/db) received twice daily i.p. injections of either saline (0.9 % w/v) 

or frenatin 2D (75 nmol/kg bw) or [D1W] frenatin 2D (75 nmol/kg bw) or exenatide 

(25 nmol/kg bw) for 28 consecutive days. Every 72 hr during the study, body weight, 

energy intake, non-fasted blood glucose and plasma insulin were assessed. After the 

end of treatment period, terminal studies were performed which included 

measurement of the HbA1c (Chapter 2, Section 2.13.9), glucose tolerance test using 

an intraperitoneal or oral glucose load (Chapter 2, Section 2.13.2), and insulin 

sensitivity (Section 2.13.3). Fasting (18 hr) blood was collected and measured for 

insulin and glucose to determine insulin resistance using homeostatic model 

assessment (HOMA) formula: HOMA-IR = fasting glucose (mmol/l) x fasting insulin 

(mU/l)/22.5. After collecting terminal blood, animals were subjected to DEXA scan 

(PIXImus densitometer, USA) (Chapter 2, Section 2.13.8) to measure body fat 

composition and bone mineral content/density. Dissected tissues from animals were 

processed for histology studies (Chapter 2, Section 2.14), hormonal content (Chapter 

2, Section 2.13.11) and expression of key genes involved in glucose homeostasis 

(Chapter 2, Section 2.15). Islets were isolated from the pancreas (Chapter 2, Section 

2.4.2.1) and examined for insulin secretory response to glucose and established insulin 

secretagogues as described in Chapter 2, Section 2.4.2.3. 

 

4.3.14 Biochemical tests  

Plasma was retrieved from blood and used for various biochemical tests. The 

procedures for measuring blood/plasma glucose and plasma insulin are described in 
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Chapter 2, Section 2.13.5. Additional tests included lipid profile, liver and kidney 

function test and amylase activity (Chapter 2, Section 2.13.12). 

 

4.3.15 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on islet morphology 

The pancreatic tissues were embedded in paraffin wax after processing on tissue 

processor. Using microtome, sections of 7 µM thickness were made and placed on a 

slide. Sections were allowed to dry overnight on a hotplate and then stained for insulin 

and glucagon as described in Chapter 2, Section 2.14.1.  

 

4.3.16 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on gene expression 

RNA was extracted from skeletal muscle tissue and islet cells (Chapter 2, Section 

2.15.1), and examined for the expression of genes involved in glucose homeostasis 

(Chapter 2, Section 2.15.2 and 2.15.3). 

 

4.3.17 Statistical Analysis 

Experimental data analysed using GraphPad PRISM (Version 3) were expressed as 

means ± SEM and data were compared using the unpaired student t-test 

(nonparametric, with two-tailed P values and 95% confidence interval) and one-way 

ANOVA with Bonferroni post-hoc test. Group of datasets were considered to be 

significantly different if P<0.05. 

 

4.4 Results 

4.4.1 Characterization of peptides 
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The purity of all frenatin peptides was confirmed using reverse phase HPLC (Figure 

4.1-4.5). The molecular weight of peptides confirmed by MALDI- TOF (Figure 4.6-

4.10) was closely related to the theoretical molecular weight (Table 4.2). 

 

4.4.2 Effects of frenatin peptides on insulin release from BRIN BD11 rat clonal 

β-cells 

The rate of insulin release from BRIN-BD11 cells in the presence of 5.6 mM glucose 

alone was 1.01 ± 0.04 ng/106 cells/20 min. Incubation with the established insulin 

secretagogue alanine (10 mM) increased insulin release to 5.42 ± 0.30 ng/106 cells/20 

min and to 3.08 ± 0.10 ng/106 cells/20 min with GLP-1 (10 nM). The effects of 

increasing concentrations of frenatin 2D, 2.1S, 2.2S and 2.3S are shown in Figure 

4.11(A-D). Frenatin 2D was the most potent peptide with a threshold concentration 

(the concentration producing a significant increase in the rate of insulin release 

compared with the rate in the presence of 5.6 mM glucose alone) of 0.1 nM and the 

greater stimulator of insulin release (a 2.3-fold increase at 3 µM). At concentrations 

up to 3 µM, no significant increase in the rate of release of the cytosolic enzyme LDH 

from the BRIN-BD11 cells was observed for any of the frenatin peptides indicating 

that the integrity of plasma membrane remained intact (Figure 4.12). 

   Substitution of the Thr5, Asn8, Pro10, and Ile14 residues in frenatin 2D by Trp (W) 

and interchange of Pro12 and Phe13 led to the loss of insulinotropic activity. [L2W], 

[L3W], [G4W], [L6W], [L9W] and [L11W] analogue displayed weak insulin-

releasing activity (Table 4.3), but the [D1W] and [G7W] analogues were as potent and 

effective as the native peptide (Figure 4.13A-C). The insulinotropic activity of frenatin 

2D and its [D1W] and [G7W] analogues were unaffected by the removal of the 

amidated group and was equally effective to their amidated counterpart (Table 4.3). 
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4.4.3 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D and 

[G7W] frenatin 2D) on insulin release from 1.1B4 human clonal β-cells and 

isolated mouse islets 

The stimulatory effect of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D 

and [G7W] frenatin 2D) on insulin release was replicated in the glucose-responsive 

1.1B4 human-derived cell line at both 5.6 mM and 16.7 mM glucose. The native 

peptide and analogues produced a significant (P<0.05) increase in insulin release at a 

0.1 nM in the presence of 5.6 mM glucose (Figure 4.15A-C) and 1 nM in the presence 

of 16.7 mM glucose (Figure 4.16A-C), with an approximate 2-fold increase at 3 µM 

concentration. The magnitude of the response to 3 µM frenatin 2D was less than the 

response to 10 nM GLP-1. Incubation of frenatin 2D with isolated mouse islets also 

produced a significant increase of insulin release at 10 nM (P<0.05) and at 1 µM 

(P<0.01) compared with the rate in the presence of 16.7 mM glucose only (Figure 

4.17). Similar stimulatory effects were observed with islets incubated with either 

[D1W] or [G7W] frenatin 2D.  Again, the magnitudes of insulin responses of frenatin 

2D peptides were significantly less than the responses to GLP-1 at the same 

concentration. 

 

4.4.4 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D and 

[G7W] frenatin 2D) on membrane depolarization and intracellular calcium 

([Ca2+]i) 

Incubation of BRIN-BD11 cells with 30 mM KCl produced an immediate and 

sustained increase in membrane potential. In contrast, incubation with frenatin 2D 

peptides (1 µM) had no significant effect on membrane depolarization (Figure 4.18).  

Similarly, incubation of BRIN-BD11 cells with 10 mM alanine produced an 
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immediate and sustained increase in [Ca2+]i, whereas incubation with frenatin 2D 

peptides (1 µM) had no significant effect on this parameter (Figure 4.19).  

 

4.4.5 Effects of established modulators of insulin release and chloride channel 

blocker on the insulinotropic activity of frenatin 2D and its synthetic analogues 

([D1W] frenatin 2D and [G7W] frenatin 2D) 

The effects of known insulin release modulators, Ca2+ free buffer and chloride channel 

blocker on the insulinotropic activity of frenatin 2D peptides are shown in Figure 4.20, 

4.21 and 4.22 respectively.  The ability of the peptides to stimulate insulin release from 

BRIN-BD11 cells was unaffected in the presence of diazoxide (300 µM), the K+ 

channel activator, verapamil (50 μM), the L-type voltage-dependent and Ca2+ channels 

blocker (Figure 4.20), Ca2+ free buffer (Figure 4.21) and 4,4-diisothiocyanostilbene-

2,2-disulfonic acid (0.66 mM), the chloride channel blocker (Figure 4.22). The 

depolarizing stimulus 30 mM KCl produced a marked (3-fold) increase in insulin 

release, and the rate was significantly (P<0.01) augmented when the 30 mM KCl 

solution was supplemented with frenatin 2D peptides (1 µM). In the presence of IBMX 

(200 µM) frenatin 2D peptides produced a minor but still significant (P<0.05) increase 

in insulin release. 

 

4.4.6 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D and 

[G7W] frenatin 2D) on cyclic AMP in BRIN-BD11 rat clonal β-cells  

Incubation of BRIN-BD11 cells with GLP-1 (10 nM) in the presence of IBMX resulted 

in a 215% increase (P<0.001) in cAMP compared with cells incubated with 5.6 mM 

glucose plus IBMX alone. Incubation with frenatin 2D peptides (1 µM) produced a 

smaller but still significant (P<0.01) increase in cAMP, which was associated with 
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enhanced in insulin release, suggesting an involvement of the PKA pathway (Figure 

4.23A-B). In the second series of experiments, the insulinotropic activity of frenatin 

2D peptides was examined after down-regulation of the PKA and PKC pathways by 

overnight culture of BRIN-BD11 cells with forskolin and PMA respectively (Figure 

4.24A-C). When the activators were not present, the rates of insulin release produced 

by frenatin 2D peptides, GLP-1, and CCK-8 were significantly (P<0.001) greater than 

that produced by 5.6 mM glucose alone. The insulin stimulatory activities of frenatin 

2D peptides and GLP-1, but not CCK-8, were significantly reduced when the PKA 

pathway was down-regulated with 25µM forskolin. In contrast, down-regulation of 

the PKC pathway with 10 nM PMA was without significant effect on the stimulatory 

activity of frenatin 2D and GLP-1, but the effect of CCK-8 was abolished.  Down-

regulation of both the PKA and PKC pathways by preincubation with forskolin plus 

PMA abolished the stimulatory responses of all peptides tested.  

 

4.4.7 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D and 

[G7W] frenatin 2D) on proliferation and cytokine-induced apoptosis in BRIN-

BD11 β-cells   

Incubation of BRIN-BD11 cells with frenatin 2D peptides (1 µM) or with GLP-1 (1 

µM) did not affect the number of cells exhibiting DNA damage, as measured by 

TUNEL assay. Incubation of the cells with a mixture of proinflammatory cytokines 

resulted in a 272% increase (P<0.001) in the number of cells displaying apoptosis. The 

number of the apoptotic cells was reduced by 48% (P<0.001) when the BRIN-BD11 

cells were co-incubated with GLP-1 (1µM) and the cytokine mixture. A comparable 

(38%-42%, P<0.05) reduction in the number of apoptotic cells was observed when the 

cells were co-incubated with frenatin 2D peptides (1µM) and the cytokine mixture 
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(Figure 4.25A-C). Incubation of BRIN-BD11 cells with frenatin 2D, [D1W] frenatin 

2D and [G7W] frenatin 2D (1 µM) significantly (P<0.05) increased proliferation by 

18%, 21% and 17% respectively, compared with incubations in the presence of culture 

medium alone (Figure 4.26). This degree of proliferative stimulation was less than that 

provided by incubation with 1 µM GLP-1 (48% increase). 

 

4.4.8 Stability of frenatin 2D in murine plasma 

Metabolic stability of frenatin 2D was evaluated by incubating peptide with murine 

plasma. HPLC profile reveals that frenatin 2D was resistant to the proteolytic enzyme 

in plasma for at least 4 hrs. The identity of the frenatin 2D peptide in the collected 

fraction was further confirmed by MALDI-TOF MS (Figure 4.27-4.28) 

 

4.4.9 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D and 

[G7W] frenatin 2D) on glucose uptake in C2C12 cells 

As shown in Figure 4.29-4.30, insulin (1 µM) stimulated a significant increase 

(P<0.05) in glucose uptake in C2C12 cells. On the other hand, treatment of frenatin 

2D peptides (1 µM) showed no positive effect on glucose uptake. However, a modest 

increase in glucose uptake was observed in the presence of insulin, but not significant. 

 

4.4.10 Acute effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 

2D and [G7W] frenatin 2D) on food intake in mice 

As shown in Figure 4.31, GLP-1 significantly (P<0.05) suppressed appetite from 60 

min up to 180 min post-injection in mice. Administration of frenatin 2D did not affect 

food intake. However, a noticeable decrease in food intake was observed in [D1W] 
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frenatin 2D injected mice. [G7W] frenatin 2D, significantly (P<0.05) inhibited food 

intake from 120 min up to 180 min post-injection. 

 

4.4.11 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D and 

[G7W] frenatin 2D) on glucose tolerance and insulin concentrations in mice  

Blood glucose concentrations in lean male NIH swiss TO mice receiving 

intraperitoneal glucose plus frenatin 2D (75 nmol/kg bw) or [G7W] frenatin 2D (75 

nmol/kg bw) were significantly (P<0.05) lower at 15 min and 30 min after 

administration compared with animals receiving glucose only (Figure 4.32A). [D1W] 

frenatin 2D (75 nmol/kg bw) displayed a significant reduction in glucose at 30 and 60 

min. The integrated responses of blood glucose (area under the curve) after frenatin 

2D or [G7W] frenatin 2D or [D1W] frenatin 2D were significantly (P<0.05, P<0.01) 

less after administration of vehicle only (Figure 4.32B).  Plasma insulin concentrations 

were significantly (P<0.001) higher at 15 min after glucose administration in animals 

receiving frenatin 2D peptides (Figure 4.32C) and the integrated response (total 

amount of insulin released over 60 min) was significantly (P<0.05, P<0.01) greater 

compared with animals receiving glucose alone (Figure 4.32D). However, the 

magnitude of the effects on blood glucose concentrations and insulin release produced 

by administration of 75 nmol/kg bw of [D1W] frenatin 2D peptide was comparable to 

the effects produced by administration of 25 nmol/kg bw of GLP-1 (Figure 4.32A-D). 

 

4.4.12 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D and 

[G7W] frenatin 2D) on glucose tolerance, 2 hrs and 4 hrs after peptide 

administration in mice  
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In another set of experiments overnight fasted male NIH swiss TO mice were injected 

with either saline or peptides [frenatin 2D, [D1W] frenatin 2D, [G7W] frenatin 2D (all 

at 75 nmol/kg bw) and GLP-1 (25 nmol/kg bw)] two or four hr prior to glucose 

administration (18 mmol/kg bw) (Figure 4.33 & 4.34). Frenatin 2D peptide 

significantly decreases blood glucose at 15 min, when administered 2 hr prior to 

glucose challenge. Under the same experimental conditions [D1W] frenatin 2D 

decreased blood glucose at 15 and 30 min. The integrated responses of blood glucose 

in mice receiving either frenatin 2D or [D1W] frenatin 2D (area under the curve) were 

comparable to mice receiving GLP-1.  [G7W] frenatin 2D, however, failed to produce 

a beneficial effect on blood glucose (Figure 4.33A-B). Only [D1W] frenatin 2D, 

exhibited a glucose-lowering effect (P<0.05) when administered 4 hr prior to glucose 

challenge (Figure 4.34A-B). 

 

4.4.13  Effects of different doses of frenatin 2D and its synthetic analogues [D1W] 

frenatin 2D on glucose tolerance in mice  

Mice administered with frenatin 2D at 50 nmol/kg body weight did not produce any 

significant changes in plasma glucose concentrations compared with mice 

administered with glucose alone (Figure 4.35 A, B). In contrast, [D1W] frenatin 2D 

produced a smaller but significant (P<0.05) decrease in plasma glucose concentration 

(Figure 4.35 C, D). However, at 25 nmol/kg body weight,  [D1W] frenatin 2D did not 

show any effects on plasma glucose concentration.  Mice when administered with 

either 75 nmol/kg body weight or 150 nmol/kg body weight of frenatin 2D or [D1W] 

frenatin 2D,  produced comparable glucose-lowering effects. No statistical difference 

in glucose concentrations were observed between the groups treated with 75 and 150 

nmol/kg body weight of either frenatin 2D or [D1W] frenatin 2D.    
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4.4.14 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on body weight, energy intake, fluid intake, non-

fasting blood glucose and plasma insulin in db/db mice 

All db/db mice exhibited significant (P<0.001) increase in body weight, energy intake, 

water, non-fasting blood glucose and plasma insulin compared to lean controls (Figure 

4.36 and 4.37).  Twice daily intraperitoneal administration of frenatin 2D and [D1W] 

frenatin 2D for 28 days had no effects on body weight and energy intake in db/db mice 

(Figure 4.36A-D). As expected, energy intake was significantly (P<0.001) decreased 

with exenatide treatment, however, no difference in body weight was observed 

compared to db/db controls. In db/db mice, blood glucose concentration was 

significantly (P<0.05) decreased by both frenatin 2D and [D1W] frenatin 2D, but not 

to the same extent as exenatide (Figure 4.37A, B). Frenatin 2D and exenatide but not 

[D1W] frenatin 2D significantly (P<0.05, P<0.001) increased overall plasma insulin 

compared to db/db controls (Figure 4.37D). As shown in Figure 4.36E, significant 

(P<0.05, P<0.01) decrease in fluid intake was observed from 24th days onwards, in 

both frenatin 2D and [D1W] frenatin 2D treatment group compared to db/db control. 

However, no statistical difference was observed in the overall fluid intake (Figure 

4.36F). With exenatide treatment, fluid intake was decreased significantly (P<0.001) 

by 42% compared to db/db control. 

 

4.4.15 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on glycated haemoglobin (HbA1c) in db/db mice 

Glycated haemoglobin (HbA1c) level reflects the average blood glucose level to a 

period of 2-3 month. As expected, all db/db mice, exhibited significantly higher 

HbA1c level (P<0.05 - P<0.001) than the lean control. As shown in Figure 4.38, twice 
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daily injection of frenatin 2D and [D1W] frenatin 2D resulted significant (P<0.05) 

decrease in blood HbA1c level by 34% and 27% respectively compared to db/db 

control.  Treatment with exenatide induced 52% decrease in HbA1c level.  

 

4.4.16 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on glucose tolerance in db/db mice following 

intraperitoneal and oral glucose load 

As expected, saline-treated db/db mice exhibited impaired glucose tolerance after a 

glucose load (18 mmol/kg bw), resulting in a higher area under the glucose curve 

compared to lean littermates. After 28 days of treatment, intraperitoneal glucose 

tolerance was significantly (P<0.05) improved in both frenatin 2D and [D1W] frenatin 

2D treated mice (Figure 4.39A-D). Blood glucose concentration was significantly (P 

<0.05) lowered at 15 min in both frenatin 2D and [D1W] frenatin 2D treated mice 

compared to saline-treated db/db mice (Figure 4.39A). This improvement was 

associated with significant (P<0.05) increase in insulin response (93% to 95% 

increase, P<0.05, Figure 4.39D). However, the magnitude of the decrease in blood 

glucose and an increase in insulin response in both frenatin 2D and [D1W] frenatin 

2D treated db/db mice were less than exenatide-treated db/db mice. 

In another set of experiments, the glycaemic response to an oral glucose load (OGTT) 

was investigated (Figure 4.40A-D). In [D1W] frenatin 2D treated group, blood glucose 

was significantly (P<0.05) less at 15 and 30 min compared to db/db control group 

(Figure 4.40A). This was associated with significant (P<0.05) increase in insulin 

release at 30 min (Figure 4.40C). However, no statistical difference was observed in 

overall insulin response (Figure 4.40D). Frenatin 2D treated mice showed a tendency 

to lower blood glucose and improve insulin level, but no significant difference was 
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observed compared to db/db control. On the other hand, blood glucose and insulin 

after oral glucose challenge were significantly (P<0.05) improved in exenatide-treated 

mice. 

 

4.4.17 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on insulin sensitivity in db/db mice 

Following 28 days treatment, a significant (P<0.05, Figure 4.41A-B) improvement in 

the hypoglycaemic effect of insulin was observed in both frenatin 2D and [D1W] 

frenatin 2D treated mice compared to saline-treated db/db mice. The alleviation of 

insulin resistance was further confirmed by HOMA-IR calculations derived using 

fasted blood glucose and plasma insulin concentrations. Both frenatin 2D and [D1W] 

frenatin 2D exhibited lower HOMA-IR index although it was not significant compared 

to db/db control. In exenatide-treated mice, the HOMA-IR index was reduced by 53% 

(P<0.05, Figure 4.41C).  

 

4.4.18 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on bone mineral density, bone mineral content and 

fat composition in db/db mice 

Figure 4.42A-G shows the results of a DEXA scan of the various groups of mice. At 

the end of treatment period, bone mineral density (BMD), bone mineral content 

(BMC), bone area, lean body mass, body fat and body fat (expressed a percentage of 

total body mass) were similar in all db/db groups. In comparison to lean control, lean 

body mass was decreased (P<0.001) significantly in frenatin 2D and [D1W] frenatin 

2D treatment group. Whereas, body fat in [D1W] frenatin 2D treatment group was 

found similar to lean control.  
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4.4.19 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on pancreatic weight and insulin content 

All db/db mice exhibited similar pancreatic weights (Figure 4.43A). However, when 

compared to lean mice, we observed a significant (P<0.05, P<0.01) increase in 

pancreatic weight in exenatide and frenatin 2D treated db/db mice. The pancreatic 

insulin content in saline-treated db/db mice was significantly (P<0.01) decreased by 

68% compared to lean control (Figure 4.43B). The exenatide and frenatin 2D treated 

group showed significant (P<0.05, P<0.01) increase in pancreatic insulin content 

compared to db/db control. On the other hand, [D1W] frenatin 2D treated group had 

had similar pancreatic insulin content as db/db control.  

 

4.4.20 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on insulin secretory responses of islets of db/db mice 

At the end of the treatment period, insulin secretory responses of islets isolated from 

treated and untreated mice were examined. As expected, islets from saline-treated 

db/db mice displayed impaired insulin secretory response to glucose (1.4 mM, 5.6 

mM, 16.7 mM) and known modulators of insulin release including alanine, GIP, GLP-

1, KCl and arginine (Figure 4.43C, D). Under the same experimental conditions, islets 

from frenatin 2D treated mice demonstrated significant improvements in insulin 

release (Figure 4.43C), but not to the same extent as that observed following 

exenatide-treatment db/db mice. On the other hand, islets from [D1W] frenatin 2D 

treated db/db mice, displayed marginal improvement in insulin secretory response 

(Figure 4.43D).  
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4.4.21 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on lipid profile in db/db mice 

Plasma lipid levels were examined in all experimental groups after 28 days treatment 

period. As shown in Figure 4.44A, C, cholesterol and high-density lipoprotein (HDL) 

were unaffected by peptide treatments in db/db mice. However, triglycerides and low-

density lipoprotein (LDL) were decreased by both frenatin 2D and [D1W] frenatin 2D 

treatment, but not to the same extent as in exenatide-treated mice (Figure 4.44B, D). 

 

4.4.22 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on liver and kidney functions in db/db mice 

The biomarkers for a liver function such as ALT, AST and ALP levels were examined 

after the end of treatment period. As shown in Figure 4.45A-C, these liver parameters 

were significantly (P<0.001) increased by 76%, 246% and 105% respectively in 

saline-treated db/db mice compared to lean control. In the exenatide treatment group, 

these elevated parameters were decreased markedly (P<0.05 - P<0.001) by 1.2 – 2.0 

folds. Interestingly, we observed a similar decrease in these parameters in both frenatin 

2D and [D1W] frenatin 2D treatment group. Also, elevated creatinine level in db/db 

was reduced significantly (P<0.05, P<0.01) by frenatin 2D and [D1W] frenatin 2D 

treatment, but not to the same as exenatide (Figure 4.45D).  

 

4.4.23 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on plasma amylase concentration in db/db mice 

As shown in figure 4.46, amylase activity was unaltered in both frenatin 2D and 

[D1W] frenatin 2D treated db/db mice. However, in exenatide treatment, significant 
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(P<0.001) increase in amylase activity was observed compared to db/db and lean 

control. 

 

4.4.24 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on islet number, islet area, beta cell areas, alpha cell 

area and islet size distribution 

At the end of the treatment period, effects of peptides on islet morphology were 

evaluated. (Figure 4.47A-F). Figure 4.47A presents images of pancreatic islets of lean 

control and both untreated and treated db/db mice, showing alpha cells in red and beta 

cells in green. The number of islets per mm2 was significantly (P<0.05, P<0.01) 

decreased in all db/db mice compared to lean controls. However, within db/db groups, 

no significant difference in islet number was observed (Figure 4.47 B). Lean control, 

db/db control, frenatin 2D and [D1W] frenatin 2D treatment groups exhibited no 

significant differences in islet area. Exenatide-treated group displayed significantly 

(P<0.05) increased islet area compared to db/db control (Figure 4.47C). As expected, 

the beta cell area was decreased (P<0.05) and alpha cell area was increased (P<0.01) 

in db/db controls compared to lean littermates. Frenatin 2D and [D1W] frenatin 2D 

induced no significant changes in beta cell area (Figure 4.47D). A noticeable decrease 

in the alpha cell was observed compared to db/db controls, this was not significant 

(Figure 4.47E). On the other hand, exenatide treatment significantly improved overall 

islet morphology, showing positive effects on islet, beta cell, and alpha cell area 

comparable to lean controls. The number of large and medium-size islet were 

increased (P<0.05 - P<0.001) and small size islet were decreased (P<0.05, P<0.01) in 

all treatment groups compared to db/db controls (Figure 4.47F). 
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4.4.25 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on gene expression in skeletal muscle 

Effects of frenatin 2D and [D1W] frenatin 2D on the expression of skeletal muscle 

insulin signalling genes were examined after the treatment period (Figure 4.48A-G). 

We observed elevated mRNA expression of glucose transporter 4 (Slc2a4), insulin 

receptor (Insr), insulin receptor substrate 1 (Irs1), phosphatidylinositol 3-kinase, 

catalytic, alpha polypeptide (Pik3ca), protein kinase B alpha (Akt1) and protein 

phosphatase 1B (Ptb1) genes in untreated db/db mice compared to the lean controls 

(Figure 4.48A-C & E-G). The expression of these genes was downregulated by both 

frenatin 2D and [D1W] frenatin 2D treatment. Interestingly, effects produced by the 

frenatin 2D peptides were not different from exenatide treatment. No statistical 

differences in expression of 3-phosphoinositide-dependent protein kinase 1 (Pdk1) 

gene were observed in the various groups of mice (Figure 4.48D).  

 

4.4.26 Effects of twice daily administration of frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on gene expression in islets 

In db/db mice, expression of islet genes involved in insulin secretion including Mus 

musculus insulin 1 (Ins1), ATP-binding cassette, sub-family C (CFTR/MRP), member 

8 (Abcc8), potassium inwardly-rectifying channel, subfamily J, member 11 (Transcript 

variant 1) (Kcnj11), glucose transporter 2 (Slc2a2), calcium channel, voltage-

dependent, L type, alpha 1C subunit (Cacna1c) and glucokinase, transcript variant 1 

(Gck) were investigated following 28 days treatment (Figure 4.49A-F). In saline-

treated db/db mice, expression of these genes was significantly (P<0.001)  

downregulated compared to lean littermate mice. Frenatin 2D prevented down-

regulation of these genes (P<0.01, P<0.001), but not to the same extent as observed in 
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exenatide-treated db/db mice. On the other hand, [D1W] frenatin 2D countered 

downregulation of Ins1, Abcc8, Slc2a2  and Gck genes in db/db treated mice. 

Downregulation of mRNA expression of gastric inhibitory polypeptide receptor 

(Gipr), glucagon-1 like peptide receptor (Glp1r), glucagon (Gcg) and pancreatic islets 

of homeobox 1 (Pdx1) genes in db/db mice was countered (P<0.05 - P<0.001) by 

exenatide and frenatin 2D treatments (Figure 4.50A-D). Signal transducer and 

activator of transcription 1 (Stat1) that were significantly upregulated in db/db mice 

were less highly expressed after treatment with exenatide and frenatin 2D (Figure 

4.50E). [D1W] frenatin 2D treatment had no significant effects on Gipr, Glp1r, Gcg, 

Pdx1 and Stat1 genes’ expressions.  

 

4.5 Discussion 

The bioactive peptides in frog skin secretions with antimicrobial activity are regarded 

as an essential component in the animal’s system of host-defence. The initial 

enthusiasm of the discovery that these peptides to kill antibiotic-resistant 

microorganisms that had become resistant to conventional antibiotics has dwindled 

thus no frog skin peptide is currently in clinical practice as an antimicrobial agent. 

More promising potential clinical applications of amphibian host-defence peptides 

might lie in their use as immunomodulatory agents (Pantic et al., 2017b), promoters 

of wound healing [reviewed in (Mangoni et al., 2016)] and as templates for the design 

of drugs to treat patients with T2DM (Conlon et al., 2018).   

The present study has shown that naturally occurring frenatin peptides (frenatin 2D 

from Discoglossus sardus and frenatin 2.1S, 2.2S & 2.3S from Sphaenorhynchus 

lacteus) demonstrate dose-dependent insulin-releasing activity from clonal β-cells 

(BRIN-BD11 cells) at concentrations that are not cytotoxic to the cells.  Frenatin 2D 



168 
 

was the most potent peptide producing a significant increase in insulin release from 

BRIN-BD11 cells at a concentration of 100 pM with an impressive 2.3-fold increase 

at a concentration of 3 µM. The stimulatory effects of frenatin 2D were also replicated 

in human 1.1B4 cells as well as isolated mouse islet cells. Consequently, frenatin 2D 

was chosen for further studies aimed at designing analogues with increased 

insulinotropic activity and to elucidate the mechanism of action of the frenatins.  

The relative antimicrobial and cytotoxic activities of naturally occurring peptides are 

determined by complex interactions between molecular charge, conformation, 

hydrophobicity and, in the case of α-helical peptides, amphipathicity (Mojsoska & 

Jenssen, 2015). Studies with a wide range of such peptides have shown that increasing 

cationicity, while maintaining amphipathicity, generally by substitution of appropriate 

neutral or acidic amino acids by L-lysine, results in increased antimicrobial activity 

by promoting interaction with the negatively charged cell membrane of prokaryotes 

(Kumar et al., 2018).  In the present study, each amino acid in frenatin 2D was replaced 

by a bulky, hydrophobic tryptophan (W) residue in an attempt to promote interaction 

with the zwitterionic plasma membrane of BRIN-BD11 cells. The strategy did not lead 

to the design of an analogue with increased insulinotropic activity, but the study 

demonstrated that the frenatin 2D molecule was very sensitive to changes in amino 

acid composition. Replacement of Thr5, Asn8, Pro10, and Ile14 by Trp (W) led to the 

loss of insulinotropic activity at concentrations up to and including 3 µM. 

Substitutions at Leu2, Leu3, Gly4, Leu6, Leu9, Leu11, Phe12 and Phe13 also led to marked 

decreases in insulinotropic activity (Table 4.3). In contrast, replacements at Asp1 and 

Gly7 and deletion of the C-terminal α-amide group did not affect activity. The 

stimulatory effects of [D1W], [G7W] analogues was also replicated in human 1.1B4 

cells and isolated moue islet cells. 
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Insulin release from pancreatic β-cells is regulated by KATP channel-dependent and 

KATP channel-independent pathways (Henquin, 2000, 2004). In the former pathway, 

an increase in intracellular ATP generated from glucose metabolism results in closure 

of ATP-sensitive potassium channels, activation of chloride channels and an influx of 

Ca2+ through the opening of voltage-dependent Ca2+ channels, leading to exocytosis. 

The insulinotropic frog skin peptides CPF-SE1 (Srinivasan et al., 2013), tigerinin-1R 

(Ojo et al., 2016), and PGLa-AM1 (Owolabi et al., 2017) depolarise BRIN-BD11 cells 

and increase [Ca2+]i suggesting that they operate via the KATP channel-dependent 

pathway.  In contrast, pseudin-2 (Abdel-Wahab et al., 2008a), hymenochirin 1B 

(Owolabi et al., 2016), and temporins A, F, and G (chapter 6) stimulate insulin release 

without significant effects on membrane depolarization or [Ca2+]i.  Similar to the 

second group of peptides, incubation of BRIN-BD11 cells with either frenatin 2D or 

its analogues ([D1W] and [G7W] frenatin 2D) did not affect membrane potential or 

[Ca2+]i suggesting an involvement of the KATP channel-independent pathway. 

Consistent with this hypothesis, the insulinotropic activity of frenatin 2D peptide and 

its analogues was preserved in calcium-free medium and in the presence of diazoxide, 

an agent that inhibits the secretion of insulin by opening ATP-sensitive potassium 

channels in β-cells, and verapamil, an agent that inhibits insulin release by blocking 

voltage-dependent Ca2+ channels. Although less well studied, activation of the 

chloride channel in pancreatic beta cells causes comparatively modest membrane 

depolarization and to release of insulin (Kinard et al., 2001). The insulin-releasing 

activity of peptide was unaffected even after blocking chloride channel by using DIDS. 

In KATP channel-independent pathway, activation of adenylate cyclase by an agonist 

such as GLP-1 results in the generation of cAMP which in turn activates PKA to 

promote insulin release (Green et al., 2004a, 2005). Incubation of BRIN-BD11 cells 
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with either frenatin 2D or its analogues produced a modest but significant increase of 

cAMP.  Consistent with this observation, the stimulatory effect of frenatin 2D and its 

analogues on insulin release was abolished in PKA-downregulated BRIN-BD11 cells, 

whereas in PKC downregulated cells the stimulatory effect of peptides was unaffected. 

It is suggested, therefore, that the insulin-releasing activity of frenatin 2D in these cells 

is mediated predominantly, if not exclusively, by the KATP channel-independent 

pathway. 

The progression of T2DM is associated with a decrease in the ability of the pancreatic 

β-cell to release insulin due to a decline in β-cell number and function. It has also been 

shown also that the GLP-1 stimulates proliferation of β-cells and protect the cells 

against apoptosis stimulated by cytokines, glucose and fatty acids (Cornu et al., 2009, 

Lee et al., 2014). Overnight incubation of BRIN-BD11 cells with either frenatin 2D 

or its analogue, also stimulated β-cell proliferation but the effect was significantly less 

than the effects of an equimolar concentration of GLP-1. Similarly, frenatin 2D 

provided significant protection of cells against cytokine-induced apoptosis and, in this 

case, the effect was comparable to that provided by GLP-1.  

The frenatin 2D peptide was also active in vivo when administered to mice together 

with a glucose load, resulting in lower blood glucose and higher circulating insulin 

concentrations. Also, both analogues ([D1W] and [G7W] frenatin 2D) improved 

glucose tolerance by increasing insulin release following intraperitoneal 

administration with glucose in normal NIH TO mice. Moreover, we observed that 

glucose lowering effect of [D1W] frenatin 2D was sustained when administered 4 hr 

before glucose load, suggesting enhanced peptide stability. On the other hand, frenatin 

2D and [G7W] frenatin 2D failed to retain its activity when pre-administered in vivo. 
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Glucose tolerance tests conducted with coadministration of different doses of peptide 

revealed that doses of frenatin 2D or [G7W] frenatin 2D peptide below 75 nmol/kg 

body, failed to retain its glucose-lowering effects. In contrast, the [D1W] frenatin 2D 

analogue induced a modest decrease in blood glucose level. When tested at a higher 

dose of 150 nmol/kg, no additional glucose lowering effect was observed with frenatin 

2D and [D1W] frenatin 2D peptide. Hence, the peptide dose of 75 nmol/kg bw was 

selected for further studies. 

Based on these findings, we further investigated long-term (28 days) effects of twice 

daily administration of frenatin 2D and [D1W] frenatin 2D, in comparison with 

antidiabetic agent exenatide, in genetically obese-diabetic mice (db/db). In line with 

previous reports (Wang et al., 2002, Breyer et al., 2005), db/db mice used for the 

present study displayed hyperglycaemia, hyperinsulinemia, insulin resistance, 

hyperlipidaemia and impaired blood glucose control.  

With the progress of the study, a steady decrease of plasma insulin and an increase in 

blood glucose level were observed in db/db mice receiving saline only. These 

observations in db/db mice are in line with previous reports and indicate a degenerative 

form of diabetes (Coleman, 1978, Dalbøge et al., 2013). In frenatin 2D treated db/db 

mice, progressive loss of insulin was delayed significantly. Blood glucose in both 

frenatin 2D and [D1W] Frenatin 2D treated db/db mice was delayed significantly. The 

intraperitoneal glucose tolerance and blood HbA1c level were also improved 

significantly. These beneficial effects of frenatin 2D and [D1W] Frenatin 2D peptide 

were independent of any changes in body weight or fat content of db/db mice. In 

agreement with acute in vivo feeding studies, no effect of the frenatin 2D and [D1W] 

frenatin 2D peptide was observed on energy intake. Both, frenatin 2D and [D1W] 

frenatin 2D also exhibited a tendency to improve glycaemic response to an oral 
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glucose load. Furthermore, a decrease in water intake was observed in both frenatin 

2D and [D1W] frenatin 2D treated db/db mice from day 24 onwards, which correlates 

with improved glycaemic control. However, the magnitude of the beneficial effects of 

frenatin 2D and [D1W] frenatin 2D on blood glucose, insulin, glucose tolerance, 

HbA1c and water intake were less impressive than exenatide. With exenatide 

treatment, we observed a decrease in energy intake, which corresponds well to the 

previous studies (Gedulin et al., 2005, Schlögl et al., 2015), but body weight remained 

unaltered.  

The hypoglycemic action of exogenous insulin was significantly improved in both 

frenatin 2D and [D1W] frenatin 2D treated db/db mice, which correlated with 

improved HOMA-IR index. To further evaluate the mechanisms by which the peptides 

improved insulin resistance, mRNA expression of insulin signalling genes was 

studied. We observed elevated expression of Glut4, Insr, Irs1, Akt1, Pik3ca and Ptb1 

in saline-treated db/db mice compared to their littermates. These observations are in 

harmony with previous studies where an increase in the activity of PI 3-kinase and 

Akt/PKB were observed in the liver and kidney of db/db mice (Feliers et al., 2001).  

Similarly, an increase in the activity of proximal insulin signalling cascade was 

observed in the animal model of liver cirrhosis, (Jessen et al., 2006). In L6 myotubules 

after chronic exposure to glucose or insulin, an increase in GLUT4 activity was also 

observed (Huang et al., 2001). In both frenatin 2D and [D1W] frenatin 2D treatment 

mice, expression of SlC2a4, Insr, Irs1, Akt1, Pik3ca and Ptb1 genes were 

downregulated. Interestingly, the magnitude of these effects was comparable to 

exenatide treatment.  

 In agreement with other studies (Son et al., 2015, Lee et al., 2014), lipid metabolism 

was impaired in db/db mice. Elevated plasma triglycerides and LDL levels of db/db 
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mice were reversed by frenatin 2D and [D1W] frenatin 2D treatment, but the effect 

was significantly less than the exenatide. Plasma cholesterol and HDL remain 

unaffected in all peptide-treated mice. The db/db mice are also used as a model of non-

alcoholic fatty liver disease (NAFLD), which is characterised by elevated liver 

enzymes such as ALT, AST and ALP (Biden et al., 2014, Parikh et al., 2014, Lau et 

al., 2016). In agreement, these liver biomarkers were significantly elevated in control 

db/db mice and decreased significantly by both frenatin 2D and [D1W] frenatin 2D 

treatment. The creatinine level in db/db mice was also lowered by these peptides, 

indicating that liver and kidney function were improved by peptide treatment. 

Furthermore, amylase activity was unaffected by frenatin 2D and [D1W] frenatin 2D 

treatment. These observations suggest that frenatin 2D peptides could be safe for the 

treatment of diabetes. Importantly, no adverse effects were observed in treated db/db 

mice which correlated well with in vitro toxicity studies. Nevertheless, we did observe 

an increase in amylase activity in exenatide-treated mice. In several clinical studies, 

enhanced amylase activity has been observed in type 2 diabetes and linked to possible 

incidence of pancreatitis (Nauck, 2013).  

In harmony with others (Ishida et al., 2004, Do et al., 2014), islets from saline-treated 

db/db mice showed impaired insulin secretory responses to glucose and known insulin 

secretagogues. In the present study, frenatin 2D treatment significantly improved 

insulin secretory responses of db/db mouse islets. This was associated with a 

significant increase in pancreatic insulin content, suggesting the beneficial effects of 

the peptide on pancreatic beta cell function. However, the beneficial effects of [D1W] 

frenatin 2D treatment on islet insulin secretory response and pancreatic insulin content 

was not to the same as the native peptide. As expected, insulin secretory defect was 

reversed and the pancreatic insulin content was significantly increased in exenatide-
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treated mice. The beneficial effects of peptides on the pancreatic beta cell was further 

evaluated by gene expression studies and immunohistochemical analysis. The positive 

effects of frenatin 2D on beta cell function corresponded with an improved expression 

of insulin secretory genes (Ins1, Pdx1, Glp1R, Gipr, Abcc8, Kcnj11, Gck, Cacna1c, 

SlC2a2 and Gcg). In addition, upregulation of apoptosis Stat1 gene was prevented by 

frenatin 2D treatment. Although frenatin 2D and [D1W] frenatin 2D treatment did not 

alter islet area/beta cell area, a noticeable decrease in alpha cell area was observed. 

Furthermore, a substantial decrease in large and medium-size islets and an increase in 

small size islets of db/db mice were prevented by all peptide treatments. Overall the 

beneficial effects of frenatin 2D and [D1W] frenatin 2D on islet architecture were 

similar but not as prominent as with exenatide.  

In conclusion, the present Chapter has demonstrated the antidiabetic potential of 

frenatin 2D peptides. In db/db mice, frenatin 2D treatment significantly delayed the 

demise of beta cell function and insulin concentration, improved glycemic control and 

enhanced insulin sensitivity. The abnormal expression of the genes involved in 

glucose homeostasis in muscle and islets of db/db mice were reversed by frenatin 2D 

treatment. However, [D1W] frenatin 2D was not as effective as frenatin 2D in db/db 

mice.  
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Table 4.1 Amino acid sequence of frenatin peptides 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sr. 

No 

Peptide Sequence 

 

1 

 

Frenatin 2D 

 

DLLGTLGNLPLPFI.NH2 

 

2 

 

Frenatin 2.1S 

 

GLVGTLLGHIGKAILG.NH2 

 

3 

 

Frenatin 2.2S 

 

GLVGTLLGHIGKAILS.NH2 

 

4 

 

Frenatin 2.3S 

 

GLVGTLLGHIGKAILG.COOH 

 

5 

 

[D1W] Frenatin 2D 

 

WLLGTLGNLPLPFI.NH2 

 

6 

 

[L2W] Frenatin 2D 

 

DWLGTLGNLPLPFI.NH2 

 

7 

 

[L3W] Frenatin 2D 

 

DLWGTLGNLPLPFI.NH2 

 

8 

 

[G4W] Frenatin 2D 

 

DLLWTLGNLPLPFI.NH2 

 

9 

 

[T5W] Frenatin 2D 

 

DLLGWLGNLPLPFI.NH2 

 

10 

 

[L6W] Frenatin 2D 

 

DLLGTWGNLPLPFI.NH2 

 
11 

 
[G7W] Frenatin 2D 

 
DLLGTLWNLPLPFI.NH2 

 

12 

 

[N8W] Frenatin 2D 

 

DLLGTLGWLPLPFI.NH2 

 

13 

 

[L9W] Frenatin 2D 

 

DLLGTLGNWPLPFI.NH2 

 

14 

 

[P10W] Frenatin2D 

 

DLLGTLGNLWLPFI.NH2 

 

15 

 

[L11W] Frenatin 2D 

 

DLLGTLGNLPWPFI.NH2 

 

16 

 

[P12W] Frenatin 2D 

 

DLLGTLGNLPLWFI.NH2 

 

17 

 

[F13W] Frenatin 2D 

 

DLLGTLGNLPLPWI.NH2 

 

18 

 

[I14W] Frenatin 2D 

 

DLLGTLGNLPLPFW.NH2 

 

19 

 

Frenatin 2D  (Non-amidated) 

 

DLLGTLGNLPLPFI 

 

20 

 

[D1W] Frenatin 2D  (Non-amidated) 

 

WLLGTLGNLPLPFI 

 

21 

 

[G7W] Frenatin 2D  (Non-amidated) 

 

DLLGTLWNLPLPFI 
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Table 4.2 Reverse phase HPLC, retention time and molecular weight 

 

 

Purity and molecular mass of peptides were confirmed using RP-HPLC and MALDI-

TOF respectively. The retention time was verified using ChromQuest software. 

 

 

Sr. 

No 

Peptide Molecular 

weight Da 

(Theoretical) 

Molecular 

weight Da 

(Experimental) 

Retention 

time (min) 

 

1 

 

Frenatin 2D 

 

1481.78  

 

1481.90 

 

25 

 

2 

 

Frenatin 2.1S 

 

1518.89 

 

1517.03 

 

30 

 

3 

 

Frenatin 2.2S 

 

1571.92 

 

1572.54 

 

33 

 

4 

 

Frenatin 2.3S 

 

1519.88 

 

1519.91 

 

31 

 

5 

 

[D1W] Frenatin 2D 

 

1552.9 

 

1552.65 

 

26 

 

6 

 

[L2W] Frenatin 2D 

 

1554.83 

 

1554.65 

 

25 

 

7 

 

[L3W] Frenatin 2D 

 

1554.83 

 

1555.64 

 

26 

 

8 

 

[G4W] Frenatin 2D 

 

1610.93 

 

1611.83 

 

26 

 

9 

 

[T5W] Frenatin 2D 

 

1566.68 

 

1567.55 

 

28 

 
10 

 
[L6W] Frenatin 2D 

 
1554.83 

 
1555.09 

 
25 

 

11 

 

[G7W] Frenatin 2D 

 

1610.93 

 

1611.11 

 

26 

 

12 

 

[N8W] Frenatin 2D 

 

1553.88 

 

1553.48 

 

26 

 

13 

 

[L9W] Frenatin 2D 

 

1554.83 

 

1554.83 

 

26 

 

14 

 

[P10W] Frenatin2D 

 

1570.87 

 

1571.62 

 

26 

 

15 

 

[L11W] Frenatin 2D 

 

1554.83 

 

1555.75 

 

25 

 

16 

 

[P12W] Frenatin 2D 

 

1570.87 

 

1571.61 

 

26 

 

17 

 

[F13W] Frenatin 2D 

 

1520.81 

 

1521.04 

 

25 

 

18 

 

[I14W] Frenatin 2D 

 

1554.83 

 

1555.47 

 

27 

 

19 

 

Frenatin 2D  (Non-amidated) 

 

1482.78 

 

1483.06 

 

25 

 

20 

 

[D1W] Frenatin 2D  (Non-amidated) 

 

1553.9 

 

1554.7 

 

26 

 
21 

 
[G7W] Frenatin 2D  (Non-amidated) 

 
1611.94 

 
1611.72 

 
27 
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Table 4.3 Effects of analogues and non-amidated frenatin 2D peptide on insulin 

release from BRIN-BD11 rat clonal β-cells 

Conditions 

Threshold 

Concentration (nM) 

 Insulin release at 3 µM 

(ng/106 cells/20 min) 

5.6 mM Glucose 
 

 1.01 ± 0.04 

Frenatin 2D 0.1  2.30 ± 0.03 *** 

[D1W] Frenatin 2D 0.1  2.61 ± 0.25 *** 

[L2W] Frenatin 2D 10  1.81 ± 0.11 *** 

[L3W] Frenatin 2D 3000  1.21 ± 0.04 ** 

[G4W] Frenatin 2D 3000  1.26 ± 0.07 ** 

[T5W] Frenatin 2D >3000  1.17 ± 0.15 

[L6W] Frenatin 2D 1000  1.59 ± 0.05 *** 

[G7W] Frenatin 2D 0.1  2.57 ± 0.12 *** 

[N8W] Frenatin 2D >3000  1.09 ± 0.04 

[L9W] Frenatin 2D 100  1.63 ± 0.01 *** 

[P10W] Frenatin 2D >3000  1.10 ± 0.06 

[L11W] Frenatin 2D 100  1.30 ± 0.02 *** 

[P12W] Frenatin 2D 1000  1.30 ± 0.05 *** 

[F13W] Frenatin 2D 3000  1.44 ± 0.02 *** 

[114W] Frenatin 2D >3000  1.10 ± 0.04 

Frenatin 2D non-amidated 0.1  2.14 ± 0.12*** 

[D1W] Non-amidated 0.1  2.00 ± 0.24*** 

[G7W] Non-amidated 0.1  2.01 ± 0.11*** 

[P12F, F13P] Frenatin 2D >3000  1.00 ± 0.03 

 

Values are mean ± SEM for n = 8. **P<0.01 and ***P<0.001 compared to 5.6 mM 

glucose alone.  
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Figure 4.1 Representative reverse-phase HPLC profile of frenatin peptides. 

 

 

  

C-8 analytical column was used to obtain profile using a gradient from 0 to 100 % acetonitrile over 28 min for frenatin 2D and gradient from 0 

to 40% of acetonitrile over 10 minutes, to 60% over 20 minutes and from 60% to 100% over 5 minutes for frenatin 2.1S, 2.2S and 2.3S 
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Figure 4.2 Representative reverse-phase HPLC profile of frenatin 2D peptides 

 

 

 

C-8 analytical column was used to obtain a profile using a gradient from 0 to 100 % acetonitrile over 28 min. 
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Figure 4.3 Representative reverse-phase HPLC profile of frenatin 2D peptides 

 

 

 

C-8 analytical column was used to obtain a profile using a gradient from 0 to 100 % acetonitrile over 28 min. 
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Figure 4.4 Representative reverse-phase HPLC profile of frenatin 2D peptides 

 

 

 

C-8 analytical column was used to obtain a profile using a gradient from 0 to 100 % acetonitrile over 28 min. 
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Figure 4.5 Representative reverse-phase HPLC profile of frenatin 2D peptides 

 

 

 

C-8 analytical column was used to obtain a profile using a gradient from 0 to 100 % acetonitrile over 28 min. 
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Figure 4.6 Representative MALDI-TOF spectra of frenatin peptides 

 

 

 

Matrix α-cyano cinnamic acid (1.5 µl) was mixed with purified peptide (1.5 µl) and left to dry on the MALDI plate. After drying, MALDI plate 

was applied to Voyager DE Bio spectrometry workstation. The mass-to-charge ratio versus peak intensity was recorded. 
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Figure 4.7 Representative MALDI-TOF spectra of frenatin 2D peptides 

 

 

 

Matrix α-cyano cinnamic acid (1.5 µl) was mixed with purified peptide (1.5 µl) and left to dry on the MALDI plate. After drying, MALDI plate 

was applied to Voyager DE Bio spectrometry workstation. The mass-to-charge ratio versus peak intensity was recorded. 
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Figure 4.8 Representative MALDI-TOF spectra of frenatin 2D peptides 

 

 

Matrix α-cyano cinnamic acid (1.5 µl) was mixed with purified peptide (1.5 µl) and left to dry on the MALDI plate. After drying, MALDI plate 

was applied to Voyager DE Bio spectrometry workstation. The mass-to-charge ratio versus peak intensity was recorded. 
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Figure 4.9 Representative MALDI-TOF spectra of frenatin 2D peptides 

 

 

Matrix α-cyano cinnamic acid (1.5 µl) was mixed with purified peptide (1.5 µl) and left to dry on the MALDI plate. After drying, MALDI plate 

was applied to Voyager DE Bio spectrometry workstation. The mass-to-charge ratio versus peak intensity was recorded. 
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Figure 4.10 Representative MALDI-TOF spectra of frenatin 2D peptides 

 

 

 

 

Matrix α-cyano cinnamic acid (1.5 µl) was mixed with purified peptide (1.5 µl) and left to dry on the MALDI plate. After drying, MALDI plate 

was applied to Voyager DE Bio spectrometry workstation. The mass-to-charge ratio versus peak intensity was recorded. 

 

 



188 
 

Figure 4.11 Effects of frenatin peptides on insulin release from BRIN-BD11 rat 

clonal β-cells  
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Effects of (A) frenatin 2D, (B) frenatin 2.1S, (C) frenatin 2.2S and (D) frenatin 2.3S 

on insulin release from BRIN-BD11 rat clonal β-cells. Values are mean ± SEM for n 

= 8. *P < 0.05, **P<0.01, and ***P<0.001 compared to 5.6 mM glucose alone.  
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Figure 4.12 Effects of frenatin peptides on LDH release from BRIN-BD11 rat 

clonal β-cells  
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Values are Mean ± SEM with n=4 for LDH. DMSO (100%) was used as positive 

control. ***P<0.001 compared to 5.6 mM glucose alone. 
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Figure 4.13 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D 

and [G7W] frenatin 2D) on insulin release from BRIN-BD11 rat clonal β-cells 

0

1

2

3

4

5

6

Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

Glucose (5.6 mM) + Exenatide (10
-8

 M)

Glucose (5.6 mM) + Frenatin 2D

3x10-6 10-6 10-7 10-8 10-9 10-10 10-11 10-12

Peptide concentration [M]

***

***

***

*** ***
*** *** * *

A)

In
su

lin
 r

el
ea

se

(n
g/

10
6  c

el
ls

/2
0 

m
in

)

0

1

2

3

4

5

6

Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

Glucose (5.6 mM) + Exenatide (10
-8

 M)

Glucose (5.6 mM) + [D1W] Frenatin 2D

3x10-6 10-6 10-7 10-8 10-9 10-10 10-11 10-12

Peptide concentration [M]

***

***

***

*** ***

*** ** * *

B)

In
su

lin
 r

el
ea

se

(n
g/

10
6  c

el
ls

/2
0 

m
in

)

0

1

2

3

4

5

6

Glucose (5.6 mM)

Glucose (5.6 mM) + Alanine (10 mM)

Glucose (5.6 mM) + Exenatide (10
-8

 M)

Glucose (5.6 mM) + [G7W] Frenatin 2D

3x10-6 10-6 10-7 10-8 10-9 10-10 10-11 10-12

Peptide concentration [M]

***

***

***

***
***

***
*** ** **

C)

In
su

lin
 r

el
ea

se

(n
g/

10
6  c

el
ls

/2
0 

m
in

)

 

Comparison of the effects of A) Frenatin 2D, B) [D1W] frenatin 2D, and C) [G7W] 

frenatin 2D on insulin release from BRIN-BD11 rat clonal β-cells. Values are mean ± 

SEM for n = 8. *P<0.05, **P<0.01, and ***P<0.001 compared to 5.6 mM glucose 

alone.  
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Figure 4.14 Effects of [D1W] frenatin 2D and [G7W] frenatin 2D on LDH release 

from BRIN-BD11 rat clonal β-cells  
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Values are Mean ± SEM with n=4 for LDH. 
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Figure 4.15 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D 

and [G7W] frenatin 2D) on insulin release from 1.1B4 human clonal β-cells 
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Effects of A) Frenatin 2D, B) [D1W] frenatin 2D, and C) [G7W] frenatin 2D on insulin 

release from 1.1B4 human clonal β-cells. Values are mean ± SEM for n = 8. *P<0.05, 

**P<0.01 and ***P<0.001 compared to 5.6 mM glucose alone.  
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Figure 4.16 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D 

and [G7W] frenatin 2D) on insulin release from 1.1B4 human clonal β-cells 
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Effects of A) Frenatin 2D, B) [D1W] Frenatin 2D, and C) [G7W] Frenatin 2D on 

insulin release from 1.1B4 human clonal β-cells. Values are mean ± SEM for n = 8. 

*P<0.05, **P<0.01 and ***P<0.001 compared to 16.7 mM glucose alone.  
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Figure 4.17 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D 

and [G7W] frenatin 2D) on insulin release from isolated mouse islets 
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Effects of frenatin 2D, [D1W] and [G7W] Frenatin 2D on insulin release from isolated 

mouse islets. Values are Mean ± SEM (n=4). *P<0.05, **P<0.01 and ***P<0.001 

compared to 16.7 mM glucose. 
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Figure 4.18 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D 

and [G7W] frenatin 2D) on membrane potential in BRIN-BD11 rat clonal β-cells 

expressed as line graph (A, C, E) and area under the curve (B, D, F)  
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Effects of frenatin 2D (A), [D1W] frenatin 2D (C), [G7W] frenatin 2D (E) on 

membrane potential in BRIN-BD11 cells expressed as relative fluorescence units, 

RFU as a function of time and (B), (D) and (F) the integrated response (area under the 

curve) for respective peptide. Peptides were added 20 sec after start of data acquisition 

at a rate of ~62 μl/sec. Values are mean ± SEM (n = 6).  ***P < 0.001 compared with 

5.6 mM glucose alone. 
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Figure 4.19 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D 

and [G7W] frenatin 2D) on intracellular calcium in BRIN-BD11 rat clonal β-cells 

expressed as line graph (A, C, E) and area under the curve (B, D, F)  
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Effects of frenatin 2D (A), [D1W] frenatin 2D (C), [G7W] frenatin 2D (E) on 

intracellular calcium ion concentration [Ca2+]i in BRIN-BD11 cells expressed as 

relative fluorescence units, RFU as a function of time and (B), (D) and (F) the 

integrated response (area under the curve) for respective peptide. Peptides were added 

20 sec after start of data acquisition at a rate of ~62 μl/sec. Values are mean ± SEM 

for n = 6.  ***P<0.001 compared with 5.6 mM glucose alone. 
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Figure 4.20 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D 

and [G7W] frenatin 2D) on insulin release from BRIN-BD11 rat clonal β-cells in 

the presence of known modulators of insulin release 
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Values are Mean ± SEM (n=8). *P<0.05, ***P<0.001 compared to 5.6 mM glucose 

alone. +++P<0.001 compared to 5.6 mM glucose in the presence of the peptide. 
ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to respective incubation in the absence of 

the peptide. 
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Figure 4.21 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D 

and [G7W] frenatin 2D) on insulin release from BRIN-BD11 rat clonal β-cells in 

the presence or absence of extracellular calcium  
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Values are Mean ± SEM (n=8). *P<0.05, **P<0.01, ***P<0.001 compared to 5.6 mM 

glucose alone. ++P<0.01 compared to 5.6 mM glucose in the presence of the peptide. 
ΔΔΔP<0.001 compared to respective incubation in the absence of the peptide.  
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Figure 4.22 Effects of frenatin 2D on insulin release in the presence of chloride 

channel blocker DIDS from BRIN-BD11 rat clonal β-cells   
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Values are mean ± SEM (n=8). **P<0.01, ***P<0.001 compared to 5.6 mM glucose 

alone. +P<0.05 compared to 5.6 mM glucose in the presence of the peptide. ΔΔP<0.01, 
ΔΔΔP<0.001 compared to respective incubation in the absence of the peptide. 
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Figure 4.23 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D 

and [G7W] frenatin 2D) on cyclic AMP in BRIN-BD11 rat clonal β-cells   
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Effects of frenatin 2D peptides on A) cAMP production and B) Insulin release in 

BRIN-BD11 cells. Values are Mean ± SEM with n=3 for cAMP and n=4 for insulin 

release. *P<0.05, **P<0.01, ***P<0.001 compared to 5.6mM glucose alone. ΔP<0.05, 

ΔΔP<0.01, ΔΔΔP<0.001 compared to 5.6mM glucose + IBMX. 
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Figure 4.24 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D 

and [G7W] frenatin 2D) on down‑regulation of the PKA and PKC pathways in 

BRIN-BD11 rat clonal β-cells   

  
0

2

4

6

Glucose (5.6 mM)

Glucose (5.6 mM) + Forskolin (25 M)

***

Control PMAForskolin

***

***

***
***

***

+
+++

+++




 

Glucose (5.6 mM) + Forskolin (25 M)+ PMA (10 nM)

Forskolin + PMA

Glucose (5.6 mM) + PMA (10 nM)

Glucose (5.6 mM) + GLP-1 (10 nM)

Glucose (5.6 mM) + CCK8 (10 nM)

Glucose (5.6 mM) + Frenatin 2D (10-6 M)

***

***
***

***

***

***
***















+++

++







A)

In
su

lin
 re

lea
se

(n
g/

10
6

ce
lls

/20
m

in
)

0

2

4

6

Glucose (5.6 mM)

Glucose (5.6 mM) + Forskolin (25 M)

***

Control PMAForskolin

***

***

***

***

***

+
+++

+++








Glucose (5.6 mM) + Forskolin (25 M)+ PMA (10 nM)

Forskolin + PMA

Glucose (5.6 mM) + PMA (10 nM)

Glucose (5.6 mM) + GLP-1 (10 nM)

Glucose (5.6 mM) + CCK8 (10 nM)

Glucose (5.6 mM) + [D1W] Frenatin 2D (10-6M)

***

*********

***

***

 









+++

++






B)

In
su

lin
 re

lea
se

(n
g/

10
6 ce

lls
/20

m
in

)

                      

   
0

2

4

6

Glucose (5.6 mM)

Glucose (5.6 mM) + Forskolin (25 M)

***

Control Forskolin PMA

***

***

***
***

***

+
+++

+++








Glucose (5.6 mM) + Forskolin (25 M)+ PMA (10 nM)

Forskolin + PMA

Glucose (5.6 mM) + PMA (10 nM)

Glucose (5.6 mM) + GLP-1 (10 nM)

Glucose (5.6 mM) + CCK8 (10 nM)

Glucose (5.6 mM) + [G7W] Frenatin 2D (10-6M)

***

***
***

***
***

***













+++

++







***

C)

Ins
uli

n r
ele

as
e

(n
g/1

06 ce
lls

/20
mi

n)

 

Values are mean ± SEM for n = 8. ***P<0.001 compared with 5.6 mM glucose, 
ΔΔΔP<0.001, ΔP<0.05 compared to standard culture conditions, +++P<0.001, ++P<0.01, 
+P<0.05 compared to culture with PMA, φφφP<0.001, φφP<0.01, φP<0.05 compared 

with culture with forskolin. 
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Figure 4.25 Effect of frenatin 2D and its synthetic analogues ([D1W] frenatin 

2D and [G7W] frenatin 2D) on cytokine-induced apoptosis in BRIN-BD11 rat 

clonal β-cells  
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Effects of 1 µM A) frenatin 2D, B) [D1W] and C) [G7W] frenatin 2D on apoptosis in 

BRIN-BD11 cells compared with 1 µM GLP-1. Values are mean ± SEM for n=3. 

**P<0.01, ***P<0.001 compared with incubation in culture medium alone, ΔP<0.05, 
ΔΔP<0.01 and ΔΔΔP<0.001 compared with incubation in cytokine-containing medium.  
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Figure 4.26 Effect of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D 

and [G7W] frenatin 2D) on proliferation in BRIN-BD11 rat clonal β-cells 
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Effects of 1 µM Frenatin 2D and [D1W], [G7W] analogues on proliferation in BRIN-

BD11 cells compared with 1 µM GLP-1. Values are mean ± SEM Values are mean ± 

SEM for n=3. *P<0.05, **P<0.01, ***P<0.001 compared with incubation in culture 

medium alone, ΔΔΔP<0.001   compared to GLP-1 treated cells. 
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Figure 4.27 HPLC profile of Plasma degradation of frenatin 2D at 0 hrs (A) and 

4 hrs (B) 
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HPLC profile of frenatin 2D following incubation with Swiss lean mice plasma for 0 

and 4 hrs. The fraction was separated with a C8 column using a gradient from 0 to 

40% acetonitrile from 0 to 10 min, to 60% over 30 min.  
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Figure 4.28 MALDI-TOF spectra of plasma degradation of frenatin 2D fraction 

collected at 4 hrs 

 

 

 

Peptide samples (1.5 μl) were mixed with matrix α-cyanocinnamic acid (1.5 μl) on a 

100 well MALDI plate and left to dry. After complete drying, samples were applied 

to a Voyager DE Biospectrometry workstation. The mass-to-charge ratio (m/z) versus 

peak intensity was recorded.  
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Figure 4.29 Effect of insulin on glucose uptake in differentiated C2C12 cells 
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Glucose uptake was expressed as % of control (glucose). Apigenin was used as 

negative control for glucose uptake. Values are Mean ± SEM with n=3. *P<0.05 

compared with glucose alone. 
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Figure 4.30 Effect of frenatin 2D and its synthetic analogues ([D1W] frenatin 

2D and [G7W] frenatin 2D) on glucose uptake in differentiated C2C12 cells 
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Glucose uptake was expressed as % of control (glucose). Apigenin was used as 

negative control for glucose uptake. Values are Mean ± SEM with n=3. *P<0.05, 

**P<0.01 compared with glucose alone. 



208 
 

Figure 4.31 Acute effect of frenatin 2D and its synthetic analogues ([D1W] 

frenatin 2D and [G7W] frenatin 2D) on cumulative food intake in 21 hr fasted 

lean NIH Swiss TO mice 
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Cumulative food intake was measured before at 0 min and after i.p. injection of saline 

vehicle (0.9% w/v NaCl) or GLP-1 (25 nmol/kg bw) or test peptides (75 nmol/kg bw) 

at time point 30, 60, 90, 120, 150, 180 min in overnight (21 hr) fasted mice. Values 

represent mean ± SEM (n=8). *P<0.05 compared to saline control.
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Figure 4.32 Effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D and [G7W] frenatin 2D) on glucose tolerance and 

insulin concentrations in mice 
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A comparison of the effects of intraperitoneal administration of frenatin 2D peptides (75 nmol/kg body weight) and GLP-1 (25 nmol/kg body 

weight) on blood glucose (panels A and B) and plasma insulin (panels C and D) concentrations in lean mice after co-injection of glucose (18 

mmol/ kg body weight). Values are mean ± SEM (n = 6). *P<0.05, **P<0.01 and ***P<0.001 compared with glucose alone.  
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Figure 4.33 Effects of 2 hours pre-treatment with frenatin 2D and its synthetic 

analogues ([D1W] frenatin 2D and [G7W] frenatin 2D) on blood glucose levels 

expressed as line graph (A) and area under the curve (B) in lean NIH Swiss TO 

mice 
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Blood glucose was measured before and after intraperitoneal injection of glucose (18 

mmol/kg bw, control) in lean NIH Swiss TO mice treated with saline or GLP-1 (25 

nmol/kg bw) or frenatin 2D peptides (75 nmol/kg bw) 2 hr prior to experiment. Values 

are mean ± SEM (n=6). *P<0.05 compared to control. 
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Figure 4.34 Effects of 4 hours pre-treatment with frenatin 2D and its synthetic 

analogues ([D1W] frenatin 2D and [G7W] frenatin 2D) on blood glucose levels 

expressed as line graph (A) and area under the curve (B) in lean NIH Swiss TO 

mice 
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Blood glucose was measured before and after intraperitoneal injection of glucose (18 

mmol/kg bw, control) in lean NIH Swiss TO mice treated with saline or GLP-1 (25 

nmol/kg bw) or frenatin 2D peptides (75 nmol/kg bw) 4 hr prior to experiment. Values 

are mean ± SEM (n=6). *P<0.05 compared to control. 
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Figure 4.35 Acute effects of frenatin 2D and its synthetic analogues ([D1W] frenatin 2D and [G7W] frenatin 2D) on blood glucose levels 

expressed as line graph (A, C) and area under the curve (B, D) in lean NIH Swiss TO mice 
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Blood glucose was measured before and after intraperitoneal administration of glucose (18 mmol) or in combination with frenatin 2D (50/75/150 

nmol/kg body weight) or [D1W] Frenatin 2D (25/50/75/150 nmol/kg body weight) in NIH Swiss TO mice. Values are mean ± SEM (n=6). *P<0.05, 

**P<0.01 compared to glucose alone mice.
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Figure 4.36 Effects of 28-day treatment with frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on body weight (A, B), energy intake (C, D) and 

water Intake (E, F) in db/db mice 
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Body weight, energy intake and water intake were measured 3 days prior to, and every 

72 hours during treatment with saline or exenatide (25 nmol/kg bw) or peptide (75 

nmol/kg bw) for 28 days. Values are mean ±SEM for 8 mice. *P<0.05, **P<0.01 

***P<0.001 compared to lean mice and ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001compared to 

control db/db mice.
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Figure 4.37 Effects of 28-day treatment with frenatin 2D and its synthetic analogue [D1W] frenatin 2D on non-fasting blood glucose (A, 

B) and plasma insulin (C, D) in db/db mice  
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Parameters were measured 3 days prior to, and every 72 hours during treatment (indicated with black bar) with saline or exenatide (25 nmol/kg 

bw) or peptide (75 nmol/kg bw) for 28 days. Values are mean ±SEM for 8 mice. *P<0.05, **P<0.01 ***P<0.001 compared to lean mice and 
ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to control db/db mice. 
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Figure 4.38 Effects of frenatin 2D and its synthetic analogue [D1W] frenatin 2D 

on HbA1c in db/db mice 
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HbA1c level was measured after long term treatment with twice-daily injections of 

either saline or exenatide (25 nmol/kg bw) or peptide (75 nmol/kg bw) for 28 days. 

Values are mean ± SEM for 4 mice. ***P<0.001, **P<0.01, *P<0.05 compared with 

lean mice and ΔP<0.05, ΔΔP<0.01compare with db/db control mice. 
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Figure 4.39 Long-term effects of frenatin 2D and its synthetic analogue [D1W] 

frenatin 2D on plasma glucose (A, B) and insulin (C, D) concentrations following 

intraperitoneal glucose administration to db/db mice 
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Plasma glucose and insulin concentrations were measured prior to and after 

intraperitoneal administration of glucose (18 mmol/kg bw) to db/db mice pre-treated 

with twice-daily injections of either saline or exenatide (25 nmol/kg bw) or peptide 

(75 nmol/kg bw) for 28 days. Values are mean ± SEM for 8 mice. *P<0.05, **P<0.01 

***P<0.001 compared to lean mice and ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001compared to 

control db/db mice. 
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Figure 4.40 Long-term effects of frenatin 2D and its synthetic analogue [D1W] 

frenatin 2D on plasma glucose (A, B) and insulin (C, D) concentrations following 

oral glucose administration to db/db mice 
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Plasma glucose and insulin concentrations were measured prior to and after oral 

administration of glucose (18 mmol/kg bw) to db/db mice pre-treated with twice-daily 

injections of either saline or exenatide (25 nmol/kg bw) or peptide (75 nmol/kg bw) 

for 28 days. Values are mean ± SEM for 8 mice. *P<0.05, **P<0.01 ***P<0.001 

compared to lean mice and ΔP<0.05, ΔΔP<0.01 compared to control db/db mice. 
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Figure 4.41 Long-term effects of frenatin 2D and its synthetic analogue [D1W] 

frenatin 2D on insulin sensitivity in db/db mice 
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Plasma glucose was measured prior to and after intraperitoneal injection of insulin (50 

U/kg bw) in db/db mice pre-treated with twice-daily injections of either saline or 

exenatide (25 nmol/kg bw) or peptide (75 nmol/kg bw) for 28 days. Values are mean 

± SEM for 8 mice. ***P<0.001 compared with lean mice and ΔP<0.05, ΔΔP<0.01 

compare with db/db control mice. 
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Figure 4.42 Effects of frenatin 2D and its synthetic analogue [D1W] frenatin 2D 

on body composition in db/db mice 
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Effects of frenatin 2D and [D1W] frenatin 2D on body composition in lean and db/db 

mice. Animals were injected with either saline or peptide (25/75 nmol/kg bw) for 28 

days. The figure shows (A) representative DEXA scans, (B) bone mineral density, (C) 

bone mineral content, (D) bone area. (E) lean body mass, (F) body fat and (G) body 

fat expressed a percentage of total body mass. Values are mean ± SEM for 8 mice. 

*P<0.05, **P<0.01, ***P<0.001 compared with saline-treated lean mice. 
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Figure 4.43 Effects of frenatin 2D and its synthetic analogue [D1W] frenatin 2D 

on pancreatic weight (A), total insulin content (B), and insulin secretory response 

of isolated islets (C&D) from lean, and db/db mice treated 
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Mice were treated with saline or exenatide (25 nmol/kg bw) or peptide (75 nmol/kg 

bw) for 28 days prior to the experiment. Values are mean ± SEM with n=4. *P<0.05, 

**P<0.01, ***P<0.001 compared with the response of islets isolated from each group 

of mice at 16.7 mM glucose; ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared with the 

response of islets isolated from lean mice (saline treated) to each secretagogue or 

glucose concentration. 
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Figure 4.44 Effects of long-term treatment with frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on total cholesterol (A), Triglycerides (B), HDL (C) 

and LDL (D) in db/db mice 
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Plasma sample was collected after 28 days treatment with either saline (control) or 

exenatide or peptide. Values are mean ± SEM for 6 mice. *P<0.05, *P<0.05, 

***P<0.001 compared to lean mice. ΔP<0.05, ΔΔP<0.01 compared to db/db control 

mice. 
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Figure 4.45 Effects of long-term treatment with frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on plasma AST (A) ALT (B) ALP (C) and creatinine 

(D) levels in db/db mice 
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Following 28 days injection with either saline (control) or exenatide or peptide, a 

plasma sample was collected and measured for ALT, AST, ALP and creatinine levels.  

Values are mean ± SEM for 6 mice. **P<0.01, ***P<0.001 compared to lean control. 
ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to db/db control. 
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Figure 4.46 Effects of long-term treatment with frenatin 2D and its synthetic 

analogue [D1W] frenatin 2D on amylase activity in diabetic mice (db/db) 
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Following 28 days injection with either saline (control) or exenatide or peptide, a 

plasma sample was collected and measured for amylase activity. Values are mean ± 

SEM for n=6 mice. ***P<0.001 compared to lean control. ΔΔΔP<0.001 compared to 

db/db control. 
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Figure 4.47 Effects of frenatin 2D & its synthetic analogue [D1W] frenatin 2D 

treatment on islet morphology in db/db mice 
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Representative images (A) showing insulin (green) and glucagon (red) 

immunoreactivity from lean, db/db control, frenatin 2D and [D1W] frenatin 2D treated 

mice. B, C, D, E and F shows islet number, islet area, beta cell area, alpha cell area 

and islet size distribution respectively. Values are mean ± SEM for 6 mice (~80 islets 

per group). *P<0.05, **P<0.01 compared to normal saline control. ΔP<0.05, ΔΔP<0.01, 
ΔΔΔP<0.001 compared to db/db control. 
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Figure 4.48 Effects of frenatin 2D & its synthetic analogue [D1W] frenatin 2D 

treatment on expression of genes involved in insulin action in skeletal muscle 
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3µg of mRNA was used for cDNA synthesis. Expression values were normalised to 

Actb. Values are mean ± SEM for n=4. *P<0.05, **P<0.01, ***P<0.001 compared to 

normal control. ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to db/db control. 
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Figure 4.49 Effects of frenatin 2D and its synthetic analogue [D1W] Frenatin 2D 

treatment on expression of genes involved in insulin secretion from mouse islets 
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3µg of mRNA was used for cDNA synthesis. Expression values were normalised to 

Actb. Values are mean ± SEM for n=4. *P<0.05, **P<0.01, ***P<0.001 compared to 

normal control. ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to db/db control. 
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Figure 4.50 Effects of frenatin 2D and its synthetic analogue [D1W] frenatin 2D 

treatment on expression of genes involved in insulin secretion (A-C), beta cell 

proliferation (D) and beta cell apoptosis (E) in mouse islets 
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3µg of mRNA was used for cDNA synthesis. Expression values were normalised to 

Actb. Values are mean ± SEM for n=4.  *P<0.05, **P<0.01, ***P<0.001 compared 

to normal control. ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to db/db control mice. 
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5.1 Summary  

 

The present Chapter investigated the antidiabetic potential of [A14K] PGLa-AM1 

(GMASKAGSVLGKVKKVALKAAL.NH2), an analogue of native PGLa-AM1 

(GMASKAGSVLGKVAKVALKAAL.NH2) with increased cationicity. Like the 

native peptide, [A14K] PGLa-AM1 displayed dose-dependent stimulatory nontoxic 

effects on insulin release from BRIN-BD11 as well as from human-derived pancreatic 

1.1B4 beta cells. [A14K] PGLa-AM1 also provided protection against cytokine-

induced apoptosis and stimulated proliferation in BRIN-BD11 cells. Twice daily 

administration of [A14K] PGLa-AM1 (75 nmol/kg bw) or exenatide (25 nmol/kg bw) 

to db/db mice for 28 days, markedly delayed gradual decline of insulin and improved 

HbA1c, hyperglycaemia, glucose tolerance and insulin sensitivity. In contrast, native 

PGLa-AM1 (75 nmol/kg bw) produced no significant changes in these parameters. 

Energy intake and fluid intake were unaffected in PGLa-AM1 and [A14K] PGLa-

AM1 but decreased significantly by exenatide. Elevated levels of triglycerides and 

LDL were reversed by [A14K] PGLa-AM1 and exenatide but not by PGLa-AM1. The 

cholesterol level was decreased significantly by [A14K] PGLa-AM1. Plasma AST, 

ALT, ALP and creatinine were decreased markedly by [A14K] PGLa-AM1 and 

exenatide.  Except for ALP, these biomarkers were also significantly decreased by 

PGLa-AM1. Amylase activity was elevated in all treatment groups. Pancreatic insulin 

was significantly increased by [A14K] PGLa-AM1and exenatide. No significant 

changes were observed in the islet, beta cell and alpha cell area in the treated groups 

except for exenatide. However, the loss of large and medium-size islet in db/db mice 

was significantly countered in all peptide treated groups. Islets isolated from peptide-

treated db/db mice showed improved insulin secretory responses to glucose and 

known insulin modulators. In un-treated db/db mice, the expression of insulin 
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signalling genes was upregulated, and that of insulin secretory genes was down-

regulated. These changes were reversed by [A14K] PGLa-AM1 and exenatide 

treatment. In transgenic GluCre-ROSA26EYFP mice, receiving [A14K] PGLa-AM1, 

the numbers of Ins+/GFP+ cells, GFP+ cells and Ins+/Glu+ were increased significantly, 

indicating that the analogue could have positive effects on transdifferentiation of 

glucagon-expressing alpha to insulin-expressing beta cells.   

 

5.2 Introduction 

The granular glands present in the frog skin has proven to contain biologically active 

peptides having a wide range of pharmacological activities that may have medicinal 

importance (Conlon, 2017). These peptides play an important role in host defence 

against pathogenic microorganisms such as bacteria, fungi, protozoa and viruses.  

Hence, they were called host defence peptides and classified based on antimicrobial 

activities. Additionally, these peptides have displayed tumoricidal activity and 

cytokine-mediated immunomodulatory properties (Xu and Lai et al., 2015, Conlon et 

al., 2014a).  Interestingly, few peptides in frog skin secretions were structurally related 

to mammalian peptides such as cholecystokinin and tachykinins (Marenah et al., 

2004a).  

Many host defence peptides with multifunctional activities have also shown insulin-

releasing activity in vitro using rat clonal pancreatic beta cell line (BRIN-BD11 cell 

line), human-derived pancreatic beta cells (1.1B4 cell line) and mouse pancreatic 

islets, without affecting the architecture of plasma membrane (Conlon et al., 2017).  

Additionally, these peptides have been shown to improve glycemic response both in 

lean and high fat-induced insulin resistance diabetic mice when administered together 

with glucose (Srinivasan et al., 2015, Owolabi et al., 2016, Vasu et al., 2017). 
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Furthermore, some of these peptides stimulated the release of GLP-1, an incretin 

peptide which plays an essential role in maintaining pancreatic beta cell mass and 

function, from GLUTag murine enteroendocrine cell line (Ojo et al., 2013a).  

Based on structure-activity analysis of frog skin insulinotropic peptides, previous 

studies have revealed the key determinants that influence the insulin-releasing activity 

of frog skin peptides (Abdel Wahab et al., 2008a, Ojo et al., 2013b, Srinivasan et al., 

2016). Analogues containing lysine (K) or tryptophan (W) substitution have shown 

greater insulinotropic potency than the parent peptide. Synthetic analogues of the 

brevinine 2-related -peptide (B2RP) (Abdel Wahab et al., 2010), tigerinin-1R 

(Srinivasan et al., 2016), hymenochirin–1B (Owolabi et al., 2016), esculentin-2Cha 

(Vasu et al., 2017) exhibited potent insulinotropic activity both in vitro and in vivo. 

Peptide glycine-leucine-amide (PGLa) is well-known for its broad-spectrum 

antibacterial and antifungal activities (Gibson et al., 1986). It was first isolated from 

skin secretions of the South African frog Xenopus laevis (Glattard et al., 2016). PGLa-

AM1 (GMASKAGSVLGKVAKVALKAAL.NH2) is a paralogue of PGLa, found in 

skin secretions of the octoploid frog Xenopus amieti (Conlon et al., 2010). It 

demonstrated a dose-dependent release of GLP-1 and insulin from GLUTag and 

BRIN-BD11 cells respectively, without compromising architecture of plasma 

membrane (Ojo et al., 2013a, Owolabi et al., 2017). In the recent study, the synthetic 

analogue [A14K] PGLa-AM1, generated by substituting alanine at position 14 by 

lysine in the parent peptide, produced the stronger insulin secretory response from 

BRIN-BD11 cells and mouse islets (Abdel-Wahab et al., 2010, Manzo et al., 2015, 

Owolabi et al., 2017). Furthermore, acute administration of [A14K] PGLa-AM1 (75 

nmol/ kg bw) both in lean and high fat-fed mice, resulted in a significant increase of 

plasma insulin and improved blood glucose.   
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Based on these promising preliminary results, the insulinotropic activity of [A14K] 

PGLa-AM1 was further investigated in 1.1B4 human-derived pancreatic β-cells. 

Additionally, the beneficial effects of [A14K] PGLa-AM1 on beta cell proliferation 

and its ability to protect cytokine-induced DNA damage was examined in BRIN-BD11 

cells. Furthermore, longer-term in vivo antidiabetic effects of [A14K] PGLa-AM1 

were examined in genetically obese-diabetic mice (db/db), in comparison to its parent 

peptide (PGLa-AM1) and an antidiabetic agent, exenatide. An additional in vivo study 

was performed using transgenic GluCre-ROSA26EYFP mice, to investigate beneficial 

effects of [A14K] PGLa-AM1 on transdifferentiation of glucagon-producing alpha 

cells to insulin-producing beta cells. These in vivo studies were carried out in parallel 

with the evaluation of frenatin 2D as presented in Chapter 4. 

 

5.3 Materials and Methods 

5.3.1 Reagents 

All the reagents used in the experiments were of analytical grade and listed in Chapter 

2, Section 2.1. Synthetic peptide (PGLa-AM1 and [A14K] PGLa-AM1) used in this 

Chapter were supplied by SynPeptide (China). CytoTox 96 Non-Radioactive 

Cytotoxicity Assay kit (Catalogue number: G1780) purchased from Promega 

(Southampton, UK).  FLIPR Calcium Assay Kit (Catalogue number: R8041) and 

Membrane potential blue (Catalogue number: R8042) were purchased from Molecular 

Devices (Berkshire, UK). Apoptosis and proliferation experiments were performed 

using IN SITU Cell Death Fluorescein kit (Sigma-Aldrich, Catalogue number: 

11684795910) and Rabbit polyclonal to Ki67 (Abcam, Catalogue number: ab15580) 

respectively. Masterclear Cap Strips and real-time PCR TubeStrips (Catalogue 

number: 0030132890) purchased from Mason Technology Ltd (Dublin, Ireland). 
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5.3.2 Peptide synthesis and purification 

Synthetic peptide [A14K] PGLa-AM1 was purified to near homogeneity (>98% 

purity) by reverse phase HPLC using a Vydac (C-18) column as described in Chapter 

2, Section 2.2.1.1. The molecular mass of the collected peak was characterised using 

MALDI-TOF MS (Chapter 2, Section 2.2.2). Peptide PGLa-AM1 used in this Chapter 

was supplied in pure form by SynPeptide (China).  (See Figure 5.1 for peptides 

structure) 

 

5.3.3 Effects of [A14K] PGLa-AM1 on insulin release from BRIN-BD11 and 

1.1B4 cells 

The dose-dependent insulin secretory studies of peptide [A14K] PGLa-AM1 was 

performed using BRIN-BD11 (passage 15-30) and 1.1B4 cells (passage 25-28).  The 

procedure for studying the insulin-releasing activity of peptide has been described in 

Chapter 2, Section 2.4.1.1. [A14K] PGLa-AM1 (3x10-6 - 10-12 M, n=8) was incubated 

for 20 min at 37 °C using Krebs-Ringer bicarbonate (KRB) buffer supplemented with 

5.6 mM glucose. After incubation, the cell supernatant was aliquoted and stored at -

20 °C for insulin radioimmunoassay as outlined in Chapter 2, Section 2.4.4. 

 

5.3.4 Cytotoxicity studies 

LDH release from [A14K] PGLa-AM1 treated cells was determined using CytoTox 

96 non-radioactive cytotoxicity assay kit, as described in Chapter 2, Section 2.5. 

 

5.3.5 Effects of [A14K] PGLa-AM1 on apoptosis and proliferation in BRIN-BD11 

cells 
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The ability of [A14K] PGLa-AM1 to protect against cytokine-induced DNA damage 

was investigated in BRIN-BD11 cells. Cells were seeded at a density of 5 x104 cells 

per well in 12 well plate and exposed to a cytokine mixture  (200 U/ml tumour-necrosis 

factor-α, 20 U/ml interferon-γ and 100 U/ml interleukin-1β), in the presence or 

absence of [A14K] PGLa-AM1 (10-6 M) for 18 hr at 37 °C. GLP-1 (10-6 M) was used 

as a positive control in the experiment. The detailed procedure is described in Chapter 

2, Section 2.10. 

The positive effect of [A14K] PGLa-AM1 (10-6 M) or GLP-1 (10-6 M) on the 

proliferation of BRIN-BD11 cells is described in Chapter 2, Section 2.10. After fixing 

of BRIN-BD11 cells using 0.1 M sodium citrate buffer (pH 6.0) and treatment with 

300 µl of 1.1% BSA, cells were stained with rabbit anti-Ki-67 primary antibody and 

subsequently with Alexa Fluor 594 secondary antibody (Abcam. Cambridge, UK).  

 

5.3.6 Effects of the peptide on glucose uptake in C2C12 cells 

The procedure for determining the effects of peptides on the glucose uptake in C2C12 

cells is described in Chapter 2, Section 2.11. 

 

5.3.7 Acute in vivo effects of the peptide on food intake 

Food intake was measured in overnight (21 hr) fasted mice after i.p injection of saline 

and test peptides as described in Chapter 2, Section 2.13.4.   

 

5.3.8 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-AM1 

in db/db mice 

Twice daily i.p. injections of saline (control) or peptide (75 nmol/kg bw) or Exenatide 

4 (75 nmol/kg bw) were administered for 28 days in db/db male mice. The various 
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control groups were the same mice as reported in chapter 4. Before the start of the 

treatment, all mice were injected twice daily with saline for 3 days and body weight, 

energy intake and blood glucose were observed. After initiation of treatment at every 

3 days interval body weight, energy intake, non-fasted blood glucose and plasma 

insulin were assessed. Glucose in blood and plasma were measured by Ascencia 

counter blood glucose meter (Bayer, UK) and GOD-PAP reagent, respectively 

(Chapter 2, Section 2.13.5). Plasma insulin was measured by radioimmunoassay, as 

outlined in Chapter 2, Section 2.13.5. At the end of treatment, terminal studies were 

performed to measure HbA1c (Chapter 2, Section 2.13.9), glycaemic response to an 

intraperitoneal and oral glucose load (Chapter 2, Section 2.13.2) and insulin sensitivity 

test (Section 2.13.3). Fasting (18 hr) blood glucose and plasma were measured and 

used to assess insulin resistance using homeostatic model assessment (HOMA) 

formula: HOMA-IR = fasting glucose (mmol/l) x fasting insulin (mU/l)/22.5. After 

collecting terminal blood, animals were sacrificed, and terminal analysis was 

performed which include measurement of body fat composition and bone mineral 

density using DEXA scanning (PIXImus densitometer, USA) (Chapter 2, Section 

2.13.8). Terminal plasma was used for lipid profile, assessment of liver and kidney 

function and amylase activity (Chapter 2, Section 2.13.12). Tissues dissected from 

sacrificed animals were processed for immunohistochemistry (Chapter 2, Section 

2.14), measurement of pancreatic insulin (Chapter 2, Section 2.13.11) and expression 

of key genes involved in glucose haemostasis (Chapter 2, Section 2.15). Islets were 

isolated from the pancreas (Chapter 2, Section 2.4.2.1) and used to evaluate insulin 

secretory responses to established insulin secretagogues as described in Chapter 2, 

Section 2.4.2.3. 
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5.3.9 Biochemical analysis 

Pancreatic tissues were homogenised in acid ethanol to measure insulin content by 

radioimmunoassay as described in Chapter 2, Section 2.13.11. The HbA1c level in 

saline and peptide-treated mice was measured using A1cNow+ kits (PTS diagnostics, 

IN, USA) (Chapter 2, Section 2.13.9). Effect of peptide treatment on renal and liver 

function test was performed by measuring creatinine, alanine transaminase (ALT), 

aspartate transaminase (AST), alkaline phosphatase (ALP) level (Chapter 2, Section 

2.13.12). 

 

5.3.10 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-

AM1 on islet morphology 

Pancreatic tissue was excised from saline and peptide-treated mice and fixed in 4% 

paraformaldehyde. Tissue was processed in an automated tissue processor (Leica 

TP1020, Leica Microsystems, Nussloch, Germany) as outlined in Chapter 2, Section 

2.14. After processing, tissues were embedded in paraffin and sectioned (7 μm 

thickness) using microtome. Sections were placed on a slide and stained for insulin 

and glucagon as described in Chapter 2, Section 2.14.1.  

 

5.3.11 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-

AM1 on gene expression 

Tissues dissected from saline and peptide treated db/db mice were used to study the 

expression of key genes involved in glucose homeostasis. Islet cells were isolated from 

pancreatic tissue by collagenase digestion methods (Chapter 2, Section 2.4.2.1) on the 

same day after culling of mice and stored at -70 °C to study the expression of insulin 

secretory genes. RNA was extracted from muscle tissue and islet cells using TriPure 
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reagent as outlined in Chapter 2, Section 2.15.1, followed by synthesis of cDNA 

(Chapter 2, Section 2.15.2). Genes involved in glucose homeostasis were examined 

using SYBR Green real-time PCR (Chapter 2, Section 2.15.3). 

 

5.3.12 Effects of twice daily administration of [A14K] PGLa-AM1 in GluCre-

ROSA26EYFP mice  

Streptozotocin pre-treated GluCre-ROSA26EYFP mice received twice daily 

intraperitoneal injections of saline or test peptide (75 nmol/kg bw) for 11 days 

(Chapter 2 Section 2.13.1.3). Every 3 days interval non-fasting blood glucose, body 

weight, food intake and water intake were measured. Blood samples were collected 

prior to strep treatment, before initiation of peptide treatment and after peptide 

treatment, and analysed for insulin concentration using RIA (Chapter 2, Section 

2.13.6). Animals were sacrificed, and pancreatic tissues were excised and processed 

for histological staining as described in Chapter 2, Section 2.14 and 2.14.1.  

 

5.3.13 Statistical Analysis 

Experimental data were analysed using GraphPad PRISM (Version 3). Results were 

expressed as means ± SEM and data compared using unpaired student's t-test 

(nonparametric, with two-tailed P values and 95% confidence interval) and one-way 

ANOVA with Bonferroni post-hoc test wherever applicable. Group of datasets were 

considered to be significantly different if P<0.05.  

 

5.4 Results  

5.4.1 Purification and characterisation of [A14K] PGLa-AM1 
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[A14K] PGLa-AM1 was purified and characterised by reverse-phase HPLC and 

MALDI-TOF respectively, as described in Chapter 2, Section 2.2.1.1 and Section 

2.2.2 (Figure 5.2). 

 

5.4.2 Effects of [A14K] PGLa-AM1 on insulin release from BRIN-BD11 and 

1.1B4 cells 

The insulin-releasing activity of [A14K] PGLa-AM1 was investigated in glucose-

responsive BRIN-BD11 and 1.1B4 cell line. As shown in Figure 5.3A, [A14K] PGLa-

AM1 (3 x 10-6 M – 10-12 M) treated BRIN-BD11 cells exhibited a significant dose-

dependent insulin release (P<0.05) up to a concentration of 30 pM.  The stimulatory 

response observed at 3 µM was 3.6-fold greater than basal (0.74 ng/106 cells/20 min). 

[A14K] PGLa-AM1 at concentrations up to and including 3 µM, did not affect the 

release of LDH from the cells indicating that the integrity of the plasma membrane 

was not compromised (Figure 5.3B). As shown in Figure 5.4 A, B incubation of 1.1B4 

cells with [A14K] PGLa-AM1 in 5.6 mM and 16.7 glucose evoked approximately 2.5-

fold increase in insulin response at 3 µM. The peptide exhibited a significant (P<0.05) 

increase in the rate of insulin release at concentrations ≥ 30 pM.  

 

5.4.3 Effects of [A14K] PGLa-AM1 on apoptosis and proliferation in BRIN-BD11 

cells 

[A14K] PGLa-AM1 (1 µM) treated BRIN-BD11 cells were subject to TUNEL assay 

and rabbit anti-Ki-67 primary antibody to evaluate the effects on beta cells apoptosis 

and proliferation. GLP-1(1 µM) used as positive control in the experiment. As shown 

in Figure 5.5A, neither [A14K] PGLa-AM1 nor GLP-1 alone had any effects on 

apoptosis. On the other hand, in cytokine-treated BRIN-BD11 cells, the number of 
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cells undergoing apoptosis was increased 3.7-fold. When the BRIN-BD11 cells were 

incubated with [A14K] PGLa-AM1 and the cytokine mixture, the number of the 

apoptotic cells reduced significantly (P<0.001) by 49%. The degree of protection 

provided by [A14K] PGLa-AM1 was comparable to that provided by GLP-1 (48 % 

reduction). As shown in the Figure 5.5B, [A14K] PGLa-AM1 (1 µM) treatment for 18 

hrs significantly (P<0.001) increased proliferation (42% increase) of BRIN-BD11, 

that was comparable to that produced by 1 µM GLP-1 (43 % increase). On the other 

hand, the proliferation of cytokine-treated BRIN-BD11 cells decreased significantly 

(P<0.01) by 30%. 

 

 

5.4.4 Effects of [A14K] PGLa-AM1 on glucose uptake in C2C12 cells 

 

As shown in Figure 5.6, [A14K] PGLa-AM1 (1 µM) treatment had no significant 

effect on glucose uptake. However, in the presence of insulin, peptide showed a 

noticeable increase in glucose uptake. In the presence of negative control (Apigenin 

50µM), glucose uptake was significantly decreased by 30% (P<0.05).  

 

5.4.5 Acute effects of [A14K] PGLa-AM1 peptides on food intake in mice 

As shown in Figure 5.7, GLP-1 significantly (P<0.05) decreased food intake from 60 

min up to 180 min post-injection in mice. [A14K] PGLa-AM1 showed no effect on 

food intake.  

 

5.4.6 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-AM1 

on body weight, energy intake, non-fasting blood glucose and plasma insulin in 

db/db mice 
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Effects of twice daily administration of PGLa-AM (75 nmol/kg bw) and [A14K] 

PGLa-AM1 (75 nmol/kg bw) on body weight, energy intake, water intake, non-fasting 

blood glucose and plasma insulin were investigated in diabetic male mice (db/db, 

BKS.Cg-+Leprdb/+Leprdb/OlaHsd). As discussed in Chapter 4, Exenatide was used 

as positive control (25 nmol/kg bw). As expected, these parameters were significantly 

increased (P<0.001) in all db/db mice compared to their littermates (Figure 5.8 & 5.9). 

After 28 days of treatment, no significant change in body weight, energy intake and 

fluid intake was observed in PGLa-AM1 and [A14K] PGLa-AM1 treated groups in 

comparison to db/db control group (Figure 5.8A-F). Elevated blood glucose and 

decreased plasma insulin in saline-treated db/db mice was reversed by treatment with 

exenatide and [A14K] PGLa-AM1 (Figure 5.9A-D). Whereas in PGLa-AM1 treated 

db/db mice, these parameters were not significantly different from saline-treated db/db 

mice. 

 

5.4.7 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-AM1 

on Glycated haemoglobin (HbA1c) in db/db mice 

Treatment with 25 nmol/kg bw exenatide and 75 nmol/kg bw [A14K] PGLa-AM 

resulted in significant decrease in HbA1c by 48% (P<0.05) and 30% (P<0.01) 

respectively compared to saline-treated db/db mice. On the other hand, there was no 

significant decrease in blood HbA1c level in PGLa-AM1 treated db/db mice (Figure 

5.10). 

 

5.4.8 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-AM1 

on glucose tolerance in db/db mice following intraperitoneal and oral glucose load 
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Following intraperitoneal glucose load (18 mmol/kg bw), a significant reduction 

(P<0.01, P<0.001) in individual glucose was observed at all time point (15, 30 and 60 

min) in exenatide and [A14K] PGLa-AM1 treated groups compared to saline-treated 

db/db mice (Figure 5.11A). This resulted in a decrease (P<0.05, P<0.001) in an overall 

glycaemic excursion in these mice (Figure 5.11B). Correspondingly, insulin 

concentration was significantly (P<0.05 - P<0.001) increased at all time points with 

exenatide, and at 15 and 30 min after [A14K] PGLa-AM1 (Figure 5.11C). The overall 

insulin concentration was also increased (P<0.05, P<0.001) significantly in these mice 

compared to db/db controls (Figure 5.11D). PGLa-AM1 treated group also showed a 

tendency to improve blood glucose and insulin concentration.  

In another set of experiments, the glycaemic response to an oral glucose challenge was 

investigated in treated and untreated mice (Figure 5.12A-D). Post oral glucose 

administration, blood glucose concentrations were significantly (P<0.01, P<0.001) 

decreased at all time points in [A14K] PGLa-AM1 treated group compared to db/db 

control mice. In the exenatide-treated group, blood glucose was decreased at 15 and 

30 min resulting in significant (P<0.01, P<0.001) reduction in overall blood glucose 

AUC values compared to db/db control mice (Figure 5.12A, B). Similarly, plasma 

insulin concentrations were increased (P<0.05, P<0.01) at 15 and 60 min in exenatide 

and [A14K] PGLa-AM1 treated groups respectively (Figure 5.12C). Furthermore, the 

overall insulin concentration was increased (P<0.05, P<0.01) significantly in these 

groups (Figure 5.12D). The PGLa-AM1 treated group showed a similar pattern of 

glucose and insulin response to those observed after intraperitoneal glucose load. 

 

5.4.9 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-AM1 

on insulin sensitivity in db/db mice 
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Following intraperitoneal administration of insulin (50 U/kg bw), circulating blood 

glucose levels were substantially decreased in [A14K] PGLa-AM1 and exenatide-

treated db/db mice compared to saline-treated db/db mice (Figure 5.13A, B). There 

was no significant decrease in blood glucose in PGLa-AM1 treated db/db mice.  The 

improvement in insulin sensitivity in [A14K] PGLa-AM1 treated mice was further 

confirmed by HOMA-IR calculation. [A14K] PGLa-AM1 and exenatide decreased 

(P<0.05, P<0.01) HOMA-IR by 45% and 54% respectively compared to db/db 

controls (Figure 5.13C). Whereas in PGLa-AM1 treated mice, there was no significant 

decrease in HOMA-IR index.  

 

5.4.10 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-

AM1 on bone mineral density, bone mineral content and fat composition in db/db 

mice 

Figure 5.14 illustrates a DEXA scan of all groups of mice (lean control, db/db control, 

Exenatide, PGLa-AM1 and [A14K] PGLa-AM1 treated group). After 28 days of 

treatment, no significant changes in bone mineral density (BMD), bone mineral 

content (BMC), bone area, body fat and body fat (expressed a percentage of total body 

mass) were observed in the db/db mouse groups. Interestingly, lean body mass was 

significantly less than lean control in both  PGLa-AM1 and [A14K] PGLa-AM1 

treated groups (Figure 5.14E). 

 

5.4.11 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-

AM1 on pancreatic weight and insulin content 

As shown in Figure 5.15A, pancreatic weight remained unchanged in all treatment 

groups compared to db/db control mice. However, in comparison to lean control, the 
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pancreatic weight was significantly (P<0.05, P<0.01) higher. Exenatide and [A14K] 

PGLa-AM1 treatment resulted significant (P<0.05, P<0.01) increase in pancreatic 

insulin content compared to db/db controls (Figure 5.15B). Whereas in PGLa-AM1 

treated group pancreatic insulin content remained unchanged. 

 

5.4.12 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-

AM1 on insulin secretory responses of islets in db/db mice 

As expected, islets from saline-treated db/db mice exhibited impaired insulin secretory 

response to exogenous glucose (1.4 mM, 5.6 mM, 16.7 mM) and insulin secretagogues 

(like alanine, GIP, GLP-1, KCl and arginine) compared to lean control. Treatment 

with exenatide and [A14K] PGLa-AM1 resulted in significant improvements in 

insulin secretory responses compared to untreated db/db control (Figure 5.15C). Under 

the same experimental conditions, islets from  PGLa-AM1 treated mice also showed 

improved insulin secretory responses, but not to the same extent as [A14K] PGLa-

AM1 (Figure 5.15D). 

 

5.4.13 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-

AM1 on lipid profile in db/db mice 

Treatment with exenatide and [A14K] PGLa-AM1 significantly (P<0.05, P<0.01) 

lowered triglycerides and LDL level compared with db/db control (Figure 5.16B, D). 

Whereas, in a PGLa-AM1 treated group no significant change was observed. 

Interestingly, significant (P<0.05) reduction in cholesterol was observed in [A14K] 

PGLa-AM1 treated mice compared with saline-treated db/db mice and lean controls 

(Figure 5.16A). HDL was similar in all groups of mice (Figure 5.16C). 
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5.4.14 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-

AM1 on liver and kidney function in db/db mice 

Plasma aspartate transaminase (AST), alanine transaminase (ALT), alkaline 

phosphatase (ALP) and creatinine were increased (P<0.001) in saline-treated db/db 

mice (Figure 5.17). Exenatide and [A14K] PGLa-AM1 significantly decreased AST 

(1.5-2.0-fold, P<0.001), ALT (1.3-1.9-fold, P<0.05, P<0.001) ALP (1-1.25-fold, 

P<0.05, P<0.001) and creatinine (1.3-1.9-fold, P<0.001) compared to control db/db 

mice. These biomarkers were significantly (P<0.05 - P<0.001) decreased with  PGLa-

AM1 except ALP.  

 

5.4.15 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-

AM1 on plasma amylase concentration in db/db mice 

Amylase activity was significantly (P<0.01, P<0.001) increased in peptide treated 

groups compared with saline-treated db/db mice and lean controls (Figure 5.18).  

 

5.4.16 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-

AM1 on islet number, islet area, beta cell areas, alpha cell area and islet size 

distribution 

Figure 5.19A, represent images of pancreatic islets, showing alpha cells in red and 

beta cells in green. The number of islets (per mm2 of the pancreas) was significantly 

(P<0.05, P<0.01) decreased in all db/db mice. In all peptide treated db/db groups, there 

was no significant difference in the number of islets (Figure 5.19B). Lean control, 

db/db control, PGLa-AM1 and [A14K] PGLa-AM1treated groups showed no 

differences in islet area (Figure 5.19C).  On the other hand, islet area was significantly 

(P<0.05) increased after exenatide treatment. Beta cell area was decreased (P<0.05) 



245 
 

and alpha cell area was increased ( P<0.01)  in db/db mice compared to their 

littermates  (Figure 5.19D,E). Except for exenatide, no significant improvement in 

beta cell and the alpha area was observed in peptide treated db/db mice. Interestingly, 

in all treated groups, the number of large (>25,000 µm2) and medium (10,000-25,000 

µm2) size islet were increased (P<0.05 - P<0.001) and the number of small size 

(<10,000 µm2) islet was decreased (P<0.01) compared to db/db control (Figure 5.19F). 

 

5.4.17 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-

AM1 on gene expression in skeletal muscle 

Insulin signalling genes were significantly (P<0.05 - P<0.001) upregulated in db/db 

mice. The increased expression of Slc2a4 gene in db/db mice was reversed by 

exenatide and [A14K] PGLa-AM1 (Figure 5.20A). Similarly, upregulated Insr, Irs1, 

Pik3ca, Akt1 and Ptb1 genes were reversed (Figure 5.20B-C & 5.20E-G). No 

significant changes in the expression of Irs1, Pik3ca and Ptb1 were observed after 

PGLa-AM1 treatment. However, the enhanced expression of Slc2a4, Insr and Akt1 

genes was countered. In all groups, no significant differences in the expression of Pdk1 

gene were observed (Figure 5.20D).  

 

5.4.18 Effects of twice daily administration of PGLa-AM1 and [A14K] PGLa-

AM1 on gene expression in islets 

Expression of genes involved in insulin secretion including Ins1, Abcc8, Kcnj11, 

Slc2a2, Cacna1c and Gck were investigated after 4 week treatment of db/db mice 

(Figure 5.21A-F). These genes were significantly (P<0.001) downregulated in saline-

treated db/db mice compared with lean mice. In PGLa-AM1 and [A14K] PGLa-AM1 

treated mice, expression of diabetes downregulated Ins1, Abcc8, Kcnj11, Slc2a2 and 



246 
 

Gck genes were significantly (P<0.01, P<0.001) upregulated. However, mRNA 

expression of Cacna1c remained downregulated in PGLa-AM1 and [A14K] PGLa-

AM1 treated mice. All genes were significantly (P<0.001) upregulated in the 

exenatide-treated group.  

Diabetes-induced down-regulation of Gipr, Glp1r, Gcg and Pdx1 genes were reversed 

(P<0.05 - P<0.001) by treatment with exenatide, PGLa-AM1 and [A14K] PGLa-AM1 

(Figure 5.22A-D). The upregulation of Stat1 gene was reversed by exenatide and 

[A14K] PGLa-AM1. However, expression of Stat1 gene was comparable to db/db 

controls in PGLa-AM1 treated mice (Figure 5.22E). 

 

5.4.19 Effects of twice daily administration of [A14K] PGLa-AM1 on body weight 

change, food intake and water intake in GluCre-ROSA26EYFP mice 

Following streptozotocin (STZ) treatment, a significant increase (P<0.01, P<0.001) in 

water intake and energy intake was observed in GluCre mice compared to the lean 

controls (5.23C,D). A decrease in body weight was also observed (5.23A). In [A14K] 

PGLa-AM1 (75 nmol/kg bw) treated group, no significant changes were observed 

compared to STZ mice.  

 

5.4.20 Effects of twice daily administration of [A14K] PGLa-AM1 on blood 

glucose and plasma insulin in GluCre-ROSA26EYFP mice  

Treatment with streptozotocin (STZ) resulted in significant (P<0.001) increase in 

blood glucose compared to lean controls (5.24A). Following 11 days of treatment, 

significant (P<0.001) decrease in plasma insulin concentrations were observed in STZ 

control mice (Figure 5.24B). This was associated with significant (P<0.001) increase 

in blood glucose. [A14K] PGLa-AM1 treatment at the close showed a tendency to 
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improve blood glucose and plasma insulin, but no statistical significance was observed 

compared to STZ controls. 

 

5.4.21 Effects of twice daily administration of [A14K] PGLa-AM1 on pancreatic 

insulin content in GluCre-ROSA26EYFP mice  

Insulin content in all regions of the pancreas was significantly (P<0.05, P<0.01, 

P<0.001) decreased in GluCre mice following streptozotocin (STZ) treatment 

compared to untreated controls (Figure 5.25). Administration of [A14K] PGLa-AM1 

significantly (P<0.05, P<0.01) improved insulin content, particularly in the tail region 

of pancreas compared to STZ controls. 

 

5.4.22 Effects of twice daily administration of [A14K] PGLa-AM1 on islet 

number, islet area, beta cell areas, alpha cell area and islet size distribution in 

GluCre-ROSA26EYFP mice 

At the end of the treatment period, pancreatic islet morphology was evaluated in all 

groups.  Figure 5.26A represents images of pancreatic islets, showing alpha cell in 

green and beta cell in red colour. As shown in Figure 5.26B, no statistical significances 

were observed in the number of islets per mm2 in the whole pancreas. However, in the 

pancreatic head region, the number of islets per mm2 was significantly (P<0.01) 

decreased in both STZ and peptide-treated groups compared to lean controls. 

Interestingly, in the tail region, the opposite pattern was observed. In STZ controls, 

islet area was significantly decreased (P<0.01, P<0.001) in the whole pancreas 

specifically in the tail region which was reversed by peptide treatment (Figure 5.26C). 

Insulin-expressing beta cells were markedly reduced (P<0.001) by STZ treatment 

particularly in the tail region compared to lean controls (Figure 5.26D). However, in 
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peptide-treated mice, beta cell area was significantly increased in both head (1.6-fold, 

P<0.05) and tail regions (1.7-fold, P<0.01) of the pancreas compared to STZ control. 

Glucagon expressing alpha cells were substantially increased by STZ treatment, 

particularly in the head region of pancreas compared to lean controls (Figure 5.26E). 

However, in peptide treated groups no significant differences were noticed compared 

to STZ control. Islet size distribution was also significantly altered by streptozotocin 

treatment (Figure 5.26F). The number of smaller size islet were significantly increased 

in the whole pancreas, whereas large and medium-size islet were reduced particularly 

in the pancreatic tail region in saline-treated STZ mice compared to lean control group. 

The peptide-treated groups exhibited 20% (P<0.05) decrease in smaller sized islets 

and 49% (P<0.05) and 65% (P<0.001) increase in medium and large-sized islets 

compared to STZ control. 

 

5.4.23 Effects of twice daily administration of [A14K] PGLA-AM1 on pancreatic 

islets in GluCre-ROSA26EYFP mice 

The immunofluorescent staining revealed that GFP was significantly expressed in 

glucagon-producing alpha cells in all mice groups (Figure 5.27A). The number GFP 

positive cells expressing insulin (Ins+/GFP+) was significantly (P<0.05, P<0.001) 

increased in streptozotocin-treated mice compared to lean controls (Figure 5.27B). 

However, in [A14K] PGLa-AM1 treated mice, the number of Ins+/GFP+ cells was 

increased (P<0.05) compared to STZ controls. Interestingly, in [A14K] PGLa-AM1 

treated mice, the percentage of cells expressing only GFP was significantly increased 

in the head region of the pancreas (Figure 5.27D). However, in the whole pancreas, 

no significant difference was observed. On the other hand, the number of cells co-
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expressing both insulin and glucagon was increased (P<0.05) significantly in the 

whole pancreas compared to both lean and STZ control mice (5.27E). 

 

5.5 Discussion 

Type 2 diabetes is one of the severe health problems in modern society (World Health 

Organization, 2016). In the last few decades, the exponential growth in the diabetes 

population has triggered the search for alternative treatment options that can achieve 

good glycaemic control and prevent the complications associated with the disease. The 

discovery of Exendin-4 from the venom of the Gila monster lizard, which showed 

glucose-dependent insulin release and improved pancreatic beta cell function (Fehse 

et al., 2005; Bunk et al., 2011), has intensified the search for the potential antidiabetic 

peptides from animal sources.  

Bioactive peptides found in skin secretions of frogs, whose primary function is to 

protect the host from microorganisms, has also shown anti-tumour and 

immunomodulatory activities (Jackway et al., 2011, Conlon et al., 2014a, Xu et al., 

2015). Interestingly, some of these peptides have been shown to stimulate insulin 

release from rat clonal pancreatic beta cell line (BRIN-BD11) and primary islet cells 

in a dose-dependent manner without affecting the integrity of plasma membrane 

(Conlon et al., 2017). Additionally, these peptides have been shown to improve blood 

glucose and plasma insulin concentration when administered together with glucose in 

lean and high-fat fed mice. PGLa-AM1 is one such peptide isolated from Xenopus 

amieti, its [A14K] analogue, synthesised by substituting alanine at position 14 by 

lysine, displayed appreciably greater insulinotropic activity than the parent peptide. 

The [A14K] analogue significantly increased membrane potential and intracellular 

calcium, but no direct effect on KATP channels was observed. Additionally, [A14K] 
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produced a significant increase in cellular cAMP and its insulin-releasing activity was 

abolished in protein kinase A downregulated cells. Furthermore, the [A14K] analogue 

exhibited improved glycaemic response both in lean and high-fat diet mice following 

intraperitoneal administration with glucose (Owolabi et al., 2017).  Based on these 

evidences, the [A14K] PGLa-AM1 analogue was selected for further studies.  

Reassuringly, this analogue displayed potent insulinotropic activity both in BRIN-

BD11 and 1.1B4 cells without affecting the architecture of plasma membrane up to 3 

µM concentrations. This observation is line with previous studies where analogues 

carrying lysine substitution have displayed potent insulinotropic activity, with no 

cytotoxic action (Abdel-Wahab et al., 2008b, Ojo et al., 2013b, Owolabi et al., 2015). 

The detrimental effects of proinflammatory cytokines in islet dysfunction are well 

documented (Morris et al., 2015). When tested in BRIN-BD11 cells, [A14K] PGLa-

AM1 displayed beta-cell proliferative activity comparable to that of GLP-1 and was 

also equally effective in protecting the cells against cytokine-induced apoptosis. 

Similarly, Esculentin (1-21)1c, Temporin A and Temporin F peptides have also shown 

these positive effects (Musale et al., 2018a, b). However further studies are required 

to delineate the mechanism by which these peptides exhibit proliferative and 

protective effects.  Taken together these results provided a strong base to study long-

term in vivo effects of [A14K] PGLa-AM1 in an animal model of diabetes.  

In the present study, the antidiabetic potential of [A14K] PGLa-AM1 was examined 

in db/db mouse model of obesity-diabetes in comparison with native peptide PGLa-

AM1 and a well-known antidiabetic agent, exenatide. The db/db mouse is leptin 

receptor-deficient, having characteristics similar to human type 2 diabetes. Hence, it 

is widely used to study diseases pathogenesis and development of therapeutic agents 

for type 2 diabetes (Bogdanov et al., 2014, Cat et al., 2018, Simon and Taylor, 2001, 
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Kim et al., 2008). In general, db/db mice are hyperinsulinemia, with age plasma 

insulin level decreases and eventually, db/db mice develop insulinopia, which 

resembles late stage of T2DM (Fujiwara et al., 1991, Dalbøge et al., 2013). Consistent 

with this observation, in saline-treated db/db mice plasma insulin level was gradually 

decreased to the level close to their littermates. Interestingly, in [A14K] PGLa-AM1 

treatment mice, a gradual decrease in plasma insulin was markedly delayed. This 

observation points towards a beneficial effect of analogue on pancreatic beta cell 

function. In agreement with previous studies (Wang et al., 2002, Park et al., 2007), 

exenatide, which was used as positive control in the study attenuated the age-related 

decline of insulin in db/db mice. The increase of blood glucose in db/db mice was 

suppressed by treatment with [A14K] PGLa-AM1 and exenatide. The native peptide 

PGLa-AM1, however, failed to produce the same effect as analogue.    

Glycated haemoglobin (HbA1c) reflects the average blood glucose levels up to 3-

month period (American Diabetes Association, 2011). In the recent study, esculentin-

2CHa and its analogue have shown to improve blood HbA1c in insulin resistance high-

fat fed mice (Vasu et al., 2017). In the present study, the HbA1c was significantly 

decreased in [A14K] PGLa-AM1 and exenatide-treated group compared to saline-

treated db/db mice. However, in PGLa-AM1 treated mice, no significant change in 

blood HbA1c was observed. This finding suggests, [A14K] PGLa-AM1 improves 

glucose concentration in db/db mice, along with exenatide. 

At the end of the chronic treatment period, the glycaemic response was significantly 

improved in [A14K] PGLa-AM1 and exenatide-treated groups compared to db/db 

controls. This include improvement of insulin sensitivity and lowered HOMA-IR 

index. Body weight and fat content were not affected, ruling out the possibility that 

improvement in insulin sensitivity was simply due to the reduction of adipose tissue 
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in these mice. However, in PGLa-AM1 treated mice, no significant change in glucose 

tolerance and insulin sensitivity were noticed.  Also, no significant changes in energy 

intake were observed in PGLa-AM1 and [A14K] PGLa-AM1 treated mice, which 

correlated with results of acute in vivo feeding studies. In agreement with others 

(Gedulin et al., 2005, Schlögl et al., 2013), energy intake was reduced significantly by 

exenatide treatment. However, body weight was unaffected. Bone mineral density/ 

content and lean body mass were similar in all groups of db/db mice. 

We observed elevated mRNA expression of insulin signalling gene in db/db mice. As 

shown in Figure 5.18, of mRNA expression of Slc2a2, Insr, Irs1, Akt1, Pik3ca and 

Ptb1 was upregulated significantly compared with littermates. Such observation could 

be due to a defect in GLUT4 translocation. A study conducted by Jassen et al., 2006 

also observed an increase in the activity of proximal insulin signalling cascade, in the 

animal model of liver cirrhosis. In fact, insulin resistance in liver cirrhosis patient is 

well documented (Moscatiello et al., 2007, Garcia-Compean et al., 2009, Goral & 

Kucukoner, 2010) An increase in GLUT4 activity was observed in L6 myotubules on 

chronic exposure to glucose and inulin (Huang et al., 2001). Interestingly, in [A14K] 

PGLa-AM1 and exenatide treatment groups, the expression of these genes was 

reversed. Therefore, it is essential to explore the factors responsible for these changes 

to understand the mechanism of insulin resistance.  

It is evident that hyperlipidaemia is a major risk factor in the progression of diabetes 

(Zang et al., 2008, Chen et al., 2015). In type 2 diabetes patients with non-alcoholic 

fatty liver diseases (NAFLD), triglycerides (TG), total cholesterol (TC), Low-density 

lipoprotein (LDL) are increased significantly, whereas high-density lipoprotein (HDL) 

is decreased (Biden et al., 2014, Parikh et al., 2014). Biden et al., 2014, reported 

adverse effects of hyperlipidaemia on glucose homeostasis. Therefore, controlling the 
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level of TG, TC, LDL and HDL levels could have a positive effect on glucose 

homeostasis. Several other synthetic analogues of amphibian host defence peptides 

have shown to improved blood lipid profile in high fat fed mice (Srinivasan et al., 

2015, Ojo et al., 2015c, Owolabi et al.,2016). In the present study, plasma TG and 

LDL level were decreased significantly in [A14K] PGLa-AM1 and exenatide-treated 

mice. Also, in the PGLa-AM1 treated group, these parameters were decreased but not 

significantly. Interestingly, TC was decreased significantly only in [A14K] PGLa-

AM1 treated db/db mice, indicating that peptide could have a role in the prevention of 

cardiovascular events associated with type 2 diabetes. Plasma HDL level remained 

unaffected in all db/db mice compared to their littermates.  

In diabetes, the normal function of the liver is compromised by the accumulation of 

lipid, which induces hypertrophic changes in hepatocytes, as indicated by the elevated 

level of ALT, AST and ALP (Son et al.,2015). In the present study, elevated liver 

enzymes of control db/db mice were reversed by [A14K] PGLa-AM1 and exenatide 

treatment. Interestingly, the positive effect of these peptides on the lipid profile in 

db/db mice was corroborated with improved liver function test. Except for ALP, other 

liver parameters were also reduced significantly in PGLa-AM1 treated mice. 

Furthermore, the creatinine level was markedly decreased in all treatment groups. 

These observations suggest that native peptide and its synthetic analogue have positive 

effects on liver and kidney function, and therefore could be safely used for the 

treatment. 

Serum amylase is a commonly used biomarker of acute pancreatitis (Pieper-Bigelow 

et al., 1990). In the present study, an increase in amylase activity was observed in all 

peptide-treated mice, suggesting the potential risk of pancreatitis. In several studies, 

incretin-based drugs have been linked to pancreatitis and pancreatic cancer (Filippatos 
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et al., 2014, Egan et al., 2014). However, the study by Steinberg et al., 2017,  reports 

that elevated amylase activity in liraglutide-treated patients was not related to the 

development of acute pancreatitis. 

Impaired insulin secretion is one of the significant hallmarks of type 2 diabetes (Kahn 

et al., 2006). In agreement with others (Do et al., 2014), islet isolated from db/db mice 

exhibited impaired insulin release in response to the different concentration of 

exogenous glucose and insulin secretagogues. However, in [A14K] PGLa-AM1 and 

exenatide-treated group, insulin secretion was improved significantly. On the other 

hand, PGLa-AM1 also showed a tendency to enhance insulin secretory response but 

failed to produces the same effect as its analogue. Furthermore, pancreatic insulin 

content was significantly higher in [A14K] PGLa-AM1 and exenatide but not in 

PGLa-AM1 treated group compared to saline-treated db/db mice.  

To further evaluate the positive effects of peptides on pancreatic beta cell function, 

gene expression was studied. Consistent with other studies (Wang & Thurmond, 2012, 

Poitout, 2013, Shimoda et al., 2011), in db/db mice insulin secretory genes including 

Ins1, Pdx1, Glp1r, Gipr, Abcc8, Kcnj11, Gck, Cacna1c and Gcg were significantly 

downregulated, and the gene for apoptosis Stat1 was significantly upregulated 

compared to lean littermates. These diabetes-induced changes were attenuated by 

[A14K] and exenatide treatment. The parent peptide also showed a tendency to 

improve the expression of these genes except for Stat1 gene. Immunohistochemical 

analysis of pancreatic sections revealed that all peptides prevented a substantial 

decline of the large and medium-size islet in db/db mice. In PGLa-M1 treated group 

no significant changes in the islet area, beta-cell area and alpha-cell area were 

observed compared to saline treatment db/db mice. However, [A14K] PGLa-AM1 
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treatment showed a tendency to improve this islet morphology. As expected, islet 

morphology was significantly enhanced in the exenatide-treated group.  

An additional study was performed using the transgenic mouse bearing the transgenes 

GluCre (tamoxifen inducible tagger) and ROSA26-YFP (reporter), to investigate the 

effects of [A14K] PGLa-AM1 on transdifferentiation of glucagon-expressing alpha 

cells to insulin-expressing beta cells.  Alpha cells whose primary function is to produce 

glucagon hormone have also shown the ability to transdifferentiate into insulin-

producing beta cells under conditions of extreme beta cell loss (Thorel et al., 2010). 

In agreement with this, in our study, we observed a significant increase in the number 

of beta cells which were transdifferentiated from alpha cells (i.e. Ins+ GFP+) as well as 

cells expressing both insulin and glucagon (i.e. Ins+ Glu+) were increased in 

streptozotocin-treated mice compared to lean control. However, in peptide-treated 

mice, these cells were increased significantly compared to STZ control mice. 

Furthermore, peptide treatment resulted in significant increases of islet area and beta 

cell area compared to STZ control. Additionally, large and medium-sized islets 

increased, and smaller sized islet decreased significantly in the peptide-treated mice. 

Taken together, these results indicate that the [A14K] PGLa-AM1 could have an 

important role in the regeneration of beta cells by transdifferentiation of alpha to beta 

cells. 

In conclusion, the present study has demonstrated the insulinotropic activity of 

[A14K] PGLa-AM1 in BRIN-BD11 and 1.1B4 cells. Furthermore, [A14K] PGLa-

AM1 triggered proliferation and protected BRIN-BD11 cells against cytokine-induced 

apoptosis. The in vivo studies suggest that [A14K] PGLa-AM1 was more impressive 

than parent peptide PGLa-AM1, showing positive effects on the HbA1c, glycaemic 

responses, insulin secretion, hyperlipidaemia and insulin resistance in db/db mice. 
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Liver and kidney function was significantly improved in all treatment groups. [A14K] 

PGLa-AM1 treatment attenuated diabetes-induced expression of islet genes in db/db 

mice. Importantly, analogue has the potential to delay the progression of diabetes. 

Furthermore, data from the GluCre study suggest that [A14K] PGLa-AM1 could have 

an important role in the transdifferentiation of glucagon-expressing alpha cells to 

insulin-expressing beta cells. These observations are encouraging for the development 

of frog skin peptide analogues for the treatment of type 2 diabetes. 
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Figure 5.1 Schematic diagrams of the amino acid sequence of A) PGLa-AM1 and 

B) [A14K] PGLA-AM1 

A) 

 

 

B) 

 

 

G=Glycine (Gly), M= Mthionine (Met), A= Alanine (Ala), S= Serine (Ser), K= 

Lysine (Lys). V= Valine (Val), L=Leucine (Leu). 
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Figure 5.2 Representation of Reverse-Phase HPLC (A) and MALDI-TOF 

profile (B) of [A14K] PGLA-AM1 

A) 

 

 

B) 

 

Purity and molecular mass of peptide were confirmed using RP-HPLC and MALDI-

TOF respectively. The retention time was verified using ChromQuest software. 
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Figure 5.3 Dose-dependent effects of [A14K] PGLa-AM1 on Insulin (A) and LDH 

(B) release from BRIN-BD11 cells. 
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Values are Mean ± SEM with n=8 for insulin release and n=4 for LDH. Alanine (10 

mM) and Exenatide-4 (10-8 M) were used as positive control for insulin secretion 

studies. DMSO (100%) was used as positive control for LDH assay. *P<0.05, 

**P<0.01, ***P<0.001 compared to 5.6mM glucose alone. 
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Figure 5.4 Dose-dependent effects of [A14K] PGLa-AM1 on Insulin release from 

1.1B4 cells in (A) 5.6 and (B)16.7 mM glucose 
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Values are Mean ± SEM with n=8 for insulin release. Alanine (10 mM) and Exenatide-

4 (10-8 M) were used as positive control for insulin secretion studies. *P<0.05, 

**P<0.01, ***P<0.001 compared to 5.6 mM glucose (A) and *P<0.05, **P<0.01, 

***P<0.001 compared to 16.7 mM glucose (B). 
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Figure 5.5 Effects of [A14K] PGLa-AM1 on apoptosis (A) and cell proliferation 

(B) in BRIN-BD11 cells 
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(A) Comparison of the effects of [A14K] PGLa-AM1 (1 µM) and GLP-1 (1 µM) on 

protection against cytokine-induced apoptosis in BRIN-BD11 cells. **P<0.01, ***P 

< 0.001 compared to incubation in culture medium alone, ΔΔΔP < 0.001 compared to 

incubation in cytokine-containing medium. (B) Comparison of the effects of [A14K] 

PGLa-AM1 (1 µM) and GLP-1 (1 µM) on proliferation of BRIN-BD11 cells. 

**P<0.01, ***P < 0.001 compared to incubation in culture medium alone 
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Figure 5.6 Effects of [A14K] PGLa-AM1 on glucose uptake in differentiated 

C2C12 cells 
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Glucose uptake was expressed as % of control (glucose). Apigenin was used as 

negative control for glucose uptake. Values are mean ± SEM with n=3. *P<0.05 

compared with glucose alone. 
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Figure 5.7 Acute effects of [A14K] PGLa-AM1 peptide on cumulative food intake 

in 21 hr fasted lean NIH Swiss TO mice 
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Cumulative food intake was measured prior to and after after i.p. injection of saline 

vehicle (0.9% w/v NaCl) or GLP-1 (25 nmol/kg bw) or test peptides (75 nmol/kg bw) 

at time point 30, 60, 90, 120, 150, 180 min in overnight (21 hr) fasted mice. Values 

represent mean ± SEM (n=8). *P<0.05 compared to saline control. 
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Figure 5.8 Effects of 28-day treatment with PGLa-AM1 and [A14K] PGLa-AM1 

on body weight (A, B), energy intake (C, D) and water intake (E, F) in db/db mice 
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Body weight, energy intake and water intake were measured 3 days prior to, and every 

72 hours during treatment with saline or exenatide (25 nmol/kg bw) or peptide (75 

nmol/kg bw) for 28 days. Values are mean ±SEM for 8 mice. *P<0.05, **P<0.01 

***P<0.001 compared to lean mice and ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001compared to 

control db/db mice
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Figure 5.9 Effects of 28-day treatment with PGLa-AM1 and [A14K] PGLa-AM1 on non-fasting blood glucose (A, B) and plasma insulin 

(C, D) in db/db mice  
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Parameters were measured 3 days prior to, and every 72 hours during treatment (indicated with black bar) with saline or exenatide (25 nmol/kg 

bw) or peptide (75 nmol/kg bw) for 28 days. Values are mean ±SEM for 8 mice. *P<0.05, **P<0.01 ***P<0.001 compared to lean mice and 
ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to control db/db mice
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Figure 5.10 Long-term effects of PGLa-AM1 and [A14K] PGLa-AM1 on HbA1c 

in db/db mice 
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HbA1c level was measured after long term treatment with twice-daily injections of 

either saline or peptide (75nmol/kg bw) for 28 days. Values are Mean ± SEM for 4 

mice. *P<0.05, **P<0.01, ***P<0.001 compared with lean mice and ΔP<0.05, 
ΔΔP<0.01 compare with db/db control mice. 
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Figure 5.11 Long-term effects of PGLa-AM1 and [A14K] PGLa-AM1 on plasma 

glucose (A, B) and insulin (C, D) concentrations following intraperitoneal glucose 

administration to db/db mice 
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Plasma glucose and insulin concentrations were measured prior to and after 

intraperitoneal administration of glucose (18 mmol/kg bw) to db/db fed mice pre-

treated with twice-daily injections of either saline or peptide (75nmol/kg bw) for 28 

days. Values are Mean ± SEM for 8 mice. *P<0.05, **P<0.01 ***P<0.001 compared 

to lean mice and ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001compared to control db/db mice. 

 

 

 

 



268 
 

Figure 5.12 Long-term effects of PGLa-AM1 and [A14K] PGLa-AM1 on plasma 

glucose (A, B) and insulin (C, D) concentrations following oral glucose 

administration to db/db mice 
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Plasma glucose and insulin concentrations were measured prior to and after oral 

administration of glucose (18 mmol/kg bw) to db/db mice pre-treated with twice-daily 

injections of either saline or peptide (75nmol/kg bw) for 28 days. Values are Mean ± 

SEM for 8 mice. *P<0.05, **P<0.01 ***P<0.001 compared to lean mice and ΔP<0.05, 

ΔΔP<0.01, ΔΔΔP<0.001compared to control db/db mice. 

 

 

 



269 
 

Figure 5.13 Long-term effects of PGLa-AM1 and [A14K] PGLa-AM1 on insulin 

sensitivity in db/db mice 
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Plasma glucose were measured prior to and after intraperitoneal injection of insulin 

(50 U/kg bw) in db/db mice pre-treated with twice-daily injections of either saline or 

peptide (75nmol/kg bw) for 28 days. Values are Mean ± SEM for 8 mice. ***P<0.001 

compared with to lean mice and ΔΔP<0.05, ΔΔP<0.01 compare with db/db control mice. 
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Figure 5.14 Effects of PGLa-AM1 and [A14K] PGLa-AM1 on body composition 

in db/db mice 
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Effects of PGLa-AM1 and [A14K] PGLa-AM1 on body composition in lean and db/db 

mice. Animals were injected with either saline or peptide (75 nmol/kg body weight 

per day) for 28 days. The figure shows (A) representative DEXA scans, (B) bone 

mineral density, (C) bone mineral content, (D) bone area. (E) lean body mass, (F) body 

fat and (G) body fat expressed and percentage of total body mass. Values are means ± 

SEM for 8 mice. *P<0.05, **P<0.01, ***P<0.001 compared with saline-treated lean 

mice. 
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Figure 5.15 Effects of PGLa-AM1 and [A14K] PGLa-AM1 on pancreatic weight 

(A), total insulin content (B), and insulin secretory response of isolated islets 

(C&D) from lean and db/db mice to glucose and insulin secretagogues
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Mice were treated with saline or peptide (75nmol/kg bw) for 28 days prior to 

experiment. Values are means ± SEM with n=4. *P<0.05, **P<0.01, ***P<0.001 

compared with the response of islets isolated from each group of mice at 16.7mM 

glucose; ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared with the response of islets isolated 

from lean mice (saline treated) to each secretagogue or glucose concentration. 
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Figure 5.16 Effects of long-term treatment with PGLa-AM1 and [A14K] PGLa-

AM1 on total cholesterol (A), triglycerides (B), HDL (C) and LDL (D) in db/db 

mice 
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Plasma sample was collected after 28 days treatment with either saline (control) or 

peptide. Values are Mean ± SEM for 6 mice. *P<0.05, ***P<0.001 compared to lean 

mice. ΔP<0.05, ΔΔP<0.01 compared to db/db control mice. 
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Figure 5.17 Effects of long-term treatment with PGLa-AM1 and [A14K] PGLa-

AM1 on plasma AST (A) ALT (B) ALP (C) and creatinine (D) levels  in db/db 

mice 
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Following 28 days injection with either saline (control) or peptide, plasma sample was 

collected and measured for ALT, AST, ALP and creatinine levels.  Values are Mean 

± SEM for 6 mice. **P<0.01, ***P<0.001 compared to lean control. ΔP<0.05, 
ΔΔP<0.01, ΔΔΔP<0.001 compared to db/db control. 
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Figure 5.18 Effects of long-term treatment with PGLa-AM1 and [A14K] PGLa-

AM1 on amylase activity in diabetic mice (db/db) 
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Plasma samples were collected after 28 days injection of [A14K] PGLa-AM1 and 

amylase activity was measured. Values are Mean ± SEM for n=6 mice. ***P<0.001 

compared to lean control, ΔΔP<0.01, ΔΔΔP<0.001 compared to db/db control. 
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Figure 5.19 Effects of PGLa-AM1 & [A14K] PGLa-AM1 treatment on islet 

morphology in db/db mice 
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Representative islets (A) showing insulin (green) and glucagon (red) 

immunoreactivity from lean, db/db control, Exenatide, PGLa-AM1 and [A14K] 

PGLa-AM1 treated mice. B, C, D, E, and F shows islet number, islet area, beta cell 

area, alpha cell area and islet size distribution respectively. Mean ± SEM for 6 mice 

(~80 islets per group). *P<0.05, **P<0.01 compared to normal saline control, 
ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to db/db control. 
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Figure 5.20 Effects of PGLa-AM1 & [A14K] PGLa-AM1 treatment on expression 

of genes involved in insulin action in skeletal muscle 
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3µg of mRNA was used for cDNA synthesis. Expression values were normalised to 

Actb. Values are mean ± SEM for n=4. *P<0.05, **P<0.01, ***P<0.001 compared to 

normal control, ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to db/db control. 
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Figure 5.21 Effects of PGLa-AM1 and [A14K] PGLa-AM1 treatment on 

expression of genes involved in insulin secretion from islets 
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3 µg of mRNA was used for cDNA synthesis. Expression values were normalised to 

Actb. Values are mean ± SEM for n=4.  *P<0.05, **P<0.01, ***P<0.001 compared 

to normal control, ΔΔP<0.01, ΔΔΔP<0.001 compared to db/db control mice. 
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Figure 5.22 Effects of PGLa-AM1 and [A14K] PGLa-AM1 treatment on 

expression of genes involved in insulin secretion (A- C), beta cell proliferation (D) 

and beta cell apoptosis (E) in islets 
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3 µg of mRNA was used for cDNA synthesis. Expression values were normalised to 

Actb. Values are mean ± SEM for n=4.  *P<0.05, **P<0.01, ***P<0.001 compared 

to normal control, ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to db/db control mice. 
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Figure 5.23 Effects of twice daily administration of [A14K] PGLa-AM1 on body 

weight change (A and B), food intake (C) and water intake (D) in GluCre-

ROSA26EYFP mice  
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Streptozotocin (50mg/kg bw) induced diabetic mice were grouped prior to the peptide 

treatment. Body weight (A & B), food intake (C), water intake (D) were measured 3 

days prior to, and every 72 hours during treatment with saline or [A14K] PGLa-AM1 

(75 nmol/kg bw) for 11 days. Values are mean ±SEM for 5 mice. *P<0.05, **P<0.01 

***P<0.001 compared to lean mice. 
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Figure 5.24 Effects of twice daily administration of [A14K] PGLa-AM1 on blood 

glucose (A) and plasma insulin (B) in GluCre-ROSA26EYFP  
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Blood glucose (A) and plasma insulin (B) were measured before and after 

streptozotocin, and after 11 days treatment with saline or [A14K] PGLa-AM1 (75 

nmol/kg bw). Values are mean ±SEM for 5 mice. ***P<0.001 compared to lean mice. 
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Figure 5.25 Effects of twice daily administration of [A1K] PGLa-AM1 on 

pancreatic insulin content in GluCre-ROSA26EYFP mice 
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Pancreatic insulin content was measured after 11 days treatment with saline or [A14K] 

PGLa-AM1(75 nmol/kg bw). Values are mean ±SEM for 5 mice *P<0.05, **P<0.01, 

***P<0.001 compared to normal saline control, ΔP<0.05, ΔΔP<0.01 compared to 

streptozotocin control. 
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Figure 5.26 Effects of [A14K] PGLa-AM1 treatment on islet morphology in 

GluCre-ROSA26EYFP mice 
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Representative islets (A) showing insulin (red) and glucagon (green) 

immunoreactivity from lean, streptozotocin and [A14K]-PGLa-AM1 treated mice. B, 

C, D, E, and F shows islet number, islet area, beta cell area, alpha cell area and islet 

size distribution respectively. Mean ± SEM for 5 mice (~50 Islets per group). *P<0.05, 

**P<0.01, ***P<0.001 compared to normal lean control, ΔP<0.05, ΔΔP<0.01 

compared to streptozotocin control. 
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Figure 5.27 Effect of [A14K] PGLa-AM1 on pancreatic Islets in GluCre-

ROSA26EYFP mice 
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Quantification Of A) Glucagon-GFP positive cells, B), Insulin-GFP positive cells C) 

Glucagon positive cells and D) GFP positive cells per total islets (~50 Islets per group). 

*P<0.05, **P<0.01, **P<0.001 compared to normal saline control, ΔP<0.05, 
ΔΔΔP<0.001 compared to streptozotocin control. 
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6.1 Summary  

We studied the pharmacological properties of [S4K] CPF-AM1 analogue, synthesised 

by substituting serine at position 4 by lysine in parent peptide CPF-AM1 isolated from 

frog Xenopus amieti. [S4K] CPF-AM1 exhibited dose-dependent insulin release in 

BRIN-BD11 and 1.1B4 cells without affecting the integrity of the plasma membrane. 

[S4K] CPF-AM1 also provided protection against cytokine-induced DNA damage, as 

well as stimulated proliferation of BRIN-BD11 cells. Chronic effects of [S4K] CPF-

AM1 in db/db mice were studied in comparison with its parent peptide and antidiabetic 

agent exenatide. [S4K] CPF-AM1 treatment significantly delayed the progressive 

decline of insulin in db/db mice. This was associated with significant improvement in 

glycaemic control, HbA1c, glycaemic response to intraperitoneal glucose challenge 

and insulin sensitivity. However, these effects were less pronounced than with 

exenatide. The parent CPF-AM1 (75 nmol/kg bw) treatment also significantly 

improved glycaemic control and insulin sensitivity. Body weight remained unchanged 

in all peptide-treated groups, whereas energy intake and water intakes were decreased 

considerably by exenatide treatment. Biomarkers of liver and kidney function were 

improved significantly in all treated groups, indicating the non-toxic nature of the 

peptides. The triglyceride levels were significantly decreased in the CPF-AM1 treated 

group. In all peptide-treated groups, amylase activity was increased. Bone mineral 

density/content, body fat mass was not affected by peptide treatment. Islets from all 

treated groups displayed improved insulin secretory responses to glucose and insulin 

secretagogues. Pancreatic insulin was significantly increased in [S4K] CPF-AM1 and 

exenatide but not in CPF-AM1 treated group. Except for exenatide, no significant 

changes were observed in the islet, beta cell and alpha cell area. However, the loss of 

large and medium-size islets was significantly prevented by all peptide treatment. The 
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insulin signalling genes were upregulated, and secretory genes were downregulated 

by exenatide and [S4K] CPF-AM1. In [S4K] CPF-AM1 treated transgenic mice, the 

number of Ins+/GFP+ cells, GFP+ cells and Ins+/Glu+ were increased significantly, 

indicating that peptide has a significant role in the conversion of glucagon-expressing 

alpha to insulin-expressing beta cells. 

 

6.2 Introduction 

Type 2 diabetes is becoming one of the significant health challenges particularly in 

developing countries, due to increasingly sedentary lifestyles, urbanisation and obesity 

(Hu, 2011, Animaw & Seyoum, 2017). Currently available antidiabetic drugs fail to 

achieve long-term glycaemic control and secondary complications associated with 

diabetes (Parkes et al., 2013, Kahn et al., 2014). Hence, there is a constant need to 

develop alternative therapies that can overcome these challenges. The discovery of 

exendin-4 from the venom of the Gila monster lizard (Heloderma suspectum), which 

share similar properties with GLP-1 (Conlon et al., 2006, Parkes et al., 2013), has 

intensified the search for the antidiabetic peptide from an animal source.  

Skin secretion of frog has proven to contain a rich source of peptides with therapeutic 

potential (Conlon et al., 2014a, Xu and Lai, 2015). Isolation and characterisation of 

these peptides have become a useful strategy to identify their therapeutic potential. 

Peptides, particularly from Pipidae, Hylidae, Ranidae family, which were isolated 

based on its antimicrobial activity, have subsequently been shown to demonstrated 

anti-viral, anti-cancer and immunomodulatory activity (Conlon et al., 2014). In our 

lab, some of these peptides [e.g. brevinin-2-related peptide, tigerinin-1R, 

hymenochirin 1B, esculentin-2Cha (1-30)] have shown to stimulate insulin release in 

vitro in BRIN-BD11 cell and mouse pancreatic islet cells, as well as improved 
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glycaemic response both in lean and high fat fed mice (Abdel-Wahab et al., 2010, Ojo 

et al., 2011, Owolabi et al., 2015, Vasu et al., 2017).  

In a recent study, Conlon et al., 2012a designed alyteserin-2a-derived cationic 

analogue containing D-lysin substitution at position 7 and 11, which resulted in a 

superior antimicrobial potency than the parent peptide. Interestingly, the analogue 

showed lower haemolytic activity, suggesting that such modification of peptide could 

be safe for treatment. Similarly, hymenochirin-1B derived analogues carrying D-lysin 

or L-lysin substitution showed potent anti-tumour activity with lower haemolytic 

activity (Attoub et al., 2013a). Based on this knowledge, synthetic analogues of frog 

skin insulinotropic peptides including brevinin-2-related peptide, tigerinin-1R, 

hymenochirin 1B, esculentin-2Cha (1-30) with enhanced cationicity were designed 

which exhibited potent insulinotropic activity in vitro and also improved blood 

glucose by upregulating expression of crucial genes involved in glucose homeostasis 

in an animal model of type 2 diabetes (Abdel-Wahab et al., 2010, Ojo et al., 2016, 

Owolabi et al., 2016, Vasu et al., 2017).   

A previous study has reported broad-spectrum antimicrobial activity of CPF-AM1 

(GLGSVLGKALKIGANLL.NH2), derived from skin secretion of frog Xenopus 

amieti (Conlon et al., 2010, 2012b).   CPF-AM1 is orthologous to Caerulein precursor 

fragment (CPF) and caerulein precursor fragment (CPF) related peptides which have 

shown insulin-releasing activity in BRIN-BD11 cells with no cytotoxic effects 

(Srinivasan e al., 2013). In recent studies, like CPF and CPF related peptides, CPF-

AM1 also exhibited concentration-dependent insulin-releasing activity in BRIN-

BD11 cells (Ojo et al., 2012). Additionally, CPF-AM1 induced the release of GLP-1 

in a dose dependent-manner from GLUtag cells (Ojo et al., 2013a).  Furthermore, its 

L-lysine substituted analogue (GLGKVLGKALKIGANLL.NH2) which was 
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synthesised by substituting serine at 4th position by lysine displayed superior insulin-

releasing activity than parent peptide in BRIN-BD11 cells and improved glycaemic 

responses both in lean and high-fat diet induced diabetic mice in response to glucose 

challenge (unpublished data). 

Based on these promising results, in the present study the insulin-releasing activity of 

[S4K] CPF-AM1 was verified in BRIN-BD11 cells and 1.1B4 cells.  Also, the effects 

of the analogue on proliferation and apoptosis were investigated. We then examined 

the effects of twice-daily administration of [S4K] CPF-AM1 (75 nmol/kg bw) for 28 

days on glycemic control, insulin level, islet morphology and expression of key genes 

in muscles and islets involved in glucose homeostasis in genetically obese-diabetic 

mice (db/db) in comparison with native peptide CPF-AM1 (75 nmol/kg bw) and 

antidiabetic agent exenatide (25 nmol/kg bw). An additional study was also 

performed, to investigate beneficial effects of [S4K] CPF-AM1 on reprogramming of 

alpha to beta cells using GluCre-ROSA26EYFP mice. 

 

6.3 Materials and Methods 

 

6.3.1 Reagents 

In this Chapter, all the reagents used for the experiments were of analytical grade listed 

in Chapter 2, Section 2.1. Membrane potential (Catalogue number: R8042) and 

Intracellular calcium assay kit (Catalogue number: R8041) were purchased from 

Molecular Devices (Berkshire, UK). IN SITU Cell Death Fluorescein kit (Catalogue 

number: 11684795910) were purchased from Sigma-Aldrich and Rabbit polyclonal to 

Ki67 (Catalogue number: ab15580) from Abcam for apoptosis and proliferation 

experiment, respectively. [S4K] CPF-AM1 was supplied in crude form by GL 

Biochem Ltd (Shanghai, China) and native peptide CPF-AM1 was purchased in pure 
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form by SynPeptide (China). LightCycler 480 Sybr Green (Catalogue number: 

04707516001) was purchased from Roche Diagnostics Limited, UK. Masterclear Cap 

Strips and real-time PCR TubeStrips for gene expression studies (Catalogue number: 

0030132890) were supplied by Mason Technology Ltd (Dublin, Ireland).  

 

6.3.2 Peptide synthesis and purification 

Using Reverse phase HPLC, crude peptide [S4K] CPF-AM1 was purified to near 

homogeneity (>98% purity) using a Vydac (C-18) column as described in Chapter 2, 

Section 2.2.1.1. The molecular mass of the collected peak was confirmed by MALDI-

TOF MS (Chapter 2, Section 2.2.2). Parent peptide CPF-AM1 used in this Chapter 

was supplied in pure form by SynPeptide (China) (See Figure 6.1 for peptides 

structure). 

 

6.3.3 Effects of [S4K] CPF-AM1 on insulin release from BRIN-BD11 and 1.1B4 

cells 

Insulinotropic activity of [S4K] CPF-AM1 (3x10 -6 - 10 -12 M, n=8) was verified in 

BRIN-BD11 (passage 15-30) and 1.1B4 cells (passage 25-28). The experimental 

procedure outlined in Chapter 2, Section 2.4.1.1. After 20 min incubation with 

different dilutions of peptide made in 5.6 mM glucose Krebs-Ringer bicarbonate 

(KRB) buffer, the supernatants were aliquoted and measured for insulin using 

radioimmunoassay as outlined in Chapter 2, Section 2.4.4. 

 

6.3.4 Cell viability assay 
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Lactate dehydrogenase (LDH) assay was performed to determine the cytotoxic effect 

of the peptide, using a CytoTox 96 non-radioactive cytotoxicity assay kit (Promega), 

as described in Chapter 2, Section 2.5. 

  

6.3.5 Effects of [S4K] CPF-AM1 on apoptosis and proliferation in BRIN-BD11 

cells 

The protective effects of [S4K] CPF-AM1 against cytokine-induced DNA damage 

was studied in BRIN-BD11 cells, as outlined in Chapter 2, Section 2.10. Cells were 

incubated with [S4K] CPF-AM1 or GLP-1 (10-6M) for 18 hr at 37°C in the presence 

or absence of cytokine mixture (200 U/ml tumour-necrosis factor-α, 20 U/ml 

interferon-γ and 100 U/ml interleukin-1β). After incubation, cells were fixed and 

permeabilised using 4 % paraformaldehyde and 0.1 M sodium citrate buffer (pH 6.0) 

respectively and subsequently stained using TUNEL reaction mixture. The 

proliferative effect of [S4K] CPF-AM1 (10-6 M) was investigate in BRIN-BD11 cells 

using anti-Ki-67 primary antibody (Chapter 2, Section 2.10). GLP-1 (10-6 M) was used 

as a positive control in the experiment. 

 

6.3.6 Effects of the peptides on glucose uptake in C2C12 cells 

The procedure for determining the effects of peptides on the glucose uptake in C2C12 

cells is described in Chapter 2, Section 2.11. 

 

6.3.7 Acute in vivo effect of the peptide on food intake 

In overnight (21 hr) fasted mice, food intake was measured after i.p injection of saline 

and test peptides as described in Chapter 2, Section 2.13.4.   
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6.3.8 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 in 

db/db mice 

Before initiation of treatment all mice were injected twice daily with saline for 3 days 

to adapt mice to handling and injection stress. Genetically obese-diabetic mice (db/db) 

were administered for 28 days with a twice-daily dose of exenatide 4 (25 nmol/kg bw) 

or CPF-AM1 (75 nmol/kg bw) or [S4K] CPF-AM1(75 nmol/kg bw). Various 

parameters like body weight, food intake, water intake, blood glucose and plasma 

insulin were monitored at 3 day intervals. After 28 days treatment period 

intraperitoneal and oral glucose tolerance test (Chapter 2, Section 2.13.2), HbA1c test 

(Chapter 2, Section 2.13.9) and insulin sensitivity (Chapter 2, Section 2.13.3) were 

performed. Insulin resistance was determined using the homeostatic model assessment 

(HOMA) formula: HOMA-IR = fasting glucose (mmol/l) x fasting insulin 

(mU/l)/22.5. 

After performing the above tests, mice were sacrificed by cervical dislocation and 

measured for body fat composition and bone mineral density using DEXA scanning 

(PIXImus densitometer, USA) (Chapter 2, Section 2.13.8). Islets were isolated from 

pancreases by collagenase digestion method (Chapter, Section 2.4.2.1) and 

investigated for insulin secretory responses (Chapter 2, Section 2.4.2.3) and 

expression of insulin secretory genes (Chapter 2, Section 2.15). Pancreatic tissues 

were processed for immunohistochemistry. Tissues including pancreases and skeletal 

muscle were snap frozen in liquid nitrogen and stored at -80 °C to perform further 

studies.  

 

6.3.9 Biochemical analysis 
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Blood glucose and plasma/pancreatic insulin content were measured as outlined in 

Chapter 2, section 2.13.5 and 2.13.11. Various biochemical test such as lipid profile 

test, liver and kidney function test and amylase activity (Chapter 2, Section 2.13.12) 

were performed. 

 

6.3.10 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

islet morphology 

After processing, pancreatic tissues were embedded in paraffin wax, and sections of 7 

µM thickness were made using microtome. Sections were placed on a slide and 

allowed to dry overnight on a hotplate.  Sections were then stained for insulin and 

glucagon as described in Chapter 2, Section 2.14.1.  

 

6.3.11 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

gene expression 

The expression of genes in muscles and islets involved in glucose homeostasis was 

investigated in db/db mice after chronic treatment with peptides. RNA was extracted 

from muscle tissue and islet cells using TriPure reagent (Chapter 2, Section 2.15.1).  

cDNA was synthesised from extracted RNA by following the procedure described in 

Chapter 2, Section 2.15.2. The reaction mix was prepared, and PCR condition was set 

as outlined in Chapter 2, Section 2.15.3. 

 

6.3.12 Effects of twice daily administration of [S4K] CPF-AM1 in GluCre-

ROSA26EYFP mice  

GluCre-ROSA26EYFP mice were treated with streptozotocin (STZ) and grouped as 

previously described in Chapter 2 Section 2.13.1.3. Grouped GluCre mice than 
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received twice daily intraperitoneal injections of saline or test peptide (75 nmol/kg 

bw) for 11 consecutive days. Parameters such as non-fasting blood glucose, body 

weight, food intake and water intake were monitored every 3 days interval during the 

treatment period. Additionally, blood samples were collected 3 times: prior to STZ 

treatment, before peptide treatment and after peptide treatment, and analysed for 

insulin concentration using RIA, as described previously in Chapter 2, Section 2.13.6. 

After the end of the treatment, animals were sacrificed by cervical dislocation, and 

pancreatic tissues were excised and processed for histological staining as described in 

Chapter 2, Section 2.14 and 2.14.1.  

 

6.3.13 Statistical Analysis 

Experimental data were analysed using GraphPad PRISM (Version 3). Results were 

expressed as means ± SEM and data compared using unpaired student's t-test 

(nonparametric, with two-tailed P values and 95% confidence interval) and one-way 

ANOVA with Bonferroni post-hoc test wherever applicable. Group of datasets were 

considered to be significantly different if P<0.05.   

 

6.4 Results  

6.4.1 Purification and characterisation of [S4K] CPF-AM1 

[S4K] CPF-AM1 was purified and characterised by reverse-phase HPLC and MALDI-

TOF respectively, as described in Chapter 2, Section 2.2.1.1 and Section 2.2.2 (Figure 

6.2). 

 

6.4.2 Effects of [S4K] CPF-AM1 on insulin release from BRIN-BD11 and 1.1B4 

cells 
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The insulinotropic activity of analogue [S4K] CPF-AM1 was studied from 

concentration 3 µM to 1 pm in BRIN-BD11 cells and 1.1B4 cells. As shown in Figure 

6.3A, [S4K] CPF-AM1 treated BRIN-BD11 cells displayed dose-dependent insulin 

release with significant (P<0.05) stimulatory effects up to a concentration of 0.1 nM.  

At 3 µM, [S4K] CPF-AM1 produced approximately 2.6-fold increase in insulin 

release compared to the basal rate (0.98 ± 0.02 ng/106 cells/20 min). Leakage of the 

lactate dehydrogenase enzyme was not detected from peptide-treated BRIN-BD11 

cells (Figure 6.3B), suggesting that the integrity of the plasma membrane remained 

intact. As shown in Figure 6.4A, treatment of 1.1B4 cells with [S4K] CPF-AM1 (3 x 

10-6 M - 10-12 M) in 5.6 mM glucose produced dose-dependent insulin release with 

approximately 3-fold increase at 3 µM. The peptide demonstrated significant (P<0.05) 

insulin release up to concentrations of 0.1 nM. A similar stimulatory effect was 

observed when the 1.1B4 cells were incubated with peptide in 16.7 mM glucose 

(Figure 6.4B).  As expected, alanine and exenatide demonstrated maximum 

stimulatory response compared to basal rate both in BRIN-BD11 and 1.1B4 cells. 

 

6.4.3 Effects of [S4K] CPF-AM1 on apoptosis and proliferation in BRIN-BD11 

cells 

[S4K] CPF-AM1 (1 µM), treatment had no effects on apoptosis of BRIN-BD11 cells. 

On the other hand, in cytokine-treated BRIN-BD11 cells, the number of cells 

undergoing apoptosis was increased by 272%. When the BRIN-BD11 cells were co-

incubated with [S4K] CPF-AM1 and the cytokine mixture, the number of tunnel 

positive cells were reduced to 115%. This degree of protection was comparable to that 

provided by GLP-1 (1 µM) (Figure 6.5A).  As shown in Figure 6.5B, [S4K] CPF-AM1 

(1 µM) treatment for 18 hr resulted in a significant (P<0.001) increase in proliferation 
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(33% increase) of BRIN-BD11, that was comparable to that produced by 1 µM GLP-

1 (43% increase). BRIN-BD11 cells Co-cultured with cytokine cocktail resulted in a 

decrease in proliferation by 30% compared to control cultures (P<0.001).  

 

6.4.4 Effects of [S4K] CPF-AM1 peptides on glucose uptake in C2C12 cells 

 

[S4K] CPF-AM1 peptides (1 µM) had no significant effect on glucose uptake in 

C2C12 cells compared to control (Figure 6.6). However, in the presence of insulin, a 

noticeable increase in glucose uptake was observed. As expected, insulin (1 µM) 

showed a significant increase (P < 0.05) in glucose uptake in C2C12 cells compared 

to control. In the presence of negative control (Apigenin 50µM), glucose uptake was 

decreased significantly by 30% (P<0.05).  

 

6.4.5 Acute effect of [S4K] CPF-AM1 peptides on food intake in lean mice 

As expected, in overnight fasted lean mice, GLP-1 significantly (P<0.05) suppressed 

appetite from 60 min up to 180 min. [S4K] CPF-AM1 did not affect food intake 

(Figure 6.7). 

 

6.4.6 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

body weight, energy intake, fluid intake, non-fasting blood glucose and plasma 

insulin in db/db mice  

As excepted, body weight, energy intake, fluid intake, non-fasting blood glucose and 

plasma insulin were significantly increased (P<0.001) in all groups of db/db mice 

(BKS.Cg-+Leprdb/+Leprdb/OlaHsd) mice compared to their littermates (Figure 6.8 

& 6.9). After 28 days of treatment, no significant differences in body weight were 

observed in all four db/db groups [db/db control, CPF-AM1 (75 nmol/kg bw), [S4K] 
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CPF-AM1 (75 nmol/kg bw), Exenatide (25 nmol/kg bw)] (Figure 6.8A, B). Also, 

energy intake and fluid intake in CPF-AM1 and [S4K] CPF-AM1 treated groups 

showed no difference compared to db/db controls. However, these parameters were 

decreased significantly (P<0.001) in the exenatide-treated group (Figure 6.8 C-F). As 

shown in Figure 6.9A-D, [S4K] CPF-AM1 significantly (P<0.05, P<0.01) lowered 

blood glucose and delayed the progressive decline of circulating insulin in db/db mice, 

but not to the same extent as exenatide. The native peptide lowered (P<0.05) blood 

glucose in db/db mice but failed to produce any positive effects on plasma insulin.  

 

6.4.7 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

Glycated haemoglobin (HbA1c) in db/db mice 

As shown in Figure 6.10, [S4K] CPF-AM1 and exenatide treatment significantly 

(P<0.05, P<0.01) decreased blood HbA1c by 29% and 52% respectively, compared to 

db/db controls. CPF-AM1 treatment also decreased blood HbA1c level in db/db mice, 

but not significantly. 

 

6.4.8 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

glucose tolerance in db/db mice following intraperitoneal and oral glucose load 

[S4K] CPF-AM1 and exenatide-treated db/db mice exhibited significant improvement 

in glycaemic response following intraperitoneal glucose load (18 mmol/kg bw) 

(Figure 6.11A, B). The blood glucose was significantly (P <0.05 - P<0.001) lowered 

at 15, 30 and 60 min in [S4K] CPF-AM1 and exenatide-treated mice compared to 

db/db control. The integrated blood glucose response was also significantly (P<0.01, 

P<0.001) less than db/db controls. Correspondingly, significantly (P<0.01, P<0.001) 

increased insulin response was observed at 15 min in [S4K] CPF-AM1 and exenatide-
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treated db/db mice after glucose load. The overall AUC insulin was increased 

significantly (P <0.05, P<0.001) in these mice compared to saline-treated db/db mice. 

CPF-AM1 treated group, also exhibited lowered (P<0.05, P<0.01) blood glucose at 15 

and 30 min (see table below), but no significant difference in overall AUC glucose 

and insulin were observed compared to db/db controls (Figure 6.11C, D). 

In another set of experiments, both [S4K] CPF-AM1 and CPF-AM1 treated db/db 

mice showed a tendency to lower blood glucose and improve insulin response 

following an oral glucose load. However, a significant difference in overall AUC 

glucose and insulin compared to db/db controls was not observed. AUC blood glucose 

and insulin were significantly (P<0.01) improved in exenatide-treated mice after oral 

glucose challenge (Figure 6.12A-D). 

 

6.4.9 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

insulin sensitivity in db/db mice 

As shown in Figure 6.13A-B, CPF-AM1, [S4K] CPF-AM1 and exenatide treatment 

significantly improved insulin sensitivity in db/db mice. After intraperitoneal 

administration of insulin (50 U/kg bw), a decrease in blood glucose level was observed 

in all peptide treated groups compared to db/db control. When the data presented in 

the form of the area under the curve, the overall blood glucose level in CPF-AM1, 

[S4K] CPF-AM1 and the exenatide treatment group were reduced significantly 

(P<0.05, P<0.01) by 23%, 25% and 40% respectively, compared to db/db controls. 

This observation was further supported by HOMA-IR calculations, revealing 

improved insulin resistance in [S4K] CPF-AM1 and the exenatide-treated mice 

compared to db/db control.  Whereas in CPF-AM1 treated group a noticeable decrease 

in HOMA-IR index was observed (Figure 6.13C). 
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6.4.10 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

bone mineral density, bone mineral content and fat composition in db/db mice 

Figure 6.14 illustrates a DEXA scan of all groups of mice. After 28 days of treatment, 

no significant differences were found in bone mineral density (BMD), bone mineral 

content (BMC), body fat and body fat (expressed a percentage of total body mass) in 

any of the db/db groups. Interestingly, the bone area in CPF-AM1 treated mice was 

similar to lean controls.   

  

6.4.11 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

pancreatic weight and insulin content 

After 28 days of treatment, no significant changes in pancreatic weight were observed 

in peptide treated db/db mice compared to db/db controls (Figure 6.15A). In 

comparison to lean mice, the pancreatic weights of [S4K] CPF-AM1 and exenatide-

treated groups were significantly (P<0.05, P<0.01) higher. Both [S4K] CPF-AM1 and 

exenatide-treated groups also considerably increased (1.7-2.4-fold, P<0.05, P<0.01) 

pancreatic insulin compared to db/db controls. In CPF-AM1 treated group, pancreatic 

insulin remained unaltered Figure 6.15B). 

 

6.4.12 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

insulin secretory response of islet in db/db mice 

Islets from treated and untreated mice were examined for insulin secretory responses 

to glucose (1.4 mM, 5.6 mM, 16.7 mM) and other established insulin secretagogues 

(Figure 6.15C & D). Islets from db/db mice exhibited impaired insulin secretory 

responses, were reversed by treatment with exenatide and [S4K] CPF-AM1. Less 

pronounced effects were observed with CPF-AM1.  
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6.4.13 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

lipid profile in db/db mice 

Plasma TC (total cholesterol), triglycerides, LDL (low-density lipoprotein) and HDL 

(high-density lipoprotein) levels were analysed after the treatment period (Figure 

6.16).  As shown in figure (Figure 6.16A, C), cholesterol and high-density lipoprotein 

(HDL) were not significantly different in all mice groups. In db/db mice elevated 

triglycerides and LDL levels were reversed (P<0.05, P<0.01) by exenatide treatment 

(Figure 6.16B, D). Treatment with [S4K] CPF-AM1 significantly lowered triglyceride 

but not LDL compared to db/db controls. CPF-AM1 treatment showed a tendency to 

reduce triglyceride and LDL in db/db mice. 

 

6.4.14 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

liver and kidney function in db/db mice 

As shown in Figure 6.17A-C, the basal levels of ALT, AST and ALP were 

significantly (P<0.001) elevated in saline-treated db/db mice by 76%, 246% and 105% 

respectively compared to their littermates. Treatment with exenatide, CPF-AM1 and 

[S4K] CPF-AM1 significantly (P<0.05, P<0.001) lowered these biochemical 

parameters compared to db/db controls. Interestingly, both CPF-AM1 and [S4K] CPF-

AM1 was equally effective as exenatide in lowering ALT and ALP level. Additionally, 

all peptide treatment resulted significant (P<0.05, P<0.01) reduction in creatinine 

compared to db/db controls (Figure 6.17D). 

 

6.4.15 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

plasma amylase concentration in db/db mice 
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All db/db mice subjected to peptide treatment displayed significantly (P<0.05 - 

P<0.001) increased amylase activity relative to db/db mice and lean controls (Figure 

6.18).  

 

6.4.16 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

islet number, islet area, beta cell areas, alpha cell area and islet size distribution 

Following 28 days, islet morphology was examined in both treated and untreated mice. 

Figure 6.19A represents images of pancreatic islets of mice, showing alpha cells in red 

and beta cells in green. In all db/db mice, no significant differences in a number of 

islets per mm2 were observed (Figure 6.19B). Lean control, db/db control and CPF-

AM1 treated groups showed no differences in islet area. [S4K] CPF-AM1 treated 

group showed a tendency to improve islet area, but no statistical difference was 

observed compared to db/db controls (Figure 6.19C). In contrast, islet area was 

significantly (P<0.05) increased in the exenatide-treated group. In the db/db control 

group, pancreatic beta cell population were decreased, and alpha cell population were 

increased significantly compared to their littermates (Figure 6.19D-E). Both CPF-

AM1 and [S4K] CPF-AM1 treatment had no effects on beta cell and alpha cell area. 

Exenatide treatment significantly increased (P<0.05) beta cell area and decreased 

(P<0.01) alpha cell area compared to db/db controls. In all peptide treated groups, the 

number of large and medium-size islets were increased (P<0.01, P<0.001) and small 

size islets were decreased (P<0.01) significantly compared to db/db controls (Figure 

6.19F). 

 

6.4.17 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

gene expression in skeletal muscle 
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After the treatment period, the expression of insulin signalling genes in skeletal muscle 

tissue of treated and untreated mice was examined. (Figure 6.20). Muscles from db/db 

mice showed significant (P<0.05 - P<0.001) increase in mRNA expression of Slc2a4, 

Insr, Irs1, Pik3ca, Akt1 and Ptb1 genes compared to lean littermates (Figure 6.20A-C 

& 6.20E-G). Expression of these genes was reversed in [S4K] CPF-AM1 and 

exenatide-treated mice. After CPF-AM1, the expression of these genes was 

diminished but the effect was not to the same extent as analogue. No significant 

differences in expression of Pdk1 gene were observed in any of the groups (Figure 

6.20D).  

 

6.4.18 Effects of twice daily administration of CPF-AM1 and [S4K] CPF-AM1 on 

gene expression in islets 

Expression of essential genes involved in the insulin secretion including Ins1, Abcc8, 

Kcnj11, Slc2a2, Cacna1c as well as Gck were investigated in the islet cells isolated 

from pancreatic tissue from treated and untreated mice (Figure 6.21A-F). In saline-

treated db/db mice, expression of these genes was significantly (P<0.001) 

downregulated, which was reversed by treatment with exenatide and [S4K] CPF-

AM1. The native peptide CPF-AM1 also upregulated these genes, except for Kcnj11.  

Exenatide and [S4K] CPF-AM1 treatment also prevented downregulation of Gipr, 

Glp1r, Gcg and Pdx1 genes in the islets of db/db mice (Figure 6.22A-D). Stat1 gene 

which was significantly upregulated in db/db mice was reversed by treatment with 

exenatide and [S4K] CPF-AM1. CPF-AM1 treatment had no effects on these genes, 

except for Glp1r and Gcg which was upregulated (P<0.05) compared with db/db 

controls (Figure 6.22E). 
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6.4.19 Effects of twice daily administration of [S4K] CPF-AM1 on body weight 

change, food intake and water intake in GluCre-ROSA26EYFP mice 

Treatment with streptozotocin (STZ) resulted in a significant (P<0.01) decrease in 

body weight and an increase (P<0.01, P<0.001) in water intake and energy intake in 

GluCre mice compared to the lean controls (Figure 6.23A-C). [S4K] CPF-AM1 had 

no significant effects on body weight, water intake and energy intake in GluCre mice.  

 

6.4.20 Effects of twice daily administration of [S4K] CPF-AM1 on blood glucose 

and plasma insulin in GluCre-ROSA26EYFP mice  

Blood glucose was significantly (P<0.001) increased in streptozotocin (STZ) control 

mice compared to lean controls (Figure 6.24A). This was associated with significant 

(P<0.001) decrease in plasma insulin (Figure 6.24B). [S4K] CPF-AM1 treatment 

showed a tendency to improve blood glucose and plasma insulin, but no statistical 

significance was observed compared to compared to STZ controls. 

 

6.4.21 Effects of twice daily administration of [S4K] CPF-AM1 on pancreatic 

insulin content in GluCre-ROSA26EYFP mice  

As expected, treatment with streptozotocin (STZ) resulted in a significant (P<0.01, 

P<0.001) decrease of insulin content in all regions of the pancreas in GluCre mice 

compared to untreated controls (Figure 6.25). [S4K] CPF-AM1, significantly (P<0.05, 

P<0.01) improved insulin content, particularly in the tail region of pancreas compared 

to STZ controls. 
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6.4.22 Effects of twice daily administration of [S4K] CPF-AM1 on islet number, 

islet area, beta cell area, alpha cell area and islet size distribution in GluCre-

ROSA26EYFP mice  

Pancreatic islet morphology was evaluated after the treatment period.  Figure 6.26A 

represents images of pancreatic islets, showing alpha cells in green and beta cells in 

red colour. As shown in Figure 6.26B, no significant changes in the number of islets 

per mm2 were observed in the whole pancreas. However, in [S4K] CPF-AM1 treated 

mice, the number of islets per mm2 was significantly (P<0.01) increased in the 

pancreatic head region. In the tail region, the opposite pattern was observed. A 

noticeable increase in islet area was seen in the whole pancreas, particularly in the tail 

region, of peptide-treated mice compared to STZ controls (Figure 6.26C). As 

expected, a significant (P<0.001) beta cell loss was observed in STZ control mice, 

particularly in the tail region of the pancreas which was prevented (P<0.001) by the 

[S4K] CPF-AM1 treatment (Figure 6.26D). Also, a noticeable decrease in alpha cell 

area was observed in the head region of the pancreas of peptide-treated mice (Figure 

6.26E).  The islet size distribution was altered by streptozotocin treatment.  The 

number of smaller size islets were significantly increased in the whole pancreas in 

STZ controls compared to lean controls. Additionally, large and medium-size islet 

were reduced particularly in the pancreatic tail region. The peptide treatment resulted 

in significant (P<0.05) increase in the number of large size islets in the whole pancreas 

and significant (P<0.05) increase in medium size islets particularly in the tail region 

of pancreas compared to STZ controls (Figure 6.26F). 

 

6.4.23 Effect of [S4K] CPF-AM1 on pancreatic islets in GluCre-ROSA26EYFP 

mice 
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The immunofluorescent staining of pancreatic section confirmed that in all mice 

groups GFP was significantly expressed in glucagon expressing alpha cells (Figure 

6.27A). The number GFP positive cells expressing insulin were significantly (P<0.05, 

P<0.001) increased in STZ controls compared to lean controls. In [S4K] CPF-AM1 

treated mice, Ins+/GFP+ cells were increased significantly (65%, P<0.05) compared to 

STZ controls (Figure 6.27B). Interestingly, the percentage of cells expressing only 

GFP as well as cells co-expressing both insulin and glucagon (bihormonal cells) were 

increased (P<0.05 - P<0.001) significantly in the peptide-treated mice compared to 

both STZ and lean controls (Figure 6.27D, E).  

 

6.5 Discussion 

The pharmaceutical industry has shown immense interest in peptide drug development 

after the discovery of insulin therapy. To date, more than 60 peptide drugs are 

approved for clinical use, and over 150 are currently evaluated in human clinical 

studies (Lau and Dunn, 2018). The major obstacles faced by peptide drug candidates 

are 1) rapid degradation by a proteolytic enzyme, 2) toxicity, and 3) rapid clearance 

from circulation (Green et al., 2004b, Fosgerau & Hoffmann, 2014). As a result, 

researchers have begun to use peptide chemistry techniques to develop peptide 

analogues by substituting amino acid or by modifying C or N terminal or by covalently 

linking fatty acid moiety to enhance pharmaceutical properties of peptides (Heard et 

al., 2013, Conlon et al., 2007a). Using similar approaches several host defence 

peptides with antidiabetic properties were transformed to analogues, which 

demonstrated potent in vitro and in vivo antidiabetic activities (Abdel-Wahab et al., 

2008a, Srinivasan et al., 2015).  
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Previous studies conducted in our laboratory have shown the insulin-releasing activity 

of Caerulein-precursor fragment (CPF-AM1) peptide isolated from frog skin secretion 

of Xenopus amieti. Additionally, CPF-AM1 has been shown to induce the release of 

GLP-1 from GLUtag cells (Ojo et al., 2012, 2013a). The [S4K] analogue of CPF-

AM1, which was synthesised by substituting serine (S) at 4th position by lysine, 

displayed appreciably greater insulinotropic activity in rat clonal BRIN-BD11 cells 

than native peptide, as well as, improved glycaemic response both in lean and high-

fat diet induced diabetic mice in response to glucose challenge (Unpublished data).  

Based on these promising results, [S4K] CPF-AM1 analogue was selected for further 

studies. Reassuringly, in the present study [S4K] CPF-AM1 analogue displayed potent 

insulinotropic activity in BRIN-BD11, as well as, in 1.1B4 pancreatic β-cells without 

affecting the architecture of the plasma membrane. The improved insulinotropic 

activity of [S4K] CPF-AM1 analogue is in harmony with previous studies, where 

analogues of PGLa-AM1, hymenochirine-1B with lysine substitution displayed potent 

insulinotropic activity (Owolabi et al., 2016, 2017). The role of cytokines in beta cell 

dysfunction is well documented, which is characterised by impaired glucose-

stimulated insulin release (Donath et al., 2009, Vasu et al., 2014, Barlow et al., 2018). 

Interestingly, [S4K] CPF-AM1 analogue was effective in protecting BRIN-BD11 cells 

against cytokine-induced apoptosis. Additionally, analogue also displayed beta-cell 

proliferative activity comparable to that of GLP-1. A similar effect was also shown by 

peptide [A14K] PGLa-A1M, esculentin (1-21)1c, temporin A and temporin F 

(Owolabi et al., 2017, Musale et al., 2018).  Although, more detail studies are required 

to investigate the mechanism by which these peptides induce protective and 

proliferative effects. Based on these findings long-term in vivo studies was conducted 
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to evaluate the beneficial effects of [S4K] CPF-AM1 analogue in an animal model of 

type 2 diabetes.  

In T2DM, with time insulin biosynthesis and secretion decline progressively, which 

results in a decrease in insulin and an increase in glucose level (Butler et al., 2003). 

After initiation of treatment the progressive loss of non fasting insulin was delayed 

significantly in db/db mice receiving [S4K] CPF-AM1 treatment, suggesting positive 

effects of analogues on pancreatic beta cell function. When the results for insulin was 

presented in the form of the area under the curve, the insulin level was significantly 

higher than db/db controls. On the other hand, native peptide also showed a tendency 

to delay loss of insulin, but the effect was not to the same extent as analogue. The 

reason for the beneficial effects of analogue on plasma insulin over parent peptide 

could be due to the improved enzymatic stability. 

In T2DM, maintaining strict glycaemic control is one of the key factors to prevent 

microvascular complications (UK Prospective Diabetes Study (UKPDS) Group, 

1998). In the present study, [S4K] CPF-AM1 treatment significantly improved blood 

glycaemic control as well as decreased HbA1c in db/db mice. The reduction of blood 

glucose was correlated with improvement in polydipsia, which is commonly observed 

in the severe diabetic state (Zimmermann et al., 2012, Grosbellet et al., 2016). On the 

other hand, native peptide also significantly lowered blood glucose in db/db mice, 

however, an only a small decrease in HbA1c was observed. The improvement in blood 

glucose in CPF-AM1 and [S4K] CPF-AM1 treated groups was not associated with 

any change in body weight or energy intake. However, in the exenatide-treated group, 

energy intake was reduced significantly in db/db mice, which corresponds well to the 

previous studies (Gedulin et al., 2005, Schlögl et al., 2015). Body weight remained 
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unaffected suggesting that increased energy expenditure might explain the reason for 

no change in body weight.  

Genetically obese-diabetic mice (db/db) as early as 6 weeks of age show impaired 

glycaemic response to a glucose load, and this impairment deteriorates with age (Wang 

et al., 2002). There have been previous reports of several frog skin peptides and their 

analogues showing improved glucose tolerance in insulin resistance high-fat fed mice 

(Vasu et al., 2017, Ojo et al., 2015b, Owolabi et al., 2016, Srinivasan et al., 2015). In 

the present study, untreated db/db mice showed an impaired glycaemic response to 

both intraperitoneal and oral glucose load. After chronic treatment with [S4K] CPF-

AM1 for 28 days, the glycaemic response was improved substantially to 

intraperitoneal glucose challenge but failed to produce the same effect to oral glucose 

challenge. On the other hand, CPF- AM1 treated mice, under the same experimental 

condition, also showed a tendency to improve glycaemic response. Whereas, 

exenatide-treated db/db mice, displayed a positive effect on both intraperitoneal and 

oral glucose challenge. This improvement in glycaemic response correlated with 

improved insulin sensitivity in [S4K] CPF-AM1 and exenatide-treated group, which 

was further confirmed by HOMA-IR calculation.  

It is evident that hyperlipidaemia, exacerbate insulin resistance in type 2 diabetes 

(Kraegen et al., 2001). Hyperlipidaemia is one of the significant factors in the 

development of diabetic nephropathy (Yang et al., 2017), therefore, improving lipid 

metabolism may have beneficial effects in a diabetes patient. In agreement with others 

(Son et al., 2015, Kim et al., 2013), impaired lipid metabolism was observed in db/db 

mice. Plasma triglycerides and LDL levels were elevated significantly in db/db control 

compared to their littermates. In the present study, [S4K] CPF-AM1 treatment showed 

a tendency to restore elevated triglycerides and LDL levels; however, there was no 
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significant difference compared to db/db controls. Interestingly, triglycerides were 

significantly decreased with CPF-AM1 treatment, which was comparable to 

exenatide. This observation is in agreement with previous studies where CPF-SE1 

peptide which is orthologues to CPF-AM1 have been shown to reduce triglycerides 

levels in high fat fed mice (Srinivasan et al., 2015). Plasma HDL level remained 

unaffected in all db/db mice and was comparable to lean littermates. However, a small 

decrease in cholesterol level was observed in both [S4K] CPF-AM1 and CPF-AM1 

treatment, but this was not significant. The improvement in plasma lipids could be the 

reason for improved insulin sensitivity in CPF-AM1 treated db/db mice. Bone mineral 

density/ content, lean body mass and body fat were unaffected by all peptide treatment 

in db/db mice. 

In clinical practice, liver parameters such as ALT, AST and ALP levels are tested to 

monitor the progression of diseases and toxicity of drugs. T2D patient suffering from 

liver dysfunction have elevated levels ALT, AST and ALP (Bora et al., 2016). 

According to the results of the present study, these liver parameters were significantly 

decreased in both [S4K] CPF-AM1 and CPF-AM1 treated db/db mice. The magnitude 

of these effects was comparable to exenatide treatment. The creatinine in db/db mice 

was also attenuated by [S4K] CPF-AM1 and CPF-AM1. These observations show that 

liver and kidney function were improved by peptide treatment suggesting that peptides 

could be safe for the treatment of type 2 diabetes. A significant increase in amylase 

activity was observed in all peptide treated db/db mice compared to db/db controls, 

suggesting a potential issue with pancreatitis. This has previously been reported for 

GLP-1 mimetics, but it is not considered to be clinically significance (Nauck, 2013).  

Insulin resistance in type 2 diabetes has been proposed due to impairment of insulin 

signalling in the muscle tissue (Björnholm et al., 1997, Goodyear et al., 1995, 
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Defronzo and Tripathi, 2009). In the present study, an increase in mRNA expression 

of insulin signalling genes was observed in the muscles of db/db mice. The expression 

of GLU4, Insr, Irs1, Akt1, Pik3ca and Ptb1 was upregulated significantly compared to 

lean controls. These observations are in harmony with previous findings, where an 

increase in the activity of proximal insulin signalling cascade was observed in the 

animal model of liver cirrhosis, (Jessen et al., 2006). Similarly, an increase in the 

activity of PI 3-kinase and Akt/PKB was observed in the liver and kidney of db/db 

mice (Feliers et al., 2001). The increase in insulin signalling activity could be to 

compensate GLUT4 translocation defect from intracellular membrane to cell surface, 

which is observed in diabetes (Huang et al., 2002, DeFronzo & Tripathy, 2009). 

Interestingly, in [S4K] CPF-AM1 and exenatide treatment, expression of these genes 

was reversed in db/db mice. A similar finding was also observed in a native peptide-

treated group. However, the effect was comparatively less than analogue.  

In the present study, immunohistochemical analysis of pancreatic tissue revealed that 

the number of islets per mm2 was unaffected by the treatment and was comparable to 

db/db controls. However, a substantial decline in a large and medium-size islet in 

db/db mice were prevented by all peptide treatments. The loss of islets and beta cell 

area and an increase in alpha cell area in db/db mice were attenuated by [S4K] CPF-

AM1 treatment, but not significantly. This observation correlated with an increase in 

pancreatic insulin content and improved insulin secretory response to glucose and 

insulin secretagogues after [S4K] CPF-AM1 treatment. On the other hand, the native 

peptide also displayed these beneficial effects but not to the same extent as the 

analogue. To further evaluate the positive effects of both [S4K] CPF-AM1 and CPF-

AM1 on pancreatic beta cell function, gene expression studies were performed. In 

db/db mice insulin secretory genes Ins1, Pdx1, Glp1r, Gipr, Abcc8, Kcnj11, Gck, 
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Cacna1c and Gcg were significantly downregulated, and the apoptosis gene Stat1 was 

significantly upregulated compared to littermates. The high blood glucose and lipid 

levels could be the reason for these changes in gene expression in db/db mice (Piro et 

al., 2002, Wang & Thurmond, 2012, Poitout, 2013, Shimoda et al., 2011). In [S4K] 

CPF-AM1 treatment, upregulation of insulin secretory genes and downregulation of 

apoptosis gene could explain its beneficial effect on beta cell function. On the other 

hand, parent peptide also showed a tendency to improve the expression of these genes, 

but the effect was not to the same extent as the analogue. 

An additional study was performed using the transgenic mouse (GluCre-

ROSA26EYFP mice) bearing the transgenes GluCre (tamoxifen inducible tagger) and 

ROSA26-YFP (reporter), to investigate chronic effects (11 days) of [S4K] CPF-AM1 

on reprogramming of alpha to beta cells. Immunohistochemical analysis of pancreatic 

section revealed that the number of beta cells which were transdifferentiated from 

alpha cells (Ins+/GFP+ cells), as well as cells co-expressing both insulin and glucagon 

(Ins+/Glu+), were increased significantly in STZ group compared to lean control, 

indicating that glucagon expressing alpha cells started expressing insulin. These 

observations are consistent with the previous study, where transdifferentiate of 

glucagon-producing alpha cells into insulin-producing beta cells were observed under 

conditions of extreme beta cell loss (Thorel et al., 2010). [S4K] CPF-AM1 treatment, 

substantially increased the number of Ins+ /GFP+ and Ins+/Glu+ cells compared to both 

lean and STZ control. This observation correlates with increased beta cell area and 

insulin content in [S4K] CPF-AM treated mice. Also, cells expressing only GFP was 

increased significantly. Furthermore, an increase in large size islets in peptide-treated 

mice also shows the sign of beta cell regeneration. Taken together, these results 
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indicate that [S4K] CPF-AM1 treatment could influence the conversion of the 

glucagon-expressing alpha cell to insulin-producing beta cells. 

In conclusion, L -lysine substituted analogue of CPF-AM1 showed superior beneficial 

metabolic effects in db/db mice than the parent peptide. [S4K] CPF-AM1 treatment 

improved circulating plasma insulin concentration, glucose haemostasis, glucose 

tolerance, insulin resistance, insulin secretory response and liver and kidney function, 

in db/db mice. Also, the expression of genes involved in insulin secretion and insulin 

signalling were enhanced. Data from the GluCre study suggested that [S4K] CPF-

AM1 treatment could also influence the transdifferentiation of alpha to beta cells. 

These observations encourage further investigation to identify the specific receptor 

through which [S4K] CPF-AM1 exerts its beneficial effects. 
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Figure 6.1 Schematic diagrams of the amino acid sequence of A) CPF-AM1 and 

B] [S4K]-CPF-AM1 

A) CPF-AM1 

     

 

B) [S4K] CPF-AM1 

 

 

 

I=Isoleucin (Ile), K=Lysine (Lys), L=Leucine (Leu), N= Asparagine (Asn), 

V=Valine (Val), G=Glycine (Gly), A=Alanine (Ala). 
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Figure 6.2 Representation of reverse-phase HPLC profile (A) and MALDI-TOF 

spectra (B) of [S4K] CPFA-M1 

A) 

 

 

B) 

 

Purity and molecular mass of peptide were confirmed using RP-HPLC and MALDI-

TOF respectively. The retention time was verified using ChromQuest software.  
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Figure 6.3 Dose-dependent effects of [S4K] CPF-AM1 on insulin release from 

BRIN-BD11 cells 
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Values are mean ± SEM with n=8 for insulin release and n=4 for LDH. Alanine (10 

mM) and Exenatide (10-8 M) were used as positive control for insulin secretion studies. 

DMSO (100%) was used as positive control for LDH assay. *P<0.05, **P<0.01, 

***P<0.001 compared to 5.6 mM glucose alone. 
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Figure 6.4 Dose-dependent effects of [S4K] CPF-AM1 on insulin release from 

1.1B4 cells in (A) 5.6 and (B) 16.7 mM glucose 
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Values are mean ± SEM with n=8 for insulin release. Alanine (10 Mm) and Exenatide 

(10-8 M) were used as positive control for insulin secretion studies. *P<0.05, 

**P<0.01, ***P<0.001 compared to 5.6 mM glucose (A) and *P<0.05, ***P<0.001 

compared to 16.7 mM glucose (B). 
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Figure 6.5 Effects of [S4K] CPF-AM1 on apoptosis (A) and cell proliferation (B) 

in BRIN-BD11 cells 
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Comparison of the effects of [S4K] CPF-AM1 (1 µM) and GLP-1 (1 µM) on 

protection against cytokine-induced apoptosis in BRIN-BD11 cells. *P<0.05, 

***P<0.001 compared to incubation in culture medium alone. ΔΔΔP<0.001 compared 

to incubation in cytokine-containing medium. (B) Ccomparison of the effects of [S4K] 

CPF-AM1 (1 µM) and GLP-1 (1 µM) on proliferation of BRIN-BD11 cells. **P<0.01, 

***P<0.001 compared to incubation in culture medium alone 
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Figure 6.6 Effect of [S4K] CPF-AM1 on glucose uptake in differentiated C2C12 

cells 
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Glucose uptake was expressed as % of control (glucose). Apigenin was used as 

negative control for glucose uptake. Values are mean ± SEM with n=3. *P<0.05 

compared with glucose alone. 

 

 

 

 

 

 

 

 

 



318 
 

Figure 6.7 Effect of peptide [S4K] CPF-AM1 on food intake in intake in 21 hr 

fasted lean NIH Swiss TO mice 

0

1

2

3

4

5 Saline (0.9%)

Saline (0.9%) + GLP-1 (25 nmol/kg bw)

30 60 90 120 150 180

* *
*

*
*

Saline (0.9%) + [S4K] CPF-AM1 (75 nmol/kg bw)

Food intake time measurement (minutes)

F
o

o
d

 c
o

n
s
u

m
e
d

(3
 H

rs
/g

ra
m

)

 

Cumulative food intake was measured prior to and after after i.p. injection of saline 

vehicle (0.9% w/v NaCl) or GLP-1 (25 nmol/kg bw) or test peptides (75 nmol/kg bw) 

at time point 30, 60, 90, 120, 150, 180 min in overnight (21 hr) fasted mice. Values 

represent mean ± SEM (n=8). *P<0.05 compared to saline control. 
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Figure 6.8 Effects of 28-day treatment with CPF-AM1 and [S4K] CPF-AM1 on 

body weight (A, B), energy intake (C, D) and water Intake (E, F) in db/db mice 
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Body weight, energy intake and water intake were measured 3 days prior to, and every 

72 hours during treatment with saline or exenatide (25 nmol/kg bw) or peptide (75 

nmol/kg bw) for 28 days. Values are mean ±SEM for 8 mice. *P<0.05, **P<0.01 

***P<0.001 compared to lean mice and ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001compared to 

control db/db mice
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Figure 6.9 Effects of 28-day treatment with CPF-AM1 and [S4K] CPF-AM1 on non-fasting blood glucose (A, B) and plasma insulin (C, 

D) in db/db mice  
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Parameters were measured 3 days prior to, and every 72 hours during treatment (indicated with black bar) with saline or exenatide (25 nmol/kg 

bw) or peptide (75 nmol/kg bw) for 28 days. Values are mean ±SEM for 8 mice. *P<0.05, **P<0.01 ***P<0.001 compared to lean mice and 
ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to control db/db mice. 
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Figure 6.10 Effects of CPF-AM1 and [S4K] CPF-AM1 on HbA1c in db/db mice 

 

0

50

100

Lean (Saline)

db/db Control (Saline)

Exenatide (25nmol/kg bw)

CPF-AM1 (75nmol/kg bw)

*

***

***
***

[S4K] CPF-AM1 (75nmol/kg bw)



H
b

A
1c

(m
m

ol
/m

ol
)

 

 

HbA1c level was measured after long term treatment with twice-daily injections of 

either saline or exenatide (25 nmol/kg bw) or peptide (75 nmol/kg bw) for 28 days. 

Values are mean ± SEM for 4 mice. *P<0.05, ***P<0.001 compared with lean mice 

and ΔP<0.05, ΔΔP<0.01compare with db/db control mice. 
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Figure 6.11 Long-term effects of CPF-AM1 and [S4K] CPF-AM1 on plasma 

glucose (A, B) and insulin (C, D) concentrations following intraperitoneal glucose 

administration to db/db mice 
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Plasma glucose and insulin concentrations were measured prior to and after 

intraperitoneal administration of glucose (18 mmol/kg bw) to db/db mice pre-treated 

with twice-daily injections of either with saline or exenatide (25 nmol/kg bw) or 

peptide (75 nmol/kg bw) for 28 days. Values are mean ± SEM for 8 mice. *P<0.05, 

**P<0.01, ***P<0.001 compared with lean mice (normal, saline). ΔP<0.05, ΔΔP<0.01, 
ΔΔΔP<0.001 compared to db/db control mice. 
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Figure 6.12 Long-term effects of CPF-AM1 and [S4K] CPF-AM1 on plasma 

glucose (A, B) and insulin (C, D) concentrations following oral glucose 

administration to db/db mice 
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Plasma glucose and insulin concentrations were measured prior to and after oral 

administration of glucose (18 mmol/kg bw) to db/db mice pre-treated with twice-daily 

injections of either saline or exenatide (25 nmol/kg bw) or peptide (75 nmol/kg bw) 

for 28 days. Values are Mean ± SEM for 8 mice. *P<0.05, **P<0.01, ***P<0.001 

compared with lean mice (normal, saline). ΔΔP<0.01 compared to db/db control. 
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Figure 6.13 Long-term effects of CPF-AM1 and [S4K] CPF-AM1 on insulin 

sensitivity in db/db mice 

0 10 20 30 40 50 60

0

10

20

30

40

Lean (Saline)

db/db Control (Saline)

CPF-AM1 (75 nmol/kg bw)

A)

Exenatide (25 nmol/kg bw)

[S4K] CPF-AM1 (75 nmol/kg bw)

Time (min)

P
la

s
m

a
 g

lu
c
o

s
e

(m
m

o
l/
l)

0

500

1000

1500

2000

Lean (Saline)

db/db Control (Saline)

Exenatide (25 nmol/kg bw)

B)

 CPF-AM1 (75 nmol/kg bw)

***

***

***



[S4K] CPF-AM1 (75 nmol/kg bw)

***


P
la

s
m

a
 g

lu
c
o

s
e

(m
m

o
l/

l.
m

in
)

 

                            
0

50

100

150

Lean (Saline)

db/db Control (Saline)

CPF-AM1 (75nmol/kg bw)

Exenatide (25nmol/kg bw)

***

***




[S4K] CPF-AM1 (75nmol/kg bw)

***
***

C)

H
O

M
A

 (I
R

)

 

Plasma glucose were measured prior to and after intraperitoneal injection of insulin 

(50 U/kg bw) in db/db mice pre-treated with twice-daily injections of either saline or 

exenatide (25 nmol/kg bw) or peptide (75 nmol/kg bw) for 28 days. Values are mean 

± SEM for 8 mice. ***P<0.001 compared with to lean mice and ΔP<0.05, ΔΔP<0.01 

compare with db/db control mice. 
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Figure 6.14 Effects of CPF-AM1 and [S4K] CPF-AM1 on body composition in 

db/db mice. 
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Effects of CPF-AM1 and [S4K] CPF-AM1 on body composition in lean and db/db 

mice. Animals were injected with either saline or exenatide (25 nmol/kg bw) or 

peptide (75 nmol/kg bw) for 28 days. The figure shows (A) representative DEXA 

scans, (B) bone mineral density, (C) bone mineral content, (D) bone area. (E) lean 

body mass, (F) body fat and (G) body fat expressed a percentage of total body mass. 

Values are means ± SEM for 8 mice. *P<0.05, **P<0.01, ***P<0.001 compared with 

saline-treated lean mice. 
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Figure 6.15 Effects of [S4K] CPF-AM1 on pancreatic weight (A), total insulin 

content (B), and insulin secretory response of isolated islets (C&D) from lean, 

and db/db mice treated 
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Mice were treated with saline or exenatide (25 nmol/kg bw) or peptide (75 nmol/kg 

bw) for 28 days prior to experiment. Values are means ± SEM with n=4. *P<0.05, 

**P<0.01, ***P<0.001 compared with the response of islets isolated from each group 

of mice at 16.7 mM glucose. ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared with the 

response of islets isolated from lean mice (saline treated) to each secretagogue or 

glucose concentration. 
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Figure 6.16 Effects of long-term treatment with CPF-AM1 and [S4K] CPF-AM1 

on total cholesterol (A), Triglycerides (B), HDL (C) and LDL (D) in db/db mice 
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Plasma sample was collected after 28 days treatment with either saline or exenatide 

(25 nmol/kg bw) or peptide (75 nmol/kg bw). Values are mean ± SEM for 6 mice. 

*P<0.05, ***P<0.001 compared to lean mice. ΔP<0.05, ΔΔP<0.01 compared to db/db 

control mice. 

 

 

 

 

 

 

 

 

 

 



328 
 

Figure 6.17 Effects of long-term treatment with CPF-AM1 and [S4K] CPF-AM1 

on plasma AST (A) ALT (B) ALP (C) and creatinine (D) levels in db/db mice 
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Following 28 days injection with either saline or exenatide (25 nmol/kg bw) or peptide 

(75 nmol/kg bw), plasma sample was collected and measured for ALT, AST, ALP and 

creatinine levels. Values are mean ± SEM for 6 mice. **P<0.01, ***P<0.001 

compared to lean control. ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to db/db control. 
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Figure 6.18 Effects of long-term treatment with [S4K] CPF-AM1 on amylase 

activity in db/db mice. 
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Following 28 days injection with either saline (control) or exenatide or peptide, plasma 

sample was collected, and amylase activity was measured. Values are mean ± SEM 

for n=6 mice. *P<0.05, ***P<0.001 compared to normal control, ΔΔP<0.01, 
ΔΔΔP<0.001 compared to db/db control. 
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Figure 6.19 Effects of CPF-AM1 & [S4K] CPF-AM1 treatment on islet 

morphology in db/db mice. 
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Representative image (A) showing insulin (green) and glucagon (red) 

immunoreactivity from lean, db/db control, CPF-AM1 and [S4K] CPF-AM1 treated 

mice. B, C, D, E and F shows islet number, islet area, beta cell area, alpha cell area, 

and islet size distribution respectively. Mean ± SEM for 6 mice (~80 islets per group). 

*P<0.05, **P<0.01 compared to normal saline control, ΔΔP<0.05, ΔΔP<0.01, 
ΔΔΔP<0.001 compared to db/db control. 
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Figure 6.20 Effects of CPF-AM1 & [S4K] CPF-AM1 treatment on expression of 

genes involved in insulin action in skeletal muscle 
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3 µg of mRNA was used for cDNA synthesis. Expression values were normalised to 

Actb. Values are mean ± SEM for n=4. *P<0.05, **P<0.01, ***P<0.001 compared to 

normal control. ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to db/db control. 
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Figure 6.21 Effects of [S4K] CPF-AM1 treatment on expression of genes involved 

in insulin secretion from islets 
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3 µg of mRNA was used for cDNA synthesis. Expression values were normalised to 

Actb. Values are mean ± SEM for n=4.  *P<0.05, **P<0.01, ***P<0.001 compared 

to normal control, ΔΔP<0.01, ΔΔΔP<0.001 compared to db/db control mice. 
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Figure 6.22 Effects of [S4K] CPF-AM1 treatment on expression of genes involved 

in insulin secretion (A- C), beta cell proliferation (D) and beta cell apoptosis (E) 

in islets 
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3 µg of mRNA was used for cDNA synthesis. Expression values were normalised to 

Actb. Values are mean ± SEM for n=4.  *P<0.05, **P<0.01, ***P<0.001 compared 

to normal control, ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to db/db control mice. 
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Figure 6.23 Effects of twice daily administration of [S4K] CPF-AM1 on body 

weight change (A and B), food intake (C) and water intake (D) in GluCre-

ROSA26EYFP mice   
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Streptozotocin (50mg/kg bw) induced diabetic mice were grouped prior to the peptide 

treatment. Body weight (A & B), food intake (C), water intake (D) were measured 3 

days prior to, and every 72 hours during treatment with saline or [S4K] CPF-AM1 (75 

nmol/kg bw) for 11 days. Values are mean ±SEM for 5 mice. *P<0.05, **P<0.01 

***P<0.001 compared to lean mice. 
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Figure 6.24 Effects of twice daily administration of [S4K] CPF-AM1 on blood 

glucose (A) and plasma insulin (B) in GluCre-ROSA26EYFP mice  
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Blood glucose (A) and plasma insulin (B) were measured before and after 

streptozotocin, and after 11 days treatment with saline or [S4K] CPF-AM1(75 nmol/kg 

bw). Values are mean ±SEM for 5 mice. ***P<0.001 compared to lean mice. 
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Figure 6.25 Effects of twice daily administration of [S4K] CPF-AM1 on 

pancreatic insulin content in GluCre-ROSA26EYFP mice 
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Pancreatic insulin content was measured after 11 days treatment with saline or [S4K] 

CPF-AM1(75 nmol/kg bw). Values are mean ±SEM for 5 mice **P<0.01, ***P<0.001 

compared to normal saline control, ΔP<0.05, ΔΔP<0.01 compared to streptozotocin 

control. 
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Figure 6.26 Effects of [S4K] CPF-AM1 treatment on islet morphology in GluCre-

ROSA26EYFP mice 
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Representative islets (A) showing insulin (red) and glucagon (green) 

immunoreactivity from lean, streptozotocin and [S4K] PGLa-AM1 treated mice. B, C, 

D, E, and F shows islet number, islet area, beta cell area, alpha cell area, and islet size 

distribution respectively. Mean ± SEM for 5 mice (~50 Islets per group). *P<0.05, 

**P<0.01, ***P<0.001 compared to normal saline control, ΔP<0.05, ΔΔP<0.01, 
ΔΔΔP<0.001 compared to streptozotocin control. 
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Figure 6.27 Effect of [S4K] PGLa-AM1 on pancreatic Islets in GluCre-

ROSA26EYFP mice 
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Quantification Of A) Glucagon-GFP positive cells, B) Insulin-GFP positive cells, C) 

Glucagon positive cells, D) GFP positive cells per total islets and E) Insulin-Glucagon 

positive cells (~50 Islets per group). *P<0.05, **P<0.01, **P<0.001 compared to 

normal saline control, ΔP<0.05, ΔΔP<0.01, ΔΔΔP<0.001 compared to streptozotocin 

control. 
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7.1 Type 2 diabetes- The growing epidemic 

Type 2 diabetes, which is a complex metabolic disorder characterised by pancreatic 

beta cells dysfunction and insulin resistance, is currently one of the major healthcare 

problem globally. More prevalent in adults, type 2 diabetes is also seen in children and 

young adults due to an increasingly sedentary lifestyle (Basu et al., 2013). It accounts 

for 91% of the global diabetes population, out of which 80% resides particularly in 

developing nations like India and China. According to data published by the 

International Diabetes Federation (IDF), more than 400 million people were reported 

with type 2 diabetes in 2015. If no appropriate actions are taken, this figure is predicted 

to rise to 629 million by 2045.  

Type 2 diabetes can be controlled and managed by living a healthy lifestyle; however, 

due to the progressive nature of diseases, it becomes necessary to rely on antidiabetic 

drugs. Several antidiabetic drugs are in clinical use to tackle type 2 diabetes which 

include metformin, sulphonylureas, thiazolidinediones, acarbose, GLP-1 agonists, 

DPP-4 inhibitors, SGLT2 inhibitors and insulin. However, none of these drugs is 

successful in achieving long-term glycaemic control and preventing secondary 

complications associated with diabetes. Several studies have reported the close 

association of these drugs with hypoglycaemia, weight gain, inflammation of 

the pancreas, heart failure and hepatotoxicity (Bolen et al., 2007, Kelly et al., 2009, 

Ray et al., 2009, Tahrani et al., 2011). Moreover, these antidiabetics drugs are 

recommended in combination, which make patients more prone to the side effect 

associated with drugs. Also, the cost associated with treatment, which has reached 

USD 727 billion, is expected to rise due to increasing diabetes population. Hence 

required new alternative therapies that are cost-effective and can overcome the 

limitations of existing drugs. 
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7.2 Exploiting Natural antidiabetic agents 

7.2.1 Antidiabetic agents from plants 

Since ancient times native plants and their active ingredients have been used in 

Ayurvedic medicine for the treatment of wide range a of diseases including diabetes 

(Shakya, 2016). The main active ingredients found in the plants displaying antidiabetic 

activities are being used as lead molecules for the synthesis of new drugs. It is 

estimated that one in four currently prescribed drugs are developed from active 

ingredients of plants (Ye & Stanley, 2013). Antidiabetic drug metformin, developed 

from parent compound guanide found in the plant Galega officinalis, is currently in 

clinical use and recommended as the first line of drug for type 2 diabetes treatment 

(Koehn & Carter, 2003). 

More than 1200 plants have been reported with antidiabetic activities, and these plants 

majorly belong to the family of Fabaceae, Asteraceae & Lamiaceae (Marles and 

Farnsworth, 1995, Trojan-Rodrigues et al., 2012). Permender et al., 2010 presented 

an overview of the most effective antidiabetic activities of 54 plants of the Fabaceae 

family. Few examples of these plants are Abrus precatorius, Acacia arabica, Acacia 

catechu, Albizia lebbek, Arachis hypogaea and Bauhinia forficate. Cinnamomum 

tamala which belongs to the family of Lamiaceae demonstrated antidiabetic and 

antidyslipidemic effects in streptozotocin-induced diabetic rats (Bisht & Sisodia, 

2011). In 2013, Sidhu and Sharma from Punjab University (India), created a database 

of antidiabetic plants which belong to family Asteraceae, Euphorbiaceae, Fabaceae, 

Lamiaceae and Moraceae. Studies conducted in the Diabetes Research Laboratory at 

Ulster University have also revealed the antidiabetic activity of plants which include 

Medicago sativa (Gray & Flatt 1997), Agrimony eupatoria (Gray & Flatt 1998), 

Agaricus bisporus (Swanston-Flatt et al., 1989), Coriandrum sativum (Gray & Flatt 
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1999), Sambucus nigra (Gray et al., 2000) and Terminalis berllirica (Kasabri et al., 

2010) 

  

7.2.2 Antidiabetic agents from animals’ source 

Many animals’ species have developed specialised organs during evolution that 

produces venom to protect from predator and to capture prey (Casewell et al., 2013). 

These animal venoms are rich in biologically active molecules such as peptides and 

proteins. In the past, whole animal venom was used in Chinese traditional and Indian 

Ayurvedic medicine for the treatment of wide range of diseases which include arthritis, 

asthma, cancer, gastrointestinal alignment and rheumatism and pain (Ried, 2007, 

King, 2011). The advancement in bioanalytical technologies and progress in the area 

of genomics and transcriptomics have accelerated the development of the drugs from 

the animal venom. The presence of disulphide bonds in most of the venom-derived 

peptides provide stability and resistance to proteolytic enzyme thus making them 

unique biomolecules for the development of therapeutic agents. Several of these 

venoms derived peptides produce a response by binding with a receptor present on the 

mammalian cell surface.  

Both peptides and proteins found in the venom of animals such as snakes, scorpions, 

spiders, jellyfishes, anemones and cone snails are the most well-known and studied 

biomolecules. The majority of these molecules either act directly on the cardiovascular 

or nervous system of the prey and predators (Utkin et al., 2015). Captopril, an 

angiotensin-converting enzyme (ACE) inhibitor, isolated from Brazilian viper 

Bothrops jararaca, is the first venom-derived drug approved by FDA for treatment of 

cardiovascular diseases (Ferreira et al., 1970). Eptifibatide and tirofiban from Pygmy 

rattlesnake and Saw-scaled viper respectively are available for the treatment of acute 
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coronary syndromes. Exendin-4, a GLP-1 analogue, is the first venom bioactive 

molecule, approved for the metabolic treatment (Eng et al., 1990).  Exendin-4, isolated 

from the venom of Gila monster Heloderma suspectum, is available in the market by 

name Byetta from the treatment of type 2 diabetes. (Eng et al., 1992).  

Exendin-4 is 39 amino acid peptide which shares 53% structural homology with native 

GLP-1 (Furman, 2012). In comparison to native GLP-1, exendin-4 displayed longer 

in vivo half-life of around 160 min (20-30 fold higher) and potent (5500-fold greater) 

glucose lowering effects (Parkes et al., 2001; Young et al., 1999).  After the discovery 

of exendin-4, several other venom peptides have been identified with potent glucose-

lowering effects. Recently, new GLP-1 peptide analogues were identified in the 

venom and intestine of platypus and echidna, which were resistant to DPP-4 

degradation and displayed potent insulinotropic activities in cultured rodent islets 

(Tsend-Ayush et al., 2016). Safavi-Hemamiet al., 2015, found insulin analogue 

peptide in the venom of con snail (Conus geographus). Cone snail captures its prey by 

inducing hypoglycemic shock. C. geographus insulin (Con-Ins G1) was found similar 

to fish insulin and has shown to activate insulin signalling pathway by binding to the 

insulin receptor (Menting et al., 2016). Unlike human insulin, Con-Ins G1 lacks the 

region of B chain responsible for dimerisation. This makes Con-Ins G1 as an ideal 

candidate for the development of fast-acting insulin formulation for the treatment of 

diabetes.  

Delayed rectifier KV channels and BK channels are important for repolarisation of 

beta cells following insulin secretion (Smith et al.,1990). Peptide hanatoxin (k-

theraphotoxin-Gr1a), found in the venom of the tarantula Grammostola rosea, has 

been shown to stimulate insulin release from mouse and human beta cells in a glucose-

dependent manner by blocking delayed rectifier KV2.1 channel (Swartz & 
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MacKinnon, 1995). Guangxitoxin-1, another KV2.1 channel blocker, isolated from 

Chinese earth tiger tarantula, also demonstrated insulin release in a glucose-dependent 

manner by increasing intracellular calcium concentrations (Herrington et al., 2006). 

Iberiotoxin (bTx), found in the venom of red scorpion Buthus tamulus, enhanced 

insulin secretion in human beta cells by blocking BK channels (Galvez et al., 1990, 

Braun et al., 2008). 

Several studies have reported the presence of insulinotropic bioactive compounds in 

the snake venom (Toyama et al., 2000, 2005, Nogueira et al., 2005, Hernandez et al., 

2008, Nguyen et al., 2012). The venom of Crotalus adamanteus, Crotalus vegrandis, 

Bitisnas icornis, Pseudechis australis and Pseudechis butleri snakes were studied in 

our laboratory for insulin-releasing activity in BRIN-BD11 cells. In this study, 

insulinotropic compounds which belong to the family of phospholipases A2 (PLA2), 

serine proteinases and disintegrins were identified in snake venom (Moore et al., 

2015a, Moore et al., 2015). The discovery of drugs with therapeutic utility in the 

venoms of the snake, lizards, scorpion, cone snail and other animals has created 

curiosity to investigate amphibian skin secretions for antidiabetic peptides. 

 

7.3 Insulinotropic, glucose‑lowering, and beta‑cell anti‑apoptotic actions 

of temporin and Esculentin-1 peptides  

Temporin and esculentin-1 peptides were identified in frogs belonging to the extensive 

family Ranidae of both Eurasian and N. American (Conlon et al., 2009, Xu & Lai, 

2015). Temporins were obtained from Rana temporaria, and esculentin-1 from Rana 

esculenta [(Pelophylax lessonae (Pool frog) x Pelophylax ridibundus (marsh frog)].  

These peptides are well known for their antimicrobial activity (Ponti et al., 1999, 

Mangoni et al., 2016). Chapter 3, reports antidiabetic effects of these peptides. 
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Acute in vitro insulin release studies revealed that Temporin A, B and G exhibited 

potent insulin release studies in BRIN-BD11 cells with no cytotoxic effects. 

Esculentin-1a (1-21).NH2, esculentin-1b (1-18).NH2 and esculentin-1a (1-14).NH2 

which are N terminal derived peptides of esculentin-1a and -1b also exhibited similar 

effects. In addition, analogue [D-Lys14, D-Ser17] esculentin-1a (1-21).NH2 (Esc(1-21)-

1c) also produced insulinotropic activity. The insulin inducing ability of these peptides 

were also replicated in human clonal β-cells and isolated mouse islets. The study also 

revealed that that cationicity, hydrophobicity and angle subtended by charged residue 

are an important factor for the insulin-releasing activity of temporin peptides, whereas 

helicity plays a key role in the insulinotropic activity of the esculentin-1 peptide. 

Esculentin-1 peptides produced a significant increase in membrane potential and 

intracellular calcium concentration in BRIN-BD11 cells. On the other hand, temporins 

peptide had no significant effects on these parameters. This preliminary observation 

suggests that esculentin-1a could exhibit its effects by the KATP channel-dependent 

pathway and temporin peptides by the KATP channel-independent pathway.  

In T2DM, insulin concentration declines with age due to loss of beta cell mass and 

function (Cantley & Ashcroft, 2015, Arden, 2018). Therefore, treatment strategies 

towards restoring beta cell mass and beta cell function would be beneficial in tackling 

T2DM. Temporin A, temporin F, esculentin-1a (1-21) NH2 and esculentin (1-21)-1c 

but not temporin G (1 µM) protected BRIN-BD11 cells against cytokine-induced 

apoptosis as well as the augmented proliferation of cells. On the other hand, 

esculentin-1b (1-18).NH2 and esculentin-1a (1-14).NH2 also showed a tendency to 

protect beta cells against cytokine-induced apoptosis and enhanced proliferation of the 

cells. Further acute in vivo studies revealed that temporin G and esculentin (1-21)-1c 

improved glycemic response in lean mice after intraperitoneal injection with glucose. 
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On the other hand, temporin A, temporin F, esculentin-1a (1-21).NH2, esculentin-1b 

(1-18).NH2 and esculentin-1a (1-14) failed to improve glucose tolerance (See Table 

7.1 and 7.2: For the summary of acute in vitro and in vivo studies of temporin and 

esculentin-1a peptides). 

In conclusion, Chapter 3 highlighted the insulin-releasing activity of temporin and 

esculentin-1 peptides and analogue esculentin (1-21)-1c. Also, the study revealed 

positive effects of these peptides on beta cell proliferation and protection against 

cytokines induced DNA damage. These peptides can be used as a templet to develop 

long-acting analogues with improved antidiabetic activities. 

 

7.4 Insulinotropic activities of frenatin 2D and its synthetic analogues 

Amphibian skin peptides have been reported with a wide range of biological activities 

(Conlon et al., 2014, Xu & Lai et al., 2015). This include antimicrobial, antifungal, 

antiviral, anticancer and immunomodulatory activities. Interestingly, some of these 

peptides have shown to evoke insulin release from BRIN-BD11 cells and primary islet 

cells and improve glycaemic response both in lean and high fat fed mice following 

intraperitoneal administration (Conlon et al., 2018). The norepinephrine-stimulated 

skin secretions of Discoglossus sardus and Sphaenorhynchus lacteus were reported 

with a high concentration of peptides that showed structural similarity to frenatin 2 

peptides found in the Australian frog Litoria infrafrenata. Hence these peptides were 

named as frenatins. Frenatin 2D from Discoglossus sardus was the most potent of four 

naturally occurring frenatin peptides tested for insulin-releasing activity in BRIN-

BD11 cells. Frenatin 2D, evoked dose-dependent insulin release from rat clonal beta 

cells without producing cytotoxic effects. In this study, 14 analogues of frenatin 2D 

were designed by replacing each amino acid by hydrophobic tryptophan (W) residue. 
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This strategy did not lead to design analogues with potent insulinotropic activity. 

However, the insulinotropic action of frenatin 2D was unaffected by substitution at 

Asp1 and Gly7. Interestingly, the activity of peptide was retained after deletion of the 

C-terminal α-amide group. Furthermore, the insulinotropic activity of [D1W] and 

[G7W] was replicated in human-derived pancreatic beta cells (1.1B4 cells) and 

isolated mouse islet cells.  

Frenatin 2D peptides did not produce any significant change in membrane potential 

and intracellular calcium. In agreement with this, the insulin-releasing ability of 

peptides was not completely diminished in the presence of verapamil, diazoxide and 

DIDS as well as in the absence of extracellular calcium. The similar observation was 

reported with pseudin-2 and hymenochirin 1B (Abdel-Wahab et al., 2008, Owolabi et 

al.,2016). However, frenatin 2D peptides produced a significant increase in cAMP. In 

line with this, the stimulatory effects of frenatin 2D peptides were abolished in PKA-

downregulated BRIN-BD11. These data indicate that frenatin 2D peptides may exhibit 

its action by the KATP channel-independent pathway. The role of GLP-1 in beta cell 

survival and proliferation is well documented (Cornu et al., 2009, Lee et al., 2014). 

Interestingly, frenatin 2D protected beta cells against cytokine-induced apoptosis as 

well as improved proliferation of BRIN-BD11 cells. Furthermore, acute in vivo 

glucose tolerance studies revealed that [D1W] Frenatin 2D was effective than other 

frenatin 2D peptides (See Table 7.3: For the summary of acute in vitro studies, and 

Table 7.4: For the summary of acute in vivo studies).  

Based on these results, we further investigated the long-term metabolic effects of 

[D1W] and parent peptide frenatin 2D in diabetic mice (db/db mice). In all treatment 

groups, blood glucose concentration was significantly decreased. This was associated 

with improved blood HbA1C and glucose tolerance. Furthermore, the overexpression 
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of insulin signalling genes in db/db mice was reversed by peptide treatment which 

could explain the augmentation of insulin sensitivity. Antidiabetic drugs lowering 

body fat and energy intake would be beneficial in preventing the occurrence of type 2 

diabetes. Unfortunately, frenatin 2D and [D1W] frenatin 2D had no significant effects 

on body fat and energy intake.  

In frenatin 2D and exenatide-treated mice, the improvement in glycaemic control was 

associated with augmentation of plasma insulin. The genes involved in insulin 

secretion were markedly increased, which might explain augmentation of beta cell 

function, secretion and pancreatic insulin content in these mice (Li et al., 2005, Bae et 

al., 2010). On the other hand, in [D1W] frenatin 2D treated mice, these changes were 

not equally effective as parent peptide. Except for exenatide, no significant changes in 

beta and alpha cells population were observed. However, loss of large and medium-

size islets was significantly prevented in all treated mice. With both frenatin 2D and 

[D1W] frenatin 2D treatment, no significant changes in lipid profile were observed. 

The biomarkers for liver and kidney function were improved significantly. 

Furthermore, amylase activity remained unaffected suggesting that peptide does not 

exert any toxic effects on the pancreas (See Table 7.5: For the summary of long-term 

in vivo studies).   

In conclusion, Chapter 4 highlighted the antidiabetic effects of frenatin 2D peptides 

both in vitro and in vivo. The amino acids substitution in frenatin 2D did not produce 

analogue with greater insulinotropic potency, suggesting that the peptide is sensitive 

to any change in its primary structure.  

 

7.5 Antidiabetic effects of a structurally modified analogue of peptide glycine 

leucine amide-AM1 (PGLa-AM1) 
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PGLa-AM is a 22 amino acids peptide, which was initially isolated from Xenopus 

amieti based on antimicrobial activity, interestingly have also shown to induce insulin 

release from BRIN-BD11 cells (Conlon et al., 2010, Owolabi et al., 2017). 

Additionally, peptide also stimulated the dose-dependent release of GLP-1 from 

GLUTag cell line (Ojo et al., 2013). Several frog skin peptide analogues containing L 

lysine substitution showed substantially greater insulinotropic activity than the parent 

peptide (Abdel-Wahab et al., 2008, Owolabi et al., 2016). Its more cationic analogue, 

[A14K] showed greater insulin-releasing activity in BRIN-BD11 cells than the parent 

peptide. Interestingly, in primary islet cells, the insulinotropic activity of [A14K] was 

comparable to that of GLP-1 at 1µM concentration. Furthermore, a decrease in blood 

glucose and an increase in plasma insulin concentration was noticed in both lean and 

high fat fed mice when injected together with glucose (Owolabi et al., 2017). Based 

on these promising findings, [A14K] analogue was chosen to investigate its long-term 

metabolic effects. 

In agreement, [A14K] analogue exhibited greater insulinotropic activity in glucose-

responsive rat clonal pancreatic beta-cell line with no cytotoxic effects.  The insulin-

releasing activity of analogue was also replicated in the human-derived pancreatic beta 

cell line (1.1B4 cells), at 5.6 and 16.7 mM glucose concentration. This suggests that 

analogue not only exhibit insulinotropic activity at physiological glucose level but also 

retain its activity at a higher glucose level. Moreover, analogue was equally effective 

as GLP-1, in protecting BRIN-BD11 cells against cytokine-induced apoptosis. An 

increase in beta cell proliferation was also observed. Further studies of the expression 

of protein kinase B (PKB), which plays a key role in beta-cell growth and survival, 

will help to delineate the mechanism by which the analogue produced protective and 

proliferative effects (Li et al., 2005).   
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Based on these results, a long-term (28 days) study was conducted in db/db mice to 

investigate antidiabetic effects of [A14K] PGLa-AM1 in comparison with its parent 

peptide PGLa-AM1 and FDA approved antidiabetic agent exenatide. In db/db mice, a 

gradual decline in plasma insulin was significantly delayed by [A14K] PGLa-AM1 

and exenatide treatments. This was associated with improved expression of insulin 

secretory genes in these mice. For example, a Pdx-1 gene which is an important 

transcription factor for insulin gene was increased in these mice (Kimura et al., 2014). 

The expression of GLUT2 and glucokinase genes were also elevated, which could 

explain the increase in pancreatic insulin content and the augmentation of glucose-

stimulated insulin secretion in these mice (Li et al., 2005, Bae et al., 2010). On the 

other hand, PGLa-AM1 had little beneficial effects on plasma insulin and insulin 

content, but not significant.  

In db/db mice, an increase in blood glucose was countered by [A14K] PGLa-AM1 and 

exenatide treatment. This was corroborated with improved HbA1c in these mice. In 

the hyperglycemic state, expression of the GLP-1 receptor was significantly 

downregulated in beta cells (Kaneto and Matsuoka, 2013). Upregulation of this gene 

could also explain improved blood glucose in [A14K] PGLa-AM1 and exenatide-

treated mice. PGLa-AM1 also showed a tendency to improve blood glucose and 

HbA1c, but no statistical significance was observed. Glycaemic response to oral and 

intraperitoneal glucose challenge was significantly improved by treatment with 

[A14K] PGLa-AM1 and exenatide. Irrespective of any change in body weight, insulin 

sensitivity was significantly improved by [A14K] PGLa-AM1 and exenatide. This was 

corroborated with lower HOMA-IR index and improved insulin signalling genes in 

skeletal muscle of these mice.  
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The risk of cardiovascular diseases in type 2 diabetes patient can be reduced by 

improving lipid metabolism (Chehade et al., 2013). Elevated triglycerides and LDL in 

db/db mice were reversed by treatment with [A14K] PGLa-AM1 and exenatide. 

Interestingly, cholesterol level in db/db mice was decreased only by [A14K] PGLa-

AM1 treatment. Liver and kidney functions were significantly improved by all peptide 

treatments. However, the increase in amylase activity was observed in all treated mice. 

Except for islet size distribution, no significant changes in islet morphology were 

observed in both PGLa-AM1 and [A14K] PGLa-AM1 treated mice. The large and 

medium islets were increased in these mice. As expected, islet morphology was 

significantly improved by treatment with exenatide (See Table 7.6: For the summary 

of long-term in vivo studies). In transgenic mice (GluCre-ROSA26EYFP mice), the 

number of Ins+/GFP+ and Ins+/Glu+ cells were increased by [A14K] PGLa-AM1 

treatment. In line with this, the increase in the beta cell area and, large and medium-

size islet were observed, indicating that [A14K] PGLa-AM1 could have an important 

role in transdifferentiation of alpha to beta cells. 

In conclusion, Chapter 5 reported the beneficial effects of [A14K] PGLa-AM1 on 

plasma insulin, blood HbA1c, glucose tolerance, lipid profile and insulin resistance. 

In vivo studies in transgenic mice showed that [A14K] PGLa-AM1 has an important 

role in the generation of new beta cells from glucagon-producing alpha cells. These 

results are encouraging to further develop frog skin peptide analogues for the treatment 

of T2DM. 

 

7.6 Therapeutic potential of [Lys4] substituted analogue of CPF-AM1 

Several frog skin host defence peptide with insulin releasing activity were transformed 

to analogues showing superior antidiabetic activity both in vitro and in vivo (Ojo et 
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al., 2013, Srinivasan et al., 2015, Owolabi et al., 2015, Vasu et al., 2017). CPF-AM1 

peptide found in the skin secretion of frog Xenopus amieti demonstrated 

concentration-dependent insulinotropic activity in rat clonal pancreatic beta cells 

(BRIN-BD11 cells). Additionally, peptide also showed to induce GLP-1 release from 

GLUTag cell line. Its more cationic [S4K] analogue, developed by substitution of L 

lysine at position 4, displayed potent insulinotropic activity than the parent peptide. 

Furthermore, analogue also showed the ability to decrease blood glucose and improve 

plasma insulin concentration in lean and high fat fed mice when injected together with 

glucose.  

In agreement, [S4K] analogue displayed potent insulin-releasing activity in BRIN-

BD11 cells. Its insulinotropic activity was also replicated in human-derived pancreatic 

beta cells (1.1B4 cells). Interestingly, [S4K] analogue when co-incubated with 

cytokine mixture, the number of tunnel positive cells were decreased significantly. 

Additionally, analogue improved beta-cell proliferative activity similar to that of 

glucagon-like peptide-1 (GLP-1). Based on these results and previous studies, [S4K] 

analogue was selected for long-term studies in db/db and GluCre-ROSA26EYFP 

mice. 

In T2DM, with the time, plasma insulin level decline due to beta cell loss (Buttler et 

al., 2003). Therefore, antidiabetic agent preventing beta cell loss would be beneficial. 

[S4K] CPF-AM1analogue and exenatide significantly delayed a gradual decline of 

plasma insulin levels in db/db mice. These findings correlated with improved 

pancreatic insulin content by [S4K] CPF-AM1 and exenatide treatment. CPF-AM1 

also showed a tendency to delay a gradual decline of plasma insulin levels, but no 

statistical significance was observed compared to db/db controls.  
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The onset of secondary complications in type 2 diabetes can be prevented by 

maintaining strict glycaemic control (UK Prospective Diabetes Study (UKPDS) 

Group, 1998). In all treated groups, blood glucose was significantly decreased. In both 

[S4K] CPF-AM1 and CPF-AM1 treated mice, a decrease in blood glucose was not 

associated with any significant change in either body weight or energy intake. Whereas 

in the exenatide-treated group, energy intake was reduced significantly. Blood HbA1c, 

which reflects average blood glucose levels up to a 3-month period, was lowered by 

[S4K] CPF-AM1 and exenatide treatment. CPF-AM1 also lowered blood HbA1c but 

not statistically significant compared to db/db controls. Treatment with [S4K] CPF-

AM1 and exenatide, significantly improved glycaemic response to intraperitoneal 

glucose challenge. This was associated with an improvement in insulin sensitivity in 

these mice. In agreement with this, elevated expression of insulin singling genes in 

db/db mice was reversed by [S4K] CPF-AM1 and exenatide treatment. On the other 

hand, in CPF-AM1 treatment, no significant changes in glucose tolerance and insulin 

sensitivity were observed.  

In db/db mice elevated triglycerides and LDL levels were decreased by [S4K] CPF-

AM1, but not significantly. Interestingly, the triglyceride level was significantly 

decreased by CPF-AM1, suggesting that peptide could also play an essential role in 

the prevention of cardiovascular diseases. Elevated liver and kidney biomarkers in 

db/db mice, were reversed in all treated groups indicating that peptides are safe for the 

treatment. In all peptide treated groups, increase in amylase activity was observed, 

suggesting a potential issue with pancreatitis. 

Islets from [S4K] CPF-AM1 treated mice showed improved insulin secretory 

response. These observations correlate with enhanced expression of insulin secretory 

genes. The expression of Glp1r, Gipr, Pdx1 and other secretory genes were 
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significantly upregulated. CPF-AM1 also showed a tendency to improve insulin 

secretory responses and expression of genes. No significant change was noticed in the 

islet area, beta-cell area and alpha cell area in both CPF-AM1 and [S4K] CPF-AM1 

treated groups. However, the loss of large and medium-size islet was prevented. As 

expected, insulin secretory responses, beta cell function and islet morphology were 

significantly improved by exenatide (See Table 7.7: For the summary of long-term in 

vivo studies). Furthermore, immunohistochemical analysis of pancreata from 

transgenic mice (GluCre-ROSA26EYFP mice) treated with [S4K] CPF-AM1 showed 

increase in Ins+/GFP+, Ins+/Glu+ and GFP+ cells. This result correlated with increased 

beta cell population, indicating that peptide could influence the conversion of alpha to 

beta cells. 

In conclusion, Chapter 6 reported that more cationic L -lysine substituted analogue of 

CPF-AM1 demonstrated potent antidiabetic activity than the parent peptide and could 

have an essential role in transdifferentiation of alpha to beta cells. These observations 

encourage further studies to find the specific receptor through which [S4K] CPF-AM1 

exerts its beneficial metabolic effects. 

 

7.7 Future studies 

This thesis demonstrated in vitro and in vivo antidiabetic potency of frog skin peptides 

and their synthetic analogue belonging to the family of Alytidae, Hylidae, Pipidae and 

Ranidae. Both, [A14K] PGLa-AM1 and [S4K] CPF-AM1 analogue exhibited positive 

effects on blood glucose and plasma insulin concentration in db/db mice. Also, the 

genes involved in insulin secretions and insulin signalling were significantly improved 

by the treatment. Positive effects of these peptide was also observed in 

transdifferentiation of glucagon producing alpha to insulin producing beta cells in 
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streptozotocin induced diabetic mice. Interestingly, [A14K] PGLa-AM1, significantly 

lowered cholesterol level in db/db mice. These promising data, will hopefully leds to 

further development these peptides into therapeutic agents. [D1W] frenatin 2D 

relatively showed weak antidiabetic activity in db/db mice compared to parent peptide. 

Further structure-activity relationship studies of frenatin 2D, as well as of temporin 

and esculentin-1 peptides are required to develop analogues with improved metabolic 

stability and insulinotropic activities. 

However, further studies are necessary to understand the precise mechanism of 

biological actions of these peptides. Understanding structural changes of these 

peptides upon interaction with membranes will help to improve the biological 

activities. The membrane interaction studies would be beneficial to identify the 

receptor through which peptides exert insulin-releasing activity followed by in vivo 

studies in receptor knockout mice. Studying the effects of the peptide on GLP-1 

release in vivo would be interesting. Investigation the expression of signalling protein 

[e.g. phospho-protein kinase B (PKB/AKT)] and transcription factor [phospho-

Forkhead box protein O1 (FOXO1) and pancreas duodenum homeobox-1 (PDX-1)] 

would help to delineate the mechanism through which peptide induce proliferation and 

protect the beta cell from cytokine-induced DNA damage. Additional studies to 

investigate the expression of insulin signalling genes in liver and adipose tissue would 

provide a better understanding of the biological action of these peptides. Esculentin-1 

peptides stimulated insulin release by KATP channel-dependent pathway. Further 

performing patch-clamp experiments will help to better understand the 

electrophysiological effects of the peptide on KATP and L-type calcium channels in 

beta cells. To examine the molecular mechanism through which peptide influence 

reprogramming of glucagon-expressing alpha to insulin-expressing beta cells. It would 
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be interesting to further investigate the effects of the peptide on the generation of new 

beta cells from non-beta cells using transgenic InsCre-ROSA26EYFP mice. The data 

in the present thesis and studies outlined above can form a strong base to develop frog 

skin peptides into antidiabetic agents. 
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Table 7.1 Summary of in vitro and acute in vivo results of temporin peptides 

 

 

 

Peptides 

Insulin release from BRIN-

BD11 cells 

Insulin release from 1.1 

B4 cells 

Insulin 

release from 

islet at 1 µM 

(% of total 

insulin 

content) 

 

LHD 

assay 

 

Intrace- 

llular 

calcium 

 

Membr- 

ane 

potential 

Effects on apoptosis 

in BRIN-BD11 

 

 

Effects on 

proliferation 

in BRIN-

BD11 

 

Acute effects of 

peptides on 

glucose tolerance 

in vivo 

 

% of basal 

insulin 

release at 3 

µM 

Threshold 

concent-

ration (nM) 

% of basal 

insulin 

release at 3 

µM 

 

Thresh- 

old 

concent-

ration 

(nM) 

Without 

cytokine 

With 

cytokine 

Plasma 

Glucose 

Plasma 

Insulin 

Temporin A 262.6 ± 27.81  10-9 

 

190.4 ± 10.98  10-9 

 

10.60 ± 0.43 NS NS NS NS   NS NS 

Temporin B 170.2 ± 10.16  10-9 

 

NT NT NT NS NT NT NT NT NT NT NT 

Temporin C 135.2 ± 7.284  10-7 

 

NT NT NT NS NT NT NT NT NT NT NT 

Temporin E 135.0 ± 4.173  10-7 NT NT NT NS NT NT NT NT NT NT NT 

Temporin F 251.9 ± 28.37  10-9 

 

176.1 ± 10.72  10-9 

 

12.64 ± 1.612  NS NS NS NS   NS NS 

Temporin G 235.8 ± 24.44  10-9 

 

219.1 ± 14.41  10-9 

 

12.24 ± 1.067  NS NS NS   NS   

Temporin H NS NA NT NA NT NT NT NT NT NT NT NT NT 

Temporin K NS NA NT NA NT NT NT NT NT NT NT NT NT 

 

 

NA: Not applicable, NS: No Significant, NT: Not tested, (   ) increase significantly, (   ) decrease significantly 
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Table 7.2 Summary of in vitro and acute in vivo results of esculentin-1 peptides 

 

 

 

 

Peptides 

Insulin release from 

BRIN-BD11 cells 

Insulin release from 1.1 B4 

cells 

Insulin 

release from 

islet at 1 µM 

(% of total 

insulin 

content) 

 

LDH 

assay 

 

Memb- 

rane 

potential 

 

Intracel- 

lular 

calcium 

 

Effects on apoptosis 

in BRIN-BD11 

 

 

Effects on 

proliferation 

BRIN-BD11 

 

Acute effects of 

peptides on 

glucose tolerance 

in vivo 

 

% of basal 

insulin 

release at 3 

µM 

Thres- 

hold 

concent-

ration 

(nM) 

% of basal 

insulin 

release at 3 

µM 

 

Threshold 

concent-

ration (nM) 

Without 

cytokine 

With 

cytokine 

Plasma 

Glucose 

Plasma 

Insulin 

Esculentin

-1a (1-21) 

196.0 ± 4.24 10-9 

 

224.2 ± 15.21  10-10 

 

12.76 ± 0.52 NS   NS   NS NS 

Esculentin

- 

(1-21)-1C 

189.7 ± 15.25 10-8 

 

175.2 ± 10.86  10-0 

 

13.79 ± 1.025 NS NS NS NS     

Esculentin

-1a(1-14) 

206.5 ± 2.380  10-9 

 

180.2 ± 23.02  10-10 

 

13.68 ± 0.63  NS   NS  NS NS NS 

Esculentin

-1a(9-21) 

NS NA NT NA NT NS NT NT NT NT NT NT NT 

Esculentin

-1b(1-18) 

218.0 ± 6.419  10-9 

 

176.2 ± 11.14  10-9 

 

13.51 ± 0.97 NS   NS  NS NS NS 

 

NA: Not applicable, NS: No Significant, NT: Not tested, (   ) increase significantly, (   ) decrease significantly 
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Table 7.3 Acute invitro studies of frenatin 2D, [D1W] frenatin 2D & [G7W] frenatin 

2D 

 

Tests 

Peptides 

Frenatin 2D [D1W] 

frenatin 2D 

[G7W] 

frenatin 2D 

Insulin release 

from BRIN-

BD11 cells  

%Basal insulin release 

at 3µM concentration 

227.3 ± 24.54 258.5 ± 24.95  254.2 ± 12.45 

Threshold 
concentration (nM) 

0.01 0.01 0.01 

Insulin release 

from 1.1B4 
cells 

% Basal insulin release 

at 3µM concentration 

215.7 ± 17.68  200.9 ± 12.04 164.6 ± 11.85  

Threshold 
concentration (nM) 

0.1 0.1 1 

Insulin release from islet at 1 µM (% of 

total insulin content) 

13.01 ± 0.52 15.62 ± 1.90 15.20 ± 1.13 

LDH assay NS NS NS 

Membrane potential NS NS NS 

Intracellular calcium NS NS NS 

 

Insulin release 
in presence of 

modulators 

Verapamil    

Diazoxide    

IBMX NS NS NS 

KCl    

Insulin release in the absence 

extracellular calcium 

   

Insulin release in presence of chloride 
channel blocker DIDS 

 NT NT 

cAMP production    

Insulin release 

in PKA and 

PKC 
downregulated 

cells 

 

PKA downregulated    

PKC downregulated  NS NS NS 

PKA & PKC 

downregulated 
NS NS NS 

Effects on 
apoptosis in 

BRIN-BD11 

Without cytokine NS NS NS 

With cytokine    

Effects on Proliferation in BRIN-BD11    

Glucose 
uptake in 

C2C12 cells 

Without insulin NS NS NS 

With insulin  NS NS NS 

 

NS: No Significant, NT: Not tested, (  ) increased significantly,  (  ) decreased 

significantly 
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Table 7.4 Acute in vivo studies of frenatin 2D [D1W] frenatin 2D & [G7W] frenatin 

2D 

 

 

Acute in vivo studies 

Peptides 

Frenatin 

2D 

[D1W] 

frenatin 2D 

[G7W] 

frenatin 2D 

Acute effect of peptide (75 nmol/kg/bw) on 

food intake 

NS NS  

 

Acute effect of peptide (75 

nmol/kg/bw) on glucose 

tolerance 

Glucose    

Insulin     

Persistent 

effect of 

peptide on 

glucose 
tolerance  

2 hr Glucose   NS 

4 hr Glucose NS  NT 

Acute effect of 

different dose 
of peptide on 

glucose 

tolerance 

150 

nmol/kg/bw 

Glucose     

50  

nmol/kg/bw 

Glucose  NS  NT 

25  

nmol/kg/bw 

Glucose NT NS NT 

 

 

NS: No Significant, NT: Not tested, (  ) increased significantly,  (  ) decreased 

significantly 
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Table 7.5 Metabolic effects of 28 days administration of frenatin 2D and [D1W] 

frenatin 2D in db/db mice 

 

 

Parameters 

Peptides 

Frenatin 2D [D1W] frenatin 2D Exenatide 

Non-fasting glucose    

Non-fasting insulin  NS                

Body weight NS NS NS 

Energy Intake NS NS  

Water Intake NS NS  

 

IPGTT 

Blood Glucose    

Plasma Insulin    

 

OGTT 

Blood Glucose NS NS  

Plasma Insulin NS NS  

Insulin sensitivity    

Blood HBA1c    

 

Lipid profile 

Cholesterol NS NS NS 

Triglycerides NS NS  

HDL NS NS NS 

LDL NS NS  

 

Liver and kidney 

function 

AST    

ALT    

ALP    

Creatinine    

Amylase activity NS NS  

Islet morphology Islet area NS NS  

Beta Cell area NS NS  

Alpha cell area NS NS  

 

NS: No Significant, NT: Not tested, (  ) increased significantly,  (  ) decreased 

significantly 
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Table 7.6 Metabolic effects of 28 days administration of PGLa-AM1 and [A14K] 

PGLa-AM1 in db/db mice 

 

 

Parameters 

Peptides 

PGLa-AM1 [A14K] PGLa-AM1 Exenatide 

Non-fasting glucose NS   

Non-fasting insulin NS                 

Body weight NS NS NS 

Energy Intake NS NS  

Water Intake NS NS  

 

IPGTT 

Blood Glucose NS   

Plasma Insulin NS   

 

OGTT 

Blood Glucose NS   

Plasma Insulin NS   

Insulin sensitivity NS   

Blood HBA1c NS   

 

Lipid profile 

Cholesterol NS  NS 

Triglycerides NS   

HDL NS NS NS 

LDL NS   

 

Liver and kidney 

function 

AST    

ALT    

ALP NS   

Creatinine    

Amylase activity    

Islet morphology Islet area NS NS  

Beta Cell area NS NS  

Alpha cell area NS NS  

 

NS: No Significant, NT: Not tested, (  ) increased significantly,  (  ) decreased 

significantly 
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Table 7.7 Metabolic effects of 28 days administration of CPF-AM1 and [S4K] CPF-

AM1 in db/db mice 

 

 

Parameters 

Peptides 

CPF-AM1 [S4K] CPF-AM1 Exenatide 

Non-fasting glucose    

Non-fasting insulin NS                 

Body weight NS NS NS 

Energy Intake NS NS  

Water Intake NS NS  

 

IPGTT 

Blood Glucose NS   

Plasma Insulin NS   

 

OGTT 

Blood Glucose NS NS  

Plasma Insulin NS NS  

Insulin sensitivity    

Blood HBA1c NS   

 

Lipid profile 

Cholesterol NS NS NS 

Triglycerides  NS  

HDL NS NS NS 

LDL NS NS  

 

Liver and kidney 

function 

AST    

ALT    

ALP    

Creatinine    

Amylase activity    

Islet morphology Islet area NS NS  

Beta Cell area NS NS  

Alpha cell area NS NS  

 

NS: No Significant, NT: Not tested, (  ) increased significantly,  (  ) decreased 

significantly 
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APPENDICES 

 

Materials: 

 

Sr No Materials Suppliers 

1 Sodium hydroxide (NaOH) BDH Chemicals Ltd 

2 Calcium chloride dihydrate (CaCl2.2H2O) BDH Chemicals Ltd 

3 D-glucose BDH Chemicals Ltd 

4 Disodium hydrogen orthophosphate (Na2HPO4) BDH Chemicals Ltd 

5 Dichloromethane  (CH2Cl2) BDH Chemicals Ltd 

6 Dimethyl sulphoxide (DMSO) BDH Chemicals Ltd 

7 Potassium  chloride (KCl) BDH Chemicals Ltd 

8 Sodium chloride (NaCl) BDH Chemicals Ltd 

9 Hydrochloric acid (HCl) BDH Chemicals Ltd 

10 Sodium bicarbonate  (NaHCO3) BDH Chemicals Ltd 

11 Magnesium sulphate (MgSO4) BDH Chemicals Ltd 

12 Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich (Poole, UK) 

13 Bovine serum albumin (BSA) Sigma-Aldrich (Poole, UK) 

14 Dextran T-70 Sigma-Aldrich (Poole, UK) 

15 Bovine insulin  Sigma-Aldrich (Poole, UK) 

16 Collagenase-V, Clostridium histolyticum Sigma-Aldrich (Poole, UK) 

17 Forskolin Sigma-Aldrich (Poole, UK) 

18 L-Alanine Sigma-Aldrich (Poole, UK) 

19 Trifluoroacetic acid (TFA) Sigma-Aldrich (Poole, UK) 

20 Diazoxide Sigma-Aldrich (Poole, UK) 

21 Verapamil Sigma-Aldrich (Poole, UK) 

22 Probenecid Sigma-Aldrich (Poole, UK) 
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Sr No Materials Suppliers 

23 Ethylene glycol-bis-N, N, N’, N’-tetraacetic acid 

(EGTA) 

Sigma-Aldrich (Poole, UK) 

24 Phorbol 12-myristate 13-acetate (PMA) Sigma-Aldrich (Poole, UK) 

25 Thimerosal Sigma-Aldrich (Poole, UK) 

26 Tolbutamide Sigma-Aldrich (Poole, UK) 

27 Trypan blue stain Sigma-Aldrich (Poole, UK) 

28 Activated charcoal Sigma-Aldrich (Poole, UK) 

29 HPLC grade acetonitrile  Sigma-Aldrich (Poole, UK) 

30 Trifluoroacetic acid (TFA) Sigma-Aldrich (Poole, UK) 

31 HPLC grade ethanol Sigma-Aldrich (Poole, UK) 

32 α-Cyano-4-hydroxycinnamic acid (CHCA) Sigma-Aldrich (Poole, UK) 

33 Roswell Park Memorial Institute medium (RPMI 

1640) tissue culture medium 

Gibco Life Technologies Ltd 

(Paisley, Strathclyde, UK) 

34 Hanks Buffered Saline Solution (HBSS) Gibco Life Technologies Ltd 

(Paisley, Strathclyde, UK) 

35 Trypsin/ Disodium ethylenediaminetetraacetate 

(EDTA) 

Gibco Life Technologies Ltd 

(Paisley, Strathclyde, UK) 

36 Foetal bovine serum (FBS) Gibco Life Technologies Ltd 

(Paisley, Strathclyde, UK) 

37 Penicillin and streptomycin Gibco Life Technologies Ltd 

(Paisley, Strathclyde, UK) 

38 FLIPR Calcium Assay Kit Molecular device 

39 FLIPR membrane potential blue Molecular device 

40 CytoTox 96® non-radioactive cytotoxicity kit  Promega (UK) 

41 Radiolabelled sodium iodide (Na125I) Perkin Elmer (UK) 

42 Rabbit polyclonal to Ki67 Abcam (Cambridge, UK) 
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Sr no Materials Suppliers 

43 Enzyme-linked immunosorbent assay (ELISA) 

kits for cAMP 

Millipore (Millipore, Watford, 

UK). 

44 In situ Cell Death Detection Kit  Roche Diagnostics (Burgess 

Hill, UK) 

45 Lipid profile: Triglyceride, total cholesterol and 

HDL kit 

Instrumentation Laboratory 

46 Amylase assay kit Instrumentation Laboratory 

47 Liver and Kidney function test Instrumentation Laboratory 

48 Cholecystokinin-8 (CCK-8) Sunnyvale (USA) 

49 Rat insulin Novo Industrial (Denmark) 

50 Synthetic Peptides SynPeptide (China) 

51 GLP-1, exenatide SynPeptide (China) 

52 Lipid profile: Triglyceride, total cholesterol and 

HDL kit 

Instrumentation Laboratory 

53 Glucose uptake Cell-Based assay kit. Cayman Chemicals, UK 

 

Purified water (18.2 MΩ-cm purity) used in the experiments was obtained from an 

Elga PURELAB Ultra system (Elga, Celbridge, Ireland). 

 


