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Summary 

This thesis investigates the in vivo and in vitro ability of glucagon-related molecules 

isolated from a wide range of fish species including sea lamprey, dogfish, ratfish, 

paddlefish, zebrafish and trout, to exert antidiabetic actions by acting on multiple 

GPCR receptors in a mammalian system. Overall, the piscine peptides with the most 

potential were glucagon and GLP-1 from sea lamprey and paddlefish, and 

oxyntomodulin from dogfish. These proglucagon-derived molecules showed 

insulinotropic activities in rat clonal pancreatic beta cells (BRIN-BD11), human-

derived pancreatic beta cells (1.1B4) and isolated mouse islets similarly to human 

GLP-1. The dual agonist properties of fish hormones were demonstrated in vitro using 

glucagon and GLP-1 receptors antagonists, GLP-1R-transfected CHL and glucagonR-

transfected HEK293 cells as well as CRISPR/Cas9-engineered cells bearing either 

GLP-1R or glucagonR knock-out. Acute administration of fish peptides to normal 

mice produced significant beneficial antihyperglycaemic and insulinotropic changes, 

however, the actions were limited due to rapid enzymatic degradation in plasma by 

DPP-IV 

Structural modifications including the stereochemical configuration and the addition 

of a γ-glutamyl spacer to the selective fish glucagon and GLP-1 sequences were used 

to develop novel enzymatically stable analogues namely [D-Ser2]-lamprey glucagon-

Lys30-gamma-glutamyl-pal, [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-

pal, [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal and [D-Ala2]-paddlefish 

GLP-1-Lys28-gamma-glutamyl-pal. The most promising analogues, [D-Ala2]-lamprey 

GLP-1-Lys31-gamma-glutamyl-pal and [D-Ser2]-paddlefish glucagon-Lys30-gamma-

glutamyl-pal retained the potent biological properties of the native peptides as 

indicated in acute in vitro and in vivo studies. Moreover, chronic administration of [D-
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Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal and [D-Ser2]-paddlefish glucagon-

Lys30-gamma-glutamyl-pal analogues improved metabolic status, islet morphology 

and the expression genes involved in insulin secretion in diet-induced obese mice and 

showed positive effects on beta-cell transdifferentiation in genetically modified 

GluCreRosa26-YFP mice. 

To conclude, this thesis outlines the ability of fish glucagon-derived peptides and their 

analogues to modulate simultaneously multiple receptor signalling pathways resulting 

in prominent antidiabetic effects and illustrates the potential of the peptides to be 

developed into therapeutic agents for the treatment of type 2 diabetes-obesity. 
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1.1 History of Diabetes: from ancient times to the discovery of insulin 

1.1.1 In Antiquity 

Diabetes Mellitus is an ancient disease. The earliest recognised record of the clinical 

feature characterised as “too great emptying of the urine” was noted on third-dynasty 

Egyptian papyrus by physician Hesy-Ra in 1552 BCE (Zajac et al. 2010; Bhaskar et 

al. 2010). For the treatment of this disease, ancient Egyptian physicians recommended 

using wheat grains, fruit, and sweet beer (Zajac et al. 2010). 

At around the same time, ancient Indian physicians developed what can be described 

as the first clinical test for diabetes after discovering that the urine from affected 

individuals attracted ants and flies. They named the condition Madhumeha (passing a 

large volume of sweet urine). 

Around 230 BCE, Apollonius of Memphis originally described the term diabetes 

meaning from Greek “pass through” (dia – through, betes – to go) as the condition 

drained more fluid than a person could consume (Das et al. 2011). He attributed 

diabetes to a disease of the kidneys and recommended bloodletting and dehydration 

for the treatments (Zajac et al. 2010).  

In 30–50 CE, a Roman medical writer, Aulus Cornelius Celsus, made the first 

complete clinical description of diabetes and included it his monumental eight-volume 

work entitled De medicina (Poretsky 2010; Zajac et al. 2010). However, only in early 

2nd century Aretaeus of Cappadocia, a Greek physician provided a detailed and 

accurate account of diabetes in his work On the Causes and Indications of Acute and 

Chronic Diseases. Medical historians believed that Aretaeus of Cappadocia re-

introduced the prefix ‘diabetes’ when he described the differences in polyuria between 
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the clinical picture of what is now known as type 1 diabetes (T1D) and diabetes 

insipidus (Nwanery 2015).  

A Greek physician of the Roman Empire, Claudius Galenus, referred to as Galen (129-

200 CE) supported the work of Apollonius of Memphis by attributing the development 

of the condition to the weakness of the kidney (Eknoyan et al. 2005).  

In the 5th century, Indian physicians, Sushruta and Charaka, noted differences in the 

clinical picture of patients and identified two types of conditions associated with youth 

or obesity, later to be named T1D and T2D respectively (Ramachandran et al. 2009). 

Sushruta included exercise in the prescription to treat the disease and promoted 

physical activities to minimise the consequences of obesity and diabetes (Tipton 

2008). 

Although Galen defined diabetes as a rare disease and only investigated two cases, 

Maimonides, the most prominent Jewish medieval physician claimed to have seen 

more than 20 individuals suffering from this illness (Rosner 2002; Sanders et al. 2002). 

Meanwhile, in medieval Persia, Avicenna (980–1037 CE), an Arabo-Islamic physician 

and medical writer, provided a detailed account for diabetes in his book The Canon of 

Medicine. He recognised primary and secondary diabetes, as well as explained some 

complications of diabetes such as sexual dysfunction and diabetic gangrene.  For the 

treatment of diabetes, Avicenna used a mixture of herbal remedies which are still 

recognised in modern time (Lakhtakia 2013; Eboh et al. 2014; Mahdizadeh et al. 2015; 

Sharofova et al. 2017).   
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1.1.2 Renaissance and After 

A fundamental change in the basic concepts of understanding diabetes was made in 

the 16th century, when the Renaissance physician Paracelsus (1493-1541) challenged 

the medical doctrine describing the condition as a constitutional disease that “irritates 

the kidneys” and provokes polyuria.  Having evaporated the urine from a diabetic 

patient, Paracelsus discovered an excessive residue which he incorrectly called “salt” 

particles (Eknoyan et al. 2005). It was only much later, in 1670, that an English doctor, 

Thomas Willis noticed the sweet taste of urine of patients with diabetes and added the 

word mellitus - the Latin word for honey (Ahmed 2002). This observation was not 

new due to, as mentioned earlier, the sweetness of urine was already described in 

ancient Indian texts and noted by Paracelsus and Avicenna (Eknoyan et al. 2005; Zajac 

et al. 2010). Thomas Willis attributed diabetes to the disease of the blood arguing that 

the sweetness appears first in the blood before it reaches the urine (Eknoyan et al. 

2005). In 1776, British physiologist Matthew Dobson (1713–1784) identified that the 

sweet-tasting substance in the urine of diabetic patients was sugar serum and published 

his work as Experiments and Observations on the Urine in Diabetics. He also 

discovered hyperglycaemia while noticing the sweet taste of blood serum in diabetic 

sufferers which supported the theory of diabetes being a systemic disease (Eknoyan et 

al. 2005; Macfarlane 2014).  A decade after, in 1788, Thomas Cawley performed the 

autopsy of patients with diabetes and observed that their pancreatic tissue was 

damaged which indicated the involvement of the pancreas in the pathogenesis of 

disease (Stylianou et al. 2009). 
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1.1.3 The 19th and the Early 20th Century: Discovery of Insulin 

Although diabetes and its treatment attempts have been known since ancient times, 

the important elements of current understanding of diabetes mellitus can be traced to 

the 19th century, the time when modern scientific disciplines and chemical methods 

were invented (Zajac et al. 2010; Poretsky 2010). A French chemist, Eugene Chevreul, 

studied the sugar isolated from diabetic urine and discovered that it was identical to 

“grape sugar”. (Tattersall 2009; Dods 2013). In 1815, he proved that this sugar was 

glucose (Zajac et al. 2010). By this time in history, glycosuria was accepted criteria 

for the diagnosis of diabetes and first quantitative tests were invented. However, the 

source of glucose and the metabolic process in the body remained unknown (Zajac et 

al. 2010; Dods 2013). One of the hypotheses suggested that glucose was transported 

by the lymphatic system into the blood and metabolised there. Others proposed that 

the lungs were involved in the process of “burning” of the sugar (Jorgens et al. 2013).  

In 1857, a French physiologist, Claude Bernard (1813–1878), questioned these strange 

hypotheses after discovering that the liver stored a starch-like substance (that he 

baptized “glycogen”) and secreted a sugary substance into the blood affecting blood 

sugar levels (Sanders at al. 2002; Jorgens et al. 2013). He received wide acceptance 

after proposing that over-secretion of this substance leads to diabetes (Zajac et al. 

2010). Indeed, it was the work of Claude Bernard that promoted the study of diabetes 

which over the next 50 years evolved into the discipline of endocrinology. It also made 

a crucial contribution to the discovery of the role of the pancreas in diabetes by Oscar 

Minkowski (1858-1931) and Joseph von Mering (1849-1908) in 1889. The scientists 

observed signs of diabetes in the dogs after total pancreatectomy. (Eknoyan et al. 2005; 

Karamanou et al. 2016).  
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To prove that the impaired exocrine pancreatic secretion was not involved in the 

pathogenesis of diabetes, dog’s pancreatic duct was ligated which led to the 

development of digestive problems but not elevated blood glucose.  

After French investigator, Edouard Hedon (1863–1933), confirmed similar findings in 

1893, it became clear that the internal pancreatic secretion was the main cause of the 

disease (Zajac et al. 2010). At the same year, French scientist Gustave–Edouard 

Laguesse (1861–1927) proposed that the pancreatic islet cells discovered by Paul 

Langerhans in 1869, might be the source of the substance involved in blood glucose 

control. (Zajac et al. 2010; Alam et al. 2017). In 1923, Frederick Banting and John 

MacLeod received the Nobel Prize in Physiology or Medicine for the insulin’ 

discovery which was a fundamental step in the history of diabetes. (Karamanou et al. 

2016).  

Over the next years, there was an improvement in the methods of insulin purification 

leading to new insulin formulations such as Protamine–zinc insulin or long-acting 

insulin (Engelhardt 1989; Karamanou et al. 2016). However, the discovery of insulin 

did not provide the world with a cure for diabetes and did not prevent complications 

such as retinopathy, nephropathy, neuropathy, and coronary and peripheral angiopathy 

(Stylianou et al. 2009). Hence, diabetes mellitus continues to be one of the major 

healthcare challenges of the 21st century.  

1.2 Classification of Diabetes Mellitus  

The existence of clinically different types of diabetes had been evident from historical 

Indian texts. In the 19th century a French pharmacist, Apollinaire Bouchardat 

pioneered a systematic treatment regimen for obese patients after noticing that weight 

loss and physical activity helped to promote metabolic control. Another French 
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physician, Étienne Lancereaux, described patients as having ‘diabète maigre’ (lean 

diabetes) or ‘diabète gras’ (fat diabetes) (Watkins et al. 2008). However, in 1936, 

Harold (Harry) Percival Himsworth was the first to link clinical symptoms with insulin 

sensitivity and thus scientifically identified the differences between type 1 and type 2 

diabetes and developed a test to distinguish between them (Furdell et al. 2008; Bryder 

et al. 2013). 

1.2.1 Type 1 diabetes (T1D) 

Type 1 diabetes (T1D) is a chronic disease caused by specific immune-mediated 

destruction targeting the endocrine unit of the pancreas, insulin-producing pancreatic 

β-cells, which leads to a subsequent reliance on exogenous insulin load (Yoon et al. 

2005; Simmons et al. 2015). T1D is one of the most common metabolic and endocrine 

illnesses among children and young adults. The incidence of the disease continues to 

increase, especially in children less than five years of age (Simmons et al. 2015).   

In 1997, the Committee of Experts of the American Diabetes Association developed 

a further classification of TD1 dividing it into Type 1A diabetes and Type 1 B 

(idiopathic). The former represents the vast majority of cases (70–90%) and involves 

immune-mediated responses whereas the aetiology of the latter is unknown (Echeverri 

et al. 2013 and Simmons et al. 2015). Unless otherwise stated, the term T1D refers to 

autoimmune T1D in this thesis.   

T1D is associated with the presence of biomarkers of autoimmunity: humoral (auto-

antibodies) and cellular (T-cells) responses occurring many months or years before 

symptom onset (Simmons et al. 2015). The immune system of affected individual 

target one or several autoantigens — islet cells, insulin, 65 kDa glutamic acid 

decarboxylase (GAD65; also known as glutamate decarboxylase 2), insulinoma-
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associated protein 2 (IA2) or zinc transporter 8 (ZNT8) (Pihoker 2005 and Simmons 

et al. 2015). Immunosuppressive drugs such as cyclosporine and azathioprine can slow 

the progression of pancreatic islet destruction indicating the critical role of the immune 

system in the development of T1D (Fu et al. 2013). 

Individuals with genetic predispositions have a higher risk to develop T1D. The 

Human Leukocyte Antigen (HLA) genes encoding cell surface proteins responsible 

for the interaction with immune cells are the major contributors to the presence of 

various autoantibodies in T1D sufferers (Rich 2015). The HLA Class II region is 

considered to be the most critical. People with class II HLA-risk genotypes, 

specifically with HLA DR3/4 and HLA DQ2/8 allelic variations have a 50% chance 

to develop two or more autoantibodies and T1D (Zhou et al. 2016 and Katsarou et al. 

2017). Gene polymorphism in other non-HLA T1D loci encoding the insulin (INS), 

protein tyrosine phosphatase nonreceptor type 22 (PTPN22), cytotoxic T-lymphocyte-

associated antigen-4 (CTLA4), interleukin 2 receptor alpha (IL2RA) and interferon 

induced with helicase C domain 1 (IFIH1) genes have also been suggested to be 

associated with T1D susceptibility (Kavvoura et al. 2005; Steck et al. 2011; Yang et 

al. 2012; Giza et al. 2013; Tang et al. 2015). 

There is a 15-fold higher risk for siblings of a diabetic individual to develop T1D than 

the risk for T1D in the general population. Moreover, the concordance rates for T1D 

in monozygotic twins are approximately 50% while in dizygotic twins these rates are 

only 6-10% (Steck et al. 2011).  

The genetic predisposition for T1D is combined with undefined environmental factors 

– including viral infections, the timing of solid food introduction, and development 

of food sensitisation and gestational events. (Gillespie et al. 2006; Erlich et al. 2008; 
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Steck et al. 2011; Katsarou et al. 2017). T1D usually has a rapid onset with the 

symptoms including elevated blood glucose, polyuria, polydipsia, extreme thirst, 

weight loss, abdominal symptoms, headaches and ketoacidosis (Katsarou et al. 2017). 

Hyperglycemia represents a clinically significant manifestation of the final stage of 

insulitis with only 10 to 20% of functional beta cells (Eisenbarth et al. 2005; Echeverri 

et al. 2013).  Management of T1D in the past 30 years since the Diabetes Control and 

Complications Trial (DCCT), and Epidemiology of Diabetes Interventions and 

Complications (EDIC) studies has been focused on intensive insulin therapy that aims 

to maintain glucose levels as close to the nondiabetic range as safely possible and 

avoid hypoglycaemia (Nathan 2014; Gubitosi-Klug 2016; Katsarou et al. 2017) 

1.2.2 Type 2 diabetes (T2D) 

Type 2 D diabetes (T2D) is characterised by sustained hyperglycaemia as a result of 

ineffective pancreatic insulin production, insulin resistance or both. The chronic 

hyperglycaemia in diabetic subjects affects various organs, especially the eyes, 

kidneys, nerves, heart, and blood vessels (Olokoba et al. 2012; Prasad et al. 2015). 

This results in complications such as retinopathy with a risk of blindness; nephropathy 

linked to kidney failure; peripheral neuropathy which may progress to foot ulcers and 

amputations; and autonomic neuropathy associated with gastrointestinal, 

genitourinary, and cardiovascular abnormality as well as sexual dysfunction 

(American Diabetes Association 2009). The incidence of disability associated with 

T2D has increased significantly since 1990 among people aged 15–69 years (Zheng et 

al. 2018). 

Analysis of recent statistical data reveals that the growing pandemic of T2D exhibits 

specific demographic characteristics. As such a steady increase in diabetes prevalence 
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is observed in developed countries whereas in developing countries it has become an 

alarming issue with a rapid rate of increase. The Asian population is contributing to 

more than 60% of the world’s diabetes cases (Ramachandran et al. 2012; Wu et al. 

2014; Nanditha et al. 2016). Moreover, it is becoming more frequently diagnosed in 

children, teenagers and adolescents as a result of increasing rates of childhood obesity 

or overweight (Wu et al. 2014). 

The development of T2D is closely related to the interaction between multiple genes 

scattered all across the genome and environmental factors such as obesity, sedentary 

lifestyle and stress as well as low birth weight and ageing (Ali 2013; Mi et al. 2017; 

Zheng et al. 2018). The involvement of genetic factors has a clear impact on disease 

occurrence and progression. Some individuals appear to be more susceptible to 

developing diabetes than others even when exposed to the same environmental factors. 

The risk of developing T2D also increases if both parents are affected. The 

concordance rate in monozygotic twins is approximately 70% while the rates in 

dizygotic twins are only 20%-30%.  Heritability of obesity contributes to the vast 

majority of diabetes cases (Ali 2013).  

Segregation analysis revealed that T2D is a polygenic disorder. The identification of 

the genetic markers linked to the disease represents an ongoing challenge (Ali 2013). 

A large-scale genetic association study identified linkage of an SNP within intron 3 of 

calpain 10 (CAPN10) to susceptibility to T2D. The mechanisms by which genetic 

variation in this gene leads to T2D are still unknown (Sorimachi at al. 2013 and 

Melmed 2016). Moreover, polymorphism of transcription factor 7-like 2 (TCF7L2), 

encoding T-cell specific, HMG-box is confirmed to be a genetic risk factor according 

to multiple Genome-wide association studies (Ali 2015). Other genes linked to T2D 
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risk include CDKAL1 (CDK5 regulatory subunit associated protein 1-like 1), HMGA2 

(high mobility group AT-hook 2), KCNQ11 (potassium voltage-gated channel, KQT 

like subfamily, member 1), IGF2BP2 (insulin-like growth factor 2 mRNA binding 

protein 2), CDKN2A/B (Cyclin-dependent kinase inhibitor 2A/B) and NOTCH2-

ADAM30 (Notch 2-ADAM metallopeptidase domain 30). The exact contribution of 

these genes to the pathophysiology of T2D remains mostly unknown (Ali 2013). 

1.2.3 Novel subgroups of adult-onset diabetes 

The classification of diabetes mainly relies on the presence (T1D) or absence (T2D) 

of autoantibodies targeting several pancreatic islet β-cell-related antigens and age at 

diagnosis. As a result, most of the patients are classified as having T2D. A third 

subgroup, latent autoimmune diabetes in adults (LADA, 10% of all diabetes cases, 

characterised by the presence antibodies targeting GAD65 autoantigen), 

phenotypically resembles type 2 diabetes at diagnosis but becomes increasingly 

similar to T1D with time. Interestingly, T1D and T2D could be further divided into 

different subtypes, according to recent research studies investigating cases of nearly 

9,000 people with diabetes in Sweden and Finland (Ahlqvist et al. 2018).  

Five clusters were identified. Cluster 1 labelled as severe autoimmune diabetes (SAID) 

overlapped with T1D and LADA, whereas cluster 2 and cluster 3 named as severe 

insulin-deficient diabetes (SIDD) and severe insulin-resistant diabetes (SIRD) 

respectively, represent two new, severe forms of diabetes previously masked within 

T2D. SIDD and SIRD were associated with an increased risk of kidney disease and 

retinopathy compared to the other clusters. Clusters 4 and 5, labelled as obesity-related 

diabetes (MOD), and mild age-related diabetes (MARD) respectively, corresponded 

to T2D (Ahlqvist et al. 2018).  
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The new clustering approach is superior to the classic diabetes classification which 

could improve outcomes of the disease by identifying patients at high risk of diabetic 

complications and potentially reduce the risk of diabetes-related complications in the 

future through personalising treatments (Ahlqvist et al. 2018).  

1.3 Architecture of Endocrine Pancreas 

In humans, the pancreas is a large solitary retroperitoneal organ originated from the 

embryonic foregut after the fusion of the ventral and dorsal buds. The organ is 14-18 

cm long, 2-9 cm wide and 2-3 cm thick, weighing 50-125 g. It is usually divided for 

descriptive purposes into the head, neck, body and the tail regions. These regions, in 

contrast to the well-defined outer borders, have no clear-cut off borders between them 

(Dolensek et al. 2016; El-Gohary et al. 2018). The pancreas consists of exocrine and 

endocrine compartments. The exocrine pancreatic component represents 98% of the 

pancreatic tissue and consists of acinar cells which produce digestive enzymes 

secreted through a ductal network. The endocrine compartment is represented by 

three-dimensional clusters of cells, islets of Langerhans, surrounded by the exocrine 

part of the gland. These unique micro-organs exhibit complex cytoarchitecture and 

have a defined glucoregulatory function (Paniccia et al. 2017). Although pancreatic 

islets compromise only 2% of the total pancreatic volume, they are highly vascularized 

and receive approximately 10% of the blood supply (Rorsman et al. 2013). There are 

approximately 1 million islets scattered throughout the pancreas in humans, whereas 

the mouse pancreas contains approximately 1000-5000 islet cells. (Hruban et al. 2009; 

El-Gohary et al. 2018). In mammals, despite differences in the size of the pancreas 

and islet composition, the size distribution closely overlaps and lies between 100 and 

200 µm regardless of species (Jo et al. 2007; Kim et al. 2009). Human pancreatic islets 
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consist of five cell subtypes: β-cells (50 % of the cells in human islets), α-cells (35–

40%), δ-cells (10–15%), ε-cells (<10%) and pancreatic polypeptide (PP) cells (<10%) 

that synthesise and secrete glucagon, insulin, somatostatin, ghrelin and pancreatic 

polypeptide respectively (El-Gohary et al 2018). In addition to the hormone-secreting 

endocrine cells, other types of cells such as vascular cells, resident immune cells, and, 

in many species, neurons and glial cells of the neuroinsular complex are also found in 

the islets (Kilimnik et al. 2011; Caicedo et al. 2013). The composition of islet cells 

varies according to the region within the pancreas and among different species.  

Human islets have a superior proportion of alpha cells (38%) compared to mouse islets 

(18%). In humans, more alpha-cells intermingle with beta-cells, delta-cells cells or 

both whereas in mouse islet beta-cells are located in the central core with fewer alpha-

cells residing in the periphery (Kilimnik et al. 2011; Caicedo et al. 2013). Moreover, 

the proportions of endocrine cells also differ between males and females of the same 

species (Gannon et al. 2018). 

In addition to hormone-secreting endocrine cells, there are also other types of cells 

that are found in pancreatic islets such as vascular cells, resident immune cells, and, 

in many species, neurons and glial cells of the neuroinsular complex (Kilimnik et al. 

2011 and Caicedo et al. 2013). 

1.4 Insulin 

1.4.1 Insulin synthesis 

Insulin is the blood glucose-lowering hormone which is coded on the short arm of 

chromosome 11. It is originally synthesised as preproinsulin in the rough ER of the 

pancreatic β cells. Preproinsulin is transformed into an 86 amino acid peptide 

proinsulin by proteolytic action of cleaving enzymes.  Finally, the proinsulin is then 
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transported to the Golgi complex, where it matures into active polypeptide hormone, 

insulin, and a 31 amino acid C-peptide. This step is catalyzed by several enzymes: 

prohormone convertases 1 and 2 (PC1 and PC2) and carboxypeptidase-H (Patil et al. 

2014; Sun et al. 2017). In the healthy beta cells, the vast majority (> 95%) of proinsulin 

is converted to insulin and C-peptide. Insulin molecule consists of two polypeptide 

chains: chain A (21 a.a) and chain B (30 a.a) which are linked by disulfide bonds and 

have a molecular weight of 6 kDa (Patil et al. 2014). Mature granules containing 

equimolar amounts of C-peptide and insulin are secreted into the circulation by 

exocytosis (Scheen 2004; Wilcox 2005; Mielke et al. 2011).  Although insulin is a 

relatively small polypeptide, it has been associated with more Nobel Prizes than any 

other molecules: an award in 1923 to Banting and colleagues for insulin isolation, an 

award in 1958 to Sanger for insulin sequencing, an award in 1964 to Dorothy Hodgkin 

for identification of the atomic structure of insulin and other biomolecules, and an 

award in 1977 to Yalow for technology leading to insulin-sensitive measurement 

(Mielke et al 2011; Jaskolski et al 2014).   

1.4.2 Insulin secretion 

Approximately, 50%-60% of the insulin secreted by the pancreatic beta cells into the 

portal vein is removed during the first passage through the liver. This causes higher 

levels of the hormone in the portal vein compared with its concentration in a peripheral 

vein. Basal pancreatic insulin release is important for the maintenance of basal 

euglycaemia. Both, basal insulin secretion and meal-related insulin release are 

controlled by glucose. However, other nutrients (other monosaccharides, amino acids, 

and fatty acids), hormones and neural factors are also important in maintaining glucose 

homeostasis (Scheen et al. 2004). Indeed, evolutionarily glucose is the primary 
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secretagogue in some animal species, accumulating immediately after food ingestion 

(Fu et al. 2013). Pancreatic beta cells employ several sensing mechanisms for 

measuring circulating glucose. Membrane-bound glucose transporters (GLUT) are 

parts of the cellular sensing apparatus. Out of the 14 GLUT family members so far 

identified, human pancreatic β-cells principally express GLUT1 (encoded by SLC2A1) 

and GLUT3 (encoded by SLC2A3) glucose transporters, which mediates facilitated 

diffusion of glucose regardless of the extracellular sugar concentration. Conversely, 

in rodent β cells glucose uptake occurs predominantly through Glut2 (encoded by 

Slc2a2) glucose transporter (Schuit et al. 2001; Rorsman et al.; 2013; Pingitore et al. 

2017).  

These GLUTs exhibit different affinities for glucose entry into β-cells. GLUT1 and 

GLUT3 transporters have high affinity with low capacity Km values of 1-4mM, 

whereas low affinity, GLUT2 has a Km of > 15mM is most active at higher glucose 

concentrations. The differences in the glucose-sensing apparatus indicate species-

specific regulation of glucose homeostasis (Pingitore et al. 2017). 

After glucose enters β-cells, an additional element of the glucose sensing system, 

glucokinase (GCK) initiates glucose metabolic degradation. GCK is a rate-limiting 

enzyme which exhibits relatively low affinity for glucose. Its Km is only 6 mmol/L, 

falling in the middle of the normal blood glucose range (4-10 mmol/l). GCK 

phosphorylates the reaction forming glucose 6 phosphate (Fu et al. 2013). Metabolism 

of glucose-6-phosphate via glycolysis, the endpoint of which is the metabolic substrate 

pyruvate. Pyruvate is then oxidized through the tricarboxylic acid cycle in 

mitochondria to produce ATP which subsequently leads to an increased intracellular 

ATP-to-ADP ratio (Schmeltz et al. 2007). 
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Elevated intracellular ATP closes KATP channels, depolarizes the membrane, and 

opens voltage-dependent Ca2+ channels. This results in an influx of Ca2+ which leads 

to the fusion of insulin-containing secretory granules with the plasma membrane and 

exocytosis of insulin into the portal circulation (Schmeltz et al. 2007; Fu et al. 2013). 

The intermediates, NADPH, malonyl-CoA, and glutamate, derived in these processes 

can act as signals to further amplify KATP channel-dependent insulin secretion (Figure 

1.1).  

 

Figure 1.1 Mechanism of insulin secretion in the pancreatic β-cell (Fajans et al. 2001). 

 

Moreover, additional glucose signals result from the generation of glycerol-3-

phosphate (Gly3P) synthesized by reducing dihydroxyacetone phosphate (DHAP), a 

glycolysis intermediate, with glycerol-3-phosphate dehydrogenase. Gly3P is 

important for producing lipid metabolic coupling factors such as long-chain acyl-CoA 

and diacylglycerol (DAG) which can amplify insulin secretion. Elevated glucose also 

triggers insulin biosynthesis by increasing the transcription rate of the insulin gene 

(Schmeltz et al. 2007). 
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As mentioned earlier, apart from glucose other nutrients can act as secretagogues. 

Individual amino acids act as poor insulin secretagogues at physiological 

concentrations. Some combinations (combination of glutamine with leucine) or higher 

concentration (alanine) of amino acids stimulate insulin release from beta cells. 

Alanine and glutamine can indirectly influence pancreatic insulin release during the 

fasting period. These amino acids are released into the blood triggering glucagon 

secretion which results in elevation of blood glucose levels and subsequent insulin 

release. In addition, dietary amino acids influence insulin release through the incretin-

dependent process. Ingestion of nutrients results in secretion of glucagon-like peptide-

1 (GLP-1) and gastric inhibitory polypeptide (GIP) peptide hormones from intestinal 

cells which activate specific receptors expressed on the beta cells leading to elevation 

of cAMP generated from ATP. The cAMP amplifies insulin secretion via PKA 

phosphorylation which brings the type 2 ryanodine receptor RY2 receptor to an 

excitable state increasing Ca2+ concentration (Islam et al. 2002; Tengholm et al. 2017).   

Amplification of glucose-stimulated insulin secretion is also triggered by free fatty 

acids (FFAs), which is particularly operative in situations of increased insulin need as 

a consequence of insulin resistance in type 2 diabetes (Nolan et al. 2006; Fu et al. 

2013) A membrane free fatty acid receptor, Gq protein-coupled receptor (FFAR-

1/GPR40) expressed on beta cells was recently discovered. Elevated levels of FFA 

result in the increased concentration of long-chain acyl-CoA and DAG, which act 

directly by acylation of proteins (i.e. synaptosomal-associated protein-25 (SNAP-25) 

and synaptogamin) responsible for granule fusion the exocytotic machinery or 

indirectly by activating essential enzymes, such as protein kinase C respectively 

(Mingrone et al. 2006). Many hormones including cholecystokinin (CCK), estrogen, 

melatonin, leptin and growth hormone can also influence insulin release from beta 
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cells (Fu et al. 2013).  Insulin-releasing medicines include sulfonylureas and glinides 

(Section 1.7.3) 

1.4.3 Insulin action 

1.4.3.1 Insulin action overview 

Insulin controls glucose and lipid metabolism by binding to the insulin receptor (IR) 

on the membrane of target cells (Peterson et al. 2018). IR is a heterotetrameric receptor 

which belongs to the receptor tyrosine kinase family consisting of two extracellular α 

subunits (bind insulin) and two transmembrane β subunits (with tyrosine kinase 

domains) joined by disulfide bonds (Meyts 2016; Peterson 2018).  The IR messenger 

RNA (mRNA) undergoes alternative splicing of exon 11 generating two isoforms (IR-

A and IR-B). Out of these two IR isoforms, the IR-B is more specific for metabolic 

regulation, and it is primarily expressed in the liver, muscle and white adipose tissue 

(Boucher et al. 2014; Belfiore et al.2015; 2017; Peterson et al. 2018). The IR-A 

isoform is highly expressed in foetal cells such as foetal fibroblasts, muscle, liver and 

kidney where it regulates embryonic growth and development (Frasca et al. 1999; 

Boucher et al. 2014).  

Structure-function studies of insulin analogues suggest that IR contains two insulin 

binding sites, however, due to its negative cooperativity, affinity for the ligand 

decreases. Hence, only one insulin molecule can bind and activate one IR (Whittaker 

et al. 2008; Peterson et al. 2018). Following ligand binding to the α subunits, IR 

undergoes a conformational change in the β subunit which accounts for transactivation 

of the tyrosine kinase activity through autophosphorylation of the activation loop of 

the kinase domain that contains tyrosines Tyr 1162, Tyr 1158, and Tyr 1163 

(McDonald at al. 1995; Peterson et al. 2018). This process results in further tyrosine 
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phosphorylation on residues including Tyr 972 in the juxtamembrane region which 

importantly leads to recruitment of receptor substrates (IRS). These substrates (IRS 1-

6) are members of the insulin receptor substrate family of proteins which act as an 

adaptor molecule that triggers signalling cascades by generating the molecular 

complexes. There are two main insulin signalling pathways: mitogenic and metabolic. 

Metabolic, the phosphatidylinositol-3-kinase (PI3K)/Akt, also known as protein 

kinase B (PKB), the pathway is initiated by insulin receptor substrate (IRS) proteins 

and SH2B2/APS. The pathway regulates glycolytic metabolism including glucose 

transport stimulation, glycogen and protein synthesis and adipogenesis (Gutiérrez-

Rodelo et al. 2017). The central role in this signalling pathway belongs to Akt kinase 

which has three isoforms (Akt 1, 2 and 3). Isoform Akt 2 is responsible for insulin 

metabolic actions, including the incorporation of GLUT-4 from intracellular 

compartments into the plasma membrane of the cell muscle and adipose cells to 

facilitate glucose uptake.   

On the other hand, mitogenic, mitogen-activated protein kinases/Ras pathway 

(MAPK/Ras), pathway is responsible for regulation of gene expression and insulin-

associated mitogenic effects such as proliferation, differentiation and growth initiated 

by phosphorylation of growth factor receptor-bound protein 2 (GRB2) and SH2 

domain-containing protein (SHC) (Gutiérrez-Rodelo et al 2017). 

The positive feedback mechanism of the proximal insulin signalling pathway (Figure 

1.2) is represented by feedforward amplification via Gα-interacting, vesicle-associated 

protein  (GIV) potentiation of phosphoinositide-3-kinase (PI3K)-AKT signalling, and 

phosphatase inhibition by NAD(P)H oxidase 4 (NOX4)-derived H2O2] (Petersen et 

al. 2018). Insulin action is regulated by the concentration of circulating insulin. 

Negative feedback involves stabilisation and recruitment of GRB10 to the IR, and 
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activation of S6 kinase 1 (S6K1) to phosphorylate and inhibit IRS proteins). Liver 

clearance of insulin involves receptor-mediated insulin endocytosis and degradation 

via an IRS in the liver known as the carcinoembryonic antigen-related cell adhesion 

molecule 1 (CEACAM1) (Najjar 2002).  

 

Figure 1. 2 Proximal insulin signalling (Petersen et al. 2018). 

 

 

1.4.3.2 Insulin signalling in the skeletal muscle  

When glucose is abundant, the skeletal muscle receives insulin signals to initiate the 

myocyte insulin signalling cascade responsible for promoting glucose uptake and 

glycogen synthesis/storage (Figure 1.3). Muscle accounts for about 60–70% of whole-

body insulin-mediated uptake (Wilcox 2005). The cells uptake glucose via 

translocation of GLUT4-containing storage vesicles (GSVs) to the plasma membrane 

controlled by PI3K. This results in the generation of intracellular glucose-6-phosphate 

by cytosolic hexokinase enzyme. The molecule of glucose-6-phosphate is then 

converted to glycogen for storage via several enzymatic reactions involving 
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phosphoglucomutase, glucose 1-phoshate uridylyltransfertase and glycogen synthase 

(GS). Additionally, coordinated dephosphorylation of glycogen metabolic proteins 

such as glycogen synthase kinase 3 (GKS3) occurs during glycogen synthesis 

(Bouskila et al. 2008 and Petersen et al. 2018).  

 

Figure 1. 3 Insulin signalling in skeletal muscle (Petersen et al. 2018). 

 

1.4.3.3 Insulin signalling in the liver  

Liver exposure to insulin concentrations is two- to threefold higher than other tissue 

types in the general circulation. Hepatic insulin signalling is initiated similarly to other 

cell types. The central molecule of hepatocellular insulin action is AKT activated due 

to PI3 production (Figure 1.4). AKT phosphorylates transcription factor, Forkhead 

box protein O1 (FOXO1), at Thr24, Ser253 and Ser316 causing nuclear exclusion and 

which results in inhibition of FOXO-dependent transcription, i.e. suppression of 

gluconeogenesis and activating the glycogen and protein synthesis. 
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FOXO1 is active in the fasted state where it is dephosphorylated at the Akt sites and 

localised in the nucleus resulting in increased hepatic glucose production via 

expression of two gluconeogenic enzymes, G6Pc (Glucose-6-phosphatase catalytic 

subunit) and PEPCK (phosphoenolpyruvate carboxykinase). 

Additionally, insulin upregulates the transcription of sterol regulatory element binding 

protein 1c (SREBP-1c), which subsequently promotes de novo lipogenesis (DNL). 

Insulin also increases the proteolytic cleavage of SREBP-1c and nuclear translocation 

leading to increased transcription of the target genes such as fatty acid synthase (Fasn), 

glycerol-3-phosphate acyltransferase 1(Gpam) and acetyl-CoA carboxylase (Acaca) 

(Matsuzaka et al. 2013; Petersen et al. 2018).  

 

Figure 1. 4 Insulin signalling in the liver (Petersen et al. 2018). 
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1.4.3.4 Insulin signalling in the white adipose tissue   

White adipocytes store dietary energy in highly concentrated form as triglycerides in 

a large unilocular lipid droplet (Nishimoto et al. 2017). Insulin stimulates adipocyte 

differentiation and adipose tissue expansion (Madsen et al. 2010). Hence, insulin 

receptor activation results in suppression of lipolysis, stimulation of de novo fatty acid 

synthesis and glucose and FFA uptake in white adipose tissue as well as reduction of 

plasma nonesterified fatty acid (NEFA) levels (Figure 1.5) (Madsen et al. 2010; 

Petersen et al. 2018). The antilipolytic function of insulin occurred via activation of 

phosphodiesterase 3B (PDE3B) which subsequently phosphorylates perilipin (PLIN) 

and facilitates maximal lipolysis by hormone-sensitive lipase (HSL) and adipose 

triglyceride lipase which decrease of intracellular cAMP-levels. Glucose uptake by 

white adipocytes is achieved via phosphoinositide-3-kinase (PI3K)-dependent and 

PI3Kindependent pathways which stimulates plasma membrane fusion of GLUT4 

glucose transporter-containing vesicles (Huang et al. 2005; Madsen et al.; 2010 and 

Petersen 2018). 

 

Figure 1. 5 Insulin signalling in the white adipocytes (Petersen et al. 2018). 
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1.5 Beta-cell dysfunction  

A decline in beta-cell function is triggered by different factors such as cytokine-

induced inflammation, obesity and insulin resistance, and excess consumption of 

saturated fat and FFA leading to loss of beta cell mass and development of diabetes 

(Cerf et al. 2013).  

Pro-inflammatory cytokines, IL-1β, TNFα and IFNγ, are released by macrophages and 

T-cells from infiltrated pancreatic islets. This leads to nitrosative and oxidative 

stresses which interrupt mitochondrial function and consequently result in the 

induction of the caspase cascade and β-cell death via apoptosis (Kacheva et al. 2011; 

Fu et al. 2013).  

Chronic hyperglycaemia in T2D leads to glucotoxicity as a result of impaired ß-cell 

proliferation and increased apoptosis (Stolarczyk et al. 2007). It also results in 

elevation of cytosolic Ca2+ levels, increased production of IL-1β, and activation of 

NF-kB leading to DNA fragmentation and β-cell injury. Moreover, glycation that 

occurs non-enzymatically during long-term hyperglycaemia leads to the generation of 

advanced glycation end products (AGEs). Overexposure of pancreatic β-cells to AGEs 

results in reduced insulin release and cell apoptosis (You et al. 2016).  

Increased release of inflammatory mediators is also observed in obese visceral tissue 

suggesting the ongoing chronic inflammation due to increased expression of TNFα 

and inducible nitric oxide synthase in macrophages (Corgosinho et al. 2015). This 

leads to the increased adipocyte secretion of cytokines and adipokines such as TNF-

α, IL-6, leptin, resistin and adiponectin which are toxic to β-cells.  
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Chronic exposure to fatty acids combined with high glucose levels has a negative 

impact on β-cell function. Glucolipotoxicity is a complex event which plays a central 

role in combining multiple factors and pathways including the formation of toxic 

compounds (e.g., ceramide), formation, oxidative stress, unfolded protein response, 

and the inflammatory events (Fu et al. 2013).  

1.6 Insulin resistance 

The ability to store dietary energy as glycogen or fat to use at a later time is an 

incredibly adaptable mechanism that has supported the development of animal life for 

nearly 600 million years. However, human evolution encountered some major dietary 

shifts which include meat eating, food preparation, and the changes related to plant 

and animal domestication (Luca et al. 2010; Samuel et al. 2012). In a remarkably short 

period, humanity has altered an environment of caloric deficiency and high caloric 

demands into one with a reduction in nutritional diversity, excess caloric availability 

and very little caloric needs. There is clear evidence that obesity rates are increasing 

dramatically around the world. The epidemic of obesity has been associated with 

increased rates of serious life-long conditions such as metabolic syndrome, 

nonalcoholic fatty liver disease (NAFLD), T2D and atherosclerotic heart disease 

(Wahba et al. 2007; Mitchell et al. 2012; Samuel et al. 2012). Insulin resistance is the 

main feature of many of these modern diseases. Hence, understanding its pathogenesis 

has become increasingly important to guide the development of future treatment 

(Samuel et al. 2012). 

In 1963 Randle and colleagues after conducting the studies using rodent heart and 

diaphragm, suggested a primary role for increased FFA availability and the 

development of insulin resistance (Ragheb et al. 2011; Samuel et al. 2012). Since then, 
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Randle's hypothesis was supported by different studies, and the link between 

disturbances in lipid metabolism and insulin resistance has been widely recognised. 

Elevated concentrations of circulating fatty acids accumulate within the insulin-

sensitive tissues such as muscle, liver and adipose. Due to impaired insulin-mediated 

skeletal muscle glucose uptake, glucose is diverted to the liver which is also affected 

by increased lipid profile. A failure of insulin to increase hepatic glucose utilisation 

and to suppress gluconeogenesis as well as increase delivery in dietary glucose and 

lipogenesis leads to nonalcoholic fatty liver disease (Samuel et al. 2012). Increased 

lipolysis in adipose tissue as well as increased secretion of cytokines and adipokines 

such as TNF-α, IL-6, promotes re-esterification of lipids in other tissues and leads to 

the toxicity of cells (Samuel et al. 2012; Corgosinho et al. 2015). 

Insulin resistance in many patients is believed to be triggered by errors in downstream 

of the insulin signalling cascade such as genetic polymorphisms of tyrosine or 

inhibition of phosphorylation of the IR, IRS proteins or PIP-3 kinase, as well as the 

defective function of GLUT 4 (Wilcox 2005). Early studies have reported that high-

fat diet results in an accumulation of intracellular triglyceride which contribute to the 

onset of insulin resistance. This biochemical parameter is considered to be one of the 

most consistent markers of whole body insulin resistance. Other major molecules 

involved in the pathogenesis are the lipid intermediates such as long-chain fatty acyl 

CoAs (LCACoAs), diacylglycerol (DAG) and ceramides (Ragheb et al. 2011). 

1.6.1 The role of counterregulatory hormones in insulin resistance 

Physiologically, the actions of insulin are influenced by other circulating factors that 

either promote or reduce the biological effects of insulin and, therefore, attenuate or 

induce insulin resistance (Byne 2001; Wilcox 2005). Insulin, the main regulator of 
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blood glucose balance in the fed state. It decreases postprandial blood glucose by 

increasing glucose uptake by peripheral tissues and decreasing gluconeogenesis (Kim 

et al. 2017). On the other hand, agents opposing the actions of insulin include all 

known counterregulatory hormones such as cortisol, epinephrine, growth hormone, 

glucagon, and catecholamines. These hormones are realised during the fasting state 

and stressful situations to regulate metabolic processes are considered to be a defence 

mechanism against hypoglycaemia (Hupfeld et al. 2010). Chronic stress and 

adaptation to changes in homeostasis promote the production of the primary mediators 

such as elevated levels cortisol and increased inflammatory cytokines. Secondary 

outcomes of these events include elevated blood pressure, overweight and insulin 

resistance. Repetitive chronic stress leads to tertiary outcomes which are represented 

by obesity, diabetes, hypertension and other disorders (Chovatiya et al. 2014; Lee at 

al. 2015). Also, conditions such as Cushing’s disease and acromegaly excessive levels 

of stress hormones can promote the insulin-resistant diabetic state.  However, in the 

usual case of obesity or type 2 diabetes, increased levels of these hormones are not an 

important contributory factor to insulin resistance as they do not account for the vast 

majority of insulin-resistant cases (Wilcox 2005; Hupfeld et al. 2010).  

1.7 Current antidiabetic drugs  

The management of diabetes has changed dramatically during the past several 

thousand years from the ancient primitive treatment options (a mixture of “water from 

the bird pond,” elderberry, fibres from the asit plant, milk, beer, cucumber flower, and 

green dates), to the significantly effective current pharmaceutical medications. 

However, with ongoing research and treatment development, modern antidiabetic 

agents will likely be considered arcane by our successors 100 years (White et al. 2014). 

The history of diabetes medications from 1915 to 2015, is shown in Figure 1.6. 
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Figure 1.6 History of Diabetes Medications (Cavaiola et al. 2017). 

 

1.7.1 Insulin and insulin analogues 

Before the discovery in 1921, there were no effective pharmacological agents for the 

management of diabetes and T1D was a fatal disorder. A successful insulin 

crystallisation in 1926, opened the door to insulin formulation modifications (White 

2014). Injectable insulin is the most effective agent in lowering glucose levels in the 

blood which is utilised in the treatment of individuals with all types of diabetes. This 

medication can be used as monotherapy or in combination with other antidiabetic 

drugs. However, due to insulin resistance in T2D, larger insulin doses are required to 

achieve the therapeutic effects. Insulin treatment does not imitate endogenous insulin 

release and is associated with weight gain and a risk of hypoglycaemia. 

The first commercially available, extended-action insulin, PZI (protamine zinc 

insulin), was released in 1936 and is currently used in cats with diabetes. All insulin 
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containing medications produced before 1983 were derived from animal sources 

(primarily beef and pork). In 1983, the first insulin utilising rDNA technology, 

Humulin® R (rapid) and N (NPH, intermediate-acting), were developed. However, 

these medications were unable to mimic the basal and prandial insulin secretion 

(Quianzon et al. 2012) 

In the mid-1990s to early 2000s, modification of the site of amino acids in the insulin 

changed the pharmacokinetics and led to the development of improved insulin 

analogues. Insulin lispro and insulin aspart (very rapid-acting insulin analogues for 

pre-meal coverage) and insulin glargine (a long-acting insulin analogue), have 

increased the flexibility of diabetes management (Marin-Penalver et al. 2017). 

Inhalable insulin was approved in 2006 (Exubera) but was shortly withdrawn from the 

clinical use due to commercial reason. The choice of insulin analogues has been 

broadened since 2014 (Figure 1.7) (Blind et al. 2018).  

1.7.2 Biguanides (Metformin) 

The use of biguanide can be traced back to the medieval times when a plant, French 

lilac, or goat’s rue (Galega officinalis) was used as a folk remedy for diabetes in 

Southern and Eastern Europe (White 2014). In the early 20th century, the 

antihyperglycemic component of this herb, guanidine, was extracted. However, 

guanidine and its homologues compounds synthesised between 1920 and 1930, 

appeared to be toxic for clinical use. In the 1950s, three biguanides: metformin, 

phenformin, and buformin, were introduced. Although phenformin and buformin were 

used clinically, they were withdrawn from the market in the late 1970s due to the high 

risk of lactic acidosis. The only biguanide that is available for commercial use to date 

is metformin (Quianzon et al. 2012a).  
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Metformin is a bisubstituted, short-chain hydrophilic guanidine derivative, which is 

recommended as initial therapy for most newly diagnosed patients with T2D 

according to American Diabetes Association/European Association for Study of 

Diabetes guidelines (Mkele et al. 2013; Weiss et al. 2014; Wang et al. 2017). It was 

first approved for use in the UK in 1958 and the US in 1995 with doses ranging from 

500 to 2,500 mg/day (Wang et al. 2017). Metformin works by suppressing glucose 

production in the liver, decreasing intestinal glucose absorption, improving glucose 

uptake by the target tissue, lowering fasting plasma insulin levels and promoting 

weight loss in some patients by improving hepatic and muscle insulin sensitivity. 

Metformin action results in improvement of hyperglycaemia and glycosylated HbA1c 

levels without causing overt hypoglycaemia (Weiss et al. 2014). Although some 

believe that this medication stimulates weight loss due to a primary anorectic effect. 

Metformin is associated with more gastrointestinal side effects contraindicated with 

renal insufficiency than other single medications for T2D (Poretsky 2010; JMEC for 

Clinical 2011; Benett et al. 2011). 

1.7.3 Sulfonylureas and Glinides (Meglitinides) 

Sulfonylureas (glibenclamide/glyburide, gliclazide, glimepiride and glipizide) and 

glinides (repaglinide and nateglinide) are two different, structurally unrelated, classes, 

of oral hypoglycaemic drugs which share a common mechanism of action. The history 

of the sulfonylureas began in 1937 with the discovery of the hypoglycaemic properties 

of synthetic sulfur compounds. Further studies confirmed hypoglycaemia in patients 

receiving treatment for typhoid containing these compounds (Quianzon et al. 2012a).  

In 1956 the first sulfonylurea, tolbutamide, was introduced to the market in Germany 

which was followed by the commercialisation of other first-generation agents 
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(chlorpropamide, acetohexamide and tolazamide) in Europe. The next advanced and 

more potent second-generation of sulfonylureas (glipizide and glyburide) became 

available in approved the United States in 1984.  Finally, glimepiride, which is 

sometimes referred to as a third-generation agent, was released in 1995 (White 2014). 

Currently, sulfonylureas are utilised as a classic first or second-line therapy for patients 

with T2D. Both, sulfonylureas and glinides (non-sulfonylurea insulin secretagogues 

with a short half-life), stimulate pancreatic beta cells to release insulin following the 

closure of the beta-cell KATP channel. Glinides target a different subunit binding site 

within the sulfonylurea receptor in the pancreas. They have a more rapid absorption 

with a shorter circulating half-life, hence require more frequent dosing.  

Although both of these types of drugs are rapidly effective, they continue to stimulate 

insulin secretion even in the absence of hyperglycaemia. Therefore these agents carry 

a risk of severe episodes of hypoglycaemia accompanied by coma or seizure (Marin-

Penalver et al. 2017; Marks 2018).  

1.7.4 Thiazolidinediones (TZDs, PPAR γ Agonists or Glitazones) 

TZDs (e.g. pioglitazone, rosiglitazone) increase insulin sensitivity by acting on the 

target tissue cells such as muscle, adipose tissue and liver, to increase glucose 

metabolism and decrease glucose production. TZDs were initially introduced to the 

US market in 1996 (White 2014). These drugs enhance skeletal muscle insulin 

sensitivity and suppress hepatic glucose production. TZDs function as selective 

ligands for nuclear hormone receptor peroxisome proliferator-activated receptor 

gamma (PPAR γ), a transcriptional factor that controls the expression of a large 

number of regulatory genes in lipid and glucose metabolism (Bertin et al. 2013 and 

Marin-Penalver et al. 2017). Troglitazone was the first agent in this category to be 
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approved by the FDA. However, it was shortly removed from the market due to 

increased risks of hepatic failure. Two other STZs, pioglitazone and rosiglitazone have 

been linked to nonhypoglycemic issues (White 2014). In Europe, since 2010, 

rosiglitazone was withdrawn from the market by the European Medicines Agency, 

because of the toxic effect on the liver. Pioglitazone was suspended in France and 

Germany in 2011 (Marin-Penalver et al. 2017). The adverse effects of pioglitazone 

include peripheral oedema, fluid retention and fracture risk in women (Mazzola et al. 

2012). 

1.7.5 Alpha-Glucosidase Inhibitors (AGIs)   

Alpha-Glucosidase inhibitors, acarbose, voglibose and miglitol, have a unique mode 

of action compared to other antidiabetic compounds. AGIs exhibit structural identity 

to natural oligosaccharides with higher affinity for alpha-glucosidases enzymes that 

convert oligosaccharides into monosaccharides. These medications lower the rate of 

digestion of carbohydrates in the intestine via reversible inhibition of membrane-

bound intestinal alpha-glucoside hydrolase enzymes and are most effective for 

postprandial hyperglycemia without causing hypoglycaemia.  

Acarbose was the first drug in this category to be approved by the FDA in 1995. This 

was followed by the introduction of miglitol to clinical use in 1996 (White 2014). 

These drugs are less effective than metformin and sulfonylureas and are known to 

cause side effects such as abdominal pain, diarrhoea and flatulence (Marin-Penalver 

et al. 2017).   
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1.7.6 Incretin-Based Therapies: GLP-1 Receptor Agonists and Dipeptidyl 

Peptidase-IV (DPP-IV) Inhibitors 

There are two incretin drug classes that are based on glucoregulatory effects of 

incretins: incretin mimetics (exenatide, liraglutide, dulaglutide, lixisenatide, 

albiglutide and semaglutide) and DPP-IV inhibitors (sitagliptin, vildagliptin, 

saxagliptin, linagliptin and alogliptin).  

GLP-1 receptor agonists mimic the biological function of incretin hormones such as 

stimulation of glucose-dependent insulin secretion and inhibition of glucagon 

secretion in response to nutrient inputs. Exenatide, a synthetic form of exendin-4 

(peptide produced exclusively by the salivary glands of Gila Monster Heloderma 

suspectum), was the first GLP-1 receptor agonist to become available in the market in 

2005. A second GLP-1 receptor agonist, liraglutide, was approved in 2010. Shortly 

after, in 2012, a long-acting (once-weekly) form of exenatide was introduced for 

clinical use (White 2014). Semaglutide represents the most recently authorized drug 

from this category (approved in 2018) (Figure 1.7) (Blind et al. 2018). 

GLP-1 mimetics are all administered subcutaneously. However, an oral version of 

semaglutide, is currently undergoing a primary endpoint in the PIONEER 1 phase 3a 

trial (Abbasi 2018; Aroda et al. 2018). 

Incretin-based agents are generally associated with 0.5–1% reductions in A1C levels 

as well as weight loss.  However, these compounds are also linked to significant 

gastrointestinal side effects, particularly early in therapy (White 2014). 

DPP-IV inhibitors prevent enzymatic degradation of GLP-1 and GIP by blocking the 

activity of DPP-IV enzymes. The first of these agents, sitagliptin, was approved in 

2006 in the United States. This was followed by the release of saxagliptin and 
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linagliptin and other compounds. DPP-IV inhibitors are shown to reduce A1C by ~ 

0.8% and do not cause hypoglycaemia (White 2014). Development of a new DPP-IV 

inhibitor intended for once-weekly use (omarigliptin) was discontinued in 2016 after 

being tested in phase 3 clinical trial (Blind et al. 2018)  

Incretin-based medications are usually prescribed in combination with first-line 

metformin therapy. (Cernea et al. 2011 and Kazafeos et al. 2011) 

1.7.7 Amylinomimetics 

Amylin agonist (pramlintide) is a synthetic analogue that mimics actions of an 

endogenous neuroendocrine hormone, amylin. Amylin was discovered in 1987 and is 

known to be co-secreted in equimolar amounts with insulin from the pancreatic β cells 

in response to food intake (Ryan et al. 2005). Pramlintide (approved by FDA in 2005) 

is co-administrated with primary insulin therapy. This medication controls 

hyperglycaemia by reducing postprandial glucagon secretion, slowing gastric 

emptying, and reducing appetite in patients with T2D (Asmar et al. 2010). Long-term 

safety for pramlintine is yet to be established. It is associated with gastrointestinal side 

effects, weight loss and hypoglycaemia. This medication should only be administered 

before food intake that contains at least 250 calories or 30 g of carbohydrates (Olokoba 

et al. 2012; Marin-Penalver et al. 2017).   

1.7.8 Sodium-glucose cotransporter 2 (SGLT2) inhibitors 

Sodium-glucose cotransporter 2 (SGLT2) inhibitors (dapagliflozin, canagliflozin, 

empagliflozin and ertugliflozin) are novel groups of compounds, four of which were 

approved between 2012 and 2018 (Figure 1.7) (Blind et al. 2018). SGLT2s increase 

renal elimination of glucose, increase its excretion and reduce hyperglycaemia in 

patients with T2D. (Mazzola et al. 2012). A high-capacity, low-affinity SGLT2 
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transporter protein is located in the kidney proximal tubule and is responsible for about 

90% of glucose reabsorption (White 2014). The medication inhibits glucose 

reabsorption, increases its excretion in the urine and promotes weight loss.  SGLT2 

inhibitors may be less effective in patients with renal impairment. The primary side 

effects include the urogenital tract infections, euglycaemic ketoacidosis, and 

orthostatic hypotension and the volume depletion. 

1.7.9 Other antidiabetic medications 

Other antidiabetic medications include Colesevelam, which exhibits a dual effect of 

lowering LDL cholesterol and reducing blood glucose level, and a dopamine agonist 

Bromocriptine, which was approved as antihyperglycemic medication in 2009 (White 

2014). 

Figure 1.7 European Medicines Agency’s approval of new products for the treatment 

of T2D since 2005 (Blind et al. 2018) 
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1.8 The history of the incretin concept 

1.8.1 Incretin effect 

Incretin hormones are gut-derived peptides secreted in response to nutrient intake 

mainly glucose and fats. In humans, there are two incretin hormones known as 

glucagon-like peptide (GLP-1) and glucose-dependent insulinotropic polypeptide 

(GIP). Together they are responsible for the so-called incretin effect which describes 

the fact that a greater rate of insulin release is achieved after oral administration of 

glucose than if the same amount of sugar was infused intravenously to match the 

glycaemic excursion (Deacon et al. 2011; Usser et al. 2012). In healthy individuals, 

the incretin effect can account for at least 50% of the total insulin secreted after oral 

glucose, depending on the size of the stimulus. Hence, these hormones exhibit 

insulinotropic effects at usual physiological concentrations (Kim et al. 2008). 

1.8.2 Pre-discovery  

It has been more than a century-long since the concept of incretins was introduced. In 

1850-1900, European physiologists began to investigate the mechanisms of the 

external and internal pancreatic secretion. During these times, Joseph von Mering and 

Oskar Minkowski discovered the role of the pancreas in diabetes, and Claude Bernard 

revealed that significantly larger quantities of glucose could be administrated orally 

than intravenously without excretion of sugar in the urine (Rehfeld et al. 2018). 

Therefore, Claude Bernard suggested that after intestinal absorption, a considerable 

amount was taken up by the liver during the first portal circulation (Jorpes and Mutt 

1973). This theory was recognised up to the 1950s (Rehfeld et al. 2018).  
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1.8.3 The birth of gastrointestinal endocrinology 

A breakthrough came at the beginning of the 19th century with William Bayliss and 

Ernest Starling discovery of secretin. This time has become associated with the birth 

of gastrointestinal endocrinology in the history of incretins (Creutzfeldt 2005; Rehfeld 

2018). 

The scientists proposed that intestinal mucosa contained a factor which stimulated the 

exocrine secretion of the pancreas through the blood flow. The conclusion was 

established following infusion of the acid chyme from the stomach, or hydrochloric 

acid alone into the digestive system which resulted in the release of a chemical 

substance into the blood leading to the exocrine pancreatic secretion even after the 

nerves supply to the intestine was removed (Sherwood et al. 2000).  

The hallmark discovery of secretin by Bayliss and Starling revolutionised physiology 

with a new concept (Modlin et al. 2001). It was shown that gastric acid secretion was 

regulated not only via neural reflexes but also involved hormonal stimuli. However, 

this became the subject of debate for decades, beginning with Ivan Pavlov, a Russian 

physiologist which argued that the function of the pancreas was mediated entirely by 

the nerves (Smith 2000; Creutzfeldt 2005; Walton 2009).  

In his renowned “Cronian Lectures” for the Royal Society, Starling coined the 

expression “hormone” (from Greek “hormoa”: I arouse to activity) for chemical 

substances which are released from one site and act on the function of a distant organ 

on another site via the blood circulation (Creutzfeldt 2005; Rehfeld 2018). The fact 

that some of the gastrointestinal hormones are also found in nerve and brain cells has 

later led to the concept of a gut-brain axis (Track 1980). 
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Starling further suggested that the duodenal mucosa contained other substances which 

could act on the pancreas. However, at the time, in 1906, this hypothesis was tested 

by Moore and colleagues which involved oral administration of gut extracts to patients 

with diabetes. Although some success was achieved as a reduction of the levels of 

urine sugars was observed in some patients, overall results were negative and 

inconclusive due to effects of proteolytic enzymes of gastric juice on the peptides 

(Seino et al. 2010; Seewoodhary et al. 2010; Reusch et al. 2013; Scott et al. 2014; 

Rehfeld 2018).  

After insulin was discovered and harvested from pancreatic islets by Banting and Best 

in 1921, several attempts were taken to investigate the effects of gut extracts on oral 

or injected glucose concentrations (Kim et al. 2008).  

Promising results were obtained by La Barre and Still in 1930 after the processing of 

duodenal extracts in vitro led to the discovery of two interesting fractions. One fraction 

was crude secretin with well-known actions on pancreatic duct secretion, and the other 

contained a compound which lowered blood glucose levels and had no stimulatory 

effects on the exocrine pancreas. This observation had led to the suggestion that the 

antihyperglycaemic effect was due to stimulated insulin release (Rehfield 2018).   

In 1932, La Barre coined the name, “incrétine” (“intestine, secretion, insulin”), for a 

substance extracted from the upper gut mucosa and proposed the use of incretin for 

treatment of diabetes mellitus in future (La Barre 1932). But he did not prove 

incontrovertibly that incretins existed (Kim et al. 2008). 

1.8.4 Re-birth of incretin concepts 

The inconsistent literature on the existence of incretins made between 1902 and 1940 

encouraged Andrew C. Ivy, who was president of the American Physiological Society 
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known for his experiments on gastrointestinal hormones as well as CCK discovery, to 

reinvestigate the questionable matter in controlled experiments. The outcome of his 

work resulted in the entire incretin hypothesis losing its credibility and remaining so 

until rekindled some 25 years later once radioimmunoassays (RIA) for insulin 

invented by Yalow and Berson became available (Yalow and Berson 1960; Kim et al. 

2008; Marks 2018). The RIA technique allowed for the first time to accurately 

measure molecules including peptide hormones present at minute concentrations in 

plasma (Rehfeld 2018). In 1960, insulin was first quantified by the RIA technology. 

One year later, RIA assay was successfully modified for measuring glucagon by Roger 

Unger and colleagues. During the following decade, this technique continued to be 

effectively adapted for novel gastrointestinal hormones (Rehfeld 2018). With the 

progress in modern methods for purification and sequencing and development of 

highly specific sensitive RIA assay, interest in the investigation of insulinotropic 

intestinal factors regained its popularity (Creutzfeldt 2005).  

At the beginning of the 1960s, Neil McIntyre together with Derrick Holdsworth and 

Desmond Turner in London, UK and Elrick and co-workers in Denver, the US in 

similar experiments independently reported that administration of glucose orally 

stimulates considerably superior insulin than intravenous glucose (McIntyre et al 

1964). Hence, confirming the existence of incretin mechanism (Rehfeld 2018). 

Simultaneously, John Dupre was working with secretin (Dupre 1964), and Vincent 

Marks and Ellis Samols were investigating the insulinotropic effects of glucagon in 

1964 (Marks 1978; Marks 2018). Makman and Sutherland had described a substance 

with similar biological properties to glucagon that was found in the human blood 

before the discovery of glucagon’s insulinotropic properties (Makman and Sutherland 

1964).  
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By 1965 glucagon had gained popularity in diabetes research. Samols and colleagues 

observed that the rates of plasma immunoreactive glucagon levels (IRG) in blood were 

increased in response to oral glucose (Marks 2018). They suspected that the rise in the 

plasma immunoreactive glucagon in response to oral glucose might have originated 

from the gut and even represent hypothetical incretin (Marks 2018).  

1.8.5 Discovery of GIP 

At the end of the 1960s, all known gastrointestinal hormones such as secretin, 

cholecystokinin-pancreozymin, gastrin, and the uncharacterised immunoreactive gut 

glucagon-like material were the main candidates for the role of incretin. Careful 

investigation revealed that none of the known peptides met the criteria (Creutzfeldt 

2005; Marks 2018). The factor responsible for the incretin effect remained unknown 

until the late 1960s were when John Brown and Victor Mutt isolated a new peptide 

from a crude porcine cholecystokinin extract (Creutzfeldt 2005; Gault 2018). The 

peptide was named gastric inhibitory polypeptide (GIP) on the basis of its ability to 

block gastric acid secretion (Tseng et al. 2004).  

However, as more studies were performed using accessible RIA, the insulinotropic 

activity of GIP at physiological concentrations in response to glucose and triglycerides 

was revealed (Morgan et al. 1978; Morgan et al. 1988). Acronym GIP was suggested 

to be read as “glucose-dependent insulinotropic polypeptide”. This discovery could 

not explain the source of the entire gut hormonal effect on insulin release in response 

to oral glucose due to complete GIP removal from rat gut extracts decreased the 

incretin effect by just 50% (Creutzfeldt 2005; Seino et al. 2010; Müller et al. 2017; 

Rehfeld 2018).   
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In the next 15 years, the role of GIP in pathophysiology and its biological properties 

were established. Although studies have shown that the insulin-releasing properties of 

GIP are severely diminished in people with T2D, it is thought to be involved in the 

regulation of lipid as well as carbohydrate metabolism (Marks 2018; Gault 2018). 

1.8.6 Discovery of GLP-1  

Several indicators suggested the existence of additional incretin agent which 

influenced scientists to look deeply into the investigation of incretin nature of 

immunoreactive glucagon substances using modern molecular biology techniques.  

In the 1970s, glicentin a 69 amino-acid glucagon-like peptide and oxyntomodulin were 

identified and characterised. However, both peptides exhibited only a weak 

insulinotropic activity (Creutzfeldt 2005; Marks 2018).   

The success of these efforts has been facilitated by the cloning and sequencing of 

mammalian glucagon genes by Graeme Bell and colleagues in 1983. The sequence of 

cDNA of proglucagon in addition to glucagon also contained the sequences of two 

novel glucagon-like peptides, named GLP-1 and GLP-2. 

Since then, numerous studies worldwide have demonstrated beneficial insulinotropic, 

and most importantly antidiabetic, effects of GLP-1 and its analogues in patients with 

T2D (Creutzfeldt 2005; Rehfeld 2018).  

1.9 Glucagon-like peptide 1 (GLP-1)  

Glucagon-like peptide (GLP-1), a 30 amino acid long peptide, was first identified in 

its inactive (1-37 and 1-36 amide) form, during the cloning and sequencing of 

proglucagon genes isolated from the pancreas of bony fish (anglerfish) and birds 

(chicken) in the early 1980s (Irwin et al 1999). The biologically active truncated GLP-
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1 molecule (7–37 and 7–36 amide) was then discovered by sequencing of the peptides 

purified from gut extraction in the late 1980s. GLP-1 belongs to the glucagon family 

of peptide hormones which include glucagon, GLP-2, glucose-dependent 

insulinotropic polypeptide (GIP) and glucagon-related peptides (GCRP) (Takei et al. 

2015; Sekar et al. 2016; On et al. 2016). GLP-1 is highly homologous to glucagon, 

displaying identity at 14 positions (45% identity) (Pan et al. 2006). 

In humans, during fasting state levels of circulating GLP-1 range between 5-15 pmol/L 

and rises 2-4 fold post meal consumption. Postprandial GLP-1 release is regulated by 

nutritional and neuroendocrine factors. The initial secretory phase is detectable 10 to 

15 min after food consumption and is believe to be influenced by vagal nerves. The 

second phase of GPL-1 secretion occurs 30-60 minutes in response to nutrient contact 

by L-cells. The secretion reaches its peak after approximately 60 minutes (Bodnaruc 

et al. 2016). 

1.9.1 Post-transcriptional processing of preproglucagon. 

The preproglucagon gene encodes proglucagon, a 160 amino acid inactive precursor 

of several peptide hormones. Its post-transcriptional modification depends upon to the 

tissue-specific expression of prohormone convertases (PC) 1/3 and 2. In the pancreatic 

α-cells, PC 2, encoded by PCSK2 gene, cleaves the precursor to generate glucagon, 

glicentin-related pancreatic polypeptide (GRPP), intervening peptide 1 (IP1), and a 

proglucagon fragment. Whereas, in the intestinal L-cell and specific CNS neurons, 

(PC1/3), encoded by Proprotein Convertase Subtilisin/Kexin Type 1 (PCSK1) gene, 

regulates the post-translational processing of proglucagon producing GLP-1, GLP-2, 

oxyntomodulin, glicentin, and IP2 (Figure 1.8) (Irwin 2010; Sandoval et al. 2015; 

Bodnaruc et al. 2016). 
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Figure 1. 8 Posttranslational processing of preproglucagon (Sandoval et al. 2015). 

1.9.2 GLP-1 synthesis  

GLP-1 is mainly produced in enteroendocrine L-cells of the gut by differential 

processing of proglucagon gene which is expressed in these cells (Holst et al. 2007). 

GLP-1 is also synthesised in the central nervous system (CNS), mainly in the 

brainstem. In the brain, preproglucagon is generated in the neuronal cells in nucleus 

tractus solitarius (NTS) from where it is extended to the hypothalamus, some thalamic 

and cortical areas (Simsir et al. 2018). In some species, such as dog, chicken, and 

amphibians, the proglucagon gene is also expressed in the stomach (Irwin 2010). 

Multiple mechanisms are involved in the regulation of proglucagon transcription.  

Studies have shown that GLP-1 and 2 are absent in intestinal tissues 

from PCSK1 knockout mice which results in a severe block in the production of both 

peptides as well as model development of massive obesity and glucose intolerance 
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related to impaired insulin secretion (Zhu et al. 2002; Bandsma et al. 2013).  Patients 

with PC1/3 deficiency are reported to have significant abnormalities in intestinal and 

enteroendocrine function (Bandsma et al. 2013). 

Abnormalities in a transcription factor, Pax6, responsible for the binding to the 

promoter region of the proglucagon gene, are also associated with impaired GLP-1 

synthesis, according to the gene expression studies using mice homozygous for a 

dominant-negative form of Pax6. Moreover, MEK-ERK signalling may also regulate 

gene expression via cAMP-dependent Epac2. 

1.9.3 GLP-1 secretion and elimination 

GLP-1 is a gut-derived peptide secreted from enteroendocrine L-cells in response to 

injection of nutrients. L-cells are predominantly located in the ileum and colon but can 

also be found in the duodenum (Lim et al. 2006; Spreckley et al. 2015).  

Being open-type epithelial cells, L-cells possess microvilli on their apical surface 

which express several transporters, such as sodium glucose cotransporter-1 (SGLT-1) 

and amino acid (AA) transporter, and G-protein coupled receptors (GPCRs) including 

GPR40, GPR41, GPR43, GPR119 and GPR120. L-cells may also express sweet taste 

receptor T1R2 + T1R3 coupled to G-protein α gustducin, phospholipase Cβ2, and the 

calcium-sensitive channel Trpm5. The importance of taste receptors in the regulation 

of plasma insulin and glucose is also evident. Mice lacking the α-gustducin receptor 

fail to secrete GLP-1 in response to ingestion of glucose and show abnormalities in 

glucose homeostasis (Jang et al. 2007). 

The aforementioned important cellular devices serve as chemical sensors during direct 

contact with nutrients and other substrates present in the intestinal lumen. GPCRs and 
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transporters exhibit close interaction with vascular factors and the enteric nervous 

system allowing the L-cell to be affected by both neural and hormonal stimuli (Lim et 

al. 2006, Habib et al. 2012, Pais et al. 2016 and Zufall et al. 2016). Glucose is 

transported into the L-cell via SGLT-1, which is coupled with Na+ influx, depolarizing 

the cell membrane opening L-type calcium channels leading to calcium release from 

intracellular stores and increase in cAMP levels (Habib et al. 2012 and Cho et al. 

2014). GLP-1 is stored in secretory granules of L-cells as well as synthesized to a 

lesser extent by neurons of the nucleus tractus solitarius (NTS) of the brainstem 

(Bodnaruc et al. 2016). Elevation of intracellular cAMP potentiates downstream 

signals leading to the exocytosis of hormone-containing vesicles at the L-cells 

basolateral face (Cho et al. 2014 and Spreckley et al. 2015). Further amplification of 

GLP-1 secretion results from the closure of KATP channels due to elevated 

intracellular ATP arising from glucose metabolism (Cho et al. 2014). A similar 

mechanism occurs via AA transporters. Other signalling molecules such as free fatty 

acids (FFA), bile acids, and short-chain fatty acids (SCFA) activate GPRs leading to 

intracellular calcium release and/or activating protein kinase C (aPKC) which triggers 

GLP-1 release Genetic modifications of aPKC in the intestine results in altered 

response to oral administration of oleic acid in vivo. Also, GLP-1 release is also 

regulated by neural stimuli through muscarinic receptors such as M1R, M2R (Cho et 

al. 2014).  

Some physiological and experimental conditions, such as stress, islet transplantation 

or in vivo streptozotocin or high-fat treatments, and ex-vivo chronic exposure to high 

glucose concentrations are known to trigger the secretion of bioactive, GLP-1(7–36) 

amide or GLP-1(7–37), and N-terminally extended GLP-1 from pancreatic α-cells. 

This process may be achieved by overexpression of PC 1/3, which is normally minute 
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in α-cells resulting in increased production of GLP-1 as a growth factor promoting 

superior glucose-dependent insulin release, β-cell survival and function under extreme 

metabolic conditions such as diabetes (Cho et al. 2013 and Nakashima et al. 2018). 

Bioactive GLP-1 is rapidly metabolised and inactivated in the bloodstream by the 

catalytic activity of the enzyme dipeptidyl-peptidase IV, which cleaves two NH2-

terminal amino acids of the hormone to produce noninsulinotropic GLP-1 (9–36) 

amide and GLP-1 (9–37). As a result plasma half-life of GLP-1 is less than 2 min and 

only 10–15% of circulating hormone remains bioactive by the time it reaches the 

pancreas. This raises the possibility that some of the effects of GLP-1 are transmitted 

through sensory neurons in the guts and the liver expressing the GLP-1R. The 

hormone and its truncated product are further cleaved by neutral endopeptidase 24.11 

(Cho et al. 2013, Simsir et al. 2018 and Nakashima et al. 2018). 

1.9.4 GLP-1 pleiotropic actions 

GLP-1 exerts activities via binding and activating the GLP-1R which is expressed in 

various tissues such as the pancreas, lung, brain, pituitary, stomach, heart and kidney 

(Figure 1.9). The human GLP-1R consists of 463 amino acids (∼63 kDa) and exhibits 

90% sequence homology with the rat GLP-1R (Cho et al. 2013).  

GLP-1 is well-recognised for its ability to potentiate insulin secretion from pancreatic 

β-cells in response to food intake and increase insulin gene transcription and 

biosynthesis. Receptor binding results in increased production of cAMP activating 

second messenger pathways, such as the protein kinase A (PKA) and Epac pathways. 

This results in elevation of intracellular cAMP and PKA raising cytosolic calcium 

concentrations which subsequently leads to insulin exocytosis from secretory granules 

(Seetho et al. 2014; Bodnaruc et al. 2016).  
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GLP-1R antagonists such as exendin-4(9– 39) are demonstrated to reduce glucose-

induced insulin secretion and impair glucose tolerance in rodents and humans. Similar 

effects are observed in GLP-1R KO mice models. 

The peptide has trophic effects on β-cells, inducing differentiation and proliferation of 

progenitor cells in the pancreas and protecting from β-cell apoptosis via the activation 

of phosphatidy-linositol 3 kinase (PI3K) and mitogen-activated protein kinase 

(MAPK) pathways leads to the expression of genes involved in cellular growth, repair 

and differentiation (Simsir et al. 2018). 

GLP-1 also inhibits glucagon secretion by direct interaction with glucagon receptors 

on the α-cells in healthy subjects and patients with T1D and T2D. This process is 

known to be partly regulated by the raised insulin and somatostatin release from 

pancreatic islets in response to nutrient intake (Bodnaruc et al. 2016). 

In addition to its pancreatic functions, the peptide exhibits pleiotropic extrapancreatic 

roles. GLP-1 decreases food intake, and appetite increases satiety and controls body 

weight. GLP-1Rs are widely expressed in the brain such as the hypothalamic nuclei, 

thalamus, hippocampus, lateral septum, and subfornical organ, which are involved in 

the regulation of appetite and satiety.  

GLP-1 in the brain is synthesised in neurons in the nucleus tractus solitaries (NST) 

from where these cells extend into the paraventricular nucleus and interact with their 

receptors, resulting in satiety, appetite and anorexia. They can also extend to the 

arcuate nucleus and transmit vagal motor signals to the pancreas. GLP-1 freely crosses 

the blood-brain barrier which allows it to regulate cellular pathways in the CNS such 

as neuroinflammation, mitochondrial function, and cellular proliferation. 
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It is thought that GLP-1 also affects neurological and cognitive functions. Positive 

effects of GLP-1 receptor agonists on neurodegenerative diseases such as Alzheimer’s 

disease has previously been reported in vivo and preclinical studies (reviewed in 

Simsir et al. 2018). Other beneficial properties of GLP-1 include regulation of blood 

pressure, cholesterol levels, postprandial triglyceride concentration, coagulability, and 

inflammation and improvement of vascular endothelial function and bone profile. 

 

Figure 1.9 Pleiotropic functions of GLP-1 (Cho et al. 2013) 

1.10 GIP 

GIP is produced by enteroendocrine K-cells located in the proximal small intestine 

(duodenum and jejunum), and its secretion is regulated largely by food ingestion, 

primarily dietary carbohydrate and fat (Gault 2017). GIP is also known to be expressed 

in the CNS in rodents and pancreatic α-cells in rodents and humans (Finan et al. 2016). 
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The peptide consists of 42 amino acids and is derived from a 153 amino acid 

preprohormone precursor (proGIP) comprising a putative signal peptide (21 amino 

acids), N-terminal peptide (30 amino acids), GIP coding region (42 amino acids) and 

C-terminal peptide (60 amino acids) (Gault et al 2017). PC 1/3, which is expressed in 

K-cells, cleaves the 51 N-terminal residues and the 60 C-terminal residues of proGIP 

to for mature GIP (1-42) sequence. 

In a subset of K-cells and α-cells, the precursor can undergo alternative processing by 

PC2 resulting in a C-terminally truncated form of GIP known as GIP (1-30) which is 

shown to exhibit insulinotropic effects in mice comparable to GIP (1-42). 

GIP provokes an insulinotropic response via activation of GIPR which is abundantly 

expressed in β-cells. Apart from being expressed in the pancreas, GIPR mRNA has 

also been found in other tissue types such as adipose tissue, small intestine, adrenal 

cortex, lung, pituitary, heart, testis, bone and brain. In addition to its insulinotropic 

effects, GIP has been shown to promote proliferation and protect from apoptosis of 

pancreatic β-cells, inhibit hepatic glucose production, stimulate lipogenesis, enhance 

fatty acid and glucose uptake by adipocytes, and improve bone strength, as well as 

stimulate neuronal proliferation and protects from -amyloid plaque formation in the 

cortex (Gault et al. 2017). Limitation of GIP such as short plasma half-life and most 

importantly diminished incretin effects in T2D resulted in little enthusiasm for the 

promotion of GIP action for T2D therapies. 

However, several recent studies revealed that reduction of the high level of glucose 

using established glucose-lowering agents can restore GIP insulinotropic effects and 

therefore show that the peptide can still exhibit possible therapeutic potential (Gault 

et al. 2017). Moreover, a novel GIP/GLP-1 receptor agonist has recently been reported 
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to exhibit significantly better efficacy in glucose control and weight loss compared to 

dulaglutide (Frias et al.2018). 

1.11 Glucagon 

1.11.1 History of Glucagon 

Its existence of glucagon first came to light as a contaminant of insulin, in 1922, when 

Charles Kimball and John Murlina isolated a pancreatic fraction which exhibited 

hyperglycaemic effects after being injected in rabbits and dogs. They concluded that 

this pancreatic substance is secreted to oppose hypoglycaemia caused by insulin and 

named it glucagon (“the glucose agonist”). Nevertheless, the term “glucagon” did not 

enter general usage until much later (Plisetskaya et al. 1996). Bürger and colleagues 

reclassified the molecule as the “the hyperglycaemic-glycogenolytic (H–G) factor” 

after discovering glycogenolytic properties of glucagon on the liver in 1929.  Due to 

this  “factor”  persisted  in  the  pancreas  of  animals treated with a toxic glucose 

analogue, aloxan, (i.e.,  after the  selective destruction  of  insulin-producing cells),  

pancreatic  α-cells  and  similar  argentophile  cells  in  the  upper  two-thirds  of  the  

gastric mucosa  of  the  dog were  correctly  suggested  to be the source of  glucagon 

(Plisetskaya et al 1996). More than 20 years passed before a pure crystalized glucagon 

(from a pig) was reported by Behrens and colleagues in 1953 (Chabenne et al. 2010; 

Müller et al. 2017) and 4 years later Bromer and co-workers reported its primary amino 

acid structure (Plisetskaya et al. 1996). Following the development of the RIA, 

quantitative detection of glucagon found its medicinal application in the management 

of severe hypoglycaemia. The technique also resulted in a finding of a series of 

structurally related peptides which presented a troublesome interference with the 

initial assay.  The studies of the mechanism of glucagon biosynthesis were directed 
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towards a search of larger precursors and their conversion to native peptide due to the 

presence of this large glucagon-like immunoreactivity found in the plasma and 

pancreatic extracts of dogs and humans (Lefebvre 1983). In 1980 two molecules, 

glicentin (100 amino acid and oxyntomodulin were found to be responsible for the 

majority of intestinal glucagon-like immunoreactivity (Holst et al. 1997). 

Subsequently, it was discovered that glucagon and GLPs are all produced from a 

common precursor, now named proglucagon.  

In the 1970s Roger Unger used a newly developed radioimmunoassay, reported that 

diabetic individuals exhibited elevated levels of glucagon (Unger et al. 1970). This led 

to the conclusion that glucose fails to suppress glucagon action which could contribute 

to the development of hyperglycaemia and the development of diabetes in these 

patients. From 1970 to 1990, new roles of glucagon which fall beyond glucose 

metabolism were established including regulation of energy intake, stimulation of 

brown adipose tissue thermogenesis, suppression of gastric motility, activation of 

lipolysis and inhibition of lipid synthesis, and promote autophagy (Müller et al. 2017).  

1.11.2 Glucagon synthesis and secretion 

Glucagon is predominantly expressed in the pancreatic α-cells, but small amounts are 

also produced in intestinal L-cells and a subset of neurons in the nucleus tractus 

solitarius (NTS) of the brain stem (Drucker et al. 1988; Müller et al. 2017).  The 

proglucagon gene promoter region exhibits selective DNA control elements which are 

necessary for specific binding of distinct transcription factors enabling for α-cell-

specific expression of the molecule (Müller et al. 2017). Glucagon is cleaved from 

proglucagon by PC 2, the enzyme which is expressed in α-cells under normal 

conditions. It has been previously reported that extreme conditions, such as STZ 
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treatment, results in increased levels of immunoreactive PC1 in rat α-cells leading to 

increased synthesis of GLP-1 in these cells and consequently improving islet survival. 

(Nie et al. 2000).  

The secretion of glucagon is triggered under conditions of hypoglycaemia and 

subsequently decreases during hyperglycaemia. In humans, the mechanism of 

glucagon secretion is similar to that of insulin secretion from β-cells. However, β-cells 

are electrically inactive at basal glucose levels due to their open KATP channels and 

hyperpolarized membrane potential, and thus do not release insulin.  On the other 

hand, α-cells are active at a basal rate of glucose due to increased ATP/ADP ratio in 

these cells. This results in closure of most (but not all) KATP channels and a depolarized 

membrane potential that leads to opening of Na+ and Ca2+ (VDCC) channels. The 

subsequent Ca2+ and Na+ influx trigger the release of glucagon through exocytosis of 

glucagon containing secretory granules. Under conditions of high plasma glucose 

concentration, glucose enters α-cells via the GLUT1 transporters where it is 

metabolised via glycolysis and mitochondrial oxidative metabolism which 

subsequently results in further increase in the intracellular ATP/ADP ratio and closure 

of KATP channels leading to further depolarisation of the membrane and the 

depolarization-dependent inactivation of Na+ channels and VDCCs. Paracrine factors 

secreted from β-cells and pancreatic δ-cells are also responsible for the suppression of 

glucagon release due to their interaction with putative α-cell metabolic sensors (i.e., 

PASK and AMPK) (Gaisano et al. 2012). 

1.11.3 Mechanism of glucagon action 

Once glucagon binds to its receptor in the hepatocytes, it leads to activation of the Gs-

alpha catalytic subunit of the membrane-bound enzyme adenylate cyclase, which 
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catalyzes the conversion of ATP to cAMP, which subsequently activates intracellular 

kinase which activates several downstream signalling pathways: (i) glycogenolysis, 

(ii) gluconeogenesis, and (iii) ketogenesis. For glycogenolysis, subsequent 

phosphorylation of phosphorylase results in its activation leading to 

desphosphorylation of glycogen synthase and its inactivation. Thus, glycogen 

formation is inhibited, and glycogen breakdown stimulated. In the case of 

gluconeogenesis, the initiation of the pathway is more complex and involves several 

steps. Glucagon stimulates the liver to uptake amino acids, but its main effect is 

intrahepatic which involves the production of phosphoenolpyruvate and suppression 

of its disposal by pyruvate kinase (Gosmanov et al. 2000). 

Glucagon is the primary hormone in the induction of fatty acid oxidation and 

ketogenesis (Foster et al. 1984). During the periods of fasting, inhibition of glycolysis 

results in activation of glycogenolysis due to reduced activity of glycolytic enzymes 

and reduced activity of acetyl CoA carboxylase which subsequently leads to the 

reduction of malonyl-CoA concentration. The decreasing concentration of 

intracellular malonyl-CoA results in activation of mitochondrial transport system 

responsible for ß-oxidation of fatty acids leading to raised levels of acetyl CoA which 

stimulate ketogenesis (Barnett et al. 2003). 

1.11.4 Role of glucagon in the pathology of diabetes 

Glucagon is known to exhibit lipolytic effect and the ability to promote the reduction 

of weight via modulation of calories intake and energy expenditure. Thus, glucagon 

receptor agonism has recently become a potentially attractive target for 

pharmacological weight management. On the other hand, glucagon also has 

diabetogenic nature due to its potent ability to stimulate glucose production by the 
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liver. Several lines of evidence show that elevated glucagon levels play a 

pathophysiological role in the development of chronic hyperglycemia (Müller et al. 

2017). In 1975 Unger and Orci suggested that that diabetes is a bihormonal disease 

caused by both insulin abnormality and glucagon excess (Unger et al. 1975; Unger 

1978).  Indeed, in both T1D and T2D, there are inappropriately high levels of plasma 

glucagon which correlates with hyperglycaemia even when plasma insulin 

concentration is similar to normal control. Plasma fasting levels of glucagon are also 

shown to be increased in patients with diabetes (Kulina et al. 2016). 

Moreover, when somatostatin was administrated to healthy fasting individuals, mild 

suppression of insulin and glucagon followed by marginal hyperglycaemia was 

observed. However, the additional minimal dose of glucagon to somatostatin 

normalised basal glucagon levels and resulted in significant and sustained 

hyperglycemia, mimicking the scenario seen in T2D (Lins et al. 1983). Exaggerated 

glucagon response to ingested amino acids and therefore high hepatic glucagon 

production is also observed in patients with T2D compared to nondiabetic controls 

(Kulina et al. 2016). 

Other studies revealed that nonsuppression of glucagon after meals contributes to 

postprandial hyperglycemia in patients with diabetes. This indicates that glucagon 

excess is the key factor in the pathogenesis of the condition and inhibition of glucagon 

action might improve hyperglycemia in diabetic individuals (Shah et al. 2000; Unger 

et al. 2012; Kulina et al. 2016; Müller et al. 2017). 
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1.12 Evolution of glucagon-like sequences and their receptors 

1.12.1 The Glucagon-like subfamily  

Glucagon, GLP-1 and GIP are glucagon-like sequences which share sequence 

similarity with a small number of other consists of structurally related brain-gut short 

peptides hormones belonging to the secretin gene superfamily (Figure 1.10) (Irwin 

2010). These hormones are produced in the intestine, pancreas, and the central and 

peripheral nervous systems and act as ligands for the class B1 G protein-coupled 

receptors (GPCR superfamily) to exhibit various biological functions such as 

neurotransmission.  

In mammals, currently there are 10 known peptide members of the secretin 

superfamily which are further divided into two major subfamilies: i) PACAP-like 

subfamily which includes PACAB, GH-releasing hormone (GHRH, also known as 

growth-hormone-releasing factor, GRF), PACAP-related peptide (PRP also called 

GHRG-like peptide, GHRH-LP), vasoactive intestinal polypeptide (VIP), peptide 

histidine methionine or peptide histidine isoleucine (PHI/PHM) and secretin (SCT) 

and ii) glucagon-like subfamily which includes glucagon (GCG), GLP-1, GLP-2 and 

GIP (Sherwood et al. 2000; Cardoso et al. 2010; Moody et al. 2011; Takei 2015; Sekar 

et al. 2017). Other non-mammalian important members include exendin-3 and -4 

helospectin-1 and -2, helodermin isolated from lizard (Heloderma) venom (Figure 

1.10). 
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Figure 1.10 Amino acid sequences of the members of the superfamily of secretin/PACAP/ glucagon peptides. Residues similar to those of glucagon 
in the same position are represented in blue. The values in parentheses show % sequence identity with glucagon.
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In mammals, six genes have been identified to encode glucagon-like sequences. This 

is due to some of these genes such as GCG and VIP encode three (glucagon, GLP-1 

and -2) and two (PMH/PHI and VIP) bioactive peptides respectively, whereas the 

ADCYAP, GHRH (GRF), SCT, and GIP genes encode only a single bioactive peptides: 

PACAP, GRF, secretin and GIP respectively (Sherwood et al. 2000; Irwin 2010). 

Additionally, ADCYAP gene also encodes a PRP, the function of which remains an 

enigma to date (Tam et al. 2007). These peptides are suggested to have evolved from 

a common ancestor exon via exon and gene/chromosome duplication events in the 

chordate radiation (Figure 1.11) (Cardoso et al. 2010). At least one gene duplication 

event gave rise to the novel exendin family which has been identified only in a few 

lizards (Gila monster) (Sherwood et al. 2000).  

 

 

Figure 1.11 Evolutionary model of PACAP-like and Glucagon members. Boxes 

represent exons and lines introns. Coding exons are indicated by peptide abbreviations 

(Adapted from Cardoso et al. 2010). 
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Phylogenetic hypothesis previously suggested that the ADCYAP and GHRH were 

evolved via gene duplication specific to the mammalian lineage. However, more 

recent evidence suggests that these genes can be found in the genomes of diverse 

vertebrates and therefore should be regarded as two separate genes in all vertebrate 

species (Tam et al. 2007; Irwin 2010). 

Despite being the first hormone discovered secretin’s evolutionary origin remains 

unresolved. It is known that secretin sequence exhibits moderate similarity in 

tetrapods, however, in mammals, it is highly conserved (81.5–96.3% identity). 

Therefore, this suggests a rapid evolution of SCT along the tetrapod lineage until the 

mammals began to diverge resulting in only 9.3–51.9% secretin peptide sequence 

similarity compared to mammalian secretin. Interestingly, even though SCT has 

already emerged before the divergence of osteichthyans, it was lost in fish and retained 

only in land vertebrates. The secretin-like receptor has been identified in both 

actinopterygian fish (zebrafish) and sarcopterygian fish (lungfish) however in 

zebrafish it is demonstrated to be inactive (Tam et al. 2014). Although secretin was 

originally considered to be a gastrointestinal peptide, it has also been found in the 

gonads, brain, and developing pancreas (Sherwood et al. 2000).  

Unlike SCT, the genes encoding GCG, GIP, VIP, have been describing in both fish 

and mammalian genomes. The current hypothesis suggests that the proglucagon and 

GIP arose during one of the two whole genome duplications (2R theory) events that 

took place in the early vertebrate evolution. Indeed, novel software tools such as 

Synteny analyses and reconstruction of phylogeny and ancestral genomes confirmed 

that most peptide hormones and receptor families in many vertebrate and invertebrate 

species evolved via two rounds of whole genome duplication and local duplications 

before and after 2R. Moreover, these evolutionary events were followed by 
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modification and loss of gene sequences. Hormone/receptor orthologues exhibit 

specific alterations in their sequences which may guide their selective interactions and 

discriminate against paralogous hormone/receptors (Park et al. 2013).  

The sequence structures of the secretin superfamily members are highly conserved 

with anywhere from 21% to 48% amino acid identity with glucagon sequence (Figure 

1.10). According to the phylogenetic analysis, PACAP, VIP and glucagon appeared to 

be the most conserved members of the secretin superfamily, whereas PRP, GLP2, and 

SCT are demonstrated to be most divergent. The elements of a secondary structure 

belonging to these peptide hormones form a random N-terminal and a C-terminal 

alpha helix. Notably, although exhibiting a high degree of sequence homology, the 

function of these peptide hormones differ significantly, even in those that are co-

encoded within the same precursor (such as GLP-1 and glucagon derived from 

proglucagon). 

1.12.2 Evolution of glucagon-like sequences 

Glucagon, GLP-1 and GLP-2 are the main products of the invertebrate proglucagon 

gene, the expression of which is tissue-specific and vary between species. The 

sequences of the proglucagon peptide trio display the structural similarity but regulate 

distinct physiological processes.  

Glucagon and GLP-1 peptides have been isolated from various vertebrate species 

(including different species of fish (Table 1.1)), whereas GLP-2 sequence has only 

been purified from mammalian species. Phylogenetic analysis has suggested that 

sequence of GLP-2 was subject of rapid evolution on the early mammalian lineage 

acquiring a role of a nutrient-responsive growth factor that stimulates intestinal 

epithelial cells growth. Due to having highly conserved nature GLP-2 is proposed to 
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be produced and function in the intestine of most vertebrates. Glucagon is the counter-

regulatory hormone of insulin that has a main role to maintain blood glucose levels 

during fasting by inducing the liver to produce glucose, whereas the role of GLP-1 is 

to decrease hyperglycaemia by stimulating the secretion of insulin. Together, these 

peptides are suggested to have a common evolutionary origin descending from an 

ancient exon that arose one billion years ago with the functions evolved separately 

following the divergence of the sequences (Figure 1.12) (Ng 2010).  

 

 

Figure 1. 12 An evolutionary scheme of proglucagon-derived peptides in vertebrates. 

Unknown or unclear events are represented by dotted lines. The phylogenetic timeline 

for the events are not to scale (Adapted from Ng et al. 2010). 

 

Duplication of exon within the ancestral glucagon presumably occurred next, resulting 

in GLPs that subsequently diverged into GLP-1 and GLP-2 about ∼700 million years 

ago (Figure 1.12). The primary structures of GLP-1 and GLP-2 were deduced from 



61 
 

cDNA sequences before their physiological role was discovered (Plisetskaya et al. 

1996).  

It appears that intestinal peptides with gastrointestinal hormone activities arose early 

in vertebrate evolution (class Agnatha). The glucagon-like molecule is also present in 

extracts of some invertebrate chordates, including both tunicates and cephalochordates 

(Norris et al. 2013).  

Proglucagon-derived peptides are speculated to be subject to the genome and gene 

duplication events, which is responsible for the changes in the structure of the 

vertebrate sequences observed today.  

In mammals, birds and reptiles, only a single set consisting of three proglucagon-

derive hormones are known to exist (Figure 1.12). However, amphibian and some fish 

(jawless fish and bony fish) exhibit multiple proglucagon-related sequences which are 

represented by multiple genes or additional peptide sequences encoded within the gene 

(Figure 1.12) (Ng et al. 2010). As an example, proglucagon genes of some frog species 

encode five glucagon-like sequences, whereas bony fish such as zebrafish, have two 

proglucagon genes, one of which reflects the standard scenario of three glucagon-like 

peptides and the second gene only encodes glucagon and GLP-1.   

This variation results in multiple proglucagon mRNA being produced in non-

mammalian species which may also be due to alternative splicing process which is 

known to occur in fish, chicken and reptiles such as Gila monster. 

Comparison of the sequences of the proglucagon genes between multiple species 

revealed conserved coding sequences which correlate with conservation of function. 

Different rates of evolution could be linked to greater levels of divergent sequences 

resulting in alteration of function of the peptides in specific species. This can be 
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observed in Hystricognath rodents (guinea pig) in which glucagon sequence 

underwent evolutionary changes, such as multiple substitutions, resulting in hormone 

with attenuated function (Irwin et al. 2010).  

Mammalian GLP-1 sequence is shown to be highly conserved within the species 

except for the monotremes (platypus and echidnas). A recent study has shown that in 

the monotremes a single GCG encodes a GLP-1 peptide with two functions, one in 

venom and the other in the gut (Tsend-Ayush et al. 2016). In other vertebrates (fish 

and amphibians) a greater variation in sequences is reported. Interestingly, the 

function of GLP-1 is not conserved. In fish, the effects of GLP-1 resembles the actions 

of glucagon rather than classical incretin effects observed in mammals. (Sherwood et 

al. 2000; Irwin 2010; Ng 2010; Irwin 2012).  The inability of GLP-1 to function as an 

incretin hormone in fish is suggested to be due to the redundancy of GLP-1 as a result 

of duplicated sequences found in these species. 

1.12.3 Evolution of receptors for glucagon subfamily 

Four cognate receptors (Gcgr, Glp1r, Glp2r and Gipr) belonging to the Secretin G-

protein coupled receptor (GPCR) has been characterised for the mammalian glucagon-

like peptides.  

Structural features of this family of receptors include 7 transmembrane domains 

(TMD) and a long extracellular N-terminal domain (ECD) with 6 conserved cysteine 

residues responsible for peptide binding and receptor activation and signalling. All of 

the peptide ligands bind the ECD with their C-terminal a helix. The C terminus of the 

peptide initiates recognition with the ECD of the receptor, which allows the peptide’s 

N terminus to bind the TMD ligand-binding pocket subsequently activating the 

receptor and prompting downstream signalling pathways (de Graaf et al. 2017).  
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As opposed to the tissue-specific expression of the glucagon-like hormone precursors 

in mammals, the receptors exhibit a widespread tissue distribution in vertebrates 

(Cardoso et al. 2018). 

In addition to the aforementioned mammalian receptor members, the gene encoding 

GCG-related peptide receptor (Grpr), as well as the gene for its ligand, have been 

found in representative tetrapod taxa such as anole lizard, chicken, and Xenopus, and 

in lampreys and teleosts including medaka, fugu, tetraodon, and stickleback. However, 

these genes are known to be absent in mammals and zebrafish (Park et al. 2013; 

Cardoso et al. 2018). 

In the case of incretin receptors, most of the characterisation studies have been 

performed in mammalian species with only a few nonmammalian receptors have been 

functionally described. Similarly, Gcgr from a small number of fish species and a frog 

have been isolated and partially characterized revealing a close relation to mammalian 

glucagon receptors. Moreover, piscine Gipr-encoding gene shows similarity to that of 

mammals (Irwin 2010).  

Interestingly, Glp1r-encoding gene has been known to be missing from the fish 

genomic sequence. However, a recent gene analysis has suggested that lampreys are 

the only fish in which putative glp1r gene persisted. Moreover, in teleost fish, GLP-1 

does not exhibit incretin effects.  Instead, it acts similarly to glucagon stimulating the 

production of glucose by hepatocytes, activating receptors which are more closely 

related to mammalian Gcgr genes rather than to Glp1r. Glp1r has been proposed to be 

encoded by a duplicate copy of the Gcgr due to fish-specific genome duplication thus 

GLP-1 molecule has gained new glucagon-like biological effects. 

 



64 
 

1.13 Structure of Endocrine Pancreas in Fish 

There are 5 types of pancreatic islet morphology in vertebrates: (I) cyclostome type, 

(II) primitive gnathostome type, (III) actinopterygian type, (IV) lungfish type, and (V) 

tetrapod type. Mammals, birds, amphibians and reptiles have distinct pancreatic 

organs consisting of both exocrine compartments and islet tissues. The most primitive 

anatomical arrangement of the endocrine pancreas belongs to lampreys 

(agnathas/jawless fish) (Figure 1.13). In these ancient fish species, the follicles of 

Langerhans are partially embedded in the gut lining. In contrast, other jawless fishes, 

the primitive hagfishes, exhibit a definite endocrine pancreatic organ. Glucagon-

immunoreactive cells are not found the islet organ of agnathas and only exist in the 

gut mucosa in these species. GLP-1 immunopositive cells are known to be located in 

the intestine of juvenile and up upstream migrant marine lamprey (Plisetskaya et al. 

1996). 

Cartilaginous fishes (sharks, rays, skates and chimaeras) and Latimeria (coelacanth) 

are (Figure 1.13) known to have the primitive gnathostome type of endocrine pancreas. 

It has been reported that in the pancreas (and in gut) of ratfish (chimaera) two types of 

cells exhibiting distinct glucagon immunoreactivity were observed, which strongly 

suggested the existence of two different  populations of glucagon  – one closely related 

to glucagon  and another possibly close to oxyntomodulin (due to reactivity with C- 

and N-terminally directed anti-glucagon sera). In all other fishes, including 

elasmobranchs (sharks, rays and skates) and actinopterygians (ray-finned fishes), the 

endocrine pancreas produces both glucagon and GLP-1 (Plisetskaya et al. 1996). 

The pancreas of many teleosts (Figure 1.14) exhibits a unique arrangement represented 

by almost complete separation of endocrine from exocrine compartments. (Plisetskaya 
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et al. 1966). The piscine endocrine tissue cells are condensed into a few large rounded 

bodies called “the principal islet”, surrounded by only a thin rim of exocrine tissue, 

thus lack an acinar (exocrine) pancreas (Norris et al. 2013). In addition to these islets 

a few smaller ones are scattered in the mesentery (Khanna et al. 1971). The collection 

of islet tissues is so-called Brockmann body, named after Heinrich Brockmann, who 

first described an endocrine organ in sculpin (Cottus scorpius) and cod (Gadus 

cullarius) in 1846. Brockmann bodies are anatomically located close to the gall 

bladder duct and are visible to the naked eye as whitish or pinkish round structures 

(Plisetskaya et al. 1996). Indeed, this structural uniqueness greatly facilitates isolation 

of high purity fish pancreatic hormones due to minimal risk of contamination with 

endocrine tissue.  

1.14 Piscine Proglucagon-derived Peptides: Discovery and Scientific Value 

Fish are valuable experimental models which have made significant contributions to 

the research of pancreatic hormones and other gastrointestinal peptides. The first 

piscine (tuna, Thunnus germo, and anglerfish, Lophius piscatorius) hyperglycaemic 

substances were discovered simultaneously by Mialhe, and Audy and colleagues in 

1952. A few years later, the hyperglycaemic effects of extracts isolated from the 

Brockmann bodies of tuna (Thunnus thymus) were connected to the action of 

glucagon. The first attempted to purify and characterise anglerfish proglucagon 

peptide was made by Trakatellis and colleagues in early 1970s (Lefebvre 1983). The 

endocrine parenchyma of anglerfish became an organ of choice for studying glucagon 

biosynthesis as well as investigating the metabolism of the endocrine pancreas. 

Anglerfish islets were used for investigation of glucagon-like immunoreactivity found 

in the plasma and pancreatic extracts. Lund and co-workers first cloned proglucagon 

cDNA from anglerfish islets in the 1980s and following its sequencing, mammalian 
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version was determined from cattle, hamster, rat and human in the 1980s (Kastin 

2013). The proglucagon sequence was found encode three related peptides: glucagon, 

GLP-1 and -2) glucagon-related peptides. The first native GLP-1 to be isolated from 

any source coming from the pancreas of the channel catfish (Zctulurus punctutus) 

(Table 1.1) (Andrews et al.  1985; Plisetskaya et al. 1996).   

1.15 Consequences of fish-specific evolution on glucagon-like peptides 

1.15.1 Agnathas 

The Agnatha, or jawless fish, represent the first vertebrates whose line of evolution 

diverged from jawed vertebrates (gnathostomes) about 550-500 million years ago 

(Figure 1.13) (Woods et al. 2005). The fossil record suggests that the Agnatha were 

numerous during the Silurian/Devonian period, however only one class called 

Cyclostomata whose members include the extant lampreys (Petromyzontiformes) and 

hagfish (Myxinoformes) have survived to date and are known to be the oldest living 

vertebrates (Conlon et al. 1993, Kuraku et al. 2006, Ng et al. 2010). The divergence 

of lampreys and hagfish occurred 470-390 million years ago. The taxonomic analysis 

suggests that the lampreys are more closely related to gnathostomes than either is to 

hagfishes (Conlon et al. 1993). At present, lampreys are divided into 3 families: the 

Petromyzontidae (34 species), the Mordaciidae (3 species) and Geotriidae (1 species). 

The appearance characteristics of lampreys are very primitive, and their endocrine 

pancreas can reflect the earliest state of islet hormones evolution and development in 

the vertebrates (Xu et al. 2016). The endocrine elements in these animals originate 

from intestinal and bile-duct epithelia and are represented by an aggregate of 

submucosal islets (Youson et al. 2000). Previously, glucagon and GLP-1 peptides 

from intestines parasitic phase Petromyzon marinus (sea lamprey) (Table 1.1) (Conlon 
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et al. 1993) and glucagon from intestines of Lampetra fluviatilis (river lamprey) 

(Conlon et al. 1995) well as two forms of glucagon from lamprey Geotria australis 

(Wang et al. 1999) were purified and characterised. 

 

Figure 1.13 A simplified phylogenetic tree of vertebrates. Yellow circles represent the 

whole-genome duplication (WGD) events.  

 

Indeed, lampreys possess the most ancient glucagon-like system among the 

vertebrates. The genome of these fish species contains two unique proglucagons: i) 

proglucagon I encoding glucagon, GLP-1 and GLP-2 and ii) proglucagon II which 

only encodes glucagon and GLP-2 (Figure 1.12) (TG et al. 2010). The origin of the 

peptide trio is suggested to occur before the divergence of jawed and jawless 

vertebrates as glucagon sequences isolated from Petromyzon marinus and Geotria 

australis glucagons differ by six amino acid residues (Wang et al. 1999). This may 

also reflect the divergence event between Petromyzontidae and Geotriidae about 220–

280 million years ago). A large number of chromosomes suggests that genome 
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duplication event has occurred early in the lamprey lineage but before the divergence 

of modern lampreys. 

1.15.2 Chondrichthyes 

Chondrichthyes (cartilaginous fish) represent the oldest group of jawed vertebrates 

that diverged from a common ancestor of Osteichthyes (bony vertebrates) about 440 

million years ago, near the Devonian–Silurian boundary (Figure 1.13) (Inoue et al. 

2010; Amaral et al. 2018). The early Devonian period is associated with the second 

duplication event that occurred after the split of lampreys but before the split of 

cartilaginous fish from the main vertebrate lineage (Hallbook et al. 1998). 

The extant cartilaginous fishes are divided into two subclasses: Elasmobranchii (shark, 

skates and rays) and Holocephali (chimaeras). The Elasmobranchii group represents 

the most diverse class of large predatory fishes (about 1200 species) (Amaral et al. 

2018). The modern holocephalans are marine fishes found in the world’s oceans 

except for the Arctic and are represented by only 39 species (Inoue et al. 2010). These 

species represent the first vertebrate in evolution to develop a pancreas containing the 

4 kinds of islets hormones found in mammals (Conlon et al. 1994). Currently, the 

sequence of a single copy proglucagon peptide is known for the small number of 

cartilaginous fishes including the electric ray (Torpedomar morata), dogfish  

(Scyliorhinus canicula), Pacific ratfish (Hydrolagus colliei), and elephant-fish 

(Callorhynchus milii) (Table 1.1). It has been suggested that the duplicate proglucagon 

gene is either lost or silenced in the cartilaginous lineage (Ng et al. 2010). 

Proglucagon gene from cartilaginous fish was recently predicted to produces 3 GLPs; 

in addition to glucagon, GLP-1 and GLP-2, a novel glucagon-like peptide, named 

GLP-3 was identified in elephant shark and the elasmobranch Rhincodon typus (whale 
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shark). Previously, only a single GLP-1 was identified in extracts of pancreata in 

Scyliorinus canicula (dogfish) (Conlon et al. 1994) Hydrolagus colliei (and ratfish) 

(Conlon et al. 1989). It has been suggested that GLP-3 evolved in the early vertebrate, 

before the origin of cartilaginous fish and could be lost from the genome of the 

ancestor of tetrapods and Actinopterygii (ray-finned fish) (Irwin et al. 2018).0 

1.15.3 Osteichthyes 

Osteichthyes (bony vertebrates) is a group consisting of Actinopterygii fishes (ray-

finned) and lobe-finned fishes plus Sarcopterygii (tetrapods) (Figure 1.13). 

Actinopterygii fishes are the habitats of aquatic environments over the world, from 

deep ocean trenches to high mountain streams, and thrive in extreme acidic, subzero, 

hypersaline, hypoxic, temporary and fast-flowing water conditions (Hughes et al. 

2018). 

Ray-finned fishes diverged early, about 476 to 423 million years ago, from the main 

stem of the phylogeny (Sarcopterygii-Actinopterygii split). 

The phylogenetically ancient Actinopterygii include 18 living species of 

Polypteriformes (reedfishes), 30 species of sturgeons and paddlefishes 

(Acipenseriformes) 7 species of gars (Lepisosteiformes), and a single species of 

bowfin (Amiiformes) (Broughton et al. 2013). 

Previously, glucagon-like peptides were isolated from the endocrine pancreas of Amia 

calva (bowfin) (glucagon and GLP-1) (Table 1.1) (Conlon et al. 1993b), Polyodon 

spathula (paddlefish) (two glucagon peptides and GLP-1) (Nguyen et al. 1994), 

Lepisosteus spatula (alligator gar) (glucagon and GLP-1). The pancreatic extract of 

alligator gar also contained oxyntomodulin whose primary structures was determined 

(Pollock et al. 1988). 
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The third, teleost specific, genome duplication occurred approximately 350 million 

years ago early in the ray-finned lineage before teleost diversification (Figure 14). 

Teleostei appeared about 284 million years ago and included at least 30,000 living 

species inhabiting diverse environments with different access to nutrients and life 

histories. 

 

Figure 1.14 A simplified phylogenetic tree focusing on the evolution of teleost fishes 

(Glasauer et al. 2014). Yellow circles represent the whole-genome duplication (WGD) 

events. 

 

The systematic evaluation of the developmentally important and well-conserved Hox 

gene clusters supported the theory of the teleost-specific whole genome duplication 

event. The existence of many duplicated Hox genes was identified in zebrafish (7 Hox 

clusters) and pufferfish (6 Hox clusters) as well as in most basal extant groups of 

teleost fishes the Elopomorpha (including eels and tarpons) and Osteoglossomorpha 



71 
 

(including bony tongues and elephant-fish) to the already known ones from tetrapods. 

Markedly, the modern eels (European and Japanese eel) are presently the only fishes 

in which the complete set of the original 8 Hox clusters has been identified. Whole-

genome sequencing of some fish genomes has also provided conclusive evidence for 

at least one teleost-specific genome duplication event (Glasauer et al. 2014). 

Three major teleost stem lineages, Elopomorpha, Osteoglossomorpha and 

Clupeocephala, diverged in the Middle Permian. Through the Late Permian and Early 

Triassic, there are few cladogenic events, but in the Late Triassic, crown groups 

Elopomorpha, Osteoglossomorpha, Otomorpha and Euteleosteomorpha all begin to 

diversify (Broughton et al. 2013). 

Phylogenetic analysis of the proglucagon coding sequence revealed that most teleost 

proglucagon genes separate into two groups: gcga and gcgb which in some teleost fish 

have differing coding potential and are thought to occur due to fish-specific genome 

duplication suggesting that the divergence between gcga and gcgb preceded the 

radiation of teleost fish (Irwin et al. 2018). 

Multiple proglucagon gene copies are found in several bony fish: rainbow trout 

(Oncorhynchus mykiss), anglerfish, sculpin (Cottus scorpius) and eel (Anguilla 

anguilla) as well as fugu (Takifugu rubripes), pufferfish (Tetraodon nigroviridis), 

medaka (Orzyzias latipes) and stickleback (Gasterosteus aculeatus). In these species 

where one proglucagon encodes for all three derived peptides, and the other encodes 

for glucagon and GLP-1 (Ng et al. 2010). Moreover, additional and relatively recent 

duplication events occurred at the base of Salmonifarms 50–80 million years ago 

(Berthelot et al. 2014) and in a closely related ancestor of the common carp 5.6–11.3 

million years ago (Figure 14) (Glasauer et al. 2014). Rediploidization or gene 
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fractionation (the loss of duplicated genes after whole genome duplication) by 

mutations and deletions to return to a mostly diploid state, is an ongoing process in the 

species of the Salmonidae family (rainbow trout) genome which represents a particular 

interest for the research (Bobe et al. 2016). 

1.16 Hypothesis:  

Glucagon-related peptides (glucagon, GLP-1, oxyntomodulin and GIP) isolated from 

various fish ranging from phylogenetically ancient to recently evolved species, may 

exhibit unique sequence substitutions allowing them to activate multiple GPCRs for 

glucagon, GLP-1 and GIP located in the mammalian pancreas which may lead to a 

discovery of a therapeutically exploitable unimolecular multi-agonist with the 

potential to become an agent for improvement of T2D treatment. 

1.17 Aims:  

The primary aims of this thesis are to assess of the insulinotropic and 

antihyperglycaemic potential of fish glucagon-related peptides in vitro and in vivo, to 

identify their target receptors, and to identify the most promising molecules to serve 

as templates for the development of long-acting fish glucagon-derived analogues. 

1.18 Objectives: 

1. To purify and perform in vitro and in vivo studies of glucagon-related peptides from 

sea lamprey, dogfish, ratfish, paddlefish, bowfin, zebrafish and trout (Figure 1.15).  

2. To delineate which hormone receptors and responses are achieved by the fish 

glucagon-derived peptides and the mechanisms underlying their actions using receptor 

transfected and receptor KO cells. 
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3. To examine in vivo metabolic effects of native fish peptides in normal mice to 

identify the most promising molecules the sequences could be used as templates for 

further modifications. 

4. To design and test synthetic analogues of these molecules with improved plasma 

stability and explore their antidiabetic properties using various cell lines as well as 

normal, genetically modified and high fat fed mice models. 

1.19 Plan of investigation 

A brief plan of investigation includes purification of crude synthetic peptides, 

confirmation of molecular masses and in vitro and in vivo biological testing in order 

to select the most promising compound for further studies (Figure 1.15). 

. 

 

Figure 1.15 Plan of Investigation 
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1.20 Why specific fish glucagon-related peptides were selected for the study 

The sequences of the synthetic peptides used in this study are based on the structures 

of glucagon, oxyntomodulin, GLP-1 and GIP isolated from fish species that occupy 

different positions in the vertebrate evolution including the primitive jawless fish (sea 

lamprey), two cartilaginous fish (dogfish and ratfish) which represent the first jawed 

vertebrates, two early diverging ray-finned (paddlefish and bowfin), and two recently 

evolved teleost species (zebrafish and trout). The structure-function studies described 

in this thesis are based on the sequence differences between the selected fish glucagon-

related peptides and the corresponding human peptides (Figure 1.16) as well as on the 

core sequence similarities between each fish peptide sequence and human glucagon, 

GLP-1 and GIP.   

 

Human GLP-1           HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR-NH2 

Lamprey GLP-1         HADGTFTNDMTSYLDAKAARDFVSWLARSDKS  
Dogfish GLP-1         HAEGTYTSDVDSLSDYFKAKRFVDSLKSY 
Ratfish GLP-1         HADGIYTSDVASLTDYLKSKRFVESLSNYNRKQNDRRM 
Paddlefish GLP-1      HADGTYTSDASSFLQEQAARDFISWLKKGQ  
Bowfin GLP-1          YADAPYISDVYSYLQDQVAKKWLKSGQDRRE 
Trout GLP-1           HADGTYTSDVSTYLQDQAAKDFVSWLKSGRA 
 
Human Glucagon        HSQGTFTSDYSKYLDSRRAQDFVQWLMNT 
Lamprey glucagon      HSEGTFTSDYSKYLENKQAKDFVRWLMNA 
Dogfish oxyntomodulin HSEGTFTSDYSKYMDNRRAKDFVQWLMSTKRNG 
Ratfish oxyntomodulin HTDGIFSSDYSKYLDNRRTKDFVQWLLSTKRNGANT 
Paddlefish glucagon   HSQGMFTNDYSKYLEEKRAKEFVEWLKNGKS 
Trout glucagon        HSEGTFSNDYSKYQLERMAQDFVQWLMNS  
 

Human GIP             YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 
Zebrofish GIP         YAESTIASDISKIVDSMVQKNFVNFLLNQRE           
 

Figure 1.16 Comparison of fish glucagon-derived sequences with the corresponding 
human peptides. Structural differences are highlighted in yellow. 
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Table 1.1 Glucagon, GLP-1 and oxyntomodulin peptides and proglucagon cDNA 

isolated from fish.  

 Glucagon GLP-1 OXM Proglucagon References 

Agnatha      

Pouched lamprey 

(G. australis) 

Intestine (29) 

I, II  

   (Andoh et al. 2000) 

Sea lamprey 

(P.marinus)  

Intestine  

(29)  

Intestine 

(32) 

 Intestine I, II 

(cDNA) 

(Conlon et al. 

1993a; Irwin et al. 

1999)  

River lamprey 

(L.fluviatilis)  

Intestine (29)    (Conlon et al. 

1995) 

Cartilaginous      

Dogfish 

(S. canicula)  

Pancreas 

(29)  

Intestine  

(29)  

Pancreas 

(29) 

Intestine 

(29) 

Pancreas 

(33) 

 (Conlon et al. 1987 

and 1994) 

Ray (T. 

marmorata)  

Pancreas 

(29) 

   (Conlon et al. 

1985) 

Pacific ratfish  

(H. colliei) 

 Pancreas 

(38, 35) 

Pancreas 

(36) 

 (Conlon et al. 

1989) 

Elephant shark 

(C.milii)  

Pancreas 

(29) 

   (Berks et al. 1989) 

Ray-finned       

Alligator gar 

(L.spatula ) 

Pancreas  

(29, 35) 

Pancreas 

(34) 

  (Pollock et al. 1988 

American eel  

(A. rostrata)  

 Pancreas 

(30) 

  (Conlon et al. 

1991) 

European eel  

(A. anguilla) 

Pancreas (29, 

35) 

   (Conlon et al. 

1988) 

Anglerfish 

(L. americanus)  

Pancreas 

(29) 

Pancreas 

(31) 

 Pancreas a, b 

(cDNA) 

(Lund et al. 1982 

and 1983; Andrews 

et al. 1986; Nichols 

et al. 1988)  
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Coho salmon  

(O. kisutch) 

Pancreas 

(29) 

Pancreas 

(31) 

  (Plisetskaya et al. 

1986)  

Channel catfish 

(I.punctata)  

Pancreas 

(29) 

Pancreas 

(34) 

  (Andrews et al. 

1985)  

Daddy sculpin  

(C. scorpius)  

Pancreas 

(29) 

Pancreas 

(31) 

  Conlon et al. 1987; 

Cutfield, 1993)  

Bowfin (A. calva)  Pancreas 

(29) 

Pancreas 

(31) 

  (Conlon et al. 

1993b) 

Bigeye tuna 

(T.obesus) 

Pancreas 

(29) 

   Navarro et al. 1991 

Flounder (P. jlesus)  Pancreas 

(29) 

   (Conlon et al. 

1987) 

Paddlefish 

(P.spathula) 

Pancreas 

(29) 

Pancreas 

(31) 

  Nguyen et al. 1994 

Kaluga sturgeon 

(H. dauricus)  

Pancreas (29, 

34, 35) 

   Andoh et al. 2000) 

Rainbow trout 

 (O. mykiss)  

 

cDNA (29) cDNA 

(31) 

 Intestine (a) 

Pancreas (b) 

(cDNA) 

Irwin and Wong, 

1995) 

Goldfish  

(C. auratus)  

   Intestine 

(cDNA) 

(Yuen et al. 1997)  

Ya-fish 

(S. prenanti) 

   Intestine  

(cDNA) 

Lin et al. 2015 

Copper rockfish 

(S.caurinus)  

 

Pancreas 

(29) 

Pancreas 

(31, 34) 

 Intestine and 

brain (a, b) 

(cDNA) 

(Busby and 

Mommsen,  

2016)  

 

The length (a.a) of the isolated peptides, proglucagon isoforms (a, b or I, II) and tissue 

of origin are indicated (Cardoso et al. 2018).  
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2.1 Materials 

2.1.1 Chemical Reagents 

Ultrapure water used in the experiments was obtained from the Elga PURELAB Ultra 

system (Elga, Celbridge, Ireland) with the purity of 18.2 MΩ-cm. All the chemicals 

used in the thesis, as well as suppliers’ names are listed in Table 2.1. 

2.1.2 Peptides  

Synthetic lamprey glucagon, dogfish oxyntomodulin, ratfish oxyntomodulin, 

paddlefish glucagon, trout glucagon, lamprey GLP-1, dogfish GLP-1, ratfish GLP-1, 

paddlefish GLP-1, bowfin GLP-1, zebrafish GIP and exendin-4 peptides were 

supplied by EZBiolab Inc. (Carmel, IN, USA) in a crude form, whilst four crude 

synthetic fish peptide analogues derived from modified sequences of lamprey and 

paddlefish glucagon and GLP-1 (1. [D-Ser2]-lamprey glucagon-Lys30-gamma-

glutamyl-pal, 2. [D-Ala2]-lamprey GLP-1-Lys31gamma-glutamyl-pal, 3. [D-Ser2]-

paddlefish glucagon-Lys30-gamma-glutamyl-pal and 4. [D-Ala2]-paddlefish GLP-1-

Lys28gamma-glutamyl-pal) were purchased from Synpeptide Co. Ltd. (Shanghai, 

China). The fish analogues contained a substitution of either L-Ser for D-Ser or L-Ala 

for D-Ala at the position 2. Additionally, a gamma-glutamyl with palmitate adjunct 

was added to the side-chains of the lysine residues. The remaining synthetic peptides: 

human glucagon, human GLP-1, human oxyntomodulin, human GIP, liraglutide and 

trout GLP-1 were obtained from Synpeptide Co. Ltd. (Shanghai, China) at >95% 

purity which was confirmed by reversed-phase HPLC and MALDI-TOF. All crude 

peptides were purified to > 98% homogeneity by reversed-phase HPLC, and their 

structures were confirmed by MALDI-TOF. 
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2.2 Purification and characterisation of peptides 

2.2.1 Reversed-phase high-performance liquid chromatography (RP-HPLC) 

purification of crude peptides 

HPLC purification of native fish proglucagon-derived peptides and exendin-4 was 

performed using HPLC Spectra System Instrument containing Manual Dual Mode 

Sample injector, P2000 binary pump, UV 1000 detector and vacuum membrane 

degasser (Thermo Separation Products, Inc. New Jersey, USA).  The chromatogram 

was generated using a BD 12E dual channel compact flatbed chart recorder 

(Kipp&Zonen Delf, Netherlands). Crude native fish peptides and exendin-4 were 

dissolved in 15% – 35% of acetonitrile (3mg/ml), depending on hydrophobicity and 

injected into a (2.2 cm x 25 cm) Vydac 218TP1022 (C18) column (Grace, Deerfield, 

IL, USA) equilibrated with 21% – 35% acetonitrile and 0.1% TFA/water. The program 

run was adjusted to each individual peptide, raising the concentration of acetonitrile 

in eluting solvent from 21% – 35% to 56% – 70% over 50 min using a linear gradient. 

Absorbance was measured at 214 nm, and the flow rate was 6 ml/min.  

Purification of fish peptide analogues, [D-Ser2]-lamprey glucagon-Lys30gamma-

glutamyl-pal, [D-Ala2]-lamprey GLP-1-Lys31gamma-glutamyl-pal, [D-Ser2]-

paddlefish glucagon-Lys30-gamma-glutamyl-pal and [D-Ala2]-paddlefish GLP-1-

Lys28gamma-glutamyl-pal, was performed using the Thermo Scientific Surveyor Plus 

HPLC System controlled by PC-based ChromQuest 5.0 data system (Thermo Fisher 

Scientific Inc. Waltham, Massachusetts, USA). The instrument system contained 

Manual Dual Mode Sample injector, Quaternary Low-Pressure Surveyor LC Pump 

with a built-in Vacuum Degasser and Surveyor UV/Vis Plus Detector. Peptides were 

dissolved in 15% acetonitrile (3mg/ml) injected onto a (2.2 cm x 25 cm) Vydac 
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218TP1022 (C18) column (Grace, Deerfield, IL, USA) equilibrated with 0.12% 

TFA/water. The concentration of acetonitrile in the eluting solvent from 0% to 35% 

over 10 min and from 35% – 70% over 50 min using a linear gradient. Absorbance 

was measured at 214 nm, and the flow rate was 6 ml/min. The peaks were collected 

manually into 15 ml Falcontm conical centrifuge tubes (Fisher Scientific, 

Loughnorough, UK). Acetonitrile was removed using vacuum concentrator SPD2010 

(Integrated SpeedVac Systems, MA, USA) set to 45oC, 5.1 Torr/min for 2 hours.  

The purity of purified preparatius of the crude peptides as well as those that were 

received already at a purity of >95%, was confirmed by Luna 5u C8 250x4.6mm 

column and MALDI-TOF MS. 

2.2.2 Confirmation of molecular masses using matrix-assisted laser desorption 

ionisation time-of-flight (MALDI-TOF) MS 

The molecular masses of the purified crude peptides were confirmed by MALDI-TOF 

MS using Voyager-DE Biospectrometry Workstation (PerSpective Biosystems, 

Framingham, Massachusetts, USA). The instrument was calibrated with the reference 

compounds (internal standards) in the same spectrum as the tested peptide samples. 

Each peptide HPLC fraction was mixed (1:1 ratio) to matrix consisting of α-CHCA 

(10mg/ml in 50:50 acetonitrile/0.1%TFA (aq.). The sample/matrix solution (1.5µl) 

was placed on an appropriate position of the 100-well stainless-steel sample plate and 

allowed to dry at room temperature to obtain the maximum hydrophobic effect. The 

mass of the samples was obtained by measuring the mass-to-charge ratio (m/z) against 

signal intensity and compared with the theoretical masses of the peptides. 
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2.3 Enzymatic degradation of proglucagon-derived peptides and their analogues 

2.3.1. DPP-4 and plasma degradation of fish peptides and peptide analogues  

Peptides (30 µg or 100 µg depending on the experiment) were incubated in 50mM/l 

TEA-HCl buffer (pH 7. 8) with purified porcine DPP-IV (5 mU) or mouse plasma for 

0 and 4 h on an orbital shaker at 37 °C. The reaction was terminated with 10% TFA 

(aq.), and the samples were stored at -20 °C. HPLC degradation was performed on the 

Thermo Scientific Surveyor Plus HPLC System controlled by PC-based ChromQuest 

5.0 data system (Thermo Fisher Scientific Inc. Waltham, Massachusetts, USA) with a 

Luna 5u C8 250x4.6mm column using various linear gradients, depending on the 

hydrophobicity of the peptides/analogues. For the native fish peptides and human 

glucagon, GLP-1 and GIP the concentration of acetonitrile in the eluting solvent was 

raised from 0% to 42% (over 50 min), from 42% to 70% (over 10 min) for the total 

run time of 60 min. For the fish peptide analogues concentration of acetonitrile in the 

eluting solvent was raised from 0% to 35% (over 10 min), from 35% to 42% (over 20 

min), from 42 to 70% (over 5 min), and 70% (over 25 min) for the total run time of 60 

min. Absorbance was measured at 214nm, and the flow rate was set to 1.0 ml/min.  

2.3.2 Conformation of molecular masses using matrix-assisted laser desorption 

ionisation time-of-flight (MALDI-TOF) MS 

The molecular masses of the HPLC fractions of intact peptides and peptide fragments 

were identified by MALDI-TOF MS as previously described in Section 2.2.2.  

 

 



82 
 

2.3.3 Calculation of the intact peptide percentage  

Percentage of the intact peptide was calculated from the peak area under the curve data 

generated by the Thermo Scientific Surveyor Plus HPLC System controlled by a PC-

based ChromQuest 5.0 data system.  

2.4 Cell culture  

2.4.1 Culturing BRIN-BD11 and 1.1B4 cells 

BRIN-BD11 rat clonal β-cells and 1.1B4 human-derived pancreatic β-cells are two 

different insulin-secreting cell lines. BRIN-BD11 cell line was produced by 

electrofusion of RINm5f cells with New England Deaconess Hospital rat pancreatic 

islet cells (McClenaghan et al., 1996), whereas 1.1B4 was generated by electrofusion 

of freshly isolated human pancreatic beta cells and PANC-1, an immortal human 

ductal epithelial cell line (McCluskey et al., 2011). The cell lines (approximately 

1x106) were stored in the cryopreservation store in 2ml screw-cap plastic cryogenic 

vials (Sterilin Limited, Hounslow, UK) in vapour phase liquid nitrogen below -135 0C 

maintained at Ulster University, Coleraine. The freezing medium contained 10% 

sterilised DMSO, 10% RPMI-1640 medium and 80% FBS.  

Cryogenic vials were removed from liquid nitrogen tank, quickly embedded onto 

crushed ice and thawed rapidly using hand heat and water bath set at 370C to prevent 

crystal formation. Using aseptic techniques in a Vertical Laminar Airflow hood, the 

cell suspension was transferred into 15 ml Falcontm conical centrifuge tubes and 10 ml 

of pre-warmed RPMI-1640 medium supplemented with 10% (v/v) FBS and 1% (v/v) 

antibiotics – penicillin (100 U/ml) and streptomycin (0.1 mg/l) was diluted slowly, 

with continual swirling, into the cells to avoid osmotic shock. The cell suspension was 
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then centrifuged at 900 rpm for 5 min. After decanting of the supernatant, fresh 10 ml 

pre-warmed RPMI-1640 medium (supplemented as previously described) was added 

to the cell pellet which was then homogenously resuspended and transferred into a 

sterile 75 cm2 tissue culture flask (Nunc, Roskilde, Denmark). Additional 15 ml of pre-

warmed medium was added into the tissue flask prior to incubation at 37 °C, 5% CO2 

and 95% air (LEEC secure CO2 incubator, LEEC, Nottingham) to allow the cells to 

adhere to the tissue flask wall and develop monolayers with the epithelioid 

characteristic. For passaging the cells, media was removed from the tissue flask 

containing adherent cells which were then washed with 10 ml HBSS solution (diluted 

to1X concentration using purified water) prior to dissociation with 3 ml of trypsin 

(diluted to 1X concentration using 1X HBSS) and incubated for 3-4 minutes at 37 °C. 

Fresh media (10ml) was added to the detached cells to inhibit the action of trypsin. 

The cell suspension was transferred into 25 ml universal tube and centrifuged at 900 

rpm for 5 min. The supernatant was removed, and the pellet was resuspended in pre-

warmed fresh medium (25-30ml). Assessment of cell viability was performed by 

mixing 100 µl of the cell suspension with 100 µl of 0.4% trypan blue dye in a 0.5 ml 

Eppendorf Safe-Lock microcentrifuge tube (Sigma-Aldrich, Pool, UK) prior loading 

the sample in the Neubauer haemocytometer chamber. The number of viable cells 

exhibiting unstained and bright appearance due to intact membranes was then 

determined for further analysis. To maintain the cells, 1 ml of cell suspension was 

transferred back to the flask with the addition of 25 ml of pre-warmed medium and 

stored in the incubator. BRIN-BD11 cells used in the experiments had passages 

between 16 and 35. For 1.1B4 cells, the passage was between 25 and 40.  
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2.4.2 Culturing of Chinese Hamster Lung (CHL) and Human Embryonic Kidney 

(HEK293) receptor transfected cell lines 

CHL cells transfected with GLP-1 receptor (Thorens et al., 1993) and HEK293 cells 

transfected with glucagon receptor (Ikegami et al., 2001) were stored in the 

cryopreservation store in 2 ml cryogenic vials (approximately 1x106/vial) in vapour 

phase liquid nitrogen below 1350C maintained at Ulster University, Coleraine. The 

freezing medium contained 10% sterilized DMSO, 10% DMEM tissue culture 

medium and 80% FBS.  

The transfected cells were cultured as described for BRIN-BD11 and 1.1B4 cells 

(Section 2.4.1) with the exception that the DMEM medium supplemented with 10% 

(v/v) FBS and 1% (v/v) antibiotics – penicillin (100 U/ml), streptomycin (0.1 mg/l) 

and gentamycin (0.1 mg/ml) was used instead of RPMI-1640. CHL cells passages 

were between 58 and 65 for GLP-1 receptor transfected cells and between 15 and 16 

for GIP receptor transfected cells. For HEK293 the passage was between 12 and 14. 

2.4.3 Culturing of wild-type INS-1 832/3 rat clonal pancreatic β-cells and 

CRISPR/Cas9-engineered cells with knock-out of the GLP-1 receptor (GLP1R 

KO), glucagon receptor (GCGR KO) and GIP receptor (GIPR KO)                        

Wild-type INS-1 832/3 rat clonal pancreatic β-cells and CRISPR/Cas9-engineered 

cells with the knock-out of the GLP-1 receptor (GLP1R KO), GIP receptor (GIPR 

KO) (Naylor et al., 2016) and glucagon receptor (GCGR KO) (generated in our 

laboratory) were stored and cultured as described for BRIN-BD11 cells (Section 2.4.1) 

with the addition of 1 mM sodium pyruvate and 50 mM 2-mercaptoethanol to the 

medium. Wild-type cells used in the experiment were between passages between 55 
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and 60. The passage was between 17 and 25 for GLP1R KO cells; between 18 and 25 

for GIPR KO cells; and between 44 and 50 for GCGR KO cells. 

2.5 In vitro insulinotropic activity studies 

2.5.1 Insulin release studies using BRIN-BD11 cells 

The cells were cultured, detached from the cell flask and counted as previously 

described (Section 2.4.1). The cells were seeded (150,000 cells/well) into 24-well 

plates (Nunc, Roskilde, Denmark)  and allowed to attach overnight at 37 °C, 5% CO2, 

and 95% air. The culture medium was replaced with the Krebs-Ringer Bicarbonate 

(KRB) buffer (115 mM NaCl, 4.7 mM KCl, 1.28 mM CaCl2.2H2O, 1.2 mM KH2PO4, 

1.2 mM MgSO4.7H2O, 20 mM HEPES and 25 mM NaHCO3) supplemented with 

1.1 mM D-glucose and 0.5% (w/v) BSA (pH 7.4) and the cells were pre-incubated for 

40 min  at 37 °C. The buffer was then removed, and the cells were incubated for 20 

min at 37 °C with the test solutions containing KRB buffer supplemented with 5.6 mM 

D-glucose, 0.5% (w/v) BSA (pH 7.4) and test peptides at a concentration from 0 to 

3µM. After the incubation the test solutions were collected into 3.5-ml plastic tubes 

and stored at -20 °C before measuring the insulin concentration by radioimmunoassay.  

2.5.2 Receptor antagonist studies using BRIN-BD11 cells 

The cells were seeded and pre-incubated as previously described (Section 2.5.1). The 

cells were incubated for 20 min  at 37 °C with the test solution containing KRB buffer 

supplemented with 5.6 mM D-glucose, 0.5% (w/v) BSA (pH 7.4) and 0.1 µM of 

peptides alone or in the presence of 1 µM of either exendin-4 (9-39) (GLP-1 receptor 

antagonist), GIP(6-30)Cex-K40[Pal] (GIP receptor antagonist) or des-His1,Pro4-

Glu9-glucagon amide (glucagon receptor antagonist). After the incubation the test 
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solutions were collected into 3.5-ml plastic tubes and stored at -20 °C before 

measuring the insulin concentration by radioimmunoassay.  

2.5.3 Insulin release studies using 1.1B4 cells 

The cells were cultured, detached from the cell flask and counted as previously 

described (Section 2.4.1). The cells were seeded (150,000 cells/well) into 24-well 

plates (Nunc, Roskilde, Denmark)  and allowed to attach overnight at 37 °C, 5% CO2, 

and 95% air. The culture medium was replaced with the Krebs-Ringer Bicarbonate 

KRB buffer supplemented with 1.4 mM D-glucose and 0.5% (w/v) BSA (pH 7.4). The 

cells were pre-incubated for 40 min at 37 °C. The buffer was then removed, and the 

cells were incubated for 20 min at 37 °C with the test solutions containing KRB buffer 

supplemented with 16.7 mM  D-glucose, 0.5% (w/v) BSA (pH 7.4), and 10 nM or 

1µM test peptide. Samples were stored at −20 °C prior to the insulin release 

determination by radioimmunoassay.  

2.5.4 Insulin release studies using receptor knockout cells  

The cells were cultured, detached from the cell flask and counted as previously 

described (Section 2.4.1). The cells were seeded (150,000 cells/well) into 24-well 

plates (Nunc, Roskilde, Denmark)  and allowed to attach overnight at 37 °C, 5% CO2, 

and 95% air. The culture medium was replaced with the Krebs-Ringer Bicarbonate 

KRB buffer supplemented with 1.1 mM D-glucose and 0.5% (w/v) BSA (pH 7.4). The 

cells were pre-incubated for 40 min at 37 °C. The buffer was then removed, and the 

cells were incubated for 20 min at 37 °C with the test solutions containing KRB buffer 

supplemented with 5.6  mM  D-glucose, 0.5% (w/v) BSA (pH 7.4), and 10 nM or 1µM 

test peptide. Samples were stored at -20 °C prior the insulin release analysis by 

radioimmunoassay Section 2.5.7).  
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2.5.5 Insulin-release and insulin content studies using mouse islets 

2.5.5.1 Isolation of pancreatic islets 

All procedures were performed by following the rules and regulations of the UK 

Animals (Scientific Procedures) Act 1986. Pancreatic islets were isolated from adult 

NIH Swiss mice and processed by the collagenase digestion method (Lacy et., al 

1967). Animals were sacrificed by cervical dislocation immediately before harvest. 

The pancreas was carefully removed from the abdominal cavity and placed in an ice-

cold collagenase solution (5ml/pancreas) containing Collagenase P (1.4mg/ml) in 

HBSS buffer (8 g/l NaCl, 0.4 g/l KCl, 0.14 g/l CaCl2, 0.1 g/l MgSO4.7H2O, 0.1 g/l 

MgCl2.6H2O, 0.06 g/l Na2HPO4.H2O, 0.006 g/l, KH2PO4, 1 g/l glucose, 0.02 g/l 

phenol red, 0.35 g/l NaHCO3). The pancreas was then chopped into small pieces in 

the collagenase solution and placed in the water bath at for 10 min at 37 °C to aid the 

digestion. Series of washing steps were performed using an ice-cold collagenase-free 

HBSS buffer supplemented with 0.1% BSA. The supernatant was removed after 

centrifugation at 1200 rpm for 2 min repeated two times. Fresh wash buffer was added 

to evenly distribute the pellet which was then filtered through a strainer to separate 

any debris, and the sample was centrifuged at 1200 rpm for 2 min. After the 

supernatant was discarded, approximately 10 ml of pre-warmed RPMI-1640 medium 

supplemented with 10% (v/v) FBS and 1% (v/v) antibiotics – penicillin (100 U/ml) 

and streptomycin (0.1 mg/l) was added to the pellet and evenly distributed onto a petri 

dish with additional 15 ml of media. The islets were cultured for 48 h at 37 °C, 5% 

CO2 and 95% air before an acute study of insulin release and insulin content. 
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2.5.5.2 Acute insulin release studies from isolated mouse islets 

Pancreatic islets were isolated from adult NIH Swiss mice and digested with 

collagenase P obtained from Clostridium histolyticum as previously described 

(Section 2.5.5.1). The islets were cultured for 48 h at 37 °C, 5% CO2 and 95% air and 

carefully transferred into a 1.5 ml Eppendorf tube (10 islets/tube) and centrifuged at 

1200 rpm for 5 min to remove any remaining media. The cells were pre-incubated 

with KRB buffer (pH 7.4) supplemented with 0.5% BSA and 1.4 mM glucose 

(500µl/tube) for 60 min at 37 ◦C. The samples were centrifuged at 1200 rpm for 5 min 

and the supernatant was replaced with the test solutions (500µl/tube) containing KRB 

buffer (pH 7.4) supplemented with 0.5% BSA and 16.7 mM glucose, and the test 

peptides (1µM or 10 nM) for the 60 min incubation at 37◦C followed by centrifugation 

at 1200 rpm for 5 min.  The test solutions were then collected into 2.5 ml tubes and 

stored at -20 ◦C for insulin release determination by radioimmunoassay.  

2.5.5.3 Determination of islet insulin content  

Islets were isolated, incubated and treated with the test solutions as described in 

Section 2.5.5.1 and Section 2.5.5.2.   Insulin content of islets was determined using 

the acid ethanol method (Otani et al., 2003). Following the incubation and 

centrifugation steps, the test solutions were collected from the treated islets for the 

insulin release determination and the pellets containing islets were incubated overnight 

at 4 °C with an acid–ethanol solution containing 75% ethanol, 23.5% H2O and 1.5% 

HCl (500µl/tube) to extract cellular insulin content.  The samples were then 

centrifuged at 1200 rpm for 2 min at 4 °C to remove any cell debris. The supernatant 

was aliquoted into fresh tubes and stored at -20 °C for measuring insulin content by 

radioimmunoassay.  
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2.5.6 Iodination of insulin 

Chlorine-containing compound, 1,3,4,6-tetrachloro-3α,6α-diphenyl glycoluril, trade 

name Iodogen, was used for iodination of bovine insulin. This method of iodination 

was firstly proposed by Fraker and Speck in 1978.   

Iodogen (2mg) was added to 10 ml of dichloromethane. The prepared solution was 

aliquoted into 1.5 ml Eppendorf tubes (200μl/tube) and allowed to evaporate in the 

water bath for 5 min at 37 °C for to pre-coat the insoluble iodogen onto the surface of 

the reaction vessel. Insulin solution containing bovine insulin (1mg/ml in 10 mM HCl) 

was diluted (1:8) to 125 µg/ml in 500 mM phosphate buffer (pH 7). Procedures 

involving reaction mixture preparation were carried out in a fume hood situated in the 

specifically designed RIA premises. 20 μl of bovine insulin (125 μg/ml) and 5 μl of 

sodium iodide (Na125I 100 mCi/ml) were added into the reaction tubes coated with 

iodogen. The reaction tubes were placed into an ice-box for 15 min with gentle 

agitation every 3 min. The sample was transferred from the reaction vessel to a fresh 

tube, and 50 mM sodium phosphate buffer (500µl/tube) was added to the sample to 

terminate iodide oxidation.  

125I-bovine insulin was then purified from the unbound sodium iodide (Na125I) using 

RP HPLC instrument (LKB Bromma, Sweden). The reaction mixture was injected 

into a Vydac C-8 (4.6 x 250 mm) analytical HPLC column equilibrated with 0.12% 

TFA/water. The concentration rate of acetonitrile in the eluting solvent was raised 

from 0% to 56% over 10 min and from 56% to 70% over 10 min at a flow rate of 1 

ml/min. The fractions (1ml each) were collected over 67 min of HPLC run using the 

fraction collector (Frac-100, LKB) set to 1-min intervals (Figure 1.1).  
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5 µl aliquots of each fraction were checked for radioactivity using the gamma counter 

(Wizard™ 1470 automatic gamma counter, Perkin Elmer, USA). The fractions with 

the highest counts per minute were diluted (1:1) with working RIA buffer. The binding 

test was carried out using various antibody dilutions (1:25,000, 1:35,000, 1:45,000) to 

identify and pool together the fractions with appropriate binding ability. The 125I-

bovine insulin was then stored at 4 °C.  

2.5.7 Insulin radioimmunoassay (RIA)  

Insulin concentration was measured by the dextran-coated charcoal 

radioimmunoassay (RIA) method (Albano et al., 1972; Flatt and Bailey 1981), using 

crystalline rat insulin as a standard. All procedures involved in RIA required pre-assay 

preparation. RIA buffer was prepared by adjusting the pH of a basic solution, 

containing 40 mM disodium hydrogen orthophosphate, 0.2 g/l thimerosal and 3 g/l 

NaCl, to 7.4 by adding an acidic solution containing 40 mM sodium dihydrogen 

orthophosphate. Insulin standards were prepared in RIA buffer (supplemented with 

0.5% BSA) by making serial dilutions of insulin standard ranging either from 20 ng 

to 0.039 ng/ml (rat) or from 5 ng /ml to 0.009 ng/ml (human) depending on the 

experiment. The standards and unknown samples were aliquoted in triplicates and 

duplicated respectively (200µl/tube).  Guinea pig anti-porcine antibody was diluted in 

a RIA buffer supplemented with 0.5% BSA. The dilution of antibodies was selected 

within the range varying from 1:25,000 to 1:45,000 depending on the binding ability 

of the appropriate radiolabelled insulin stock. The antibody solution was added 

(100µl/tube) to the standards and the unknown samples. Radiolabelled insulin was 

diluted in the RIA buffer supplemented with 0.5% BSA to achieve ~10,000 counts per 

minute (CPM) for every 100 µl of the buffer solution which was then distributed to 



91 
 

each tube containing the standards and the unknown samples. In addition to the various 

insulin concentration, the standard set included triplicates of the tubes for the total 

count identification (containing 100µl of the radioactive label solution alone), tubes 

for the nonspecific binding measurement (300 µl of assay buffer and 100 µl of the 

radioactive label solution), and tubes with the zero standards (containing assay buffer, 

antibody solution and radioactive label solution (100 µl each)). The sample tubes 

loaded with the reaction mixture were then incubated at 4 °C for 48. Stock dextran-

coated charcoal (DCC) containing 50 g of activated charcoal and 5 g dextran T 70 

dissolved in 1 litre of 40 Mm sodium phosphate buffer was further diluted with the 

same buffer  (1:4) to prepare working DCC which was stirred for 30 min before use. 

Woking DCC was distributed into the reaction mixture tubes (1ml/tube) except for the 

standard triplicate containing 100µl of the radioactive label solution only. The samples 

were incubated for 20 min at 4 °C and centrifuged (Model J-6B centrifuge, Beckman 

Instruments Inc., UK) at 2500 rpm for 20 min.  After the centrifugation supernatant 

was decanted. The pellet contained charcoal bound to free radiolabelled insulin the 

amount of which was measured in the gamma counter against the known standard 

values of insulin concentration using a spine fitting algorithm.  

2.6 Adenosine 3’5’-cyclic monophosphate (cAMP) production studies using 

transfected cell lines 

2.6.1 Preparation of cell lysate 

Chinese hamster lung (CHL) cells transfected with the human GLP-1 receptor (GLP-

1R) and human embryonic kidney (HEK293) cells transfected with the human 

glucagon receptor (CGCR) were used to assess effects of peptides on cAMP 

production. Cells were cultured as previously described (Section 2.4.2). The cells were 
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seeded (75,000 cells per well) into 24-well plates and incubated for 21 hours at 37 °C 

in an atmosphere of 5% CO2 and 95% air to form monolayers. The cells were then 

pre-incubated for 40 minutes with KRB buffer supplemented with 0.1% BSA and 1.1 

mM glucose, before incubation with test peptides (10 nM and 1µM) in the presence 

of 200 μM 3-isobutyl-1-methylxanthine (IBMX) for 60 min at 37°C. After incubation, 

the medium was removed, and cells were washed with cold 0.9% phosphate-buffered 

saline (PBS) buffer tree times. The cells were then lysed (200 μl/well) with the cell 

lysis buffer diluted (1:5) with water (R&D Systems, Abingdon, UK) before 

measurement of cAMP using a Parameter cAMP assay kit (R&D Systems, Abingdon, 

UK).  

2.6.2 Measuring of cAMP  

According to the manufacturer’s instructions, a 96-well goat anti-mouse microplate 

was incubated primary antibody solution (50µl/well), except the non-specific binding 

(NSB) wells, for 60 min at room temperature on a horizontal orbital microplate shaker 

set at 500 rpm ± 50 rpm. After the incubation, the plate was washed four times with 

assay wash buffer (400µl/well). A cAMP Conjugate solution was added to the wells 

(50 μl/well). The standards and the unknown samples were added to the 96-well plate 

(100 μl/well) within 15 minutes of addition of the cAMP Conjugate. The standard was 

made using 100 µl of the standard stock (2400 p/mol) dissolved in the cell lysis buffer. 

Serial dilutions were prepared from 240 p/mol to 3.75 p/mol. The plate was incubated 

for 2 hours at room temperature on the shaker. After the incubation, the four-wash step 

was repeated. Substrate Solution was added to the wells (200 µl/well) and incubated 

for 30 min at room temperature on the bench top (protected from light). 100 μL of 

Stop Solution was added to each well changing the colour in the wells from blue to 
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yellow. The optical density of each well was measured within 30 minutes, using a 

microplate reader set to 450 nm and 540 nm. The wavelength was corrected by 

subtracting 540 nm reading from the readings measured at 450 nm. The cAMP 

concentration of unknown samples was determined using the standard curve with 

known values created by plotting the mean absorbance for each standard on a linear 

y-axis against the concentration on a logarithmic x-axis in Prism 5 program. A typical 

cAMP curve is shown in Figure 1.2. 

2.7 Apoptosis and cell proliferation study 

2.7.1 Analysis of apoptosis using TUNEL assay 

BRIN-BD11 cells were cultured, harvested and counted as previously described 

(Section 2.4.1). The cells were carefully seeded onto sterile round glass coverslips 

inserted inside of the wells of a 12-well plate (4000 cells/well). The cells were treated 

with cytokine mixture  (containing 200 U tumour-necrosis factor-α, 20 U interferon-γ 

and 100 U interleukin-1β dissolved in RPMI-1640 media) in the presence and absence 

of test peptides (10nM and 1 µM) and incubated for 20 hours at 37 °C. After the 

incubation, the test solutions were removed, and the cells were washed in PBS. The 

cells were fixed with 4% paraformaldehyde and treated with 0.1 M sodium citrate 

buffer ( pH 6.0) in a water bath at 94 °C for 20. The plates were then allowed to cool 

on the bench for 20 min. using In situ Cell Death Detection Kit (Roche Diagnostics, 

Burgess Hill, UK) following the manufacturer's instruction. After the buffer was 

removed, the In situ Cell Death Detection Kit (Roche Diagnostics, Burgess Hill, UK) 

was used to investigate the positive protective effects of peptides from the DNA 

damage caused by cytokines. After the sodium citrate buffer was removed, the 

TUNEL reaction mixture from the kit was added to the wells (50 µl/well) and 
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incubated for 60 min at 37 °C (protected from light) according to the manufacturer’s 

instruction. The wells were then washed with PBS three times for 5 minute. Each cover 

glass with fixed treated cells was removed from the wells and mounted on the slide 

with a drop of a mounting solution containing 1:1 glycerol/PBS (2 over glass/slide). 

The slides were analysed using the 488 nm filter of the fluorescent microscope 

containing a DP70 camera adapter system controlled by Multi-fluorescence imaging 

system Cell ^ F (Olympus System Microscope; model BX51, Southend-on-Sea, UK).  

2.7.2 Assessment of cell proliferation  

BRIN-BD11 cells were seeded, incubated with the test peptides, fixed with 

paraformaldehyde and treated with sodium citrate buffer as previously described 

(Section 2.7.1). The cells were washed with Ki-67 primary antibody (Abcam, 

Cambridge, UK). The cells were treated with 1.1% BSA (300 µl/well) for 30 min at 

room temperature before incubation with Ki-67 primary antibody (Abcam, 

Cambridge, UK) for 2 hours at 37 °C.  The cells were then washed three times with 

PBS for 5 min and treated with Alexa Fluor 594 secondary antibody (Abcam. 

Cambridge, UK). The slides were mounted as previously described (Section 2.7.1) and 

analysed (~150 cells/replicate) with the 594nm filter using the fluorescent microscope.  

2.8 In vivo studies 

All in vivo studies were carried out in the Biomedical and Behavioural Research Unit 

(BBRU) at Ulster University in accordance with the UK Animals (Scientific 

Procedures) Act 1986 and EU Directive 2010/63EU and approved by Ulster 

University Animal Ethics Review Committee. The mice were age-matched and 

housed individually in a group of 6-8 animals (depending on the experimental 
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protocol) under controlled laboratory environment (12:12 light/darkness cycle, 

22±2oC).  

2.8.1 Animal models 

2.8.1.1 Standard diet normal National Institute of Health (NIH) Swiss mice 

Acute in vivo studies were carried out using 8-12 week-old male National Institutes of 

Health (NIH) Swiss mice (Envigo, Huntingdon, UK). Animals had free access to 

drinking water and standard laboratory chow (10% fat, 30% protein, 60% 

carbohydrate; percentage of total energy 12.99 KJ/g; Trouw Nutrition, Cheshire, UK). 

For food consumption studies mice were readily trained to have a time-restricted 3-

hour feeding at a specific time every day (free access to food was given from 10 am 

to 1 pm every day) 

2.8.1.2 High-fat fed mice 

A 21-day peptide treatment in vivo experiment was performed using 8-12 week-old 

male TO mice (Envigo, Huntingdon, UK). Free access to water and high chow (45% 

fat, 20% protein, and 35% carbohydrate (total energy, 26.15 KJ/g; composition: 

casein, 26.533; choline bitartrate, 0.296; L-cystine, 0.399; lard, 17.895; rice starch, 

28.344; cellulose, 6.171; soya oil, 4.319; sucrose, 10.490; mineral mix, 4.319; and 

vitamin mix, 1.234; Special Diets Service, Essex, UK) was provided for at least 3 

month prior to the start of experiments to develop dietary-induced type 2 diabetes 

animal model with increased beta-cell loss. The body weight and glucose parameters 

were monitored regularly. High-fat diet triggered weight gain, hyperglycaemia and 

insulin resistance in mice which started to display the characteristics of obesity. The 
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animals selected and allocated into groups with matching average body weights and 

blood glucose levels prior to starting the experiment.  

2.8.1.3 Glu-CreRosa26-YFP mouse model 

An 11-day peptide treatment study was performed using 10-14 week-old female 

GluCreRosa26-YFP hybrid transgenic mice (Quoix et al 2007) which express the 

enhanced yellow fluorescent protein EYFP in alpha cells of the pancreatic islets. The 

animals were housed individually and had free access to drinking water standard 

laboratory chow (10% fat, 30% protein, 60% carbohydrate; percentage of total energy 

12.99 KJ/g; Trouw Nutrition, Cheshire, UK). Prior starting of the experiment, 

tamoxifen (approximately 32mg/kg body weight, dissolved in corn oil) was injected 

(i.p.) to induce recombination. The animals were monitored for any adverse reaction 

during the 4-day post-injection wait period. Streptozotocin was administrated to 

overnight fasted mice (50mg/kg dissolved in 7.5 mg/ml citrate buffer, pH 4.5) on each 

day during a pre-treatment period for subsequent five days. Animals were monitored 

for hyperglycaemia for further 10 days. The female mice appeared to be resistant to 

streptozotocin, so an additional 100 mg/kg of streptozotocin was administrated twice 

within the next 3 weeks before the animals started to show elevated blood glucose 

levels. Once diabetes was established, the animals were selected and allocated into 

groups with matching average body weights and blood glucose levels prior starting 

experiments. 

2.8.2 Acute in vivo studies 

2.8.2.1 Intraperitoneal glucose tolerance test (IGTT)  

Normal male NIH Swiss mice (8-12 week-old) National Institutes of Health (NIH) 

Swiss mice were housed and grouped as previously described (Section 2.8 and 
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2.8.1.1). The animals were fasted overnight before an intraperitoneal injection of 

either glucose (18 mmol/kg body weight) alone or in the presence of peptide (25 or 75 

nmol/kg body weight). Blood samples were collected from the tail vein and measured 

as described in Section 2.8.2.5 

2.8.2.2 Oral glucose tolerance test (OGTT) 

Normal male NIH Swiss mice (8-12 week-old) National Institutes of Health (NIH) 

Swiss mice were housed as previously described (Section 2.8 and 2.8.1.1). The test 

peptides used are shown in Tables 2.3 – 2.7. The animals were fasted overnight before 

an oral administration (gavage) of glucose (18 mmol/kg body weight) alone or in the 

presence of peptide (25, 75 or 100 nmol/kg body weight depending on the experiment). 

Blood samples were collected from the tail vein and measured as described in Section 

2.8.2.5 

2.8.2.3 Acute duration of action studies 

Normal male NIH Swiss mice (8-12 week-old) National Institutes of Health (NIH) 

Swiss mice were housed as previously described (Section 2.8 and 2.8.1.1). Animals 

(overnight fasted) received intraperitoneal injection of saline solution (containing 9 g/l 

(w/v) NaCl) or peptides (25 nmol/kg body weight) dissolved in saline solution two 

or/and four hours (depending on the experiment) prior to intraperitoneal 

administration of glucose load (18 mmol/kg body weight). Blood samples were 

collected from the tail vein and measured at 15, 30 and 60 min post glucose injection 

as described in Section 2.8.2.5 
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2.8.2.4 Acute food consumption studies 

Normal male TO mice (8-12 week-old) were housed as previously described (Section 

2.8 and Section 2.8.1.1). The animals were trained to have a free access to food from 

10 am to 1 pm every day. On the day of the experiment at 10 am fasting mice were 

administrated intraperitoneal injections of either saline solution or peptides (25, 50 or 

75 nmol/kg body weight depending on the experiment) and sumitenioisly received 

pellets of food of known weight. Food weight was recorded over time points of 0, 30, 

60, 90, 120, 150 and 180 min (or up to 300 min depending on the experiment). 

Consumption of water was not restricted in this experiment. 

2.8.2.5 Measuring blood glucose and plasma insulin 

For IGTT/OGTT in vivo studies, blood was obtained from the tail vein before and after 

peptide administration at different time points: 0, 15, 30 and 60 min to measure 

glucose concentration using the Ascenacia Counter Blood Glucose Meter (Bayer, 

Newbury, UK). While measuring glucose parameters, blood was simultaneously 

collected into heparinised microcentrifuge tubes (Sarstedt, Germany) which were then 

centrifuged at 13000 rpm at 4oC for 5 min. Plasma was stored at -20oC before 

measuring insulin by RIA (Section 2.5.7).  

2.8.3 Long-term in vivo studies using high fat-fed mice 

2.8.3.1 Treatment design and monitoring 

High fat-fed mice were were housed and grouped as previously described (Section 2.8 

and Section +2.8.1.2). The test peptides used are shown in Table 2.5 and 2.6. Animals 

received twice daily intraperitoneal injections saline solution for three days prior to 

administration of saline or peptides (25 nmol/kg of body weight) twice daily (09:30 
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and 17:00 h) over 21 days treatment period. Non-fasting blood glucose, food intake, 

water intake, body weight, and insulin concentrations were monitored at 3-day 

intervals at 9 am prior to daily injection of test peptides. Blood was obtained from the 

tail vein to measure glucose parameters using the glucose meter. For measuring insulin 

concentration, blood was simultaneously collected into heparinised microcentrifuge 

tubes (Sarstedt, Germany) which were then centrifuged at 13000 rpm at 4oC for 5 min. 

Plasma was stored at -20oC prior to insulin radioimmunoassay.  

2.8.3.2 Assessment of IGTT and OGTT 

After the 21-day study intraperitoneal and oral glucose tolerance were performed. 

Animals were fasted overnight before intraperitoneal administration or oral gavage of 

glucose (18 mmol/kg body weight). Blood was obtained from the tail vein before and 

after glucose administration at different time points: 0, 15, 30, 60, 90 and 120 min to 

measure glucose concentration using the glucose meter. Plasma was collected and 

analysed as described previously (Section 2.8.2.5). 

2.8.3.3 Assessment of insulin sensitivity 

Blood was obtained from the tail vein of non-fasted mice to measure glucose 

concentration prior to intraperitoneal administration of insulin (50 U/kg body weight). 

Blood glucose was then measured at 15 and 60 time points after receiving the insulin. 

Insulin sensitivity was also calculated using the homeostatic model assessment 

(HOMA) formula: 

HOMA-IR = fasting blood glucose x fasting plasma insulin/22.5 

HOMA-β = 20 × fasting insulin (μIU/ml)/fasting glucose (mmol/ml) − 3.5 
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Fasting blood glucose and fasting plasma insulin were obtained as previously 

described (Section 2.8.3.2). 

2.8.3.4 Assessment of body composition by mouse densitometer dual-energy X-

ray absorptiometry 

Bone mineral density (BMC in gm/cm2) and body tissue composition of the treated 

animals were calculated using a Lunar PIXImus DEXA system (Lunar Gorp, Madison, 

Wisconsin) controlled by integrated computer Software 1.4X.  DEXA uses an X-ray 

generator to produce a beam spanning over a broad spectrum of energy levels. Two 

distinct energy peaks are then generated by filtering the photon output which results 

in the separation of bone from soft tissue (Bonnick et al., 2013).The instrument was 

calibrated with the DEXA phantom control that was placed in the beam path according 

to the manufacturer’s protocol. Animals were sacrificed by cervical dislocation and 

positioned dorsoventrally on the sticky specimen tray (with heads placed in the tray 

headset) under the PIXImus beam path. The data was analysed by Lunar Software 

version 2.0.   

2.8.3.5 Terminal blood collection and tissue excision 

At the end of the experimental period, terminal non-fasted blood was collected from 

the tail vein into heparinised microcentrifuge tubes (Sarstedt, Germany) to measure 

biochemical parameters. Blood tubes which were then centrifuged at 13000 rpm at 

4oC for 5 min. Plasma was stored at -20oC until the commencement of assays.  Animals 

were sacrificed by cervical dislocation. A dissection kit was used to open the 

abdominal cavity and dissect pancreatic tissue. The pancreas was processed for islet 

isolation (Section 2.5.5.1) and histological investigation (Section 2.13.1). For 

hormonal content studies, the dissected tissue was covered in aluminium foil and 
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frozen in a liquid nitrogen container to transport the samples to the -70°C freezer for 

storage.  

2.8.3.6 Islet studies using pancreas from the 21-day treated animals   

Pancreatic islets were isolated, cultured and pre-incubated as previously described 

(Section 2.5.5.1 and Section 2.5.5.2) following the 60-min pre-incubation with 1.4 

mM glucose, the samples were centrifuged at 1200 rpm for 5 min. The supernatant 

was replaced with KRB buffer (500µl/tube) supplemented with 0.5% BSA and 16.7 

mM glucose and the test agents (10mM alanine, 20mM KCl, 10mM arginine, 1µM 

human GLP-1 or 1µM human GIP). Tubes were incubated for 60 min at 37◦C followed 

by centrifugation at 1200 rpm for 5 min.  The supernatant was then collected into 2.5 

ml test tubes and stored at -20 ◦C for insulin release determination by 

radioimmunoassay. The remaining islets were collected from the Petri plate and stored 

at -70◦C for the gene expression studies (Section 2.8.3.13) 

2.8.3.7 Plasma amylase activity 

Plasma α-amylase activity was measured using an Amylase assay kit (Abcam, 

Cambridge, UK). According to manufacturer’s instructions, 50μl were aliquoted onto 

a 96 well plate in duplicates. The standard was made using the standard stock (2mM 

Nitrophenol) dissolved in the assay buffer (Figure 1.3). Standard curve dilutions were 

prepared from 4 nmol/well to 20 nmol/well. 30μl of water and 20μl of unknown 

plasma samples were added to the remaining wells. The reaction mixture (100μl) was 

then added to each well. Absorbance was measured immediately at OD=405 nm in a 

kinetic mode, every 2 minutes over 60 min at 25◦C protected from light using a 

chemiluminescent plate reader (microlumi XS, Harta instruments, Gaithsberg, MD, 
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USA). Standards were plotted on a non-linear sigmoidal dose-response curve, and 

readings were calculated using log analysis.   

 

The activity of amylase was calculated by using the formula: 

Amylase Activity = 
  

∗ 𝐷 

Where B = Nitrophenol amount from the standard curve (nmol). 

ΔT = reaction time (T2 – T1) (min). 

V = Sample volume 

D = sample dilution fact 

2.8.3.8 Lipid profile  

Plasma total cholesterol, HDL cholesterol, LDH cholesterol and plasma triglycerides 

were determined using an automated biochemistry analyser I-Lab 650 integrated 

chemistry system (Instrumentation Laboratory, Warrington, UK).  

2.8.3.9 Plasma Alanine Aminotransferase (ALT) 

Plasma ALT was measured using an ALT reagent kit (Randox Laboratories, UK) 

according to the manufacturer’s instructions. Standard curve dilutions were prepared 

from pyruvate standard stock dissolved in water and the assay buffer solution 

(containing 100mM phosphate buffer (pH 7.4), 2mM L-alanine and 2 mM α-

oxoglutarate). The final concentration of the standards corresponded to various 

transaminase activities from 9 U/l to 87 U/l depending on the dilution. The calibration 

curve was obtained by plotting the measured absorbance against the transaminase 

activities in U/l (Figure 1.4). Unknown plasma samples (100μl) were mixed with the 
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assay buffer solution (500μl) in a reaction tube and incubated for 30 min for 37◦C. 

2mM 2,4-dinitrophenylhydrazine (500μl) was then pipetted to the reaction tubes and 

incubated for exactly 20 min for 20◦C before adding 4mM sodium hydroxide (5ml). 

The samples were aliquoted into cuvettes, and the absorbance was measured at 546 

nm against the reagent blank after 5 min using a Novaspec spectrophotometer Model 

4049 (Biochrom Ltd, UK). 

2.8.3.10 Plasma glucagon extraction method 

Plasma was collected and stored as previously described (Section 2.8.3.5). Glucagon 

was extracted by adding acetonitrile (225μl/tube) to samples (150μl/tube). The 

reaction tubes were then vortexed vigorously for 5 seconds. The tubes were let to stand 

for 20 min on the bench and then centrifuged at 17000xg for 5 minutes. 300μl of the 

supernatant was removed and transferred to a clean Eppendorf tube which was placed 

into SpeedVac Concentrator for drying at 80◦C for 2 hours. Dried supernatant was 

stored at 4◦C prior commencement of assay. 

2.8.3.11 Assessment of plasma glucagon  

Glucagon was extracted from plasma samples as previously describe (Section 

2.8.3.10). Glucagon was measured using an ELISA kit (Millipore Corporation, 

Germany). Standard stock (2ng/ml) was diluted with the assay buffer according to the 

manufacturer’s protocol chart, to obtain concentrations from 2ng/ml to 0.02 ng/ml. 

Prior to the experiment, dried samples (Section 2.8.3.10) were hydrated with 30μl of 

assay buffer. A 96-well plate coated by a pre-titered amount of anchor glucagon 

antibodies was washed with the assay wash buffer (300µl/well, three times) diluted 

with water (1:10). 30μl of assay buffer was added to Blank wells and 20μl to the 

remaining wells. Standards and unknown samples were then added to the plate 



104 
 

(10μl/well in duplicates) prior to adding the antibody mixture solution (20μl/well). 

The plate was then covered with the plate sealer and incubated for 48 hours on an 

orbital shaker at 400 rpm, 4◦C. After the incubation, the test solutions were decanted, 

and the plate was washed with the diluted assay wash buffer (300µl/well, three times). 

The enzyme solution was added to the wells (100µl/well) and incubated (covered with 

the plate sealer) on a shaker for 30 min at room temperature. The plate was then 

washed with the diluted assay wash buffer (300µl/well, six times) prior to incubation 

with the substrate solution (100µl/well) on the shaker for 1 min. Measurements were 

taken within 5 minutes after adding the substrate using a luminometer plate reader set 

at 425 nm. Standards were plotted on a non-linear sigmoidal dose-response curve, and 

readings were calculated using log analysis.    

2.8.3.12 Pancreatic insulin and glucagon content 

 Pancreata were dissected as previously described (Section 2.8.3.5) and homogenised 

(1 ml/pancreas) in extraction buffer (containing 20 mM Tris-HCl, 150 mM NaCl, 1 

mM EDTA, 1 mM EGTA and 0.5% Triton X 100, pH 7.5) using a VWR VDI 12 

handheld homogenizer (VWR, UK). Samples were stored at -20 °C until the 

commencement of assay. The sample was diluted (1:40) in RIA buffer supplemented 

with 0.5% BSA. Insulin was measured as previously described (Section 2.5.7). 

Glucagon was extracted using 150 µl of tissue homogenate (Section 2.8.3.10) and 

analysed using the glucagon ELISA kit (Section 2.8.3.11).  Total protein content was 

determined by incubating the pancreatic extract (5 µl/well) with Bradford reagent 

(250µl/well) using a 96-well plate at room temperature for 15 min. Absorbance was 

read at 595 nm. The concentration of unknown samples was determined using a 

standard curve of known BSA concentrations from 12.5 mg/ml to 0.024 mg/ml).  
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2.8.3.13 RNA extraction 

Animals treated for 21 days were sacrificed as previously described (Section 2.8.3.5). 

Islets were processed as described in (Sections 2.5.5.1 and 2.8.3.6). Collagenase-

digested islet were treated (1ml/0.5 g of cells) with TriPure Isolation Reagent (Roche, 

UK) and homogenised using VWR VDI 12 handheld homogeniser (VWR, UK). The 

homogenate was let to stand at room temperature for 5 min prior to the addition of 

chloroform (0.2 ml/tube). The tubes were then shaken vigorously for 15 sec and 

incubated for 10 min at 20°C. The samples were centrifuged at 12000 rpm for 15 min 

at 4 °C to separate the mixture into aqueous and organic interphases. The aqueous 

phase containing RNA was transferred to an RNase free tubes. Isopropanol (0.5 

ml/tube) was added to the tubes, mixed by inversion and incubated for 10 min at 20 

°C prior to centrifugation at 12000 rpm for 15 min at 4°C. After the supernatant was 

decanted, 1 ml of 75% ethanol (diluted in diethylpyrocarbonate (DEPC) treated water 

was added to the pellet and centrifuged at 7500 rpm for 5 min. The supernatant was 

discarded, and the pellet was air-dried addition DEPC treated water 30 µl. Nanodrop 

was used to confirm the quantity and quality of isolated RNA by reading the 

absorbance of the sample (1 µl) at 260 nm. The samples were stored at -20°C prior to 

the cDNA synthesis.  

2.8.3.14 cDNA synthesis 

 RNA was isolated from mouse islets and quantified as previously described (Section 

2.8.3.13). RNA from each sample (3µg/sample) was then converted to cDNA 

SuperScript II reverse transcriptase (Invitrogen, Life Technologies; UK) following 

manufacturer’s instruction. The reaction mixture (containing 1 µl of the Oligodt 

(Invitrogen, Life Technologies), 3 µg of RNA and RNase free water (used to adjust 
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the total volume to 12 µl)) was prepared in the RNase free tube. The tubes were placed 

into the G-STORM thermocycler (Gene Technologies, Braintree, UK) and heated at 

70˚C for 10 min. 4 µl of 5 X First strand buffer, 2 µl of 0.1 M of DTT (Invitrogen, 

Life Technologies) and 1 µl of 10 mM dNTP were then added to the reaction tubes 

and run in the thermocycler at 42 °C for 2 min. In the final step of the experiment, 

SuperScript II RT (1 µl/tube) was added to the reaction mixture and incubated in the 

thermocycler at 42 ˚C for 50 min followed by 70 °C for 15. Samples were stored at -

20 C. 

2.8.3.15 Gene amplification 

Real-time polymerase chain reaction (PCR) was performed using Bio-Rad MJ Mini 

personal Thermal cycler (Bio-Rad Laboratories, UK). PCR reaction mixture 

(containing 4.5 µl of QuantiFast SYBR green PCR mix (Qiagen, Venlo, Netherlands), 

1 µl of forward and 1 µl reverse primers, 3 µl of cDNA (Section 2.8.3.14) and 1 µl of 

nuclease-free water) was added to the PCR tube strips. DNA denaturation was run at 

95°C for 5 min followed by a 40-cycle cDNA amplification with final denaturation at 

95°C for 30 sec, annealing at 58 °C for 30 sec and elongation at 72°C for 30 sec. SYBR 

Green fluorescence was recorded after each cycle. Data were normalised to Beta-actin 

(Actb) gene expression used as a reference gene and analysed using the ΔΔCt method. 

The forward/ reverse primers and the genes used in this study are listed in Table 2.2. 

2.8.3.16 Immunohistochemistry of pancreas  

Animals were sacrificed, and the pancreas was removed as described previously 

(Section 2.8.3.5). The tissue were placed into plastic cassettes and fixed in 4% 

paraformaldehyde for 48 hours. The cassettes were then processed overnight using an 

automated tissue processor Leica TP1020 (Leica Microsystems, Germany), followed 



107 
 

by preparation of paraffin tissue blocks. The sections were cut 7 μm thick using the 

Finesse 352 manual microtome (Thermo Scientific, UK) and placed on polysine slides 

(Thermo Scientific, UK).  

Prior to staining, the slides were de-waxed using xylene, re-hydrated using gradually 

decreasing ethanol concentrations (100% for 5 min, 95% for 5 min, 80% for 5 min, 

50% for 5 min and 0% (100% water) for 3 min). The slides were then treated with 

preheated citrate buffer (containing 10mM Sodium Citrate, 0.05% Tween 20, pH 6.0) 

for 20 min at 93°C in the water bath and 20 min on the bench. The tissue slides were 

then treated with 2% BSA for 45 min at room temperature before incubating with 

primary monoclonal mouse anti-insulin antibody (ab6995, 1:400; Abcam, Cambridge, 

UK) and guinea-pig anti-glucagon antibody (PCA2/4, 1:50; raised in-house) and 

incubated overnight at 4°C. After the incubations the slides were washed in PBS prior 

to incubation with secondary antibodies: Alexa Fluor 488 goat anti-guinea pig IgG—

1:400 and Alexa Fluor 594 goat anti-mouse IgG—1:400 for 45 min at 37 °C. The 

slides were washed with PBS (for 5 min, two times) and incubated with 4',6-

diamidino-2-phenylindole (DAPI) stain for 15 min at 37 °C followed by additional 

PBS wash (for 5 min, two times). The slides were mounted with a mounting solution 

containing 1:1 glycerol/PBS and analysed using a fluorescent microscope (Olympus 

system microscope, model BX51) with the DP70 camera adapter system. Islet 

parameters (islet number, islet area, beta cell area, alpha cell area and islet size 

distribution) were analysed using Cell^F image analysis software (Olympus Soft 

Imaging Solutions, GmbH).  
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2.8.4 Long-term in vivo studies using GluCre Rosa26-YFP mice 

The animals were housed and diabetes induced as previously described (Sections 

2.8.1.3 and Section 2.8.1.4). The mice (n=5) received twice daily intraperitoneal 

injections of saline or peptides (25 nmol/kg of body weight) over 10 days treatment 

period. Non-fasting blood glucose, food intake, water intake and body weight were 

monitored at 3-day intervals prior to daily injection of test peptides. Blood was 

collected for insulin measurements at the start and end of the experiment. The animals 

were sacrificed as described previously (Section 2.8.3.5). Pancreatic tissue was 

processed, de-waxed, re-hydrated and treated as described in Section 2.8.3.16. Three 

different types of double staining were performed: (i) Insulin-Glucagon (as shown in 

Section 2.8.3.16), (ii) Insulin-GFP and (iii) Glucagon-GFP. Following primary 

antibodies were used: mouse anti-insulin (1:400; Abcam ab6995), guinea pig anti-

glucagon antibody (PCA2/4, 1:50; raised in house) and rabbit anti-GFP (1:400; 

Abcam). The slides were incubated and washed as described in Section 2.8.3.16. The 

slides were then treated with secondary antibodies: (i) Alexa Flour 488 goat anti-

mouse; 1:400, (ii) Alexa Flour 594 goat anti-guinea pig; 1:400 and (iii) Alexa Flour 

594 rabbit anti-GFP; 1:400. The slides were then incubated, washed and analysed as 

described in Section 2.8.3.16. 
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Table 2.1 Chemical reagents used in this thesis 

                 Reagent name A-Z          Vendor 

Acetonitrile, HPLC grade (ACN) Sigma-Aldrich (Poole, UK) 

Activated charcoal Sigma-Aldrich (Poole, UK) 

α-Cyano-4-hydroxycinnamic acid (α-CHCA) Sigma-Aldrich (Poole, UK) 

Bovine Serum Albumin (BSA) Sigma-Aldrich (Poole, UK) 

Calcium chloride dihydrate (CaCl2.2H2O) Sigma-Aldrich (Poole, UK) 

Collagenase-V, Clostridium histolyticum Sigma-Aldrich (Poole, UK) 

Dextran T-70 Sigma-Aldrich (Poole, UK) 

D-glucose AMRESCO (Ohio, USA) 

Dimethyl sulphoxide (DMSO) Sigma-Aldrich (Poole, UK) 

Dipeptidyl peptidase IV (DPP IV), porcine 

kidney 

Merck Millipore (UK) 

Disodium hydrogen orthophosphate 

(Na2HPO4) 

VWR International (Belgium) 

Dulbecco’s Modified Eagles Medium 

(DMEM) 

Gibco Life Technologies Limited 
(Paisley, Strathclyde, UK) 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich (Poole, UK) 
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Ethylene glycol-bis-N,N,N’, N’-tetraacetic 

acid (EGTA) 

Sigma-Aldrich (Poole, UK) 

Foetal Bovine Serum (FBS) Gibco Life Technologies Limited 
(Paisley, Strathclyde, UK) 

Gentamycin Sigma-Aldrich (Poole, UK) 

Hanks’ Buffered Saline Solution (HBSS) 10x Gibco Life Technologies Limited 
(Paisley, Strathclyde, UK) 

Hydrochloric acid (HCl) BDH Chemicals Ltd. (Poole, Dorset, 
UK) 

Insulin, bovine Sigma-Aldrich (Poole, UK) 

Insulin, rat  Novo Industrial (Denmark) 

L-Alanine Sigma-Aldrich (Poole, UK) 

Magnesium sulphate (MgSO4) BDH Chemicals Ltd. (Poole, Dorset, 
UK) 

Penicillin and Streptomycin (Pen & Strep) Gibco Life Technologies Limited 
(Paisley, Strathclyde, UK) 

Potassium  chloride (KCl) BDH Chemicals Ltd. (Poole, Dorset, 
UK)  

Radiolabelled sodium iodide (Na125I) Perkin Elmer (UK) 

Roswell Park Memorial Institute Medium  

(RPMI-1640) 

Gibco Life Technologies Limited 
(Paisley, Strathclyde, UK) 

Sodium bicarbonate  (NaHCO3) Sigma-Aldrich (Poole, UK) 
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Sodium chloride (NaCl) Sigma-Aldrich (Poole, UK) 

Sodium hydroxide (NaOH) Sigma-Aldrich (Poole, UK) 

Thimerosal Sigma-Aldrich (Poole, UK) 

Triethylamine hydrochloride (TEA-HCl) 

buffer 

Sigma-Aldrich (Poole, UK) 

Trifluoroacetic acid (TFA) Sigma-Aldrich (Poole, UK) 

Trypan Blue (0.4%) Sigma-Aldrich (Poole, UK) 

Trypsin (0.5%), no phenol red Gibco Life Technologies Limited 

(Paisley, Strathclyde, UK) 
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Table 2.2: List of the genes and forward/reverse primers used in the gene 
expression studies  

Gene Common name  Primer sequence 

Ins 1 Mus musculus insulin 1 Forward: AAG CTG GTG GGC ATC CAG TA 
Reverse:  GAC AAA AGC CTG GGT GGG TT 

Slc2a2  Glucose transporter 2 Forward: GAA GAA GAG TGG TTC GGC CC 
Reverse:  CGC ACA CCG AGG AAG GAA TC 

Gck Glucokinase, Transcript variant 1 Forward: AGG CCC TGA CAG GAG ACA TC 
Reverse:  GCC TCT AGA CGG ACT CAG CA 

Abcc8 ATP-binding cassette, sub-family C 
(CFTR/MRP), member 8 

Forward: TGA AGC GCA TCC ACA CAC TC 
Reverse:  ATC TTC TGT CCT GGG GCG AT 

Kcnj11 Potassium inwardly-rectifying channel, 
subfamily J, member 11 (Transcript 
variant 1) 

Forward: TGG GTT GGG GGC TCA GTA AG 
Reverse:  ACC TCT AGG CTG GTA TGC CC 

Cacna1c Calcium channel,voltage-dependent, L-
type, alpha 1C subunit 

Forward: ACA TGC TTT TCA CCG GCC TC 
Reverse:  GCT CCC AAT GAC GAT GAG GAA G 

Glp1r Glucagon-1 like peptide receptor Forward: GCT GAG GGT CTC TGG CTA CA 
Reverse:  GGG ACA GGA GCT GTT CCT CA 

Gipr Gastric inhibitory polypeptide receptor Forward: TGC CCC GAC TAC CGA CTA AG 
Reverse:  GCC TTC AAC CTG TTC CTC CG 

Gcgr Glucagon receptor Forward: GCC ACC AGG GAC TTC ATC AAC 
Reverse:  CAA GTG ACT GGC ACG AGA TGT  
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Table 2.3 List of Peptides used in Chapter 3 

Peptide Amino acid sequence 

Lamprey GLP-1 HADGTFTNDMTSYLDAKAARDFVSWLARSDKS 

Dogfish GLP-1 HAEGTYTSDVDSLSDYFKAKRFVDSLKSY  

Ratfish GLP-1 HADGIYTSDVASLTDYLKSKRFVESLSNYNRKQNDRRM  

Paddlefish GLP-1 HADGTYTSDASSFLQEQAARDFISWLKKGQ  

Bowfin GLP-1 YADAPYISDVYSYLQDQVAKKWLKSGQDRRE 

Trout GLP-1 HADGTYTSDVSTYLQDQAAKDFVSWLKSGRA 

Human GLP-1 HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR-NH2 

Human glucagon HSQGTFTSDYSKYLDSRRAQDFVQWLMNT 

Human GIP YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 

Exendin-4 HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 

 

Table 2.4 List of peptides used in Chapter 4 

Peptide Amino acid sequence 

Lamprey glucagon HSEGTFTSDYSKYLENKQAKDFVRWLMNA          

Dogfish 
oxyntomodulin 

HSEGTFTSDYSKYMDNRRAKDFVQWLMSTKRNG      

Ratfish 
oxyntomodulin 

HTDGIFSSDYSKYLDNRRTKDFVQWLLSTKRNGANT   

Paddlefish 
glucagon 

HSQGMFTNDYSKYLEEKRAKEFVEWLKNGKS        

Trout glucagon HSEGTFSNDYSKYQLERMAQDFVQWLMNS          

Human GLP-1 HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR-NH2 

Human glucagon HSQGTFTSDYSKYLDSRRAQDFVQWLMNT 

Human GIP YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 

Exendin-4 HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 
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Table 2.5 List of peptides used in Chapter 5 

Peptide Amino acid sequence 

[D-Ala2]-lamprey 
GLP-1-Lys31-
gamma-glutamyl-pal 

HaDGTFTNDMTSYLDAKAARDFVSWLARSD[K-gamma-
glutamyl-pal]S-OH 

[D-Ala2]-paddlefish 
GLP-1-Lys28-
gamma-glutamyl-pal 

HaDGTYTSDASSFLQEQAARDFISWLK[K-gamma-glutamyl-
pal]GQ-OH 

Human 
oxyntomodulin 

HSQGTFTSDYSKYLDSRRAQDFVQWLMNTKRNKNNIA          

Human GLP-1 HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR-NH2 

Human glucagon HSQGTFTSDYSKYLDSRRAQDFVQWLMNT 

Human GIP YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 

Exendin-4 HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 

Liraglutide  HAEGTFTSDVSSYLEGQAAK-(γ-Glu-palmitoyl)-
EFIAWLVRGRG-OH 
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Table 2.6 List of peptides used in Chapter 6 

Peptide Amino acid sequence 

[D-Ser2]-lamprey 
glucagon-Lys30-
gamma-glutamyl-pal 

HsEGTFTSDYSKYLENKQAKDFVRWLMNA[K-gamma-
glutamyl-pal] 

[D-Ser2]-paddlefish 
glucagon-Lys30-
gamma-glutamyl-pal 

HsQGMFTNDYSKYLEEKRAKEFVEWLKNG[K-gamma-
glutamyl-pal]S-OH 

Human oxyntomodulin HSQGTFTSDYSKYLDSRRAQDFVQWLMNTKRNKNNIA          

Human GLP-1 HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR-NH2 

Human glucagon HSQGTFTSDYSKYLDSRRAQDFVQWLMNT 

Human GIP YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNIT
Q 

Exendin-4 HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 

Liraglutide  HAEGTFTSDVSSYLEGQAAK-(γ-Glu-palmitoyl)-
EFIAWLVRGRG-OH 

 

 

 

Table 2.7 List of peptides used in Chapter 7 

Peptide Amino acid sequence 

Zebrafish GIP YAESTIASDISKIVDSMVQKNFVNFLLNQRE        

Human glucagon HSQGTFTSDYSKYLDSRRAQDFVQWLMNT 

Human GIP YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 

Exendin-4 HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 
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Figure 1.1 HPLC purification of iodinated bovine insulin 

 

 

 

Iodinated 125I - bovine insulin was purified from the reaction mixture using RP-HPLC, 

at a flow rate of 1 ml/min and an automated fraction collector. Radioactivity of each 

fraction was determined by Wizard™ 1470 automatic gamma counter (Perkin Elmer, 

USA).  
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Figure 1.2 Graph of typical cAMP standard curve  

 

 

 

A standard curve of stock solution was prepared over a concentration range of 240-

3.75 pmol/ml. The wavelength was corrected by subtracting 540 nm reading from the 

readings measured at 450 nm. 
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Figure 1.3 Graph of typical nitrophenol standard curve  

 

 

 

 

 

A standard curve of stock solution (2mM Nitrophenol) was prepared over a 

concentration range of 20-4 nmol/ml. Absorbance was measured immediately at 

OD=405 nm in a kinetic mode. 
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Figure 1.4 Graph of typical plasma ALT activity standard curve  

 

 

The concentration of the standards corresponded to various transaminase activities 

from 9 U/l to 87 U/l depending on the dilution. The standard curve was obtained by 

plotting the measured absorbance at 546 nm against the transaminase activities in U/l. 
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Chapter 3 
 

 

Assessing the acute insulinotropic in 
vitro and in vivo effects of native fish 

GLP-1 peptides 
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3.1 Summary 

The insulinotropic and antihyperglycaemic actions of GLP-1 peptides from the 

phylogenetically ancient sea lamprey, dogfish, ratfish, paddlefish and bowfin are 

compared with those of trout GLP-1 and human GLP-1 in mammalian test systems. 

The peptides were susceptible to DPP-IV degradation in a similar pattern as human 

glucagon and incretin peptides. Fish GLP-1 peptides produced a concentration-

dependent stimulation of insulin release from BRIN-BD11 rat and 1.1 B4 human 

clonal β-cells and isolated mouse islets. Lamprey and paddlefish GLP-1 were the most 

potent and effective. Incubation of BRIN-BD11 cells with the GLP-1 receptor 

antagonist, exendin-4(9-39) attenuated the insulin-releasing activity of all peptides 

whereas the glucagon receptor antagonist, [desHis1,Pro4-Glu9] glucagon amide 

significantly decreased the activities of lamprey and paddlefish GLP-1 only. The GIP 

receptor antagonist GIP (6-30) Cex-K40 [Pal] attenuated the activity of bowfin GLP-1. 

All peptides (1 μM) produced significant increases in cAMP concentration in Chinese 

hamster lung (CHL) cells transfected with the human GLP-1 receptor but only lamprey 

and paddlefish GLP-1 stimulated cAMP production in human embryonic kidney 

(HEK293) cells transfected with the human glucagon receptor. The insulinotropic 

effects of lamprey and trout GLP-1 were abolished in INS-1 GLP-1 receptor knockout 

cells and attenuated in INS-1 GCG receptor knockout cells. Intraperitoneal 

administration of GLP-1 from all species except dogfish (25nmol/kg body weight) 

along with 18 mmol/kg body weight in mice produced significant decreases in blood 

glucose and increased insulin concentrations. The fish GLP-1 peptides failed to 

exhibited persistent glucose homeostatic effects when administered 2 hours prior to 

glucose challenge. Lamprey GLP-1 was most effective in suppressing the appetite in 

normal mice. The study has demonstrated that lamprey and paddlefish GLP-1 display 
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potent insulinotropic activity in vitro that is mediated through the GLP-1 and glucagon 

receptors and glucose-lowering activity in vivo that is comparable to that of human 

GLP-1.  

3.2 Introduction 

Glucagon-like peptide-1 (GLP-1) was first identified from the nucleotide sequence of 

a cDNA encoding preproglucagon in a Brockmann body (principal islet) cDNA library 

from the anglerfish Lophius americanus (Lund et al. 1982). Shortly afterwards, 

cDNAs encoding preproglucagon from several mammalian species including the 

human (Bell et al. 1983) were characterized but the incretin activity of GLP-1 was not 

demonstrated until it was realized that the active forms of the peptide in mammals 

were  GLP-1(7-37) and GLP-1(7-36)amide which resemble anglerfish GLP-1 and 

glucagon more closely (Mojsov et al. 1987). In humans, the effects of GLP-1 and 

glucagon are mediated through respective interaction with the receptors GLP1R and 

GCGR belonging to the class B-1 (secretin receptor-like) G protein-coupled receptors 

that are highly specific for their native ligands (Fredriksson et al. 2003). In teleost fish, 

the Gcgr also binds glucagon and not GLP-1 (Chow et al. 2004) but the GLP-1-specific 

receptor has been lost, being replaced by a receptor that has dual selectivity for both 

GLP-1 and glucagon (Oren et al. 2016). In mammals, GLP-1 is multifunctional. As 

well as stimulating post-prandial insulin release, the peptide inhibits glucagon 

secretion, decreases food intake, delays gastric emptying, protects β- cells from 

apoptosis and has beneficial effects on cognitive impairment and cardiac function 

(Drucker, 2018). In contrast, GLP-1 is not an incretin hormone in teleost fish and has 

a glucagon-like effect on metabolism stimulating glycogenolysis, gluconeogenesis 

and lipolysis (Plisetskaya and Mommsen, 1996; Mommsen, 2000).    
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There is a unique arrangement found in the pancreas of teleosts which is represented 

by a large concentration of endocrine cells adjacent to the gallbladder and surrounded 

by a thin oval line of exocrine forming so-called Brockmann body. This almost 

complete separation of endocrine from exocrine tissues could potentially represent a 

valuable experimental model for studies of pancreatic hormones (Plisetskaya, 1989).  

GLP-1 peptides have been isolated from the Brockmann bodies of a wide range of 

teleost species and cDNAs/ genes encoding proglucagon-derived peptides from 

several teleosts have been characterized [reviewed in (Irwin, 2005; Irwin and Mojsov, 

2018)]. GLP-1 peptides have also been purified from a range of phylogenetically more 

ancient fishes: sea lamprey  Petromyzon marinus [Petromyzontiformes] (Conlon et al. 

1993), European common dogfish Scyliorinus canicula [Elasmobranchii] (Conlon et 

al. 1994), Pacific ratfish Hydrolagus colliei [Holocephali] (Conlon et al.1987), 

paddlefish Polyodon spathula [Acipenseriformes] (Nguyen et al. 1994),  the alligator 

gar Lepisosteus spatula  [Lepisosteiformes] (Pollock et al., 1988), and the bowfin 

Amia calva [Amiiformes] (Conlon et al., 1993). Characterization of a cDNA from the 

intestine of P. marinus demonstrated that the sea lamprey proglucagon gene encodes 

the three glucagon-related peptides (glucagon, GLP-1 and GLP-2) analogous to those 

encoded by the proglucagon genes of tetrapods (Irwin et al. 1999).  It has been 

suggested that the glucagon sequence first arose in evolution approximately 1000 

million years ago (MYA) while GLP-1 and GLP-2 diverged from each other 

approximately 700 MYA. 

In the present research study, the biological activities of GLP-1 peptides from 

phylogenetically ancient fishes have not been investigated in detail. Consequently, the 

aim of the present study was to evaluate the insulinotropic properties of synthetic 

replicates of GLP-1 peptides from the sea lamprey, dogfish, ratfish, paddlefish, and 
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bowfin in vitro using established rat and human insulin-producing cell lines and 

isolated mouse to assess their acute glucose-lowering and insulin-stimulating actions 

in vivo using NIH Swiss mice. Their activities are compared with those of human GLP-

1 and GLP-1 from a teleost fish, the rainbow trout Onchorynchus mykiss (Irwin and 

Wong 1995). 

3.3 Materials and Methods  

3.3.1 Chemical reagents and peptides 

Chemical reagents that were used in this study can be found in Section 2.1.1 and Table 

2.1. Synthetic human glucagon, human GLP-1, human GIP and trout GLP-1 were 

obtained from Synpeptide Co. Ltd. (Shanghai, China) at >95% purity which was 

confirmed by reversed-phase HPLC and MALDI-TOF. Lamprey GLP-1, dogfish 

GLP-1, ratfish GLP-1, paddlefish GLP-1, bowfin GLP-1, and exendin-4 peptides were 

supplied by EZBiolab Inc. (Carmel, IN, USA) in a crude form (between 10% and 50% 

purity). These latter peptides were purified to > 98% homogeneity by reversed-phase 

HPLC on a (2.2 cm x 25 cm) Vydac 218TP1022 (C-18) column.  The concentration 

of acetonitrile in the eluting solvent was raised from 21% to 56 % or 28% to 63% over 

50 min using a linear gradient. Absorbance was measured at 214 nm, and the flow rate 

was 6 ml/min (Section 2.2).  The molecular masses of the peptides were confirmed by 

matrix-assisted laser desorption ionization time-of-flight mass (MALDI-TOF) 

spectrometry as previously described (Section 2.2). The primary structures and 

molecular masses of the peptides used in this study are shown in Table 2.1 and Table 

3.1. 
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3.3.2 Assessment of metabolic stability of fish GLP-1 peptides  

Lamprey GLP-1, dogfish GLP-1, ratfish GLP-1, paddlefish GLP-1, bowfin GLP-1, 

trout GLP-1, human GLP-1, human glucagon and human GIP were incubated in the 

presence of porcine DPP-IV, and peptide stability was measured over 4 hours as 

described in Section 2.3.1. RP-HPLC was used to identify intact peptide and degraded 

products the molecular masses of which were confirmed by MALDI-TOF MS as 

previously described (Section 2.3). The percentage intact peptide at 4 hours incubation 

with DPP-IV was calculated by comparison to the peak area recorded at 0 hours.  

3.3.3 In vitro insulin release studies using BRIN-BD11 and 1.1B4 cells 

The abilities of the purified synthetic peptides (0.1 nM - 3 µM; n = 8) to stimulate the 

rate of release of insulin from BRIN-BD11 rat clonal β-cells  (McClenaghan et al., 

1996) and 1.1B4 human-derived pancreatic β-cells (McCluskey et al. 2011) was 

determined as previously described (Section 2.5.1 and 2.5.3).  In a second series of 

experiments, the effects of 1 µM concentrations of the (A) GLP-1 receptor antagonist, 

exendin-4(9-39 (Thorens et al., 1993), (B) glucagon receptor antagonist, 

[desHis1,Pro4-Glu9]glucagon amide (O’Harte et al., 2013), and (C) glucose-

dependent insulinotropic peptide (GIP) receptor antagonist, GIP(6-30)Cex-K40[Pal] 

(Pathak et al., 2015) on the insulin-releasing activity of the peptides (0.1 µM) were 

studied by incubating BRIN-BD11 cells for 20 min at 37 ˚C in  Krebs-Ringer 

Bicarbonate (KRB) buffer, pH 7.4   supplemented with 5.6 mM glucose as previously 

described (Section 2.5.2 ). All samples were stored at −20 °C prior to measurement of 

insulin release by radioimmunoassay (Flatt and Bailey, 1981) as previously described 

(Section 2.5.7). 
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3.3.4 Insulin release studies using isolated mouse islets 

Freshly harvested pancreatic islets from adult, male National Institutes of Health 

(NIH) Swiss mice (Harlan Ltd, Bicester, UK) were cultured in RPMI medium for 48 

h at 37 °C in an atmosphere of 5% CO2 and 95% air as previously described (Section 

2.5.5). The islets were incubated with peptides (10 nM and 1µM; n =4) and alanine 

(10 mM; n =4) for 1 h at 37˚C in KRB buffer supplemented with 16.7 mM glucose. 

Insulin release was measured by radioimmunoassay, and the insulin content was 

measured by extraction with acid-ethanol. 

3.3.5 Effects of peptides on cAMP production.  

Chinese hamster lung (CHL) cells transfected with the human GLP-1 receptor 

(GLP1R) (Thorens et al. 1993) and human embryonic kidney (HEK293) cells 

transfected with the human glucagon receptor (GCGR) (Ikegami et al., 2001) were 

cultured and seeded as previously described (Section 2.6).The cells were pre-

incubated for 40 minutes with KRB buffer supplemented with 0.1% (w/v) bovine 

serum albumin and 1.1 mmol/l glucose. A test solution containing KRB buffer 

supplemented with 0.1% (w/v) bovine serum albumin, 5.6 mmol/l glucose, 200 μM 3-

isobutyl-1-methylxanthine (IBMX) and peptides (10 nM and 1µM) were added to the 

cells. After incubating for 20 min, the medium was removed, and cells were lysed 

before measurement of cAMP using a Parameter cAMP assay kit (R&D Systems, 

Abingdon, UK) according to the manufacturer’s recommended protocol.  
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3.3.6 Insulin release studies using CRISPR/Cas9-engineered INS-1 cells 

Wild-type INS-1 832/3 rat clonal pancreatic β-cells and CRISPR/Cas9-engineered 

cells with knock-out of the knock-out of the GLP-1 receptor (GLP-1 KO), glucagon 

receptor (GCG KO) and GIP receptor (GIP KO) (Naylor et al., 2016) were cultured 

and incubated as described for BRIN-BD11 cells with the addition of 1 mM sodium 

pyruvate and 50 mM 2-mercaptoethanol to the medium (Section 2.5.4). The cells were 

incubated with 10 nM and 1 μM concentrations of GLP-1, glucagon, GIP, and fish 

peptides for 20 min 37 °C in KRB buffer supplemented with 5.6 mM glucose and 

insulin release was measured by radioimmunoassay (Section 2.5.7). 

3.3.7 In vivo insulin release studies 

All experiments involving animals were performed in accordance with the UK 

Animals (Scientific Procedures) Act 1986 and EU Directive 2010/63EU and approved 

by Ulster University Animal Ethics Review Committee. Acute in vivo studies were 

carried out using 8-10 week-old male National Institutes of Health (NIH) Swiss mice 

(n = 6) maintained in environmentally controlled rooms (12:12 light/darkness cycle, 

22 ± 2 oC) with free access to a standard rodent diet (10% fat, 30% protein, 60% 

carbohydrate: total energy 12.99 kJ/g; Trouw Nutrition, Northwich, UK) and water 

(Section 2.8.1.1). After an overnight fast, glucose (18 mmol/kg body weight), either 

alone or together with a peptide (25 nmol/kg body weight), was administrated 

intraperitoneally to the animals as previously described (Section 2.8.2.1). In a second 

series of experiments acute duration of action studies were performed as described in 

Section 2.8.2.3. Blood samples were collected from a tail vein at the time points shown 

in Figure 3.18 and 3.19 and glucose concentrations were measured using a Bayer 

Counter glucose meter. Peptide administration had no apparent adverse behavioural 

effects on the animals.  
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3.3.8 Acute food consumption studies 

Normal male TO mice (8-12 week-old) were used in food consumption study as 

previously described (Section 2.8.2.4). Mice were administrated intraperitoneal 

injections of either saline solution or peptides (50 nmol/kg) prior to receiving pellets 

of food of known weight. Food intake was then recorded over time points of 0, 30, 60, 

90, 120, 150 and 180 min. Consumption of water was not restricted in this experiment. 

3.3.9 Biochemical analysis 

Blood was collected from the tail vein of conscious mice and analysed immediately 

using the Ascenacia Counter Blood Glucose Meter (Bayer, Newbury, UK). Plasma for 

insulin was collected, stored and assayed as described in Section 2.8.2.5. 

3.3.10 Statistical analysis 

Data were compared using unpaired Student’s t-test (non-parametric, with two-tailed 

P values and 95% confidence interval) and one-way ANOVA with Bonferroni post-

hoc test using GraphPad PRISM (Version 5.0 San Diego, California).  Area under the 

curve (AUC) analysis was performed using the trapezoidal rule with baseline 

correction. Data are presented as mean ± S.E.M where the comparison was considered 

to be significantly different if P < 0.05. 

3.4 Results 

3.4.1 Purification and confirmation of molecular masses by MALDI-TOF MS 

Purification was performed using multiple RP HPLC runs for each crude peptide with 

the original purity between 10% and 50%. The main peaks were collected as 

represented in Figure 3.1. All peptides were analysed by MALDI-TOF MS which 
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confirmed that the molecular masses corresponded very closely with their related 

theoretical molecular masses (Figure 3.2 and 3.3).  The summary of purification and 

MALDI-TOF results is shown in Table 3.1. 

3.4.2 Fish GLP-1 peptides stability 

Human GLP-1 (Figure 3.4), human glucagon (Figure 3.5) and human GIP (Figure 3.6) 

were degraded into 2 major fractions after 4 hours incubation with DPP-IV. The 

molecular masses of these fractions corresponded to the remaining intact peptide and 

its truncated product cleaved at position 2 for each of the control peptides.  As 

expected, when fish GLP-1 peptides were incubated under identical conditions, similar 

cleavage pattern was determined (Figures 3.7-3.12 and Table 3.2).  

3.4.3. In vitro insulin-release studies 

In the presence of  5.6 mM glucose alone, the rate of insulin release from BRIN-BD11 

rat clonal β-cells was 1.02 ± 0.02 ng/106cells/20 min and this rate increased to 2.4 ± 

0.2 ng/106cells/20 min during incubation with 0.1 µM human GLP-1 and to 1.4 ± 0.2 

ng/106cells/20min  during incubation with 0.1 µM glucagon.  Incubation of BRIN-

BD11 cells with GLP-1 peptides from all fish species produced concentration-

dependent increases in the rate of insulin release (Figure. 3.13).  As shown in Table 

3.3, lamprey and paddlefish GLP-1 displayed the lowest threshold concentrations 

(minimum concentration producing a significant increase in insulin release) and the 

greatest responses at 3 µM concentration. These values were not significantly different 

from those of human GLP-1.  

 In the presence of 5.6 mM glucose alone, the rate of insulin release from 1.1B4 human 

clonal β-cells was 0.08 ± 0.01 ng/106cells/20min rising significantly to 0.13 ± 0.01 

ng/106 cells/20 min and 0.24 ± 0.02 ng/106cells/20min during incubations with 10 nM 
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and 1 µM human GLP-1 respectively (Table 3.4).  As shown in Figure. 3.14, 

incubations with GLP-1 from all fish species produced a significant increase in insulin 

release at 1 μM concentration and GLP-1 peptides from lamprey, paddlefish and trout 

produced a significant increase at 10 nM concentration. Consistent with the data 

obtained with BRIN-BD11 cells, the lamprey and paddlefish peptides were the most 

effective with the responses produced by lamprey GLP-1 at both concentrations (0.23 

± 0.01 ng/106cells/20min  at 10 nM and 0.31 ± 0.02 ng/106cells/20min  at 1 μM) being 

significantly greater than those produced by GLP-1.  

The rate of insulin release from isolated mouse islets in the presence of 16.7 mM 

glucose alone during a 60 min incubation was 9.7 ± 1.3 % of the total insulin content 

of the islets rising to 16.7 ± 1.4 % in the presence of 10 nM GLP-1 and to 20.7 ± 2.5 

% in the presence of 1 µM GLP-1 (Table 3.5). As shown in Figure. 3.15, GLP-1 from 

all species except dogfish and ratfish produced a significant increase in insulin release 

at both 10 nM and 1 µM concentrations. Ratfish GLP-1 was effective at 1 µM, but 

dogfish GLP-1 did not produce a significant increase at either concentration.  

3.4.4 Receptor antagonist studies  

The insulin releasing activities of human GLP-1 and all fish  GLP-1 peptides were 

significantly attenuated when BRIN-BD11 cells were co-incubated with the GLP-1 

receptor antagonist, exendin-4(9-39) (Figure 3.16 A).  The activity of human glucagon 

and GIP were not significantly affected. The insulin releasing activities of glucagon 

and lamprey GLP-1 (P < 0.001) and paddlefish GLP-1 (P < 0.001) were also 

significantly decreased in the presence of the glucagon receptor antagonist 

[desHis1.Pro4-Glu9] glucagon amide (Figure 3.16 B) whereas the actions of GLP-1, 

GIP, and the other fish GLP-1 peptides were unaffected. Human GIP (P < 0.001) and 

bowfin GLP-1 (P < 0.05) were the only peptides whose insulin-releasing effects were 
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significantly attenuated by co-incubation with the GIP receptor antagonist GIP (6-30) 

Cex-K40 [Pal] (Figure 3.15 C and Table 3.6). 

3.4.5   Effect of fish GLP-1 peptides on cAMP production 

In the presence of 200 µM IBMX, cAMP production in CHL cells transfected with the 

human GLP-1 receptor was significantly stimulated by incubation with human GLP-

1 and the GLP-1 peptides from lamprey, paddlefish and trout at both 10 nM and 1 µM 

concentrations  (Figure 3.17 A). In the case of GLP-1 from dogfish, ratfish and bowfin 

a significant increase in cAMP production was achieved only at 1 µM concentration. 

Human glucagon and GLP-1 from lamprey and paddlefish, at both 10 nM and 1 µM 

concentrations, were the only peptides that produced a significant increase cAMP 

production in HEK293 cells transfected with the human glucagon receptor (Figure 

3.17 B and Table 3.7).  

3.4.6 Insulin release studies using CRISPR/Cas9-engineered INS-1 cells 

Incubation of all fish GLP-1 peptides, as well as human GLP-1, glucagon, and GIP, at 

concentrations of 10 nM and 1 μM with wild-type INS-1 cells produced a significant 

increase in the rate of release of insulin compared with the rate in the presence of 5.6 

mM glucose only (Figure 3.18 A and Table 3.8). The increases in rate in response to 

GLP-1 and the GLP-1 from lamprey and trout were completely abolished in the GLP-

1 KO cells, and the responses to the other fish peptides were significantly attenuated 

(Figure 3.18 B and Table 3.8). Moreover, the increases in rate in response to glucagon 

and GLP-1 from lamprey and paddlefish were significantly attenuated (Figure 3.18 C 

and Table 3.8). In contrast, the increases in rate in response to human (P < 0.001) and 

bowfin (P < 0.05) GIP were significantly reduced in the GIP KO cells, but the 

stimulatory responses to glucagon, GIP and the other fish GLP-1 peptides were 

maintained (Figure 3.18 D and Table 3.8). 



132 
 

3.4.7 In vivo insulin release studies 

The acute actions of human GLP-1, human glucagon and fish GLP-1 peptides on 

glucose homeostasis in vivo are shown in Figure 3.19 and Table 3.9). Blood glucose 

concentrations in overnight fasted NIH Swiss mice were significantly lower after 

receiving intraperitoneal administration of glucose (18 mmol/ kg body weight) 

together with all GLP-1 peptides (25nmol/kg body weight) except dogfish GLP-1 

compared with mice receiving intraperitoneal glucose only (Figure 3.19 A and C). The 

integrated responses showed significant differences for lamprey GLP-1 (P < 0.001), 

ratfish GLP-1 (P < 0.05), paddlefish GLP-1(P < 0.001), trout GLP-1 (P < 0.001), and 

bowfin GLP-1 (P < 0.05 compared with the glucose control. The integrated responses 

to GLP-1 peptides from lamprey, paddlefish and trout were not significantly different 

from the response to human GLP-1 (Figure 3.19 E). The concentrations of plasma 

insulin were significantly greater at the 15 and 30 min time points after administration 

of GLP-1 from lamprey, ratfish, paddlefish and trout and after 30 min in the case of 

bowfin GLP-1 compared with control animals receiving glucose alone (Figure 3.19 B 

and D). The integrated responses to all peptides except dogfish GLP-1 were not 

significantly different from that of human GLP-1 (Figure 3.19 F). 

3.4.8 Acute duration of action studies using normal mice  

As expected, fish GLP-1 peptides similarly to human GLP-1 exhibit no glucose 

lowering and insulinotropic effect when administrated two hours prior to a glucose 

challenge (Figure 3.20 and Table 3.9). In contrast, exendin-4 significantly (P < 0.001) 

reduced individual post-injection (15, 30 and 60 min) and overall 0–60 min AUC 

glucose values. Moreover, exendin-4 significantly (P < 0.001) increased individual 
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post-injection and overall glucose-induced insulin concentrations when administrated 

two hours prior to a glucose load. 

3. 4. 9 Time-dependent effects of human GLP-1, human glucagon, exendin-4 and 

fish GLP-1 peptides on feeding in normal mice. 

At a concentration of 50 nmol/kg of body weight, exendin-4 (Figure 3.21) exhibited 

significant (P < 0.01 and P< 0.001) effect on food intake at individual time points (30, 

60, 90, 120, 150 and 180 min). Human GLP-1 and lamprey GLP-1 (Figure 3.21 A) at 

a similar concentration significantly (P < 0.05) reduced food intake at 30 min time 

point when compared with saline. In comparison, paddlefish GLP-1 significant (P < 

0.05) appetite-suppressive effect at 30, 90, 120, 150 and 180 min (Figure 3.20 D). 

Interestingly, no effect in food intake was observed for glucagon and the other fish 

peptides when compared with saline only (Figure 3.21 and Table 3.10) 

3.5 Discussion 

GLP‐1 was discovered incidentally after the cloning and sequencing of mammalian 

proglucagon genes and has become one of the most characterised regulatory peptides 

of the glucagon superfamily in the field of metabolism (Cabou et al. 2011; D’alessio 

2016). GLP-1 not only exhibits insulinotropic activity in vitro or in healthy humans 

but unlike many other gastrointestinal peptides, is also remarkably effective in patients 

with type 2 diabetes (D’alessio 2016). The development of antidiabetic drugs based 

on GLP‐1 system has been one of the most important and rapidly moving areas of 

therapeutic targets in the recent past (D’alessio 2016). In this thesis GLP-1 peptides 

from phylogenetically ancient fish as well as a teleost were investigated for metabolic 

stability, potential insulinotropic property and receptor specificity. As expected, in the 

presence of DPP IV human GLP-1, glucagon and GIP were cleaved at position 2 to 
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produce truncated products consistently with the previous studies (Authier et al. 2003; 

Pospisilic et al. 2001; Green et al. 2004). This effect was also observed with fish GLP-

1 peptides which were largely degraded by DPP IV after 4 hours incubation. The 

analysis of the molecular masses of the degraded products revealed that the cleavage 

site of the fish GLP-1 peptides was between residues 2 and 3 similarly to that of the 

human proglucagon-derived peptides (Table 3.2). 

The present work has also demonstrated that GLP-1 peptides from phylogenetically 

ancient fish and a teleost differ appreciably in potency and effectiveness in terms of 

their abilities to stimulate insulin release from rodent and human cells in vitro and 

lower blood glucose concentrations in mice in vivo.  The peptides from sea lamprey, 

a representative of the Agnatha, or jawless fishes whose line of evolution diverged 

from that leading to gnathostomes at least 550 MYA, and paddlefish, an extant 

representative of a group of primitive Actinopterygian (ray-finned) fish whose line of 

evolution diverged from the sturgeons in the Cretaceous, were the most potent and 

effective with activities generally comparable to human GLP-1. However, these GLP-

1 peptides differ from the human peptide by functioning as dual agonists at the GLP-

1 and glucagon receptors. The primary structures of the GLP-1 peptides investigated 

in this study are compared with those of human GLP-1, glucagon, and the potent and 

long-acting GLP-1 receptor agonist exendin-4 (Furman, 2012), in Figure 3.22) 

Structure-activity studies of human GLP-1 involving a complete alanine scan showed 

that the amino acids His1, Gly4, Phe5, Thr7 and Asp9 in the N-terminal domain play an 

important role in binding and activation of the rat GLP1R, and Phe22 and Ile23 in the 

C-terminal domain are of critical importance in maintaining the conformation of the 

molecule that is recognized by the receptor (Adelhorst et al. 1994; Gallwitz et al. 

1994). In addition, it is known that the Ala18, Ala19, Lys20, and Leu26 residues of GLP-
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1 interact with the GLP-1 receptors as revealed by the crystal structure of GLP-1 

bound to the large N-terminal extracellular domain of the receptor (Underwood et al. 

2010). It is speculated that the higher potency and efficacy of GLP-1 from lamprey, 

paddlefish, and trout in the mammalian test systems compared with the peptides from 

the other species may be explained, at least in part, by the fact that they are the only 

peptides that contain the Ala18 and Ala19 residues found in human GLP-1. The lower 

potency peptides from dogfish and ratfish contain a basic Lys residue at position 18, 

and bowfin GLP-1 contains a Val residue (Figure 3.22). The metabolic effects of 

dogfish and ratfish GLP-1 in their species of origin have not been studied, but dogfish 

GLP-1 has been shown to stimulate the activity of the rectal gland of North Pacific 

spiny dogfish Squalus suckleyi, increasing chloride secretion rates above baseline by 

approximately 16-fold (Deck et al. 2017). 

The insulinotropic activity of all fish peptides in BRIN-BD11 cells was attenuated by 

the GLP1R antagonist, exendin-4(9-39) and all peptides stimulated cAMP production 

in CHL cells transfected with GLP1R demonstrating that they are capable of activating 

the GLP-1 receptor in mammalian test systems.  However, the insulinotropic activity 

of lamprey GLP-1 and paddlefish GLP-1 was significantly decreased by the GCGR 

antagonist, [desHis1,Pro4-Glu9] glucagon amide suggesting that these peptides may 

act as dual agonists activating both GLP-1 and glucagon receptors. Consistent with 

this observation, the activity of lamprey GLP-1 was abolished in INS-1GLP1R 

knockout cells in a similar manner as human GLP-1, and attenuated in INS-1 GCGR 

knockout cells similarly to the attenuated rates of glucagon. (Figure 18). Similar 

pattern was observed for paddlefish GLP-1 the activity of which was significantly 

attenuated in INS-1 GLP-1 receptor knock out and glucagon receptor knockout cells. 

A comparison of the primary structures of lamprey/paddlefish GLP-1 (Figure 22) with 



136 
 

glucagon does provide any obvious clues in terms of the presence or absence of 

particular amino acid residues as to why only these peptides and not the other fish 

GLP-1 peptides are glucagon receptor agonists. Rather it must be assumed that only 

lamprey/paddlefish GLP-1 are able to adopt a stable conformation that is recognized 

by the receptor.  Glucagon is predominantly disordered in aqueous solution but forms 

a stable, extended helix when bound to its receptor (Siu et al. 2013). The 

conformations of the fish GLP-1 peptides have yet to be determined experimentally 

but application of the AGADIR program, an algorithm based on the helix/coil 

transition theory which predicts the helical behaviour of monomeric peptides (Muñoz 

and Serrano, 1994), indicates that lamprey and paddlefish GLP-1 have a strong 

propensity to adopt a stable α-helical conformation between residues 9-28 whereas the 

predicted helices adopted by the dogfish, ratfish, and bowfin peptides are much less 

stable and extended. 

The bowfin, the sole extant representative of the Amiiformes, occupies an important 

position in phylogeny as the surviving representatives of a group of primitive ray-

finned fishes from which present-day teleosts may have evolved (Carroll, 1988).  

Bowfin GLP-1 contains several amino acid substitutions compared with human GLP-

1 that are not seen in the other fish peptides such as Gly4  → Ala, Phe22 → Trp, Ile23 

→ Leu,  and  Leu26 → Gly (Figure 3.22). In particular, bowfin GLP-1, in common 

with GIP, contains an N-terminal Tyr residue and a Thr7 residue that is substituted by 

Ile.  Evidence has been obtained using a chimeric GLP-1/GIP peptides that amino 

acids at these sites (His/Tyr1 and Thr/Ile7) are responsible for the selective interaction 

toward GLP-1 and GIP receptors (Moon et al., 2010). It has been proposed that His1 

of GLP-1 interacts with Asn302 in extracellular loop 2 of GLP1R and that Thr7 of GLP-

1 has close contact with a binding pocket formed by Ile196 in transmembrane helix 2 
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and Leu232, and Met233  in extracellular loop 1 of GLP1R (Moon et al. 2012). Despite 

the low overall sequence similarity between bowfin GLP-1 and GIP (Figure 3.22), the 

presence of Tyr1 and Ile7  in the bowfin peptide may account for the fact that the GIP 

receptor antagonist, GIP(6-30) Cex-K40 [pal] produced a small but significant 

attenuation  of the insulinotropic response to bowfin GLP-1 in BRIN-BD11 cells 

(Figure 3.16) and the activity of the peptide was reduced in CRISPR/Cas9-engineered 

INS-1 cells with knock-out of the GIP receptor compared the response with wild-type 

INS-1 cells.  Bowfin GLP displayed relatively weak insulinotropic activity compared 

with human GLP-1 in the mammalian systems employed in this study. Similarly, in a 

piscine test system, bowfin GLP-1 stimulated glycogenolysis in isolated hepatocytes 

from the copper rockfish Sebastes caurinus (Teleostei)  but was 3-fold less effective 

and 23-fold less potent than human GLP-1 (Conlon et al. 1993). It was speculated that 

selective mutations in the GLP-1 molecule may be an adaptive response to the low 

biological potency of bowfin insulin (Conlon et al. 1991). 

This Chapter has demonstrated that in agreement with in vitro studies, acute 

administration of GLP-1 from lamprey, paddlefish and trout together with glucose 

resulted in significant glucose lowering and insulin release in normal mice which was 

comparable to the effects of human GLP-1. As expected, GLP-1 from all fish species 

failed to exhibited persistent glucose homeostatic effects when administered 4 hours 

prior to glucose challenge due to the susceptibility to enzymatic degradation similarly 

with human GLP-1. Moreover, paddlefish GLP-1 was effective in suppressing appetite 

for up to 180 minutes in normal mice compared to saline control. The effects of 

lamprey GLP-1 on food intake were similar to human GLP-1 which significantly 

suppressed the appetite for up to 30 minutes after the intraperitoneal administration to 

mice. 
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To conclude, the world is currently experiencing a global pandemic of obesity-related 

type 2 diabetes mellitus (T2DM) and while several therapeutic options are available 

for treatment of patients, none is completely satisfactory (Bailey, 2018). None of the 

existing treatments, alone or in combination, completely normalizes blood glucose 

concentrations and prevents debilitating complications. Thus, there is a definite need 

for new types of safe and more effective anti-diabetic agents. The present study has 

demonstrated that GLP-1 peptides from lamprey and paddlefish, by interacting with 

both the GLP-1 and glucagon receptors to stimulate insulin release and lower blood 

glucose concentrations, have the potential for development therapeutic agents for the 

treatment of patients with T2DM. Pre-clinical trials involving administration of dual 

GLP-1/glucagon receptor agonists have shown positive results including reduction of 

food intake, weight loss, inhibition of glucagon release, and β-cell proliferation as well 

as normalization of blood glucose concentrations [reviewed in Brandt et al. 2018]. 

Previous work has shown that dual agonist peptides derived from dogfish glucagon 

possess potent insulin releasing actions in vitro (O’Harte et al. 2016a) and 

antihyperglycaemic activity in obese mice with insulin resistance and impaired 

glucose tolerance (O’Harte et al. 2016b). Future studies will investigate the anti-

diabetic activities of long-acting peptidase-resistant analogues of lamprey and 

paddlefish GLP-1. 
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Table 3.1.  Primary structures and the observed and calculated molecular masse of peptides investigated in this study. 

 

Peptide Amino acid sequence 
Calculated 
molecular mass, 
(Da) 

Observed 
molecular mass, 
(Da) 

Lamprey GLP-1 HADGTFTNDMTSYLDAKAARDFVSWLARSDKS 3577.9 3576.5 

Dogfish GLP-1 HAEGTYTSDVDSLSDYFKAKRFVDSLKSY  3330.7 3330.1 

Ratfish GLP-1 HADGIYTSDVASLTDYLKSKRFVESLSNYNRKQNDRRM  4479.9 4480.2 

Paddlefish GLP-1 HADGTYTSDASSFLQEQAARDFISWLKKGQ  3358.5 3357.9 

Bowfin GLP-1 YADAPYISDVYSYLQDQVAKKWLKSGQDRRE 3694.1 3695.4 

Trout GLP-1 HADGTYTSDVSTYLQDQAAKDFVSWLKSGRA 3418.7 3420.8 

Human GLP-1 HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR-NH2 3297.7 3297.9 

Human glucagon HSQGTFTSDYSKYLDSRRAQDFVQWLMNT 3482.8 3484.4 

Human GIP YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 4983.6 4984.3 

Exendin-4 HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 4186.6 4186.0 
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Table 3.2 Summary of DPP-IV degradation results of the GLP-1-related fish peptides used in this study. 

Peptide 
% Degraded at 4 hours Number of peaks Observed MW of    

degraded    product 
after 4h, Da 

Proposed 

     cleavage site 

Lamprey GLP-1 90 2 3370.1 Ala2-Asp3 

Dogfish GLP-1 89 2 3123.4 Ala2-Glu3 

Ratfish GLP-1 83 2 4272.3 Ala2-Asp3 

Paddlefish GLP-1 87 2 3153.3 Ala2-Asp3 

Bowfin GLP-1 89 2 3460.3 Ala2-Asp3 

Trout GLP-1 79 2 3212.6 Ala2-Asp3 

Human GLP-1 86 2 3090.4 Ala8-Glu9 

Human glucagon 

 

24 2 3259.5 Ser2-Gln3 

Human GIP 90 2 4749.1 Ala2-Glu3 
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Table 3.3 Effects of fish GLP-1 peptides, human GLP-1 and glucagon on 
the rate of insulin release from BRIN-BD11 cells.  

 
Peptide Threshold 

concentration 
The effect at 3µM 

ng/106/20min 
EC 50 

Basal release  - 1.0 ± 0.02 - 

Lamprey GLP-1 30pM** 3.9 ± 0.11 0.7nM 

Dogfish GLP-1            3nM* 1.8 ± 0.08 0.1µM 

Ratfish GLP-1            1nM* 2.6 ± 0.12 1.5µM 

Paddlefish GLP-1            10pM* 3.7 ± 0.20              4.0nM 

Trout GLP-1  30pM** 2.4 ± 0.11 7.5 nM 

Bowfin GLP-1      0.3nM*** 2.3 ± 0.10 1.6nM 

Human GLP-1 10pM* 3.6 ± 0.17 2.1nM 

Human glucagon 10nM* 2.7 ± 0.1              1.5µM 

 

Values are mean ± S.E.M., n = 8. *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
5.6 mM glucose alone. 

 

 

 

 

 

 

 

 

 

 

 



142 
 

Table 3.4 Effects of fish GLP-1 peptides at 10-6 M and 10-8 M concentration 
on insulin secretion from 1.1 B4 cells.  

Peptide name Insulin release at 10-6M Insulin release at 10-8M 

None (1.4 mM glucose) 0.05 ± 0.002 ** 0.05 ± 0.002 ** 

None (16.7 mM glucose control) 0.08 ± 0.007 0.08 ± 0.007 

Lamprey GLP-1 0.31 ± 0.020 *** 0.23 ± 0.013 *** 

Dogfish GLP-1 0.11 ± 0.020 ** 0.09 ± 0.010  

Ratfish GLP-1 0.10 ± 0.030 * 0.08 ± 0.006 

Paddlefish GLP-1 0.24 ± 0.013 *** 0.16 ± 0.004 *** 

Trout GLP-1 0.17 ± 0.007 *** 0.13 ± 0.008 ** 

Bowfin GLP-1 0.12 ± 0.006 ** 0.09 ± 0.007 * 

Human GLP-1 0.24 ± 0.020 *** 0.13 ± 0.008 ** 

Human glucagon 0.11 ± 0.002* 0.08 ± 0.006 

 

Values are mean ± S.E.M., n = 8 *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
16.7 mM glucose alone 
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Table 3.5 Effects fish GLP-1 peptides on the release of insulin from islets 
isolated from TO Swiss mice.  

Peptide  Insulin release (% of total 
insulin content) at 10-6M 

Insulin release (% of total 
insulin content) at 10-8M 

(None) 1.4 mM glucose 3.7 ± 0.1 ** 3.7 ± 0.1 ** 

(None) 16.7 mM glucose control   9.7 ± 1.3 9.7 ± 1.3 

Lamprey GLP-1 16.6 ± 1.3 ** 15.6 ± 1.4  

Dogfish GLP-1 13.7 ± 1.5 12.3 ± 0.9  

Ratfish GLP-1 17.2 ± 1.0 ** 7.2 ± 0.3 

Paddlefish GLP-1 20.7 ± 2.4 ** 13.1 ± 0.6* 

Bowfin GLP-1 20.2 ± 1.3 *** 16.0 ± 1.5 * 

Trout GLP-1 21.8 ± 1.9 ** 19.2 ± 1.2 ** 

Human GLP-1 20.7 ± 2.5 ** 16.1 ± 1.4 * 

Human glucagon 15.1 ± 1.7 11.5 ± 1.3 

Values are mean ± S.E.M., n = 8 *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
16.7 mM glucose alone.   
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Table 3.6 Summary of effect of fish GLP-1s, human GLP-1, human 
glucagon and human GIP on insulin secretion from BRIN-BD11 cells in the 
presence antagonists 

Peptide, 

10-7 

The observed reduction of peptides-stimulated 
insulin secretion in the presence of antagonists: 

Exendin-4(9-39),   
10-6 

Peptide O, 

10-6 

(Pro3)GIP,  

10-6 

Lamprey GLP-1 ΔΔΔ ΔΔΔ No effect 

Dogfish GLP-1 ΔΔ No effect No effect 

Ratfish GLP-1 Δ No effect No effect 

Paddlefish GLP-1 ΔΔΔ ΔΔΔ No effect 

Bowfin GLP-1 Δ No effect Δ 

Trout GLP-1 ΔΔΔ No effect No effect 

Human GLP-1 ΔΔΔ No effect No effect 

Human glucagon  No effect Δ No effect 

Human GIP No effect No effect ΔΔΔ 

 

Values are mean ± S.E.M., n = 8 ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 0.001 compared with 
the effect in the presence of respective antagonist. 
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Table 3.7 Summary of effect of fish GLP-1, human GLP-1, human glucagon and human GIP peptides (10-8 and 10-6 M) on 
cAMP production in GLP1R-transfected CHL cells, and GCGR-transfected HEK293 cells. 

Peptide name GLP-1 receptor transfected cells GCG receptor transfected cells 

cAMP release at 

 10-6 

cAMP release at 

10-8 

cAMP release at 

10-6 

cAMP release at 

10-8 

Basal (5.6mM glucose) 4.0 ± 0.4 4.0 ±0.4 2.8 ±0.9 2.8 ±0.9 

Lamprey GLP-1 16.5 ± 0.3*** 14.5 ± 0.1*** 10.6 ±0.1** 9.8 ±0.3** 

Dogfish GLP-1 10.2 ± 0.2*** 4.3 ± 0.2 2.7 ± 0.2 2.3 ± 0.2 

Ratfish GLP-1 5.1 ± 0.0* 3.7 ± 0.4 3.6 ± 0.2 2.1 ± 0.8 

Paddlefish GLP-1 15.0 ± 0.6*** 13.1 ± 0.3** 9.2 ±0.7** 6.7 ±0.1* 

Bowfin GLP-1 14.1 ± 0.3*** 4.0 ± 0.1 3.2 ± 1.1 3.3 ± 0.1 

Trout GLP-1 15.4 ± 0.3*** 13.7 ± 0.6*** 3.3 ± 0.3 2.4 ± 0.0 

Human GLP-1 17.7 ± 0.2*** 17.3 ± 0.3*** 7.6 ± 0.2** 4.9 ± 0.4* 

Human glucagon  12.3 ± 0.8 ** 5.4 ± 0.4* 10.4 ± 0.3** 9.1 ± 0.4** 

Human GIP 3.9 ± 0.2 3.6 ± 0.4 2.9 ± 0.4 2.8 ± 0.3 

 

Values are mean ± S.E.M. for n = 4. *P < 0.05, ** P< 0.01 and ***P < 0.001 compared with 5.6 glucose.
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Table 3.8 Summary of effects of fish GLP-1 peptides (10-8 and 10-6 M) on 
the rate of insulin release from wild-type INS-1 cells, CRISPR/Cas9-
engineered GLP-1R KO cells, CRISPR/Cas9-engineered GIPR KO cells 
and CRISPR/Cas9-engineered GIPR KO cells  

Peptide  Wild-type 
cells, % of 
basal control 

GLP-1R KO 
cells, % of 
basal control 

GCGR KO 
cells, % of 
basal control 

GIPR KO 
cells, % of 
basal control 

Basal (5.6mM glucose) 100 ± 2.3 

Lamprey GLP-1 10-6 217.5 ± 7.5***  109.0 ± 6.1 ΔΔΔ 199.7 ± 24.6 *** 222.2 ± 7.5 *** 

10-8 203. ± 9.2*** 
 

110.8 ± 7.7 ΔΔΔ  160.3 ± 19.9 *Δ 209.9 ± 11.1 
*** 

Dogfish GLP-1 10-6 242.9 ± 7.9*** 
 

202.5 ± 12.2 
*** Δ 

217.1 ± 6.8*** 221.6 ± 7.6 *** 

10-8  199.7± 7.1*** 167.5 ± 14.5 
***Δ 

172.3 ± 16.8*** 187.9 ± 9.2 *** 

Ratfish GLP-1 10-6 194.5 ± 7.6*** 167.4 ± 6.4*** 
Δ 

170.9 ± 9.8*** 182.7 ± 8.8 *** 

10-8 147.3 ± 6.1*** 138.4 ± 2.8*** 147.7± 12.7* 164.7± 8.4*** 

Paddlefish  GLP-1 10-6 259.9 ± 5.3*** 226.8 ± 10.5 
*** Δ 

216.9 ± 24.4*** 249.3 ± 9.8 *** 

10-8 231.9 ± 3.5*** 214.4 ± 4.1*** 
Δ 

153.7 ± 27.9**ΔΔ 225.9 ± 10.5 
*** 

Bowfin GLP-1 10-6 209.5 ± 6.7*** 164.8 ± 9.2 *** 
Δ 

206.9 ± 24.6 *** 192.5 ± 9.7 *** 

10-8 177.8 ± 6.6*** 153.8 ± 15.8** 184.3 ± 14.5*** 143.7 ± 11.9* Δ 

Trout GLP-1 10-6 226.1 ± 5.3*** 110.7 ± 6.9 ΔΔΔ  220.0 ± 20.6*** 228.7 ± 11.1 
*** 

10-8 197.2 ± 9.3*** 106.5 ± 5.4 ΔΔΔ  173.5 ± 10.0*** 217.8 ± 12.3 
*** 

Human GLP-1 10-6 213.5 ± 14.1*** 102.3 ± 1.3 ΔΔΔ 222.0 ± 11.7*** 213.2 ± 12.3 
*** 

10-8 197.1 ± 4.5*** 101.1 ± 6.9 ΔΔΔ 210 ± 25.0 *** 183.5 ± 3.5*** 

Human glucagon 10-6 215.3 ± 3.4*** 252.8 ± 0.8*** 159.6 ± 8.5 *** 
ΔΔ 

181.0± 13.3 
*** 

10-8 172.7 ± 7.5*** 194.9 ±10.9*** 134.0 ± 14.4 Δ 174.0 ± 10.6 
*** 

Human GIP 10-6 241.2 ± 10.1*** 264.9 ±10.2*** 231.3 ± 17.6 *** 110.1 ± 8.5 ΔΔΔ 

10-8 228.8 ± 16.3***  255.4 ± 5.3*** 230.1 ± 0.9*** 104.4 ± 4.2 ΔΔΔ 

 

Values are mean ± S.E.M., n = 8, *P < 0.05, ** P< 0.01 and ***P < 0.001 compared 
with 5.6 mM glucose alone. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 0.001 compared with effects 
in wild-type INS-1 cells
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Table 3.9 Summary of effects of acute administration of fish GLP-1 peptides on blood glucose and plasma insulin concentrations 
in normal mice, including 2-hour post injection.  

Peptide name IGTT blood glucose 
AUC0-60min (mmol/l.min) 

IGTT plasma insulin 
AUC0-60min 

(mmol/ml/min) 

2 hours post 
saline/peptide injection, 

plasma insulin 
AUC0-60min 

(mmol/l.min) 

2 hour post 
saline/peptide injection, 

plasma insulin 
AUC0-90min (ng/ml/min) 

Glucose alone 991.1 ± 49.04  134.8 ± 4.23  894.3 ± 46.17  108.1 ± 4.236  
Lamprey GLP-1 471.0 ± 29.79*** 238.1 ± 15.25*** 809.8 ± 40.48  108.2 ± 7.889  
Dogfish GLP-1 833.0 ± 59.25 ΔΔ 150.5 ± 5.691 Δ 890.2 ± 59.92 119.2 ± 10.06 
Ratfish GLP-1 792.9 ± 66.18*ΔΔ 164.6 ± 9.179* 831.6 ± 49.82  126.0 ± 7.245  
Paddlefish GLP-1 550.6 ± 35.61*** 191.5 ± 13.20** 815.8 ± 37.32 117.2 ± 2.929 
Bowfin GLP-1 838.5 ± 32.00*ΔΔ 160.3 ± 7.679* 830.9 ± 19.64  103.3 ± 4.879  
Trout GLP-1 573.0 ± 28.96*** 164.5 ± 6.609** 811.5 ± 42.55 100.9 ± 6.990  
GLP-1 476.4 ± 41.37*** 186.6 ± 12.87 ** 825.4 ± 32.49  101.7 ± 16.65 
Glucagon 1006 ± 140.6 ΔΔ 145.9 ± 3.218 Δ - - 
Exendin-4 - - 369.0 ± 38.96*** ΔΔΔ 281.0 ± 16.25 ***ΔΔΔ 

 

The values are mean ± SEM for n=6. **P<0.01 and ***P<0.001 compared to glucose alone; ΔΔ P<0.01 and ΔΔΔP<0.001 compared to human 
GLP-1
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Table 3.10 Summary effects of fish GLP-1 peptides on cumulative food intake over 3 hours trained feeding in 12 h fasting 
normal mice. 

Peptide name Time (min) 
30 60 90 120 150 180 

Saline control 1.2 ± 0.03 1.7 ± 0.06 2.1 ± 0.08 2.5 ± 0.07 2.9 ± 0.07 3.3 ± 0.06 

Lamprey GLP-1 0.8  ± 0.07 * 1.6 ± 0.1  2.0 ± 0.10  2.3 ± 0.19  2.6 ± 0.12 3.0 ± 0.09  

Dogfish GLP-1 1.1 ± 0.09 1.6 ± 0.1 2.1 ± 0.14 2.4 ± 0.14 3.0 ± 0.20 3.3 ± 0.19 

Ratfish GLP-1 1.3 ± 0.18 2.0 ± 0.3 2.4 ± 0.27 2.8 ± 0.22 3.0 ± 0.25 3.4 ± 0.17 

Paddlefish GLP-1 0.7 ± 0.15 * 1.3 ± 0.2  1.5 ± 0.15 * 1.9 ± 0.23 * 2.5 ± 0.18 * 2.7 ± 0.17 * 

Bowfin GLP-1 1.3 ± 0.11 1.6 ± 0.2 2.1 ± 0.19 2.4 ± 0.24 2.9 ± 0.16 3.4 ± 0.18 

Trout GLP-1 1.4 ± 0.11 1.8 ± 0.2 2.1 ± 0.21 2.5 ± 0.16 3.0 ± 0.19 3.4 ± 0.08  

GLP-1 0.7 ± 0.13 ** 1.4 ± 0.18 2.1 ± 0.20 2.4 ± 0.13 2.7 ± 0.11  3.1 ± 0.08  

Glucagon 1.3 ± 0.09 1.8 ± 0.15  2.1 ± 0.16 2.4 ± 0.18 2.6 ± 0.17 2.9 ± 0.19  

Exendin-4 0.7 ± 0.13 ** 1.0 ± 0.08 *** 0.9 ± 0.08 *** 1.2 ± 0.16 *** 1.2 ± 0.17 *** 1.4 ± 0.17 *** 

The values are mean ± SEM for n=8. *P<0.05, **P<0.01 and ***P<0.001 compared to saline control mice treated at the same time point.
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Figure 3.1. Reverse-phase HPLC purification of crude lamprey GLP-1 (A), 
dogfish GLP-1 (B) ratfish GLP-1 (C), paddlefish GLP-1 (D), bowfin GLP-
1 (E) and exendin-4 (F) peptides using a semi-preparative Vydac C18 
column. 

 

The peptides were dissolved in 15% acetonitrile (3mg/ml) and injected onto a (2.2 cm 
x 25 cm) Vydac 218TP1022 (C-18) column (Grace, Deerfield, IL, USA) equilibrated 
with 21% (or 28%) (v/v) acetonitrile and 0.1% TFA/water at a flow rate of 6.0 ml/min. 
The concentration of acetonitrile in the eluting solvent was raised from 21% to 56 % 
for the fish GLP-1 peptides and 28% to 63% for exendin-4 over 50 min using a linear 
gradient. Absorbance was measured at 214 nm and the black arrows show where the 
peak collection began and ended.  
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Figure 3.2 MALDI-TOF spectra of purified lamprey GLP-1 (A), dogfish 
GLP-1 (B) ratfish GLP-1 (C), paddlefish GLP-1   (D)  

 

Purified peptides were mixed with α-Cyano-4-hydroxycinnamic acid on a 100 well 
MALDI plate before inserting into a Voyager DE Biospectrometry workstation. The 
mass-to-charge ratio (m/z) versus peak intensity was determined. 
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Figure 3.3 MALDI-TOF spectra of purified Bowfin GLP-1  (A) and trout 
GLP-1 (B) and Exendin-4 (C) peptides.  

 

 

 

Purified peptides were mixed with α-Cyano-4-hydroxycinnamic acid on a 100 well 
MALDI plate before inserting into a Voyager DE Biospectrometry workstation. The 
mass-to-charge ratio (m/z) versus peak intensity was determined. 
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Figure 3.4 HPLC degradation profile of human GLP-1 following 
incubation with DPP-IV for 0 and 4 hours. 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 
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Figure 3.5 HPLC degradation profile of human glucagon following 
incubation with DPP-IV for 0 and 4 hours. 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 

 

 

 

 

 

 

 

 

 

 

 

 



154 
 

Figure 3.6 HPLC degradation profile of human GIP following incubation 
with DPP-IV for 0 and 4 hours. 

 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 
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Figure 3.7 HPLC degradation profile of lamprey GLP-1 following 
incubation with DPP-IV for 0 and 4 hours. 

 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 
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Figure 3.8 HPLC degradation profile of dogfish GLP-1 following 
incubation with DPP-IV for 0 and 4 hours. 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 
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Figure 3.9 HPLC degradation profile of ratfish GLP-1 following 
incubation with DPP-IV for 0 and 4 hours. 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 
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Figure 3.10 HPLC degradation profile of paddlefish GLP-1 following 
incubation with DPP-IV for 0 and 4 hours. 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 
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Figure 3.11 HPLC degradation profile of GLP-1 following incubation with 
DPP-IV for 0 and 4 hours. 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 
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Figure 3.12 HPLC degradation profile of trout GLP-1 following incubation 
with DPP-IV for 0 and 4 hours. 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 
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Figure 3.13 Effects of increasing concentrations of (A) lamprey GLP-1, 
(B) dogfish GLP-1, (C) ratfish GLP-1, (D) paddlefish GLP-1, (E) trout 
GLP-1, (F) bowfin GLP-1, (G) human GLP-1, and (H) human glucagon 
on insulin release from BRIN-BD11 rat clonal β-cells.  

 

 

Values are mean ± S.E.M., n = 8. *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
5.6 mM glucose alone. 
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Figure 3.14 Effects of fish GLP-1 peptides at 10 nM and 1 µM 
concentrations on insulin release from 1.1 B4 human clonal β-cells.  

 

Values are mean ± S.E.M., n = 8 *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
16.7 mM glucose alone.  ΔP < 0.05, ΔΔ P< 0.01, ΔΔΔ P< 0.001 compared with the 
response to human GLP-1. 
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Figure 3.15 Effects of fish GLP-1 peptides at 10 nM and 1 µM 
concentrations on insulin release from pancreatic islets isolated from NIH 
Swiss mice.  

 

The values are mean ± SEM for n=4; *P < 0.05, **P < 0.01, ***P < 0.001 compared 
to 16.7mM glucose alone. 
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Figure 3.16 Effects of (A) the GLP-1 receptor antagonist, exendin-4(9-39), 
(B) the glucagon receptor antagonist [desHis1,Pro4,Glu9]glucagon amide 
and (C) the GIP receptor antagonist GIP(6-30)Cex-K40[Pal], on the ability 
of fish GLP-1 peptides (10-7 M) to stimulate insulin release from BRIN-
BD11 cells. 

 

Values are mean ± S.E.M., n = 8 **P < 0.01, ***P < 0.001 compared with 5.6 mM 
glucose alone. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 0.001 compared with the effect in the 
presence of antagonist. 
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Figure 3.17 Effects of fish GLP-1 peptides (10-8 and 10-6 M) on cAMP 
production in (A) GLP1R-transfected CHL cells, and (B) GCGR-
transfected HEK293 cells.  

 

Values are mean ± S.E.M. for n = 4. *P < 0.05, ** P< 0.01 and ***P < 0.001 
compared with 5.6 glucose.  
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Figure 3.18 Effects of fish GLP-1 peptides (10-8 and 10-6 M) on the rate of 
insulin release from (A) wild-type INS-1 cells, (B) CRISPR/Cas9-
engineered GLP-1R knock-out cells, (C) CRISPR/Cas9-engineered GCGR 
knock-out cells and (D) CRISPR/Cas9-engineered GIPR knock-out cells.  
 

 

Values are mean ± S.E.M., n = 8, *P < 0.05, **P < 0.01 and ***P < 0.001 compared 
with 5.6 mM glucose alone. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 0.001 compared with effects 
in wild-type INS-1 cells.
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Figure 3.19 Effects of acute administration of glucagon-related peptides 
(25 nmol/kg body weight) on blood glucose (panels A and C) and plasma 
insulin (panels B and D) concentrations in normal mice. 

 

The integrated responses are shown in panels E and F. The values are mean ± S.E.M., 
n = 6. *P < 0.05, **P < 0.01 and ***P < 0.001 compared with glucose alone (18 
mmol/kg body weight) and Δ P < 0.05, and ΔΔP < 0.01 compared with the effect of 
GLP-1. 
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Figure 3.20 Effects of acute administration of fish GLP-1 peptides on blood 
glucose and plasma insulin concentrations in normal mice, 2 h post 
injection.  

 

 

Blood glucose and plasma insulin were measured after intraperitoneal injection of 
glucose (18 mmol/kg body weight) 2 hours after intraperitoneal administration of 
0.9% saline, exendin-4 and fish GLP-1 peptides (25 nmol/kg body weight). The 
integrated responses (area under the curve AUC) are shown in panels E and F. The 
values are mean ± SEM for n=6. **P<0.01 and ***P<0.001 compared to glucose 
alone; ΔΔ P<0.01 and ΔΔΔ P<0.001 compared to human GLP-1 
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Figure 3.21 Effects of fish GLP-1 peptides on cumulative food intake over 
3 hours trained feeding in 12 h fasting normal mice. 

 

Cumulative food intake was measured after intraperitoneal administration of 50 
nmol/kg peptides alongside 0.9% saline control. The values are mean ± SEM for n=8. 
*P<0.05, **P<0.01 and ***P<0.001 compared to saline control mice treated at the 
same time point.
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Figure 3.22. A comparison of the primary structures of human GLP-1, 
glucagon, and GIP with the corresponding primary structures of exendin-
4 and the fish GLP-1 peptides. 

GLP-1            HAEGTFTSDVSSYLEGQAAKEFIAWLVKGRa 

Exendin-4        HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSa 

Glucagon         HSQGTFTSDYSKYLDSRRAQDFVQWLMNT 
GIP              YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ  
Lamprey GLP-1    HADGTFTNDMTSYLDAKAARDFVSWLARSDKS  
Dogfish GLP-1    HAEGTYTSDVDSLSDYFKAKRFVDSLKSY 
Ratfish GLP-1    HADGIYTSDVASLTDYLKSKRFVESLSNYNRKQNDRRM 
Paddlefish GLP-1 HADGTYTSDASSFLQEQAARDFISWLKKGQ  
Bowfin GLP-1     YADAPYISDVYSYLQDQVAKKWLKSGQDRRE 
Trout GLP-1      HADGTYTSDVSTYLQDQAAKDFVSWLKSGRA 
 

Glucagon         HSQGTFTSDYSKYLDSRRAQDFVQWLMNT 
GLP-1            HAEGTFTSDVSSYLEGQAAKEFIAWLVKGRa 

Exendin-4        HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSa 

GIP              YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ  
Lamprey GLP-1    HADGTFTNDMTSYLDAKAARDFVSWLARSDKS  
Dogfish GLP-1    HAEGTYTSDVDSLSDYFKAKRFVDSLKSY 
Ratfish GLP-1    HADGIYTSDVASLTDYLKSKRFVESLSNYNRKQNDRRM 
Paddlefish GLP-1 HADGTYTSDASSFLQEQAARDFISWLKKGQ  
Bowfin GLP-1     YADAPYISDVYSYLQDQVAKKWLKSGQDRRE 
Trout GLP-1      HADGTYTSDVSTYLQDQAAKDFVSWLKSGRA 
 

GIP              YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ  
GLP-1            HAEGTFTSDVSSYLEGQAAKEFIAWLVKGRa 

Exendin-4        HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSa 

Glucagon         HSQGTFTSDYSKYLDSRRAQDFVQWLMNT                         
Lamprey GLP-1    HADGTFTNDMTSYLDAKAARDFVSWLARSDKS  
Dogfish GLP-1    HAEGTYTSDVDSLSDYFKAKRFVDSLKSY 
Ratfish GLP-1    HADGIYTSDVASLTDYLKSKRFVESLSNYNRKQNDRRM 
Paddlefish GLP-1 HADGTYTSDASSFLQEQAARDFISWLKKGQ  
Bowfin GLP-1     YADAPYISDVYSYLQDQVAKKWLKSGQDRRE 
Trout GLP-1      HADGTYTSDVSTYLQDQAAKDFVSWLKSGRA 
 

 Sequence similarities to the human peptides are highlighted in grey. a denotes C-
terminal α-amidation. 
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studies of glucagon from 
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teleost with dual receptor agonistic 

properties  
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4.1 Summary 

The insulinotropic and antihyperglycaemic actions of glucagon from the sea lamprey 

(Petromyzontiformes), paddlefish (Acipenseriformes) and trout (Teleostei) and 

oxyntomodulin from dogfish (Elasmobranchii) and ratfish (Holocephali) are 

compared with those of human glucagon and GLP-1 in mammalian test systems. The 

peptides were degraded by DPP-IV enzyme after 4 hours of incubation with the similar 

cleavage site to that of human glucagon. All fish peptides produced concentration-

dependent stimulation of insulin release from BRIN-BD11 rat and 1.1 B4 human 

clonal β-cells and isolated mouse islets. Paddlefish glucagon was the most potent and 

effective peptide. The insulinotropic activity of paddlefish glucagon was significantly 

decreased after incubating BRIN-BD11 cells with the GLP1R antagonist, exendin-

4(9-39) and the GCGR antagonist [desHis1,Pro4-Glu9] glucagon amide but GIPR 

antagonist, GIP(6-30)Cex-K40[Pal] was without effect. Paddlefish glucagon (10 nM 

and 1 μM) produced significant increases in cAMP concentration in Chinese hamster 

lung (CHL) cells transfected with GLP1R and human embryonic kidney (HEK293) 

cells transfected with GCGR. The insulinotropic activity of the peptide was attenuated 

in CRISPR/Cas9-engineered GLP1R knock-out INS-1 cells and attenuated in INS-1 

GCG receptor knock-out cells but not in GIPR knock-out cells. Intraperitoneal 

administration of all fish peptides, except ratfish oxyntomodulin, to mice together with 

a glucose load produced significant decreases in plasma glucose concentrations and 

paddlefish glucagon produced a greater release of insulin compared with GLP-1. 

Paddlefish glucagon exhibited glucose lowering activity when administered 2 hours 

prior to a glucose load and was effecting in suppressing appetite in normal mice. 
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Paddlefish glucagon shares the sequences Glu15-Glu16 and Glu24-Trp25-Leu26-Lys27-

Asn28-Gly29 with the potent GLP1R agonist, exendin-4 so may be regarded as a 

naturally occurring, dual-agonist hybrid peptide that may serve as a template design 

of new drugs for type 2 diabetes therapy. 

4.2 Introduction 

Patients with obesity-related diseases such as Type 2 diabetes mellitus (T2DM) often 

cannot be treated effectively with a single pharmaceutical agent (Bailey et al. 2018). 

The therapeutic potential of unimolecular dual- and triple-agonist peptides based upon 

the primary structures of the incretin hormones glucagon-like peptide-1 (GLP-1) and 

glucose-dependent insulinotropic peptide (GIP) together with glucagon is becoming 

increasingly apparent. Dual agonist peptides that target (A) the GLP-1 receptor 

(GLP1R) and the glucagon receptor (GCRG), (B) the GLP1R and the GIP receptor 

(GIPR), and (C) the GLP1R, GCGR, and GIPR are currently in development 

(reviewed in Brandt et al. 2018 and Irwin et al. 2015). Similarly, an enzymatically 

stable GIP/xenin hybrid peptide has been shown to enhance β-cell function and 

improves glucose homeostasis in mice that have been rendered insulin resistant and 

glucose intolerant by being fed a high fat diet (Hasib et al. 2018). A major advantage 

of administration of these multi-agonist peptides over their constituent monotherapies 

is their improved actions on blood glucose control, appetite, suppression, weight loss 

and hyperlipidemia/ hypercholestrolemia (Brandt et al. 2018 and Sánchez-Garrido et 

al. 2017). 

An alternative strategy to the use of synthetic hybrid peptides is to exploit the potential 

of naturally occurring dual agonist peptides. Oxyntomodulin is a C-terminally 

extended form of glucagon that was first identified as an impurity in a commercially 
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available preparation of bovine/porcine glucagon (Tager et al. 1973) and is released 

from L-cells in the intestine in response to nutrients (Blache et al. 1988). A specific 

receptor for oxyntomodulin has not been identified but the peptide will activate both 

the GCGR and the GLP1R, although with an affinity that is appreciably less than 

glucagon and GLP-1 respectively, so that the peptide will stimulate insulin release and 

improve glucose tolerance when administered to mice (reviewed in Pocai et al. 2012 

and Holst et al. 2018). Oxyntomodulin has received particular attention because of its 

ability at pharmacological doses to inhibit appetite and food intake (Cohen et al 2003). 

A GIP-oxyntomodulin hybrid peptide acting through GIP, glucagon and GLP-1 

receptors exhibits promising weight reducing and anti-diabetic properties during long-

term administration to high fat fed mice (Bhat et al. 2013). Recently it has been shown 

that glucagon from the European common dogfish dogfish Scyliorhinus canicula 

(Elasmobranchii) (Conlon et at. 1994) acts as a dual agonist at the glucagon and GLP-

1 receptors and peptidase-resistant analogues showed potent insulin-releasing activity 

in vitro (O’Harte et al. 2016)  and antihyperglycaemic activity in mice (O’Harte et al. 

2016a). Similarly, the insulinotropic and glucose-lowering actions of zebrafish GIP in 

mice involve interaction with both the GLP-1 and GIP receptors (Graham et al. 2018). 

Glucagon has been isolated from the principal islets (Brockmann bodies) of a wide 

range of teleost species and the genes encoding proglucagon from several teleosts have 

been characterized (reviewed in Irwin et al. 2018). The peptide has also been purified 

from several phylogenetically more ancient fishes. Glucagon has been isolated from 

the islet organ of the lampreys Petromyzon marinus, Lampetra fluviatilis, and Geotria 

australis (Petromyzontiformes) [reviewed in Wang et al. 1999)] and from the pancreas 

of the ray Torpedo marmorata (Elasmobranchii), and the primitive Actinopterygian 

(ray-finned) fish: the N. American paddlefish Polyodon spathula (Polyodontidae) and 



175 
 

the sturgeons Huso dauricus  and Scaphirhynchus albus (Acipenseriformes), the 

bichir Polypterus senegalis  (Polypteriformes), the alligator gar Lepisosteus spatula 

(Lepisosteiformes), and the bowfin Amia calva (Amiiformes) (reviewed in Conlon et 

al. 1993). Components comprising glucagon extended from its COOH-terminal region 

by additional amino acid residues that may represent orthologs of mammalian 

oxyntomodulin have been purified from the pancreata of S. canicula (Conlon et al. 

1994) and the Pacific ratfish Hydrolagus colliei (Holocephali) (Conlon et al. 1989). It 

is estimated that the Petromyzontiformes diverged from the line of evolution leading 

to mammals between 500 and 550 million years ago (MYA) and the Elasmobranchii 

diverged around 420 MYA. The divergence of the Holocephali and the 

Elasmobranchii is ancient (410 MYA), and the Polyodontidae are believed to have 

diverged from the Acipenseriformes approximately 180 MYA (Craw et al. 2012). 

The biological activities and physiological roles of the proglucagon-derived peptides 

in the ancient fishes have not been investigated but, in teleosts, the responsiveness of 

hepatocytes to glucagon is limited to high concentrations while physiological 

concentrations of GLP-1 effectively regulate hepatic metabolism by stimulating 

gluconeogenesis and glycogenolysis. In contrast to mammals, GLP-1 shows very 

weak insulinotropic activity in teleosts (Plisetskaya et al. 1996). In the light of the 

promising anti-diabetic effects of dogfish glucagon (O’Harte et al, 2016 and O’Harte 

et al, 2016a), the aim of the present study is to compare the insulinotropic and 

antihyperglycemic properties of synthetic replicates of glucagons from the sea 

lamprey Petromyzon marinus (Conlon et al, 1993), paddlefish Polyodon spathula 

(Conlon et al, 1994), and rainbow trout Onchorynchus mykiss (Irwin et al. 1995) and 

oxyntomodulins from dogfish S. canicula (Conlon et al, 1994) and ratfish Hydrolagus 

colliei (Conlon et al. 1989) with human glucagon and GLP-1. Effects in vitro were 
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determined using established insulin-producing cell lines and isolated mouse islets and 

their glucose-lowering and insulin stimulating actions in vivo were assessed following 

acute administration to NIH Swiss mice. The primary structures and molecular masses 

of the peptides used in this study are shown in Table 4.1). 

 

4.3 Materials and Methods  

4.3.1 Chemical Reagents and Peptides 

All fish glucagon peptides were obtained from EZBiolab Inc. (Carmel, IN, USA) as 

previously described in Section 2.1.1).  Synthetic human glucagon, human GLP-1, 

human GIP and exendin-4 peptides were obtained and processed as described 

previously (Section 2.1.1). Peptides purified and subsequently characterized using 

MALDI-TOF MS (Section 2.2). The primary structures and molecular masses of the 

peptides used in this study are shown in Table 2.2 and Table 4.1. 

4.3.2 Assessment of metabolic stability of fish glucagon peptides  

Effect of DPP-IV on fish glucagon peptide stability was assessed as previously 

described in Section 2.3.  

4.3.3 In vitro insulin release studies using BRIN-BD11 and 1.1B4 cells 

In vitro insulin secretory studies were performed using BRIN-BD11 (McClenaghan et 

al., 1996) and 1.1B4 cells (McCluskey et al. 2011) as previously described (, Section 

2.5.1 and Section 2.5.3).  In a second series of experiments, the effects of 1 µM 

concentrations of the (A) GLP-1 receptor antagonist, exendin-4(9-39 (Thorens et al. 

1993), (B) glucagon receptor antagonist, [desHis1,Pro4-Glu9] glucagon amide 

(O’Harte et al., 2013), and (C) glucose-dependent insulinotropic peptide (GIP) 



177 
 

receptor antagonist, GIP(6-30)Cex-K40[Pal] (Pathak et al., 2015) on the insulin-

releasing activity of the peptides (0.1 µM) were studied by incubating BRIN-BD11 

cells and analysed by RIA cells as previously described (Section 2.5.2 and Section 

2.5.7).  

4.3.4 Insulin release studies using isolated mouse islets 

Effect of fish glucagon peptides on ex-vivo insulin secretion were assessed using 

pancreatic islets from adult, male National Institutes of Health (NIH) Swiss mice 

(Harlan Ltd, Bicester, UK) as previously described (Section 2.5.5).  

4.3.5 Effects on cAMP production.  

The effect of cAMP production from Chinese hamster lung (CHL) cells transfected 

with the human GLP-1 receptor (GLP1R) (Thorens et al., 1993) and human embryonic 

kidney (HEK293) cells transfected with the human glucagon receptor (GCGR) 

(Ikegami et al., 2001) was assessed using a Parameter cAMP assay kit (R&D Systems, 

Abingdon, UK) as outlined in Section 2.6.  

4.3.6 Insulin release studies using CRISPR/Cas9-engineered INS-1 cells 

In vitro receptor activation studies were performed using wild-type INS-1 832/3 rat 

clonal pancreatic β-cells and CRISPR/Cas9-engineered cells with knock-out of the 

knock-out of the GLP-1 receptor (GLP-1 KO), glucagon receptor (GCG KO) and GIP 

receptor (GIP KO) (Naylor et al. 2016) as described in Section 2.5.4. 

4.3.7 In vivo insulin release and glucose-lowering effects of peptides 

Acute and persistent in vivo studies were carried out using male National Institutes of 

Health (NIH) Swiss mice as previously described (Sections 2.8.1.1, 2.8.2.1, 2.8.2.3 

and 2.8.2.5). For acute IPGTT, blood glucose and plasma insulin were measured 
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immediately prior to (t = 0) and 15, 30 and 60 min after intraperitoneal administration 

of glucose alone (18 mmol/kg of body weight) or in combination with test peptides 

(each at 25 nmol/kg bw) in overnight fasted mice. In separate series of experiments, 

overnight fasted animals received either test peptides (each at 25 nmol/kg of body 

weight) or saline vehicle 2 hours before an intraperitoneal glucose administration (18 

mmol/kg bw) and blood glucose and plasma insulin measured at 15, 30 and 60 min 

post glucose injection as detailed in Section 2.8.5. 

4.3.8 Acute food consumption studies 

Normal male TO mice were used in food consumption study as previously described 

(Section 2.8.2.6). Animals were administrated intraperitoneal injections of either 

saline solution or peptides (50 nmol/kg) prior to receiving free access to normal chow 

for 180 mins. 

4.3.9 Biochemical analysis 

Blood was collected from the tail vein of conscious mice and analysed immediately 

using the Ascenacia Counter Blood Glucose Meter (Bayer, Newbury, UK). Plasma for 

insulin was collected, stored and assayed as described in Section 2.8.2.5. 

4.3.10 Statistical analysis 

Data were compared using unpaired Student’s t-test (non-parametric, with two-tailed 

P values and 95% confidence interval) and one-way ANOVA with Bonferroni post-

hoc test using GraphPad PRISM (Version 5.0 San Diego, California).  Area under the 

curve (AUC) analysis was performed using the trapezoidal rule with baseline 

correction. Data are presented as mean ± S.E.M where the comparison was considered 

to be significantly different if P < 0.05. 
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4.4 Results 

4.4.1 Purification and confirmation of molecular masses by MALDI-TOF MS 

Following RP-HPLC on a C-8 semi-preparative column the main peaks of peptides 

were collected as represented in Figure 4.1. Experimental masses detected for each 

peptide by MALDI-TOF MS (Figure 4.2) corresponded very closely to their 

theoretical masses as shown in Table 4.1. 

4.4.2 Fish glucagon peptides stability 

All peptides were degraded rapidly into 2 major fractions after 4 hours incubation with 

DPP-IV (Figures 4.3-4.7) in a similar pattern with human glucagon molecule (Figure 

3.5). Interestingly, paddlefish glucagon was more stable compared to the other 

glucagon-related peptides investigated in this study and was degraded only by 14% 

(Table 4.2). The molecular masses of the fractions corresponded to the remaining 

intact peptide and its truncated product cleaved at position 2. The calculated 

percentage of degradation of each peptide is shown in Table 4.2.  

4.4.3. In vitro insulin release studies 

As illustrated in Table 4.3, the rate of insulin release from BRIN-BD11 rat clonal β-

cells in the presence of 5.6 mM glucose alone was 1.02 ± 0.02 ng/106cells/20 min 

which increased to 2.4 ± 0.2 ng/106cells/20 min during incubation with GLP-1 (0.1 

µM; P < 0.001). The effects of incubation with increasing concentrations of the fish 

glucagon-related peptides and human glucagon on insulin release are shown in Figure 

4.8. All peptides produced significant and concentration-dependent increases the rate 

of insulin release compared with the rate in the presence of 5.6 mM glucose alone. As 

shown in Table 4.3, the most potent peptide was paddlefish glucagon produced a 

significant stimulation of insulin release (P < 0.05) from BRIN-BD11 cells at a 
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threshold concentration of 30 pM compared with  10 pM for human GLP-1 and 10 nM 

for human glucagon. Paddlefish glucagon was the most effective peptide producing a 

response at 3 µM concentrations that was not significantly different from that of GLP-

1. 

The rate of insulin release from 1.1B4 human clonal β-cells in the presence of 

16.7 mM glucose alone was 0.08 ± 0.01 ng/106cells/20min. Incubation with all fish 

peptides significantly (P < 0.001) stimulated insulin release at concentrations of 1 µM 

compared with the rate in the presence of 16.7 mM glucose alone (Figure 4.9 and 

Table 4.4). Only paddlefish glucagon (P < 0.001) and dogfish oxyntomodulin (P < 

0.05) produced a significant increase at 10 nM concentration. The rates of insulin 

release elicited by 1 µM concentrations of glucagons from lamprey and paddlefish and 

by dogfish oxyntomodulin were not significantly different to that produced by human 

GLP-1.  

The rate of insulin release from mouse islets incubated for 60 min with 16.7 mM 

glucose was 9.7 ± 1.3 % of the total insulin content.  Incubation with all peptides, 

except human and trout glucagon, at 1µM concentrations significantly increased the 

rate of insulin release compared with the rate with 16.7 mM glucose alone (Figure 

4.10).  Lamprey glucagon and dogfish oxyntomodulin were also effective at 10 nM 

concentration. The stimulatory effects of 1 µM concentrations of glucagon from 

lamprey and paddlefish and dogfish oxyntomodulin on insulin release were not 

significantly different from the effect produced by 1 µM GLP-1 (Figure 4.10 and Table 

4.5). 

4.4.4 Receptor antagonist studies  

The in vitro insulinotropic activities of all peptides, except trout and human glucagon 

and GIP, were significantly decreased when BRIN-BD11 cells were co-incubated with 
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the GLP-1 receptor antagonist, exendin-4(9-39) (Figure 4.11 A).  Co-incubation with 

the glucagon receptor antagonist [desHis1,Pro4-Glu] -glucagon amide significantly 

attenuated the action of all peptides except ratfish glucagon, GLP-1 and GIP (Figure 

4.11 B). Human GIP was the only peptide whose stimulatory effect on insulin release 

was attenuated by the GIP receptor antagonist, GIP(6-30)Cex-K40[Pal] (Figure 4.11 C 

and Table 4.6). 

4.4.5   Effect of fish glucagon-related peptides on cAMP production 

All peptides, except trout glucagon, at a concentration of 1 µM significantly stimulated 

cAMP production in CHL cells transfected with the human GLP-1 receptor (GLP1R) 

(Figure 4.12 A). Significant stimulation of cAMP production in HEK293 cells 

transfected with the human glucagon receptor (CGCR) was observed after incubating 

the cells with all peptides at 1 µM concentration except ratfish oxyntomodulin (Figure 

4.12 B and Table 4.7).  

4.4.6 Insulin release studies using CRISPR/Cas9-engineered INS-1 cells 

Incubation of wild-type INS-1 cells with glucagon, GLP-1, GIP, and all fish peptides 

(10 nM and 1 μM) significantly increased the rate of insulin release compared with 

the rate in the presence of 5.6 mM glucose alone (Figure 4.13 A). The stimulatory 

effect on insulin release in response to incubations with lamprey glucagon, dogfish 

oxyntomodulin, and GLP-1 (10 nM and 1 µM) was abolished in the GLP-1 KO cells 

and the responses to paddlefish glucagon and ratfish oxyntomodulin were significantly 

attenuated compared with the effects in wild-type INS-1 cells (Figure 4.13 B and Table 

4.8). Moreover, the rates of insulin release in response to human glucagon and 

glucagon-related fish peptides except ratfish oxyntomodulin were significantly 

attenuated (Figure 4.13 C and Table 4.8). In contrast, the insulin release from GIP KO 
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cells was significantly less that from the wild-type INS-1 cells only in the case of 

incubations with 10 nM and 1 μM GIP (Figure 4.13 C and Table 3.8). 

4.4.7 In vivo insulin release studies 

Acute and persistent in vivo effects of peptides are presented in Figure 4.14-4.15 and 

Table 4.9). Blood glucose concentrations of overnight fasted NIH Swiss mice were 

significantly lowered at time points 15, 30 and 60 min after receiving intraperitoneal 

administration of glucose (18 mmol/ kg body weight) along with 25 nmol/kg body 

weight of lamprey glucagon, dogfish oxyntomodulin, and paddlefish glucagon (Figure 

4.14 A) and trout glucagon (Figure 4.14 C) compared with animals receiving glucose 

only. The integrated responses to the lamprey, dogfish, and paddlefish peptides were 

not significantly different from the response to GLP-1 (Figure 4.14 E). Concomitant 

with the lower blood glucose levels, the concentrations of plasma insulin were 

significantly greater 15 and 30 min after administration of lamprey glucagon, dogfish 

oxyntomodulin, and paddlefish glucagon (Figure 4.14 B), and trout glucagon (Figure 

4.15 D) compared with animals receiving glucose only. The integrated insulin 

response to paddlefish glucagon was significantly greater than the response to human 

GLP-1 (Figure 4.14 F).   

Interestingly, paddlefish glucagon exhibited glucose-lowering activity when 

administrated 2 hours prior to a glucose load. However, no insulinotropic effect was 

observed for paddlefish glucagon. As expected, the other fish glucagon-related were 

susceptible to degradation by plasma enzymes, thus exhibited no effect when 

administrated two hours prior to a glucose load (Figure 4.15 and Table 4.9).  
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4. 4. 8 Time-dependent effects of human GLP-1, human glucagon, exendin-4 and 

fish GLP-1 peptides on feeding in normal mice. 

At a concentration of 50 nmol/kg of body weight, paddlefish glucagon significantly 

(P < 0.01 and P < 0.001) suppressed appetite at individual time points (30, 60, 90, 120, 

150 and 180 min) in a similar pattern with exendin-4 when compared with saline only. 

On the other hand, human glucagon, lamprey glucagon, dogfish oxyntomodulin, 

ratfish oxyntomodulin and trout glucagon peptides failed to promote any significant 

reduction of appetite. (Figure 4.16 and Table 4.10). Human GLP-1 was effective up to 

30 min post administration which could be due to its short half-life in plasma.  

4.5 Discussion 

In this Chapter, glucagon-related peptides from phylogenetically ancient fish as well 

as a teleost were investigated for metabolic stability, potential insulinotropic property 

and receptor specificity to extended earlier work with dogfish glucagon (O’Harte et 

al. 2016a and 2016b). For the stability study, DPP-IV was used to predict the cleavage 

site of the peptides which occurred to be between residues 2 and 3 similarly to human 

glucagon. (Authier et al. 2003; Pospisilic et al. 2001). Interestedly, while most of the 

fish peptides were degraded by 33%-47%, only paddlefish glucagon exhibited greater 

stability with degradation of only 14%. The receptor activation studies show that in 

mammalian test systems the insulinotropic actions of glucagons from the sea lamprey 

and paddlefish and oxyntomodulin from the dogfish are mediated through activation 

of both the glucagon and the GLP-1 receptors. In contrast, the effect of ratfish 

oxyntomodulin is mediated predominantly, if not exclusively, through interaction with 

the GLP-1 receptor and the effect of trout glucagon through interaction with the 
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glucagon receptor. No activation of the GIPR receptor by any fish peptide studied was 

indicated.  

These conclusions are supported by consistent data involving the use of specific 

receptor antagonists (Figure 4.12 and Table 4.6), cells transfected with GLP1R and 

GCGR (Figure 4.11 and Table 4.7), and CRISPR/Cas9-engineered GLP1R knock-out 

and GIPR knock-out cells (Figure 4.13 and Table 4.8). Paddlefish glucagon was the 

most effective peptide producing a near-maximal increase in the rate of release of 

insulin from BRIN-BD11 rat clonal β-cells at a concentration of 3 µM that was not 

significantly different from that produced by human GLP-1 (Figure 4.8 D and Table 

4.3). Along with dogfish oxyntomodulin, paddlefish glucagon produced the greatest 

responses in 1.1B4 human clonal β-cells (Figure 4.9 and Table 4.4) and, along with 

lamprey glucagon, in isolated mouse islets (Figure 4.10 and Table 4.5). When 

administered intraperitoneally to overnight-fasted mice together with a glucose load, 

glucagons from lamprey and paddlefish and oxyntomodulin from dogfish were equally 

effective as human GLP-1 in lowering blood glucose concentrations, and paddlefish 

glucagon produced a significantly greater insulin response than an equivalent dose of 

GLP-1 (Figure 4.14 and Table 4.9). 

 Interestingly, unlike other fish peptides, paddlefish glucagon exhibited glucose-

lowering activity when administrated 2 hours prior to a glucose load (Figure 4.15 and 

Table 4.9). This could be due to the higher stability of the peptide which is consistent 

with the DPP-IV study (Figure 4.7). The percentage of degradation for paddlefish 

glucagon was lower compared to the other glucagon-related peptides (Table 4.2). 

However, no insulinotropic effect was detected for paddlefish glucagon. Moreover, 

paddlefish glucagon was as effective as exendin-4 in suppressing appetite over 3 hours 

trained feeding in 12 hours fasting normal mice.  
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In an extensive series of articles from the laboratory of Merrifield, the amino acids in 

glucagon responsible for receptor binding and signal transduction were identified 

(Unson et al. 1994a; 1994b; 1998; 2002). It was established that His1, Asp9, Ser11, and 

Ser16 are involved in receptor activation and Ser2, Ser8 and Asp15 are important in 

receptor binding (Unson et al. 1994). In addition, it was shown that the positively 

charged residues Lys12, Arg17, and Arg18 are necessary to ensure high biological 

potency by stabilizing the ligand-receptor interaction (Unson et al. 1998). Structure-

activity studies of human GLP-1 have shown that the amino acids His1, Gly4, Phe6, 

Thr7, and Asp9 in the N-terminal domain play an important role in binding and 

activation of the GLP-1 receptor and Phe22 and Ile23 in the C-terminal domain are of 

critical importance in maintaining the conformation of the molecule that is recognized 

by the receptor (Gallwitz et al. 1994). In addition, it is known that the Ala18, Ala19, 

Lys20, and Leu26 residues of GLP-1 interact with N-terminal extracellular domain of 

the receptor, and so influence binding affinity (Underwood et al. 2010). The primary 

structures of the fish peptides are compared with those of glucagon, oxyntomodulin, 

GLP-1, and the GLP1R agonist, exendin-4 that was first isolated from the venom of a 

reptile, the Gila monster Heloderma suspectum (Eng et al. 1992), in Figure 4.17.   

It is apparent that the primary structure of glucagon has been better preserved during 

the course of evolution than that of GLP-1. The His1, Asp9, Ser11, and Lys12 residues 

of glucagon have been conserved in all fish peptides, and a positively charged residue 

(Arg or Lys) is present at position 17. Similarly, the His1, Gly4, Phe5, Asp9, Phe22, and 

Leu26 residues of GLP-1 have also been conserved in all fish peptides, and all peptides 

contain a Val residue instead of Ile at position 23. Thus, sequence differences at these 

sites are not responsible for the observed differences in activity and specificity of the 

fish peptides. The high potency of paddlefish glucagon was unexpected in view of the 
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fact that it contains the substitutions Ser8 → Asn and Ser16 → Glu which would be 

expected to reduce the ability to bind to and activate GCGR and Ala18 → Arg which 

would be expected to reduce binding affinity to GLP1R. However, the peptide 

contains the segments Glu15-Glu16 and Glu24-Trp25-Leu26-Lys27-Asn28-Gly29 in 

common with GLP1R agonist, exendin-4 that are not found in the other fish peptides 

(Figure 4.17). 

 Exendin-4 is both more potent and has a longer half-life in the circulation than GLP-

1 and is in use in clinical practice as exenatide (Knop et al. 2017).  Thus, paddlefish 

glucagon may be regarded as a naturally occurring glucagon/exendin-4 hybrid peptide 

with dual agonist activity at the glucagon and GLP-1 receptors. A previous study has 

shown that twice-daily administration of the hybrid peptide [S2s]glucagon-exendin-4 

(31-39) to high fat-fed mice for 28 days reduced body weight, energy intake and non-

fasting glucose levels, as well as increasing insulin concentrations and improving 

glucose tolerance and insulin sensitivity (Lynch et al. 2014). Glucagon/exendin-4 

hybrid peptides have also been designed that show agonist activity at GLP1R and 

antagonist activity at GCGR (Pan et al. 2006).   

GLP-1 and glucagon lack defined secondary structure in aqueous solution, but in 

membrane-mimetic environment, adopt an α-helical structure in the midsection, with 

flexible N- and C-terminal regions and it has been suggested that the helical structure 

is required for binding to their respective receptors (Pan et al, 2006) The 

conformations of the fish glucagons have yet to be determined experimentally but 

application of the AGADIR program, an algorithm based on the helix/coil transition 

theory which predicts the helical behaviour of monomeric peptides (Muñoz et al. 

1994), indicates that paddlefish glucagon has a very strong propensity to adopt a stable 

α-helical conformation between residues 8-27 whereas the predicted helices adopted 
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by the dogfish, ratfish, and lamprey peptides are much less stable. In addition, it is 

suggested that the relatively weak insulinotropic activity of trout glucagon may arise 

from the substitutions Asp15 → Leu decreasing binding affinity at GCGR and Thr7 → 

Ser and Lys20 → Gln decreasing affinity at GLP1R.  

Structure-activity relationships of the oxyntomodulin molecule have been less well 

studied than those of glucagon. The insulinotropic activities and receptor selectivities 

of ratfish and dogfish oxyntomodulin differ appreciably and it is suggested that the 

substitution Ser2 → Thr in the ratfish peptide contributes to its inability to activate 

GCGR and the substitutions Thr7 → Ser and Ala19 → Thr are, at least in part, 

responsible for its lower potency and effectiveness in stimulating GLP1R-mediated 

insulin release in vitro and weaker glucose-lowering activity in vivo compared with 

dogfish oxyntomodulin. Replacement of residues 15-23 in oxyntomodulin (Asp-Ser-

Arg-Arg-Ala-Gln-Asp-Phe-Val) by the corresponding section of exendin-4 (Glu-Glu-

Glu-Ala-Val-Arg-Leu-Phe-Val) resulted in an approximately 10-fold increase in 

binding affinity at the rat GLP-1 receptor (Druce et al. 2009), but neither dogfish not 

ratfish oxyntomodulins show structural similarity with exendin-4 in this region. 

In conclusion, this study has extended earlier work that identified dogfish glucagon as 

a peptide that interacts with both the GLP-1 and glucagon receptors to stimulate insulin 

release and lower blood glucose concentrations (O’Harte et al. 2016) by demonstrating 

that glucagon-related peptides from other phylogenetically ancient fish possess similar 

properties. In particular, paddlefish glucagon by incorporating structural features 

found in exendin-4 is more potent in stimulating insulin release from rat clonal β-cells 

than dogfish glucagon (threshold concentration 30 pM versus 100 pM (O’Harte et al. 

2016a) and provokes a greater insulin response than human GLP-1 when administered 

to mice.  
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In the light of the global pandemic of obesity-related T2DM, there is an urgent need 

for new types of safe and more effective anti-diabetic agents. The structure-activity 

properties of fish glucagon-related peptides revealed for the first time in this study will 

aid in the design of new therapeutic agents. In particular, paddlefish glucagon has the 

potential to act as a template for the development of new long-acting, peptidase-

resistant analogues for the treatment of patients with the disease that display the 

advantages of unimolecular dual agonist peptides (Brandt et al. 2018 and Sánchez-

Garrido et al. 2017). 
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Table 4. 1 Primary structure and molecular masses of the glucagon-related fish peptides used in this study. 

Peptide Amino acid sequence Calculated 
molecular 
mass, (Da) 

Observed 
molecular 
mass, (Da) 

Lamprey glucagon HSEGTFTSDYSKYLENKQAKDFVRWLMNA 3466.9 3466.5 

Dogfish oxyntomodulin HSEGTFTSDYSKYMDNRRAKDFVQWLMSTKRNG 3957.4 3958.5 

Ratfish oxyntomodulin HTDGIFSSDYSKYLDNRRTKDFVQWLLSTKRNGANT 4235.6 4233.6 

Paddlefish glucagon HSQGMFTNDYSKYLEEKRAKEFVEWLKNGKS  3751.1 3750.8 

Human GLP-1 HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR-NH2 3297.7 3297.9 

Human glucagon HSQGTFTSDYSKYLDSRRAQDFVQWLMNT 3482.8 3484.4 

Human GIP YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 4983.6 4984.3 

Exendin-4 HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 4186.6 4186.0 
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Table 4.2 Summary of DPP-IV degradation results of the glucagon-related fish peptides used in this study.  

Peptide % Degraded at  

4 hours 

Number of 

           peaks 

Observed MW 

of degraded product, 
Da 

   Proposed                

   cleavage site 

Lamprey glucagon 42 2 3243.1 Ser2-Glu3 

Dogfish oxyntomodulin 47 2 3734.4 Ser2-Glu3 

Ratfish oxyntomodulin 33 2 3998.4 Thr2-Asp3 

Paddlefish glucagon 14 2 3529.7 Ser2-Gln3 

Trout  glucagon 42 2 3289.4 Ser2-Glu3 

Human GLP-1 86 2 3090.4 Ala8-Glu9 

Human glucagon 24 2 3259.5 Ser2-Gln3 

Human GIP 

 

90 2 4749.1 Ala2-Glu3 
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Table 4.3 Effects of glucagon-related peptides on the release of insulin from 
BRIN-BD11 cells. 

 

 

Values are mean ± S.E.M., n = 8 *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
5.6 mM glucose alone.   

 

 

 

 

 

 

 

 

 

Peptide Threshold 
concentration 

The rate at 3 µM  
ng/106/20min 

EC 50 

Control (glucose alone) - 1.02 ± 0.02  

Lamprey glucagon 3 nM 3.3 ± 0.2*** 85nM 

Dogfish oxyntomodulin 1 nM 2.4 ± 0.1*** 23nM 

Ratfish oxyntomodulin 3 nM 2.3 ± 0.2*** 7.2nM 

Paddlefish glucagon 30 pM 3.6 ± 0.2*** 1.7nM 

Trout glucagon 30 nM 1.6 ± 0.1*** 0.1µM 

Human glucagon 10 nM 2.7 ± 0.1***            3µM 

Human GLP-1 10 pM 3.6 ± 0.2*** 2.1nM 
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Table 4.4 Effects of fish proglucagon-derived peptides at 10-6 M and 10-8 

M concentration on insulin secretion from 1.1 B4 cells.  

 

Peptide name Insulin release at 10-6M Insulin release at 10-8M 

1.4 mM glucose 0.05 ± 0.002 ** 0.05 ± 0.002 ** 

16.7 mM glucose control 0.08 ± 0.007 0.08 ± 0.007 

Lamprey glucagon 0.27 ± 0.010 ***  0.04 ± 0.020 ΔΔ 

Dogfish oxyntomodulin 0.25 ± 0.025 *** 0.10 ± 0.006 * ΔΔ 

Ratfish oxyntomodulin   0.15 ± 0.012 *** ΔΔ 0.09 ± 0.011 ΔΔΔ 

Paddlefish glucagon 0.23 ± 0.010 *** 0.14 ± 0.008 *** 

Trout glucagon 0.12 ± 0.009 ** ΔΔΔ 0.08 ± 0.011 ΔΔΔ 

GLP-1 0.24 ± 0.020 *** 0.13 ± 0.008 ** 

Glucagon 0.11 ± 0.002* ΔΔΔ 0.08 ± 0.006 ΔΔΔ 

 

Values are mean ± S.E.M., n = 8 *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
16.7 mM glucose alone.  ΔP < 0.05, ΔΔ P< 0.01, ΔΔΔ P< 0.001 compared with the 
response to human GLP-1. 
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Table 4.5 Effects fish proglucagon-derived peptides on the release of 
insulin from islets isolated from TO Swiss mice.  

 

Peptide  Insulin release  

(% of total insulin 
content) at 10-6M 

Insulin release  

(% of total insulin 
content) at 10-8M 

1.4 mM glucose 3.7 ± 0.1 ** 3.7 ± 0.1 ** 

16.7 mM glucose    9.7 ± 1.3 9.7 ± 1.3 

Lamprey glucagon 23.6 ± 1.1 *** 15.9 ± 0.5 ** 

Dogfish oxyntomodulin 21.6 ± 2.2** 18.6 ± 0.6** 

Ratfish oxyntomodulin  16.4 ± 2.0 * 11.3 ± 1.1 

Paddlefish glucagon 22.7 ± 1.5 *** 9.9 ± 1.3 

Trout glucagon 12.9 ± 0.2 9.7 ± 0.1 

Human GLP-1 20.7 ± 2.5 ** 16.1 ± 1.4 * 

Human glucagon 15.1 ± 1.7 11.5 ± 1.3 

Values are mean ± S.E.M., n = 8 *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
16.7 mM glucose alone.   
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Table 4.6 Summary of effect of fish glucagon-related, human GLP-1, 
human glucagon and human GIP peptides on insulin secretion from BRIN-
BD11 cells in the presence antagonists. 

 

Peptide, 10-7 The observed reduction of peptides-stimulated 
insulin secretion in the presence of antagonists: 

Exendin-4(9-39),   
10-6 

Peptide O, 

10-6 

(Pro3)GIP,  

10-6 

Lamprey glucagon ΔΔΔ ΔΔΔ No effect 

Dogfish oxyntomodulin ΔΔΔ ΔΔ No effect 

Ratfish oxyntomodulin ΔΔΔ No effect No effect 

Paddlefish glucagon ΔΔΔ ΔΔ No effect 

Trout glucagon No effect ΔΔΔ No effect 

Human GLP-1 ΔΔΔ No effect No effect 

Human glucagon  No effect Δ No effect 

Human GIP No effect No effect ΔΔΔ 

 

Values are mean ± S.E.M., n = 8 ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 0.001 compared with 
the effect in the presence of respective antagonist. 
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Table 4.7 Summary of effect of fish glucagon-related peptides, human GLP-1, human glucagon and human GIP (10-8 
and 10-6 M) on cAMP production in GLP1R-transfected CHL cells, and GCGR-transfected HEK293 cells. 

 

Peptide name GLP-1 receptor transfected cells GCG receptor transfected cells 

cAMP release at 

 10-6 

cAMP release at 

10-8 

cAMP release at 

10-6 

cAMP release at 

10-8 

Basal (5.6mM glucose) 4.0 ± 0.4 4.0 ±0.4 2.8 ± 0.9 2.8 ± 0.9 

Lamprey glucagon 16.3 ± 0.5***Δ 14.5 ± 0.8***Δ 10.3 ± 0.3** 4.6 ± 0.9* ΔΔ 

Dogfish oxyntomodulin 14.7 ± 0.2***ΔΔΔ 13.5 ± 0.2***ΔΔ 10.9 ± 0.4** 4.1 ± 0.4*ΔΔΔ 

Ratfish oxyntomodulin 11.8 ± 0.6***ΔΔΔ 4.5 ± 0.4 ΔΔΔ 1.5 ± 0.1ΔΔΔ 1.4 ± 0.6 ΔΔΔ 

Paddlefish glucagon 15.1 ± 0.1*** ΔΔΔ 14.8 ± 0.1***ΔΔ 8.2 ± 0.9** 5.4 ± 0.3*ΔΔΔ 

Trout glucagon 6.8 ± 1.4 ΔΔΔ 5.7 ± 0.9 ΔΔΔ 5.6 ± 0.1* ΔΔΔ 3.2 ± 0.8 ΔΔΔ 

Human GLP-1 17.7 ± 0.2*** 17.3 ± 0.3*** 7.6 ± 0.2**ΔΔΔ 4.9 ± 0.4*ΔΔΔ 

Human glucagon  12.3 ± 0.8**ΔΔΔ 5.4 ± 0.4*ΔΔΔ 10.4 ± 0.3** 9.1 ± 0.4** 

Human GIP 3.9 ± 0.2ΔΔΔ 3.6 ± 0.4ΔΔΔ 2.9 ± 0.4ΔΔΔ 2.8 ± 0.3ΔΔΔ 

Values are mean ± S.E.M. for n = 4. *P < 0.05, ** P< 0.01 and ***P < 0.001 compared with 5.6 glucose. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 
0.001 compared with the effect of glucagon/GLP-1 
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Table 4.8 Summary of effects of fish GLP-1 peptides (10-8 and 10-6 M) on the rate 
of insulin release from wild-type INS-1 cells, CRISPR/Cas9-engineered GLP-1R 
KO cells, CRISPR/Cas9-engineered GIPR KO cells and CRISPR/Cas9-engineered 
GIPR KO cells  

Peptide  Wild-type 
cells, % of 
basal control 

GLP-1R KO 
cells, % of 
basal control 

GCGR KO 
cells, % of 
basal control 

GIPR KO 
cells, % of 
basal control 

Basal (5.6mM glucose) 100 ± 2.3 

Lamprey glucagon 10-6 221.7 ± 9.5***  120.7 ± 8.2 
ΔΔΔ 

189.3 ± 11.2 *** 188.5 ± 4.7*** 

10-8 202.4 ± 7.6*** 
 

103.6 ± 7.2 
ΔΔΔ 

134.1 ± 7.8*ΔΔ 

 
183.2 ± 15.9*** 

Dogfish 
oxyntomodulin 

10-6 220.7 ± 13.1*** 
 

118.2 ± 7.6 
ΔΔΔ 

170.3 ± 13.5**Δ 

 
210.0 ± 5.7*** 

10-8 213.2 ± 16.7***  118.9 ± 6.6 
ΔΔΔ 

157.0 ± 19.9*Δ 210.3 ± 10.6*** 

Ratfish 
oxyntomodulin 

10-6 232.1 ± 5.5*** 183.7 ± 9.5 
***ΔΔ 

207.6 ± 20.6*** 212.0 ± 10.5*** 

10-8 211.4 ± 1.8*** 146.8 ± 2.5 
*** ΔΔΔ 

197.4 ± 36.1* 195.3 ± 8.0*** 

Paddlefish  
glucagon 

10-6 223.2 ± 6.9*** 194.3 ± 11.3 
***Δ 

207.9 ± 26.6 ** 210.7 ± 11.2*** 

10-8 184.0 ± 10.3*** 161.3 ± 13.6 
***  

149.1 ± 8.0** Δ 203.5 ± 13.3*** 

Trout glucagon 10-6 238.1 ± 10.1*** 236.9 ± 7.2 
*** 

147.4 ± 15.9*ΔΔΔ 222.1 ± 13.7 *** 

10-8 240.1 ± 7.0*** 192.2 ± 7.5 
*** 

117.8 ± 12.8 ΔΔΔ 198.3 ± 8.8 *** 

Human GLP-1 10-6 213.5 ± 14.1*** 102.3 ± 1.3 
ΔΔΔ 

222.0 ± 11.7*** 213.2 ± 12.3*** 

10-8 197.1 ± 4.5*** 101.1 ± 6.9 
ΔΔΔ 

210 ± 25.0 *** 183.5 ± 3.5*** 

Human glucagon 10-6 215.3 ± 3.4*** 252.8 ± 
0.8*** 

159.6 ± 8.5 *** 
ΔΔ 

181.0± 13.3 *** 

10-8 172.7 ± 7.5*** 194.9 
±10.9*** 

134.0 ± 14.4 Δ 174.0 ± 10.6*** 

Human GIP 10-6 241.2 ± 10.1*** 264.9 
±10.2*** 

231.3 ± 17.6 *** 110.1 ± 8.5 ΔΔΔ 

10-8 228.8 ± 16.3***  255.4 ± 
5.3*** 

230.1 ± 0.9*** 104.4 ± 4.2 ΔΔΔ 

 

Values are mean ± S.E.M., n = 8, *P < 0.05, ** P< 0.01 and ***P < 0.001 compared with 
5.6 mM glucose alone. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 0.001 compared with effects in wild-type 
INS-1 cells. 
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Table 4.9 Summary of effects of acute administration of fish glucagon-related peptides on blood glucose and plasma 
insulin concentrations in normal mice, including 2-hour post injection 

Peptide name IGTT blood glucose 
AUC0-60min (mmol/l.min) 

IGTT plasma insulin 
AUC0-60min 

(mmol/ml/min) 

2 hours post 
saline/peptide injection, 

plasma insulin 
AUC0-60min 

(mmol/l.min) 

2 hour post 
saline/peptide injection, 

plasma insulin 
AUC0-90min (ng/ml/min) 

Glucose alone 991.1 ± 49.0 134.8 ± 4.23  894.3 ± 46.2 108.1 ± 4.2  
Lamprey glucagon 561.6 ± 62.4*** 171.3 ± 6.6** 836.4 ± 34.9  95.6 ± 4.2  
Dogfish oxyntomodulin 528.3± 58.3*** 208.1 ± 13.5***  830.8 ± 37.4 99.9 ± 6.8 
Ratfish oxyntomodulin 878.3 ± 78.1ΔΔ 151.2 ± 11.8 Δ  906.9 ± 54.1  102.7 ± 11.3  
Paddlefish glucagon 466.4 ± 35.1*** 239.1 ± 6.1*** Δ 720.5 ± 27.3* 119 ± 4.9 
Trout glucagon 726.1 ± 34.5**ΔΔ 160.5 ± 6.5* Δ 888.6 ± 28.2 103.1± 12.2 
GLP-1 476.4 ± 41.37*** 186.6 ± 12.87 ** 825.4 ± 32.5 101.7 ± 16.65 
Glucagon 1006 ± 140.6 ΔΔ 145.9 ± 3.218 Δ - - 
Exendin-4 - - 369.0 ± 38.96*** ΔΔΔ 281.0 ± 16.25 ***ΔΔΔ 

 

The values are mean ± SEM for n=6. **P<0.01 and ***P<0.001 compared to glucose alone; ΔΔ P<0.01 and ΔΔΔ P<0.001 compared to 
human. 
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Table 4.10 Summary effects of fish GLP-1 peptides on cumulative food intake over 3 hours trained feeding in 12 h 
fasting normal mice. 

Peptide name Time (min) 
30 60 90 120 150 180 

Saline control 1.2 ± 0.03 1.7 ± 0.06 2.1 ± 0.08 2.5 ± 0.07 2.9 ± 0.07 3.3 ± 0.06 

Lamprey glucagon 1.3 ± 0.11 1.7 ± 0.2 2.1 ± 0.19 2.5 ± 0.11 2.9 ± 0.18 3.0 ± 0.11 * 

Dogfish oxyntomodulin 1.3 ± 0.19 1.9 ± 0.3 2.2 ± 0.27 2.5 ± 0.22 2.7 ± 0.25 3.1 ± 0.17  

Ratfish oxyntomodulin 1.3 ± 0.11 1.9 ± 0.2 2.1 ± 0.19 2.7 ± 0.11 3.1 ± 0.18 3.6 ± 0.11 * 

Paddlefish glucagon 0.7 ± 0.06 ** 0.8 ± 0.1*** 1.2 ± 0.14 *** 1.5 ± 0.15 *** 1.8 ± 0.14 *** 2.2 ± 0.13 *** 

Trout glucagon 1.4 ± 0.11 1.9 ± 0.2 2.3 ± 0.26 2.8 ± 0.26 3.1 ± 0.20 3.4 ± 0.26 

GLP-1 0.7 ± 0.13 ** 1.4 ± 0.18 2.1 ± 0.20 2.4 ± 0.13 2.7 ± 0.11  3.1 ± 0.08  

Glucagon 1.3 ± 0.09 1.8 ± 0.15  2.1 ± 0.16 2.4 ± 0.18 2.6 ± 0.17 2.9 ± 0.19  

Exendin-4 0.7 ± 0.13 ** 1.0 ± 0.08 *** 0.9 ± 0.08 *** 1.2 ± 0.16 *** 1.2 ± 0.17 *** 1.4 ± 0.17 *** 

The values are mean ± SEM for n=8. *P<0.05, **P<0.01 and ***P<0.001 compared to saline control mice treated at the same time 
point.  
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Figure 4.1 Reverse-phase HPLC purification of crude lamprey glucagon 
(A), dogfish oxyntomodulin (B) ratfish oxyntomodulin (C), paddlefish 
glucagon (D) and trout glucagon (E) peptides using a semi-preparative 
Vydac C18 column. 

 

 

The peptides were dissolved in 15% acetonitrile (3mg/ml) and injected onto a (2.2 cm 
x 25 cm) Vydac 218TP1022 (C-18) column (Grace, Deerfield, IL, USA) equilibrated 
with 21%  (or 28%) acetonitrile (v/v) and 0.1% TFA/water at a flow rate of 6.0 ml/min. 
The concentration of acetonitrile in the eluting solvent was raised from 21% to 56 % 
for the all fish glucagon peptides except trout glucagon (28% to 63%) over 50 min 
using a linear gradient. Absorbance was measured at 214 nm, and the black arrows 
show where the peak collection began and ended.   
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Figure 4.2 MALDI-TOF spectra of purified lamprey glucagon (A), dogfish 
oxyntomodulin (B) ratfish oxyntomodulin (C), paddlefish glucagon (D) and 
trout glucagon peptides. 

 

Purified peptides were mixed with α-Cyano-4-hydroxycinnamic acid on a 100 well 
MALDI plate before inserting into a Voyager DE Biospectrometry workstation. The 
mass-to-charge ratio (m/z) versus peak intensity was determined.
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Figure 4.3 HPLC degradation profile of lamprey glucagon following 
incubation with DPP-IV for 0 and 4 hours. 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 
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Figure 4.4 HPLC degradation profile of dogfish oxyntomodulin following 
incubation with DPP-IV for 0 and 4 hours. 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 
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Figure 4.5 HPLC degradation profile of ratfish oxyntomodulin following 
incubation with DPP-IV for 0 and 4 hours. 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 
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Figure 4.6 HPLC degradation profile of paddlefish glucagon following 
incubation with DPP-IV for 0 and 4 hours. 

 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 
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Figure 4.7 HPLC degradation profile of trout glucagon following 
incubation with DPP-IV for 0 and 4 hours. 

 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 
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Figure 4.8 Effects of increasing concentrations of (A) lamprey glucagon, 
(B) dogfish oxyntomodulin, (C) ratfish oxyntomodulin, (D) paddlefish 
glucagon, (E) trout glucagon, (F) human glucagon, and (G) human GLP-1 
on insulin release from BRIN-BD11 rat clonal β-cells.  

 

 

Values are mean ± S.E.M., n = 8. *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
5.6 mM glucose alone. 
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Figure 4.9 Effects of fish proglucagon-derived peptides at 10 nM and 1 µM 
concentrations on insulin release from 1.1 B4 human clonal β-cells.  

 

 

Values are mean ± S.E.M., n = 8 *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
16.7 mM glucose alone.  ΔP < 0.05, ΔΔ P< 0.01, ΔΔΔ P< 0.001 compared with the 
response to human GLP-1. 
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Figure 4.10 Effects of fish proglucagon-derived peptides at 10 nM and 1 
µM concentrations on insulin release from pancreatic islets isolated from 
NIH Swiss mice  
 

 
The values are mean ± SEM for n=4; *P < 0.05, **P < 0.01, ***P < 0.001 compared 
to 16.7mM glucose alone. 
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Figure 4.11 Effects of (A) the GLP-1 receptor antagonist, exendin-4(9-39), 
(B) the glucagon receptor antagonist [desHis1,Pro4,Glu9]glucagon amide 
and (C) the GIP receptor antagonist GIP(6-30)Cex-K40[Pal], on the ability 
of fish glucagon-related peptides (10-7 M) to stimulate insulin release from 
BRIN-BD11 cells. 

 

Values are mean ± S.E.M., n = 8 **P < 0.01, ***P < 0.001 compared with 5.6 mM 
glucose alone. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 0.001 compared with the effect in the 
presence of antagonist. 
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Figure 4.12 Effects of glucagon-related peptides (10-8 and 10-6 M) on 
cAMP production in (A) GLP1R-transfected CHL cells, and (B) GCGR-
transfected HEK293 cells.  

 

 

Values are mean ± S.E.M. for n = 4. *P < 0.05, ** P< 0.01 and ***P < 0.001 compared 
with 5.6 glucose. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 0.001 compared with the effect of 
glucagon/GLP-1
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Figure 4.13 Effects of glucagon-related peptides (10-8 and 10-6 M) on the 
rate of insulin release from (A) wild-type INS-1 cells, (B) CRISPR/Cas9-
engineered GLP-1R knock-out cells, (C) CRISPR/Cas9-engineered GCGR 
knock-out cells and (D) CRISPR/Cas9-engineered GIPR knock-out cells. 

 

 

Values are mean ± S.E.M., n = 8, *P < 0.05, **P < 0.01 and ***P < 0.001 compared 
with 5.6 mM glucose alone. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 0.001 compared with effects 
in wild-type INS-1 cells. 
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Figure 4.14 Effects of acute administration of glucagon-related peptides 
(25 nmol/kg body weight) on blood glucose (panels A and C) and plasma 
insulin (panels B and D) concentrations in normal mice. 

 

The integrated responses are shown in panels E and F. The values are mean ± 

S.E.M., n = 6. *P < 0.05, **P < 0.01 and ***P < 0.001 compared with glucose alone 

(18 mmol/kg body weight) and Δ P < 0.05, and ΔΔP < 0.01 compared with the effect 

of GLP-1. 
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Figure 4.15 Effects of acute administration of fish glucagon/oxyntomodulin 
peptides on blood glucose and plasma insulin concentrations in normal 
mice, 2 h post injection.  

 

Blood glucose and plasma insulin were measured after intraperitoneal injection of 
glucose (18 mmol/kg body weight) 2 hours after intraperitoneal administration of 
0.9% saline, exendin-4 and fish glucagon/oxyntomodulin peptides (25 nmol/kg body 
weight). The integrated responses (area under the curve AUC) are shown in panels E 
and F. The values are mean ± SEM for n=6. **P<0.01 and ***P<0.001 compared to 
glucose alone; ΔΔ P<0.01 and ΔΔΔ P<0.001 compared to human GLP-1.
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Figure 4.16 Effects of fish glucagon/oxyntomodulin peptides on cumulative 
food intake over 3 hours trained feeding in 12 h fasting normal mice. 

 

 

Cumulative food intake was measured after intraperitoneal administration of 50 
nmol/kg peptides alongside 0.9% saline control. The values are mean ± SEM for n=8. 
*P<0.05, **P<0.01 and ***P<0.001 compared to saline control mice treated at the 
same time point.
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Figure 4.17 A comparison of the primary structures of the glucagon-
related fish peptides with those of human glucagon and GLP-1 and with 
the GLP1R agonist, exendin-4. 

Glucagon                 HSQGTFTSDY10SKYLDSRRAQ20DFVQWLMNT 
Oxyntomodulin            HSQGTFTSDY  SKYLDSRRAQ  DFVQWLMNTKRNKNNIA  
Lamprey glucagon         HSEGTFTSDY  SKYLENKQAK  DFVRWLMNA         (72) 
Dogfish oxyntomodulin    HSEGTFTSDY  SKYMDNRRAK  DFVQWLMSTKRNG     (83)   
Ratfish oxyntomodulin    HTDGIFSSDY  SKYLDNRRTK  DFVQWLLSTKRNGANT  (69)  
Paddlefish glucagon      HSQGMFTNDY  SKYLEEKRAK  EFVEWLKNGKS       (66) 
Trout glucagon           HSEGTFSNDY  SKYQLERMAQ  DFVQWLMNS         (72) 
 
GLP-1                    HAEGTFTSDV10SSYLEGQAAK20EFIAWLVKGR30G    
Exendin-4                HGEGTFTSDL SKQMEEEAVR  LFIEWLKNGGPSSGAPPPS 
Lamprey glucagon         HSEGTFTSDY SKYLENKQAK  DFVRWLMNA         (57)     
Dogfish oxyntomodulin    HSEGTFTSDY SKYMDNRRAK  DFVQWLMSTKRNG     (50) 
Ratfish oxyntomodulin    HTDGIFSSDY SKYLDNRRTK  DFVQWLLSTKRNGANT  (40)  
Paddlefish glucagon      HSQGMFTNDY SKYLEEKRAK  EFVEWLKNGKS       (57) 
Trout glucagon           HSEGTFSNDY SKYQLERMAQ  DFVQWLMNS         (40)  
       

Amino acid residues in the human peptides that have been shown to be important in 

receptor binding and signal transduction are shown in red. Differences in these 

residues are shown in green. Regions of structural similarity between paddlefish 

glucagon and exendin-4 are underlined. The values in parentheses show % sequence 

identity with the corresponding human peptides
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Assessing the acute and sub-chronic 
effects of novel enzyme resistant GLP-
1 analogues derived from lamprey and 

paddlefish in obesity-diabetes. 
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5.1 Summary 

Glucagon-like peptide-1 (GLP-1) molecules isolated from lamprey and paddlefish 

showed promising insulinotropic and glucose-lowering properties according to in vitro 

and in vivo studies. However, similarly to human GLP-1, these naturally occurring 

peptides were a subject to enzymatic degradation highlighting the need for specific 

modifications to prolong the half-life without affecting the biological actions.  Two 

stable long-acting, fatty-acid linked analogues, [D-Ala2]-lamprey GLP-1-Lys31-

gamma-glutamyl-pal and [D-Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal, 

were designed and further evaluated in vitro, and in acute and long-term in vivo 

studies. Both stable fish GLP-1 peptide analogues significantly increased insulin 

secretion from BRIN-BD11 β-cells and isolated mouse islets. The peptides produced 

significant increases in cAMP concentration in CHL cells transfected with GLP1R and 

HEK293 cells transfected with GCGR. The insulinotropic effect of the fish GLP-1 

analogues was decreased in CRISPR/Cas9-engineered GLP1R KO INS-1 cells and 

attenuated in INS-1 GCG receptor KO cells but remained unaltered in GIPR KO cells. 

In vivo studies revealed that the lamprey GLP-1 analogue retained glucose-lowering 

and insulinotropic properties of the native peptide. In contrast, the modification of 

paddlefish GLP-1 resulted in the curtailment of its biological activities.  Acute 

administration of [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal (25 nmol/kg 

body weight) along with glucose (18 mmol/kg body weight) showed strong and 

persistent glucose lowering and insulin-releasing activities in NIH Swiss mice. Twice 

daily administration of [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal to high 

fat-fed mice for 21 days decreased body weight, non-fasting plasma glucose and 

circulating insulin concentrations. Moreover, the stable analogue significantly 

improved glucose tolerance and insulin sensitivity with beneficial effects on islet beta-
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cell area and insulin secretory responsiveness. Islet gene expression of insulin, 

GLUT2, Glp-1r and Gipr were also improved. Using streptozotocin-treated 

GluCreRosa26-YFP mice [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal 

induced noticeable improvement in beta-cell mass including favourable effects on 

transdifferentiation of insulin-producing cells like liraglutide. These data highlight the 

potential of novel fish GLP-1 peptide analogue as therapeutic options for obesity and 

diabetes. 

5.2 Introduction 

The prevalence of type 2 diabetes (T2D) is increasing worldwide, and there is an 

urgent need for new cost-effective therapies that improve associated complications for 

the longer term (Gomez-Peralta et al. 2014; Skow et al. 2016).  

The potent stimulatory effects of the intestinally derived hormone, GLP-1, on 

dynamics of insulin secretion was first revealed using the isolated perfused rat 

pancreas (Thorens et al. 1993). This insulinotropic action of GLP-1 is complemented 

with other unique antidiabetic functions, such as the ability to block secretion of 

glucagon, suppress appetite, as well as promote ß-cell proliferation and survival, 

thereby making it an attractive candidate for the treatment of type 2 diabetes (Furman 

2009). However, native GLP-1 has a short plasma half-life (approximately two 

minutes) due to rapid degradation by proteases like DPP-IV and neural endopeptidase, 

which brings limitations to its beneficial effects (Manandhar et al. 2014). The 

discovery of the DPP-4 resistant exendin-4 from the venom of lizard Heloderma 

suspectum (Gila monster) and its further approval in 2005 led to the successful use 

and development of GLP-1 analogues exhibiting powerful antidiabetic properties 

which form the basis of a new therapeutically important class of drug (Tsend-Ayush 
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et al. 2016; Lau et al. 2018; O’Harte et al. 2016). Injectable agents, based upon the 

structure of human GLP-1, target gastrointestinal peptide receptors associated with 

appetite, insulin secretion, and energy balance. There are currently six GLP-1 receptor 

agonists approved for the treatment of T2D available in the market and used in 

combination therapies. However, dulaglutide is also licenced as monotherapy 

(Chaplin et al. 2016; Aroda 2018).  

The incretin hormone GLP-1 is co-encoded with glucagon in the proglucagon gene 

which is expressed in a tissue-specific manner (Ng et al. 2010). Despite having a high 

degree of amino acid sequence similarity, these peptides act through distinct yet 

related class 2 G-protein coupled receptors, GLP1R and glucagon receptor (CGCR) 

respectively, to elicit important effects on glucose homeostasis, insulin secretion and 

energy maintenance (Moon et al. 2012; Gault et al. 2013). The post-transcriptional 

processing of proglucagon also gives rise to a number of other enteric peptide 

hormones such as oxyntomodulin (Lefèbvre 2012). The description of the 

proglucagon-derived peptide, oxyntomodulin, as a naturally occurring dual agonist of 

both GLP-1 receptors and glucagon has inspired the development of hybrids 

composing of multiple hormone molecules synthetically integrated into a single 

molecule (Elvert et al. 2018; Tschop et al. 2016; Lau et al. 2018). Stable 

oxyntomodulin-based peptides with specific N-terminal position 2 modifications have 

been recently reported to show particular promise for the treatment of diabetes (Lynch 

et al. 2014). Moreover, administration of triple-acting hybrid peptides with the ability 

to concurrently modulate GIP, GLP-1 and glucagon receptors to high fat fed mice have 

been shown to dramatically improve metabolic control and glycaemic status (Bhat et 

al. 2013a and Bhat et al. 2013b; Irwin et al. 2015). 
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 GLP-1 and glucagon have been isolated from diverse vertebrate species from fish to 

mammals and are suggested to have a common evolutionary origin. Ancient fishes 

(lampreys and hagfishes) are the earliest known vertebrates to possess the glucagon-

like sequences. Fish represent a valuable experimental model in the research of 

pancreatic hormones and other gastrointestinal peptides. In fish plasma, glucose levels 

are highly variable between species and within species, and it is suggested that glucose 

metabolism was adapted to long-term food deprivation conditions (Polakof et al. 2011; 

Cardoso et al., 2017). The extreme physiological conditions, such as extended periods 

of hyperglycemia or severe hypoglycemia that are considered to be pathological for 

mammals, hardly affect fish (Polakof et al. 2011). Interestingly, GLP-1 which is fairly 

conserved in vertebrates, does function as an incretin hormone in teleost fishes, acting 

similarly to glucagon increasing glucose levels in the blood (Mojsov 2000; Mommsen 

2000; Irwin 2005). Long-acting GLP-1/glucagon receptors co-agonists derived from 

glucagon isolated from phylogenetically ancient fish (dogfish) have been recently 

reported to effectively counter hyperglycaemia and enhance both insulin secretion and 

action in high-fat-fed mice (O’Harte et al. 2016). 

The biological activities of GLP-1 peptides from various fish species ranging from the 

ancient lamprey to recently evolutionary evolved rainbow trout have been investigated 

in Chapter 3. GLP-1 from lamprey and paddlefish were shown to act as dual agonists 

at the GLP-1 and glucagon receptors and were selected for further development as 

antidiabetic agents. Earlier results indicated that the native fish GLPs were cleaved by 

DPP-IV at positions 2, similarly to human GLP-1, producing smaller fragment 

peptides. The basic structures of the native fish peptides were thereby modified at the 

cleavage site by substitution of Ala at position 2 with its D-isomer to protect the 

molecules from DPP-IV degradation. Additionally, a gamma-glutamyl with palmitate 
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adjunct was added to the side-chains of the lysine residues at positions 31 for lamprey 

GLP-1 and at position 28 for paddlefish GLP-1 to ensure albumin binding ability and 

extend in vivo activity. The potential beneficial metabolic effects of these two fish 

peptide analogues were examined in acute in vitro studies using BRIN-BD11 cells, 

GLP-1R-transfected CHL and glucagonR-transfected HEK293 cells and 

CRISPR/Cas9-engineered INS-1 cell lines with a specific GLP-1 or glucagon  receptor 

KO as well as in acute and longer-term in vivo studies using normal and high-fat-fed 

mice. Further studies investigated effects of lamprey GLP-1 analogue on alpha to beta 

cell transdifferentiation using streptozotocin-treated GluCreRosa26-YFP mice. 

5.3 Materials and Methods  

5.3.1 Chemical Reagents and Peptides 

Peptide analogues, [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal and [D-

Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal, were obtained from Synpeptide 

Co. Ltd. (Shanghai, China) and purified as previously described in Section 2.1.1.  

Peptides analogues were subsequently characterized using MALDI-TOF MS (Section 

2.2). The primary structures and molecular masses of the peptides used in this study 

are shown in Table 5.1. Synthetic human glucagon, human GLP-1, human GIP, 

oxyntomodulin, liraglutide and exendin-4 peptides were obtained and processed as 

described previously (Section 2.1.1). 

5.3.2 Assessment of metabolic stability of fish GLP-1 analogues  

Effects of DPP-IV or mouse plasma on fish GLP-1 peptide analogues stability were 

assessed in degradation studies as previously described in Section 2.3.  
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5.3.3 In vitro insulin release studies using BRIN-BD11 cells 

In vitro insulin, secretory studies were performed using rat BRIN-BD11cell line 

(McClenaghan et al., 1996) as previously described (Section 2.5.1) and measured by 

RIA (Sections 2.5.2 and 2.5.7).  

5.3.4 Insulin release studies using isolated mouse islets 

Effects of [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal and [D-Ala2]-

paddlefish GLP-1-Lys28-gamma-glutamyl-pal on ex-vivo insulin secretion were 

assessed using pancreatic islets from adult, male National Institutes of Health (NIH) 

Swiss mice (Harlan Ltd, Bicester, UK) as previously described (Section 2.5.5).  

5.3.5 Effects of peptides on cAMP production.  

The effects of the fish peptide analogues on cAMP production from Chinese hamster 

lung (CHL) cells transfected with the human GLP-1 receptor (GLP1R) (Thorens et al., 

1993) and human embryonic kidney (HEK293) cells transfected with the human 

glucagon receptor (GCGR) (Ikegami et al., 2001) were assessed using a Parameter 

cAMP assay kit (R&D Systems, Abingdon, UK) as outlined in Section 2.6.  

5.3.6 Insulin release studies using CRISPR/Cas9-engineered INS-1 cells 

In vitro receptor activation studies were performed using wild-type INS-1 832/3 rat 

clonal pancreatic β-cells and CRISPR/Cas9-engineered cells with a knock-out of 

either GLP-1 receptor (GLP-1 KO), glucagon receptor (GCG KO) or GIP receptor 

(GIP KO) (Naylor et al. 2016) as described in Section 2.5.4. 
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5.3.7 Effects of peptides on proliferation and apoptosis of BRIN BD11 cells  

To assess the effects of the fish peptide analogues (10nM and 10µM) on beta-cell 

proliferation and apoptosis, BRIN-BD11 were used as previously described (Section 

2.7).  

5.3.8 Animals   

Acute and persistent in vivo studies were carried out using male National Institutes 

of Health (NIH) Swiss mice as previously described (Sections 2.8.1.1, 2.8.2.1, 

2.8.2.3 and 2.8.2.5). Normal male TO mice were used in food consumption studies 

as described in Section 2.8.2.6.  Longer-term studies were performed using high fat 

fed TO mice (Section 2.8.1.2). 

5.3.9 Acute in vivo glucose-lowering and insulinotropic effects of peptides in 

normal mice  

For acute IPGTT studies, blood glucose and plasma insulin were measured 

immediately prior to (t = 0) and 15, 30 and 60 min after intraperitoneal administration 

of glucose alone (18 mmol/kg of body weight) or in combination with test peptides 

(each at 25 nmol/kg bw) in overnight fasted mice. In separate series of experiments, 

overnight fasted animals received either test peptides (each at 25 nmol/kg of body 

weight) or saline vehicle 2 or 4 hours before an intraperitoneal glucose administration 

(18 mmol/kg bw) and blood glucose and plasma insulin measured at 15, 30 and 60 

min post glucose injection as detailed in Section 2.8.5. 
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5.3.10 Acute food consumption studies in normal mice 

Animals were administrated intraperitoneal injections of either saline solution or 

peptides (75 nmol/kg) before receiving free access to normal chow for 300 mins. Food 

intake was measured as outlined in Section 2. 8.2.4. 

5.3.11 Long-term in vivo studies using high-fat-fed mice 

The high-fat diet was provided for 3 months before the start of the study to trigger 

weight gain, hyperglycaemia and insulin resistance (Section 2.8.1.2).  Animals were 

grouped and received twice daily intraperitoneal injections saline solution for three 

days before administration of saline or peptides (25 nmol/kg of body weight) twice 

daily (09:30 and 17:00 h) over 21 days treatment period (Sections 2.8.1.2 and 2.8.3.1).  

The peptide treatments were commenced as follows: Group 1 (high fat control, n = 8; 

0.9% NaCl, w/v; ip); Group 2 (liraglutide, n = 8; 25 nmol/kg bw; ip); Group 3 ([D-

Ala2]-lamprey GLP-1-Lys31gamma-glutamyl-pal, n = 8; 25 nmol/kg bw; ip); Group 4 

([D-Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal, n = 8; 25 nmol/kg bw; ip). 

Mice remained on a high-fat diet for the duration of the study. Non-fasting blood 

glucose, cumulative food intake and water intake, body weight, and insulin 

concentrations were monitored at 3-day intervals before daily injection of test peptides 

(Section 2.8.3.1). On day 21, IPGTT, OGTT (18 mmol/kg bw) and insulin sensitivity 

(25 U/kg bw; i.p.) tests were performed (Section 2.8.3.2 and 2.8.3.3). HOMA-β was 

calculated using the formula HOMA-β = 20 × fasting insulin (μIU/ml)/fasting glucose 

(mmol/ml) − 3.5, whereas HOMA-IR was determined using the equation HOMA-IR 

= fasting glucose (mmol/l) x fasting insulin (mU/l)/22.5.  At the end of the 

experimental period, terminal non-fasted blood was collected (Section 2.8.3.5) for 
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measuring lipid profile (Section 2.8.3.8), plasma amylase activity (Section 2.8.3.7), 

ALT (Section 2.8.3.9) and glucagon levels (Section 2.8.3.11).  

Bone mineral density and body tissue composition were measured using DEXA 

scanning (Section 2.8.3.4). The terminal analysis also included extraction of 

pancreatic tissue for measurement of pancreatic hormonal content (Section 2.8.3.12) 

and preparation of paraffin tissue blocks for immunohistochemical staining (Section 

2.13.1). Islets were isolated for measurement of acute insulin secretion (Section 

2.8.3.6) and determination of gene expression (Sections 2.8.3.13- 2.8.3.15).  

5.3.12. Long-term in vivo studies using GluCre Rosa26-YFP mice 

The animals were housed and pre-treated with streptozotocin as described in Sections 

2.8.1.4, and 2.8.4 Mice (n=5) were administrated twice daily intraperitoneal injections 

of saline or peptides, [D-Ala2]-lamprey GLP-1-Lys31gamma-glutamyl-pal and 

liraglutide (25 nmol/kg of body weight) over a 10-day treatment period. Non-fasting 

blood glucose, food intake, water intake and body weight were monitored at 3-day 

intervals prior to daily injection of test peptides. Blood was collected for insulin 

measurements at the start and end of the experiment. The animals were sacrificed, and 

pancreatic tissue was removed and processed for immunohistochemistry analysis as 

described in Section 2.8.4. 

5.3.13 Statistical analysis 

Data were compared using unpaired Student’s t-test (non-parametric, with two-tailed 

P values and 95% confidence interval) and one-way ANOVA with Bonferroni post-

hoc test using GraphPad PRISM (Version 5.0 San Diego, California).  Area under the 

curve (AUC) analysis was performed using the trapezoidal rule with baseline 
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correction. Data are presented as mean ± S.E.M where the comparison was considered 

to be significantly different if P < 0.05. 

5.4 Results 

5.4.1 Purification and confirmation of molecular masses by MALDI-TOF MS 

Following RP-HPLC on a C-8 semi-preparative column the main peptide peaks of [D-

Ala2]-lamprey GLP-1-Lys31gamma-glutamyl-pal and [D-Ala2]-paddlefish GLP-1-

Lys28-gamma-glutamyl-pal were collected as represented in Figure 5.1. Experimental 

masses detected for each peptide by MALDI-TOF MS corresponded very closely with 

the theoretical masses as shown in Table 5.1 and Figure 5.2. 

5.4.2 DPP-IV and plasma degradation studies  

[D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal and [D-Ala2]-paddlefish GLP-

1-Lys28-gamma-glutamyl-pal were stable to degradation after 4 h incubation with 

DPP-IV (Table 5.2 and Figure 5.3-5.4) whereas native fish  GLP-1 peptides, as well 

as human GLP-1, were rapidly degraded (Chapter  3). The analogues were also 

resistant to degradation after 4 hours incubation with mouse plasma (Figures 5.5-5.6). 

Human GLP-1 was rapidly degraded (65% degradation after 4 h in plasma) (Figure 

5.7 and Table 5.2). 

5.4.3. In vitro insulin release studies 

The basal rate of insulin release from BRIN-BD11 rat clonal β-cells in the presence of 

5.6 mM glucose alone was 1.02 ± 0.07 ng/106cells/20 min. Incubation with human 

GLP-1  (0.1 µM) increased this rate to 2.4 ± 0.2 ng/106cells/20 min (Figure 5.8). In 

the presence of 5.6 mM glucose, [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-

pal and [D-Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal produced a 
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concentration-dependent increase in the rate of insulin release from the cells (Figure 

5.8). Table 5.3 compares the effects of the fish peptide analogues to their native forms 

and human GLP-1. The effect of [D-Ala2]-lamprey GLP-1-Lys31gamma-glutamyl-pal 

was similar to the native lamprey GLP-1, whereas [D-Ala2]-paddlefish GLP-1-Lys28-

gamma-glutamyl-pal analogue showed inferior insulinotropic actions compared to its 

native form or human GLP-1. 

The rate of insulin release from isolated mouse islets in the presence of 16.7 mM 

glucose alone during a 60 min incubation was 8.5 ± 0.5 % of the total insulin content 

of the islets (Table 5.4). Incubation with GLP-1 at10 nM and µM 1 raised the rate of 

insulin release to 14.4 ± 1.1 % and 16.4 ± 0.7 % respectively. As shown in Figure 5.9 

and Table 5.4, lamprey GLP-1-derived analogue produced a significant increase in 

insulin release at both 10 nM and 1 µM concentrations, whereas paddlefish GLP-1-

derived analogue was only effective at 1 µM.  

5.4.4   Effect on fish GLP-1 analogues on cAMP production 

As shown in Figure 5.10 A, [D-Ala2]-lamprey GLP-1-Lys31gamma-glutamyl-pal 

significantly stimulated cAMP production in CHL cells transfected with the human 

GLP-1 receptor in an almost identical fashion with human GLP-1 at both 10 nM and 

1 µM concentrations. Similarly, [D-Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-

pal exhibited a significant effect on cAMP production at 1 µM. However the peptide 

had an inferior effect at 10 nM compared to human GLP-1 (Figure 5.10 B). Both of 

the analogues stimulated cAMP production in HEK293 cells transfected with the 

human glucagon receptor. However, the effect was significantly lesser than that 

produced by human glucagon (Figure 5.10 B and Table 5.5). 
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5.4.5 Insulin release studies using CRISPR/Cas9-engineered INS-1 cells 

Incubation of wild-type INS-1 cells with glucagon, GLP-1, GIP and peptide analogues 

significantly increased the rate of insulin release at both, 10 nM and 1 μM 

concentrations, compared with the basal control (Figure 5.11 A and Table 5.6). The 

insulinotropic effects of the analogues were significantly attenuated in the GLP-1 KO 

and glucagon KO cells compared with their effects in wild-type INS-1 cells (Figure 

5.11 B and C). In contrast, no significant alteration was observed in GIP KO apart 

from the abolished stimulatory effect of control human GIP at both concentrations 

(Figure 5.11 D). 

5.4.6 Effects of stable fish GLP-1 peptides on proliferation and apoptosis of BRIN 

BD11 cells 

As shown in Figure 5.12 proliferation was dramatically decreased (P<0.001) when 

BRIN BD11 cells were incubated with the mixture of proinflammatory cytokines 

compared to control cultures. Human GLP-1 and fish GLP-1 analogues (10nM and 

10µM) significantly (P<0.001) increased proliferation of the cells in cytokine-free 

solution. Moreover, all peptides had a significant (P<0.01 P<0.001) protective effect 

on cell proliferation in the presence of cytokines. In the second series of experiments, 

exposure of BRIN-BD11 cells to 10nM and 10µM human GLP-1 and [D-Ala2]-

lamprey GLP-1-Lys31gamma-glutamyl-pal (at 10µM) significantly (P<0.001- P<0.01) 

protected against cytokine-induced apoptosis (Figure 5.12). 

5.4.7 In vivo acute insulin release and food intake studies 

Blood glucose concentrations in overnight fasted NIH Swiss mice receiving 

intraperitoneal administration of glucose (18 mmol/ kg body weight) together with 25 
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nmol/kg body weight of [D-Ala2]-lamprey GLP-1-Lys31gamma-glutamyl-pal were 

significantly lower (P < 0.001) at 30 and 60 min time points compared to 

administration of intraperitoneal glucose alone (Figure 5.13 A and E). This peptide 

also potentiated (P < 0.001) glucose-induced insulin release compared to glucose alone 

(Figure 5.13 C and F) with effects greater than GLP-1 at 30 (P < 0.05) and 60 min (P 

< 0.001) (Figure 5.13 C).  

When administered two (Figure 5.14) or four (Figure 5.15) hours prior to a glucose 

load [D-Ala2]-lamprey GLP-1-Lys31gamma-glutamyl-pal still significantly (P < 

0.001) reduced individual post-injection and overall 0–60 min AUC glucose values as 

did exendin-4. Consistent with this insulin concentrations were persistently raised (P 

< 0.01 to P < 0.001) compared with glucose alone and native GLP-1 (Figure 5.14 A, 

C, E and F).  Moreover, the effects of [D-Ala2]-lamprey GLP-1-Lys31gamma-

glutamyl-pal and exendin-4 (P < 0.05 to P < 0.001) were observed in mice when 

administered four hours previously (Figure 5.15). In contrast, the analogue of 

paddlefish GLP-1, [D-Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal, showed 

minor glucose-lowering and insulinotropic activities being less than the native fish 

peptide (Figure 5.13 B, D, E and F). As expected oxyntomodulin, dual glucagon/GLP-

1 receptor agonist, had no glucose lowering and insulinotropic effect when 

administrated four hours prior to a glucose challenge (Figure 5.15 A, C, E and F).  

 In addition to effects on blood glucose control, [D-Ala2]-lamprey GLP-1-

Lys31gamma-glutamyl-pal exhibited significant (P < 0.01 and P < 0.001) appetite 

suppressive actions after 150 mins of administration (Figure 5. 16). This differed 

considerably from the native peptide which exhibited no effect on food intake after 30 

min of administration (Figure 5. 16) Moreover, [D-Ala2]-paddlefish GLP-1-Lys28-

gamma-glutamyl-pal significantly (P < 0.001) lowered food intake after 30 mins of 
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administration, but was not as effective as native paddlefish GLP-1 which had a 

significant (P < 0.05 to P < 0.001) impact on feeding at 30 to 240 min time points 

(Figure 5.16). 

 5.4.8 Chronic effects of stable fish GLP-1 peptides on body weight, food/water 

intake, non-fasting plasma glucose and insulin, insulin sensitivity and insulin 

resistance in high-fat fed mice 

 [D-Ala2]-lamprey-GLP-1-Lys31gamma-glutamyl-pal, [D-Ala2]-paddlefish-GLP-1-

Lys28-gamma-glutamyl-pal and liraglutide resulted in a significant change in the body 

weight  (Figure 5.17 A and B), however only  [D-Ala2]-lamprey-GLP-1-

Lys31gamma-glutamyl-pal and liraglutide elicited a significant effect on accumulated 

food intake compared to high-fat control (Figure 5.17 C). The effect of [D-Ala2]-

lamprey-GLP-1-Lys31gamma-glutamyl-pal on appetite reduction was significantly 

greater than liraglutide (Figure 5.17 C). No alteration was observed in water intake in 

any of the treated groups compared to high fat saline control (Figure 5.17 D). Chronic 

high fat feeding markedly increased blood glucose levels which were reduced by [D-

Ala2]-lamprey-GLP-1-Lys31gamma-glutamyl-pal (Figure 5.17 A and B). However 

[D-Ala2]-paddlefish-GLP-1-Lys28-gamma-glutamyl-pal and liraglutide had no 

noticeable effect over the 21 days (Figure 5.17 A and B). The 21-day treatment 

regimen with [D-Ala2]-lamprey-GLP-1-Lys31gamma-glutamyl-pal and liraglutide 

significantly decreased circulating insulin compared to saline control. Exogenous 

insulin (day 21) induced increased glucose clearance from the circulation in [D-Ala2]-

lamprey-GLP-1-Lys31gamma-glutamyl-pal-treated mice. Hence insulin sensitivity 

(Figure 5.18 E) and AAC (Figure 5.18 F) were significantly (P< 0.05) improved in 

this group. Moreover, HOMAR-IR values were significantly lower in animals treated 

with [D-Ala2]-lamprey-GLP-1-Lys31gamma-glutamyl-pal and liraglutide compared 
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to high-fat control (Figure 5.19 B). Beta-cell function was also improved in these 

groups with HOMA-β values significantly higher than control (Figure 5.19 A).  

5.4.9 Chronic effects of stable fish GLP-1 peptides on glucose tolerance and 

pancreatic hormone content high-fat-fed mice 

Following an intraperitoneal (Figure 5.20) or oral (Figure 5.18) glucose challenge on 

day 21,  blood glucose concentrations were significant reduced (P < 0.01 to P < 0.01) 

at all time points in mice that were treated with [D-Ala2]-lamprey-GLP-1-

Lys31gamma-glutamyl-pal compared to high fat saline control. This ultimately 

culminated in decreased (P < 0.01 to P < 0.001) overall 0–120 min glucose AUC 

values (Figure 5.20 B and Figure 5.21 B). Liraglutide treatment also reduced (P < 0.05) 

the overall glucose AUC in high fat fed mice but with slightly lesser potency than [D-

Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal. In contrast, treatment with the 

second analogue, [D-Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal, failed to 

elicit any significant effect on IPGTT and OGTT. Corresponding insulin 

concentrations were significantly elevated (P < 0.05 - P < 0.001) in these groups 

(Figure 5.20 C-D and Figure 5.21 C-D). Pancreatic insulin contents were significantly 

(P < 0.05-P < 0.01) reduced by all treatment regimens apart from [D-Ala2]-paddlefish 

GLP-1-Lys28-gamma-glutamyl-pal (Figure 5.22 B). Pancreatic glucagon was also 

significantly (P < 0.05) reduced on day 21 after the treatment with [D-Ala2]-lamprey-

GLP-1-Lys31gamma-glutamyl-pal compared to high fat saline control (Figure 5.22A). 
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5.4.10 Chronic effects of stable fish GLP-1 peptides on blood lipid profile, 

amylase activity, plasma glucagon and ALT levels in high fat fed mice. 

Assessment of the plasma lipid profile on day 21 showed a significant reduction 

(P < 0.05 to P < 0.001) in triglyceride levels and increased levels of HDL-cholesterol 

only in the group treated with [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal 

when compared to high-fat controls (Figure 5.23 B and C). Plasma ALT was 

significantly (P < 0.05 - P < 0.001) decreased, whereas amylase activity was slightly 

but significantly (P < 0.05 and P < 0.001) elevated in all of the treatment groups 

compared to high-fat controls (Figure 5.24 A and B). No significant differences were 

noted in terms of plasma glucagon levels (Figure 5.24 C).  

5.4.11 Chronic effects of stable fish GLP-1 peptides on bone density and body 

mass in high fat-fed mice 

High-fat diet control and peptide treatment groups displayed no significant differences 

in bone mineral density, content and normal mass (Figure 5.25 A-D). However, a 

significant reduction of fat mass and body fat percentage was observed in all peptide 

treatment groups (Figure 5.25 D and E). 

5.4.12 Chronic effects of peptide administration on ex-vivo insulin secretion 

from isolated mouse islets and pancreatic islet histology in high-fat-fed mice  

As shown in Figure 5.26 A, islets isolated from high-fat fed and mice treated with 

paddlefish GLP-1 analogue exhibited a weak insulin secretory responses to 

stimulatory concentrations of glucose, alanine, arginine, potassium chloride, human 

GLP-1 and GIP. In contrast, islets isolated from animals receiving twice-daily 

treatment with liraglutide and lamprey GLP-1 analogue had improved insulin 
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secretory responses. Insulin content was less in liraglutide and lamprey GLP-1 

analogues treated groups compared to controls (Figure 5.26 B). 

The immunochemical staining revealed no obvious significant visual differences islet 

morphology between the groups treated with liraglutide and [D-Ala2]-paddlefish GLP-

1-Lys28-gamma-glutamyl-pal compared to high-fat control (Figure 5.27 A-E). 

However, islets of the mice after a 21 day treatment with [D-Ala2]-lamprey GLP-1-

Lys31-gamma-glutamyl-pal showed a significant decrease in alpha size area 

(P < 0.001) with a significant (P < 0.5) reduction in the larger (>25 000 μm2) sized 

islets and a significant increase medium sized islets (10,000 – 25 000 μm2) islet size 

compared to the control group (Figure 5.27 D and E). No significant changes in total 

islet area were observed in the group treated with [D-Ala2]-lamprey-GLP-1-

Lys31gamma-glutamyl-pal (Figure 5.27 B). The representative images from high-fat-

fed and all peptide treatment groups are represented in Figure 5.27 F-I. 

5.4.13 Chronic effects of stable fish GLP-1 peptides on gene expression in high-

fat-fed mice 

Islet gene expression analysis revealed a significant (P < 0.05) decrease in expression 

of Ins1 (mouse insulin 1) and a significant upregulation of Slc2a2 (glucose transporter 

2; GLUT2) as well as glucagon and GLP-1 receptor genes in animals receiving twice-

daily liraglutide and lamprey GLP-1 analogue compared to high-fat control group. 

Furthermore, long-term administration of the lamprey GLP-1 analogue resulted in a 

significantly (P < 0.05) increased expression of Gck (glucokinase) and Glp-1r and 

Gipr receptors (Figure 5.28). Gene expression in mice after treatment with the 

paddlefish GLP-1 analogue was similar to high-fat control. 
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5.4.14 Chronic effects of [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal on 

accumulative food and water intake in streptozotocin pre-treated 

GluCreRosa26-YFP mice 

Streptozotocin treatment GluCreRosa26-YFP mice resulted in a significant (P < 0.05) 

increase in food intake on day 11 compared to untreated GluCreRosa26-YEP controls 

(Figure 5.29 A). No significant differences in food intake were observed in the groups 

treated twice daily with liraglutide or lamprey GLP-1 analogue (Figure 5.29 A). A 

significant (P < 0.05 and P < 0.01) increase in water intake was observed in the 

streptozotocin control group from day 9 (Figure 5.29 B). However, no significant 

differences in fluid intake were observed in mice treated with liraglutide or lamprey 

GLP-1 analogue (Figure 5.29 B).   

5.4.15 Chronic effects of [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal on 

blood glucose, body weight, plasma insulin and pancreatic hormonal content in 

streptozotocin pre-treated GluCreRosa26-YFP mice. 

Streptozotocin significantly decreased body weight, elevated blood glucose, decreased 

plasma insulin, lowered pancreatic insulin and elevated pancreatic glucagon content 

compared to untreated control (Figure 5.30). Administration of liraglutide to 

streptozotocin treated GluCreRosa26-YFP mice resulted in a visible improvement but 

no significant change in body weight change (Figure 5.30 D). A significant decrease 

in body weight loss was also observed in mice treated with lamprey GLP-1. 

Furthermore, twice-daily administration of liraglutide or lamprey GLP-1 analogue 

resulted in an improved appearance but no significant decrease in blood glucose levels 

(Figure 5.30 A and B). Insulin levels in all groups of GluCreRosa26-YFP mice were 

similar before streptozotocin treatment. Liraglutide and lamprey GLP-1 analogue 
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increased (P < 0.05) plasma insulin concentrations in streptozotocin-treated mice but 

levels were still significantly (P < 0.001) lower compared to untreated control. 

Pancreatic insulin content was also improved by peptide treatments but remained 

lower than the untreated control (Figure 5.31 A). Glucagon content was significantly 

higher in streptozotocin groups compared with untreated controls (5.31 B).  

5.4.16 Chronic effects of [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal on 

islet morphology in streptozotocin pre-treated GluGre Rosa26EYFP mice 

Treatment of GluCre Rosa26-YFP mice with streptozotocin resulted in a significant 

reduction of a number of islets, islet size and beta cell area as well as a greater 

percentage of smaller islets compared to untreated GluCreRosa26-YFP control mice 

(Figure 5.32 A, B, D and E)  

Administration of liraglutide or lamprey GLP-1 analogue resulted in a significant 

(P < 0.05) improvement in the number of islets in the head and tail regions and an 

increase in beta cell area in the tail region and whole pancreas (Figure 5.32 A). Islet 

area was significantly reduced in all treatment groups compared to untreated controls 

(Figure 5.32 B). No significant differences were observed in alpha cell area (Figure 

5.32 C). A significant decrease (P < 0.05 and P < 0.01) in the number of large and 

medium islets, and a significant increase (P < 0.05 and P < 0.01) in the number of small 

islets was observed in the treated groups. 

5.4.17 Chronic effects of [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal on 

islet alpha to beta cell transdifferentiation in streptozotocin-treated GluGre 

Rosa26-YFP mice 

Administration of tamoxifen-induced the expression of the reporter protein, YFP, in 

alpha cells (56-73% alpha-cells expressed GFP) with the highest percentage of 
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expression in untreated mice (Figure 5.33 A). The number of GFP- glucagon+ alpha 

cells was significantly increased in peptide treatment groups (except the head region 

of the pancreas in mice treated with liraglutide) and STZ control compared to untreated 

control.  (Figure 5.33 B). Moreover, GFP+ glucagon- cells were observed in the head 

region of the pancreas in both peptide treatment groups (Figure 5.33 C). GFP+ insulin+ 

cells were also significantly expressed in all treated groups especially in the head 

region of the pancreas. (Figure 5.33 D).  

5.5 Discussion 

Although the vertebrate incretin system is highly conserved and the proglucagon 

gene is expressed by all vertebrates, in fishes the function of GLP-1 as an incretin 

hormone is questionable. This raised the possibility that the incretin properties of 

GLP-1 may have evolved after the divergence of tetrapods from fish (Tsend-Ayush 

et al., 2016 and Mommsen, 2000). However, due to the highly conserved nature, the 

biologically active fish GLP-1 will bind to mammalian receptors, and mammalian 

hormones will act on the piscine receptors (Mommsen, 2000).  

In Chapter 3 it has been demonstrated that GLP-1 peptides from phylogenetically 

ancient fish and a teleost appeared to exhibit a variation in the potency to stimulate 

insulin release from rodent and human cells in vitro and lower blood glucose 

concentrations in mice in vivo. GLP-1 from sea lamprey, the living fossils of ancient 

animals existing for over 360 million years and belonging to the superclass 

Cyclostomata (Xu et al. 2016), and paddlefish, a survivor of an ancient fish fauna of 

the Cretaceous period, over 100 MYA (Pettigrew et al. 2003) were the most potent 

and effective with activities generally comparable to human GLP-1. Additionally, 

GLP-1 from these two fish species appeared to function as dual GLP‐1/glucagon 

receptor agonists. 
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In the present study, [D-Ala2]-lamprey-GLP-1-Lys31-gamma-glutamyl-pal and [D-

Ala2]-paddlefish-GLP-1-Lys28-gamma-glutamyl-pal (structurally modified 

derivatives of lamprey and paddlefish GLP-1) have been investigated in vitro and in 

vivo for insulinotropic and glucose-lowering actions. These properties of analogues 

were compared to the effects elicited by the unmodified native fish peptides, human 

GLP-1, human glucagon, human GIP, human oxyntomodulin as well as long-acting 

antidiabetic agents such as exendin-4 (GLP-1R agonist) and liraglutide (GLP-1 

analogue). Results outlined in Chapter 3, demonstrated that native lamprey and 

paddlefish GLP-1s were rapidly degraded in the presence of DPP-IV enzyme at 

position 2 (Ala2-Asp3), similarly to human GLP-1 molecule which is cleaved at 

position 2  (Ala8-Glu9). The stability of fish GLP-1 analogues was improved by the 

stereochemical configuration of an L-Ala for D-Ala at the position 2 plus the addition 

of acyl group. This was confirmed by HPLC results showing intact peptide peaks after 

4 h incubation with DPP-IV or plasma. These observations are consistent with 

previous studies showing that related N-terminal modifications combat the DPP-IV 

cleavage and promote longer half-life of GIP, GLP-1, and glucagon (Xiao et al. 2001 

and Gault et al. 2013). 

Although resistant to degradation, [D-Ala2]-paddlefish GLP-1-Lys28-gamma-

glutamyl-pal exhibited reduced biological activity compared to the native paddlefish 

GLP-1. In contrast, [D-Ala2] lamprey-GLP-1-Lys31gamma-glutamyl-pal was more 

potent, long-acting in vivo and exhibited the functional properties of the parent 

peptide. Previous studies investigating the stereochemical configuration of the residue 

susceptible the DPP-IV cleavage showed that such modification of native GLP-1 

molecule appeared to have a little effect on receptor recognition and binding 

(Manandhar et al. 2014). Thus, the dramatic reduction in properties of paddlefish GLP-
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1-derived analogue could be due to the attachment of lysine-based conjugation of a C-

16 fatty acid (palmitic acid) with a glutamic acid spacer at the position 28 (Lys28) 

which may have affected the possible active centre of the molecule. The attachment 

of a fatty acid chain at positions 31 (Lys31) of lamprey GLP-1 appeared to be more 

successful in enhancing the properties of the parent molecule which was not observed 

in the case of the modified paddlefish GLP-1 peptide.  

Acetylation is one of the commonly employed strategies to delay renal extraction of 

incretin analogues. Long-acting anti-hyperglycaemic agents such as liraglutide, 

LY315902 and naliglutide are also made by employing acetylation with the 

attachment of C8 and C-16 fatty acid moieties which induces plasma albumin binding 

(Kerr et al. 2010 and Gault et al. 2008). In the case of liraglutide, a fatty acid chain of 

the palmitoyl group to Lys26 (corresponding position 20 in fish GLP-1) through a γ-

glutamyl spacer together with substitution of Lys for Arg at position 34 

(corresponding position 28 in fish GLP-1).  

Several other attempts of modification such as attachment of bulky metal chelators 

either directly to the side chain of Lys26 or through a linker resulted in significantly 

reduced binding affinity of GLP-1.  A moderate loss of potency was observed after 

the substitution of Lys26 for Asn bearing N-acetylglucosamine (GlcNAc), N-

acetyllactosamine (LacNAc), or α-2,6-sialyl-N-acetyl-lactosamine (sialyl LacNAc). 

Moreover, the PEGylation of Lys26 with mPEG2K exhibited a minute effect on 

receptor activation (Manadhar et al. 2014). Interestingly, when lysine residue (Lys34) 

of GLP-1 was palmitoylated with a γ-glutamyl spacer together with substitution of 

Lys26 for Arg a 2-fold decrease in potency was observed (Manadhar et al. 2014). The 

similar destructive effect might have occurred with paddlefish analogue due to the 
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fatty acids attached to lysine at position 28 (corresponding position 34 in human GLP-

1) which negatively affected the biological activity of the peptide when administrated 

in vivo. 

The present study demonstrates that both, lamprey and paddlefish GLP-1-derived 

analogues stimulated insulin secretion from clonal pancreatic BRIN-BD11 cells and 

isolated mouse islets, however, the effects of paddlefish GLP-1 analogue were modest 

in comparison to the native paddlefish GLP-1 and human GLP-1. The peptides 

stimulated cAMP production in the CHL cells transfected with GLP1R and the 

HEK293 cells transfected with glucagon receptor. In harmony with these results, the 

insulinotropic activities of the analogues were attenuated in the INS-1 cell lacking 

GLP-1 and glucagon receptors.  Thus, importantly the results showed that the 

analogues still retained the ability to act as dual agonists for the GLP-1 and glucagon 

receptors similarly to the parent peptides but with lesser potency demonstrated for 

paddlefish GLP-1 analogue. Previous findings show that employing a secondary C-

terminal fatty acid adduct to prolong biological activity of naturally occurring, 

oxyntomodulin, had no alteration in the ability to activate GLP-1 and glucagon 

receptors (Lynch et al. 2014). 

The rationale as to why fish GLP-1s analogues would activate glucagon, in terms of 

the presence or absence of particular amino acid residues receptor, is unclear. 

However, their parent peptide sequences exhibited a strong propensity to adopt a stable 

α-helical conformation between residues 9-28 predicted by AGADIR program. The 

primary structures of analogues show a high degree of similarity with peptides of the 

same glucagon superfamily as demonstrated in Chapter 3.  
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Earlier in this thesis native GLP-1 from lamprey and paddlefish demonstrated 

insulinotropic and glucose-lowering effects. However, the peptides failed to exhibit 

biological actions when administrated 2 hours prior to glucose. To screen acute in vivo 

acute and long-acting properties of fish GLP-1 peptide analogues as well as positive 

controls, they were co-administered with glucose to normal mice. The biological in 

vivo properties of [D-Ala2]-lamprey GLP-1-Lys31gamma-glutamyl-pal appeared to be 

comparable with the parent peptide and human GLP-1. Notably, [D-Ala2]-lamprey 

GLP-1-Lys31gamma-glutamyl-pal displayed marked glucose-lowering and 

insulinotropic effects when administrated two and four hours prior to a glucose load, 

which was essentially similar to the effects of exendin-4, indicating its enhanced 

enzymatic stability. This suggests that the modifications did not have deleterious 

effects on three-dimensional peptide structure of lamprey GLP-1 analogue which 

retained the ability to activate G protein-coupled receptors. 

In contrast, of [D-Ala2]-paddlefish GLP-1-Lys28gamma-glutamyl-pal demonstrated 

weaker long active potency and was not as effective. Acute intraperitoneal 

administration of [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal significantly 

suppressed appetite in normal mice, whereas [D-Ala2]-paddlefish GLP-1-Lys28-

gamma-glutamyl-pal showed less potency compared to the parent peptide. The initial 

results of modified lamprey GLP-1 resemble the actions of other GLP-1 related 

modified hormones (Flatt et al. 2009; Irwin et al. 2015) and provide a strong basis for 

the chronic studies using high fat-fed mice. The effectiveness of [D-Ala2]-paddlefish-

GLP-1-Lys28gamma-glutamyl-pal was also examined for comparison. 

In harmony with acute studies, a 21-day study treatment of high fat-fed mice with [D-

Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal resulted in a significant 
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improvement of metabolic status in high-fat fed mice.  This included a progressive 

reduction in body weight accompanied by a decrease in cumulative food intake. 

Although administration of liraglutide reduced in % of body weight change, it 

surprisingly had no apparent effect on food intake. This might reflect the ability of 

lamprey GLP-1 analogue to resemble the actions of glucagon which is known to have 

beneficial effects such as promoting lipolysis, inhibiting feeding and enhancing energy 

expenditure under certain conditions (O’Harte et al. 2016b). Activation of multiple 

biological pathways, in the case of dual-receptor agonists, offers a favourable 

approach for the treatment of obesity and diabetes (Sadry et al. 2013; Gault et al. 2013) 

Contrarily, reduction in the appetite might also be caused due to the induction of 

transient nausea which is one of the limitations associated with GLP-1 mimetic drugs 

(Lean et al. 2014). The GLP-1 analogues appeared to stimulate additional pathways 

involved in the activation of GLP-1 receptors in the brain mediating changes in 

appetite behaviour. A better understanding of these mechanisms may help in designing 

an effective obesity drug avoiding the side effects (Dailey et al. 2013).  

Chronic administration of liraglutide and lamprey GLP-1 analogue decreased the high-

fat-diet-induced insulin demand as evidenced by decreased circulating non-fasted 

insulin levels. Moreover, a reduction of non-fasted glucose was observed in lamprey 

GLP-1 treated group. Therefore, this indicates an improvement of insulin action and a 

reduction in overall metabolic demand leading to beta-cell rest which has been shown 

to dramatically improve longer-term glycaemic control (Pathak et al. 2015). Both, 

lamprey GLP-1 analogue and liraglutide, treatments were associated with enhanced 

glucose-induced insulin secretion and reduced HOMA-IR, which could be due to 

improved metabolic control and reversal of beta cell glucotoxicity.  
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DEXA scanning revealed that fat mass was significantly reduced in all treatment 

groups, which was not due to changes in normal mass. The levels of triglyceride, as 

well as LDH concentrations, were significantly improved in the group treated with 

lamprey GLP-1 analogue.  This could be due to improved glycaemia and greater 

weight loss observed in this group. Consistent with the previous finding, no significant 

changes were observed in plasma total cholesterol after liraglutide treatment (Millar 

et al. 2017) or in any of the fish GLP-1 analogue treatment groups.  

Levels of ALT were significantly reduced in all treatment groups showing protective 

effects of the peptides on diet-induced liver damage which is linked to non-alcoholic 

fatty liver disease (Stephenson et al. 2018) 

However, all peptide treated groups exhibited slightly elevated plasma amylase 

activity. While it should be noted that the GLP‐1 receptor agonists have been linked 

to the development of pancreatitis (Egan et at. 2014), this was questioned lately by 

LEADER randomized trial. The study reported that increased serum amylase and 

lipase levels were observed in the patients treated with liraglutide, but these elevations 

were not predictive of the development of acute pancreatitis in asymptomatic T2DM 

individuals (Steinberg et al. 2017).  

Histological findings show a reduction in alpha cell area in the group treated with 

lamprey GLP-1 analogue. This appeared to be related to a lower number of larger sized 

and higher number of medium-sized islets, despite no alteration in the overall number 

of islets. In agreement with this observation, a reduction in glucagon content was 

observed in this group. However, no change in plasma glucagon was detected. 

Previous studies reported a potent glucagonostatic effect of GLP-1 on glucagon 

secretion in rat endocrine pancreas (Komatsu et al. 1989). Hyperglycemic clamp 

studies demonstrated that inhibition of glucagon secretion by GLP-1 might be 
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contributed to the restoration of the ability of the alpha cells to react to glucose 

(Vilsboll et al. 2003; Ahren et al. 1997; Hare et al. 2010) which may be seen observed 

in the case of lamprey GLP-1 analogue treatment. 

Interestingly, none of the treatments altered beta cell area, however, a decrease of 

pancreatic insulin content was observed in liraglutide, and lamprey GLP-1 analogue 

treated group. Gene expression was also improved in the liraglutide and lamprey GLP-

1 analogue treated groups, particularly the expression of insulin gene which was 

upregulated in the saline group due to persistently high blood glucose levels (Mosley 

et al. 2004). The expression of Slc2a2 gene encoding GLU2, Glp-1r and Gcgr 

receptors were significantly increased in the peptide treatment groups except 

paddlefish GLP-1 analogue treated group which was similar to the high fat control. 

The overexpression of glucagon receptor may be responsible for controlling beta cell 

growth and differentiation (Gelling et al. 2009). Administration of lamprey GLP-1 

analogue also had a positive effect on the expression of Gipr and glucokinase (Gck) 

genes.  

Due to promising effects observed in high-fat-fed mice, lamprey GLP-1 analogue was 

further selected for the study using GluGre Rosa26-YFP transgenic mice bearing the 

transgenes Glucagon-CreER (tamoxifen-inducible tagger) and Rosa26-YFP as a 

reporter to label pre-existing alpha cells (Quoix et al. 2007). The animals were pre-

treated with multiple doses of STZ to induce diabetes and exhibit symptoms such as 

reduced body weight, elevated levels of blood glucose, depletion of plasma insulin 

and beta cell destruction. Treatment of STZ-induced diabetic animals for ten days with 

liraglutide and paddlefish GLP-1 analogue resulted in improved food intake, 

noticeably lowered blood glucose, increased plasma insulin as well as increased beta 

cell area in the pancreas. Hormonal and environmental factors play an important role 
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in the recovery of beta-cell mass to overcome progressive beta cell loss. One of the 

mechanisms involves the proliferation of pre-existing beta-cells and 

transdifferentiation of non-beta cells to functional beta cells (Brown et al. 2015). 

Recent studies have highlighted the inherited beta-cell plasticity and inability to 

maintain a fully differentiated glucose-responsiveness and drug-responsive state 

(Remedi et al. 2016). Increased GLP-1 secretion exhibit a positive effect on beta cell 

regeneration, however, the peptide is rapidly degraded by plasma enzymes (Lee at al. 

2018). Alpha cells could also be employed as a source of new beta cells to improve or 

reverse these processes (Thorel at al 2012). Our data show that new beta cells 

originated from alpha cells were significantly higher in streptozotocin-treated mice 

compared to normal untreated control mice. Treatment with liraglutide and lamprey 

GLP-1 analogue visibly improved the rate of differentiation compared to 

streptozotocin control favouring promotion of insulin-producing cells.  

To conclude, [D-Ala2]-lamprey-GLP-1-Lys31-gamma-glutamyl-pal exhibited dual-

acting effects on GLP-1 and glucagon receptors and showed potent anti-diabetic 

properties similar to parent peptide with prolonging plasma stability. The stable 

lamprey GLP-1 analogue had positive effects on body weight, insulin secretion, 

insulin resistance and islet morphology in high-fat-fed mice, being at least as, if not 

more effective than liraglutide. The study shows how modification such as acylation 

and the addition of gamma-glutamyl spacer may interfere with the active side of the 

peptide causing a reduction in biological activity as was in the case with paddlefish 

GLP-1 analogue. Overall, these observations provide novel and exciting findings to 

encourage further investigations of the lamprey GLP-1 analogue as a potential anti-

diabetic agent.  
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Table 5.1.  Primary structures and the observed and calculated molecular 

masse of fish GLP-1 analogue peptides investigated in this study. 

 

Peptide Amino acid sequence 
Calculated 
molecular 

mass 

Observed 
molecular 

mass 

[D-Ala2]-lamprey 
GLP-1-Lys31-
gamma-glutamyl-pal 

HaDGTFTNDMTSYLDAKAARDFVSWL
ARSD[K-gamma-glutamyl-pal]S-OH 

3945.4 3947.0 

[D-Ala2]-paddlefish 
GLP-1-Lys28-
gamma-glutamyl-pal  

HaDGTYTSDASSFLQEQAARDFISWLK[
K-gamma-glutamyl-pal]GQ-OH 

3726.2 3728.0 

Human 
oxyntomodulin 

HSQGTFTSDYSKYLDSRRAQDFVQWL
MNTKRNKNNIA          

4449.9 
 

Human GLP-1 HAEGTFTSDVSSYLEGQAAKEFIAWLV
KGR-NH2 

3297.7 3297.9 

Human glucagon HSQGTFTSDYSKYLDSRRAQDFVQWL
MNT 

3482.8 3484.4 

Human GIP YAEGTFISDYSIAMDKIHQQDFVNWLL
AQKGKKNDWKHNITQ 

4983.6 4984.3 

Exendin-4 HGEGTFTSDLSKQMEEEAVRLFIEWLK
NGGPSSGAPPPS-NH2 

4186.6 4186.0 

Liraglutide  HAEGTFTSDVSSYLEGQAAK-(γ-Glu-
palmitoyl)-EFIAWLVRGRG-OH 

3751.2 
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Table 5. 2 Metabolic degradation studies 

Peptide % Degraded  
4 h DPP-IV 

% Degraded 
4 h plasma 

Observed MW 
of degraded    
product, Da 

Proposed 
DPP-IV    
cleavage site 

Lamprey GLP-1 90 - 3370.1 Ala2-Asp3 

Paddlefish GLP-1 87 - 3153.3 Ala2-Asp3 

[D-Ala2]-lamprey GLP-
1-Lys31gamma-
glutamyl-pal 

0 0 N/A - 

[D-Ala2]-paddlefish 
GLP-1-Lys28-gamma-
glutamyl-pal  

0 0 N/A - 

Human GLP-1 86 65 3090.4 Ala8-Glu9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

247 
 

Table 5. 3 Effects of [D-Ala2]-lamprey GLP-1-Lys31gamma-glutamyl-pal, [D-
Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal, human GLP-1 and 
glucagon on the rate of insulin release from BRIN-BD11 cells.  

 

Peptide Threshold concentration  Effect at 3µM, ng/106/20min 

Basal release - 1.0 ± 0.02 

[D-Ala2]-lamprey GLP-1-Lys31-
gamma-glutamyl-pal 

10pM** 3.3 ± 0.19 

[D-Ala2]-paddlefish GLP-1-Lys28-
gamma-glutamyl-pal 

0.1nM* 2.8 ± 1.9 

Human GLP-1 10pM* 3.6 ± 0.17 

Human glucagon 3nM* 2.7 ± 0.10 

 

The basal release refers to the rate of insulin release at 5.6 mM glucose alone. The 
threshold concentration is the minimum concentration of the peptide that produces a 
significant (P < 0.05) increase in the rate of insulin release. The values are mean ± 
SEM for n = 8. *P<0.5, **P<0.01, ***P<0.001 compared to 5.6 mM glucose control. 
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Table 5.4 Effects of [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal and 
[D-Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal on the release of 
insulin from islets isolated from Swiss mice.  

Peptide  Insulin release (% of total 
insulin content) at 10-6M 

Insulin release (% of total 
insulin content) at 10-8M 

(None) 1.4 mM glucose 3.4 ± 0.4 *** 3.4 ± 0.4 *** 

(None) 16.7 mM glucose control   8.5 ± 0.5 8.5 ± 0.5 

[D-Ala2]-lamprey GLP-1- 
Lys31-gamma-glutamyl-pal 

16.4 ± 0.7 *** 14.4 ± 1.1 ***  

[D-Ala2]-paddlefish GLP-1- 
Lys28-gamma-glutamyl-pal 

12.6  ± 1.8 * 8.3 ± 1.1 

Human GLP-1 17.0 ± 2.1 ** 14.7 ± 0.9 *** 

Human glucagon 11.9 ± 1.6 8.5 ± 0.4 

Values are mean ± S.E.M., n = 8 *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
16.7 mM glucose alone.   
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Table 5.5 Summary of effect of [D-Ala2]-lamprey GLP-1-Lys31gamma-
glutamyl-pal, [D-Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal, human 
GLP-1, human glucagon and human GIP peptides (10-8 and 10-6 M) on 
cAMP production in GLP1R-transfected CHL cells, and GCGR-
transfected HEK293 cells. 

 

Peptide name GLP-1 receptor transfected 
cells 

GCG receptor transfected cells 

cAMP release 
at 

 10-6 

cAMP release 
at 

10-8 

cAMP release 
at 

10-6 

cAMP release 
at 

10-8 

Basal (5.6mM 
glucose) 

4.9 ± 0.2 4.9 ±0.2 2.5 ±0.2 2.5 ±0.2 

[D-Ala2]-lamprey 
GLP-1-Lys31-gamma-
glutamyl-pal 

 
30.1 ± 2.0*** 

 
25.9 ± 0.8*** 

 
6.2 ±0.2*** 

 
4.7 ±0.9* 

[D-Ala2]-paddlefish 
GLP-1- 
Lys28-gamma-
glutamyl-pal 

 
28.9 ± 1.4*** 

 
13.3 ± 0.9** 

 
4.6 ± 0.8 * 

 
4.7 ± 0.9 * 

Human GLP-1 29.0 ± 0.2*** 26.3 ± 1.4*** 6.6 ± 0.6** 4.6 ± 0.4** 

Human glucagon  17.1 ± 0.9 *** 10.7 ± 0.5*** 8.9 ± 0.3** 7.5 ± 0.5** 

Human GIP 5.1 ± 0.2 5.5 ± 0.6 2.8 ± 0.3 2.5 ± 0.2 
 

Values are mean ± S.E.M. for n = 3. *P < 0.05, ** P< 0.01 and ***P < 0.001 
compared with 5.6 glucose. 
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Table 5.6 Summary of effects of fish stable fish GLP-1 analogues (10-8 and 
10-6 M) on the rate of insulin release from wild-type INS-1 cells, 
CRISPR/Cas9-engineered GLP-1R KO cells, CRISPR/Cas9-engineered 
GIPR KO cells and CRISPR/Cas9-engineered GIPR KO cells  

Peptide  Wild-type 
cells, % of 
basal control 

GLP-1R KO 
cells, % of 
basal control 

GCGR KO 
cells, % of 
basal control 

GIPR KO 
cells, % of 
basal control 

Basal (5.6mM glucose) 100 ± 9.6 

[D-Ala2]-lamprey  
GLP-1-Lys31-
gamma-glutamyl-
pal 

10-6 215.2 ± 10.1***  147.2 ± 10.3 
*** ΔΔΔ 

165.1 ± 13.2** Δ 222.2 ± 7.5 *** 

10-8 183.5 ± 12.4*** 
 

135.1 ± 9.7 **Δ  156.1 ± 13.7 ** 209.9 ± 11.1 ** 

[D-Ala-2] 
paddlefish GLP-1-
Lys28-gamma-
glutamyl-pal 

10-6 162.4 ± 8.1*** 
 

128.8 ± 9.1 ** 
Δ 

217.1 ± 6.8** 221.6 ± 7.6 *** 

10-8  143.1 ± 3.3 *** 124.9 ± 4.5 
**ΔΔ 

172.3 ± 16.8** Δ 187.9 ± 9.2 * 

Human GLP-1 10-6 221.1 ± 9.8*** 138.3 ± 14.5 * 
ΔΔΔ 

222.0 ± 11.7*** 231.4 ± 9.4 *** 

10-8 198.9 ± 12.9 *** 114.1 ± 8.5 ΔΔΔ 210 ± 25.0 *** 187.5 ± 17.2 
*** 

Human glucagon 10-6 225.0 ± 20.9*** 211.3 ± 16.4 
*** 

159.6 ± 8.5 *** 
ΔΔ 

224.0± 14.8 
*** 

10-8 172.2 ± 10.8*** 164.2 ±16.5*** 134.0 ± 14.4 Δ 175.4 ± 12.3 
*** 

Human GIP 10-6 242.9 ± 14.2*** 226.6 ±19.6*** 231.3 ± 17.6 *** 125.4 ± 6.9 * 
ΔΔΔ 

10-8 233.8 ± 18.6***  221.0 ± 29.3 
*** 

230.1 ± 0.9*** 124.3 ± 12.6 
ΔΔΔ 

Values are mean ± S.E.M., n = 8, *P < 0.05, **P < 0.01 and ***P < 0.001 compared 
with 5.6 mM glucose alone. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 0.001 compared with effects 
in wild-type INS-1 cells. 
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Figure 5.1. Reverse-phase HPLC purification of crude [D-Ala2]-lamprey 
GLP-1-Lys31-gamma-glutamyl-pal (A) and [D-Ala2]-paddlefish GLP-1-Lys28-

gamma-glutamyl-pal peptides using a semi-preparative Vydac C18 column. 

 

The peptides were dissolved in 15% acetonitrile (3mg/ml) and injected onto a (2.2 cm 
x 25 cm) Vydac 218TP1022 (C-18) column (Grace, Deerfield, IL, USA) at a flow rate 
of 6.0 ml/min. The concentration of acetonitrile in the eluting solvent was raised from 
0% to 35 % over 10 min and from 35% to 70% over 50 min using a linear gradient. 
Absorbance was measured at 214 nm, and the black arrows show where the peak 
collection began and ended.   
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Figure 5.2. MALDI-TOF spectra of purified [D-Ala2]-lamprey GLP-1-
Lys31-gamma-glutamyl-pal (A) and [D-Ala2]-paddlefish GLP-1-Lys28-
gamma-glutamyl-pal peptides. 

 

Purified peptides were mixed with α-Cyano-4-hydroxycinnamic acid on a 100 well 
MALDI plate before inserting into a Voyager DE Biospectrometry workstation. The 
mass-to-charge ratio (m/z) versus peak intensity was determined. 
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Figure 5.3. HPLC degradation profile of [D-Ala2]-lamprey GLP-1-Lys31-
gamma-glutamyl-pal following incubation with DPP-IV for 0 and 4 hours. 

 

 

The separation was performed with a Luna 5u C8 250x4.6mm column. The dash line 
represents acetonitrile concentration gradient from 0% to 35% (from 0 min to 10 min), 
from 35% to 42% (from 10min to 30 min), from 42 to 70% (from 30 min to 35min), 
and 70% (from 35 min to 55 min). 
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Figure 5. 4 HPLC degradation profile of [D-Ala2]-paddlefish GLP-1-Lys28-
gamma-glutamyl-pal following incubation with DPP-IV for 0 and 4 hours. 

 

The separation was performed with a Luna 5u C8 250x4.6mm column. The dash line 
represents acetonitrile concentration gradient from 0% to 35% (from 0 min to 10 min), 
from 35% to 42% (from 10min to 30 min), from 42 to 70% (from 30 min to 35min), 
and 70% (from 35 min to 55 min). 
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Figure 5.5 HPLC result of plasma degradation of [D-Ala2]-lamprey GLP-
1-Lys31-gamma-glutamyl-pal for 0 and 4 hours. 

 

The separation was performed with a Luna 5u C8 250x4.6mm column. The dash line 
represents acetonitrile concentration gradient from 0% to 35% (from 0 min to 10 
min), from 35% to 70% (from 10min to 45 min) and 70% (from 45 min to 60 min). 
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Figure 5.6 HPLC result of plasma degradation of [D-Ala2]-lamprey GLP-
1-Lys31-gamma-glutamyl-pal for 0 and 4 hours 

 

 

 The separation was performed with a Luna 5u C8 250x4.6mm column. The dash line 
represents acetonitrile concentration gradient from 0% to 35% (from 0 min to 10 min), 
from 35% to 70% (from 10min to 45 min) and 70% (from 45 min to 60 min). 
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Figure 5.7 HPLC result of plasma degradation of human GLP-1 for 0 and 
4 hours. 

 

 

The separation was performed with a Luna 5u C8 250x4.6mm column. The dash line 
represents acetonitrile concentration gradient from 0% to 35% (from 0 min to 10 
min), from 35% to 70% (from 10min to 45 min) and 70% (from 45 min to 60 min). 
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Figure 5. 8  Effects of increasing concentrations of [D-Ala2]-lamprey 
GLP-1-Lys31-gamma-glutamyl-pal (A) and [D-Ala2]-paddlefish GLP-1-
Lys28-gamma-glutamyl-pal (B) on insulin release from BRIN-BD11 rat 
clonal β-cells.  

 

 

Values are mean ± S.E.M., n = 8. *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
5.6 mM glucose alone. 
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Figure 5.9 Effects of [D-Ala2]-lamprey GLP-1-Lys31gamma-glutamyl-pal 
and [D-Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal (10-8 and 10-6 
M) on insulin release from pancreatic islets isolated from NIH Swiss mice.  

 

The values are mean ± SEM for n=4; *P < 0.05, **P < 0.01, ***P < 0.001 compared 
to 16.7mM glucose alone. 
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Figure 5.10 Effects of [D-Ala2]-lamprey GLP-1-Lys31gamma-glutamyl-pal 
and [D-Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal (10-8 and 10-6 
M) on cAMP production in (A) GLP1R-transfected CHL cells, and (B) 
GCGR-transfected HEK293 cells  

 

 

 

 

Values are mean ± S.E.M. for n = 3. *P < 0.05, ** P< 0.01 and ***P < 0.001 
compared with 5.6 glucose. 
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Figure 5.11 Effects of [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal 
peptides and [D-Ala2]-paddlefish-GLP-1-Lys28-gamma-glutamyl-pal (10-8 
and 10-6 M) on the rate of insulin release from (A) wild-type INS-1 cells, 
(B) CRISPR/Cas9-engineered GLP-1R knock-out cells, (C) CRISPR/Cas9-
engineered GCGR knock-out cells and (D) CRISPR/Cas9-engineered 
GIPR knock-out cells. 
 

 

 

Values are mean ± S.E.M., n = 8, *P < 0.05, **P < 0.01 and ***P < 0.001 compared 
with 5.6 mM glucose alone. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 0.001 compared with effects 
in wild-type INS-1 cells. 
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Figure 5.12 Effects of [D-Ala2]-lamprey GLP-1-Lys31-gamma-glutamyl-pal 
peptides and [D-Ala2]-paddlefish-GLP-1-Lys28-gamma-glutamyl-pal (10-8 
and 10-6 M) on (A) cell proliferation and (B) protection against apoptosis 
in rodent BRIN BD11 cells. 
 
 
 

 

Cell were incubated (16 h) in the presence of peptides (10-8 and 10-6 M) with and 
without addition of cytokine cocktail. Values are mean ± S.E.M., n = 3, *P < 0.05, ** 
P< 0.01 and ***P < 0.001 compared with control cultures. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP 
< 0.001 compared with cytokine cocktail. 
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Figure 5.13 Effects of acute administration of lamprey GLP-1, [D-Ala2]-
lamprey GLP-1-Lys31gamma-glutamyl-pal peptides (A-B), paddlefish 
GLP-1 and [D-Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal (C-D) 
on blood glucose and plasma insulin in normal mice.  

 

 

Effects of peptides (each at 25 nmol/kg body weight) on blood glucose and plasma 

insulin concentrations in normal mice were measured after intraperitoneal injection of 

glucose (18 mmol/kg body weight). The integrated responses (area under the curve 

AUC) are shown in panels E and F. The values are mean ± SEM for n=6. *P<0.05, 

**P<0.01 and ***P<0.001 compared to glucose alone; Δ P<0.05, ΔΔ P<0.01 and ΔΔΔ 

P<0.001 compared to human GLP-1. 
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Figure 5.14 Effects of acute administration of lamprey GLP-1, [D-Ala2]-
lamprey GLP-1-Lys31-gamma-glutamyl-pal peptides (A-B), paddlefish 
GLP-1 and [D-Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal (C-D) 
on blood glucose and plasma insulin concentrations in normal mice, 2 h 
post injection. 

 

Blood glucose and plasma insulin were measured after intraperitoneal injection of 

glucose (18 mmol/kg body weight) 2 hours after intraperitoneal administration of 

0.9% saline or peptides (25 nmol/kg body weight). The integrated responses (area 

under the curve AUC) are shown in panels E and F. The values are mean ± SEM for 

n=6. **P<0.01 and ***P<0.001 compared to glucose alone; ΔΔ P<0.01 and ΔΔΔ 

P<0.001 compared to human GLP-1. 
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Figure 5. 15 Effects of acute administration of lamprey GLP-1, [D-Ala2]-
lamprey GLP-1-Lys31-gamma-glutamyl-pal peptides (A-B), paddlefish 
GLP-1 and [D-Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal (C-D) 
on blood glucose and plasma insulin concentrations in normal mice, 4 h 
post injection. 

 

Blood glucose and plasma insulin were measured after intraperitoneal injection of 

glucose (18 mmol/kg body weight) 4 hours after intraperitoneal administration of 

0.9% saline or peptides (25 nmol/kg body weight). The integrated responses (area 

under the curve AUC) are shown in panels E and F. The values are mean ± SEM for 

n=6. *P<0.05, **P<0.01 and ***P<0.001 compared to glucose alone; ΔΔ P<0.01 and 
ΔΔΔ P<0.001 compared to human GLP-1. 
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Figure 5.16 Effects of lamprey GLP-1, [D-Ala2]-lamprey GLP-1-
Lys31gamma-glutamyl-pal, paddlefish GLP-1 and [D-Ala2]-paddlefish 
GLP-1-Lys28-gamma-glutamyl-pal on cumulative food intake over 5 hours 
trained feeding in 12 h fasting normal mice. 

 

 

Cumulative food intake was measured after intraperitoneal administration of 75 
nmol/kg peptides alongside 0.9% saline control. The values are mean ± SEM for n=8. 
*P<0.05, **P<0.01 and ***P<0.001 compared to saline control mice treated at the 
same time point. 
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Figure 5.17 Chronic effects of stable fish GLP-1 peptides on body weight 
(A), % body weight change (B), food intake (C) and water intake (D) in 
high fat-fed mice  during 21 days study. 

 

The black horizontal bar represents the treatment period. Values represent mean±SEM 
for 8 mice. *P<0.05, **P<0.01 and ***P<0.001 is compared with high fat treated 
control. 
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Figure 5.18 Chronic effects of stable fish GLP-1 peptides on blood glucose 
(A-B), plasma insulin (C-D) and insulin sensitivity during 21 days study in 
high fat fed mice. 

 

 

 

 

 

The black horizontal bar represents the treatment period. Values represent mean±SEM 
for 8 mice. *P<0.05, **P<0.01 and ***P<0.001 is compared with high fat treated 
control. 
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Figure 5. 19 Chronic effects of stable fish GLP-1 peptides on HOMA-β (A) 
and HOMA-IR (B) in high fat fed diet mice. 

 

 

 

 

 

The parameters were measured on day 21 following twice-daily treatment with 
saline vehicle (0.9% w/v NaCl, i.p), liraglutide or fish peptide analogues (each at 25 
nmol/kg of bw, i.p). 
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Figure 5.20 Chronic effects of stable fish GLP-1 peptides on glucose 
tolerance (A-B) and plasma insulin (C-D) in response to intraperitoneal 
administration of glucose in fasted high-fat diet fed mice. 

 

Parameters were measured prior to and after administration of glucose alone (18 
mmol/kg of bw, i.p.) in animals receiving after 21 days daily treatment with saline 
vehicle (0.9% w/v NaCl, i.p), liraglutide or fish peptide analogues (each at 25 nmol/kg 
of bw, i.p.). Blood glucose and plasma insulin AUC values 0-120 min are included.  
The values are mean ± SEM for n=8. *P<0.05, **P<0.01 and ***P<0.001 compared 
to saline control. 
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Figure 5.21 Chronic effects of stable fish GLP-1 peptides on glucose 
tolerance (A-B) and plasma insulin (C-D) in response to oral 
administration of glucose in fasted high-fat diet fed mice. 

 

Parameters were measured prior to and after administration of glucose alone (18 

mmol/kg) in animals receiving after 21 days daily treatment with saline vehicle (0.9% 

w/v NaCl, i.p), liraglutide or fish peptide analogues (each at 25 nmol/kg of bw, i.p.). 

Blood glucose and plasma insulin AUC values 0-120 min are included.  The values 

are mean ± SEM for n=8. *P<0.05, **P<0.01 and ***P<0.001 compared to saline 

control. 
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Figure 5.22 Chronic effects of stable fish GLP-1 peptides on pancreatic 
glucagon (A) and pancreatic insulin (B) content in high-fat-fed diet mice.  

 

 

 

 

 

The parameters were measured on day 21 following twice-daily treatment with saline 

vehicle (0.9% w/v NaCl, i.p), liraglutide or fish peptide analogues (each at 25 nmol/kg 

of bw, i.p). Data are expressed as means ± SEMs for n=4. *P < 0.05 and ** P< 0.01 

compared with high fat saline control. 
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Figure 5.23 Chronic effects of stable fish GLP-1 peptides on plasma total 
cholesterol (A), triglycerides (B), HDL-cholesterol (C), and LDL-
cholesterol (D). 

 

The parameters were measured on day 21 following twice-daily treatment with saline 

vehicle (0.9% w/v NaCl, i.p), liraglutide or fish peptide analogues (each at 25 nmol/kg 

of bw, i.p). Data are expressed as means ± SEMs for 8 mice. *P < 0.05 and *** P < 

0.001 compared with saline control. 
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Figure 5.24 Chronic effects of stable fish GLP-1 peptides on (A) plasma 
ALT, (B) Amylase activity and (C) plasma glucagon in high-fat diet fed 
mice.  

 

The values are mean ± SEM for n=4. *P<0.05, **P<0.01 and **P<0.01 compared to 

high fat control. 



 

275 
 

Figure 5.25 Chronic effects of stable fish GLP-1 peptides on (A) bone 
mineral density, (B) bone mineral content, (C) bone area, (D) normal body 
mass, (E) body fat and (F) % fat composition measured by DEXA scanning 
in high-fat diet fed mice.  

 

 

 

Values represent mean±SEM for 8 mice. The values are mean ± SEM for n=8. *P<0.05 

and **P<0.01 compared to saline control. 

 



 

276 
 

Figure 5.26 Chronic effects of stable fish GLP-1 peptides on insulin 
secretory response from isolated islets in high-fat-fed diet mice.  

 

 

 

Pancreatic islets were isolated following 21 days twice-daily treatment with saline 

vehicle (0.9% w/v NaCl, i.p), liraglutide or fish peptide analogues (each at 25 nmol/kg 

of bw, i.p.). Parameters for A) insulin release and B) insulin content represent 

normalised values to respective control (16.7mM glucose) for each group.  Values are 

mean±SEM for n=4. *P<0.05, **P<0.01 ***P<0.001 compared to respective 16.7mM 

glucose control. 
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Figure 5. 27 Chronic effects of stable fish GLP-1 peptides on pancreatic islet 
morphology in high-fat-fed mice. 
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Parameters for (A) number of islets (mm), (B) islet area (µm2), (C) beta cell area 
(µm2), (D) alpha cell area (µm2), (E) islet size distribution (% of total area) were 
measured on day 21 following twice-daily treatment with saline vehicle or the 
peptides (at 25 nmol/kg body weight. ***P < 0.001 compared to high-fat diet saline 
control. Effects of liraglutide are shown for comparison. F-I: Representative images 
of islets from (F) high-fat–fed mice treated with saline, (G) liraglutide, (H) [D-Ala2]-
lamprey GLP-1-Lys31gamma-glutamyl-pal and (I) paddlefish GLP-1 and [D-Ala2]-
paddlefish GLP-1-Lys28-gamma-glutamyl-pal hybrid. Images were analsed using 
Cell^F analysis software. Approximately >50 islets per mouse were analysed. 



 

278 
 

Figure 5.28 Chronic effects of stable fish GLP-1 peptides on the expression 
of genes involved in insulin secretion from islets in high-fat fed mice. 

 

 

 

cDNA was synthesised from 1 µg of mRNA. Data were normalised to Beta-actin 

(Actb) gene expression used as a reference gene and analysed using the ΔΔCt method. 

Data are expressed as means ± SEMs for n=3. *P < 0.05, ** P< 0.01 and *** P< 0.001 

compared with high fat saline control. 
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Figure 5.29 Chronic effects of [D-Ala2]-lamprey GLP-1-Lys31-gamma-
glutamyl-pal on (A) accumulative food and (B) water intake during 11 days 
study in streptozotocin pre-treated GluGre Rosa26-YFP mice. 

 

 

(A) Accumulative food and (B) water intake were measured during 11 days twice daily 

treatment with saline vehicle (0.9% (w/v) NaCl), liraglutide and [D-Ser2]-paddlefish 

glucagon-Lys30-gamma-glutamyl-pal (each at 25 nmol/kg bw). Values represent 

mean±SEM for 5 mice. *P <0.05 ** P <0.01 and ***P <0.001 is compared with 

normal control. 
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Figure 5.30 Chronic effects of [D-Ala2]-lamprey GLP-1-Lys31-gamma-
glutamyl-pal on (A) blood glucose and (B) % of blood glucose change (C) 
body weight (D) % of body weight change and (E) plasma insulin during 
11 days study in streptozotocin pre-treated GluGre Rosa26-YFP mice. 

 

The parameters were measured during 11 days twice daily treatment with saline 
vehicle (0.9% (w/v) NaCl), liraglutide and [D-Ser2]-paddlefish glucagon-Lys30-
gamma-glutamyl-pal (each at 25 nmol/kg bw). The black horizontal bar represents the 
treatment period. Values represent mean±SEM for 5 mice. *P <0.05 and ***P <0.001 
is compared with normal control. ΔP <0.05 is compared with streptozotocin control.  
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Figure 5.31 Chronic effects of [D-Ala2]-lamprey GLP-1-Lys31-gamma-
glutamyl-pal on pancreatic (A) insulin and (B) glucagon content during 11 
days study in streptozotocin pre-treated GluGre Rosa26-EYFP mice. 

 

 

The parameters were measured during 11 days twice daily treatment with saline 
vehicle (0.9% (w/v) NaCl), liraglutide and [D-Ser2]-paddlefish glucagon-Lys30-
gamma-glutamyl-pal (each at 25 nmol/kg bw). Values represent mean±SEM for n=3. 
*P<0.05 and ***P<0.001 is compared with normal control. ΔP<0.05, ΔΔP<0.01 and 
ΔΔΔP<0.001 is compared with streptozotocin control.  

 

 

 



 

282 
 

Figure 5.32 Chronic effects of [D-Ala2]-lamprey GLP-1-Lys31-gamma-
glutamyl-pal on pancreatic islet morphology in GluGre Rosa26-YFP 
mice. 

 

Parameters for (A) number of islets (mm), (B) islet area (µm2), (C) beta cell area 
(µm2), (D) alpha cell area (µm2), (E) islet size distribution (% of total area) were 
measured on day 11 following twice-daily treatment with saline vehicle or the peptides 
(at 25 nmol/kg body weight. ~40-50 islets per group. The values are mean ± SEM 
*P<0.05, **P<0.01 and ***P<0.001 compared to untreated control; Δ P<0.05 and ΔΔ 
P<0.05 compared to streptozotocin-treated mice. 
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Figure 5.33 Chronic effects of [D-Ala2]-lamprey GLP-1-Lys31-gamma-
glutamyl-pal on alpha to beta cell transdifferentiation in GluGre Rosa26-
YFP. 

 

Analysis of A) Glucagon+GFP+ cells, B) Glu+ GFP- cells, C) Glu-GFP+ and D) 
Insulin+GFP+ cells per total cells/islets analysed (~40-50 islets per group). The values 
are mean ± SEM *P<0.05, **P<0.01 and ***P<0.001 compared to untreated control; 
Δ P<0.05 compared to streptozotocin-treated mice. 
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Biological effects of [D-Ser2]-lamprey 
glucagon-Lys30-gamma-glutamyl-pal 
and [D-Ala2]-paddlefish glucagon-
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6.1 Summary 

This Chapter examined the insulinotropic and anti-hyperglycemic properties of novel 

fish analogue peptides, namely [D-Ser2]-lamprey glucagon- Lys30-gamma-glutamyl-

pal and [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal. Peptide stability 

was improved by several structural modifications including the stereochemical 

configuration of Ser at the position 2 with its D-isomer and addition of a γ-glutamyl 

spacer to Lys at position 30. Both analogues stimulated insulin release from BRIN-

BD11 beta-cells, isolated mouse pancreatic islets and enhanced cAMP production in 

both, cells transfected with the human GLP-1 receptor cells transfected with the human 

glucagon receptor. [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal also 

increased insulin release from isolated mouse islets.  The insulinotropic actions of the 

peptides were attenuated in INS-1 cells engineered to lack GLP-1 and glucagon 

receptors.  [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal was found to be 

more effective than native peptide at acutely lowering blood glucose and elevating 

plasma insulin in normal mice. The peptide was selected for the 21-day study using 

high-fat-fed mice. Twice daily administration of [D-Ser2]-paddlefish glucagon-Lys30-

gamma-glutamyl-pal reduced body weight, non-fasting plasma glucose and 

circulating plasma insulin, as well as significantly improving glucose tolerance and 

insulin resistance. [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal 

significantly decreased alpha cell area and pancreatic insulin content.  Molecular 

analysis revealed a positive long-term effect of the peptide on islet genes encoding 

insulin, GLUT2, and GLP-1 and GIP receptors. Studies using streptozotocin-induced 

diabetic GluCreRosa26-YFP mice revealed significant beta-cell transdifferentiation 

and regeneration. These data demonstrate that long-acting dual agonist, [D-Ser2]-

paddlefish glucagon-Lys30-gamma-glutamyl-pal, exerts beneficial metabolic 



 

286 
 

properties similar to liraglutide in diabetic mice. The phylogenetically ancient fish 

glucagon derivative represents a novel agent with the therapeutic potential for 

treatment of type 2 diabetes.  

6.2 Introduction 

Acting as a physiological incretin hormone, glucagon-like peptide-1 (GLP-1) 

represents a good candidate template for the development of new drug treatments for 

diabetic patients (Manandhar et al. 2014). Indeed, in addition to its insulinotropic and 

anti-hyperglycemic benefits, GLP-1 peptide also inhibits gastric emptying, feeding 

and glucagon secretion via glucagon-like peptide receptor (Baggio et al. 2014). 

 In the last decade, a successful approach using incretin-based therapies has promoted 

evaluation of other glucagon-family peptides leading to the development of molecules 

that combine beneficial effects of core metabolic hormones into a single entity with 

enhanced antidiabetic properties. A large number of unimolecular co-agonists capable 

of activating different signalling pathways and hence minimise adverse effects due to 

more balanced pharmacokinetic action are in preclinical and clinical development 

(Brandt et al. 2017 and Pocai et al. 2009)  

As such a great success was achieved in the year 2009, combining lipolytic and 

thermogenic properties of glucagon and insulinotropic anorectic actions of GLP-1 in 

a single peptide GLP-1/glucagon co-agonist with further structural modifications. The 

dual-acting peptide was shown to exhibit positive effects on reducing body weight, 

improving glucose tolerance, lipid metabolism, and liver steatosis in high-fat fed mice. 

Interestingly, GLP-1/glucagon co-agonist was also effective in reducing weight in 

GLP-1r KO mice showing the contribution of glucagon in metabolic status (Day et al. 

2009 and Brandt et al. 2017).  
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Other studies employed naturally occurring dual-agonist oxyntomodulin sequence to 

design potent co-agonist peptides (Pocai et al. 2009 and Lynch et al. 2014). 

Furthermore, another dual GLP-1/glucagon receptor agonist, MEDI0382, was 

reported to have a potent in vivo effect on weight loss, hepatic fat content and glucose 

metabolism (Henderson et al. 2016). 

More examples of promising in vivo results include a novel exendin-4 based GLP-

1/glucagon co-agonist (Evers et al. 2017), as well a novel GLP-1R/GCGR dual agonist 

with substitution in glucagon sequence at position 22, 23 and 25 by cysteine and 

additional of laurate maleimide conjugation (Zhou et al. 2017). Many co-agonists 

currently undergo clinical trials (Brandt et al. 2017). 

Amino acid sequences of the proglucagon peptide trio, glucagon and the glucagon-

like peptide-1 and 2 share structural similarities which are highly maintained in the 

vertebrates. Studies of comparative endocrinology of secretin family of peptides, 

therefore, represent a novel approach for discovery and further developing novel 

multi-acting unimolecular peptide agonists.  

Duplication of the intact gene encoding proglucagon or duplication within its gene 

members are extremely rare and are likely to result from the whole genome 

duplication. This evolutionary event began about 1 billion years ago from an ancestral 

glucagon exon duplication giving rise to glucagon, while GLP-1 and GLP-2 diverged 

from each other about 700 MYA. (Lopez et at 1984; Irwin 1999 and Irwin 2005; Ng 

et al. 2010).  Examination of the rates of evolution for each proglucagon-derived 

peptide sequence uncovers an episodic nature of the evolutionary process for each 

hormone, leading to the sequence variation between and within vertebrate classes 

(Irwin 2010). Consequently, fish (Agnathans and Osteichthyes) and amphibians are 
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found to have multiple proglucagon sequences, either by precence of additional 

proglucagon genes or multiple peptide sequences within the proglucagon gene, 

whereas in mammals only one proglucagon-derived peptide set exists (Ng et al. 2010). 

 Amino acid substitutions within the sequence are fixed in the population and often 

reflect dramatic changes in the functions of the proglucagon-derived hormones in 

specific species. GLP-1 hormone is a known example of this evolutionary change 

showing glucagon-like functions in teleost fish but acting as incretin in mammals 

(Irwin 2010). Moreover, phylogenetic analysis revealed that the Class B G-protein 

coupled receptors (GPCRs) appeared to evolve independently before acquiring 

specificity for their glucagon-derived peptide ligands.   

Recently it has been shown that glucagon isolated from dogfish and its derived 

analogues exhibited potent anti-hyperglycemic and insulinotropic effects in vivo as 

well as displayed in vitro and in vivo dual agonist activity targeting both GLP-1 and 

glucagon receptors (O’Harte et al. 2016). Further investigation assessing glucagon-

derived peptides isolated from phylogenetically ancient and a teleost species show 

equally valuable data (see Chapter 4). On the basis of detailed in vivo and acute in 

vitro studies, Glucagon from sea lamprey and paddlefish were selected for further 

studies to design DPP-IV resistant synthetic analogues.  

The sequences of these native fish glucagon peptides were modified by substitution of 

Ser at position 2 for its D-isomer and addition of a gamma-glutamyl with palmitate to 

the lysine residues at positions 30 for both sequences.  The potential insulinotropic 

effects of fish peptide analogues were examined in acute in vitro studies using BRIN-

BD11 and isolated mouse islets, cells transfected with either human GLP-1 or 

glucagon receptor and CRISPR/Cas9-engineered INS-1 cell line as well as in acute in 
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vivo using normal mice. The potential beneficial metabolic effects of paddlefish 

glucagon analogue were further examined in longer-term in vivo studies using high-

fat-fed mice and transgenic CluCreRosa26-YFP. The activities of fish peptides 

analogues were compared with those of human GLP-1, GIP, glucagon, 

oxyntomodulin, exendin-4 and liraglutide. 

6.3 Materials and Methods  

6.3.1 Peptides 

[D-Ser2]-lamprey glucagon-Lys30-gamma-glutamyl-pal and [D-Ser2]-paddlefish 

glucagon-Lys30-gamma-glutamyl-pal were obtained from Synpeptide Co. Ltd. 

(Shanghai, China) and purified as previously described in Section 2.1.1.  Synthetic 

human glucagon, human GLP-1, human GIP, oxyntomodulin, liraglutide and exendin-

4 peptides were obtained and purified as described previously (Section 2.1.1). 

Molecular masses for all peptides were subsequently confirmed using MALDI-TOF 

MS (Section 2.2). The structures and basic features of the peptides used in this Chapter 

are shown in Table 6.1.  

6.3.2 Assessment of metabolic stability of fish glucagon analogues  

Enzymatic effects of DPP-IV and mouse plasma on fish glucagon analogues stability 

were assessed in degradation studies as previously described in Section 2.3 

6.3.3 In vitro insulin release studies using BRIN-BD11  

BRIN-BD11 cells (McClenaghan et al., 1996) were used to assess in vitro insulin 

secretory activity of peptides as previously described (Section 2.5.1). Insulin release 

was measured by RIA (Section 2.5.2 and 2.5.7).  
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6.3.4 Insulin release studies using isolated mouse islets 

Effects of fish glucagon analogues on ex-vivo insulin secretion were assessed using 

isolated pancreatic mouse islets as described in Section 2.5.5.  

6.3.5 Effects of fish glucagon analogues on in vitro cAMP production.  

The ability of Chinese hamster lung (CHL) cells transfected with the human GLP-1 

receptor (GLP1R) (Thorens et al., 1993) and human embryonic kidney (HEK293) 

cells transfected with the human glucagon receptor (GCGR) (Ikegami et al., 2001) to 

generate cAMP production in the presence of peptides was assessed using a Parameter 

cAMP assay kit (R&D Systems, Abingdon, UK) as outlined in Section 2.6.  

6.3.6 Insulin release studies using CRISPR/Cas9-engineered INS-1 cells 

In vitro receptor activation study was performed using wild-type INS-1 832/3 rat 

clonal pancreatic β-cells and CRISPR/Cas9-engineered cells with the knock-out of the 

GLP-1 receptor (GLP-1 KO) or GIP receptor (GIP KO) (Naylor et al., 2016) or 

glucagon receptor (GCG KO) as described in Section 2.5.4. 

6.3.7 Proliferation and apoptosis of BRIN BD11 cells  

To assess the effects of peptides (10nM and 10µM) on beta-cell proliferation and 

apoptosis, BRIN-BD11 were used as previously described (Section 2.7).  

6.3.8 Animals   

Acute and persistent in vivo studies were carried out using male 8-12 week-old male 

National Institutes of Health (NIH) Swiss mice as outlined in Sections 2.8.1.1, 2.8.2.1, 

2.8.2.3 and 2.8.2.5. Cumulative food intake was assessed as previously described 
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(Section 2.8.2.6).  Chronic studies were evaluated using high fat fed TO mice (Section 

2.8.1.2). 

6.3.9 Acute in vivo studies using normal mice  

For acute IPGTT studies, blood glucose and plasma insulin were measured 

immediately prior to (t = 0) and 15, 30 and 60 min after intraperitoneal administration 

of glucose alone (18 mmol/kg of body weight) or in combination with test peptides 

(each at 25 nmol/kg bw) in overnight fasted mice. For persistent IPGTT studies 

overnight fasted animals received either test peptides (each at 25 nmol/kg of body 

weight) or saline vehicle 2 or 4 hours before an intraperitoneal glucose administration 

(18 mmol/kg bw). Blood glucose and plasma insulin were subsequently measured at 

15, 30 and 60 min post glucose injection as detailed in Section 2.8.5. In a separate 

series of experiments, cumulative food intake was assessed by administrating 

intraperitoneal injections to animals with either saline solution or peptides (25 

nmol/kg) prior to reintroduction of normal chow for 180 mins.  

6.3.10 In vivo long-term studies using high-fat-fed mice 

Mice fed with high-fat diet for 3 months exhibited weight gain, hyperglycaemia and 

insulin resistance as described in Section 2.8.1.2.  Animals were grouped and received 

twice daily intraperitoneal injections saline solution for three days prior to 

administration of saline or peptides (25 nmol/kg of body weight) twice daily (09:30 

and 17:00 h) over 21 days (Sections 2.8.1.2 and 2.8.3.1).  The peptide treatments were 

commenced as follows: Group 1 (high fat control, n = 8; 0.9% NaCl, w/v; ip); Group 

2 (liraglutide, n = 8; 25 nmol/kg bw; ip); Group 3 ([D-Ser2]-paddlefish glucagon-

Lys30-gamma-glutamyl-pal, n = 8; 25 nmol/kg bw; ip). Mice remained on a high-fat 
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diet for the duration of the study. Non-fasting blood glucose, cumulative food intake 

and water intake, body weight, and insulin concentrations were monitored at 3-day 

intervals prior to daily injection of test peptides (Section 2.8.3.1). On the final day of 

the study, IPGTT, OGTT (18 mmol/kg bw) and insulin sensitivity (25 U/kg bw; i.p.) 

tests were performed (Section 2.8.3.2 and 2.8.3.3). HOMA-β was calculated using the 

formula HOMA-β = 20 × fasting insulin (μIU/ml)/fasting glucose (mmol/ml) − 3.5, 

whereas HOMA-IR was determined using the equation HOMA-IR = fasting glucose 

(mmol/l) x fasting insulin (mU/l)/22.5.  At the end of the experimental period, terminal 

non-fasted blood was collected (Section 2.8.3.5) for measuring lipid profile (Section 

2.8.3.8), plasma amylase activity (Section 2.8.3.7), ALT (Section 2.8.3.9) and 

glucagon levels (Section 2.8.3.11).  

Bone mineral density and body tissue composition of the treated animals were 

measures using DEXA scanning (Section 2.8.3.4). The terminal analysis also included 

extraction of pancreatic tissue for measurement of pancreatic hormone contents 

(Section 2.8.3.12) and preparation of paraffin tissue blocks for immunohistochemical 

staining (Section 2.13.1). Islets were also isolated for the measurement of acute insulin 

secretion (Section 2.8.3.6) and determination of islet gene expression (Sections 

2.8.3.13- 2.8.3.15).  

6.3.11. Long-term in vivo studies using GluCre Rosa26-YFP mice 

Animals were housed and pre-treated with streptozotocin as described previously 

(Section 2.8.1.4). Mice (n=5) were administrated twice daily intraperitoneal injections 

of saline or peptides (25 nmol/kg of body weight) over a 10-days treatment period. 

Non-fasting blood glucose, food intake, water intake and body weight were monitored 

at 3-day intervals prior to daily injection of test peptides. Blood was collected for 
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insulin measurements at the start and end of the experiment. The animals were 

sacrificed, and pancreases were removed and stained as described previously (Section 

2.8.4) 

6.3.12 Statistical analysis 

Data were compared using unpaired Student’s t-test (non-parametric, with two-tailed 

P values and 95% confidence interval) and one-way ANOVA with Bonferroni post-

hoc test using GraphPad PRISM (Version 5.0 San Diego, California).  Area under the 

curve (AUC) analysis was performed using the trapezoidal rule with baseline 

correction. Data are presented as mean ± S.E.M where the comparison was considered 

to be significantly different if P < 0.05. 

6.4 Results 

6.4.1 Purification and confirmation of molecular masses by MALDI-TOF MS 

Following RP-HPLC on a C-8 semi-preparative column the main peaks of peptides 

were collected as represented in Figure 6.1. Experimental masses detected for each 

peptide by MALDI-TOF MS corresponded very closely with the theoretical masses as 

shown in Table 6.1. 

6.4.2 Assessment of metabolic stability of fish glucagon analogues  

Both peptides, [D-Ser2]-lamprey glucagon-Lys30-gamma-glutamyl-pal and [D-Ser2]-

paddlefish glucagon-Lys30-gamma-glutamyl-pal were stable to degradation after 4 h 

incubation with DPP-IV (Figures 6.3 and 6.4) and plasma (Figures 6.5 and 6.6). As 

expected, parent glucagon peptides and human glucagon were susceptible to rapid 

degradation by DPP-IV (Figures 3.5, 4.3 and 4.6). Plasma degradation of human 

glucagon likewise is shown in Figure 6.7 (35% degraded).  
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6.4.3. Acute effects of fish glucagon analogues on in vitro insulin-release  

The effects of native fish glucagon peptides, human GLP-1 and human glucagon are 

considered in Chapter 4. Incubation with [D-Ser2]-lamprey glucagon-Lys30-gamma-

glutamyl-pal and [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal increased 

insulin release from the BRIN-BD11 cells in a concentration-dependent manner 

(Figure 6.8). A summary of the insulinotropic effects of analogues of lamprey and 

paddlefish glucagons together with native fish peptides and human GLP-1 is presented 

in Table 6.2. The rate of insulin release stimulated by [D-Ser2]-lamprey glucagon-

Lys30gamma-glutamyl-pal at 3 µM was less than the parent peptide. However, the 

threshold concentration was superior. The effects of [D-Ser2]-paddlefish glucagon-

Lys30-gamma-glutamyl-pal at 3 µM was comparable to the parent peptide and human 

GLP-1. However, the threshold concentration for the analogue was increased.  

Surprisingly, incubation of [D-Ser2]-lamprey glucagon-Lys30-gamma-glutamyl-pal 

with isolated mouse islets failed to produce any significant change of insulin release.  

In contrast, [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal effectively 

increase the rate of insulin release from the islets at 10 nM and 1 µM, which was 

comparable to the action of GLP-1 (Figure 6.9 and Table 6.3),  

6.4.4   Effect on fish glucagon analogues on cAMP production 

Incubation of CHL cells transfected with the human GLP-1 receptor with [D-Ser2]-

lamprey glucagon-Lys30-gamma-glutamyl-pal resulted in significantly increased 

cAMP production at both 10 nM and 1 µM compared to control. However, the effect 

at 10nM was significantly less than human GLP-1 (Figure 6.10 A). The stimulatory 

effect of [D-Ser2]-paddlefish-glucagon-Lys30-gamma-glutamyl-pal was comparable to 

GLP-1 at both, 10 nM and 1 µM concentrations (Figure 6.10 A). Both of the analogues 
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stimulated cAMP production in HEK293 cells transfected with the human glucagon 

receptor. (Figure 6.10 B and Table 6.4). 

6.4.5 Insulin release studies using CRISPR/Cas9-engineered INS-1 cells 

Both analogues significantly increased the rate of insulin release in wild-type INS-1 

cells at both, 10 nM and 1 μM concentrations (Figure 6.11 A and Table 6.5). 

Incubation of analogues with GLP-1 KO and glucagon KO cells attenuated 

stimulatory effects on insulin secretion compared to wild-type INS-1 cells (Figure 6.11 

B and C). Incubation of fish peptide analogues with GIP KO cells showed a similar 

rate of insulin release compared to wild-type cells (Figure 6.11 D). 

6.4.6 Effects of the peptides on proliferation and apoptosis of BRIN BD11 cells 

Incubation of BRIN BD11 cells with a mixture of proinflammatory cytokines 

significantly (P<0.001) decreased proliferation when compared to control cultures. 

Human GLP-1 (10nM and 10µM) significantly (P<0.001) enhanced cell proliferation 

in cytokine-free solution and reversed (P<0.01 P<0.001) the negative effect of 

cytokines. Likewise, [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal and 

[D-Ser2]-lamprey glucagon-Lys30-gamma-glutamyl-pal increased proliferation in a 

cytokine-fee media. In the presence of cytokines [D-Ser2]-lamprey-glucagon-Lys30-

gamma-glutamyl-pal did not affect cell proliferation at 10 nM, whereas [D-Ser2]-

paddlefish glucagon-Lys30-gamma-glutamyl-pal was effective at both 10nM and 

10µM concentrations (Figure 6.12 A). In the second series of experiments incubation 

of BRIN-BD11 cells with glucagon-derived analogues and human GLP-1 (both at 

10µM) resulted in a significant (P<0.001) protective effect against apoptosis (Figure 

6.12 B). 
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6.4.7 Acute in vivo studies using normal mice 

Acute glucose-lowering and insulinotropic effects of [D-Ser2]-lamprey glucagon-

Lys30-gamma-glutamyl-pal (Figures 6.13) and [D-Ser2]-paddlefish glucagon-Lys30-

gamma-glutamyl-pal (Figures 6.14) together with parent and control peptides were 

assessed in overnight fasted mice. Surprisingly, [D-Ser2]-lamprey glucagon-Lys30-

gamma-glutamyl-pal (25 nmol/kg body weight) appeared to lose the beneficial 

properties of the parent peptide. Hence it failed to elicit any effects that were 

comparable with the positive control peptides (Figure 6.13). In contrast, [D-Ser2]-

paddlefish glucagon-Lys30-gamma-glutamyl-pal significantly reduced  (P<0.05-

P<0.001) individual blood glucose concentrations at 15, 30 and 60 min time points 

and overall glucose 0-60 min compared to the admiration of 18 mmol/kg glucose 

alone. The effect of paddlefish glucagon analogue was not significantly different from 

human GLP-1 and was similar to exendin-4 and oxyntomodulin.  However, native 

paddlefish glucagon appeared to exhibit greater glucose-lowering potential compared 

to human GLP-1 according to overall glucose 0-60 min integrated response to (Figure 

6.14 B). These effects were associated with increased (P<0.01 and P<0.001) insulin 

secretory responses to human GLP-1, oxyntomodulin, exendin-4, native paddlefish 

glucagon and paddlefish glucagon analogue at 15 and 30 min post injection. 

Additionally, paddlefish glucagon analogue and exendin-4 showed improved insulin 

release at 60 min (Figure 6.14 C). Consistent with these results, overall 0-60 min 

plasma insulin AUC values were improved after the peptide treatment when compared 

to glucose alone controls (Figure 6.14 D). 
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6.4.8 Persistent effects of peptides after 2 and 4 hours on plasma glucose and 

insulin release in normal mice 

As expected, due to rapid enzymatic degradation in plasma, native lamprey glucagon 

and human GLP-1 were ineffective when administrated 2 h prior a glucose load.  

Lamprey glucagon analogue showed a weak glucose-lowering response with a 

significant reduction (P<0.05) of blood glucose only at 60 min, which was less than 

potent actions of exendin-4 (Figure 6.14 A). Although the overall 0-60 min blood 

glucose was significantly (P<0.05) improved for [D-Ser2]-lamprey glucagon-

Lys30gamma-glutamyl-administrated 2 h previously (Figure 6.15 B), the analogue 

failed to show any insulinotropic effects (Figure 6.15 C and D). In contrast, 

administration of [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal and 

exendin-4 2 h prior to a glucose load (Figure 6.14) resulted in a significantly (P<0.001) 

lowered glucose concentrations at 15, 30 and 60 min time points post glucose injection 

(Figure 6.16 A). Interestingly, administration native paddlefish glucagon also 

significantly (P<0.05-P<0.01) reduced blood glucose at 15 and 30 min time point. The 

overall 0-60 min blood glucose AUC showed that native paddlefish glucagon was still 

effective when administrated 2 h prior to a glucose challenge. However, the result was 

less impressive than the substantial glucose-lowering actions of exendin-4 and 

paddlefish glucagon analogue. Corresponding glucose-induced plasma insulin 

responses were only significantly improved by exendin-4 and paddlefish glucagon 

analogue in terms of individual values at 15, 30 and 60 min post-injection as well as 

overall insulin 0-60 AUC values compared to saline control and human GLP-1 (Figure 

6.16 C and D).  
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When administrated 4 h prior to a glucose load, [D-Ser2]-lamprey glucagon-

Lys30gamma-glutamyl-pal did not show any improvement in blood glucose levels 

similarly to the effects of oxyntomodulin (Figure 6.17 A and B). However, the 

analogue slightly improved insulin secretion at 30 min and the overall 0-60 min plasma 

insulin response (Figure 6.17 C and D). On the other hand, exendin-4 and [D-Ser2]-

paddlefish glucagon-Lys30-gamma-glutamyl-pal elicited a protracted glucose-

lowering and insulinotropic activity when administrated 4 h prior to administration of 

glucose (Figure 6.18).  

6.4.9 Acute in vivo food intake studies 

Acute intraperitoneal administration of native lamprey glucagon at a dose of 25 

nmol/kg of body weight to overnight fasted animals, did not result in a reduction of 

food intake over 180 min. In comparison, [D-Ser2]-lamprey glucagon-Lys30-gamma-

glutamyl-pal significantly (P < 0.05) suppressed feeding at 180 min (Figure 6.18 A). 

Notably, the appetite suppressive effects of paddlefish glucagon and its analogue were 

comparable to the effects of exendin-4 which markedly (P < 0.001) reduced 

cumulative feeding rate over 180 minutes (Figure 6.19 B). 

 6.4.10 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-

pal on body weight, food/water intake, non-fasting plasma glucose and insulin in 

high fat fed mice 

Twice daily administration of [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-

pal to high fat fed mice resulted in a significant (P < 0.05-P < 0.001) reduction of food 

intake starting from day 13 onwards when compared to high-fat control (Figure 6.20 

A). However, no alteration in fluid intake was observed for any of the treatment groups 

(Figure 6.20 B). Chronic administration of [D-Ser2]-paddlefish glucagon-Lys30-
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gamma-glutamyl-pal significantly lead to a reduction in body weight from day 18 

onwards when compared to high-fat control (Figure 5.18 A). Indeed, both liraglutide 

and [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal administration resulted 

in a significant (P < 0.001) decrease of body weight (Figure 6.21 B) compared to high-

fat control. Only [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal treatment 

significantly (P < 0.001) reduced the overall AUC glucose concentration (Figure 6.22). 

However, there was a notable reduction (P < 0.05 and P < 0.001) in overall plasma 

insulin AUC for all treatment groups as well as a reduction (P < 0.05) at individual 

time points on day 10 and day 16 for liraglutide and [D-Ser2]-paddlefish glucagon-

Lys30-gamma-glutamyl-pal respectably (Figure 6.23).  

6.4.11 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-

pal on glucose tolerance in high-fat-fed mice 

Following 21 days twice daily treatment with liraglutide and [D-Ser2]-paddlefish 

glucagon-Lys30-gamma-glutamyl-pal a significant reduction (P < 0.05-P < 0.001) in 

glucose concentration was observed at individual time points, following 

intraperitoneal injection of glucose: 30 min for liraglutide and 15-120 min for 

paddlefish glucagon analogue (Figure 6.24 A). This translated to a significant 

reduction (P < 0.05-P < 0.001) of overall blood glucose 0-120 AUC values in these 

two groups (Figure 6.24 B). Glucose-stimulated insulin concentrations were also 

significantly increased at 15 and 30 min individual for liraglutide and at 15-60 min for 

[D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal treatment groups. The 

integrated responses of insulin release during 0-120 min showed a significant (P < 

0.01 - P < 0.001) increase in all treatment groups, however [D-Ser2]-paddlefish 

glucagon-Lys30-gamma-glutamyl-pal treatment resulted in significantly (P < 0.05) 
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greater stimulation of insulin compared to liraglutide (Figure 6.24 C and D). In the 

second series of experiments, OGTT was performed. In the groups receiving twice-

daily injections of liraglutide and  [D-Ser2]-paddlefish glucagon-Lys30-gamma-

glutamyl-pal there was a significant (P < 0.05) reduction is observed at 60, 90 and 120 

min together with significantly (P < 0.05) lowered integrated response compared to 

control (Figure 6.25 A and B). Concomitant with the lower blood glucose levels, the 

concentrations of plasma insulin were significantly (P < 0.05-P < 0.01) greater at 15 

and 30 min in liraglutide and 15 min in   [D-Ser2]-paddlefish glucagon-Lys30-gamma-

glutamyl-pal treated mice (Figure 6.25 C). The integrated insulin responses were 

significantly (P < 0.05-P < 0.01) greater in these treatment groups compared to high-

fat mice (Figure 6.25 D). 

6.4.12 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-

pal and liraglutide on insulin sensitivity, insulin resistance and pancreatic 

hormonal content 

No significant change in blood glucose was observed in treated groups after 

administration of exogenous insulin (day 21) compared to high-fat control (Figure 

6.26). However, HOMAR-IR values revealed improved hypoglycemic action of 

insulin, indicating that peptides significantly (P< 0.05 and P < 0.01) enhanced insulin 

sensitivity compared to high-fat control (Figure 6.27 B). Beta-cell function was also 

improved the peptide treated groups (Figure 27 A). 

Pancreatic glucagon content of liraglutide and [D-Ser2]-paddlefish glucagon-Lys30-

gamma-glutamyl-pal treated mice treated was not significantly different compared to 

high-fat control (Figure 6.28 A). In contrast, pancreatic insulin content was 

significantly reduced in all treated groups compared to control (Figure 6.28 B). 
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6.4.13 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-

pal and liraglutide on plasma amylase activity, plasma glucagon, ALT levels and 

lipid profile in high-fat-fed mice 

Terminal plasma analysis showed that amylase activity was significantly (P < 0.05) 

elevated (Figure 6.29), and plasma ALT was significantly (P < 0.05 and P < 0.001) 

reduced (Figure 6.30) in the peptide-treated groups compared to high-fat control. 

Moreover, plasma glucagon concentration was not significantly different between 

groups (Figure 6.31).   

Assessment of the terminal plasma lipid profile revealed significant (P < 0.05) 

reduction in total cholesterol and triglyceride levels the group treated with [D-Ser2]-

paddlefish glucagon-Lys30-gamma-glutamyl-pal when compared to high-fat controls 

(Figure 6.31 A and B).  Finally, LDL-cholesterol and HDL-cholesterol were not 

significantly different between the groups (Figure 6.32 C and D).   

6.4.14 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-

pal on bone density and body mass in high fat-fed mice 

Assessment bone mineral density and bone mineral content revealed no significant 

difference between the treated groups and high-fat controls (Figure 6.33 A-D). 

However, a significant (P < 0.05- P < 0.01) reduction of fat mass and body fat 

percentage was observed in the peptide treatment groups (Figure 6.33 D and E). 
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6.4.15 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-

pal and liraglutide on ex-vivo insulin secretion and pancreatic islet morphology 

in high-fat-fed mice  

Islets isolated from high-fat-fed mice showed a weak insulin secretory responses to 

stimulatory concentrations of  glucose, alanine, arginine, potassium chloride, human 

GLP-1 and GIP which were improved by liraglutide and paddlefish glucagon analogue 

treatment (Figure 6.34) 

No appreciable change in islet morphology was noted between liraglutide treated 

group and high-fat control (Figure 6.35 A-E). In the group treated with [D-Ser2]-

paddlefish glucagon-Lys30-gamma-glutamyl-pal there was a significant reduction in 

alpha size area (P < 0.05), as well as a significant increase in the amount of small (< 

10,000  μm2) islets compared to controls group, was observed.  However, no other 

alteration in the histological analysis were detected.  (Figure 6.35 D and E). The 

representative images from high-fat–fed and all peptide treatment groups are 

represented in Figure 6.35 F-I. 

6.4.16 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-

pal on the administration on gene expression in high-fat-fed mice 

Twice daily administration of liraglutide and paddlefish glucagon analogue 

significantly (P < 0.05) reduced the islet expression of Ins1 (mouse insulin 1) whereas 

the expression of Slc2a2 (glucose transporter 2; GLUT2) was significantly (P < 0.05) 

upregulated compared to in high-fat control. Furthermore, liraglutide and paddlefish 

glucagon analogue treatment resulted in significantly (P < 0.05) increased the 

expression of GLP-1 and glucagon receptors. The fish peptide analogue also 
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upregulated the expression of GIP receptors, the expression of which was less in high-

fat controls. (Figure 6.36). 

6.4.17 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-

pal and liraglutide on accumulative food and water intake in streptozotocin pre-

treated GluCreRosa26-YEP mice 

Pre-treatment of GluCreRosa26-YFP mice with streptozotocin resulted in a significant 

(P < 0.05) increase in food intake on day 11 compared to untreated controls (Figure 

6.37 A). No alterations of food intake were observed in the groups treated twice daily 

with liraglutide or [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal (Figure 

6.37 A). A significant (P < 0.05 and P < 0.01) increase in water intake was observed 

in the streptozotocin group from day 9 onwards when compared to untreated controls 

(Figure 6.36 B). No alterations in water intake were observed in liraglutide and [D-

Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal treated mice (Figure 6.37 B).   

6.4.18 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-

pal and liraglutide on blood glucose, body weight, plasma insulin and pancreatic 

hormonal content in streptozotocin treated GluCreRosa26-YEP mice 

Streptozotocin significantly decreased body weight compared to untreated controls 

(Figure 6.38 A). Liraglutide induced visible however not significant improvement in 

body weight compared to streptozotocin controls (Figure 6.38 B). Moreover, 

streptozotocin significantly (P < 0.05) increased blood glucose at all individual time 

points. Administration of peptides resulted in a visible improvement but blood glucose 

levels were not significantly changed (Figure 6.38 C and D). Insulin levels in all 

groups of mice were similar before streptozotocin treatment. As expected, post 

streptozotocin administration significantly decreased insulin levels. Administration of 
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peptides significantly improved (P< 0.05) insulin status but levels were still 

significantly (P< 0.001) than untreated controls. Streptozoticin administration 

significantly reduced pancreatic insulin content which was improved by peptide 

treatment. However, levels achieved were still significantly lower than untreated 

controls (Figure 6.39 A). Glucagon contents were significantly greater than untreated 

mice (Figure 6.39 B).  

6.4.19 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-

pal and liraglutide on islet morphology in streptozotocin treated GluGre Rosa26-

YFP mice.  

Treatment of GluGre Rosa26-YFP mice with streptozotocin resulted in a significant 

reduction of islets in head, tail and overall pancreas regions compared to untreated 

controls. Liraglutide treatment resulted in a significant (P < 0.05) improvement of the 

number of islets in the head and tail regions. A significant increase was also observed 

in the head region of the pancreas in the paddlefish glucagon analogue treatment 

group. The overall number of islets in the whole pancreas was significantly (P < 0.05 

and P < 0.01) lower in streptozotocin and peptide treatment groups compared to 

untreated controls (Figure 6.40 A). Islet area was significantly reduced in all treatment 

groups (Figure 6.40 B). However, no significant differences were observed in the 

alpha cell area between all the groups including untreated controls (Figure 6.40 C). 

Interestingly, alpha cell area in the tail region and whole pancreas in streptozotocin 

controls was visibly greater than untreated mice. In the peptide treated groups, alpha 

cell area was similar to the untreated control (Figure 6.40 C). In contrast, beta cell area 

was significantly reduced in streptozotocin controls, and peptide treated groups 

compared to untreated mice. However, a significant improvement in beta cell area in 
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the tail region and total pancreas was observed in the groups treated with peptides 

compared to streptozotocin control (Figure 6.40 D).  

Islet size distribution analysis shown a significant decrease (P < 0.05 and P < 0.01) in 

the number of large and medium islets, and a significant increase (P < 0.05 and 

P < 0.01) in the number of small islets across streptozotocin control and peptide treated 

groups compared to untreated controls. 

6.4.20 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-

pal and liraglutide on islet alpha to beta cell transdifferentiation in streptozotocin 

pre-treated GluGre Rosa26-YFP mice. 

The population of alpha cells that were YFP+ glucagon+ (which may also include alpha 

cells generated from pre-existing alpha cells) were significantly (P < 0.05 and 

P < 0.001) increased in untreated mice compared to the STZ-induced controls and the 

peptide treatment groups (Figure 6.41 A). The population of alpha cells that were YFP- 

glucagon+ (new alpha cells derived from no-alpha cells) were significantly increased 

mostly in the tail region of the pancreas in peptide treatment groups and STZ controls 

compared to untreated controls. The expression of YFP- glucagon+ cells was visibly 

greater in the head and tail regions together with the whole pancreas compared to 

liraglutide (Figure 6.41 B). Interestingly, YFP+ glucagon- cells were expressed in the 

head region of the pancreas in the peptide treatment groups (Figure 6.41 C). New beta 

cells from alpha cells YFP+ insulin+ cells were also significantly increased in the head 

and overall pancreas in STZ control and peptide treatment groups. The expression of 

these cells was visibly greater in the peptide treatment groups compared to both 

untreated and STZ controls (Figure 6.41 D).  
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6.5 Discussion 

Previous investigations outlined in Chapter 4 provided insight into glucagon and 

oxyntomodulin peptides isolated from anciently diverging lineages such as an 

ancient jawless fish (sea lamprey), two cartilaginous fishes (dogfish and ratfish), an 

early diverging ray-finned bony fish (paddlefish) and a teleost (trout). The 

sequences of fish glucagons and oxyntomodulins exhibit structural divergence in 

comparison to the sequence of mammalian glucagon. The most interesting and 

exciting molecule assessed in the study was paddlefish glucagon which exhibits 

structural similarities with the sequence of GLP-1 receptor agonist, exendin-4. Due 

to a unique structure and functional properties, paddlefish glucagon is suggested to 

be a naturally occurring hybrid glucagon/exendin-4 molecule (Graham et al. 2018).  

Glucagons from lamprey and paddlefish were selected, due to their promising in 

vitro and in vivo insulinotropic and glucose-lowering effects, for further structural 

modification to design analogues with long-acting potential. In this Chapter, the 

properties of these two fish glucagon analogues were explored in vitro and acutely 

in vivo in comparison to human GLP-1, human glucagon, oxyntomodulin and 

exendin-4. Additionally, paddlefish glucagon was subjected to a further longer-term 

in vivo study in high-fat fed mice, and its efficacy was compared to the effects of 

liraglutide. 

Human GLP-1 and human glucagon were promptly subjected to DPP-IV degradation 

at position 2 which resulted in two N-terminally truncated peptides (Chapter 3) 

(Mentlein et al. 1993; Authier et al. 2003; Pospisilic et al. 2001). Native lamprey and 

paddlefish glucagon peptides were also cleaved to metabolites, the molecular 

weight of which suggested the cleavage pattern at position 2. Substitution of L-Ser2 

for D-Ser2 resulted in stable analogues which was confirmed by DPP-IV and plasma 
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degradation. This is consistent with previous studies employing substitution of D-

isomer amino acid to confer enzyme stability and prolong plasma half-life (Lynch 

et al. 2014; Gault et al. 2013). An additional modification included the attachment 

of a gamma linker to the lysine residue at position 30 for both peptides to promote 

albumin binding and delay rapid renal clearance (Son et al. 2009 and Kerr et al. 

2010). This modification resembles that used for the other long-acting incretin 

mimetics such as palmitic acid acylated GLP-1, liraglutide which have a half-life of 

11-15 hours (Wajcberg et al. 2010).  Based on the data retrieved from in vitro studies 

both fish glucagon analogues stimulated dose-dependent insulin release from 

BRIN-BD11 cells, however, lamprey glucagon exhibited a lower potency compared 

to its parent peptide. 

Interestingly, only paddlefish glucagon analogue effectively induced the rate of 

insulin release from isolated mouse islets at the concentrations employed. Both 

analogues stimulated cAMP production in the CHL cells transfected with GLP1R as 

well as in the HEK293 cells transfected with glucagon receptor. This result was 

consistent with previous studies using a dogfish glucagon analogue with similar 

structural modification which showed the ability of the peptide to act as a dual GLP-

1/glucagon agonist in these cell lines (O’Harte et al. 2016a). The insulinotropic 

properties of lamprey and paddlefish analogues were also attenuated in the INS-1 cell 

lacking GLP-1 and glucagon receptors which confirms their ability to function as a 

dual GLP-1 and glucagon receptor agonists. In addition, both analogues exhibited 

positive effects on promoting beta cell growth and protecting against apoptosis in 

BRIN BD11 beta-cell line. 

Although the addition of gamma linker resulted in DPP-IV resistant peptides, lamprey 

glucagon-derived analogue exhibited no effect in acute in vivo study and a weak anti-
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hyperglycemic and insulinotropic effect when administrated 2 and 4 hours prior to a 

glucose challenge. On the other hand, the modification of paddlefish glucagon resulted 

in a potent analogue which not only retained the properties of the parent peptide but 

also exhibited long-acting effects in reducing appetite and promoting glucose 

homeostasis similar to exendin-4. Acylation of GLP1 with the attachment of C8 and 

C16 fatty acid moieties is known to be successful in creating long-acting anti-

hyperglycaemic agents (Kerr et al. 2010). However, previous observations of GLP-1-

derived peptides showed that in some cases, the addition of a gamma linker resulted 

in a 70-fold reduction in potency for the human GLP-1 receptor (Kerr et al. 2010, 

Madsen et al. 2007 and Knudsen et al. 2000).  

Based on the acute in vitro and in vivo finding, paddlefish glucagon analogue was 

selected for further long-term investigations using high-fat-fed mice and 

GluCreRosa26-YFP mice model. The effects of paddlefish glucagon analogue were 

compared to the effects of a long-acting GLP-1 derivative, liraglutide. These studies 

showed that twice-daily administration of paddlefish analogue for 21 days was 

associated with a marked decrease in overall non-fasting blood glucose, plasma insulin 

and pancreatic insulin content. Moreover, glycemic excursions in responses to 

intraperitoneal or oral glucose tolerance studies were improved which correlated with 

improved HOMA-IR parameters. This observation may reflect an improvement in 

glycaemic control and insulin resistance due to the reduction in overall metabolic 

demand associated with beta cell rest (Pathak et al. 2015). A similar improvement in 

the parameters under investigation was observed in liraglutide treatment which 

compares to some extent with previous findings in high-fat-fed mice (Miller et al. 

2017; Buganova et al. 2017; O’Harte et at. 2018).  
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In addition to positive effects on glucose homeostasis, the paddlefish glucagon 

analogue significantly suppressed food intake and body weight. These findings are in 

harmony with the DEXA scan results showing a reduction in adipose tissue with 

unaltered, normal mass which would also be expected to contribute to the 

improvements of insulin sensitivity and metabolic control. A high-energy diet usually 

deteriorates cancellous bone parameters (Tian et al. 2017 and Shapses et al. 2012). 

Interestingly, GLP-1, apart from its antidiabetic and other properties, has been shown 

to exhibit a bone anabolic activity (Jackuliak et al. 2014). However, administration of 

liraglutide and paddlefish glucagon analogue at the dose employed showed no 

significant effects on bone mineral density after 21 days.  

A high-fat diet has been shown to induced dyslipidemia with increased concentrations 

of plasma cholesterol, low levels of HDL cholesterol and increased levels of 

triglycerides (Ipsen et al. 2016).  Paddlefish glucagon reduced total cholesterol and 

had a positive effect on decreasing circulating triglycerides in high-fat fed mice. In 

contrast, liraglutide failed to improve the lipid profile in high-fat fed mice. These 

observations contrast with other findings which showed an improvement in 

triglyceride levels in mice treated once daily with liraglutide (Millar et al. 2017 and 

O’Harte 2018).  

Importantly, all treatments reduced ALT concentrations, which may indicate the 

protective effects of liraglutide and paddlefish glucagon analogue against liver damage 

(Ganz et al. 2014 and Stephenson et al. 2018). Interestingly, chronic administration of 

liraglutide and paddlefish glucagon analogue modestly increased levels of circulating 

amylase which may suggest adverse reaction leading to pancreatitis (Gier et al. 2012). 

Currently, there is an increase in safety concern regarding adverse effects of GLP-1 

receptor agonist drugs on pancreatic and thyroid tissue, since animal studies and 



 

310 
 

analyses of drug databases link these medications to pancreatitis, pancreatic cancer, 

and thyroid cancer (Filippatos et al. 2014). However, several meta-analyses (Li et al. 

2014 and Alves et al. 2012) and LEADER randomised trial (Steinberg et al. 2017) 

failed to confirm that the increase of serum amylase (caused by GLP-1 mimetics) is 

related to these conditions (Filippatos et al. 2014).  

 Chronic high-fat diet leads to developing of obesity and insulin resistance (Park et al. 

2001). Increased insulin resistance elevates blood glucose levels, both due to reduced 

insulin-mediated glucose uptake by the peripheral tissues and due to increased hepatic 

glucose production. In response, beta cells compensate to cope with insulin demand 

by secreting more insulin per beta cell and by increasing beta cell mass via 

proliferation (Golson et al. 2010 and reviewed by Sachdeva et al. 2009). The 

histological findings revealed no significant change in any parameters in liraglutide 

treatment groups. However, the paddlefish glucagon analogue significantly reduced 

alpha cell area compared to high-fat controls. Although not significant, the beta cell 

area was also decreased in this group which correlated with a higher number of smaller 

size islets. In agreement with this observation, although no change in plasma glucagon 

was detected, islet insulin and glucagon contents were decreased in this group. This 

may be due to the restoration of the ability of the alpha cells to react to glucose which 

resembles beneficial action of GLP-1 (Vilsboll et al. 2009; Ahren et al. 1997; Hare et 

al. 2010). 

A major challenge in diabetes research is understanding the multiple effects of glucose 

on beta cells in molecular terms, revealing the sites of dysregulation in the gene 

expression caused by chronically elevated glucose concentration, and finding effective 

drugs that will reverse these molecular abnormalities (Schuit et al. 2002).  Insulin gene 

(Ins1) transcription, which is up-regulated by an increase in blood glucose levels 
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(Mosley et al. 2004), was shown to be decreased in the liraglutide and paddlefish 

glucagon analogue treated mice compared to high-fat controls. This may be due to 

relatively decreased glucose levels observed in the treatment groups. Moreover, the 

expression of Slc2a2 gene encoding GLU2 which regulates the entry of glucose into 

the beta cell (Laukkanen et al. 2005), was significantly higher in the treatment groups.  

The disappearance of GLUC2 is a hallmarked of the beta cell glucose-

unresponsiveness (Thorens et al. 1994), the improved expression observed in this 

study may represent the enhanced insulin sensitivity which is beneficial for the 

preservation of insulin secretion by the pancreatic beta cells (Laukkanen et al. 2005). 

Stimulation of insulin release by GLP-1 and GIP hormones has been reported to be 

impaired in diabetes which also correlated to the decreased GLP-1 (Glp-1r) and GIP 

(Gipr) receptors expression in diabetic subjects (Xu et al. 2007). Both, liraglutide and 

paddlefish glucagon analogue appeared to have a positive impact on the regulation of 

GLP-1 compared to high-fat controls. Moreover, the treatment with the paddlefish 

glucagon analogue also resulted in a higher expression of Gipr. Interestingly, a higher 

expression of glucagon receptor (Gcgr) gene was observed in both peptide treatment 

groups. Previous studies suggest that glucagon may play a crucial role in pancreatic 

beta cell growth and differentiation. Gcgr-/- mice were shown to have a decreased 

percentage of beta cells per islets compared to control animals. Less severe 

hyperglycaemia was also observed in RIP-Gcg mice overexpressing the glucagon 

receptor in the pancreas (reduced by 20% of high-fat control) (Gelling et al. 2009). 

Surprisingly, treatment with [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-

pal and liraglutide appeared to have no significant effect on the expression of genes 

encoding the members of potassium channel gene family (Abcc8 and Kcnj11), calcium 

channel (Cacna1c) and glucokinase (Gck) genes. 
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An additional study was performed to investigate the effects of the paddlefish 

glucagon analogue on alpha to beta cell transdifferentiation using glucagon-CreER 

and Rosa26-YFP mice expressing the yellow fluorescent protein (YFP) in alpha cells 

(Quoix et al. 2007). These transgenic mice provide a tamoxifen-dependent Cre/loxP 

system due to bearing the transgenes including glucagon-CreER (a tamoxifen-

inducible Cre recombinase fused to a modified form of ligand binding domain of 

human oestrogen receptor inserted into exon 2 of the glucagon gene) and Rosa26-YFP 

(a sequence loxP-STOP-loxP in the locus ROSA 26) in the genome. Administration 

of multiple low doses of streptozotocin resulted in the beta cell destruction, reduction 

of body weight, elevation of blood glucose and depletion of plasma insulin. This 

mimics a delayed but progressive insulitis via an immune cell-mediated mechanism 

(Rossini et al. 1977 and reviewed: Kobb 1987) rather than direct destruction of the 

beta cell using a large single dose of STZ (review: Rerup et al. 1970). Treatment with 

liraglutide and paddlefish glucagon analogue resulted in improved food and water 

intake similar to untreated mice. Moreover, the reduction of hyperglycaemia was 

noticeably lowered by peptide treatments. The marked destruction of pancreatic beta 

cells resulted in a reduction of islet area and insulin content. Hence islets of smaller 

sizes appeared to be more abundant in all regions of the pancreas. Absolute or relative 

deficiency of functional beta cells leads to impaired control of blood glucose hence 

causing diabetes (Lee et al. 2018). The proliferation of pre-existing beta-cells and 

transdifferentiation of non-beta cells to functional beta cells are a potential important 

pathway to overcome beta cell loss (Brown et al. 2015). Investigations using islets 

from diabetic humans and mice have identified the occurrence of transdifferentiation 

of alpha to beta cells which were suggested to be regulated by hormonal and 

environmental signals during the development of diabetes (Halban et al. 2014 and 
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Brown et al. 2015). GLP-1 is well known to have a positive effect on beta cell 

regeneration and differentiation (Lee at al 2018). Glucagon producing alpha cells may 

become a source of new beta cells during an extreme beta cell loss (Thorel at al 2012). 

In the present study, the proliferation of alpha cells was observed in the streptozotocin-

treated animals suggesting that these cells may serve as a precursor for the 

regeneration of depleted beta cells. 

Interestingly, lineage tracing showed that new beta cells originated from alpha cells 

were significantly more abundant in streptozotocin-treated mice compared to 

untreated transgenic mice. Treatment with liraglutide and paddlefish glucagon 

analogue resulted in a noticeably higher rate of differentiation compared to 

streptozotocin control although the effect was not significantly different. Other cells 

such as PP- or σ-cells could also be involved in the mechanism of new beta-cell 

generation (Lee et al. 2018). 

To conclude, [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal is a potent 

dual-acting agonist that activates both, GLP-1 and glucagon receptors exhibiting anti-

hyperglycaemic and insulinotropic effects as well as prolonged plasma stability. 

Paddlefish glucagon analogue effectively improved many parameters under 

investigation such as body weight, insulin secretion, insulin resistance and islet 

morphology and gene expression in high-fat-fed mice with effects similar or superior 

to those of liraglutide. The fish glucagon analogue exhibits a unique naturally 

occurring sequence of a hybrid glucagon/exendin-4 as well as other structural 

modifications which make it a potential candidate to develop into an agent for 

treatment of diabetes. 
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Table 6.1 Primary structures and the observed and calculated molecular 
masse of fish glucagon analogue peptides investigated in this study. 

Peptide Amino acid sequence 
Calculated 
molecular 

mass 

Observed 
molecular 

mass 

[D-Ser2]-lamprey 
glucagon-Lys30-
gamma-glutamyl-
pal  

HsEGTFTSDYSKYLENKQAKDFVRWL
MNA[K-gamma-glutamyl-pal] 

3962.6 3964.1 

[D-Ser2]-paddlefish 
glucagon-Lys30-
gamma-glutamyl-
pal 

HsQGMFTNDYSKYLEEKRAKEFVEWL
KNG[K-gamma-glutamyl-pal]S-OH 

4118.7 4120.0 
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Table 6.2 Effects of [D-Ser2]-lamprey glucagon Lys30 gamma-glutamyl-
pal, [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal, human 
GLP-1 and glucagon on the rate of insulin release from BRIN-BD11 cells. 

 

Peptide Threshold 
concentration  

The effect at 3µM 
ng/106/20min 

Basal release  - 1.0 ± 0.1 

[D-Ser2]-lamprey glucagon Lys30-
gamma-glutamyl-pal 

0.3nM 2.4 ± 0.1 

Lamprey glucagon  3nM 3.3 ± 0.2 

[D-Ser2]-paddlefish glucagon-Lys30-
gamma-glutamyl-pal 

10pM 3.3 ± 0.2 

Paddlefish glucagon 30pM 3.6 ± 0.2 

Human GLP-1 10pM 3.6 ± 0.2 

Human glucagon  3nM 3.1 ± 0.20 

 

The basal release refers to the rate of insulin release at 5.6 mM glucose alone. The 
threshold concentration is the minimum concentration of the peptide producing a 
significant (P< 0.05) increase in the rate of insulin release. The values are mean ± SEM 
for n = 8. *P<0.5 compared to 5.6 mM glucose control. 
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Table 6.3 Effects fish glucagon analogues on the release of insulin from 
islets isolated from TO mice.  

Peptide  Insulin release (% of total 
insulin content) at 10-6M 

Insulin release (% of total 
insulin content) at 10-8M 

(None) 1.4 mM glucose 3.4 ± 0.4 *** 3.4 ± 0.4 *** 

(None) 16.7 mM glucose control   8.5 ± 0.5 8.5 ± 0.5 

[D-Ser2]-lamprey glucagon- 
Lys30-gamma-glutamyl-pal 

11.4 ± 1.3 10.2 ± 0.7  

[D-Ser2]-paddlefish glucagon- 
Lys30-gamma-glutamyl-pal 

13.9 ± 1.8 ** 12.1 ± 1.1 *  

Human GLP-1 17.0 ± 2.1 ** 14.7 ± 0.9 *** 

Human glucagon 11.9 ± 1.6 8.5 ± 0.4 

Values are mean ± S.E.M., n = 8 *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
16.7 mM glucose alone.   
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Table 6.4 Summary of effect of fish glucagon analogues, human GLP-1, 
human glucagon and human GIP peptides (10-8 and 10-6 M) on cAMP 
production in GLP1R-transfected CHL cells, and GCGR-transfected 
HEK293 cells. 

 

Peptide name GLP-1 receptor transfected 
cells 

GCG receptor transfected cells 

cAMP release 
at 

 10-6 

cAMP release 
at 

10-8 

cAMP release 
at 

10-6 

cAMP release 
at 

10-8 

Basal (5.6mM 
glucose) 

4.9 ± 0.2 4.9 ±0.2 2.5 ±0.2 2.5 ±0.2 

[D-Ser2]-lamprey 
glucagon- 
Lys30-gamma-
glutamyl-pal 

 
27.7 ± 0.4*** 

 
12.3 ± 0.7 *** 

 
4.5 ± 0.9 * 

 
3.4 ± 0.3* 

[D-Ser2]-paddlefish 
glucagon- 
Lys30-gamma-
glutamyl-pal 

 
29.2 ± 0.4*** 

 
26.4 ± 1.4 *** 

 
7.5 ± 0.5 *** 

 
5.5 ± 0.8 ** 

Human GLP-1 29.0 ± 0.2*** 26.3 ± 1.4*** 6.6 ± 0.6** 4.6 ± 0.4** 

Human glucagon  17.1 ± 0.9 *** 10.7 ± 0.5*** 8.9 ± 0.3** 7.5 ± 0.5** 

Human GIP 5.1 ± 0.2 5.5 ± 0.6 2.8 ± 0.3 2.5 ± 0.2 
 

Values are mean ± S.E.M. for n = 3. *P < 0.05, ** P< 0.01 and ***P < 0.001 
compared with 5.6 glucose. 
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Table 6.5 Summary of effects of fish glucagon analogues (10-8 and 10-6 M) 
on the rate of insulin release from wild-type INS-1 cells, CRISPR/Cas9-
engineered GLP-1R KO cells, CRISPR/Cas9-engineered GIPR KO cells 
and CRISPR/Cas9-engineered GIPR KO cells  

Peptide  Wild-type 
cells, % of 
basal control 

GLP-1R KO 
cells, % of 
basal control 

GCGR KO 
cells, % of 
basal control 

GIPR KO 
cells, % of 
basal control 

Basal (5.6mM glucose) 100 ± 9.6 

[D-Ser2]-lamprey  
glucagon-Lys30-
gamma-glutamyl-pal 

10-6 164.0 ± 9.0 ***  134.1 ± 11.7 * Δ  159.0 ± 16.8*  170.9 ± 13.4 *** 

10-8 158.4 ± 11.0 ** 
 

117.3 ± 14.4 Δ  121.2 ± 7.7 Δ 152.6 ± 12.7 ** 

[D-Ser2] paddlefish 
glucagon-Lys30-
gamma-glutamyl pal 

10-6 223.7 ± 18.3*** 
 

151.3 ± 9.1 *** 
ΔΔ 

153.4 ± 11.2 ** 
ΔΔ 

231.9 ± 16.6 *** 

10-8  193.5 ± 20.3 ** 144.9 ± 4.5 **ΔΔ 140.7 ± 12.2 **  202.1 ± 5.0 *** 

Human GLP-1 10-6 221.1 ± 9.8*** 138.3 ± 14.5 * 
ΔΔΔ 

222.0 ± 11.7 
*** 

231.4 ± 9.4 *** 

10-8 198.9 ± 12.9 *** 114.1 ± 8.5 ΔΔΔ 210 ± 25.0 *** 187.5 ± 17.2 *** 

Human glucagon 10-6 225.0 ± 20.9 *** 211.3 ± 16.4 *** 159.6 ± 8.5 *** 
ΔΔ 

224.0± 14.8 *** 

10-8 172.2 ± 10.8 *** 164.2 ±16.5*** 134.0 ± 14.4 Δ 175.4 ± 12.3 *** 

Human GIP 10-6 242.9 ± 14.2 *** 226.6 ±19.6*** 231.3 ± 17.6 
*** 

125.4 ± 6.9 * ΔΔΔ 

10-8 233.8 ± 18.6 ***  221.0 ± 29.3 *** 230.1 ± 0.9*** 124.3 ± 12.6 ΔΔΔ 

 

Values are mean ± S.E.M., n = 8, *P < 0.05, ** P< 0.01 and ***P < 0.001 compared 
with 5.6 mM glucose alone. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 0.001 compared with effects 
in wild-type INS-1 cells. 
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Figure 6.1 Reverse-phase HPLC purification of crude [D-Ser2]-lamprey 
glucagon-Lys30-gamma-glutamyl-pal (A) and [D-Ser2]-paddlefish 
glucagon-Lys30-gamma-glutamyl-pal peptides using a semi-preparative 
Vydac C18 column.  

 

The peptides were dissolved in 15% acetonitrile (3mg/ml) and injected onto a (2.2 cm 
x 25 cm) Vydac 218TP1022 (C-18) column (Grace, Deerfield, IL, USA) at a flow rate 
of 6.0 ml/min. The concentration of acetonitrile in the eluting solvent was raised from 
0% to 35 % over 10 min and from 35% to 70% over 50 min using a linear gradient. 
Absorbance was measured at 214 nm, and the black arrows show where the peak 
collection began and ended.   
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Figure 6.2 MALDI-TOF spectra of purified [D-Ser2]-lamprey glucagon-
Lys30-gamma-glutamyl-pal (A) and [D-Ser2]-paddlefish glucagon-Lys30-
gamma-glutamyl-pal peptides (B). 

 

Purified peptides were mixed with α-Cyano-4-hydroxycinnamic acid on a 100 well 
MALDI plate before inserting into a Voyager DE Biospectrometry workstation. The 
mass-to-charge ratio (m/z) versus peak intensity was determined. 
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Figure 6. 3 HPLC degradation profile of [D-Ser2]-lamprey glucagon-Lys30-
gamma-glutamyl-pal following incubation with DPP-IV for 0 and 4 hours. 

 

 

The separation was performed with a Luna 5u C8 250x4.6mm column. The dash line 
represents acetonitrile concentration gradient from 0% to 35% (from 0 min to 10 min), 
from 35% to 42% (from 10min to 30 min), from 42 to 70% (from 30 min to 35min), 
and 70% (from 35 min to 55 min). 
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Figure 6.4 HPLC degradation profile of [D-Ser2]-paddlefish glucagon-
Lys30-gamma-glutamyl-pal following incubation with DPP-IV for 0 and 4 
hours. 

 

The separation was performed with a Luna 5u C8 250x4.6mm column. The dash line 
represents acetonitrile concentration gradient from 0% to 35% (from 0 min to 10 min), 
from 35% to 42% (from 10min to 30 min), from 42 to 70% (from 30 min to 35min), 
and 70% (from 35 min to 55 min). 
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Figure 6.5 HPLC result of plasma degradation of [D-Ser2]-lamprey 
glucagon Lys30-gamma-glutamyl-pal for 0 and 4 hours.  

 

 

 

 

The separation was performed with a Luna 5u C8 250x4.6mm column. The dash line 
represents acetonitrile concentration gradient from 0% to 35% (from 0 min to 10 min), 
from 35% to 70% (from 10min to 45 min) and 70% (from 45 min to 60 min). 
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Figure 6.6 HPLC result of plasma degradation of [D-Ser2]-paddlefish 
glucagon-Lys30-gamma-glutamyl-pal for 0 and 4 hours.  

 

 

The separation was performed with a Luna 5u C8 250x4.6mm column. The dash line 
represents acetonitrile concentration gradient from 0% to 35% (from 0 min to 10 
min), from 35% to 70% (from 10min to 45 min) and 70% (from 45 min to 60 min). 
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Figure 6.7 HPLC result of plasma degradation of human glucagon for 0 
and 4 hours.  

 

 

 

 

The separation was performed with a Luna 5u C8 250x4.6mm column. The dash line 
represents acetonitrile concentration gradient from 0% to 35% (from 0 min to 10 
min), from 35% to 70% (from 10min to 45 min) and 70% (from 45 min to 60 min). 
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Figure 6.8 Concentration-dependent effects of (A) [D-Ser2]-lamprey 
glucagon Lys30-gamma-glutamyl-pal and (B) [D-Ser2]-paddlefish 
glucagon-Lys30-gamma-glutamyl-pal on insulin release from BRIN-BD11 
rat clonal β- cells 

 

Values are mean ± S.E.M., n = 8. *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
5.6 mM glucose alone. 
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Figure 6.9 Effects of fish glucagon analogues (10-8 and 10-6 M) on insulin 
release from pancreatic islets isolated from NIH Swiss mice.  

 

 

Values are mean ± S.E.M., n = 8 *P < 0.05, **P < 0.01, ***P < 0.001 compared to 
16.7 mM glucose alone.   
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Figure 6.10 Effects of fish glucagon analogues (10-8 and 10-6 M) on cAMP 
production in (A) GLP1R-transfected CHL cells, and (B) GCGR-
transfected HEK293 cells. 

 

Values are mean ± S.E.M. for n = 4. *P < 0.05, ** P< 0.01 and ***P < 0.001 
compared with 5.6 glucose. 



 

329 
 

Figure 6.11 Effects of fish glucagon analogues (10-8 and 10-6 M) on the rate 
of insulin release from (A) wild-type INS-1 cells, (B) CRISPR/Cas9-
engineered GLP-1R knock-out cells, (C) CRISPR/Cas9-engineered GCGR 
knock-out cells and (D) CRISPR/Cas9-engineered GIPR knock-out cells. 
 
 

 
Values are mean ± S.E.M., n = 8, *P < 0.05, **P < 0.01 and ***P < 0.001 compared 
with 5.6 mM glucose alone. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 0.001 compared with effects 
in wild-type INS-1 cells. 
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Figure 6.12 Effects of fish glucagon analogues (10-8 and 10-6 M) on (A) cell 
proliferation and (B) protection against apoptosis in rodent BRIN BD11 
cells. 
 

 

Cell were incubated (16 h) in the presence of peptides (10-8 and 10-6 M) with and 
without addition of cytokine cocktail. Values are mean ± S.E.M., n = 3, *P < 0.05, ** 
< 0.01 and ***P < 0.001 compared with control cultures. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP 
< 0.001 compared with cytokine cocktail. 
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Figure 6.13 Effects of acute administration of lamprey glucagon and [D-
Ser2] lamprey glucagon Lys30-gamma-glutamyl-pal on blood glucose (A) 
and plasma insulin (B) concentrations in normal mice. 

 

 

 

The integrated responses (area under the curve AUC) are shown in panels B and D. 
The values are mean ± SEM for n=6. *P<0.05, **P<0.01 and ***P<0.001 compared 
to glucose alone; ΔΔ P<0.01 and ΔΔΔ P<0.001 compared to human GLP-1. 
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Figure 6.14 Effects of acute administration of paddlefish glucagon and [D-
Ser2] paddlefish glucagon-Lys30-gamma-glutamyl-pal on blood glucose (A) 
and plasma insulin (B) concentrations in normal mice. 

 

 

The integrated responses (area under the curve AUC) are shown in panels B and D. 
The values are mean ± SEM for n=6. *p<0.05, **P<0.01 and ***P<0.001 compared 
to glucose alone; Δ P<0.05 and ΔΔΔP<0.001 compared to human GLP-1. 
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Figure 6.15 Persistent, 2 h post injection, effects of lamprey glucagon and 
[D-Ser2] lamprey glucagon Lys30-gamma-glutamyl-pal peptides on blood 
glucose (A) and plasma insulin (B) concentrations in normal mice. 

 

 

 

 

Blood glucose and plasma insulin were measured after intraperitoneal injection of 
glucose (18 mmol/kg body weight) 2 hours after intraperitoneal administration of 
0.9% saline or peptides (25 nmol/kg body weight). The integrated responses (area 
under the curve AUC) are shown in panels B and D. The values are mean ± SEM for 
n=6. *P<0.05 and ***P<0.001 compared to glucose alone; ΔΔΔ P<0.001 compared to 
human GLP-1. 

 



 

334 
 

Figure 6.16 Persistent, 2 h post injection, effects of paddlefish glucagon and 
[D-Ser2] paddlefish glucagon-Lys30-gamma-glutamyl-pal peptides on 
blood glucose (A) and plasma insulin (B) concentrations in normal mice. 

Blood glucose and plasma insulin were measured after intraperitoneal injection of 
glucose (18 mmol/kg body weight) 2 hours after intraperitoneal administration of 
0.9% saline or peptides (25 nmol/kg body weight). The integrated responses (area 
under the curve AUC) are shown in panels B and D. The values are mean ± SEM for 
n=6. *P<0.05 **P<0.01 and ***P<0.001 compared to glucose alone; ΔΔΔ P<0.001 
compared to human GLP-1. 
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Figure 6.17 Persistent, 4 h post injection, effects of [D-Ser2]-lamprey 
glucagon Lys30-gamma-glutamyl-pal on blood glucose (A) and plasma 
insulin (B) concentrations in normal mice. 

 

 

 

Blood glucose and plasma insulin were measured after intraperitoneal injection of 
glucose (18 mmol/kg body weight) 4 hours after intraperitoneal administration of 
0.9% saline or peptides (25 nmol/kg body weight). The integrated responses (area 
under the curve AUC) are shown in panels B and D. The values are mean ± SEM for 
n=6. *P<0.05 and ***P<0.001 compared to glucose alone. 
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Figure 6.18 Persistent, 4 h post injection, effects of paddlefish glucagon and 
[D-Ser2] paddlefish glucagon-Lys30-gamma-glutamyl-pal peptides on 
blood glucose (A) and plasma insulin (B) concentrations in normal mice. 

 

 

Blood glucose and plasma insulin were measured after intraperitoneal injection of 
glucose (18 mmol/kg body weight) 4 hours after intraperitoneal administration of 
0.9% saline or peptides (25 nmol/kg body weight). The integrated responses (area 
under the curve AUC) are shown in panels B and D. The values are mean ± SEM for 
n=6. ***P<0.001 compared to glucose alone. 
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Figure 6.19 Effects of (A) lamprey glucagon and [D-Ser2]-lamprey 
glucagon Lys30-gamma-glutamyl-pal and (B) paddlefish glucagon and [D-
Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal on cumulative food 
intake over 3 hours trained feeding in 12 h fasting normal mice. 

 

Cumulative food intake was measured after intraperitoneal administration of 25 
nmol/kg peptides alongside 0.9% saline control. The values are mean ± SEM for 
n=8. *P<0.05, **P<0.01 and ***P<0.001 compared to saline control mice treated at 
the same time point.  
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Figure 6.20 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on accumulative (A) food and (B) water intake during 21 days 
study in high-fat-fed mice. 

 

 

(A) Accumulative food and (B) water intake were measured during 21 days twice daily 

treatment with saline vehicle (0.9% (w/v) NaCl), liraglutide or [D-Ser2]-paddlefish 

glucagon-Lys30-gamma-glutamyl-pal (each at 25 nmol/kg bw). Values represent 

mean±SEM for 8 mice. *P<0.05 ** P<0.01 and ***P<0.001 is compared with high 

fat control. 
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Figure 6.21 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on body weight (A) and % body weight change (B) in high-
fat-fed mice during 21 days of study. 

 

(A) Body weight and (B) % of body weight were measured during 21 days twice 
daily treatment with saline vehicle (0.9% (w/v) NaCl), liraglutide or [D-Ser2]-
paddlefish glucagon-Lys30-gamma-glutamyl-pal (each at 25 nmol/kg bw). The black 
horizontal bar represents the treatment period. Values represent mean±SEM for 8 
mice. *P<0.05, **P<0.01 and ***P<0.001 is compared with high fat control.  
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Figure. 6.22 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on non-fasting blood glucose (A) and blood glucose AUC (B) 
during 21 days study in high-fat-fed mice. 

 

(A) Blood glucose (B) Blood glucose and AUC (C) % of blood glucose change 
measured during 21 days twice daily treatment with saline vehicle (0.9% (w/v) NaCl), 
liraglutide or [D-Ser2]-paddlefish glucagon-Lys30-gamma-glutamyl-pal (each at 25 
nmol/kg bw). The black horizontal bar represents the treatment period. Values 
represent mean±SEM for 8 mice. *P<0.05, **P<0.01 and ***P<0.001 is compared 
with high fat treated control. 



 

341 
 

 

Figure 6.23 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on plasma insulin levels (A) and plasma insulin AUC (B) 
during 21 days study in high-fat-fed mice. 

 

 

(A) Plasma insulin (B) Plasma insulin AUC measured during 21 days twice daily 
treatment with saline vehicle (0.9% (w/v) NaCl), liraglutide or [D-Ser2]-paddlefish 
glucagon-Lys30-gamma-glutamyl-pal (each at 25 nmol/kg bw). The black horizontal 
bar represents the treatment period. Values represent mean±SEM for 8 mice. *P<0.05 
and ***P<0.001 is compared with high fat treated control. 
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Figure 6.24 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on glucose tolerance (A-B) and plasma insulin (C-D) in 
response to intraperitoneal administration of glucose in fasted high-fat diet 
fed mice. 

 

  

 

Parameters were measured prior to and after administration of glucose alone (18 

mmol/kg of bw, i.p.) in animals receiving after 21 days daily treatment with saline 

vehicle (0.9% w/v NaCl, i.p), liraglutide or fish peptide analogue (each at 25 nmol/kg 

of bw, i.p.). Blood glucose and plasma insulin AUC values 0-120 min are included.  

The values are mean ± SEM for n=8. *P<0.05, **P<0.01 and ***P<0.001 compared 

to saline control. Δ P<0.05 compared to liraglutide. 
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Figure 6.25 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on glucose tolerance (A-B) and plasma insulin (C-D) in 
response to oral administration of glucose in fasted high-fat diet fed mice. 

 

 

Parameters were measured prior to and after administration of glucose alone (18 
mmol/kg) in animals receiving after 21 days daily treatment with saline vehicle (0.9% 
w/v NaCl, i.p), liraglutide or fish peptide analogues (each at 25 nmol/kg of bw, i.p.). 
Blood glucose and plasma insulin AUC values 0-120 min are included.  The values 
are mean ± SEM for n=8. *P<0.05 and **P<0.01 compared to saline control. 
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Figure 6.26 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on insulin sensitivity in high-fat fed mice 

  

Test was performed following 21 days of twice daily intraperitoneal administration of 
saline vehicle (0.9% w/v NaCl, i.p), liraglutide or fish peptide analogue (each at 25 
nmol/kg of bw, i.p.). Insulin (25 U/kg bw) was administrated by i.p. injection at t=0 
min. % blood glucose AAC values for 0-60min are also included. Values represent 
mean ± SEM for 8 mice.  
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Figure 6.27 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on HOMA-β and HOMA-IR in high-fat–fed mice 

 

 

HOMA-β (A) and HOMA-IR (B) were calculated from fasting glucose and insulin 
concentrations. The parameters were measured on day 21 following twice-daily 
treatment with saline vehicle (0.9% w/v NaCl, i.p), liraglutide or fish peptide 
analogues (each at 25 nmol/kg of bw, i.p). Values represent mean ± SEM for 8 mice. 
*P<0.05 and **P<0.01 compared with high fat control group. 
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Figure 6.28 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30gamma-
glutamyl-pal on pancreatic glucagon (A) and pancreatic insulin (B) content 
in high-fat-fed diet mice. 

 

 

The parameters were measured on day 21 following twice-daily treatment with 
saline vehicle (0.9% w/v NaCl, i.p), liraglutide or fish peptide analogue (each at 25 
nmol/kg of bw, i.p). Data are expressed as means ± SEMs for n=4. **P < 0.01 and 
*** P< 0.001 compared with saline control. 
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Figure 6.29 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on amylase activity in high-fat-fed diet mice 

 

The parameters were measured on day 21 following twice-daily treatment with 
saline vehicle (0.9% w/v NaCl, i.p), liraglutide or fish peptide analogues (each at 25 
nmol/kg of bw, i.p). Data are expressed as means ± SEMs for 8 mice. 
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Figure 6.30 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on plasma ALT in high-fat-fed diet mice 

 

The parameters were measured on day 21 following twice-daily treatment with 
saline vehicle (0.9% w/v NaCl, i.p), liraglutide or fish peptide analogues (each at 25 
nmol/kg of bw, i.p). Data are expressed as means ± SEMs for n=4. **P < 0.01 and 
*** P< 0.001 compared with saline control. 
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Figure 6.31 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on plasma glucagon in high-fat-fed diet mice 

 

The parameters were measured on day 21 following twice-daily treatment with 
saline vehicle (0.9% w/v NaCl, i.p), liraglutide or fish peptide analogues (each at 25 
nmol/kg of bw, i.p). Data are expressed as means ± SEMs for n=4 
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Figure 6.32 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on plasma total cholesterol (A), triglycerides (B), HDL-
cholesterol (C), and LDL-cholesterol (D) in high-fat fed mice. 

 

 

Plasma total cholesterol (A), triglycerides (B), HDL-cholesterol (C), and LDL-
cholesterol (D) were measured on day 21 following twice-daily treatment with saline 
vehicle (0.9% w/v NaCl, i.p), liraglutide or fish peptide analogues (each at 25 
nmol/kg of bw, i.p). Data are expressed as means ± SEMs for 8 mice. *P < 0.05 and 
*** P< 0.001 compared with saline control. 
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Figure 6.33 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on (A) bone mineral density, (B) bone mineral content, (C) 
bone area, (D) lean body mass, (E) body fat and (F) % fat composition 
measured by DEXA scanning in high-fat diet fed mice. 

 
Parameters were measured by DEXA scanning after 21-days twice daily treatment 
with saline vehicle (0.9% (w/v) NaCl), liraglutide or [D-Ser2]-paddlefish glucagon-
Lys30-gamma-glutamyl-pal (each at 25 nmol/kg bw). Values represent mean±SEM for 
6-8 mice. *P<0.05 and **P<0.01 compared to high-fat control.  
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Figure 6.34 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on insulin secretory response from isolated islets in high-fat-
fed diet mice.  

 

 

Pancreatic islets were isolated following 21 days twice-daily treatment with saline 
vehicle (0.9% w/v NaCl, i.p), liraglutide or fish peptide analogues (each at 25 nmol/kg 
of bw, i.p.). Parameters for A) insulin release and B) insulin content represent 
normalised values to respective control (16.7mM glucose) for each group.  Values are 
mean±SEM for n=4. *P<0.05, **P<0.01 ***P<0.001 compared to respective 16.7mM 
glucose control. 
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Figure 6.35 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-
gamma-glutamyl-pal on pancreatic islet morphology in high-fat-fed mice. 

 

Parameters for (A) number of islets (mm), (B) islet area (µm2), (C) beta cell area 
(µm2), (D) alpha cell area (µm2), (E) islet size distribution (% of total area) were 
measured on day 21 following twice-daily treatment with saline vehicle or the 
peptides (at 25 nmol/kg body weight. ***P < 0.001 compared to high-fat diet saline 
control. Effects of liraglutide are shown for comparison.  
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Figure 6.36 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on the expression of genes involved in insulin secretion from 
islets in high fat fed mice. 

 

cDNA was synthesised from 1 µg of mRNA. Data were normalised to Beta-actin 
(Actb) gene expression used as a reference gene and analysed using the ΔΔCt method. 
Data are expressed as means ± SEMs for n=3. *P < 0.05, ** P< 0.01 and *** P< 0.001 
compared with high fat saline control 
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Figure 6.37 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on (A) accumulative food and (B) water intake during 11 days 
study in streptozotocin treated GluGreRosa26-YFP mice. 

 

(A) Accumulative food and (B) water intake were measured during 11 days twice daily 

treatment with saline vehicle (0.9% (w/v) NaCl), liraglutide or [D-Ser2]-paddlefish 

glucagon-Lys30-gamma-glutamyl-pal (each at 25 nmol/kg bw). Values represent 

mean±SEM for 5 mice. *P<0.05 ** P<0.01 and ***P<0.001 is compared with 

untreated control. 
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Figure 6.38 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on (A) blood glucose and (B) % of blood glucose change (C) 
body weight (D) % of body weight change and (E) plasma insulin during 
11 days study in streptozotocin treated GluGreRosa26-YFP mice. 

 

The parameters were measured during 11 days twice daily treatment with saline 
vehicle (0.9% (w/v) NaCl), liraglutide or [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal (each at 25 nmol/kg bw). The black horizontal bar represents the 
treatment period. Values represent mean±SEM for 5 mice. *P < 0.05 and ***P <0 .001 
is compared with untreated control. ΔP < 0.05 is compared with streptozotocin control.  
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Figure 6.39 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on pancreatic (A) insulin and (B) glucagon content during 11 
days study in streptozotocin pre-treated GluGreRose26-YFP mice. 

 

 

The parameters were measured during 11 days twice daily treatment with saline 
vehicle (0.9% (w/v) NaCl), liraglutide or [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal (each at 25 nmol/kg bw). Values represent mean±SEM for n=3. *P<0.05 
and ***P<0.001 is compared with untreated control. ΔP<0.05, ΔΔP<0.01 and 
ΔΔΔP<0.001 is compared with streptozotocin control.  
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Figure 6.40 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on pancreatic islet morphology in GluGreRosa26-YFP mice 

 

Parameters for (A) number of islets (mm), (B) islet area (µm2), (C) beta cell area 
(µm2), (D) alpha cell area (µm2), (E) islet size distribution (% of total area) were 
measured on day 11 following twice-daily treatment with saline vehicle or the 
peptides (at 25 nmol/kg body weight. ~40-50 islets per group. The values are mean ± 
SEM *P<0.05, **P<0.01 and ***P<0.001 compared to untreated control; Δ p<0.05 
and ΔΔ P<0.05 compared to streptozotocin-treated mice. 
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Figure 6.41 Chronic effects of [D-Ser2]-paddlefish glucagon-Lys30-gamma-
glutamyl-pal on alpha to beta cell transdifferentiation in GluGreRosa26-
YFP 

 

 

Analysis of A) Glucagon+GFP+ cells, B) Glu+ GFP- cells, C) Glu-GFP+ and D) 
Insulin+GFP+ cells per total cells/islets analysed (~40-50 islets per group). The values 
are mean ± SEM *P < 0.05, **P < 0.01 and ***P < 0.001 compared to untreated 
control; Δ P<0.05 compared to streptozotocin treated mice. 
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Chapter 7 
 

 

Assessing the acute insulinotropic in 
vitro and in vivo effects of  

zebrafish GIP 
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7.1 Summary 

Zebrafish, Danio rerio, (Actinopterygii, Cyprinidae) is a well-studied vertebrate 

genetic and developmental model system (Broughton et al. 2001). The insulinotropic 

properties of zebrafish GIP (zfGIP) were assessed in vitro using clonal pancreatic β-

cell lines, and isolated mouse islets and acute effects on glucose tolerance and insulin 

release in vivo were evaluated in mice. The peptide produced a dose-dependent 

increase in the rate of insulin release from BRIN-BD11 rat clonal β-cells at 

concentrations ≥ 30 nM. Insulin release from 1.1 B4 human clonal β-cells and mouse 

islets was significantly increased by zfGIP (10 nM and 1μM). The in vitro 

insulinotropic activity of zfGIP was decreased after incubating BRIN-BD11 cells with 

the GLP-1 receptor antagonist, exendin-4(9-39) (P < 0.001) and the GIP receptor 

antagonist, GIP (6-30) Cex-K40 [Pal] (P < 0.05) but the glucagon receptor antagonist 

[desHis1-Pro4-Glu9]glucagon amide was without effect. zfGIP (10 nM and 1μM) 

produced significant increases in cAMP concentration in CHL cells transfected with 

the human GLP-1 receptor but was without effect on HEK293 cells transfected with 

the human glucagon receptor. Conversely, zfGIP, but not human GIP, significantly 

stimulated insulin release from CRISPR/Cas9-engineered INS-1 clonal β-cells from 

which the GIP receptor had been deleted. Intraperitoneal administration of zfGIP (25 

and 75 nmol/kg body weight) to mice together with an intraperitoneal glucose load 

(18 mmol/kg body weight) produced a significant decrease in plasma glucose 

concentrations concomitant with an increase in insulin concentrations. The study 

provides evidence that the insulinotropic action of zfGIP in mammalian systems 

involves activation of both the GLP-1 and the GIP receptors but not the glucagon 

receptor.  
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7.2 Introduction 

Glucose-dependent insulinotropic polypeptide (GIP) is a member of an extended 

family of structurally related regulatory peptides that includes glucagon, glucagon-like 

peptide-1(GLP-1), glucagon-like peptide-2, secretin, VIP, PHM, PACAP, and GHRH 

(McIntosh et al. 2009).  In addition, a gene encoding glucagon-related peptide with 

structural similarity to the Gila monster venom peptides, exendin-3 and -4 is present 

in the genomes of a range of tetrapod taxa but is absent from zebrafish and mammals 

(Irwin 2012; Park et al. 2013). The peptides are related evolutionarily having arisen 

from an ancestral gene either by tandem duplications or as a result of ancient whole 

genome duplications (2R hypothesis) (Cardoso et al 2010 and Irwin et al 2011). The 

physiological effects of these peptides are mediated largely by interaction with a 

family of structurally and evolutionarily related class B (secretin–like) G-protein 

coupled receptors (Irwin 2014). 

 GIP was first isolated from a porcine intestinal extract as a 42-amino-acid peptide on 

the basis of its ability to inhibit gastric acid production at supraphysiological 

concentrations (Brown et al. 1971). Subsequently, the gene encoding the peptide has 

been identified in a range of mammalian species (reviewed in McIntosh et al 2009), 

chicken (Irwin et al 2006), the frogs Xenopus tropicalis and Xenopus laevis (Irwin et 

al 2006), and in a teleost, the zebrafish Danio rerio  (Irwin et al 2006). A gene 

encoding a GIP-like sequence is present in the genome of the sea lamprey Petromyzon 

marinus but transcripts were not detected (Musson et al. 2011). Similarly, a GIP-like 

molecule has not yet been identified in an elasmobranch, but it is of interest that a 

mammalian GIP is a potent stimulant of cAMP production and chloride secretion in 

the rectal gland of the skate Leucoraja erinacea (Kelley et al. 2014).  The predicted 

primary structure of zebrafish GIP (zfGIP) is only 31 amino acid residues, and it has 
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been speculated that the peptide is more similar to the ancestral gene product from 

which the glucagon family of peptides has arisen than mammalian GIP peptides 

(Musson et al. 2011 ).  

GIP is described as an incretin hormone in mammals owing to its ability to promote 

insulin release from pancreatic β-cells at physiologically relevant concentrations. GIP 

is released into the circulation from intestinal enteroendocrine K- cells in response to 

ingestion of carbohydrates and fats and, along with GLP-1, is the major physiologic 

incretin in the human (Holst et al. 2016).  Recent research has indicated that 

functionally relevant GIP is also present in the pancreatic islet cells of mice (Moffett 

et al. 2014). 

In the zebrafish, RT-PCR and immunohistochemical studies have demonstrated that 

GIP expression in the intestine is restricted to cells located near the base of the vill and 

the peptide is located principally in endocrine cells of the pancreas (Musson et al. 2011 

et al. 2009). This has led investigators to speculate that GIP may not function as an 

incretin in this species (Musson et al. 2011 et al. 2009). No gene that closely resembles 

the human GLP-1R gene has been found in the genomes of the zebrafish or other bony 

fish (Irwin 2014) and the fact that GLP-1 does not function as an incretin hormone in 

teleosts, rather as a glucagon-like stimulant of glycogenolysis and gluconeogenesis, is 

well established (Plisetskaya et al 1996). 

The aim of the present study was to assess whether synthetic zfGIP shows potential 

for development into a therapeutic agent for treatment of patients with Type 2 diabetes 

mellitus (T2DM) by investigating its insulinotropic properties in vitro using 

established insulin-producing cell lines and in vivo using NIH Swiss mice. The 

possibility that zfGIP may function as a dual- or triple agonist in a mammalian system 

was investigated using selective antagonists for GIP, GLP-1, and glucagon receptors 
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and by using cells transfected with the human glucagon receptor (CGCR) and the 

GLP-1 (GLP-1R) receptor and CRISPR/Cas9-engineered INS-1 cells from which the 

GIPR and GLP-1R had been deleted 

7.3 Materials and Methods 

7.3.1 Chemical Reagents and Peptides 

Chemical reagents that were used in this study can be found in Section 2.1.1 and Table 

2.1. Synthetic human glucagon, human GLP-1, human GIP and trout GLP-1 were 

obtained from Synpeptide Co. Ltd. (Shanghai, China) at >95% purity which was 

confirmed by reversed-phase HPLC and MALDI-TOF.  

zfGIP (YAESTIASDISKIVDSMVQKNFVNFLLNQRE)was supplied in crude form 

by EZBiolab Inc. (Carmel, IN, USA) and was purified to > 95% homogeneity by 

reversed-phase HPLC on a (2.2 cm x 25 cm) Vydac 218TP1022 (C-18) column.  The 

concentration of acetonitrile in the eluting solvent was raised from 35% to 70% over 

50 min using a linear gradient. Absorbance was measured at 214 nm, and the flow rate 

was 6 ml/min. The identity of the peptide was confirmed by MALDI-TOF mass 

spectrometry using a Voyager DE PRO instrument (Applied Biosystems, Foster City, 

USA) (observed molecular mass 3562.0, calculated molecular mass 3561.1). The 

primary structures and molecular masses of the peptides used in this study are shown 

in Table 2.1 and Table 7.1. 

7.3.2 Assessment of metabolic stability of zfGIP  

zfGIP and human GIP were incubated in the presence of porcine DPP-IV, and peptide 

stability was measured over 4 hours as described in Section 2.3.1. RP-HPLC was used 

to identify intact peptide and degraded products the molecular masses of which were 
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confirmed by MALDI-TOF MS as previously described (Section 2.3). The percentage 

intact peptide at 4 hours incubation with DPP-IV was calculated by comparison to the 

peak area recorded at 0 hours.  

7.3.3 In vitro insulin release studies using BRIN-BD11 and 1.1B4 cells 

In vitro insulin secretory studies were carried out using BRIN-BD11 (McClenaghan 

et al., 1996) and 1.1B4 cells (McCluskey et al. 2011) as previously described (Section 

2.5.1 and 2.5.3).  In a separate experiment, the effects of 1 µM concentrations of the 

(A) GLP-1 receptor antagonist, exendin-4(9-39 (Thorens et al., 1993), (B) glucagon 

receptor antagonist, [desHis1,Pro4-Glu9] glucagon amide (O’Harte et al., 2013), and 

(C) glucose-dependent insulinotropic peptide (GIP) receptor antagonist, GIP(6-

30)Cex-K40[Pal] (Pathak et al., 2015) on the insulin-releasing activity of the zfGIP  

(0.1 µM) were studied as previously described (Section 2.5.2 and 2.5.7).  

7.3.4 Insulin release studies using isolated mouse islets 

Effects of zfGIP on ex-vivo insulin secretion were assessed using pancreatic islets from 

adult, male National Institutes of Health (NIH) Swiss mice (Harlan Ltd, Bicester, UK) 

as previously described (Section 2.5.5).  

7.3.5 Effects of zfGIP on cAMP production.  

The effect of zfGIP on cAMP production from Chinese hamster lung (CHL) cells 

transfected with the human GLP-1 receptor (GLP1R) (Thorens et al., 1993) and human 

embryonic kidney (HEK293) cells transfected with the human glucagon receptor 

(GCGR) (Ikegami et al., 2001) was assessed using a Parameter cAMP assay kit (R&D 

Systems, Abingdon, UK) as outlined in Section 2.6.  
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7.3.6 Insulin release studies using CRISPR/Cas9-engineered INS-1 cells 

In vitro receptor activation study was perform using wild-type INS-1 832/3 rat clonal 

pancreatic β-cells and CRISPR/Cas9-engineered cells with knock-out of the knock-

out of the GLP-1 receptor (GLP-1 KO), glucagon receptor (GCG KO) and GIP 

receptor (GIP KO) (Naylor et al., 2016) as described in Section 2.5.4. 

7.3.7 In vivo insulin release and glucose-lowering effects of zf GIP 

Acute and persistent in vivo studies were carried out using male 8-12 week-old 

National Institutes of Health (NIH) Swiss mice as previously described (Sections 

2.8.1.1, 2.8.2.1, 2.8.2.3 and 2.8.2.5). Blood glucose and plasma insulin were measured 

immediately prior to (t = 0), and 15, 30 and 60 min after intraperitoneal administration 

of glucose alone (18 mmol/kg of body weight) or in combination zfGIP (25 or 75 

nmol/kg bw) in overnight fasted mice.  

7.3.8 Acute food consumption studies 

Normal male TO 8-12 week-old mice were used in food consumption study as 

previously described (Section 2.8.2.4). Animals were administrated intraperitoneal 

injections of either saline solution or zfGIP (50 nmol/kg) prior to receiving free access 

to normal chow for 180 mins. 

7.3.9 Biochemical analysis 

Blood was collected from the tail vein of conscious mice and analysed immediately 

using the Ascenacia Counter Blood Glucose Meter (Bayer, Newbury, UK). Plasma for 

insulin was collected, stored and assayed as described in Section 2.8.2.5. 
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7.3.10 Statistical analysis 

Data were compared using unpaired Student’s t test (non-parametric, with two-tailed 

P values and 95% confidence interval) and one-way ANOVA with Bonferroni post-

hoc test using GraphPad PRISM (Version 5.0 San Diego, California).  Area under the 

curve (AUC) analysis was performed using the trapezoidal rule with baseline 

correction. Data are presented as mean ± S.E.M where the comparison was considered 

to be significantly different if P < 0.05. 

7.4 Results 

7.4.1 Purification and confirmation of molecular masses by MALDI-TOF MS 

Following purification, 10% and 20% of purified peptide were obtained from the 

original quantity of crude zfGIP. The main peaks were collected as represented in 

Figure 7.1 A. zfGIP was analysed by MALDI-TOF MS which confirmed the purity 

(Figure 7.1 B and Table 7.1).   

7.4.2 zfGIP peptide stability 

Human GIP (Figure 7.2 A and B) was degraded by 93% into 2 major fractions after 4 

hours incubation with DPP-IV (corresponding to the cleavage at position 2).  zfGIP 

incubated under identical conditions had a greater stability and degraded only by 35% 

(Figures 7.2 C and D and Table 7.2).  

7.4.3. In vitro insulinotropic effects of zfGIP 

The basal rate of insulin release from BRIN-BD11 cells in the presence of 5.6 mM 

glucose alone was 1.02 ± 0.02 ng/106cells/20 min. Incubation with GLP-1 (0.1 µM)    

resulted in an increase in the rate of insulin release to 2.4 ± 0.1 ng/106cells/20 min.  
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Incubation of cells with zfGIP (Figure 7.3 A) and human GIP (Figure 7.3 B) produced 

a concentration-dependent stimulation of insulin release. The minimum concentration 

showing a significant increase in the rate of insulin release compared with the basal 

rate) for zfGIP was 30 nM compared with a threshold concentration of 30 pM for 

human GIP and 10 pM for human GLP-1. The maximum rate of insulin release 

produced by 3 µM zfGIP was 1.7 ± 0.1 ng/106cells/20 min compared with a maximum 

rate of 3.5 ± 0.1 ng/106cells/20 min produced by 3 µM human GIP and 3.6 ± 0.2 

ng/106cells/20 min produced by 3 µM human GLP-1.   

The basal rate of insulin release from 1.1B4 cells in the presence of 16.7 mM glucose 

alone was 0.08 ± 0.01 ng/106cells/20min. zfGIP at concentrations of 10 nM and 1 µM 

significantly enhanced the rate of insulin release compared with the basal rate (Figure 

7.4 A). At 1 µM concentration, the rate of release produced by zfGIP (0.14 ± 0.01 

ng/106cells/20min) was significantly less than that produced by human GIP 0.20 ± 

0.02 ng/106cells/20min) and GLP-1 (0.24 ± 0.02 ng/106cells/20min). 

The basal rate of insulin release from mouse islets in the presence of 16.7 mM glucose 

control was 9.7 ± 1.3 % of the total insulin content of the islets released in 60 min. 

zfGIP at 10 nM and 1µM concentrations produced significant increases in the rate of 

insulin release compared with the basal control  (Figure 7.4 B) The effect of 1 µM 

zfGIP  (22.4 ± 0.8% of total insulin released in 60 min) was not significantly different 

from that produced by 1 µM GLP-1 (20.7 ± 2.5 % of total insulin released in 60 min). 

7.4.4 Receptor antagonist studies  

The in vitro insulinotropic activity zfGIP was significantly decreased when BRIN-

BD11 cells were incubated with the peptide in the presence of the GIP receptor 

antagonist, GIP (6-30) Cex-K40 [Pal] (P < 0.05) (Figure 7.5 A) and the GLP-1 receptor 

antagonist, exendin-4(9-39) (P<0.001) (Figure 7.5 B).  In contrast, the glucagon 
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receptor antagonist [desHis1-Pro4-Glu9] glucagon amide had no effect on the 

insulinotropic activity of zfGIP while significantly (P < 0.05) attenuating the response 

produced by glucagon (Figure 7.5 C). 

7.4.5   Effect on zfGIP peptide on cAMP production 

In the presence of 200µM IBMX, zfGIP significantly stimulated cAMP production in 

CHL cells transfected with the human GLP-1 receptor (GLP-1R) at a concentration of 

10nM (P<0.05) and 1µM (P<0.001) (Figure 7.5 A). In marked contrast, human GIP (1 

µM) was without effect on cAMP production. Glucagon produced an approximately 

3-fold increase in cAMP production in HEK293 cells transfected with the human 

glucagon receptor (CGCR), but neither zfGIP (10 nM and 1µM) nor human GIP (1 

µM) had a significant effect (Figure 7.6 B). 

7.4.6 Receptor knock out studies 

Wild-type INS-1 cells responded to incubation with 10 nM and 1μM concentrations 

of GLP-1, glucagon, GIP, and zf GIP with a significant (P < 0.001) increase in the rate 

of release of insulin compared with the rate in the presence of 5.6 mM glucose only 

(Figure 7.7 A). The increase in rate in response to GLP-1 was abolished in the GLP-1 

KO cells, but the stimulatory responses to glucagon, GIP, and zf GIP were maintained 

(Figure 7.7 B). Similarly, the increase in rate in response to GIP was abolished in the 

GIP KO cells but not in the cells incubated with GLP-1, glucagon, and zf GIP (Figure 

7.7 C). 

7.4.7 In vivo insulin release studies 

Plasma glucose concentrations in overnight fasted mice receiving glucose plus 

intraperitoneal administration of zfGIP (25 and 75nmol/kg body weight) were 
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significantly less at 15, 30 min and 60 min compared with animals receiving glucose 

only (Figure 7.8 A). The integrated response (area under the curve) indicated that the 

magnitude of the glucose-lowering effect produced by either dose of zfGIP was 

significantly (P < 0.01) less than that produced by 25 nmol/kg GLP-1 and 75nmol/kg 

(Figure 7.8 B). Concomitant with the lower plasma glucose levels, the concentrations 

of plasma insulin was significantly greater after administration of 25 nmol/kg zfGIP 

(30 min) and 75 nmol/kg zfGIP (15 and 30 min) compared with animals receiving 

glucose only (Figure 7.8 C). The integrated insulin response (Figure 7.8 D) showed 

that the effect of 75 nmol/kg zfGIP was comparable to that produced by 25 nmol/kg 

GLP-1 (7 Figure 7.8 D). 

 
7. 4. 8 Time-dependent effects of exendin-4 and zfGIP on feeding in normal mice. 

At a concentration of 50 nmol/kg of body weight, exendin-4 (Figure 7.9) exhibited 

significant (P < 0.01 and P< 0.001) inhibiting effect on food intake at individual time 

points (30, 60, 90, 120, 150 and 180 min). In contrast, zfGIP appeared to have no 

effect on food intake when compared with saline only (Figure 7.9). 

7.5 Discussion 

The global pandemic of T2DM has mandated a search for new types of therapeutic 

agent and several long-acting analogues of naturally occurring incretins, particularly 

derivatives of GLP-1, have already been adopted in clinical practice (Graaf et al. 

2016). This study has provided evidence that zfGIP acts as an in vitro insulinotropic 

peptide when incubated with isolated mouse islets and with both rodent- and human-

derived clonal β-cells (Figure 7.3 and 7.4). The peptide also exhibits in vivo glucose-

lowering and insulin-releasing actions when administered to mice after a glucose load 
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(Figure 7.8). However, the potency and efficacy of zfGIP are appreciably less than 

those of human GIP and human GLP-1 so that the peptide does not show great 

potential for development into an agent for treatment of patients with T2DM.  

Treatment of high fat fed mice with a peptidase-resistant GIP-oxyntomodulin hybrid 

peptide was shown to lead to beneficial actions on glucose homeostasis and reduction 

in weight (Bhat et al. 2013). However, administration of 50 nmol/kg body weight of 

zfGIP to overnight fasted mice did not induce a significant change in cumulative food 

intake over a 3 h period (Figure 7.9) so that the peptide is unlikely to find application 

in promoting weight loss in obese patients with T2DM. 

Synthetic dual-agonist peptides combining GLP-1 and GIP activities have been 

studied extensively as potential agents for T2DM therapy [Gault at al 2013 and Finan 

et al. 2015). The use of selective receptor antagonists has indicated that in vitro 

insulinotropic activity of zfGIP on BRIN-BD11 cells may involve activation of both 

the GIP and GLP-1 receptors expressed in this cell line. Insulin release elicited by the 

peptide was slightly but significantly decreased after incubating BRIN-BD11 cells 

with the GIP receptor antagonist, GIP(6-30)Cex-K40[Pal] and the GLP-1 receptor 

antagonist, exendin-4(9-39) suggesting that zfGIP acts as a dual agonist at both 

receptors. The action of the peptide was not antagonised by the glucagon receptor 

antagonist [desHis1-Pro4-Glu9] glucagon amide suggesting that zfGIP does not target 

this receptor. Consistent with this conclusion, zfGIP stimulated a significant increase 

in cAMP production in CHL cells transfected with the human GLP-1 receptor but not 

in HEK293 cells transfected with the human glucagon receptor.   

CRISPR/Cas9-engineered INS-1 cells with GLP-1R and GIPR knockouts have proved 

to be valuable in characterizing polyagonist peptides with potential for treating 

patients with T2DM (Nayloe et al. 2016). Consistent with the receptor antagonist 
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studies, both the GLP-1R KO and the GIP KO cells responded to incubation with 

zfGIP with an increase in the rate of insulin release whereas the corresponding human 

peptides were inactive. This result shows that zfGIP is acting as a dual agonist at the 

GLP-1R and GIPR in INS-1 cells as well as in BRIN-BD11 cells. Our data are 

consistent with an earlier report by Musson and colleagues (Musson et al. 2009) that 

zfGIP is able to activate the rat GIP receptor but do not support their conclusion that 

the peptide is not able to activate the rat GLP-1 receptor. The reason for this 

discrepancy is difficult to determine as the origin, purity and structure of the zfGIP 

used in the study of Musson et al. was not reported 

A comparison of the primary structure of GIP, GLP-1, and glucagon in zebrafish and 

human (Figure 7.10 A) demonstrates that evolutionary pressure to conserve the amino 

acid sequence has been appreciably less in GIP than in the other two hormones.  

Somewhat surprisingly in view of its proposed interaction with the human GLP-1 

receptor, zfGIP shows greater structural similarity to human glucagon (11 amino acid 

residues) than to human GLP-1 (10 amino acid residues) (Figure 7.10 B).  However, 

the general mechanism of activation of class B G-protein coupled receptors involves 

binding of the C-terminal domain of the peptide ligand to the extracellular N-terminal 

domain of the receptor which promotes interaction of the N-terminal region of the 

ligand with the juxtamembrane domain of the receptor, thereby stimulating 

intracellular signalling (Hoare et al. 2005 and Kirkpatrick et al. 2012). It is significant, 

therefore, that zfGIP shares with human/rat/mouse GLP-1 the residues Ala2, Glu3 in 

the N-terminal domain and Lys20 and Arg30 in the C-terminal domain that are not found 

in the corresponding glucagon molecule (Figure 7.10). 

The findings in this study may represent an example of a more general phenomenon 

that the exquisite specificity of the G protein-coupled receptors that mediate the 
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physiological actions of the glucagon family hormones for their ligands that is seen in 

mammals may have arisen relatively late in evolution. In non-tetrapod vertebrates, the 

receptors display a lesser degree of selectivity for the peptide, and the hormones may 

activate multiple receptors. While zfGIP may not activate the human glucagon 

receptor, it has been shown that it will activate a putative glucagon receptor from the 

zebrafish (Musson et al. 2013). Previous studies both in vitro (O’Harte et al. 2016a ) 

and in vivo (O’Harte et al. 2016b) have demonstrated that glucagon from the dogfish 

Scyliorhinus canicula (Elasmobranchii) acts as a dual agonist at both the murine 

glucagon and GLP-1 receptors. Similarly, a receptor has been identified in the goldfish 

Carassius auratus (Teleostei) that is activated by both goldfish GLP-1 and glucagon 

and by human GLP-1 and glucagon (Yeung et al. 2002). 

To conclude the study has investigated the properties of zfGIP in several mammalian 

systems in order to assess the potential value of the peptide as a template for 

development into an agent for the treatment of patients with T2DM. Although outside 

the scope of the present investigation, it is worthwhile to determine the insulin-

releasing and glucose-lowering properties of zfGIP in the zebra fish to gain insight 

into the physiological role of GIP in teleost species. 
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Table 7.1 Name, amino acid sequence, acetonitrile gradient, retention 
time and molecular mass of zfGIP. 

Name  Amino acid sequence Gradient 
used, % 

ACN 

Retentio
n time, 

min 

Theoretical 
molecular 
mass, Da 
 

Observed 
molecular 
mass, Da 

 

zfGIP YAESTIASDISKIVDSMVQKNFVNFLLNQRE  35-70 32 3561.06 3562.00 

 

 

 

 

Table 7.2 Summary of HPLC results of peptide degradation following 
incubation with DPP-IV. 

Peptide Theoretical 
Mass, Da 

Number 
of peaks 

Observed mass 
of peaks at 0 

hr, Da 

Observed 
mass of peaks 

at 4 hr, Da 

% Degraded 
at 4 hours 

Zebrafish 
GIP 

3561.06 1 3562.00 (1) 3561.3 35 

GLP-1 3297.70 2 3297.3 (1) 3297.9 
(2) 3090.4 

86 

Glucagon  3482.80 2 3484.4 (1) 3483.2 
(2) 3260.3 

24 

GIP (1-42) 4982.62 2 4982.2 
 

(1) 4984.0 
(2) 4749.0 

93 
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Figure 7.1 (A) Reverse-phase HPLC purification of crude zebrafish GIP 
peptide using a semi-preparative Vydac C18 column and (B) MALDI-TOF 
spectra of purified zebrafish GIP  

 

 

 

(A) The peptides were dissolved in 30% acetonitrile (3mg/ml) and injected onto a (2.2 
cm x 25 cm) Vydac 218TP1022 (C-18) column (Grace, Deerfield, IL, USA) 
equilibrated with 35% (v/v) and 0.1% TFA/water at a flow rate of 6.0 ml/min. The 
concentration of acetonitrile in the eluting solvent was raised from 35% to 70 % over 
50 min using a linear gradient. Absorbance was measured at 214 nm and the black 
arrows show where the peak collection began and ended.  (B) Purified zfGIP was 
mixed with α-Cyano-4-hydroxycinnamic acid on a 100 well MALDI plate before 
inserting into a Voyager DE Biospectrometry workstation. The mass-to-charge ratio 
(m/z) versus peak intensity was determined. 
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Figure 7.2 HPLC degradation profile of (A-B) human GIP and (C-D) zf 
GIP following incubation with DPP-IV for 0 and 4 hour 

 

 

HPLC degradation study was performed with a Luna 5u C8 250x4.6mm column using 
gradients from 0% to 42% of acetonitrile over 50 min, and from 42% to 70% of 
acetonitrile over 15 min. 
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Figure 7.3 Concentration-dependent effects of (A) zfGIP and (B) human 
GIP on insulin release from BRIN-BD11 rat clonal β- cells.  

 

Values are mean ± S.E.M., n = 8. **P < 0.01, ***P < 0.001 compared to 5.6 mM 
glucose alone 
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Figure 7.4  Effects of zfGIP on insulin release from (A) human 1.1 B4 
cells and (B) pancreatic islets isolated from NIH Swiss mice. 

 

 The values are mean ± SEM for n=4; *P<0.5, **P<0.01, ***P<0.001 compared to 

16.7mM glucose alone. 
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Figure 7.5 Effects of (A) GIP receptor antagonist GIP (6-30) Cex-K40, (B) 
GLP-1 receptor antagonist, exendin-4 (9-39), and (C) glucagon receptor 
antagonist [desHis1-Pro4-Glu9] glucagon amide on the ability of zfGIP to 
stimulate insulin release from BRIN-BD11 cells 

           None              GIP            zfGIP
0

1

2

3

4

5

***

***

*** ***
*

Glucose (5.6 mM)
 Alanine (10mM)

 Peptide (10-7M)
 Peptide (10-7M) + GIP(6-30) Cex-K40-Pal (10-6M)

A

None None              GLP-1            zfGIP
0.0

0.5

1.0

1.5

2.0

2.5

***

***

***

**

Glucose (5.6 mM)
 Alanine (10mM)

 Peptide (10-7M)
 Peptide (10-7M) + Exendin-4(9-39) (10-6M)

B

None None       Gucagon            zfGIP
0

2

4

6

***

***

***

Glucose (5.6 mM)
 Alanine (10mM)

 Peptide (10-7M)
 Peptide (10-7M) + (desHis1-Pro4-Glu9) glucagon amide (10-6M)

C

*** ***

 

Values are mean ± S.E.M., n = 8 **P < 0.01, ***P < 0.001 compared with 16.7 mM 
glucose alone. Δ P ≤ 0.05, ΔΔΔp ≤ 0.001 compared with the effect in the presence of 
antagonist. 
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Figure 7.6 Effects of zfGIP on intracellular cAMP production in (A) GLP-
1 receptor transfected CHL cells, and (B) glucagon receptor transfected 
HEK293 cells.  

 

 

Values are mean ± SEM for N=4. *P<0.05, **P<0.01 and ***P<0.001 compared with 

5.6 glucose + IBMX alone. 
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Figure 7.7 Effects of zfGIP on insulin release from INS-1 cells (A) native 
(B) GLP-1 receptor knock out (C) GIP receptor knock out cells 

 

 

The values are mean ± SEM for n=8; ***P<0.001 compared to 5.6mM glucose alone. 
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Figure 7.8 Effects of acute administration of zfGIP (25 and 75 nmol/kg 
body weight) on plasma glucose (panel A) and plasma insulin (panel C) 
concentrations in mice after intraperitoneal injection of glucose (18 
mmol/kg body weight).  

 

 

 

The integrated responses (area under the curve AUC) are shown in panels B and D. 

The values are mean ± SEM for n=6. **P<0.01 and ***P<0.001 compared to glucose 

alone; Δ P<0.05, ΔΔ P<0.01 and ΔΔΔ P<0.001 compared to human GLP-1. 
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Figure 7.9 Effects of zfGIP on cumulative food intake over 3 hours 
trained feeding in 12 h fasting normal mice. 

 

 

Cumulative food intake was measured after intraperitoneal administration of 50 
nmol/kg zfGIP alongside 0.9% saline control. The values are mean ± SEM for n=8. 
**P<0.01 and ***P<0.001 compared to saline control mice treated at the same time 
point. 
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Figure 7.10 Comparison of the primary structures of zebrafish (zf) GIP, 
GLP-1, and glucagon with the corresponding peptides in the human, and 
(B) a comparison of the primary structure of zebrafish GIP with human 
GLP-1 and human glucagon. Sequence identity is denoted by the shading. 

 

A 

ZfGIP           YAESTIASDISKIVDSMVQKNFVNFLLNQRE           

Human GIP       YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 

 

Zf GLP-1        HAEGTYTSDVSSYLQDQAAQRFVARLKSGQPKQE  

Human GLP-1     HAEGTFTSDVSSYLEGQAAKEFIAWLVKGRG 

 

Zf glucagon     HSEGTFSNDYSKYLETRRAQDFVQWLMNA  

Human glucagon  HSQGTFTSDYSKYLDSRRAQDFVQWLMNT 

 

B 

 

ZfGIP           YAESTIASDISKIVDSMVQKNFVNFLLNQRE   

Human GLP-1     HAEGTFTSDVSSYLEGQAAKEFIAWLVKGRG              

 

ZfGIP           YAESTIASDISKIVDSMVQKNFVNFLLNQRE   

Human glucagon  HSQGTFTSDYSKYLDSRRAQDFVQWLMNT
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8.1 Diabetes Mellitus is a growing epidemic  

Diabetes mellitus (DM) is one of the most common devastating metabolic diseases in 

nearly all countries, and its incidence continues to increase every year as a 

consequence of urbanization and economic growth which lead to lifestyle modification 

characterised by reduced physical activity, and high prevalence of obesity (Whiting et 

al. 2011). DM affects 1 in 11 adults aged 20-75 years (415 million individuals). By 

2040 this number is expected to rise to 642 million (Ogurtsova et at 2017, Brandt et 

al. 2017 and Zheng et al. 2018). An increase in diabetes incidence and prevalence 

translates into a high economic impact on society affecting both the direct cost of 

treating the disorder including its complications and indirect costs associated the 

reduced productivity and the need for informal care (Jonsson et al. 1998 and Hex et 

al. 2012). In general, diabetic individuals have a higher risk of increased morbidity 

and mortality than the general population (Ogurtsova et al. 2017). According to 

Diabetes UK, 1 in 10 hospitalised patients have diabetes and about 15% deaths per 

year are linked to this condition (Hex et al. 2012). The World Health Organization 

(WHO) estimated that diabetes killed 1.6 million people in 2016 worldwide, up from 

less than 1 million in 2000, making it the 6th leading cause of global deaths (World 

Health Organization, 2018). 

 There are two main types of diabetes which are often grouped, although associated 

with distinct causes and costs. Type 1 diabetes (T1D) affects 10–15% of all diabetes 

cases and is caused by autoimmune damage of insulin-producing pancreatic β cells 

leading to insulin deficiency (Atkinson et al. 2012; Hex et al. 2012). Type 2 (T2D) 

diabetes represents 90% of all diabetic patients and is caused by insulin resistance and 

pancreatic β-cell dysfunction resulting in the insufficient secretion and defective 

insulin actions (American Diabetes Association 2009; Hex et al. 2012; Kahn et al. 
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2014; Zheng et al. 2018). The overall direct and indirect costs associated with this 

disorder were estimated at approximately £23.7bn in 2010/2011 in the UK of which 

92% (£ 8.8bn direct and £13.0bn indirect) belonged to T2D. 

The costs have been predicted to rise to £39.8bn by 2035/2036 which is approximately 

68% greater compared to 2010/2011 and will consume 17% of all NHS budget (Kahn 

et al. 2014). The growth in diabetes prevalence is driven mostly by rapidly increasing 

cases of T2D which are closely associated with the dramatic increase in the incidence 

of obesity over the last three decades (Zhao et al. 2011, Gomes et al. 2013 and Kahn 

et al. 2014).  

8.2 Justification for a new treatment 

The loss of glycaemic control and progression of diabetes are believed to be linked to 

multiple pathophysiological and genetic factors such as impaired β-cell secretion, 

insulin resistance in peripheral tissues, deficiencies in the secretion of amylin and 

incretin hormones (particularly GLP-1) and excessive glucagon secretion as well as 

abnormal expression of genes that control insulin sensitivity and lipid metabolism. 

The chronic medical condition may also worsen due to inadequate treatment, patient 

noncompliance, and unhealthy lifestyle associated with obesity (Stonehouse et al. 

2007). 

Monotherapy with an oral medication, metformin, together with changes to lifestyle 

is the first line of treatment for adults with T2D and can have beneficial effects on 

haemoglobin HbA1c, weight and cardiovascular mortality (Wise et al. 2016). 

However, this treatment option, as well as monotherapy with sulfonylureas, insulin or 

TZDs, has failed to prevent or slow the loss of β-cell function, according to the United 

Kingdom Prospective Diabetes Study and the ADOPT trial, and therefore become less 
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effective at maintaining glycaemic control over time. Therefore, many patients 

eventually require combined treatment to manage the condition. This, indeed, 

improves glycaemic control but also carries a potential risk of side effects such as 

weight gain associated with sulfonylurea and insulin combined therapies or 

gastrointestinal and oedema concerns linked to metformin and TZDs respectively 

(Stonehouse et al. 2007). Although newer therapeutic options, such as alpha-

glucosidase inhibitors, meglitinides, amylin agonists, GLP-1 mimetics, DPP-IV 

inhibitors, colesevelam, bromocriptine, and most recently, SGLT2 inhibitors, are 

available in the market, nearly half of the population are not meeting glycaemic goal 

showing that the number of individuals with poor glycaemic control has not greatly 

decreased over the past decades (Mazzola 2012 and Cavaiola et al. 2017, Ambery et 

al. 2018).  

None of these newer therapies exhibit similar effects as that of bariatric surgery – one 

of the breakthroughs in diabetes care (Laiteerapong et al. 2010 and Ambery et al. 

2018).  The procedure results in subsequent weight loss and normalises 

hyperglycaemia in ˃80% of patients. Moreover, it has been shown to obviate the 

necessity for antidiabetic drugs in up to 45% of individuals after 60 months of 

treatment. However, access to bariatric surgery is often limited by the health care 

system. As a result, more than one million individuals with morbid obesity who could 

potentially benefit from the procedure do not fall within the criteria (Gulliford et al. 

2017). The surgery is also associated with high costs and increased risks of side effects 

which makes it not a viable option for most patients (Ambery et al. 2018). 

Hence, new alternative research is urgently required to discover new therapeutically 

potent agents which could maintain glucose homeostasis, improve long-term 
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microvascular and neuropathic complications of diabetes, as well as have no 

associated side effects and be economically viable. 

8.3 Unimolecular GLP-1/Glucagon Co-agonism: improvement of obesity-

associated diabetes. 

There has been growing evidence that sustained and moderate weight loss (˃5% of 

initial body weight) in overweight or obese individuals with T2D results in successful 

outcomes of their metabolic status such as improved glycaemic control and 

cardiovascular risk markers (Ambery et al. 2018). 

Although low carbohydrate diets in people with T2D are known to be effective for the 

short term improvements (Dyson 2015), the antidiabetic effects of bariatric surgery, 

specifically Roux-en-Y gastric bypass surgery, are not only related to the reduction of 

weight alone (Ambery et al. 2018). Bariatric surgery is associated with modification 

of secretion and action of some gut hormones and peptides (Kaska et al. 2016). This 

includes suppression of ghrelin, a ‘hunger hormone’ known to stimulate appetite and 

activation of incretin hormones secretion (such as GLP-1 and oxyntomodulin) 

resulting in the reduction of body weight. GLP-1 not only enhances glucose-induced 

insulin secretion from pancreatic β-cells but also slows gastric emptying, and promotes 

weight loss via central effects on appetite and satiety (Yamagishi et al. 2011 and 

Ambery et al. 2018). 

Oxyntomodulin, a natural proglucagon-derived peptide that interacts with both the 

GLP-1 and glucagon receptors, also drives the reduction of weight similarly to GLP-

1 in human and rodents but acts through an additional alternative pathway responsible 

for increasing energy expenditure (Li et al. 2017; Ambery et al. 2018). 
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Despite the known pathophysiological action of glucagon to increase hepatic glucose 

output in T2D, oxyntomodulin is believed to exhibit promising effects on glycaemic 

control and weight via the equipoise of GLP-1 and glucagon receptor agonist activity. 

The mechanism of action of oxyntomodulin supports the application of dual agonism 

in the treatment of obesity (Tillner et al. 2018). Despite many advantages as a 

therapeutic agent, oxyntomodulin is rapidly degraded in plasma. However, recently 

developed stable oxyntomodulin-based analogues with specific N-terminal position 2 

modifications to protect against DPP-IV degradation, have been recently reported to 

show beneficial insulin secretory effects in vitro and improve glycaemic control, 

insulin secretion and appetite suppression in normal mice (Lynch et al. 2014). 

Moreover, long-acting analogues derived from dogfish glucagon have been recently 

demonstrated to act as GLP-1/glucagon receptors co-agonists with promising in vitro 

and in vivo results (O’Harte et al. 2016). A novel GLP-1/glucagon hybrid peptide with 

triple acting agonist activity at GLP-1, glucagon and GIP receptors has also been 

reported (Gault et al. 2013).   

Clinical trials evaluating the safety, pharmacokinetics and pharmacodynamics of 

novel GLP-1/glucagon receptor dual agonists, highlighted the potential of these agents 

to reduce body weight and blood glucose in obese or overweight individuals with T2D  

(Ambery et al. 2018 and Tillner et al. 2018). 

8.4 Exploring fish glucagon-like sequences as naturally occurring dual agonists 

More than half of the 66178 species of living vertebrates are “fishes”, which exhibit 

remarkable diversity in anatomy, morphology, physiology, behaviour trait, 

reproductive biology, and ecology together with their equally impressive habitat 

diversity (Helfman et al. 2009; Broughton et al. 2013; Ceballoset at al. 2015; Nelson 
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et al. 2016). Fish may be the most diverse vertebrate group, mostly to due to teleosts 

comprising about 96% of all extant fish species (Miya et al. 2015). Amphibians, 

reptiles, birds and mammals evolved after fish showing their importance in 

fundamental areas of vertebrate biology and evolution (Broughton et al. 2013)  

Considerable differences exist between fishes and other vertebrates in proglucagon 

gene structure, peptide expression, peptide chemistry, and functional characteristics of 

the hormones produced (Plisetskaya et al. 1996).  

In this thesis, insulinotropic and antihyperglycaemic properties of fish proglucagon-

derived and GIP peptides were examined. Chapter 3 presents details of the structural 

analysis and acute in vitro and in vivo assessment of biological properties of GLP-1 

peptides isolated from six different types of fish ranging from phylogenetically ancient 

to most recently evolved species: sea lamprey, dogfish, ratfish, paddlefish, bowfin and 

trout. Similar studies are shown in Chapter 4 using piscine glucagon peptides. Chapter 

5 and 6 reveals long-acting proglucagon and GLP-1 analogues derived from the native 

lamprey and paddlefish glucagon and GLP-1 sequences. Finally, Chapter 7 presents 

zebrafish GIP peptide as in vitro dual agonist for glucagon and GLP-1 receptors. 

8.4.1 Proglucagon-derived Peptides from the Agatha Superclass member (Sea 

Lamprey) 

Lampreys, the most ancient extant vertebrates belonging to the lineage of jawless fish 

of the order Petromyzontiformes, express glucagon and GLP-1 only in the intestine 

while their endocrine pancreatic tissue appears to be devoid of glucagon-secreting α-

cells  (Youson et al. 1989 and Plisetskaya et al. 1996). Two proglucagon cDNAs from 

the intestine of the sea lamprey Petromyzon marinus were previously characterised 
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(proglucagon I and proglucagon II). Proglucagon I cDNA encodes the previously 

purified and characterised glucagon and GLP-1, while proglucagon II cDNA encodes 

a predicted GLP-2 and glucagon (Irwin et al. 1999) 

Glucagon and GLP peptides, encoded by proglucagon I, were isolated and purified 

from sea lamprey Petromyzon marinus intestine in 1993 (Conlon et al. 1993). Lamprey 

glucagon, a 29 amino acid peptide, showed 72% and 57% sequence identity with 

human glucagon and GLP-1 respectively. In total 8 amino acid sequence substitutions 

were identified when compared lamprey with human glucagon, one of which, COOH-

terminal alanine residue represents a novel structural feature that was not previously 

observed in the sequences of glucagon of other known species (Conlon et al. 1993). 

Lamprey GLP-1, a 32 amino acid peptide, appeared to be different from human GLP-

1 and exhibited 16 amino acid substitutions (50 % sequence identity). The 

physiological roles of glucagon and GLP-1 in lampreys are poorly understood (Conlon 

et al. 1993). Glucose administration does not invoke insulin release in lampreys 

(Norris et al. 2013), and injections of mammalian glucagon had no initial effect but 

lowered blood glucose after 4 h post administration (Conlon et al. 1993). 

In this study, the in vitro assessment of lamprey GLP-1 (Chapter 3) and glucagon 

(Chapter 4) showed that these peptides produced a significant dose-dependent 

stimulation of insulin-release from clonal pancreatic beta-cells, BRIN-BD11. The 

peptides also increased the rate of insulin release from human-derived pancreatic beta-

1.1 B4 cell line and isolated mouse islets similarly to human GLP-1. The mechanism 

of action of the peptides was examined using potent glucagon, GLP-1 GIP antagonists,  

as well as various cell lines: CRISPR/Cas9-engineered glucagon-R and GLP-1R-

transfected cells, and glucagon-R KO, GLP-1R KO and GIPR KO INS-1 cell lines.  
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The study revealed that both, glucagon-R GLP-1R were involved in the biological 

action of the peptides.   

Acute in vivo actions of the peptides on glucose tolerance and food intake were 

assessed in normal mice. Intraperitoneal administration of the peptides together with 

glucose load showed a significant decrease in blood glucose and increased in plasma 

insulin levels. However, the peptides were ineffective when administrated prior a 

glucose load due to rapid plasma degradation which was confirmed by DPP-IV 

studies. No effect on food intake was observed for lamprey glucagon in normal mice. 

However lamprey GLP-1 suppressed the appetite at 30 min time point after peptide 

administration.  

The potent antihyperglycaemic and insulinotropic effects of peptides, as well as their 

possible dual-agonist ability, distinguish them as candidates for developing into 

antidiabetic agents and were selected for designing long-acting analogues for further 

studies (Chapter 6 and 7). The amino-acid sequence substitutions that arose over 500 

million years observed in the proglucagon-derived peptides have been fixed in the 

population giving advantages for the species and may be exportable for the therapeutic 

use. 

8.4.2 Proglucagon-derived Peptides from Cartilaginous fishes: Dogfish and 

Ratfish   

Only one sequence of proglucagon gene is found in Cartilaginous fishes (Ng et al. 

2010). Glucagon of the primitive fishes such as representative species belonging to 

the Elasmobranchii subclass (i.e. dogfish) which in terms of evolution represent a 
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“dead-end side branch”, have greater sequences similarities to human glucagon than 

do glucagons of teleost fishes. 

Three  peptides  derived  from  the  post-translational  processing  of  proglucagon  

have  been  isolated  from  the  pancreas  of  dogfish (Scyliorhinus  canicula): glucagon 

(29 amino  acids), GLP-1 (38 amino  acids) and oxyntomodulin, originally reported as 

a second version of dogfish glucagon, G-33 (33 amino  acids) (Conlon et al. 1993). 

Dogfish glucagon represents the 29 amino acid residue which was also previously 

isolated from the intestine (Conlon et al. 1987). The intestinally-derived version of 

glucagon contained one amino acid substitution at the position 28 compared to its 

pancreatic version, however it was later reported as an error leading to the conclusion 

that only one version of glucagon existed in both intestine and pancreas of dogfish 

(Conlon et al. 1993). The –KRNG extension in the COOH-terminal region in the 

dogfish oxyntomodulin is similar to the corresponding region in the 37 amino acid 

residue sequence of mammalian oxyntomodulin (Conlon et al. 1993). Comparison of 

the primary structures reveals that dogfish glucagon shares three amino acid residues 

(Glu3, Tyr13, and Lys20) with human GLP-1 that are not found in human glucagon 

(Conlon et al. 1993 and O’Harte at al. 2016). Previous studies using dogfish glucagon 

and its derived analogues showed that dogfish glucagon is a potent glucagon/GLP-1 

receptor co-agonist in vitro and in vivo (O’Hare at al 2016 and O’Hare at al 2016a).  

The structure of dogfish GLP-1 is most similar to GLP-1 sequence from the ratfish, 

particularly with regard to the unusual substitutions at position 26 and 29 (Trp26 –Ser) 

and (Gly29–Tyr).  The latter substitution is known to represent a site of proteolytic 

processing of proglucagon in the dogfish GLP-1 domain but not the ratfish (Conlon et 

al. 1993).  
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In ratfish, 2 forms of GLP-1 molecules exist due to the same proglucagon gene 

undergoes different post-transcriptional processing. This results in the generation of 

two structurally identical peptides one of which has an additional C-terminally 

extended sequence –RRM (Conlon et al. 1989). The ratfish proglucagon gene 

additionally encodes oxyntomodulin (originally reported as an extended version of 

ratfish glucagon) which shows 69% homology with human glucagon (Conlon et al. 

1987). The C terminal extension sequence of ratfish oxyntomodulin has very little 

resemblance with the C-terminal region of mammalian intestinal oxyntomodulin (4 

out of 8 matches). It is proposed that this peptide represents a major storage form of 

the 29-residue glucagon found in the islets (Conlon et al. 1987).  

The acute the in vitro and in vivo examination of GLP-1 from dogfish and ratfish is 

shown in Chapter 3, whereas the results for oxyntomodulins are presented in Chapter 

4. All four peptides derived from cartilaginous fishes showed dose-dependent 

stimulation of insulin release from BRIN-BD11. Dogfish oxyntomodulin appeared to 

be the most potent peptide in this peptide quartet. The promising insulinotropic 

activity of this peptide was also confirmed in 1.1 B4 cells and isolated mouse islets.  

The effects of dogfish oxyntomodulin resembled the action of human GLP-1. 

However, the action of dogfish oxyntomodulin was attenuated in the presence of 

glucagon and GLP-1 receptor antagonists ([desHis1-Pro4-Glu9]glucagon amide and 

exendin 9-39 respectively). Moreover, the cAMP release was observed in both 

glucagon and GLP-1 receptor transfected cells incubated with dogfish oxyntomodulin.  

Acute in vivo studies revealed that among other proglucagon-derived peptides from 

cartilaginous fishes used in this study, only administration of dogfish oxyntomodulin 

together with a glucose load significantly decreased blood glucose and increased 
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plasma insulin levels in normal mice compared with the control animals which 

received glucose alone.  All peptides ware subject of DPP-IV degradation at position 

2 which corresponded to the sides of degradation of human glucagon and GLP-1 

peptides.  

Although divergence of elasmobranchs and holocephalans at least 300 million years 

ago, dogfish GLP-1 is most similar to GLP-1 from the ratfish compared to other 

species. This also reflected their similar less potent effects on insulin release in vivo 

and in vitro with no dual agonist ability detected in this study. On the other hand 

dogfish, oxyntomodulin was distinctively better than oxyntomodulin from ratfish 

which appeared to act only via GLP-1 receptor. Thus, dogfish oxyntomodulin 

represents an excellent dual receptor agonist candidate for further diabetes research.  

8.4.3 Proglucagon-derived Peptides from Phylogenetically Ancient 

Actinopterygii: Paddlefish and Bowfin 

The North American paddlefish, Polyodon spathula and the Chinese paddlefish, 

Psephurus gladius are the two living species of family Polyodontidae, the most 

primitive basal ray-finned fish. (Lenhardt et al. 2006). Paddlefish are closely related 

to the family of sturgeons (Acipenseridae). Although these two families are distinct 

from one another, they are frequently classified together as Chondrosteans (Nguyen et 

al. 1994). Paddlefish is a plankton filter-feeder and has one of the most complex 

digestive tube present in fishes (Weisel 1973). The pancreatic tissue of paddlefish 

shows the presence of some diffusion within the wall of the gut and lacks distinct 

segregation between pancreatic islets and the exocrine compartment. Two forms of 

glucagon and one molecule of GLP-1 were purified from paddlefish pancreas. Both of 

the paddlefish glucagon molecules contain 31 amino acid residues and show unique 
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structural substitutions, such as Met5, Glu24 and Gly29, not previously observed in 

glucagons from other species (Nguyen et al. 1994). Paddlefish glucagon also contains 

the segments Glu15-Glu16 and Glu24-Trp25-Leu26-Lys27-Asn28-Gly29 in common with 

GLP1R agonist, exendin-4 that are not found in the other fish peptides. Paddlefish 

GLP-1 appeared to be structurally similar to gar GLP-1 and shares 65% and 45% of 

structure similarity with human GLP-1 and glucagon respectively. In contrast, GLP-1 

from bowfin, a surviving representative of a group of primitive ray-finned fishes, 

appeared to have an unusual structure resembling GIP due to the presence of a tyrosine 

residue at position 1 instead of the histidine residue that is found in all other 

proglucagon-derived peptides so far characterized (Conlon et al. 1993). Bowfin GLP-

1 exhibited lesser glycogenolytic response than human GLP-1 (3-fold less effective) 

in dispersed hepatocytes from a teleost fish. It is known that the effectiveness of 

salmon GLP-1, in the same experiment, was similar to the effects of human GLP-1. 

The mechanism by which GLP-1 triggers glycogenolysis (and gluconeogenesis) in the 

fish liver is unknown (Conlon et al. 1993).  

In terms of insulinotropic activity, paddlefish GLP-1 was more effective compared to 

bowfin GLP-1 ad shown in Chapter 3. Paddlefish glucagon also showed stimulation 

of insulin secretion from BRIN-BD11, 1.1B4 and isolated mouse islets. The secretion 

of insulin was suppressed to various extents after incubation of paddlefish GLP-1 and 

glucagon antagonists in the presence of glucagon and GLP-1 receptor antagonists 

([desHis1-Pro4-Glu9] glucagon amide and exendin 9-39 respectively) but not by GIP 

receptor antagonist (Pro3GIP). The peptides also evoked cAMP responses in glucagon 

and GLP-1 receptor transfected cells. The rates of insulin secretion were attenuated in 

glucagon and GLP-1 receptor KO cells incubated with paddlefish glucagon and GLP-
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1. In contrast, the effects of bowfin GLP-1 were partially antagonised by GLP-1 and 

GIP receptor antagonists and significantly attenuated in GLP-1 and GIP KO cell lines.  

Paddlefish GLP-1 and glucagon were equally effective in lowering blood glucose and 

stimulating insulin release according to acute IGTT study results. Bowfin GLP-1 

exhibited weak insulinotropic and glucose-lowering in vivo effects. Out of all peptides, 

paddlefish glucagon was the most effective in suppressing appetite in normal mice the 

concentration of 25nmol/kg of body weight. The peptide was also less susceptible to 

DPP-IV degradation after 4 h incubation with the enzyme. Due to its unique structure 

with 15 amino acid substitutions similar to exendin-4, paddlefish may be regarded as 

a naturally occurring glucagon/exendin-4 hybrid peptide with dual agonist activity at 

the glucagon and GLP-1 receptors. A previous study reported that twice-daily 

administration of the hybrid peptide [S2s]glucagon-exendin-4 (31-39) resulted in a 

significant improvement of body weight, energy intake and non-fasting glucose 

parameters, accompanied by improved glucose tolerance and insulin sensitivity 

(Lynch et al. 2014). Naturally occurring paddlefish glucagon structure with a unique 

exendin-4-like substitutions could be used as a template for developing a potential 

therapy for type 2 diabetes. Paddlefish glucagon and GLP-1 were selected for 

designing novel analogues for further investigation shown in Chapter 5 and 6. 

8.4.4 Trout proglucagon-derived peptides 

Rainbow trout (Oncorhynchus mykiss) is a species of the Salmonidae family belonging 

to a basal teleost Protacanthopterygii sub-order (pikes and salmons) group that is of 

major ecological interest worldwide (Berthelot et al. 2014 and Wang et al. 2018). All 

teleosts share at least three rounds of complete or whole-genome duplication: 1R 

before and 2R after the divergence of lamprey from the gnathostome which is 
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estimated at 500–430 million years ago and a third teleost-specific (Ts3R) at the base 

of the teleosts ~320 million years ago (Panopoulou et al. 2005 and Berthelot et al. 

2014). The whole genome duplication events are rare within animal lineages and bear 

evolutionary importance for the divergence of some major lineages. Only a small 

proportion of genes are eventually retained after this process whereas redundant copies 

are inactivated in a poorly understood process known as gene fractionation. 

An additional and relatively recent the salmonid-specific whole genome duplication 

(the Ss4R autotetraploidization event) occurred 25 to 100 million years ago. Due to 

gene fractionation may still be ongoing in the Salmonidae family members (Rainbow 

trout), understanding their genome structure and the factors that influence the 

rediploidization process are of particular interest for the research (Bobe et al. 2016). 

While most teleosts have 2 proglucagon sequences (proglucagon a and proglucagon 

b), Salmonid fishes are known to have more than two (at least four) genes encoding 

proglucagon sequences as a consequence of the Ss4R (Irwin et al. 1995 and Irwin et 

al. 2018).  

The assessment of in vitro insulinotropic effects of trout GLP-1 and glucagon is shown 

in Chapter 3 and Chapter 4 respectively. Trout GLP-1 exhibited greater insulinotropic 

effects in BRIN-BD11, 1.1 B4 and isolated mouse islets compared to trout glucagon. 

According to of the receptor studies using glucagon, GLP-1, and GIP receptor 

antagonists, receptor transfected cells, as well as KO cell lines, the effect of trout GLP-

1 is mediated predominantly via interaction with the GLP-1 receptor and the effect of 

trout glucagon via activation of glucagon receptor. Although trout GLP-1 showed 

potent insulin-releasing activity in vivo and in vitro studies using normal mice, the 
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magnitudes of the maximal responses appeared to be less than those of paddlefish and 

lamprey GLP-1.  

As a result of whole genome duplication, the trout genome contains a second 

proglucagon gene that encodes a GLP-1 and glucagon compared with the peptides 

used in this study (Irwin et al. 1995). The insulinotropic activity of these paralogues 

has yet to be determined. 

8.4.5 Zebrafish GIP 

The zf GIP gene and precursor protein appeared to be shorter compared to other 

vertebrate GIP genes and is missing exon 5. This results in the production of a short 

GIP hormone (only 31 amino acids) in zebrafish. This length is closely matching the 

length of proglucagon-derived hormones which may suggest that zfGIP genes (like 

other vertebrates) may have arisen from the ancestral gene as a result of evolutionary 

events, however, in tetrapods, GIP has been additionally extended (Irwin et al. 2006). 

The amino acid sequence of zfGIP shares with human/rat/mouse GLP-1 the residues 

Ala2, Glu3 in the N-terminal domain and Lys20 and Arg30 in the C-terminal domain 

which is responsible for binding of the N-terminal domain of the receptor.  Chapter 7 

investigates insulinotropic effects of zfGIP in a mammalian system. In vitro, zfGIP 

produced concentration dependent stimulation of insulin release from BRIN-BD11 

cells. However, the potency and efficacy of zfGIP were noticeably less than those of 

human GIP and human GLP-1. The stimulatory effects of zfGIP were inhibited in the 

presence of GLP-1R and GIPR antagonists suggesting that the peptide acts as a dual 

agonist at both receptors. Further studies using receptor transfected and receptor KO 

cells corresponded with this result. The in vivo insulinotropic and glucose-lowering 
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effects of zfGIP were lesser than that of human GLP-1. The peptide was also not 

effective in suppressing appetite in normal mice. Thus, zfGIP peptide is unlikely to 

find application in promoting weight loss in obese patients with T2DM 

8.4.6 Long-acting analogues derived from piscine glucagon and GLP-1 sequences 

Many pathological conditions such as metabolic syndrome, obesity and diabetes 

cannot be sufficiently treated with a single drug strategy. The therapeutic benefits of 

monotherapy often coincide with an increased prevalence of unwanted adverse-

effects. On the other hand, the co-administration of several independent drugs such as 

phentermine and topiramate to treat obesity and obesity-associated metabolic 

syndrome and diabetes, although showing remarkable effects on metabolism, is also 

not without risk. However, in the last decade, the biopharmaceutical industry has made 

notable progress in the development of molecules with enhanced metabolic potential 

whose structures represent a single entity derived from the combination of multiple 

key metabolic hormones. The concept of these unimolecular multiagonists is based on 

the ability of a single molecule simultaneously activate different signalling pathways 

resulting in more balanced pharmacokinetic action profile compared to loose co-

administration of single hormones (Brandt et al. 2018).   

Pre‐clinical in vivo studies showed that dual glucagon/GLP-1 receptor agonists 

produce greater weight loss when compared to selective GLP‐1R agonists such as gold 

standard liraglutide. The impact on body weight is due to significant suppression of 

appetite but may also involve increased energy expenditure. Humans studies also 

showed that the concomitant activation of GLP‐1R protects from the potential 

metabolic risk and hyperglycaemic effects of GCGR activation (Elvert et al. 2018). 
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In this thesis, Chapter 5 and 6 present novel dual glucagon/GLP-1 receptor agonists, 

namely [D-Ser2]-lamprey glucagon-Lys30-gamma-glutamyl-pal, [D-Ser2]-paddlefish 

glucagon-Lys30-gamma-glutamyl-pal, [D-Ala2]-lamprey GLP-1-Lys31gamma-

glutamyl-pal and [D-Ala2]-paddlefish GLP-1-Lys28-gamma-glutamyl-pal, that were 

generated by using the primary structure of naturally occurring proglucagon-derived 

peptides from lamprey and paddlefish. All 4 analogues were resistant to metabolic 

degradation after 4 h incubation with mouse plasma or DPP-IV. 

In vitro, insulinotropic effects of analogues assessed in this study using BRIN-BD11 

cells and isolated mouse islets showed that the peptides produced a significant 

stimulation of insulin release. However, the effects of lamprey glucagon and 

paddlefish GLP-1 analogues were significantly less compared to the insulinotropic 

effects of native peptides. Incubation of peptides with receptor KO cells confirmed 

that the peptides retained the ability to activate bot glucagon and GLP-1 receptor 

which was also confirmed by the cAMP assay. Acute in vivo studies revealed that 

lamprey GLP-1 and paddlefish glucagon analogues were the most potent out of four 

peptides in glucose tolerance and food intake studies and exhibited long-acting 

glucose-lowering effects similar to exendin-4. Long-term benefits of analogues 

derived from lamprey GLP-1, paddlefish glucagon and paddlefish GLP-1 were 

assessed in mice with diet-induced obesity-diabetes. The results showed that a 21 days 

twice-daily administration of lamprey GLP-1 and paddlefish glucagon analogues 

significantly improved glucose tolerance and enhanced insulin sensitivity and 

secretion. The peptides administration also significantly reduced body weight, 

exhibited profound effects on biochemistry profiles and noticeably improved insulin 

secretory response of isolated islets from pre-treated mice and a reduced α-cell area 

indicating positive effects on islet function.   Promising effects of the peptides on islet 
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transdifferentiation were also observed in GluCreRosa26-YFP mice. Thus, lamprey 

GLP-1 and paddlefish glucagon could be viewed as potential candidates for possible 

development of antidiabetic treatment.  

8.5 Future studies 

This thesis presented data on in vitro and in vivo insulin-releasing effects of native 

glucagon-related peptides from phylogenetically ancient fishes and teleosts as well as 

and four novel analogues derived from lamprey and paddlefish glucagon and GLP-1 

which activate glucagon and GLP-1 receptors.  Following future studies are essential: 

1. Investigation of plasma and DPP-IV degradation of peptides for 8, 12 and 24 

hours or more.  

2. Dose-dependent cAMP studies. 

3. Glucose uptake studies using the established pre-adipose 3T3-L1A cell line.  

4. Studies of receptor specificity of peptides and their analogues using 

double/triple glucagon-r-KO, GLP-1r-KO and GIPr-KO mice. 

5. Long-term (21, 28, 51 days) studies using db/db mice. 

6. Receptor binding studies using RIA. 

7. Designing of more structurally modified analogue based on the sequences of 

most promising native fish peptides. 

8. Gene expression studies (intestine, adipose, liver, kidney, muscle, brain and 

other tissue), possibly using microarray techniques. 

9. Testing of peptides and their analogues in the species of origin. 

10. Western blot studies for protein expression. 

11. Evaluation of toxicity, pharmacokinetics and efficacy in humans with T2D. 
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8.6 Concluding remarks  

To summarise, this thesis demonstrated that proglucagon-derived peptides from 

the phylogenetically ancient fish act as dual agonists in vitro activating both GLP-

1 and glucagon receptors. The peptides demonstrated promising insulinotropic and 

glucose-lowering in vivo activity. Based on these observations long-acting 

analogues were designed. Lamprey and paddlefish proglucagon-derived analogues 

were enzymatically resistant and exhibited positive effects on body weight, 

pancreatic beta cell function and insulin resistance in high fat fed mice. Positive 

effects on islet morphology were also observed in streptozotocin-induced model 

of type 1 diabetes. This research, demonstrating the concept of how naturally 

occurring molecules with evolutionary favourable sequence substitutions could be 

employed as unimolecular multi agonists for the treatment of metabolic disorders 

activating multiple signalling pathways. The work presented in this thesis will 

hopefully lead to subsequent clinical trials resulting in the generation of novel cost-

effective and safe agents improving the treatment of patients with T2D. 
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