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Summary 

Type 2 diabetes mellitus (T2DM) is a leading non-communicable disease with 

increasing health, socio-economic implications and with pharmacological agents that 

fail to replicate the success of bariatric surgery. This thesis aims to evaluate the 

therapeutic potential of customised gastrointestinal (GIT)-derived peptide hormones, 

namely glucose-dependent insulinotropic polypeptide (GIP), xenin and neurotensin 

(NT) in the hope of advancing the therapeutic repertoire. GIP has important glucose-

lowering endocrine and exocrine actions that become impaired in T2DM. Xenin is co-

secreted with GIP and known to potentiate its biological actions. Thus, the biological 

and therapeutic potential of twice daily administration of a previously characterised 

GIP/xenin hybrid, (DAla2)GIP/xenin-8-Gln, both alone and in combination with 

exendin-4 was assessed in high fat fed and db/db mouse models of T2DM. In HFF 

mice, treatment with (DAla2)GIP-xenin-8-Gln in combination with exendin-4 was the 

most effective therapeutic strategy, although (DAla2)GIP-xenin-8-Gln alone induced 

notable benefits in this model. Interestingly, in the db/db model, (DAla2)GIP-xenin-8-

Gln alone was much less efficacious than combined treatment with exendin-4, most 

likely linked to the disease severity and notable beta cell dysfunction. Further to this, 

NT has several antidiabetic actions and is known to facilitate fatty acid absorption. 

Xenin is structurally related to NT, with similar biological actions, thought to be 

partially mediated through NT receptors. Preliminary in vitro studies revealed that the 

novel acetyl-neurotensin(8-13)-xenin-8-Gln hybrid had antidiabetic attributes that 

warranted further in vivo assessment. Twice daily administration of acetyl-

neurotensin(8-13)-xenin-8-Gln in combination with exendin-4 to HFF mice had 

positive glucose-lowering and insulinotropic effects with beneficial actions on lipid 

metabolism. Interestingly, GIP action has been linked to the exacerbation of obesity 

and T2DM, increasing insulin resistance and fat deposition. Thus, postulation that 

inhibiting GIP action could potentially halt the progression of obesity-related diabetes. 

However, to date there is no definitively characterised peptide-based GIP antagonist. 

Manipulation of the amino acid sequence, with N- and C- termini truncation, yielded 

Pro3(3-30)GIP as a notable GIP receptor antagonistic that merits further testing. 

Overall, these data show that modified GIT peptides possess notable therapeutic 

efficacy with potential for translation to human T2DM and obesity.   
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1.1 Peptide therapeutics 

The area of gastrointestinal endocrinology involving the study of 

gastroenteropancreatic regulatory hormones/neuro peptides and the gut brain axis has 

become pivotal to scientific research and pharmaceutical development (Rehfeld 2015; 

Röder et al., 2016). Research has focused on their locality, expression, secretory 

mechanisms, receptors, receptor binding and regulatory effects on: gastrointestinal 

motility, gastric acid secretion, pancreatic exocrine and carbohydrate metabolism to 

better understand their role under both normal and pathophysiological conditions 

(Rehfeld, 2012; 2015; Track, 1980). There is much interest in utilising these hormones 

as pharmacological agents, exploiting their pharmacokinetic and pharmacodynamic 

capabilities for the treatment of metabolic disease. As it is now understood, the 

gastrointestinal system is the largest endocrine organ, with gastrointestinal hormones 

extensively expressed outside the gut and neuropeptides expressed within the gut, thus 

it has vast potential as a major therapeutic target (Rehfeld, 2012; 2015). 

 

1.2 The pancreas 

The pancreas is a key regulatory organ located within the upper left side of the 

abdominal cavity, (behind the stomach) and comprises a head, body and tail (Figure 

1.1). Its role as an organ within the body is to regulate metabolic homeostasis by 

secreting digestive enzymes and hormones (Röder et al., 2016). Enzymes are secreted 

from exocrine cells into the accessory and pancreatic ducts and regulatory hormones 

are secreted from endocrine cells directly into the blood stream. Endocrine cells are 

located throughout exocrine tissue, where they cumulate together and assemble what 

is known as the Islets of Langerhans, which accounts for 1-2% of the whole organ and 

their secretions are key to regulating glucose homeostasis (Röder et al., 2016). Islet 

architecture consists of five cell types all secreting different key hormones; alpha cells 

(15-20%) produce glucagon, beta cells (65-80%) produce insulin, ɛ cells produce 

ghrelin (<1%), gamma cells produce pancreatic polypeptide (PP) (3-5%) and delta 

cells produce somatostatin (3-10%) (Brereton et al., 2015; Röder et al., 2016).  

Under normal conditions, it is primarily glucagon and insulin that are secreted by the 

pancreas to maintain glucose homeostasis within the ideal range (4-6 mmol/l). These 

two hormones achieve homeostasis by acting as a counterbalance to each other’s 
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regulatory actions (Figure 1.2). In times of depleted blood glucose levels, glucagon is 

secreted from α-cells, and this triggers hepatic glycogenolysis and hepatic/renal 

gluconeogenesis elevating blood glucose levels. Conversely, when blood glucose 

levels become elevated β-cells are stimulated to secrete insulin by exocytosis (Figure 

1.3). This enables insulin-dependent uptake of glucose by muscle and adipose tissue 

and therefore a lowering of blood glucose levels and initiation of glycogenesis and 

lipogenesis (Röder et al., 2016). 

 

Figure 1.1: The exocrine and endocrine function of the pancreas 

 

1.3 Type 2 diabetes mellitus an overview 

Metabolic disturbances result in disease development and at the centre of 

gastroenteropancreatic dysregulation is T2DM (Röder et al., 2016). T2DM is a 

chronic, non-communicable, multifactorial disease that is growing in prevalence. It 

occurs as a consequence of insulin resistance and impaired insulin secretion (Public 

Health England, 2018; Röder et al., 2016). The former occurs when insulin 

progressively loses its efficacy on target muscle and adipose tissue. The latter 

Pancreatic exocrine function involves secretion of digestive enzymes to the upper small 

intestine and endocrine function is to secrete several hormones from various cell types 

within the isles of Langerhans (Adapted from Röder et al., 2016). 
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progresses because of a continuing decrease in glucose responsiveness causing glucose 

and lipid toxicity that results in a decrease in pancreatic beta cell mass (Kaku, 2010). 

 

Figure 1.2: Glucose homeostasis 

 

In the early stages of T2DM development, known as pre-diabetes, the body begins to 

compensate for increasing insulin resistance, by increasing the rate of insulin secretion 

(Dendup et al., 2018). As a result, pancreatic beta cell mass increases and this is 

thought to be due to an increase in beta cell number but could also be linked to beta 

cell hypertrophy (Alarcon, 2016; Weir and Bonner-Weir, 2004). Eventually, the 

insulin produced has an inability to function normally, which is characterised by 

declining beta cell function, and over time this leads to prolonged, elevated blood 

glucose concentrations, a hyperglycaemic state (Röder et al., 2016). This is 

The mechanism of how blood glucose levels are balanced by glucose and insulin. 

Postprandially, blood glucose is high, insulin is secreted to initiate glucose uptake into 

muscle and adipose tissue and to promote glycogenesis. Conversely, when blood glucose 

is low, glucagon is secreted by the pancreas by glycogenolysis to increase endogenous 

blood glucose levels (Adapted from Röder et al., 2016). 
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compounded by increased hepatic gluconeogenesis which in turn causes hepatic 

glucose production to increase thus exacerbating the hyperglycaemia (Redinger, 2007; 

Röder et al., 2016).  

Ultimately, the result is increased insulin resistance, decreased beta cell insulin 

secretion, and eventual beta cell exhaustion, thought to be induced by the increased 

stress, caused by inflammatory and oxidative states (Alarcon, 2016; Dendup et al., 

2018; Röder et al., 2016). This tandem effect, the decline of beta cell function and 

insulin production, coupled with hyperglycaemia, exacerbates insulin resistance and 

T2DM (Alarcon, 2016; Dendup et al., 2018; Weir and Bonner-Weir, 2004). The 

diagnostic criteria for T2DM is a fasting plasma of >7.0 mmol/l, an oral glucose 

tolerance of >11.1 mmol/l after 2 h and a haemoglobin A1c of 48 mmol/mol or 6.5% 

(Diabetes UK, 2018). 

 

Figure 1.3: The insulin secretion cascade 

 

 

The mechanism for pancreatic beta cell insulin release. Uptake of exogenous glucose by 

GLUT2, undergoes glycolysis. The adenosine triphosphate (ATP) levels adjust the 

ATP/ADP ratio. This causes the ATP-sensitive K+ channels to close and membrane 

depolarisation to occur opening the voltage-dependent Ca2+ channels as a response to the 

increase in intracellular calcium levels leading to vesicle fusion and ultimately insulin 

secretion (Adapted from Röder et al., 2016). 
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There are several causative factors in development of T2DM. These risk factors 

include a genetic and/or ethnic predisposition and/or environmental factors such as a 

sedentary lifestyle, obesity, smoking, alcohol and aging (Figure 1.4; Public Health 

England, 2018). Globally, the prevalence of diabetes in 2015 was estimated to be 415 

million adults and by 2040 this is expected to rise to 642 million (Dendup et al., 2018). 

In the UK, 3.8 million people suffer from T2DM with 200,000 new cases diagnosed 

every year and a further 5 million at high risk of development (Public Health England, 

2018). Furthermore, T2DM was listed by the World Health Organisation (WHO) as 

the sixth global cause of death in 2015 with approximately 1.6 million deaths from 

diabetes and related complications and/or diseases (Public Health England, 2018). 

Interestingly, this report also stated that diagnoses of T2DM is seven times more likely 

in obese adults than those of healthy weight and if recent trends continue, 1 in 3 people 

will be obese by 2034 and 1 in 10 will develop T2DM (Public Health England, 2018).  

 

1.3.1 Obesity and T2DM 

The primary causative factor of obesity in Western society is energy intake levels 

exceeding energy expenditure, resulting in the conversion of excess energy to fat. On 

a molecular level, excess circulating free fatty acids (FFA) are stored as triacylglycerol 

within adipocytes, which in turn cause a physiological accumulation of body fat mass. 

This simple mechanism of fat accumulation results in the manifestation of obesity and 

metabolic dysfunction (Redinger, 2007).  Pathophysiologically, obesity is thought to 

result in metabolic dysfunction through the development of insulin resistance. The 

mechanism by which this occurs was first postulated by Randle et al., (1963), where 

it was hypothesised that obesity-related insulin resistance was caused by the disruption 

of energy homeostasis, encompassing both dysregulation of lipid and glucose 

metabolism (Qatanani and Mitchell, 2007; Redinger, 2007). As obesity progresses, 

excess FFA are released from adipocytes due to enhanced lipolysis. This results in 

lipid toxicity causing insulin receptor dysfunction and a decrease in beta cell insulin 

secretion. An increase in macrophage activity along with the release of pro-

inflammatory cytokines including TNF-α and IL1β, leads to a state of low grade 

inflammation, oxidative cellular stress and mitochondrial dysfunction (Boden, 2008; 

2011; Greenberg and Obin, 2006).  
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1.3.2 The financial burden of T2DM 

Financially T2DM is considered a major public health burden, as the NHS spends 

approximately 9% of its annual budget on the treatment of T2DM and associated 

diseases. In terms of monetary value this equates to approximately £8.8 billion (Public 

Health England, 2018). These figures are expected to rise over the next 25 years to 

17% of the total annual budget (Diabetes UK, 2014; NHS, 2012). To the UK taxpayer, 

the total direct and indirect care costs are currently estimated at £23.7 billion and is 

expected to increase to £39.8 billion by 2035/6 (Diabetes UK, 2014). 

 

Figure 1.4: Development of T2DM 
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1.4 Current oral therapies for the treatment of T2DM 

As diabetes progresses, the need for therapeutic intervention is essential for the 

individuals’ well-being. The main objective is to increase insulin secretion, reduce 

hyperglycaemia and insulin resistance, along with energy regulation (Mayo Clinic, 

2014). Treatment can range from implementation of dietary restriction and/or physical 

exercise to reduce BMI and waist circumference, improve glycaemic control and 

metabolic haemostasis. Often introduction of pharmaceutical therapeutics is 

necessary, as the majority of individuals fail to strictly adhere to non-pharmaceutical 

interventions (Chaudhury et al., 2017; Olokoba et al., 2012).  

The range of pharmaceuticals available to treat diabetes is extensive and they target 

several of the pathophysiological mechanisms which lead to hyperglycaemia, and are 

given either alone or in combination. Some of these can be sub-divided into insulin 

sensitizers; biguanides and thiazolidinediones or insulin secretagogues; sulfonylureas, 

non-sulfonylureas alpha glucosidase inhibitors and incretin mimetics (Figure 1.5; 

Chaudhury et al., 2017; Olokoba et al., 2012). 

 

Figure 1.5: Current T2DM therapeutics 

Current pharmaceutical agents for the treatment of T2DM sites of action (Adapted from 

Evans et al., 2016).  
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1.4.1 Biguanides 

There is currently only one biguanide available on the global market, known as 

metformin, (dimethylbiguanide). It is derived from Galega officinalis or more 

commonly known at goat’s rue or French lilac (McCreight, Bailey and Pearson, 2016). 

Metformin is the initial treatment of choice for patients with obesity-diabetes (Evans 

et al., 2016). Metformin does not stimulate insulin secretion, but rather works to 

increase insulin sensitivity and decrease gluconeogenesis, thus suppressing hepatic 

glucose production and increasing glucose uptake in skeletal muscle (Chaudhury et 

al., 2017; Cheng and Fantus, 2005; Evans et al., 2016).  

Interestingly, a study by Zhou et al., (2001) ascertained that metformin has another 

mechanism of action, as it activates the adenosine monophosphate-activated protein 

kinase (AMPK) enzyme found in muscle and liver tissue. Normal activation is by 

adenosine monophosphate which is a by-product of adenosine triphosphate and a 

cellular signal for increased energy (Chaudhury et al., 2017; Cheng and Fantus, 2005). 

Activated AMPK causes phosphorylation and inhibition of acetyl-coenzyme A 

carboxylase, which acts as a catalyst to limit lipogenesis reducing the production of 

FFA (Chaudhury et al., 2017). Hepatic AMPK can also reduce the transcription factor 

expression of sterol-regulatory-element-binding-protein-1 (SREBP-1), a known 

mediator of insulin resistance and dyslipidaemia pathogenesis (Zhou et al., 2001). 

Additionally, Miller and colleagues (2013) have shown metformin to have another 

mechanism of action, reducing fasting glucose levels by antagonising glucagon action 

(Miller et al., 2013). Metformin causes AMP and nucleotides to accumulate, thus 

inhibiting adenylate cyclase, reducing the activity of cyclic AMP and protein kinases 

A (PKA), and abolishing phosphorylation of PKA targets and hepatocytes are then 

obstructed from glucagon-dependent glucose output (Miller et al., 2013).  

Metformin is known to be a safe mono-pharmaceutical and when used in conjunction 

with other T2DM therapeutics and other prescribed medications. It has proven efficacy 

not only in reducing fasting plasma glucose but also fasting plasma insulin, 

triglycerides and free fatty acids (FFA) (Evans et al., 2016).  However, with any 

medication it can have adverse effects including gastrointestinal disturbance and cause 

vitamin B12 and folic acid deficiency, as well as fatal lactic acidosis due to severe 

renal insufficiency (Chaudhury et al., 2017; Evans et al., 2016). 
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1.4.2 Thiazolidinediones  

Thiazolidinediones (TZDs) such as pioglitazone are also used to improve insulin 

sensitivity by increasing glucose uptake in adipose, liver and muscle tissue. The action 

of thiazolidinediones are thought to occur by modulating peroxisome proliferator-

activated receptor gamma (PPARγ) on adipocytes, as these regulate the expression of 

genes involved with lipid and carbohydrate metabolism. This results in enhanced 

differentiation and a reduction in lipolysis and circulating adipo-cytokine levels 

(Chaudhury et al., 2017; Evans et al., 2016). There is also an improvement in 

lipogenesis and storage and therefore reduced FFA. This results in preserving beta cell 

integrity and function, which helps to improve insulin resistance and prevent beta cell 

exhaustion (Chaudhury et al., 2017; Evans et al., 2016). Thiazolidinediones can be 

used as a monotherapy or in combination with metformin and other therapeutics. 

However, in some countries, TZDs are not approved for use in combination with 

insulin due to reported adverse effects to include peripheral oedema and congestive 

heart failure (Chaudhury et al., 2017; Evans et al., 2016). Continued use of 

pioglitazone has also been linked to bladder cancer and usage restrictions have been 

enforced by US Food and Drugs Administration (FDA) and European Medicines 

Agency (EMA) in those at risk of development or with bladder cancer (Evans et al., 

2016). 

 

1.4.3 Sulfonylureas 

Sulfonylureas were initially developed in the 1950’s and continue to be used as 

therapeutic agents for treatment of T2DM (Evans et al., 2016). Sulfonylureas increase 

insulin release by directly targeting the beta cell and their mechanism of action is to 

cause depolarisation of the cell membrane through binding to the sulfonylurea receptor 

on the cell surface. This inhibits the potassium efflux and opens the calcium channels 

and thus insulin is released (Fowler, 2007). Furthermore, sulfonylureas can restrict 

gluconeogenesis, reduce lipogenesis and decrease the clearance rate of insulin by the 

liver (Chaudhury et al., 2017). The first-generation sulfonylureas have now been 

replaced with second generation sulfonylureas that have improved safety profiles and 

these include glyburide and glipizide (Evans et al., 2016; Fowler, 2007). This drug 

class can become self-limiting in those with late stage T2DM because there are 
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insufficient beta cells to elicit a therapeutic response (Evans et al., 2016; Fowler, 

2007). These pharmaceuticals are normally prescribed as a secondary or additional 

line of treatment but are contraindicated during pregnancy and in cases of hepatic and 

renal disease. Adverse effects include hypoglycaemia, hyponatremia and an increase 

in body weight (Chaudhury et al., 2017; Evans et al., 2016).  

 

1.4.4 Non-sulfonylureas/meglitinides  

Non-sulfonylureas also known as meglitinides, repaglinide and nateglinide work 

similar to sulfonylureas, binding to the receptor on the beta cell, although meglitinides 

have a reduced binding affinity and thus a reduced half-life. Meglitinides also have a 

reduced efficacy compared to sulfonylureas because the therapeutic effect is only 

initiated under high levels of hyperglycaemia (Chaudhury et al., 2017; Fowler, 2007). 

The adverse effects are the same as those described in sulfonylureas, although episodes 

of hypoglycaemia are less likely due to shorter duration of action.  

 

1.4.5 Alpha glucosidase inhibitors 

Alpha glucosidase inhibitors, of which only acarbose is utilised within the UK, slow 

down the rate that carbohydrates are absorbed to reduce hyperglycaemic peaks. They 

block complex carbohydrates from enzymatic degradation in the small intestine by 

competitively binding to the α-glucosidase enzymes binding site on the 

oligosaccharide and thus prevent enzymatic hydrolysis (Evans et al., 2016).  Adverse 

effects include gastrointestinal issues including, but not limited to, flatulence caused 

by the increased level of carbohydrates within the colon, bloating and diarrhoea (Evans 

et al., 2016). 

 

1.4.6 Sodium-glucose cotransporter 2 (SGLT2) inhibitors  

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a relatively new class of 

pharmaceutical agents for T2DM. SGLT2 inhibitors, such as dapagliflozin, have a 
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mechanism of action that is dependent on glucose not insulin. These drugs lower 

hyperglycaemia by preventing the kidney from reabsorbing glucose from within the 

proximal renal tubule by inhibiting SGLT2 (Chaudhury et al., 2017). This mechanism 

allows for other therapies to be used in combination thus utilise their insulinotropic 

therapeutic effect in tandem. Insulin can also be utilised in combination with SGLT2 

inhibitors (Ferrannini and Solini, 2012). SGLT2 inhibitors increase weight loss and 

reduce blood pressure but there is also associated adverse effects and these include; 

infections of genitourinary system, in some cases ketoacidosis and cancer. The 

efficacy of SGLT2 inhibitors can also be reduced when glomerular function is 

impaired (Chaudhury et al., 2017; Ferrannini and Solini, 2012). 

 

1.5 Bariatric surgery  

Bariatric surgery is primarily used for obesity-diabetes in those with a BMI >30-35 

kg/m2 as it can significantly increase sustainable weight loss (Meek et al., 2016; Singh, 

Singh and Kota, 2015). Currently, the main three methods used are gastric banding, 

sleeve gastrectomy and Roux-en-Y gastric bypass (RYGB), the latter being the 

predominant choice (Figure 1.6; Meek et al., 2016; Singh, Singh and Kota, 2015). 

Gastric banding and sleeve gastrectomy methods both reduce the stomach capacity. 

The former utilises an adjustable silicone ring, forming a small pouch at the lower 

oesophagus and the latter involves the removal of a lateral section, with a reduced 

long-sleeve shape stomach remaining (Meek et al., 2016).  

RYGB alters the passage of nutrients, as a small stomach pouch is constructed using 

staples and drained directly into the segmented jejunum, forming the Roux limb (Meek 

et al., 2016). Nutrients can then move down the alimentary limb, bypassing the 

remaining stomach and duodenum. The alimentary limb is then anastomosed with the 

distal biliopancreatic limb, creating the common limb where the nutrients are 

combined, for a shorter time with the biliopancreatic secretions. Time and nutritional 

absorption are dependent on the length of the common limb (Meek et al., 2016). 

Subsequently, with this alteration to the nutritional tract and absorption time, RYGB 

is demonstrated to resolve the associated disease pathologies of T2DM, inducing 
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euglycemia and normalising glycated haemoglobin leading to remission within a 

matter of days, in approximately 80% of patients (Singh et al., 2015).  

 

Figure 1.6: Types of bariatric surgery  

 

 

 

There are several postulated mechanisms of action for the remission of T2DM (Figure 

1.7), including the hindgut hypothesis (Cummings and colleagues (2004)) and the 

foregut hypothesis (Rubino and colleagues (2006)) amongst others (Meek et al., 2016; 

Pok and Lee, 2014; Singh et al., 2015). The foregut hypothesis suggests that it is the 

exclusion of nutrients from the duodenum and proximal jejunum transit, inhibiting 

nutrient-induced secretion of a putative signal which augments insulin resistance and 

T2DM. One such candidate could be glucose-dependent insulinotropic polypeptide 

(GIP), that is recognised to be largely secreted from the duodenum and proximal 

jejunum (Campbell and Drucker, 2013). The hindgut hypothesis 

proposes that improved glucose control is gained by the accelerated transport of 

Gastric banding (A), the band can be altered to augment or decrease the effects. Sleeve 

gastrectomy (B), the stomach is permanently reduced by the removal of a lateral section. 

Roux-en-Y gastric bypass (C), a stomach pouch is constructed and joined to the jejunum 

along with the biliopancreatic limb to form the Y shape that ends with the common limb 

(Adapted from Meek et al., 2016). 

A C B 
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nutrients to the distal small intestine, in turn inducing secretion of a physiological 

signal that improves glucose homeostasis (Pok and Lee, 2014). Indeed, glucagon like 

peptide-1 (GLP-1) is known to be predominantly secreted from the distal small 

intestine (Campbell and Drucker, 2013), and is therefore often linked to hindgut 

hypothesis.  

Taken together, these hypotheses attribute the change in gut hormone secretion and 

action such as, but not limited to, GLP-1, peptide tyrosine tyrosine (PYY) and GIP, 

oxyntomodulin and pancreatic polypeptide (PP) (Meek et al., 2016; Singh et al., 

2015). These changes in gut hormone secretion profile positively affect appetite and 

satiety as well as energy expenditure and are thought to attribute to sustaining the 

weight loss effect as well as improved glucose homeostasis (Meek et al., 2016; 

Singh et al., 2015; Troke, 2014).  

However, initial improvement/remission is thought to be caused by dramatic reduction 

in plasma glucose levels following the surgery due to the acute negative calorie 

balance, thus within days there is normalisation of plasma glucose levels (Singh et al., 

2015). In addition, following the surgical re-direction of nutrients directly to the distal 

jejunum, which produces GLP-1 significantly increase its secretion and seems to 

augment the response to insulin, further contributing to alleviation of the disease 

pathologies (Singh et al., 2015).  

Furthermore, bariatric surgery has limitations in terms of its applicability to non-obese 

T2DM individuals (Singh et al., 2015). Thus, the duodenal-jejunal bypass liner 

(DJBL), which is a non-surgical endoscopic method was developed to replicate the 

effect of RYGB, denoted as ‘metabolic surgery’ and has now been shown to exert 

significant improvements on glycaemic control (Singh et al., 2015).  

The adverse effects associated with bariatric surgery include an increased mortality 

rate, expense of surgery and post-surgical care, as well as acute complications. These 

occur in approximately 5-10% of cases and can result in leakages, obstructions and 

post-operative infections as well as other long-term complications such as internal 

hernias and nutritional deficiencies. Post-operatively, bariatric surgery has also been 

linked to having a detrimental effect on emotional well-being (Capozzi et al., 2018; 

Pories, 2008; Singh et al., 2015; Schauer et al., 2017). 
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Figure 1.7: Suggested mechanisms for remission of T2DM 

 

 

1.6 Enteroendocrine hormones 

Enteroendocrine hormones are recognised to play an important role in the control of 

metabolism and blood glucose levels (Campbell and Drucker, 2013; Psichas, Reimann 

and Gribble, 2015). Two of the major players in this regard, termed the incretin 

hormones, are GLP-1 and GIP (Campbell and Drucker, 2013). In addition, other 

notable enteroendocrine-derived regulators of metabolic state include, but not limited 

to, oxyntomodulin, PP, PYY, xenin, somatostatin and ghrelin. This enteroendocrine 

sensory system relates to the initial secretion of enteroendocrine hormones 

postprandially, which exert physiological responses to regulate glucose homeostasis, 

islet hormone secretion, lipid metabolism as well as appetite, gastrointestinal motility 

and body weight (Campbell and Drucker, 2013; Leckstrom et al., 2009; Psichas, 

Reimann and Gribble, 2015).   

A timeline showing the suggested mechanisms of improving T2DM post-bariatric surgery 

(Adapted from Singh et al., 2015). 
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Incretins are secreted by enteroendocrine cells located within the gastrointestinal tract 

in response to increased circulating glucose levels (Campbell and Drucker, 2013). 

Activation is initiated by orally ingested glucose, which in turn stimulates insulin 

secretion from pancreatic beta cells that express the specific G-protein coupled 

receptors for respective incretin hormone (Paschetta, Hvalrug and Musso, 2011). Thus, 

the ‘incretin effect’ is said to be the difference in insulin secretory response from an 

oral glucose load compared to a similar intravenously administered glucose challenge 

(Chaudhury et al., 2017). Full proof of the incretin effect was not confirmed until 1964, 

when insulin concentrations could be determined by radioimmunoassay (RIA) 

(Creutzfeldt, 2004). Interestingly, enteroendocrine cells account for approximately 1% 

of intestinal epithelial cells yet it is estimated that 50-70% of total insulin secretion 

can be attributed to the incretin effect (Chaudhury et al., 2017; Gault et al., 2003; 

Psichas, Reimann and Gribble, 2015). 

In contrast, if the incretin effect becomes dysregulated or impaired, the 

enteroendocrine system has no compensatory mechanism, this loss is an early indicator 

and characteristic of T2DM (Al-Sabah, 2015). Loss of incretin effect contributes to a 

defective response to both GLP-1 and GIP as well as impaired secretion of GLP-1 

(Freeman, 2009). However, the insulinotropic response of GLP-1 can be restored 

through the administration of GLP-1 agonists, thus the impairment can be overcome 

and offers a valuable treatment option for T2DM. However, this is not the case with 

GIP, as T2DM progresses GIP beta cell insulinotropic response decreases. The 

mechanism underpinning this remains largely unclear, but studies have postulated that 

the progressing hyperglycaemia detrimentally affects GIP receptor (GIPR) signalling 

to a higher degree than that of the GLP-1 receptor (GLP-1R) (Al-Sabah, 2015). 

Furthermore, a study by Zhou and colleagues, (2007) using rat and human pancreatic 

islets under hyperglycaemic conditions revealed that GIPR expression, GIP-mediated 

cAMP, and insulin production were substantially decreased in T2DM (Al-Sabah, 

2015). 

GLP-1 and GIP action is also inhibited by the glycoprotein, CD26 better known as 

dipeptidyl peptidase-IV (DPP-IV). DPP-IV is a type II transmembrane protein with 4 

domains; the cytoplasmic domain (1–6), the transmembrane domain (TMD) (7–28), 

the flexible stalk segment (29–39), and an extracellular domain (40–766) (Röhrborn, 
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Wronkowitz and Eckel, 2015). DPP-IV has multiple functions including acting as a 

binding partner for several peptides, and as an exopeptidase cleaving various substrates 

including incretin hormones, reducing their bioavailability. DPP-IV exerts its effects 

on incretin hormones by selectively cleaving their N-terminal amino acids in 

circulating plasma inhibiting their insulinotropic action, and ultimately their 

therapeutic efficacy (Röhrborn, Wronkowitz and Eckel, 2015; Seino and Yabe 2011).  

 

1.6.1 Glucagon-like-peptide-1 (GLP-1) 

GLP-1 is derived from post translational cleavage of the proglucagon gene by 

prohormone convertase PC 1/3 (Campbell and Drucker, 2013). This gene also encodes 

for glucagon-like peptide-2 and glucagon, with both peptides having a 50% homology 

to GLP-1 (Campbell and Drucker, 2013). There are two bioactive forms of GLP-1, 

amidated GLP-1(7-36) and non-amidated GLP-1(7-37), and both elicit metabolic 

actions (Seino and Yabe 2011). Enteroendocrine intestinal epithelial L-cells, located 

in the distal ileum and colon, secrete GLP-1 in response to nutritional ingestion as well 

as neural and endocrine factors (Campbell and Drucker, 2013; Psichas, Reimann and 

Gribble, 2015). Secretion is mediated by the automatic nervous system including the 

vagus nerve, neurotransmitters gastrin-releasing peptide (GRP) and acetyl choline as 

well as GIP (Baggio and Drucker, 2007; Campbell and Drucker, 2013). These activate 

protein kinase A (PKA), protein kinase C (PKC), calcium and mitogen-activated 

protein kinase (MAPK). Secretion occurs in a biphasic manner with the initial phase 

lasting 10-15 minutes and the secondary phase 30-60 minutes (Baggio and Drucker, 

2007; Campbell and Drucker, 2013; Seino and Yabe 2011).  

GLP-1R’s belong to the class B family of G-protein coupled receptors (GPCRs), which 

have a large extracellular N-terminal domain (NTD) linked to a 7-transmembrane 

helical domain (Baggio and Drucker, 2007; Capozzi et al., 2018; Seino, Fukushima 

and Yabe 2010). The N-terminal receptor domain is key for GLP-1R binding and the 

third intracellular loop is essential for coupling the receptor to specific G-proteins, 

crucial for signal and activation actions (Baggio and Drucker, 2007; Seino, Fukushima 

and Yabe 2010). The GLP-1R is expressed on pancreatic alpha, beta and delta cells, 

the lungs, kidneys, heart, stomach, intestines, skin, pituitary and nodose ganglion 
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neurons, and within regions of the central nervous system (CNS) mainly the 

hypothalamus and brain stem; hippocampus/cerebral cortex etc. (Baggio and Drucker, 

2007; Campbell and Drucker, 2013; Seino, Fukushima and Yabe 2010).  

Once receptor binding occurs, the biological actions of GLP-1 include: slowing gastric 

emptying, inhibiting glucagon production and increasing insulin secretion. In addition, 

GLP-1 suppresses appetite, lowers body weight and exhibits, anti-inflammatory 

properties (Capozzi et al., 2018). Receptor binding on beta cells initiates insulin 

secretion by activating adenylate cyclase activity and production of cAMP. Other 

mechanisms are thought to include calcium and potassium ion channels, as well as 

intracellular energy homeostasis and exocytosis (Baggio and Drucker, 2007; 

MacDonald et al., 2005; Seino and Yabe 2011). GLP-1 can also preserve islet 

morphology and restore glucose sensitivity of resistant beta cells by up-regulating 

glucose transporters and glucose kinase expression (Baggio and Drucker, 2007). This 

improves the ability of the beta cell to sense and respond to glucose. Furthermore, 

GLP-1 increases beta cell proliferation, neogenesis and prevention of apoptosis, via 

the phosphoinositide 3-kinase pathway (Baggio and Drucker, 2007; Seino, Fukushima 

and Yabe 2010). Native GLP-1 has a relatively short half-life of approximately one 

and a half minutes as it is subject to enzymatic degradation by DPP-IV (Röhrborn, 

Wronkowitz and Eckel, 2015; Tulaihi and Alhabib, 2017). Therefore, biologically 

active and enzymatically resistant GLP-1 receptor agonists have been developed for 

the treatment of T2DM.  

 

1.6.2 GLP-1 receptor agonists  

Injectable GLP-1 receptor agonists (GLP-1 RA), are analogues of GLP-1 that bind to 

its receptor and stimulate bioactive effects (Tulaihi and Alhabib, 2017). There are 

several variations available including; exenatide, lixisenatide, liraglutide, albiglutide 

and dulaglutide (Marín-Penalver et al., 2016). They are classified by their therapeutic 

duration, either short-acting or long-acting, with half-lives ranging from 2.4 hours up 

to several days (Chaudhury et al., 2017; Marín-Penalver et al., 2016). The combined 

use of a DPP-IV inhibitor may also be warranted to further enhance the half-life and 
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therapeutic efficacy (Chaudhury et al., 2017; Jackson et al., 2010; Marín-Penalver et 

al., 2016).  

The first GLP-1 RA to be introduced to the market (2005), was the short-acting, twice 

daily synthetic analogue exenatide (Chaudhury et al., 2017; Hansen, Vilsboll and 

Knop, 2010; Marín-Penalver et al., 2016). It is identical to exendin-4, a 39 amino acid 

peptide derived from the venom of Heloderma suspectum lizard (Gila monster), and it 

shares a 53% sequence homology to native GLP-1 with potent agonist properties on 

the GLP-1R (Marín-Penalver et al., 2016; Seino, Fukushima and Yabe 2010; Tulaihi 

and Alhabib, 2017). Short-acting GLP-1 RA provide brief receptor activation with 

therapeutic effects primarily directed towards postprandial hyperglycaemia and gastric 

emptying, with a lesser effect on fasting glucose (Marín-Penalver et al., 2016). The 

long-acting, once daily GLP-1 RA liraglutide, and long-acting release (LAR) once 

weekly exenatide, as well as albiglutide and dulaglutide elicit their therapeutic effect 

by continuously activating the GLP-1R (Capozzi et al., 2018; Chaudhury et al., 2017; 

Freeman, 2009; Marín-Penalver et al., 2016; Tulaihi and Alhabib, 2017). Thus, 

slowing gastric emptying, inhibiting glucagon production and increasing insulin 

production (Figure 1.8). Therapeutic effects, demonstrated by clinical data include 

improved glucose homeostasis and a reduction in body weight, essential for treating 

T2DM. Also noted was a reduction in systolic blood pressure and protection against 

cardiovascular events (Capozzi et al., 2018; Chaudhury et al., 2017).  

Importantly, exendin-4 is resistant to DPP-IV degradation due to a glycine at position 

2. Exendin-4, pre-clinically, was shown to have superior potency on lowering blood 

glucose levels attributed to extended circulating ability (Tulaihi and Alhabib, 2017). 

Exendin-4 (exenatide) was also shown to reduce glycated haemoglobin, improve beta 

cell function and decrease fasting and postprandial glucose levels in T2DM patients, 

with a potency estimated to be 5000 times greater than native GLP-1 (Seino, 

Fukushima and Yabe 2010).   

More recently, studies utilising a GLP-1R antagonist exendin (9-39) propose GLP-1 

has an energy intake reducing function subsequent to bariatric surgery (Capozzi et al., 

2018). GLP-1 concentrations are elevated to supraphysiological levels and appear to 

reduce appetite. Furthermore, GLP-1 is implicated as a major contributor to improved 

glycaemic control following bariatric surgery. However, it is postulated that 
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pharmacologically GLP-1 administered to supraphysiological levels would yield 

similar therapeutic effects but these concentrations are not well tolerated and result in 

adverse effects (Capozzi et al., 2018; Nauck and Meier, 2018). GLP-1 RA are not 

prescribed to those that suffer or have a history of pancreatitis. Other adverse effects 

range from mild-to-moderate gastrointestinal disruption, nausea, vomiting and 

diarrhoea (Marín-Penalver et al., 2016). Reactions at injection sites is another common 

problem with GLP-1 RA and can cause abscesses, cellulitis and necrosis. Additionally, 

the development of antibodies to GLP-1 RA can also occur (Marín-Penalver et al., 

2016). 

 

Figure 1.8: Incretin mimetics: GLP-1 receptor agonists 

 

 

The pharmacological effects of GLP-1 receptor agonists in T2DM (Adapted from Evans 

et al., 2016). 
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1.6.3 DPP-IV inhibitors 

DPP-IV inhibitors are administered orally, usually once daily, and can be employed as 

a mono therapy, or alongside metformin, thiazolidinediones or sulfonylureas as a 

combination therapeutic (Nauck, 2016; Tulaihi and Alhabib, 2017).  DPP-IV inhibitors 

main mechanism of action is to inhibit the enzymatic degradation of endogenous 

incretins GLP-1 and GIP (Capozzi et al., 2018; Chaudhury et al., 2017; Fowler, 2007). 

They act to reduce the serum activity of DPP-IV by >80%, thus increasing levels of 

biologically active GLP-1 (Nauck, 2016). The first approved DPP-IV inhibitor was the 

non-peptide heterocyclic compound sitagliptin in 2006, which is long-acting with a 

rapid onset (Nauck, 2016). With the subsequent introduction of vildagliptin and 

saxagliptin, which are long-acting, slow onset cyanopyrrolidines. Others include 

linagliptin, a methylxanthine and the newest to the market is alogliptin, a heterocyclic 

aminopiperidine (Chaudhury et al., 2017; Nauck, 2016). Due to the variation in 

chemical structure their pharmacokinetic properties, bioavailability, half-life, plasma 

peak level and mode of excretion also differ (either renal or hepatic) (Nauck, 2016; 

Tulaihi and Alhabib, 2017).  

Additionally, treatment with the DPP-IV inhibitor sitagliptin was shown to improve 

cardiac function and coronary artery perfusion (Chaudhury et al., 2017). Adverse 

effects include acute pancreatitis and risk of hypoglycaemia, especially in those with 

reduced renal function. Certain medications are also contraindicated including 

warfarin and digoxin. Exenatide has been shown to increase the anticoagulant effect 

of warfarin and plasma levels of digoxin are increased by sitagliptin (Chaudhury et al., 

2017). 

 

1.6.4 Glucose-dependent insulinotropic polypeptide (GIP) 

Enteroendocrine K cells secrete GIP in response to ingestion of glucose and fat in an 

absorption dependent manner (Baggio and Drucker, 2007; Psichas, Reimann and 

Gribble, 2015). These cells are mainly located in the upper jejunum and duodenum 

(Campbell and Drucker, 2013). GIP is derived from the 153 amino acid proGIP 
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precursor and is processed by prohormone convertase 1 or 3 to yield a final peptide of 

42 amino acids in length (Campbell and Drucker, 2013). 

GIPR’s, like GLP-1R, also belong to the class B family of GPCRs (Al-Sabah, 2015). 

It is the N-terminal region of GIP that binds to the receptors N-terminal domain (NTD), 

thus enabling a secondary interaction to occur between the N-terminus of the peptide 

and transmembrane domain (TMD). This activates the receptor and facilitates 

interaction and activation of the heterotrimeric G proteins by the TMD (Al-Sabah, 

2015). 

However, GIP is also subject to enzymatic degradation by DPP-IV, cleaving an N-

terminal dipeptide to yield GIP(3-42) and thus the parent peptide has a half-life of 

approximately 5-7 minutes in humans and 2 minutes in rodents (Baggio and Drucker, 

2007; Hansen et al., 2015). Interestingly, there is a suggestion that GIP(3-42) may 

function as a GIPR antagonist (Gault et al., 2002), albeit perhaps not at physiologically 

relevant concentrations (Deacon and Ahŕen, 2011; Gault et al., 2002). 

GIPR activation on pancreatic beta cells mediates glucose-induced insulin secretion, 

insulin biosynthesis and inhibition of beta cell apoptosis (Baggio and Drucker, 2007).  

GIPRs are also expressed on pancreatic alpha cells, adipose tissue (mediates lipid 

metabolism) and bone (enhances bone formation) with further distribution throughout 

a broad spectrum of tissue including adrenal cortex, endothelium and brain with 

pleiotropic effects (Al-Sabah, 2015; Baggio and Drucker, 2007).  

Given the plethora of therapeutic targets that GIP may affect, there has been renewed 

interest in developing it into a viable therapeutic. Due to its relative large molecular 

weight (4983.6 Daltons), initial underpinning research focused on delineating the 

bioactive regions of GIP with the intent to develop a smaller molecule that retained 

the capabilities of native GIP (1-42) (Hinke et al., 2004). Hinke and colleagues (2004) 

determined that GIP could be split into three bioactive regions. The N-terminal, amino 

acids 1-14, the mid-region amino acids 19-30 and the C-terminus amino acids 31-42. 

Interestingly, it was the N-terminal and mid-region segments of amino acids that were 

demonstrated in perfused rat pancreas to retain GIP insulinotropic bioactivity, with 

suggestion that the C-terminus segment processed only somatostatinotropic activity 

(Hinke et al., 2004). Furthermore, a modified version of native GIP (1-14), with a 

reduced bond between Ala2 and Glu3 was shown to have a superior receptor potency 



23 
 

and DPP-IV resistance (Hinke et al., 2004). Considering this, modified GIP analogues 

warrant further investigation as T2DM therapeutics. 

However, chronic consumption of a high fat diet has been shown to induce 

hypersecretion of GIP (Paschetta, Hvalrug & Musso, 2011; Pathak et al., 2015a). 

These elevated GIP concentrations have been linked to inducing obesity by 

upregulating lipogenesis due to GIPs direct role in lipid metabolism and insulin 

resistance. This could suggest that increased action or secretion of GIP can predispose 

to obesity (Paschetta, Hvalrug & Musso, 2011). Evidence to which was demonstrated, 

even under diminished insulin action, by Zhou and colleagues (2005). The study 

determined, utilising insulin receptor substrate (IRS)-1-deficient knockout mice that if 

the action of insulin was diminished GIP could switch from fat oxidation to fat 

accumulation. This would ultimately result in increased triglyceride storage and thus 

an inflammatory response (Zhou et al., 2005). Conversely, a study by Varol et al., 

(2014) reputed these conclusions. They postulated utilising several in vivo models and 

a long-acting GIP analogue, that GIP is in fact a suppressor of inflammation (Varol et 

al., 2014). With the association of GIP and obesity, GIPR antagonism and/or 

disruption of GIP action has been at the forefront as a potential therapeutic for treating 

obesity-diabetes. There have been several in vivo studies, in dietary and genetically-

induced obese rodent models, utilising GIP antagonism with promising outcomes 

including reduction of circulating triglycerides and body weight (Gault et al., 2007; 

McClean et al., 2007; Pathak et al., 2015). To date, bariatric surgery is the only 

treatment option that delivers sustainable long-term weight loss in patients with 

obesity-diabetes (Troke et al., 2014). 

 

1.6.5 Neurotensin 

Neurotensin (NT) is a 13 amino acid peptide hormone located in the CNS and 

gastrointestinal tract where it acts as a neurotransmitter and regulatory hormone, 

respectively (Boules et al., 2013). NT is synthesised from a precursor (pro-NT/NN) 

that contains NT and a neurotensin-like peptide, neuromedin N (NN) (Kitabgi, 2006). 

Pro-NT/NN is cleaved by pro-protein convertases (PC), primarily pro-hormone 

convertases PC1, PC2 and PC5-A, giving rise to NT and NN (Kitabgi, 2006). NT is 
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expressed in neuronal synaptic vesicles within the CNS and in neuroendocrine cells 

within the gastrointestinal tract (Mazella et al., 2012). NT has also been located on 

organs such as the liver, heart, lungs spleen and pancreas (Boules et al., 2013).  

NT mediates its physiological effects through three NT receptors (NTRs). These are 

known as NTSR1, NTSR2 and NTSR3 (Boules et al., 2013; Mazella et al., 2012). 

NTSR1 and NTSR2 are neuropeptide receptors, coupled to GPCRs with a 7-

transmembrane helical domain. NTSR3 or sortilin is non-coupled to GPCRs type I 

receptor, has a single transmembrane domain, and is structurally unrelated to NTSR1 

or NTSR2 (Boules et al., 2013; Mazella et al., 2012).  

NT has been implicated as an important regulator of body weight, both centrally and 

peripherally, as it has been shown to mediate peripheral fat absorption from the 

intestinal tract and appetite via the CNS (Schroeder and Leinninger, 2018). Recently, 

it has been shown that disruption to NT signalling can cause a significant decrease in 

central NT expression within the ventromedial hypothalamus (VMH) in obese rodents 

when compared to lean counterparts and suggested that this loss could contribute to 

the pathogenesis of obesity (Schroeder and Leinninger, 2018).  

This is supported by several studies that demonstrate reduced levels of NT, primarily 

within the lateral hypothalamic area (LHA), in high-fat fed (HFF) rats and genetically 

obese mice (Schroeder and Leinninger, 2018). This suggests a commonality cross-over 

on regulation of food intake and body weight between the signalling actions of NT and 

leptin (Schroeder and Leinninger, 2018). In addition, a ten-day study by Feifel and 

colleagues (2010) in genetically obese ob/ob mice showed that an agonist of the NTR1 

could supress food intake and induce weight loss. Furthermore, circulating levels of 

NT are significantly increased following bariatric surgery and weight loss, further 

suggesting that NT contributes to decreasing food intake and therefore regulation of 

body weight (Schroeder and Leinninger, 2018).  

 

1.6.6 Xenin 

Xenin is a peptide hormone that is synthesised and secreted from the same cell type as 

GIP, enteroendocrine K cells within human gastric mucosa, primarily that of the 
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duodenum and jejunum (Feurle et al., 1998; Kerbel et al., 2018). It is also located 

within the pancreas, liver, stomach, kidneys, heart, lungs and hypothalamus (Craig, 

Gault and Irwin, 2018; Feurle et al., 1998; Parthsarathy et al., 2016). Biologically 

active xenin is 25 amino acids long and derived from the N-terminal of coatomer 

protein alpha (COPA), which is a 35 amino acid precursor known as proxenin (Feurle 

et al., 1992; Feurle et al., 1998; Kerbel et al., 2018). Proxenin is cleaved by aspartic 

proteinases including pepsin and cathepsin E, removing 10 C-terminal amino acids, 

thus xenin 25 (Craig, Gault and Irwin, 2018; Feurle et al., 1992; Kerbel et al., 2018).   

Xenin-25 is structurally related to neurotensin. As such, the C-terminus of xenin-25 

and neurotensin share a free non-amidated C-terminal isoleucine, the only difference 

is the substitution of amino acids arginine for lysine and tyrosine for tryptophan, the 

N-terminus and mid-sequence share no homologies (Craig, Gault and Irwin, 2018). 

Indeed, there has been no specific xenin receptor identified to date, and it is thought 

that its biological actions may be mediated in part through activation of neurotensin 

receptors, as well as cholinergic nerve fibres (Craig, Gault and Irwin, 2018; Feurle et 

al., 2002). 

Circulating levels of xenin are increased postprandially and xenin exerts effects on 

metabolism such as reducing the rate of gastrointestinal transit and gastric emptying 

(Anlauf et al., 2000). Xenin also has the ability to suppress appetite and modulate lipid 

metabolism by increasing lipolysis and decreasing lipogenesis within adipose tissue 

and therefore affects energy balance (Anlauf et al., 2000; Bhavya et al., 2018).   

Secretions of the endocrine and exocrine pancreas are also affected by xenin. Several 

studies have demonstrated that xenin-25 and the naturally occurring bioactive 

fragment, xenin-8, activate the secretion of insulin, glucagon and PP (Craig, Gault and 

Irwin, 2018; Gault et al., 2015; Taylor et al., 2010). Interestingly, xenin-25 can act 

independently as an insulinotropic agent stimulating pancreatic beta cell insulin 

release with the ability to increase the proliferation of pancreatic beta cells (Khan et 

al., 2017). In addition, it was initially postulated that xenin-25 directly mediates release 

of insulin and glucagon, because it has no regulatory effect on somatostatin release 

(Craig, Gault and Irwin, 2018). 
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Further to this, under normal and elevated glycaemic conditions, xenin-25 has been 

shown to induce insulin release and enhance the biological actions of GIP and GLP-1 

(Martin et al., 2012; Taylor et al., 2010). As previously discussed, the loss of GIP 

action is a major consequence of T2DM (Al-Sabah, 2015), therefore it would seem 

logical that xenin-25 has potential as an antidiabetic agent. The only thing to 

incumbent exploitation of xenin-25 is the biological half-life, like the incretins, xenin 

is subject to enzymatic degradation (Martin et al., 2012; Taylor et al., 2010). Xenin-

25 is vulnerable to enzymatic degradation carried out by trypsin-like enzymes and 

serine proteases as it contains lysine and arginine residues, thus the native peptide lacks 

stability (Parthsarathy et al., 2016). Therefore, recent research has been directed 

towards developing stable, biologically active and enzymatically resistant peptide 

analogues of xenin (Parthsarathy et al., 2016). 

Novel enzymatically resistant derivatives of xenin-25 include xenin-25-Gln, which has 

Glutamine (Gln) amino acid substitution at all Lysine (Lys) and Arginine (Arg) amino 

acids have been shown to maintain biological activity and be resistant against 

enzymatic degradation (Parthsarathy et al., 2016). Xenin-25-Gln improves blood 

glucose levels, insulin secretion and glucose tolerance along with enhancing insulin 

sensitivity and GIP-stimulated insulin-release when used to treat high fat fed diabetic 

mice (Parthsarathy et al., 2016). Fragmented forms of xenin-25 have also been utilised 

in the search for potential therapeutics. These include the mentioned C‐terminally 

truncated bioactive metabolite xenin-8, which reportedly has the equivalent metabolic 

benefits as xenin-25, as well as the truncated analogue xenin‐8‐Gln. As with xenin-25-

Gln, xenin‐8‐Gln is substituted with a Gln at amino acids Lys and Arg. Xenin‐8‐Gln 

were shown to be resistant to enzymatic degradation and elicit a significant insulin 

secretory effect in high-fat fed mice, similar to that of xenin-25-Gln, with xenin‐8‐Gln 

having a slightly superior effect (Martin et al., 2012; Martin et al., 2016). Moreover, 

this fragment displayed insulin-induced reductions of blood glucose levels in high-fat 

fed mice, not exhibited by xenin‐25[Lys13PAL] (Martin et al., 2012; Martin et al., 

2016). Furthermore, an analogue xenin-6, the last 6 C-terminal residues of xenin-25, 

with a reduced pseudopeptide bond between the amino acid residues Lys and Arg, has 

been demonstrated to retain impressive xenin-like bioactivity (Feurle et al., 2002).  
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1.7 Peptide therapeutics 

Peptides are deemed to be extremely beneficial as therapeutics and offer several 

advantages in comparison to other pharmaceuticals including small molecules and 

biologics. They are highly potent, extremely selective, with low toxicity and have 

superior efficacious properties (Fosgerau and Hoffmann, 2015).  Peptides are also 

relatively easy and fairly economical to produce (Fosgerau and Hoffmann, 2015). 

Peptide technology is continually advancing to improve their utility as a therapeutic 

including; peptides with cell penetrating abilities, multiple functions and peptide drug 

conjugates alongside alternative administration routes (Fosgerau and Hoffmann, 

2015).  

 

1.7.1 Novel approaches utilising peptides 

Currently, at the forefront of pharmaceutical peptide technology is the development of 

single receptor agonists into unimolecular dual and triple receptor agonists. These 

unimolecular peptides have the potential to offer an expansive and bespoke treatment 

for T2DM and/or obesity as they combine multiple hormones with complimenting 

glucose regulating and anorectic effects (Capozzi et al., 2018; Sadry and Drucker, 

2013). Further support of this multi-targeted rationale is the efficacious utility of 

bariatric surgery to treat metabolic syndromes. The success of bariatric surgery is 

linked to alteration of several gastrointestinal hormones to reverse disease pathology. 

This multiple hormone modulation has yet to be successfully pharmacologically 

replicated and presently unimolecular dual and triple agonists offer the best 

opportunity to do so (Capozzi et al., 2018). 

The enteroendocrine system is the largest regulatory endocrine organ within the body 

and by extension, there are multiple mechanisms available for exploitation. This bring 

into question the current rational and efficacy of single target therapeutics.  Therefore, 

the potential for extending the scope from a single target to dual or triple target 

therapeutic seems a logical step.  As with the development of any novel 

pharmaceutical, the development and testing of novel unimolecular peptide 

therapeutics must take into consideration the broad tissue dissemination and 

pleiotropic effects of parent peptides (Al-Sabah, 2015). In addition, understanding of 
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peptide structure/function, knowledge of receptor and ligand binding specificity are 

required to maximise potency and efficacy, and reduce potential adverse effects.  

Studies employing unimolecular peptide mimetics such as GLP-1/GIP dual receptor 

agonist show they are biphasic. Initially, the principle strategy of these types of dual 

agonists was to augment the glycaemic control and body weight reducing ability of 

GLP-1 and facilitate re-sensitivity to GIP to further modulate glycaemic control and 

body weight (Capozzi et al., 2018; Finan et al., 2013). Alone GIPR agonists were 

shown to have no effect on body weight or fat mass and dual receptor agonism had 

superior efficacious effects than the GLP-1R agonist alone (Capozzi et al., 2018; Finan 

et al., 2013). Furthermore, recent studies by Finan et al., (2015) and Bhat et al., (2013), 

demonstrated that monomeric tri-agonist peptides had superior efficacious effects on 

glycaemic control and decreased body weight in relevant in vivo models of obesity and 

T2DM. Currently, several of these unimolecular dual and triple agonists are 

undergoing clinical trial phases with promising preliminary results for the treatment of 

obesity and T2DM (Capozzi et al., 2018). 
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1.8 Hypothesis 

Modulation of endogenous enteroendocrine and neuroendocrine peptide hormones 

yields superior therapeutic efficacy than parent peptide hormones to treat type 2 

diabetes and obesity. 

 

1.9 Thesis aims 

Aims and objectives: 

1. To assess the in vivo metabolic and therapeutic efficacy of a GIP-xenin hybrid 

peptide alone or in combination with a GLP-1 RA in a mouse model of diet-

induced obesity-diabetes. 

 

2. To evaluate the glucose-regulatory, insulinotropic activity and satiety 

enhancing properties of a GIP-xenin hybrid peptide alone or in combination 

with a GLP-1 RA in a genetically-induced mouse model of T2DM with 

established beta cell dysfunction.  

 

3. To characterise a novel neurotensin-xenin hybrid peptide and investigate its 

gluco-regulatory, insulinotropic and antidiabetic activity in a pre-clinical 

model of diet-induced obesity-T2DM mouse model. 

 

4. To design, synthesise and characterise novel N- and C- terminally truncated 

GIP peptides as specific and efficacious GIP receptor antagonists. 
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Chapter 2 

 

General materials and methods 
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2.1 Peptides 

All peptides used throughout this thesis were purchased from Synpeptide Company, 

Ltd (Shanghai, China). Peptides used in Chapter 3-5 (Table 2.1) were procured at 

>95% purity. Peptides used in Chapter 6 (Table 2.1) were procured in crude form and 

subsequently purified in-house, as described in Section 2.2.2. 

 

2.2 Peptide purification and characterisation 

2.2.1 Materials 

Acetonitrile (HPLC grade), trifluoroacetic acid (TFA) (sequencing grade) and α-

cyano-4-hydroxycinnamic acid were purchased from Sigma-Aldrich (Poole, Dorset, 

UK). Distilled water (18.2 MΩ-cm purity) was used in all experiments and obtained 

from an Elga PURELAB Ultra system (Elga, Celbridge, Ireland). 

 

2.2.2 Purification of crude synthetic peptides  

All crude peptides in Chapter 6 (Table 6.1) were purified to a single homogenous peak 

by reverse-phase high performance liquid chromatography (RP-HPLC) on a Surveyor 

Plus Liquid Chromatograph/HPLC (Thermo Finnigan, San Jose, California, USA), 

using a Jupiter Proteo analytical column (250 x 4.6 mm, Phenomenex, Torrance, 

California, USA), equilibrated with 0.1% (v/v) TFA/water, flow rate 6 ml/min. 

Peptides were re-suspended in 0.1% (v/v) (TFA)/H2O and 0.1% TFA in 70% 

acetonitrile/H20 (2:1 ratio) and injected into the column. Eluting solvent, acetonitrile 

(70%), was increased using linear gradients with percentage raised from 0-30% (v/v) 

over 13 min and 70% (v/v) over 53 min. Absorbance was measured at 214 nm. Peaks 

for each run were analysed using Thermo Electron ChromQuest data collection 

software (Version 3) and eluted peptides manually collected. Peptide aliquots (3-4 ml), 

were concentrated using a Savant SPD2010 SpeedVac concentrator and freeze dried 

(-55 ˚C) by a FreeZone Benchtop Freeze Dry System (Labconco, Kansas City, 

Missouri, USA). 

 

2.2.3 Confirmation of peptide purity 
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Peptide purity (Chapters 3-6) was confirmed by RP-HPLC as described in Section 

2.2.2 with the exception that peptides were re-suspended in distilled water and a 1 ml 

solution, (900 µl of 0.1% (v/v) TFA/water and 100 µl of peptide) was injected into the 

column. Chapters 3-5 used a Jupiter C-18 analytical column (250 x 4.6 mm) 

equilibrated with 0.1% (v/v) TFA/water, flow rate 1 ml/min, percentage acetonitrile 

raised from 0-40% (v/v) over 10 min, to 60% (v/v)  over 40 min and to 70% (v/v)  over 

5 min. Chapter 6 used an Aeris XB-C18 HPLC column (Phenomenex), equilibrated 

with 0.1% TFA/water flow rate 1 ml/min and percentage acetonitrile raised from 0-

30% (v/v) over 10 min and to 70% (v/v) over 30 min. Retention times were recorded 

and sample fractions were collected for MALDI-TOF analysis (Section 2.2.4). 

 

2.2.4 Confirmation of molecular mass 

Molecular mass of peptides was confirmed by matrix-assisted laser desorption 

ionisation time of flight mass spectrometry (MALDI-TOF MS) using a Voyager-DE 

Biospectrometry Workstation (PerSeptive Biosystems, Farmingham, MA, USA). 

Each peptide was combined with a matrix solution, 10 mg/ml cyano-4-

hydroxycinnamic acid in acetonitrile/ethanol, 1:1 ratio, suspension (1.5µ l) and applied 

to a stainless-steel sample plate and allowed to dry at room temperature. The plate was 

inserted into plate holder and the mass spectra recorded as a mass-to-charge (m/z) ratio 

against relative peak intensity. The experimental molecular mass of each peptide was 

then compared to their respective theoretical mass using a peptide calculator. 

 

2.3 Metabolic degradation 

2.3.1 Materials 

All reagents used in RP-HPLC and MALDI-TOF were purchased from Sigma Aldrich 

(Poole, Dorset, UK) as stated previously in Section 2.2.1.  Purified water used in these 

experiments was obtained from an Elga PURELAB Ultra system. All other chemicals 

used were purchased from BDH chemicals (Poole, Dorset, UK).  Murine plasma was 

obtained from overnight fasted male Swiss mice aged 10-12 weeks. 
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2.3.2 Plasma degradation 

Murine plasma was collected as described in Section 2.10. The plasma degradation 

profile of peptides was determined by method described by Taylor et al. (2010). In 

brief, 10 µl plasma was incubated with 100 µl of peptide (100 µl of 1 mg/ml) and 390 

µl Triethanolamine-HCl (50 mmol/l, pH 7.8) at 37oC with gentle agitation for 0, 2, 4 

and 6 hour(s). The enzymatic reactions were terminated by addition of 50 µl 

TFA/water 10% (v/v). Degradation products were then separated from intact peptide 

using RP-HPLC (Section 2.2.3) and fractions collected were subsequently 

characterised by MALDI-TOF MS (Section 2.2.4). 

 

2.4 Cell culture 

2.4.1 Materials  

DMEM and RPMI-1640 tissue culture media, foetal bovine serum (FBS), penicillin, 

streptomycin, gentamicin, trypsin/EDTA and Hanks Buffered Saline Solution (HBSS) 

were all purchased from Gibco Life Technologies Ltd. (Paisley, Strathclyde, UK). All 

other chemicals including trypan blue were purchased from Sigma Aldrich. 

 

2.4.2 Culture of pancreatic BRIN-BD11 cells 

BRIN-BD11 cells are an insulin-secreting, clonal pancreatic beta cell line, secreting 

insulin in a glucose-dependent manner. They express incretin receptors and are derived 

from electrofusion of New England Deaconess Hospital (NEDH) rat pancreatic islet 

cells and immortal rat insulinoma RINm5F cells (McClenaghan et al., 1996a). 

Culturing took place under sterile conditions using vented 20-175 cm2 tissue culture 

flasks (Nalgene Labware, Thermo Scientific Corporation, Denmark), pre-warmed 

RPMI-1640 growth media supplemented with 10% (v/v) FBS and 1% (v/v) antibiotics 

(100 U/ml penicillin and 0.1 mg/ml streptomycin), maintained at 37°C and 5% CO2, 

in a LEEC incubator (Laboratory technical engineering, Nottingham, UK) as 

previously described by McClenaghan et al., (1996a). Sub-culturing at 70-80% cell 

confluency was employed before experimentation. Culture media was decanted, cells 
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washed (10 ml HBSS) and detached by incubating (3-4 min) with 3 ml 0.025% (w/v) 

trypsin/EDTA and viewed using an Olympus CX41 phase contrast microscope 

(Olympus, Southend-on-Sea, UK) at 100X magnification. Culture media (7-8 ml) was 

added to re-suspend, then pipetted into a 50 ml sterilin tube (Sterilin Ltd., Hounslow, 

UK) and centrifuged for 5 min at 900 rpm. Supernatant was decanted, and the pellet 

resuspended by culture media of a known volume and cells stained and counted using 

trypan blue and Neubauer haemocytometer (Scientific Supplies Co., UK). Routine 

sub-culture, cell suspension (1 ml) and culture media (25 ml) was added to the flask 

and maintained at 37º C until confluent.   

 

2.5 Insulin secretion from BRIN-BD11 cells 

2.5.1 Materials 

All reagents used in culturing BRIN-BD11 cells were purchased from Gibco Life 

Technologies Ltd. as stated in Section 2.4.1. Trypan blue, thimerosal, iodogen (1,3,4,6-

tetrachloro-3α,6α-diphenylglycoluril), bovine insulin, BSA, fraction V, sequencing 

grade TFA, dextran T-70 and activated charcoal and HPLC grade acetonitrile were all 

purchased from Sigma Aldrich.  Disodium hydrogen orthophosphate (Na2HPO4) and 

sodium dihydrogen orthophosphate (NaH2PO4.2H2O) were purchased from VWR 

International Ltd. (Lutterworth, Leicestershire, UK). Radiolabelled sodium iodide 

(Na125I) was purchased from Perkin Elmer (UK).  Rat insulin standard was purchased 

from Novo Industria (Copenhagen, Denmark). Dichloromethane (DCM) was 

purchased from Rathburn (Walkersburn, Scotland, UK). All other chemicals used were 

of highest purity and purchased from BDH chemicals. Water was obtained from an 

Elga PURELAB Ultra system.  

 

2.5.2 Acute in vitro insulin secretion studies in BRIN-BD11 cells 

The insulin secreting activity of peptides were assessed using BRIN-BD11 cells, 

obtained and quantified as outlined in section 2.4.2, (passage used was between 18 and 

40). The protocol as described by McClenaghan and colleagues (1996b) was followed 

for insulin secretion experiments. In brief, cells were seeded and allowed to attach 
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overnight at 37oC in 24 well tissue culture plates (150,000 cell/well). After 18 hours, 

culture media was decanted and cells pre-incubated with 1 ml of Krebs–Ringer 

bicarbonate buffer (KRBB- 115 mmol/l NaCl, 4.7 mmol/l KCl, 1.2 mmol/l MgSO4, 

1.28 mmol/l CaCl2, 1.2 mmol/l KH2PO4, 25 mmol/l HEPES and 8.4% NaHCO3, 

containing 0.5% (w/v) BSA, pH 7.4) supplemented with 1.1 mmol/l glucose for 40 

min at 37oC. Subsequently, the buffer was decanted and buffer containing glucose (3.3 

to 16.7 mmol/l) in the presence of test peptides (10-12 to 10-6 mol/l), were added to 

wells and incubated for 20 min at 37oC. Once complete, 950 µl of the assay buffer 

from each well was collected and stored at -20oC for measurement of insulin by 

radioimmunoassay (RIA) (Section 2.5.4). In a separate set of experiments, BRIN-

BD11 cells were incubated at 5.6 mmol/l glucose with test peptides in the presence or 

absence of appropriate receptor antagonists (receptor antagonists used are detailed in 

corresponding Chapters), and insulin measured by RIA (Section 2.5.4). 

 

2.5.3 Iodination of bovine insulin for RIA 

A modified protocol based on the method previously described by Fraker and Speck 

Jr (1978), was followed for iodination of bovine insulin. In brief, 100 μl of iodogen 

solution (1,3,4,6-tetrachloro-3α,6α-diphenylglycoluril), 1 mg of iodogen in 10 ml of 

dichloromethane, was added to Eppendorf tubes. Tubes were incubated at 37oC until 

a thin coating formed. Bovine insulin solution; 1 mg of insulin to 1 ml of 10 mmol/l 

HCL and diluted to 125 μg/ml (1:8 dilution) in 500 mmol/l phosphate buffer (pH 7.4).  

Bovine insulin (20 µl) and sodium iodide (Na125I 100 mCi/ml stock, Perkin Elmer, 

Cambridge, UK) (5 µl) were added to iodogen coated tube and kept on ice with gentle 

agitation every 3-4 min for 15 min, and the reaction stopped by transferring to a clean 

Eppendorf tube. The reaction tube was washed with 300 μl of 50 mmol/l sodium 

phosphate buffer and added to the reaction mixture. The iodinate was separated by RP-

HPLC on a Vydac C- 8 (250 x 4.6 mm) analytical column. Flow rate; 1.0 ml/min with 

0.12% (v/v) TFA/water and the acetonitrile concentration in the eluting solvent was 

increased from 0% to 56% over 60 min and to 70% in 5 min (Figure 2.1). Fractions (1 

ml) were collected using a fraction collector (Frac-100, LKB), aliquoted (5 μl)  into 

LP3 tubes and counts measured on a gamma counter (Perkin Elmer Wallac Wizard 

1470 Automatic Gamma Counter). Fractions with the highest counts were diluted with 
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1 ml of 40 mmol/l sodium phosphate buffer (pH 7.4) containing 1 g/100 ml BSA and 

0.02 g/100 ml thimerosal. Binding capacity was determined by a series of antibody 

dilutions (1:25,000-1:45,000), and fractions were kept at 4ºC. 

 

2.5.4 Insulin RIA with modified dextran-coated charcoal 

Determination of insulin concentration by using a modified dextran-coated charcoal 

radioimmunoassay established by Flatt and Bailey (1981). In brief, stock RIA buffer, 

40 mmol/l disodium hydrogen orthophosphate (containing 0.3% (w/v) sodium 

chloride and 0.02% (w/v) thimerosal) was prepared and pH adjusted to 7.4 with 40 

mmol/l sodium dihydrogen orthophosphate and stored at 4°C. Working RIA buffer 

was prepared by adding 0.5% (w/v) BSA to stock RIA buffer. Unknown samples (200 

µl) were aliquoted in duplicate and insulin standards in triplicate (200 µl) into LP3 

tubes. Insulin standards ranged from 0.039 to 20 ng/ml and prepared by serial dilution 

of frozen stock rat insulin. Antibody, guinea pig anti-porcine from frozen stock was 

diluted (1:25000 to 1:45000) with working RIA buffer (100 µl) added to all unknown 

samples and insulin standards except for control tubes. I125-labeled tracer was added to 

working RIA buffer (10,000 counts per min (CPM) in 100 µl) and 100 µl was added 

to each tube and incubated at 4°C for 48 h. After 48 h incubation period, 1 ml of 

working DCC (1:5, stock DCC and working RIA buffer) was added to all tubes (except 

total), incubated for 20 min at 4°C, then centrifuged at 2500 rpm for 20 min at 4ºC and 

supernatant decanted. The radioactivity of each pellet was measured by a gamma 

counter and insulin concentration of unknown samples determined by rat insulin 

standard curve, generated using a spline-curve fitting algorithm.  

 

2.6 In vitro beta cell proliferation and apoptosis 

2.6.1 Materials   

All reagents used in culturing BRIN-BD11 cells were purchased from Gibco Life 

Technologies Ltd. as stated in Section 2.4.1. Paraformaldehyde (PFA), phosphate 

buffered saline (PBS), sodium citrate, TWEEN® 20, BSA, streptozotocin (STZ) and 

glycerol were all purchased from Sigma Aldrich.  Anti-Ki-67 (Abcam, ab15580) 
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primary antibody and goat anti-rabbit Alexa Fluor® 568 (Abcam, ab175471) 

secondary antibody was purchased from Abcam (Cambridge, UK). ApoLive-Glo™ 

Multiplex assay (Madison, Wisconsin, USA). Water was obtained from an Elga 

PURELAB Ultra system.  

 

2.6.2 Assessment of in vitro beta cell proliferation  

BRIN-BD11 cells were used to assess the effects of test peptides on beta cell 

proliferation. Cells were seeded at 40,000 cell/well onto a glass cover slip within a 12 

well tissue culture plate. Cells were incubated in RPMI media (section 2.4.2) 

containing test peptides (10-8 to 10-6 mol/l) and GLP-1 (10-6 mol/l) (positive control) 

at 37oC for 18 h. Following incubation period, cells were washed (PBS x 2) and fixed 

using 4% paraformaldehyde at room temperature for 30 min. Citrate buffer (sodium 

citrate and 0.05% TWEEN® 20), 1 ml at 90°C for 20 min, was used for antigen 

retrieval. Once cooled (20 min) and citrate buffer decanted, cells were washed (PBS x 

2) and 300 µl of 1.1% BSA was added for 45 minutes to block tissue. The species 

specific (rat) primary antibody; rabbit anti-Ki67 (1:250; Abcam ab16667), was added, 

200 µl/well and incubated for 2 h at 37°C. Cell were washed (PBS x 2) and a secondary 

antibody; goat anti-mouse IgG (1:400; Alexa Fluor® 594 Abcam ab150116) was 

added, 200 µl/well and incubated for 45 min at 37°C. After the final wash (PBS x 2), 

glass cover slips were removed and mounted onto glass slides using anti-fade 

mounting medium (1:1 glycerol and PBS). Slides were imaged using a fluorescent 

microscope (Olympus System Microscope, model BX51; Southend-on-Sea, UK) and 

photographed by DP70 camera adapter system. Analysis of cell proliferation 

frequency was expressed as percentage of total cells analysed, with approximately 150 

cells analysed per replicate. 

 

2.6.3 Determination of in vitro apoptosis  

BRIN-BD11 cells seeded at 20,000 cells per well were incubated in RPMI media 

(section 2.4.2) containing test peptides (10-8 to 10-6 mol/l) and allowed to attach 

overnight. The following day determination of apoptosis, via the activation of 
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biomarkers, caspase 3 and 7 was initiated by a luminogenic, tetrapeptide sequence 

DEVD Caspase-Glo® 3/7 substrate. This caused cell lysis with subsequent caspase 

cleavage of the substrate that generated luminescence proportional to the amount of 

caspase activity. Assessment of apoptosis was by ApoLive-Glow™ Multiplex assay 

kit as directed by manufacturer (Promega, Madison, Wisconsin, USA). 

 

2.7 Cyclic AMP production in BRIN-BD11 cells 

2.7.1 Materials 

The enzyme immunoassay kit for cAMP production was purchased from Bio-Techne 

(R&D Systems, Abingdon, UK) and all chemicals and reagents used are previously 

described in section 2.4.1. 

 

2.7.2 Measurement of in vitro cAMP production 

Cells were seeded and allowed to attach overnight (75,000 cells per well). The assay 

was performed the following day. Cells were treated with KRB buffer (pH 7.4) in the 

presence of test peptides at a range of concentrations, 0.1% BSA, 200 µmol/L IBMX 

and 5.6 mmol/l glucose for 60 min at 37oC. Following incubation, supernatant was 

removed, wells were washed with ice cold PBS and cell lysis buffer added (200 µl). 

To ensure complete cell lysis, plates were frozen at -80oC for 30 min and thawed using 

the orbital plate shaker at 37oC (this was repeated until all cells were lysed). The 

contents were then centrifuged at 600 rpm for 2 min and supernatant stored at -20oC 

for assessment of cAMP production by a cAMP Parameter® kit per manufacture 

instructions (R&D Systems, Abingdon, UK).  

 

2.8 Ex vivo insulin secretion studies from isolated murine islets 

2.8.1 Materials 
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Tissue culture medium (RPMI 1640), FBS, penicillin, streptomycin, gentamicin, 

trypsin/EDTA and HBSS were all purchased from Gibco Life Technologies Ltd. All 

other chemicals including trypan blue were purchased from Sigma Aldrich. 

 

2.8.2 Isolation of islets by collagenase digestion 

Pancreata from lean Swiss mice (12-14 weeks), were harvested and islets isolated by 

a modified collagenase digestion protocol described by Lacy and Kostinosky (1967). 

The collagenase and wash solution were prepared from stock HBSS by dissolving 

136.9 mmol/l NaCl, 5.4 mmol/l KCl, 1.3 mmol/l CaCl2, 0.4 mmol/l MgSO4.7H2O, 0.5 

mmol/l MgCl2.6 H2O, 0.4 mmol/l Na2HPO4.H2O, 0.4 mmol/l KH2PO4, 5.6 mmol/l 

glucose, 0.06 mmol/l phenol red and 4.2 mmol/l NaHCO3 in distilled water. The 

collagenase solution was prepared by adding 1.4 mg/ml collagenase to stock HBSS (5 

ml required per pancreas) and wash buffer. Stock HBSS with the addition of 0.1% 

BSA was prepared on the day of islet isolation. Once pancreata were harvested they 

were placed into tubes containing ice-cold collagenase solution and minced to aid with 

initial digestion. Digestion was further enhanced by placing harvested pancreata in a 

shaking water bath at 37oC for 8-12 min, the tubes were then forcefully shaken to 

dislocate islets from exocrine tissue. Tubes were then filled with ice-cold wash buffer 

and centrifuged for 2 min at 1200 rpm, the supernatant discarded, and remaining pellet 

resuspended in wash buffer (15 ml). This was repeated three times followed by 

filtering to ensure removal of unwanted tissue. The filtrate was then processed in the 

same way and the pellet obtained. It was re-suspended in pre-warmed RPMI-1640 

media (supplemented with 10% BSA and 1% penicillin/streptomycin), transferred into 

petri-dishes allowing culture of islets at 37°C and 5% CO2, in a LEEC incubator for a 

period of 2-3 days prior to use. 

 

2.8.3 Insulin secretion from isolated murine islets 

After 48 h culture, islets (n=20) were collected using a microscope and placed into 1.5 

ml Eppendorf tubes, then centrifuged for 5 min at 1200 rpm to remove excess media. 

Acute insulin secretion studies then followed a modified method of in vitro insulin 
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secretion described in section 2.5.2. Islets were preincubated in 1 ml KRBB at 1.1 

mmol/l glucose for 1 h and decanted after centrifugation for 5 min at 1200 rpm. Test 

solutions at 16.7 mmol/l glucose with a range of concentrations of peptides (10-8 to 10-

6 mol/l) were then added and incubated for 1 h. Following incubation, tubes were 

centrifuged and 950 µl of the supernatant from each tube collected, aliquoted into 200 

µl duplicates and stored at -20oC until measurement of insulin by dextran-coated 

charcoal RIA (Section 2.5.4).  

 

2.9 Animal models 

Several animal models of obesity, insulin resistance and diabetes were utilised in this 

thesis to assess the biological actions and therapeutic potential of modified peptides in 

vivo. All animal experimentation was completed in accordance with the UK Animals 

(Scientific Procedures) Act 1986 and EU Directive 2010/63EU for animal 

experiments. Studies were also approved by University of Ulster Research Ethics 

Committee and all necessary steps were taken to reduce any potential suffering. Project 

licence number: 2804 and Personal licence number: 1692. All long-term in vivo studies 

were blinded and remained so throughout the biochemical and statistical analysis. 

 

2.9.1 Normal lean model 

National Institutes of Health (NIH) Swiss albino male mice, derived from a nucleus 

colony, were purchased from Envigo, Huntingdon, UK. The animals were housed at 

Ulster University’s Behavioural and Biomedical Research Unit (BBRU) in an air-

conditioned room (22 ± 2 °C) under a 12 h light and 12 h dark cycle. Animals were 

aged matched, individually housed and had free access to drinking water and standard 

laboratory chow (10% fat, 30% protein, 60% carbohydrate; percentage of total energy 

12.99 KJ/g; Trouw Nutrition, Cheshire, UK). This murine model was used for acute 

animal studies and chronic studies, a model that represented normal glycaemic control.  

 

2.9.2 High fat fed model 
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Male Swiss mice were purchased from Envigo and housed in the BBRU as described 

in section 2.9.1. Animals were aged matched, individually housed and had free access 

to drinking water and a high fat diet (45% fat, 20% protein, and 35% carbohydrate; 

percentage of total energy 26.15 kJ/g; Special Diet Services, Essex, UK). High fat 

feeding commenced for a minimum of three months to cause diet-induced obesity-

diabetes. The diet progressively induced an increase in body weight and 

hyperglycaemia compared to age-matched controls fed standard laboratory chow. 

Prior to beginning chronic treatment regimen, mice were grouped based on body 

weight and blood glucose. This murine model is widely utilised for assessment of 

novel obesity-diabetes therapeutic agents (Winzell and Ahrén, 2004). 

 

2.9.3 Diabetic (db/db) model  

Male diabetic mice (db/db) (BKS.Cg-+ Leprdb/+ Leprdb/OlaHsd, were purchased 

from Envigo, and housed in the BBRU as described in section 2.9.1. Animals were 

aged matched, individually housed and had free access to drinking water and standard 

laboratory chow. Mice were grouped based on body weight and blood glucose. This 

murine model was employed as a genetic representation of obesity-diabetes exhibiting 

disease characteristics including; weight gain, beta cell dysfunction, hyperglycaemia 

and hyperinsulinemia (King, 2012). 

 

2.10 Acute in vivo studies    

2.10.1 Acute effects of peptides on glucose tolerance in lean mice 

Fasted lean mice (10-12 weeks) had blood glucose measured immediately before and 

after intraperitoneal injection of glucose alone (18 mmol/kg body weight) or in 

combination with test peptides (50-100 nmol/kg bw detailed in individual chapters) at 

various time points (0, 15, 30 and 60 min). Final volume of 5 ml/kg body weight was 

administered for each test solution. 
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2.10.2 Delayed effects of peptides on glucose tolerance in lean mice 

Fasted lean mice (10-12 weeks) had blood glucose measured before and after 

intraperitoneal injection of glucose alone (18 mmol/kg body weight) at various time 

points (0, 15, 30 and 60 min). Prior to this (-30 min), blood glucose was measured 

followed by an intraperitoneal injection of saline alone or in combination with test 

peptides (100 nmol/kg bw detailed in individual chapters). A final volume of 5 ml/kg 

body weight was administered for each test solution. 

 

2.10.3 Biochemical Analysis 

An incision to the tail vain of conscious mice was used to obtain blood samples for 

biochemical analysis. Blood glucose was measured directly by Ascencia Contour 

glucose meter (Bayer, Newbury, UK). Blood samples for plasma glucose or insulin 

were collected into fluoride micro-centrifuge tubes (Sarstedt, Numbrecht, Germany) 

and centrifuged (Beckman Instruments, Galway, Ireland) at 13000 rpm for 3 min at 4 

°C with plasma aliquoted into Eppendorf tubes and stored at -20oC until subsequent 

biochemical analysis. Plasma insulin was determined by diluting 20 µl of plasma with 

180 µl of working RIA buffer (1:10 dilution) and measured using RIA (Section 2.5.4). 

Plasma glucose was evaluated using the GOD-PAP method determined by a glucose 

assay kit (GL 364, Randox Laboratories Ltd., UK) as directed by manufacturer. 

 

2.11 Long-term in vivo studies 

The high fat fed (HFF) and db/db animal models were used for long term studies. 

Grouping and maintenance of mice are detailed in Sections 2.9.2 and 2.9.3. 

 

2.11.1 Treatment and monitoring regime of long-term peptide administration 

Twice daily intraperitoneal injections (09:00 and 17:00 h) were administered with 

either saline alone (0.9% (w/v) NaCl) or in combination with peptides (25 nmol/kg) 

for the assessment duration. Prior to treatment, to customise the mice to injection and 
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handling anxiety, twice daily injections (4-6 days) of saline alone were administered. 

Assessment of non-fasting glucose and insulin levels (Section 2.5.4) were monitored 

every 3-4 days (from day -6 or -4 onwards), along with cumulative energy intake and 

body weight. 

 

2.11.2 Glucose profile 

Prior to cessation of treatment, a 24 h glucose profile on non-fasted mice was 

evaluated. Twice daily injection continued (Section 2.11.1) with values measured prior 

(0 h) to first daily injection and 4, 8, 12 and 24 h afterwards. 

 

2.11.3 HbA1c analysis 

Following cessation of treatment, HbA1c concentrations were assessed using whole 

blood and A1cNow®+ kits (PTS diagnostics, Indiana, USA), as directed by 

manufacturer. 

 

2.11.4 Glucose tolerance test 

Mice were fasted (10 h) prior to oral or intraperitoneal administration of glucose (18 

mmol/kg bw). Glucose and insulin were measured (Section 2.5.4), before (0 h) and 

after time points 15, 30, 60, 90 and 120 min. 

 

2.11.5 GIP tolerance test  

Mice were fasted (10 h) prior to intraperitoneal administration of glucose (18 mmol/kg 

bw) in combination with native GIP(1-42) (25 nmol/kg bw). Glucose and insulin were 

measured (Section 2.5.4), before (0 h) and after time points 15, 30, 60 and 90 min. 

 

2.11.6 Insulin sensitivity test 
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Assessed on non-fasted mice, intraperitoneal administration of bovine insulin (25 or 

50 U/kg body weight). Glucose was measured (Section 2.5.4), at various time points 

(0, 15, 30, and 60 min). 

 

2.11.7 Pancreatic insulin secretion from ex vivo isolated mouse islets 

Insulin secretion from isolated islets was assessed on cessation of treatment and 

measured as stated in Section 2.8, using known insulin secretagogues; 7.68 mmol/l 

calcium chloride, 20 mmol/l potassium chloride, 200 µmol/l IBMX and 10 nmol/l 

PMA. 

 

2.11.8 Pancreatic insulin content 

Tissue was excised, snap frozen and stored following treatment cessation until assay. 

Pancreas was thawed, washed with cold PBS, weighed and homogenised in extraction 

buffer (20 mmol/l Tris HCl, 150 mmol/l NaCl, 1 mmol/l EDTA, 1 mmol/l EGTA and 

0.5% Triton X 100, 0.1% protease inhibitor, pH 7.5) using a handheld VWR VDI 12 

homogeniser (VWR, UK). Contents were centrifuged for 5 min at 1300 rpm and 

supernatant collected. Insulin content was then measured form extracted content, 20 

µl was diluted with 180 µl of working RIA buffer (1:10 dilution) and measured using 

RIA (Section 2.5.4).  

 

2.11.9 Bone mineral density and body composition analysis by dual energy X-ray 

absorption (DXA) 

Lean mass and total fat percentage as well as bone mineral content (BMC) and bone 

mineral density (BMD) were analysed by the Piximus Densitometer (GE Medical 

Systems, LUNAR, USA). Instrument was calibrated using a phantom provided by the 

manufacturer. Mice were sedated using isoflurane and culled by cervical dislocation 

before being placed on specimen tray for analysis. 
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2.11.10 Lipid profile analysis 

Following the cessation of treatment terminal blood was collected. Analysis of total 

triglycerides, high-density and total cholesterol was determined by Hitachi Automated 

Analyzer 912 (Boehringer Ingelheim, Mannheim, Germany) within Ulster 

University’s NICHE department. The low-density cholesterol was calculated using 

Friedwald equation: total cholesterol - HDL - (triglycerides / 5). 

 

2.11.11 Immunohistochemistry analysis 

Following pancreatic excision, tissue was sectioned longitudinally and fixed in 4% 

parafolmaldehyde at 4oC. Tissue was then processed by automated tissue processor 

(Leica TP1020, Leica Microsystems, Nussloch, Germany) and embedded in paraffin 

wax. Tissue sections were cut (5 μm) by a manual microtome (Shandon finesse 325, 

Thermo scientific, UK) and positioned on poly-L-lysine coated glass slides (VWR 

International, Pennsylvania, USA). Tissue, prior to staining, was deparaffinised by 

xylene (Sigma Aldrich) and rehydrated using a series concentration of ethanol (100%, 

95%, 85%, 70% and 50%; Sigma Aldrich) with subsequent antigen retrieved by 

exposing tissue to sodium citrate buffer (10 mmol/l sodium citrate, 0.05% Tween 20, 

pH 6.0) for 20 min at 95oC. The sections were then blocked (2% BSA for 30 min) and 

incubated with species specific (mouse) primary antibodies; rabbit anti-glucagon 

antibody (1:400; Abcam, ab92517) and mouse anti-insulin antibody (1:1000; Abcam, 

ab6995) for 2 h at 37oC. Following washing with PBS sections were incubated with 

respective secondary antibodies; goat anti-mouse IgG (1:400; Alexa Fluor 594® 

Abcam ab150116), and goat anti-rabbit IgG (1:400; Alexa Fluor® 488 Abcam 

ab150077), for 1 h at 37oC. Subsequent to washing with PBS, sections were incubated 

with DAPI (4,6-diamidino-2-phenylindole), a nuclear stain for 10 min at room 

temperature. Following a final washing step, slides were mounted with anti-fade (PBS 

supplemented with 1:1 (v/v) glycerol). Imaging was carried out using a fluorescent 

microscope (Olympus system microscope, model BX51), under a FITC (488 nm) or 

TRITC filter (594 nm) and imaged using a DP70 camera adapter system. Subsequent 

analysis of islet parameters was carried out using CellF image analysis software 

(Olympus Soft Imaging Solutions, GmbH).  
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2.12 Statistical analysis 

GraphPad PRISM (Version 5) was used for statistical analysis. The results are 

expressed as mean ± SEM. Data was compared by one-way ANOVA followed by 

Student-Newman-Keuls post-hoc test or two-way ANOVA followed by Bonferroni 

post-tests, and unpaired student t-test where appropriate. Incremental insulin and 

glucose area under the curve (AUC) and area above the curve (AAC) were calculated 

using trapezoidal rule with baseline subtraction. Significant difference was considered 

between data sets with P<0.05. 
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Table 2.1 Structure of peptides in Chapters 3, 4, 5 and 6 

Name Purity Sequence 

(DAla2)GIP/Xenin-8-Gln >95% Y[DA]EGTFISDYSIAMHPQQPWIL-OH 

Exendin-4 >95% HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS - NH2 

Neurotensin >95% pELYENKPRRPYIL-OH 

Xenin-8-Gln >95% HPQQPWIL-OH 

Neurotensin(8-13) >95% RRPYIL-OH 

Acetyl-neurotensin(8-13) >95% Ac- RRPYIL-OH 

Acetyl-neurotensin(8-13)-xenin-8-Gln >95% Ac-RRPYIL-HPQQPWIL-OH 

Human GIP(1-42) Crude YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 

Human GIP(1-30) Crude YAEGTFISDYSIAMDKIHQQDFVNWLLA QK-NH2 

Mouse GIP(1-30) Crude YAEGTFISDYSIAMDKIRQQDFVNWLLA QR-NH2 

Human GIP(3-30) Crude EGTFISDYSIAMDKIHQQDFVNWLLAQ K-NH2 

Mouse GIP(3-30) Crude EGTFISDYSIAMDKIRQQDFVNWLLAQR-NH2 

Human Pro3GIP(3-30) Crude PGTFISDYSIAMDKIHQQDFVNWLLAQK-NH2 

Human GIP(3-42) Crude EGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 

Human GIP(5-30) Crude TFISDYSIAMDKIHQQDFVNWLLAQK-NH2 

Human GIP(5-42) Crude TFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 
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Figure 2.1 HPLC separation of iodinated bovine Insulin 
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Iodinated I125-bovine insulin was separated by reverse-phase HPLC and eluting 

solvent B (70% acetonitrile, increased using linear gradients with percentage raised 

over time). Fractions were collected every minute by an automated fraction collector. 

The radioactivity level of fractions (5 µl) was determined on a gamma counter. Peak 

A correlates with fractions 5-6, containing unbound sodium iodide (Na125I) and peak 

B correlates with fractions 21-25, containing the iodinated insulin.  
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Chapter 3 

 

Investigating the biological actions and therapeutic efficacy of a 

GIP-xenin-8-Gln hybrid peptide on high fat fed induced obesity-

diabetes 
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3.1 Summary  

The regulatory enteroendocrine hormone GIP, secreted from enteroendocrine K cells 

in response to glucose and fat has important biological actions including glucose 

homeostasis, insulin biosynthesis and secretion, beta cell proliferation and anti-

apoptotic protection, as well as regulation of energy balance and bone turnover. 

However, under hyperglycaemic conditions of T2DM these beneficial actions become 

impaired and unlike the action of its sister incretin, GLP-1, cannot be restored by 

exogenous administration. However, the related regulatory enteroendocrine hormone 

xenin, also secreted from K-cells, can potentiate the biological actions of GIP under 

both normal glycaemia and T2DM. The current study has compared the biological 

actions and therapeutic efficacy of the hybrid peptide (DAla2)GIP/xenin-8-Gln either 

alone or in combination with exendin-4. In vitro assessment revealed that (DAla2)GIP-

xenin-8-Gln activated insulin secretion via GIPR cell signalling pathway and the GIP 

component is essential for activation of the adenylate cyclase pathway. (DAla2)GIP-

xenin-8-Gln also demonstrated significant (P<0.01 to P<0.001) beta cell proliferative 

and protective effects. In vivo, twice-daily administration of (DAla2)GIP/xenin-8-Gln 

in combination with exendin-4 improved (P<0.05 to P<0.001) glycaemic control and 

insulinotropic action and reduced (P<0.001) HbA1c concentrations. An improved 

(P<0.05) sensitivity to GIP and insulin was also noted, especially in the group treated 

with (DAla2)GIP/xenin-8-Gln in combination with exendin-4, with ex vivo isolated 

islets confirming improved (P<0.05 to P<0.001) insulin secretory action. Additionally, 

there was positive effects on islet morphology, where both treatment groups increased 

pancreatic beta cell area and decreased alpha cell area (P<0.05 to P<0.01), also in 

keeping with in vitro proliferation and apoptosis studies. Neither treatment group had 

any effects on body weight or energy intake. Interestingly, the percentage fat mass, 

total cholesterol and triglycerides were reduced (P<0.05 to P<0.01) by both treatment 

groups. Together, their data suggest that further evaluation of (DAla2)GIP/xenin-8-Gln 

either alone or in combination with exendin-4 is warranted for the potential treatment 

of T2DM.  
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3.2 Introduction 

GIP secreted from enteroendocrine K cells in response to glucose and fat, contributes 

equivalently to the incretin effect under normal physiological conditions together with 

its sister incretin hormone, GLP-1 (Baggio and Drucker, 2007; Paschetta, Hvalryg and 

Musso, 2011). The biological actions of GIP encompass endocrine and exocrine 

effects, and these include but are not limited to: insulin biosynthesis and secretion, beta 

cell proliferation and anti-apoptotic protection, as well as regulation of appetite, satiety 

and bone turnover (Baggio and Drucker, 2007; Mabilleau et al., 2018; Paschetta, 

Hvalryg and Musso, 2011; Senio, Fukushima and Yabe, 2010). However, with the 

onset of T2DM resulting from persisting insulin resistance, impaired insulin secretion 

and loss of beta cell mass, GIP fails to yield a potent insulinotropic effect even though 

circulating levels have increased (Kaku, 2010). This impaired GIP incretin action is 

thought to be due to loss of sensitivity or down regulation of the GIP receptor (GIPR) 

on the pancreatic beta cell due to elevated hyperglycaemia, which further exacerbates 

resistance to GIP action (Paschetta, Hvalryg and Musso, 2011; Senio, Fukushima and 

Yabe, 2010).  

Interestingly, the biological actions of GLP-1 are also believed to be partially 

compromised in T2DM (Nauck, 2016). However, unlike GLP-1 action, which can be 

restored though elevation of circulating levels via administration of GLP-1 agonists, 

this is not the case for native GIP (Nauck, 2016; Paschetta, Hvalryg and Musso, 2011). 

Elevated levels of GIP fail to elicit a notable biological response on insulin secretion 

in T2DM (Gault, 2018; Paschetta, Hvalryg and Musso, 2011). Therefore, the 

therapeutic prospect of formulating an enzymatically stable, long-acting GIP agonist 

would appear somewhat redundant for T2DM (Paschetta, Hvalryg and Musso, 2011; 

Pathak et al., 2015a), however several such GIP analogues have been synthesised and 

characterised over the years (Gault, 2018).  

GIP is not the only gut hormone to be secreted from enteroendocrine K cells. Xenin, a 

25 amino acids peptide hormone with glucose homeostasis and energy balancing 

capabilities, is co-secreted with GIP in response to feeding (Craig, Gault and Irwin, 

2018). Furthermore, xenin has been demonstrated to potentate the biological actions 

of GIP under both normal glycaemia and hyperglycaemic conditions (Chowdhury et 

al., 2013; Craig, Gault and Irwin, 2018; Martin et al., 2012). With that said, the 
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biological half-life of these two gut hormones must also be considered when 

formulating a potential new pharmaceutical agent. GIP substituted with a D-alanine in 

position 2 termed (DAla2)GIP(1-42) was demonstrated to have improved enzymatic 

resistance to DPP-IV, increased GIP stimulated cAMP production and glucose 

tolerance (Hinke et al., 2002). Furthermore, the N-terminally truncated form of GIP, 

GIP(1-14), demonstrated similar biological actions as the parent peptide, 

(DAla2)GIP(1-42) (Hinke et al., 2004), highlighting that smaller bioactive regions of 

GIP could be useful for generating GIP-based drugs.    

Interestingly, xenin has a naturally occurring bioactive fragment, the C-terminally 

truncated xenin-8 (Feurle et al., 1997; Silvestre et al., 2003). Xenin-8 processes nearly 

all the biological capabilities of xenin-25, except possible induction of satiety (Craig, 

Gault and Irwin, 2018; Martin et al., 2014). Moreover, a modified xenin-8-Gln 

analogue, with Gln substitution of the Lys21 and Arg22 amino acid residues, has been 

shown to improve insulin sensitivity, glucose tolerance and most importantly to 

augment the glucose-lowering and insulinotropic responses of GIP in high fat fed 

(HFF) mice (Martin et al., 2016). 

The advantage of these fragmented, biologically active and enzymatically resistant 

analogues is the opportunity to formulate them into monomeric peptide therapeutics 

(Fosgerau and Hoffmann, 2015). Thus, combining individual peptides biological 

action(s) into a single therapeutic entity. This has been achieved to good effect with a 

number of other gut-derived peptide hormones (Fosgerau and Hoffmann, 2015). The 

dual agonism approach has been shown to exhibit synergistic beneficial effects in the 

treatment of T2DM (Finan, 2015; Sadry and Drucker, 2013). As such, this rationale is 

in keeping with a recent review by Skow and colleagues (2016) on the improved 

efficacy of a dual action, monomeric GLP-1 and GIP receptor agonist in the treatment 

of T2DM (Skow, Bergmann and Knop, 2016). Therefore, a GIP-xenin hybrid peptide 

with dual receptor agonism and augmentation abilities has the potential to revive 

sensitivity to GIP and mediate the biological activities of both hormones in T2DM. 

Similar actions have been documented in a review by Irwin and Flatt (2015), with 

hybrid peptides including GIP-oxyntomodulin, cholecystokinin-8-GLP-1 and gastrin-

GLP-1. All denoted hybrid peptides exhibited remarkable improvements over either 

parent peptide alone (Irwin and Flatt, 2015). 
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Employing this knowledge, our laboratory previously created a novel GIP/xenin 

hybrid peptide utilising the biologically active and enzymatically resistant regions of 

GIP and xenin, to create (DAla2)GIP-xenin-8-Gln (Hasib et al., 2017). (DAla2)GIP-

xenin-8-Gln was shown to be capable of activating GIP and xenin based cellular 

pathways, to restore GIP action in T2DM and impart notable therapeutic benefits in an 

animal model of T2DM (Hasib et al., 2017). The aim of this study was two-fold, to 

initially extend the scope of what is known surrounding this hybrid peptide through in 

vitro evaluation of insulinotropic and cAMP activity, as well as pancreatic beta cell 

proliferation and anti-apoptotic actions. Secondly, to build on previous work, the 

antidiabetic benefits of (DAla2)GIP-xenin-8-Gln was examined in HFF mice following 

a treatment with (DAla2)GIP-xenin-8-Gln alone and in combination with exendin-4. 

 

3.3 Materials and Methods 

3.3.1 Peptides 

All peptides were purchased from Syn Peptide Shanghai, China. Purity was confirmed 

by RP-HPLC and characterised by MALDI-TOF MS, (Sections 2.1, 2.2.3, and 2.2.4). 

For all experimental materials and methods please refer to Section 2.1, and relevant 

subsections.  

 

3.3.2 Acute effects of peptides alone and in the presence of receptor antagonists 

on in vitro insulin secretion from BRIN-BD11 cells 

The in vitro insulin secretory activity of test peptides on BRIN-BD11 cells is as 

described in Section 2.5.2. BRIN-BD11 cells were incubated with test peptides (10-6–

10-12 mol/l) alone or in the presence of specific GIP or neurotensin receptor antagonists 

namely: GIP(6-30)-CexGluPAL (Pathak et al., 2015b), SR488692 (neurotensin-1) and 

SR142984 (non-specific neurotensin) (at 10-7 mol/l or 10-6 mol/l)  for 20 min. 

Following test incubations, insulin was measured by RIA (Sections 2.5.2 and 2.5.4). 

 

3.3.3 In vitro proliferation 
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Effects of test peptides on cell proliferation in BRIN-BD11 was conducted as 

described in Section 2.6.2. Cells were incubated in RPMI media (Section 2.4.2) 

containing test peptides (10-8 to 10-6 mol/l). The primary antibody, anti-Ki-67 (1:250) 

and the secondary antibody, goat anti-rabbit Alexa Fluor® 594 (1:400), were used to 

detect proliferating beta cells by fluorescent microscopy. 

 

3.3.4 In vitro apoptosis 

The effects of test peptides on BRIN-BD11 cell apoptosis was conducted as described 

in Section 2.6.3. The cells were incubated in RPMI media (section 2.4.2) containing 

test peptides (10-8 to 10-6 mol/l) and apoptosis initiated by adding the caspase-3/7 

substrate reagent that results in cell lysis, followed by caspase cleavage of the substrate 

and detection of beta cell apoptosis by luminescence.  

 

3.3.5 In vitro cyclic AMP 

Effects of peptides on in vitro cyclic AMP production was examined using BRIN-

BD11 cells described in Section 2.7.2. Briefly, test peptides (10-9 to 10-6 mol/l) were 

incubated for 60 mins, and cAMP generation assessed using a cAMP Parameter® 

ELISA kit. 

 

3.3.6 Animals 

The long-term study utilised HFF male Swiss mice, as described in Section 2.9.2. Prior 

to experimentation, mice were maintained on high fat diet for 10 weeks, resulting in 

overt obesity and hyperglycaemia. 

 

3.3.7 Long-term in vivo study in HFF mice 
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Twice daily intraperitoneal injections (09:00 and 17:00 h) of either saline vehicle 

(0.9% (w/v) NaCl), (DAla2)GIP-xenin-8-Gln alone or in combination with exendin-4 

(all peptides at 25 nmol/kg bw) for 32 days is described in Section 2.11.1. Assessed 

metabolic parameters included: circulating glucose and insulin, body weight and 

cumulative energy intake, monitored every 3-4 days (Sections 2.11.1). End of 

treatment assessment parameters included glucose tolerance (18 mmol/kg bw), 

HbA1c, blood glucose profile, GIP tolerance (25 nmol/kg bw), insulin sensitivity (25 

U/kg), insulin content, islet insulin secretory response, percentage fat mass, circulating 

triglycerides and cholesterol as well as islet morphology, as described in more detail 

within Sections 2.8.2, 2.8.3 and 2.11.2. 

 

3.3.8 Biochemical analysis 

Blood/plasma glucose, plasma and pancreatic insulin were assayed as described in 

Sections 2.5.4 and 2.10 

 

3.3.9 Statistical analysis 

As described in Section 2.12 

 

3.4 Results 

3.4.1 Effects of (D-Ala2)GIP-xenin-8-Gln alone, and in the presence of GIP and 

neurotensin receptor antagonists, on insulin secretion from BRIN-BD11 cells 

Figure 3.1 (A-C) demonstrates that (D-Ala2)GIP-xenin-8-Gln significantly (P<0.01 

and P<0.001) increases insulin secretion from BRIN-BD11 cells at 5.6 mmol/l glucose 

in a dose dependent manner. In the presence of the antagonist GIP(6-30)-CexGluPAL 

(10-7 and 10-6 mol/l), (D-Ala2)GIP-xenin-8-Gln induced insulin secretion was 

significantly (P<0.05 to P<0.001) inhibited at all concentrations (10-12 to 10-6 mol/l) 

examined (Figure 3A). Similarly, an inhibitory effect on (D-Ala2)GIP-xenin-8-Gln 

insulinotropic response (10-9 mol/l to 10-6 mol/l, P<0.05 to P<0.01) was demonstrated 
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in the presence of neurotensin 1 antagonist (Figure 3.1B). However, the non-specific 

neurotensin antagonist had no significant effect on (D-Ala2)GIP-xenin-8-Gln insulin 

secretory ability at 5.6 mmol/l glucose, except at 10-9 mol/l and 10-6 mol/l 

concentrations where there was a moderate reduction (Figure 3.1C). 

 

3.4.2 Effects of (D-Ala2)GIP, xenin-8-Gln and (D-Ala2)GIP-xenin-8-Gln on BRIN-

BD11 cell proliferation  

Culturing of BRIN-BD11 cells in the presence of GLP-1, exendin-4, (D-Ala2)GIP and 

(D-Ala2)GIP-xenin-8-Gln (at 10-6 mol/l or 10-8mol/l) for 18 hours significantly 

(P<0.01 and P<0.001) increased proliferation frequency in comparison to the untreated 

control culture (Figure 3.2A). However, xenin-8-Gln alone had no effect on beta cell 

proliferation (Figure 3.2A). The hybrid peptide, (D-Ala2)GIP-xenin-8-Gln (10-6 

mol/l), induced a significant (P<0.001) elevation of proliferation frequency (P<0.001) 

compared to either parent peptide alone (Figure 3.2A). Figure 3.2B shows 

representative images of proliferating cells under each culture condition. 

 

3.4.3 Effects of (D-Ala2)GIP, xenin-8-Gln and (D-Ala2)GIP-xenin-8-Gln on BRIN-

BD11 cell apoptosis 

BRIN-BD11 cells cultured in the presence of exendin-4, (D-Ala2)GIP, xenin-8-Gln, 

xenin-8, xenin-25, (D-Ala2)GIP-xenin-8-Gln (10-6mol/l or 10-8mol/l) for 18 hours 

demonstrated a significant (P<0.05 to P<0.001) protective effect against capase-3/7 

activated apoptosis compared to untreated control culture (Figure 3.3). 

 

3.4.4 Effects of (D-Ala2)GIP-xenin-8-Gln on intracellular cAMP production alone 

and in the presence of GIP or neurotensin antagonists in BRIN-BD11 cells 

BRIN-BD11 cells had increased (P<0.01- P<0.001) cAMP production at 5.6 mmol/l 

glucose in the presence of (D-Ala2)GIP-xenin-8-Gln (Figure 3.4). The neurotensin 1 

antagonist (10-9mol/l to 10-6 mol/l) had no impact on (D-Ala2)GIP-xenin-8-Gln 

induced cAMP formation (Figure 3.4). In contrast, GIP(6-30)-CexGluPAL (10-9mol/l 

to 10-6 mol/l) had a significant inhibitory (P<0.01 and P<0.001) effect on (D-Ala2)GIP-



57 
 

xenin-8-Gln induced cAMP production (Figure 3.4). Importantly, neither GIP(6-30)-

CexGluPAL nor the neurotensin 1 receptor antagonist affected basal cAMP 

accumulation in BRIN-BD11 cells (Figure 3.4). 

 

3.4.5 Effects of twice-daily administration of (D-Ala2)GIP-xenin-8-Gln alone or 

in combination with exendin-4 on cumulative energy intake, body weight and 

percentage fat mass in HFF mice  

Following twice daily administration of all treatments for 32 days there was no 

significant effect on cumulative energy intake (Figure 3.5A). Although not significant, 

there was a progressive decline in body weight from day 4 in both treatment groups 

(Figure 3.5B). This reduction is also reflected in percentage fat mass, where all 

treatment groups had significantly reduced (P<0.05) percentage fat mass in 

comparison to saline control (Figure 3.5C). 

 

3.4.6 Effects of twice-daily administration of (D-Ala2)GIP-xenin-8-Gln alone or 

in combination with exendin-4 on non-fasted glucose and insulin in HFF mice 

From the fourth day of treatment there was a progressive decline in non-fasting blood 

glucose in mice treated with (D-Ala2)GIP-xenin-8-Gln in combination with exendin-

4, with a significant decrease (P<0.05) on days 11 and 14 (Figure 3.6A). (D-Ala2)GIP-

xenin-8-Gln alone mice were also observed to have a non-significant progressive 

decrease in non-fasted blood glucose concentrations (Figure 3.6A). Plasma insulin 

concentrations of (D-Ala2)GIP-xenin-8-Gln in combination with exendin-4 mice 

progressively increased (P<0.05 to P<0.001) from the fourth treatment day and 

remained significantly elevated throughout the study, compared to saline controls 

(Figure 3.6B). (D-Ala2)GIP-xenin-8-Gln alone treatment lead to a non-significant 

elevation of circulating insulin when compared to saline treated control HFF mice. 

 

3.4.7 Effects of twice daily administration of (D-Ala2)GIP-xenin-8-Gln alone or in 

combination with exendin-4 on 24 hour blood glucose profile and % HbA1c in 

HFF mice 
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After administration of the twice daily peptide treatment regimens over the 32 day 

treatment period a 24 hour profile was conducted (Figure 3.7A). All treatment groups 

had sustained lower, albeit not significantly, blood glucose levels compared to the 

saline control HFF mice (Figure 3.7A). However, HbA1c was significantly reduced 

(P<0.001) on day 32 in both treatment groups of mice (Figure 3.7B). 

 

3.4.8 Effects of twice-daily administration of (D-Ala2)GIP-xenin-8-Gln alone or 

in combination with exendin-4 on oral glucose tolerance in HFF mice 

The 32 day administration of (D-Ala2)GIP-xenin-8-Gln alone had no significant effect 

on glycaemic response post oral glucose load in comparison to saline control (Figure 

3.8A). Corresponding glucose-induced plasma insulin concentrations were non-

significantly elevated in (D-Ala2)GIP-xenin-8-Gln treatment group, when compared 

to saline treated mice (Figure 3.8B). However, (D-Ala2)GIP-xenin-8-Gln in 

combination with exendin-4 significantly (P<0.05) reduced the glycaemic excursion 

and elevated insulin secretion in comparison to the saline control (Figure 3.8AB). 

 

3.4.9 Effects of twice-daily administration of (D-Ala2)GIP-xenin-8-Gln alone or 

in combination with exendin-4 on GIP tolerance test in HFF mice 

(D-Ala2)GIP-xenin-8-Gln in combination with exendin-4 significantly (P<0.05) 

augmented the glucose-lowering action of GIP in terms of AUC (Figure 3.9A). In 

addition, the rise in blood glucose levels following combined glucose and GIP 

injection at observation points 15 and 30 min was significantly (P<0.05) reduced by 

32 days treatment with (D-Ala2)GIP-xenin-8-Gln in combination with exendin-4 

(Figure 3.9A). Interestingly, GIP-induced elevation of plasma insulin was not 

significantly different between groups (Figure 3.9B). 

 

3.4.10 Effects of twice-daily administration of (D-Ala2)GIP-xenin-8-Gln alone or 

in combination with exendin-4 on insulin sensitivity and pancreatic insulin 

content in HFF mice 
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Following twice daily administration of (D-Ala2)GIP-xenin-8-Gln in combination 

with exendin-4 for 32 days in HFF mice, glucose levels were significantly (P<0.05) 

reduced in response to exogenous insulin, both at 15 and 30 min post-injection and in 

terms of AAC (Figure 3.10A). (D-Ala2)GIP-xenin-8-Gln alone had no significant 

effect on insulin sensitivity (Figure 3.10A). There was a significant (P<0.01 and 

P<0.001) reduction in pancreatic insulin in both treatment groups compared with 

saline control (Figure 3.10B). 

 

3.4.11 Effects of twice daily administration of (D-Ala2)GIP-xenin-8-Gln alone or 

in combination with exendin-4 on insulin secretory response of isolated islets in 

HFF mice 

Islets from HFF mice were isolated by collagenase digestion in day 32 and exposed to 

CaCl2, KCl, IBMX and PMA to assess insulin secretory performance (Figure 3.11). In 

response to either 3.3 or 16.7 mM glucose, there was no significant difference in 

insulinotropic responses between all groups of mice (Figure 3.11). However, in the 

presence of CaCl2, KCl, IBMX and PMA, there was a significant increase in insulin 

secretion (P<0.05 and P<0.001) from islets of both treatment groups, barring islets 

from (D-Ala2)GIP-xenin-8-Gln treated mice exposed to IBMX (Figure 3.11).  

 

3.4.12 Effects of twice daily administration of (D-Ala2)GIP-xenin-8-Gln alone or 

in combination with exendin-4 on total cholesterol, triglycerides, HDL and LDL 

in HFF mice  

Following 32 days of twice daily administration of both treatment regimens, there was 

a significant decrease in total cholesterol (P<0.01 and P<0.001) and triglycerides 

(P<0.001) compared to saline controls (Figure 3.12A,B). Furthermore, (D-Ala2)GIP-

xenin-8-Gln decreased (P<0.01) HDL and LDL (Figure 3.12C,D). Treatment with (D-

Ala2)GIP-xenin-8-Gln in combination with exendin-4 also lowered (P<0.05) LDL 

compared to saline treated controls (Figure 3.12D). 

 

3.4.13 Effects of twice daily administration of (D-Ala2)GIP-xenin-8-Gln alone or 

in combination with exendin-4 on pancreatic islet histology in HFF mice 
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Pancreatic islet area was not different between all groups of HFF mice (Figure 3.13A). 

However, (D-Ala2)GIP-xenin-8-Gln alone and in combination with exendin-4 

increased (P<0.05) beta cell area when compared to saline treated control (Figure 

3.13B). Furthermore, alpha cell area was decreased (P<0.05) by (D-Ala2)GIP-xenin-

8-Gln alone and in combination with exendin-4 (Figure 3.13C). Representative images 

of islets from all groups of mice are shown in Figure 3.14A-C. 

 

 

3.5 Discussion 

Current T2DM therapeutics, although somewhat effective, have numerous limitations 

related to their efficacy and/or adverse effects (Capozzi et al., 2018; Irwin and Flatt, 

2015). These approved therapies all preferentially target a single receptor, ion channel, 

transporter or enzyme (Capozzi et al., 2018). Therefore, current research has been 

revised, focusing on the multiple targets contributing to T2DM, by employing 

synergistic hybrid peptides that target more than one cell signalling pathway (Capozzi 

et al., 2018; Irwin and Flatt, 2015). In T2DM, hyperglycaemia and hyperlipidaemia 

contribute to desensitisation of the insulinotropic effects of GIP, arbitrated by 

decreased expression and/or down regulation of GIPR (Irwin and Flatt, 2015; Pathak 

et al., 2014). Using this combined knowledge, previous work from our laboratory lead 

to the generation of (DAla2)GIP-xenin-8-Gln (Hasib et al., 2017). This hybrid peptide 

was shown to target two separate pathways and to restore GIP action in T2DM (Hasib 

et al., 2017), highlighting it as an exciting potential new T2DM therapeutic that 

requires more investigation.  

In the current study, characterisation of the predominant pathway used to employ 

biological activity of (DAla2)GIP-xenin-8-Gln was determined by utilising two 

neurotensin receptor antagonists, the commercially available SR488692 (neurotensin-

1) and SR142984 (non-specific neurotensin), as well as a GIPR specific, GIP(6-

30)Cex-K40[Pal] (Pathak et al., 2015b). The in vitro activation of insulin action by 

(DAla2)GIP-xenin-8-Gln was demonstrated to be favourable to GIPR cell signalling 

pathway rather than xenin. This concurs with previous studies demonstrating the 

bioactive region of GIP to be the N-terminus and xenin the C-terminus (Hinke et al., 
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2004; Craig, Gault and Irwin, 2018). Assessment of cAMP production by (DAla2)GIP-

xenin-8-Gln in clonal beta cells again revealed that the GIP component of (DAla2)GIP-

xenin-8-Gln was critical for activation of the adenylate cyclase pathway. This is in 

keeping with published literature that xenin does not alter cAMP accumulation in cells 

(Taylor et al., 2010), and previous research with (DAla2)GIP-xenin-8-Gln (Hasib et 

al., 2017).  

Building on this knowledge, and to further elucidate the beta cell actions of 

DAla2)GIP-xenin-8-Gln, proliferation and anti-apoptotic effects were evaluated using 

clonal BRIN-BD11 beta cells. The proliferative abilities of (DAla2)GIP were notable 

but xenin-8-Gln alone had no effect. Considering the latter, and the very significant 

beta cell proliferative actions of (DAla2)GIP-xenin-8-Gln, this is suggestive of xenin-

8-Gln and its ability to augment the biological actions of GIP (Martin et al., 2016). 

The anti-apoptotic benefits of (DAla2)GIP-xenin-8-Gln compared to (DAla2)GIP  were 

less pronounced, although both compounds did elicit notable apoptosis preventive 

effects in keeping with the action of GIP (Martin et al., 2013; Varol et al., 2014). Also, 

a recent study with xenin-25 suggests that this hormone may also be involved in beta 

cell proliferation and protection against apoptosis (Khan et al., 2017). These positive 

observations, along with corresponding recent literature on (DAla2)GIP-xenin-8-Gln 

(Hasib et al., 2017), prompted the next set of experiments to determine whether the 

antidiabetic benefits of (DAla2)GIP-xenin-8-Gln could be enhanced through 

concurrent administration with the clinically approved GLP-1 mimetic, exendin-4. The 

premise being that (DAla2)GIP-xenin-8-Gln would lead to upregulation of GIP activity 

and responsiveness, with exendin-4 activating the other arm of the incretin effect. 

Thus, together the two treatments would positively modulate the overall incretin effect 

that is known to be compromised in T2DM (Capozzi et al., 2018).   

As expected, chronic 32 day treatment with (DAla2)GIP-xenin-8-Gln in HFF mice 

resulted in sustained improvements in glycaemic control and insulinotropic action. 

(DAla2)GIP-xenin-8-Gln caused a progressive decrease in non-fasted circulating 

blood glucose. This beneficial action was further enhanced, albeit non-significantly, 

when administered in combination with the known GLP-1 agonist exendin-4 (Fusco 

et al., 2017). This correlated well with reduced HbA1c concentrations in all treated 

mice. More interestingly, circulating insulin levels were elevated by both treatments, 
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but the combination group clearly induced much higher circulating insulin levels. This 

might imply that the combined action of (DAla2)GIP-xenin-8-Gln and exendin-4 is 

having a positive effect at the level of the beta cell (Hasib et al., 2017; Pathak et al., 

2018a). All effects were largely independent of changes in body weight or energy 

intake, which is possibly a little surprising as exendin-4 is believed to induce satiety 

and lower body weight (Shah and Vella, 2014). However, a similar lack of effect of 

exendin-4 has previously been noted in this same strain of mice (Hasib et al., 2018a). 

These observations are also in line with the described loss of satiety action of xenin-

8-Gln when compared to xenin-25 (Craig, Gault and Irwin, 2018; Martin, 2016).  

GIP has been demonstrated to regulate lipid metabolism including adipocyte size, 

storage and inflammatory response (Freeman, 2009; Varol et al., 2014). A study using 

(DAla2)GIP by Varol and colleagues (2014) suggested that obesity-diabetes was 

related to adipose tissue inflammation by GIP resulting in dysregulation of lipid 

metabolism and storage, correlating with a study by Pathak and colleagues (2015). The 

study concluded that (DAla2)GIP repressed this inflammatory response thus resolving 

the lipid dysregulation and in turn improved insulin sensitivity (Pathak et al., 2015a). 

In the present study, this is supported by a reduction in triglyceride and total 

cholesterol levels in all treatment groups, with the combination of (D-Ala2)GIP-xenin-

8-Gln and exendin-4 also lowering LDL levels. Indeed, recent evidence suggests that 

GLP-1 receptor signalling could be inherently involved in lipid metabolism (Kooijman 

et al., 2015). Conversely, other aspects such as locomotor activity, energy expenditure, 

feeding behaviour and/or patterns could factor here, and warrant further assessment 

(Freeman, 2009; Pathak et al., 2015a; Varol et al., 2014). 

Glucose tolerance following 32 days treatment was not significantly improved by any 

of the treatments in HFF mice. However and more importantly, there was a distinct 

improvement in the sensitivity to both GIP and insulin, especially in the group of mice 

treated with (D-Ala2)GIP-xenin-8-Gln in combination with exendin-4. This 

corroborates the idea that xenin can restore GIP action in T2DM (Hasib et al., 2017; 

Parthsarathy et al., 2016), and that the effect can be enhanced by GLP-1. Furthermore, 

secretory data derived directly from ex vivo isolated islets, following 32 days treatment 

in HFF mice confirms that insulin secretion and beta cell signalling pathways are 

enhanced by combined (DAla2)GIP-xenin-8-Gln and exendin-4 treatment. This is in 
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line with the notable beta cell benefits of GIP, GLP-1 and xenin (Fusco et al., 2017; 

Gault, 2018; Khan et al., 2017).  

Moreover, it is well understood that islet structure is altered by T2DM conditions as 

they undergo morphological changes. The beta cell mass is disrupted, and alpha cell 

mass has been shown to increase and to contribute to disease aetiology (Brereton et 

al., 2015). Therefore, it is pivotal for positive effects on islet cell architecture with the 

introduction of treatment interventions. Moreover, in this study there were positive 

effects on the pancreatic beta cell area as it was significantly augmented in this group 

of HFF mice. The beta cell mass was greatly increased by treatment with either 

(DAla2)GIP-xenin-8-Gln alone or in combination with exendin-4, in HFF mice. This 

was also in keeping with the proliferation and apoptosis studies and previous 

observations (Hasib et al., 2017). Additionally, the alpha cell mass was also reduced 

by treatment with either (DAla2)GIP-xenin-8-Gln alone or in combination with 

exendin-4, in HFF mice. Interestingly, for both treatment groups, the overall islet area 

was similar to the saline treated control suggesting that they both positively altered the 

beta to alpha cell ratio by upregulating islet beta cells. 

This study has shown (DAla2)GIP-xenin-8-Gln, a dual agonist monomeric therapeutic, 

had beneficial effects on the pathologies associated with T2DM. This was represented 

by notable positive effects in an established in vivo model of T2DM induced by high 

fat feeding. Moreover, the work confirms (DAla2)GIP-xenin-8-Gln can augment GIP 

action in diet induced T2DM (Hasib et al., 2017). Furthermore, the therapeutic efficacy 

of (DAla2)GIP-xenin-8-Gln was notably enhanced by exendin-4. This was particularly 

evident in terms of benefits on beta cell area, beta cell secretory responsiveness and 

circulating insulin levels in HFF mice, strongly suggesting the beta cell effects are key 

to these actions. There is clearly a need for further investigations into the therapeutic 

efficacy and applicability of this treatment approach, especially in a model of T2DM 

that exhibits clear beta cell dysfunction.  
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Figure 3.1 Effects of (D-Ala2)GIP-xenin-8-Gln alone and in the presence of a GIP 

and neurotensin receptor antagonists on insulin secretion from BRIN-BD11 cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRIN-BD11 cells were incubated (20 min) with GIP hybrid (10-12 to 10-6 mol/l) in the 

presence of 5.6 mmol/l glucose and a GIP (A) neurotensin 1 (B) or non-specific 

neurotensin (C) receptor antagonist. Insulin was measured by RIA. Values are mean ± 

SEM (n=8) for insulin release. *P<0.05, **P<0.01 and ***P<0.001 compared to 5.6 

mmol/l glucose alone. +P<0.05, ++P<0.01 and +++P<0.001 compared to respective (D-

Ala2)GIP-xenin-8-Gln. 
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Figure 3.2 Effects of (D-Ala2)GIP, xenin-8-Gln and (D-Ala2)GIP-xenin-8-Gln on 

BRIN-BD11 cell proliferation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proliferation frequency in BRIN-BD11 cells cultured with GLP-1, exendin-4, (D-

Ala2)GIP, xenin-8-Gln and (D-Ala2)GIP-xenin-8-Gln (A) (at 10-6 or 10-8 mol/l) for 18 

h. Representative images (B) showing proliferating beta cells in the presence (18 h) of 

GLP-1, exendin-4, (D-Ala2)GIP, xenin-8-Gln and (D-Ala2)GIP-xenin-8-Gln. Arrows 

indicate proliferating cells. Values are mean ± SEM (n=4).  **P<0.01 and ***P<0.001 

compared to control culture. +++P<0.001 compared to respective (D-Ala2)GIP. 

∆∆∆P<0.001 compared to respective xenin-8-Gln.
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Figure 3.3 Effects of (D-Ala2)GIP, xenin-8-Gln and (D-Ala2)GIP-xenin-8-Gln on BRIN-BD11 cell apoptosis 

 

 

 

 

 

 

 

 

 

 

Apoptosis frequency in BRIN-BD11 cells cultured with exendin-4, (D-Ala2)GIP,  xenin-8-Gln, xenin-8, xenin-25, (D-Ala2)GIP-xenin-8-Gln (at 

10-6 or 10-8 mol/l) for 18 h. Caspase-3/7 activation was detected by luminescence. Values are mean ± SEM (n=3). *P<0.05, **P<0.01 and 

***P<0.001 compared to un-treated control culture. 
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Figure 3.4 Effects of (D-Ala2)GIP, xenin-8-Gln and (D-Ala2)GIP-xenin-8-Gln on 

intracellular cAMP production alone and in the presence of GIP or neurotensin 

receptor antagonists in BRIN-BD11 cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRIN-BD11 cells were exposed to 5.6 mmol/l glucose control (with 100µm IBMX) 

and various concentrations (10-9 to 10-6 mol/l) of (D-Ala2)GIP-xenin-8-Gln in the 

presence of 5.6 mmol/l glucose with GIP(6-30)-CexGluPAL or neurotensin 1 receptor 

antagonist. Values are mean ± SEM (n=4) for cAMP production. **P<0.01 and 

***P<0.001 compared to 5.6 mmol/l glucose alone. ++P<0.01 and +++P<0.001 

compared to (D-Ala2)GIP-xenin-8-Gln.  
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Figure 3.5 Effects of twice-daily administration of (D-Ala2)GIP-xenin-8-Gln alone and in combination with exendin-4 on cumulative energy 

intake, body weight and percentage fat mass in HFF mice  

 

 

 

 

 

 

 

 

 

 

 

Variables were measured for 6 days before and 32 days during (indicated by black horizontal line), twice-daily treatment with saline, (D-Ala2)GIP-

xenin-8-Gln or (D-Ala2)GIP-xenin-8-Gln in combination with exendin-4 (each at 25 nmol/kg bw). Values represent mean ± SEM (n=6-8). *P<0.05 

in comparison with saline control.
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Figure 3.6 Effects of twice-daily administration of (D-Ala2)GIP-xenin-8-Gln alone 

and in combination with exendin-4 on non-fasting blood glucose and plasma 

insulin in HFF mice 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blood glucose (A) and plasma insulin (B) was measured for 6 days before and 32 days 

during (indicated by black horizontal line) twice-daily treatment with saline, (D-

Ala2)GIP-xenin-8-Gln or (D-Ala2)GIP-xenin-8-Gln in combination with exendin-4 

(each at 25 nmol/kg bw). Values represent mean ± SEM (n=6-8). *P<0.05, **P<0.01 

and ***P<0.001 compared with saline control.  
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Figure 3.7 Effects of twice daily administration of (D-Ala2)GIP-xenin-8-Gln alone 

and in combination with exendin-4 on 24 hour blood glucose profile and % 

HbA1c in HFF mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 24 hour blood glucose profile (A) and %HbA1c (B) were assessed following 32 

days of twice daily intraperitoneal administration of saline, (D-Ala2)GIP-xenin-8-Gln 

or (D-Ala2)GIP-xenin-8-Gln in combination with exendin-4 (each at 25 nmol/kg bw). 

Arrows indicate timing of treatment administration. Values represent mean ± SEM 

(n=6-8). ***P<0.001 compared with saline control. 
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Figure 3.8 Effects of twice-daily administration of (D-Ala2)GIP-xenin-8-Gln alone 

and in combination with exendin-4 oral glucose tolerance in HFF mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

  

Test were performed following 32 days of twice-daily intraperitoneal administration 

of saline, (D-Ala2)GIP-xenin-8-Gln or (D-Ala2)GIP-xenin-8-Gln in combination with 

exendin-4 (each at 25 nmol/kg bw). Mice were fasted for 10 h previously. Blood 

glucose (A) and plasma insulin (B) was measured prior to and after oral administration 

of glucose (18 mmol/kg bw). Blood AUC values for 0-120 min are also included. 

Values represent mean ± SEM (n=6-8). *P<0.05 and **P<0.01 compared with saline 

control. 
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Figure 3.9 Effects of twice-daily administration of (D-Ala2)GIP-xenin-8-Gln 

alone and in combination with exendin-4 on GIP tolerance test in HFF mice 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

Test were performed following 32 days of twice-daily intraperitoneal administration 

of saline, (D-Ala2)GIP-xenin-8-Gln or (D-Ala2)GIP-xenin-8-Gln in combination with 

exendin-4 (each at 25 nmol/kg bw). Mice were fasted for 10 h previously. Blood 

glucose (A) and plasma insulin (B) was measured prior to and after intraperitoneal 

administration of glucose (18 mmol/kg bw) in combination with GIP (25 nmol/kg bw). 

Blood AUC values for 0-90 min are also included. Values represent mean ± SEM 

(n=6-8). *P<0.05 compared with saline control. 
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Figure 3.10 Effects of twice-daily administration of (D-Ala2)GIP-xenin-8-Gln 

alone and in combination with exendin-4 on insulin sensitivity and pancreatic 

insulin content in HFF mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test were performed following 32 days of twice-daily intraperitoneal administration 

of saline, (D-Ala2)GIP-xenin-8-Gln or (D-Ala2)GIP-xenin-8-Gln in combination with 

exendin-4 (each at 25 nmol/kg bw). Plasma glucose (A) was measured prior to and 

after i.p. administration of insulin (25 U/kg bw). Plasma AAC values for 0-60 min are 

also included. Pancreatic insulin content (B) was measured by RIA following 

pancreatic hormone extraction. Values represent mean ± SEM (n=6-8). *P<0.05, 

**P<0.01 and ***P<0.01 compared with saline control. 
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Figure 3.11 Effects of twice daily administration of (D-Ala2)GIP-xenin-8-Gln 

alone and in combination with exendin-4 on insulin secretory responsiveness of 

isolated islets from HFF mice 

 

 

 

 

 

 

 

 

 

 

 

Effects of 32 days twice-daily i.p. administration of exendin-4, (D-Ala2)GIP-xenin-8-

Gln or a combination of both peptides (each at 25 nmol/kg bw) on pancreatic beta cell 

insulin secretory responsiveness in HFF mice. Pancreatic islets were isolated by 

standard collagenase digestion procedures. Values are mean ± SEM for (n=6-8). 

*P<0.05, **P<0.01 and ***P<0.01 compared with 16.7 mmol/l glucose control. 
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Figure 3.12 Effects of twice daily administration of (D-Ala2)GIP-xenin-8-Gln 

alone and in combination with exendin-4 on total cholesterol, triglycerides, HDL 

and LDL in HFF mice  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of 32 days twice-daily i.p. administration of saline, (D-Ala2)GIP-xenin-8-Gln 

or (D-Ala2)GIP-xenin-8-Gln in combination with exendin-4 (each at 25 nmol/kg bw) 

on total cholesterol (A), triglycerides (B), HDL (C) and LDL (D) in HFF mice. LDL 

was calculated as total cholesterol - HDL - (triglycerides/5). Values are mean ± SEM 

(n=6-8). *P<0.05, **P<0.01 and ***P<0.001 compared with saline control. 

 

 

A B 

C D 



76 
 

Figure 3.13 Effects of twice daily administration of (D-Ala2)GIP-xenin-8-Gln 

alone and in combination with exendin-4 on pancreatic islet histology in HFF 

mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of 32 days twice-daily i.p. administration of saline, (D-Ala2)GIP-xenin-8-Gln 

or (D-Ala2)GIP-xenin-8-Gln in combination with exendin-4 (each at 25 nmol/kg bw) 

on islet area (A), beta cell area (B), and alpha cell area (C) in HFF mice. Values are 

mean ± SEM (n=6-8). *P<0.05 and **P<0.01 compared with saline control.  
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Figure 3.14 Effects of twice daily administration of (D-Ala2)GIP-xenin-8-Gln 

alone and in combination with exendin-4 on pancreatic islet histology in HFF 

mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Images were captured by an Olympus System Microscope BX51 (Olympus 

instruments, UK) and a DP70 camera adapter. CellF image analysis software was used 

to assess parameters, magnification was X40. Insulin (red), glucagon (green) and 

DAPI (blue) in pancreatic tissue harvested from HFF mice treated for 32 days twice-

daily with saline (A), (D-Ala2)GIP-xenin-8-Gln (B) or a combination of both peptides 

(C) (each at 25 nmol/kg bw). 
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Chapter 4 

 

Investigation of the antidiabetic and therapeutic potential of GIP-

xenin-8-Gln in diabetic db/db mice 
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4.1 Summary 

Previously, the HFF mouse model of obesity-induced T2DM was utilised to 

investigate the therapeutic, antidiabetic effects of the (D-Ala2)GIP-xenin-8-Gln 

hybrid. However, no single animal model can fully replicate the complex aetiology of 

human T2DM. Therefore, the db/db mouse model, a genetically induced model of 

metabolic abnormalities including; dyslipidaemia, obesity, with well recognised beta 

cell dysfunction, representative of a severe manifestation of T2DM, was used to further 

investigate and evaluate the (D-Ala2)GIP-xenin-8-Gln hybrid. Twice daily 

intraperitoneal administration of (DAla2)GIP-xenin-8-Gln in db/db mice revealed no 

therapeutic effect on circulating glucose when treated with (DAla2)GIP-xenin-8-Gln 

alone. However, in combination with exendin-4, (DAla2)GIP-xenin-8-Gln improved 

glycaemic control throughout the observation period. Interestingly, only days 1 and 8 

saw circulating insulin levels increased (P<0.05- P<0.01), suggesting that 

extrapancreatic glucose-lowering action of GIP, xenin and GLP-1 could be important. 

The daily plasma glucose levels corresponded with improved glucose profile (24h) and 

decreased percentage glycated haemoglobin (HbA1c) levels. Cumulative energy 

intake but not body weight was also significantly lowered by exendin-4 and 

(DAla2)GIP-xenin-8-Gln in combination with exendin-4 (P<0.05 and P<0.001). 

Additionally, the percentage fat mass was also reduced in all treatment groups with 

(DAla2)GIP-xenin-8-Gln showing the greatest reduction (P<0.05 to P<0.001) 

suggestive of (DAla2)GIP-xenin-8-Gln having an influencing effect on body balancing 

factors. Glucose excursion was also improved by (DAla2)GIP-xenin-8-Gln in 

combination with exendin-4 (P<0.05). However, sensitivity to insulin and GIP was 

unaffected. Furthermore, the pancreatic insulin content and islet morphology 

correlates with progressive disease manifestation. The results suggest that at the latter 

stages of T2DM, even with pharmacological intervention of (DAla2)GIP-xenin-8-Gln 

alone or in combination with exendin-4, the progression of T2DM is difficult to halt 

and perhaps only applicable to earlier stages of disease manifestation, when beta cell 

function is more apparent. 
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4.2 Introduction 

The progression to the development of T2DM is denoted by five distinct phases 

marked by progressing pancreatic beta cell dysfunction (Weir and Bonner-Weir, 

2004). Phase one is compensation when insulin levels are increased along with beta 

cell mass due to increasing insulin resistance. Phase two is stable adaption with glucose 

levels increased, impaired glucose tolerance (IGT), loss of beta cell mass and 

increasing dysfunction. Phase three, unstable early decompensation and increasingly 

amplified hyperglycaemia within a brief time frame due to increasing insulin 

resistance and/or diminished beta cell mass. Phase four, stable decompensation: severe 

beta cell dedifferentiation. Phase five, severe decompensation: beta cell mass is 

extremely reduced resulting in overt diabetes (Weir and Bonner-Weir, 2004).  

Phases one to three are characteristic of early stage diabetes or what is termed pre-

diabetes and this infers the risk to development of diabetes (Fonseca, 2009; Weir and 

Bonner-Weir, 2004). T2DM has both genetic and environmental aetiologies and is a 

key element in the metabolic syndrome. Other characteristics include: high blood 

pressure, cholesterol, triglycerides and obesity that may also contribute to the 

pathogenesis of T2DM as well as the onset of beta cell dysfunction (O’Brien, 

Sakowski and Feldman, 2014). Therefore, it is of utmost importance to choose in vivo 

models that are representative of the various elements involved with the human 

condition (O’Brien, Sakowski and Feldman, 2014). 

In the previous chapter, HFF mouse model of obesity-induced T2DM was utilised to 

investigate the therapeutic, antidiabetic effects of (D-Ala2)GIP-xenin-8-Gln. This is a 

well-established experimental model pioneered by Surwit et al., 1988, and is 

considered to be clinically relevant for investigation of diet-induced dysregulation of 

metabolic syndromes. However, no single animal model can completely mimic the 

complex aetiology of human T2DM. Therefore, in this chapter we continue the 

investigation of (D-Ala2)GIP-xenin-8-Gln and its therapeutic effects in the db/db 

mouse model, a genetically induced model of T2DM that originated from the Jackson 

Laboratory in 1966. This model results from an autosomal recessive mutation on 

chromosome four that prevents the expression of the leptin receptor and compromises 

leptin signalling (Faita et al., 2018; King, 2012). Leptin is a hormone that regulates 

food intake and energy expenditure, the consequences of dysregulation can result in 
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an altered metabolism and endocrine function (Srinivasan and Ramarao, 2007). The 

db/db model is also considered a valid animal model for investigating metabolic 

abnormalities including; dyslipidaemia, obesity and T2DM. This model is 

characterised by hyperinsulinemia at around two weeks, obesity at three to four weeks, 

high levels of cholesterol and triglycerides as well as the development of persistent 

hyperglycaemia at approximately four to six weeks that is sustained over its life span. 

This is propelled by peripherally impaired insulin action and progressing failure of the 

pancreatic beta cell (Faita et al., 2018; Katsuda et al., 2013; King, 2012). This model 

is well recognised as a T2DM model of beta cell dysfunction (Faita et al., 2018), unlike 

HFF mice. 

Thus, rationale for assessing the therapeutic effects of (D-Ala2)GIP-xenin-8-Gln in 

two in vivo models of T2DM is because the HFF model is primarily representative of 

IGT and early T2DM, perceived by the development of insulin resistance and 

insufficient islet compensation. (Winzell and Ahren, 2004). Whereas db/db is 

considered a severe diabetes model with early on-set insulin resistance, a subsequent 

insulin secretory defect that results in profound hyperglycaemia and eventually ketosis 

(Katsuda et al., 2013; King, 2012). Therefore it is essential to uncover the potential 

therapeutic applicability of the (D-Ala2)GIP-xenin-8-Gln hybrid in both rodent 

models. The aim of this study was to assess the therapeutic effectiveness of the (D-

Ala2)GIP-xenin-8-Gln hybrid in the genetic db/db model of T2DM and to ascertain if 

there are any differences in its efficacious qualities or robustness as an antidiabetic 

therapeutic when the disease severity, aetiology and/or pathophysiology is altered 

compared to HFF mice (Chapter 3).  

 

4.3 Materials and Methods 

4.3.1 Peptides 

All peptides were purchased from Syn Peptide Shanghai, China. Purity was confirmed 

by RP-HPLC and characterised by MALDI-TOF MS, previously described in Sections 

2.1, 2.2.3, and 2.2.4. For all experimental materials and methods please refer to Section 

2.1 and the relevant subsections.  
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4.3.2 Animals 

The long-term study utilised male diabetic (db/db) mice (BKS.Cg-+ Leprdb/+ 

Leprdb/OlaHsd, 6-8 weeks), as described in Section 2.9.3.  

 

4.3.3 Long-term in vivo study in db/db mice 

Twice daily intraperitoneal injections (09:00 and 17:00 h) were administered with 

either saline alone (0.9% (w/v) NaCl), exendin-4, (DAla2)GIP-xenin-8-Gln alone or in 

combination with exendin-4 (all peptides at 25 nmol/kg bw) for 29 days described in 

Section 2.11.1. Assessed metabolic parameters included: blood glucose, plasma 

insulin, body weight and cumulative energy intake, monitored every 3-4 days as 

described in Sections 2.11.1. End of treatment assessment parameters included glucose 

tolerance (18 mmol/kg bw), HbA1c, blood glucose profile, GIP tolerance, insulin 

sensitivity (50 U/kg), insulin content, percentage fat mass and islet morphology 

described in Sections 2.8.2, 2.8.3 and 2.11.2 

 

4.3.4 Biochemical analysis 

Blood/plasma glucose, plasma and pancreatic insulin were assayed as described in 

Sections 2.5.4 and 2.10 

 

4.3.5 Statistical analysis 

As described in Section 2.12 

 

4.4 Results 

4.4.1 Effects of twice-daily administration of exendin-4, (D-Ala2)GIP-xenin-8-Gln 

or a combination of both peptides on cumulative energy intake, body weight and 

percentage fat mass in db/db mice 
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Following twice daily administration of all treatments for 29 days there was a 

significant lowering (P<0.05 to P<0.001) on cumulative energy intake compared to 

saline control (Figure 4.1A). Although not significant, there was a progressive decline 

in body weight in all groups (Figure 4.1B).  However, percentage fat mass was 

significantly reduced (1.2-1.3 fold decrease; P<0.05 and P<0.01) in all treatment 

groups compared to saline treated control, with (D-Ala2)GIP-xenin-8-Gln having the 

most significant decrease (1.3 fold decrease) (Figure 4.1C).  

 

4.4.2 Effects of twice-daily administration of exendin-4, (D-Ala2)GIP-xenin-8-Gln 

or a combination of both peptides on non-fasted glucose and insulin in db/db mice 

Throughout the treatment period, non-fasted glucose was observed to be significantly 

decreased (P<0.001) when compared to saline treated control (Figure 4.2A). Treatment 

with (D-Ala2)GIP-xenin-8-Gln alone resulted in a significant decrease until day 8 

(P<0.001) but reverted to levels similar to that of saline treated control group from day 

8 onwards (Figure 4.2A). Non-fasted insulin concentrations were significantly 

increased (P<0.05 and P<0.01) by exendin-4 on days 11 and 18, with (D-Ala2)GIP-

xenin-8-Gln in combination with exendin-4 only increasing (P<0.01) insulin on day 1 

and 8, compared to saline control (Figure 4.2B).  

 

4.4.3. Effects of twice daily administration of exendin-4, (D-Ala2)GIP-xenin-8-Gln 

or a combination of both peptides on 24 hour blood glucose profile and % HbA1c 

in db/db mice 

After twice daily administration of the peptide treatment regimens for 29 days (D-

Ala2)GIP-xenin-8-Gln and (D-Ala2)GIP-xenin-8-Gln in combination with exendin-4 

significantly reduced (P<0.05) glucose levels at both 4 and 8 hour time points 

compared to saline control (Figure 4.3A). Moreover, exendin-4 further reduced 

(P<0.001) glucose levels at the same time points when compared to saline (Figure 

4.3A). The % HbA1c was reduced (P<0.05) in all exendin-4 treated db/db mice when 

compared to (D-Ala2)GIP-xenin-8-Gln alone but all were still elevated (P<0.001) 

compared to lean controls (Figure 4.3B). 
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4.4.4 Effects of twice-daily administration of exendin-4, (D-Ala2)GIP-xenin-8-Gln 

or a combination of both peptides on glucose and insulin in response to an oral 

glucose challenge in db/db mice 

Twice daily administration of all treatment groups demonstrated limited effects on 

glycaemic response on post oral glucose load (Figure 4.4A). Glucose was unaffected 

by the treatment groups, except (D-Ala2)GIP-xenin-8-Gln in combination with 

exendin-4, which had reduced (P<0.05) glucose at 15 min time point with a 

significantly lower (P<0.05) overall AUC (Figure 4.4A). (D-Ala2)GIP-xenin-8-Gln 

had significantly lower (P<0.05) glucose-induced insulin secretion at time point 0 min 

after 10 hours fasting, and this remained reduced (P<0.05)  at the 15 min time point 

compared to saline controls (Figure 4.4B). Exendin-4 had significantly reduced 

(P<0.001) insulin at the 15 min time point only, (D-Ala2)GIP-xenin-8-Gln in 

combination with exendin-4 reduced (P<0.05) insulin at the same time point compared 

to saline control (Figure 4.4B). The AUC demonstrates that exendin-4 is the only 

treatment group to significantly effect insulin response as it reduced (P<0.05) AUC 

values (Figure 4.4B). 

 

4.4.5 Effects of twice-daily administration of exendin-4, (D-Ala2)GIP-xenin-8-Gln 

or a combination of both peptides on glucose and insulin in response to GIP in 

db/db mice 

Glucose and GIP was administered in combination to assess GIP tolerance following 

twice daily peptide administration for 29 days. Interestingly, in terms of individual 

values all treatments had no significant effect on either glucose or insulin levels when 

compared to saline treated controls (Figure 4.5A-B). However, AUC values for 

exendin-4 show that overall, exendin-4 reduced (P<0.05) glucose and the 

corresponding insulin levels (P<0.01) when compared to (D-Ala2)GIP-xenin-8-Gln 

treatment alone (Figure 4.5A-B). 

 

4.4.6 Effects of twice-daily administration of exendin-4, (D-Ala2)GIP-xenin-8-Gln 

or a combination of both peptides on insulin sensitivity and pancreatic insulin 

content in db/db mice  
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Following 29 days, twice daily administration of exendin-4 or (D-Ala2)GIP-xenin-8-

Gln alone had no effect on insulin sensitivity (Figure 4.6A). However, there was a 

significant effect by (D-Ala2)GIP-xenin-8-Gln in combination with exendin-4, which 

decreased (P<0.05) glucose at the 15 min time point compared to saline controls 

(Figure 4.6A). In addition, ACC shows that none of the treatment groups had a 

significant overall effect on insulin sensitivity (Figure 4.6A). Pancreatic insulin 

content was not significantly different across the treatment groups compared to saline 

controls (Figure 4.6B). However, all db/db mice had reduced (P<0.05) pancreatic 

insulin content when compared to lean mice (Figure 4.6B). 

  

4.4.7 Effects of twice daily administration of exendin-4, (D-Ala2)GIP-xenin-8-Gln 

or a combination of both peptides on pancreatic histology in db/db mice 

Pancreatic islet area was unaffected by any of the treatment groups in comparison to 

saline treated controls (Figure 4.7A). In all db/db mice treated with exendin-4, 

pancreatic islet area was not significantly different from lean control mice (Figure 

4.7A). Pancreatic beta cell area was unaffected by all treatment groups compared to 

saline treated db/db control (Figure 4.7B). In comparison to lean mice beta cell area of 

all the db/db groups was significantly reduced (P<0.05 to P<0.01) (Figure 4.7B). 

Interestingly, there was no significant change in alpha cell area (Figure 4.7C). 

Representative images of islets from all groups of mice are shown in Figure 4.7A-E. 

 

4.5 Discussion 

This study investigated the therapeutic utility of (DAla2)GIP-xenin-8-Gln using a 

preclinical genetic db/db in vivo model useful for studying novel pharmacological 

targets to treat T2DM and other metabolic syndromes. This model presents with age-

dependent progression of diabetes, early insulin resistance followed by defective 

insulin secretion that ultimately results in extreme hyperglycaemia and is considered 

to replicate a fairly, severe manifestation of T2DM (Faita et al., 2018; King, 2012; 

Winzell and Ahren, 2004). In the previous chapter (DAla2)GIP-xenin-8-Gln was 

shown to have efficacious potential for treatment of obesity-diabetes as demonstrated 

in HFF mice (Chapter 3). Qualities included an enhanced glycaemic control and 
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insulinotropic effect along with potential restoration of GIP action which is lost as 

T2DM progresses (Hasib et al., 2017; Kaku, 2010). This present study was designed 

to investigate if such benefits would be achievable in a genetically induced, later stage 

rodent model of T2DM. 

The chronic 29 day treatment regimen, with twice daily intraperitoneal administration 

of (DAla2)GIP-xenin-8-Gln in db/db mice revealed no therapeutic effect on non-fasted 

glucose when treated alone. However, with the addition of exendin-4, (DAla2)GIP-

xenin-8-Gln markedly improved glycaemic control throughout the observation period. 

However, circulating insulin levels were only increased on day 1 and 8 of treatment, 

which was unexpected suggesting that the recognised extrapancreatic glucose-

lowering action of GIP, xenin and GLP-1 could be important (Al-Sabah, 2015; Baggio 

and Drucker, 2007; Capozzi et al., 2018; Parthsarathy et al., 2016; Psichas Reimann 

and Gribble, 2015). The blood profile (24h) and percentage glycated haemoglobin 

(HbA1c) levels emulated the daily glucose levels as (DAla2)GIP-xenin-8-Gln in 

combination with exendin-4 yielded greater glycaemic control. Moreover, even though 

glucose levels were reduced by peptide therapy, they remained at a significantly 

elevated level when compared to non-diabetic controls, this was in keeping with the 

described disease progression of profound hyperglycaemia in db/db mice (Faita et al., 

2018; Katsuda et al., 2013; King, 2012).  

 (DAla2)GIP-xenin-8-Gln in combination with exendin-4 had significant lowering 

effects on cumulative energy intake but not on body weight over the 29 day period. 

Moreover, throughout the treatment period the body weight of all db/db mice began to 

progressively decrease. When considering the decrease in body weight it is important 

to consider if its relevance is in relation to pharmacological intervention or if it is 

phenotypical to the in vivo model, as weight loss is characteristic of the db/db breed at 

the latter stage of the disease (Srinivasan and Ramarao, 2007). Other factors that must 

also be considered but not limited to, when interpreting information and data include 

the age of said mice and the rate/stage of disease progression, as this can vary between 

colonies (Srinivasan and Ramarao, 2007). However, exendin-4 is well known to 

reduce body weight (Kanoski, Hayes and Skibicka, 2016) and there are suggestions 

that GIP and xenin may also decrease body weight (Al-Sabah, 2015; Anlauf et al., 

2000; Campbell and Drucker, 2013; Craig, Gault and Irwin, 2018; Parthsarathy et al., 

2016). Interestingly, the percentage fat mass was also reduced in all treatment groups 
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but not the saline group. (DAla2)GIP-xenin-8-Gln elicited the greatest reduction 

closely followed by the exendin-4 and (DAla2)GIP-xenin-8-Gln in combination with 

exendin-4 treatment groups. This is suggestive that (DAla2)GIP-xenin-8-Gln may have 

an influencing effect on body balancing factors such as fat mass in db/db mice. Indeed, 

both GIP and xenin are known to play a role in lipid metabolism (Campbell and 

Drucker, 2013; Craig, Gault and Irwin, 2018). Further studies examining actions at 

adipocytes using in vitro models and ex vivo imaging would be important. 

The oral glucose challenge following the treatment period revealed improvement in 

glucose excursion in db/db mice treated with (DAla2)GIP-xenin-8-Gln in combination 

of exendin-4. However, sensitivity to insulin and GIP was unaffected by treatment 

with (DAla2)GIP-xenin-8-Gln alone or in combination with exendin-4. This is perhaps 

not surprising given the severe hyperglycaemia in this model. Similarly, the bolus of 

GIP administered may not have been high enough to elicit a basal response in these 

mice given the severity of beta cell dysfunction (Gault et al., 2002: King et al., 2012). 

In agreement, the pancreatic insulin content had no marked difference between the 

treatment groups, although insulin content was significantly reduced compared to the 

lean control highlighting the extreme level of beta cell dysfunction of this breed (Faita 

et al., 2018; Katsuda et al., 2013). Islet morphology also correlates with the 

progressive disease manifestation where pancreatic islets undergo atrophy and beta 

cell necrosis (Faita et al., 2018; Katsuda et al., 2013). None of the pharmacological 

interventions were able to fully prevent or protect against decline or death in either 

islets or beta cells, although exendin-4 alone and in combination with (DAla2)GIP-

xenin-8-Gln did appear most effective in this regard. However, overall islet and beta 

cell areas of the treatment groups was similar to that of the saline treated control 

(Katsuda et al., 2013). Although it is important to note this in vivo monogenetic model 

is absent of the inflammatory mechanism as well as other genetic and environmental 

factors that are apparent within the human manifestation of T2DM. Therefore, the 

complex interactions that lead to the diseased state in humans is not replicated fully by 

this model (Faita et al., 2018; Katsuda et al., 2013; Winzell and Ahren, 2004).   

Together these results suggest that at the end stages of disease, even with the 

pharmacological intervention of (DAla2)GIP-xenin-8-Gln alone or in combination 

with exendin-4, the progression of T2DM is difficult to halt (Paschetta, Hvalryg and 
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Musso, 2011; Senio, Fukushima and Yabe, 2010). Thus, the postulation that 

restoration of GIP sensitivity dramatically improves T2DM is perhaps only applicable 

to earlier stages of disease manifestation, when beta cell function is more apparent (Al-

Sabah, 2015; Irwin and Flatt, 2015). We were disappointed to some degree with the 

results using the db/db model, especially given positive effects using HFF mice. This 

was the first time we used this particular strain which appeared to exhibit a much more 

severe diabetes phenotype than we had initially expected. On reflection, we may well 

have initiated treatment earlier or if time and other resources had been available, we 

would have conducted a dose-finding pilot. 

To conclude, the data from this study largely correlates with the previous chapter, 

noting the ability of the monomeric, multi-targeting analogue, (DAla2)GIP-xenin-8-

Gln to have a positive effect on regulating energy balance in T2DM. This is most likely 

attributed to the biological action of xenin as it is the hormone with established appetite 

suppression and lipid metabolism modulating abilities, thought to be mediated by 

neurotensin receptors. Neurotensin, as a hormone and neurotransmitter, has also been 

shown to have protective effects on beta cells and modulate energy balance (Craig, 

Gault and Irwin, 2018; Mazella et al., 2012). Therefore, there may well be the 

possibility that xenin or neurotensin derived entities could represent an alternative area 

of study for development of novel antidiabetic therapeutics and forms the substance of 

the following chapter. 
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A 

Figure 4.1 Effects of twice-daily administration of exendin-4, (D-Ala2)GIP-xenin-

8-Gln or a combination of both peptides on cumulative energy intake, body 

weight and percentage fat mass in db/db mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables were measured for 6 days before and 29 days during (indicated by black 

horizontal line (B)) twice-daily treatment with saline, exendin-4, (D-Ala2)GIP-xenin-

8-Gln or in combination of exendin-4 (each at 25 nmol/kg) on cumulative energy 

intake (A) and body weight (B) and percentage fat mass measured by DEXA, after 29 

days (C). Values represent mean ± SEM (n=6-8). *P<0.05, **P<0.01 and ***P<0.001 

in comparison with saline control.  
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Figure 4.2 Effects of twice-daily administration of exendin-4, (D-Ala2)GIP-xenin-

8-Gln or a combination of both peptides on non-fasted plasma glucose and insulin 

in db/db mice  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Blood glucose (A) and plasma insulin (B) was measured for 6 days before and 29 days 

during (indicated by black horizontal line) twice-daily treatment with saline, exendin-

4, (D-Ala2)GIP-xenin-8-Gln or in combination of exendin-4 (each at 25 nmol/kg bw). 

Values represent mean ± SEM (n=6-8). *P<0.05, **P<0.01 and ***P<0.001 compared 

with saline control.  
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Figure 4.3. Effects of twice daily administration of exendin-4, (D-Ala2)GIP-xenin-

8-Gln or a combination of both peptides on 24 hour blood glucose profile and % 

HbA1c in db/db mice 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

The 24 hour blood glucose profile (A) and % HbA1c (B) were assessed following 29 

days of twice daily intraperitoneal administration of saline, exendin-4, (D-Ala2)GIP-

xenin-8-Gln or in combination of exendin-4 (each at 25 nmol/kg bw). Arrows are 

indicative of treatment administration. Values represent mean ± SEM (n=6-8). 

*P<0.05, **P<0.01 and ***P<0.001 compared with saline control or ΔP<0.05 

compared with (D-Ala2)GIP-xenin-8-Gln or ΛΛΛP<0.001 compared to lean control. 
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Figure 4.4 Effects of twice-daily administration of exendin-4, (D-Ala2)GIP-xenin-

8-Gln or a combination of both peptides on plasma glucose and plasma insulin in 

response to an oral glucose challenge in db/db mice 

 

 

 

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Test were performed following 29 days of twice-daily intraperitoneal administration 

of saline, exendin-4, (D-Ala2)GIP-xenin-8-Gln or in combination of exendin-4 (each 

at 25 nmol/kg bw). Mice were fasted for 10 h previously. Plasma glucose (A) and 

plasma insulin (B) was measured prior to and after oral administration of glucose alone 

(18 mmol/kg bw). Plasma AUC values for 0-120min are also included. Values 

represent mean ± SEM (n=6-8). *P<0.05, **P<0.01 and ***P<0.001 with saline 

control or +P<0.05 compared with (D-Ala2)GIP-xenin-8-Gln in combination with 

exendin-4. 
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Figure 4.5 Effects of twice-daily administration of exendin-4, (D-Ala2)GIP-xenin-

8-Gln or a combination of both peptides on plasma glucose and plasma insulin in 

response to GIP in db/db mice 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

Test were performed following 29 days of twice-daily intraperitoneal administration 

of saline, exendin-4, (D-Ala2)GIP-xenin-8-Gln or in combination of exendin-4 (each 

at 25 nmol/kg bw). Mice were fasted for 10 h previously. Plasma glucose (A) and 

plasma insulin (B) was measured prior to and after intraperitoneal administration of 

glucose (18 mmol/kg bw) in combination with GIP (25 nmol/kg bw). Plasma AUC 

values for 0-90min are also included. Values represent mean ± SEM (n=6-8). *P<0.05, 

**P<0.01 and ***P<0.001 with saline control or ΔP<0.05 and ΔΔP<0.01 compared with 

(D-Ala2)GIP-xenin-8-Gln. 
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Figure 4.6 Effects of twice-daily administration of exendin-4, (D-Ala2)GIP-xenin-

8-Gln or a combination of both peptides on insulin sensitivity and pancreatic 

insulin content in db/db mice  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test were performed following 29 days of twice-daily intraperitoneal administration 

of saline, exendin-4, (D-Ala2)GIP-xenin-8-Gln or in combination of exendin-4 (each 

at 25 nmol/kg bw). Plasma glucose (A) was measured prior to and after i.p. 

administration of insulin (50 U/kg bw). Plasma AAC values for 0-60min are also 

included. Pancreatic insulin content (B) was measured by RIA following pancreatic 

hormone extraction. Values represent mean ± SEM (n=6-8). **P<0.01 and 

***P<0.001 compared with saline control or ΛΛP<0.01 and ΛΛΛP<0.001 compared to 

lean control.
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Figure 4.7 Effects of twice daily administration of exendin-4, (D-Ala2)GIP-xenin-

8-Gln or a combination of both peptides on pancreatic histology in db/db mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of twice-daily i.p. administration of exendin-4, (D-Ala2)GIP-xenin-8-Gln or a 

combination of both peptides (each at 25 nmol/kg bw) following 29 day administration 

on islet area (A), beta cell area (B), and alpha cell area (C) in db/db mice. Values are 

mean ± SEM (n=6-8). *P<0.05 and **P<0.01 compared with saline treated control. 

ΛP<0.05, ΛΛP<0.01 compared to lean control.  
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Figure 4.8 Effects of twice daily administration of exendin-4, (D-Ala2)GIP-xenin-

8-Gln or a combination of both peptides on pancreatic histology in db/db mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Images were captured by an Olympus System Microscope BX51 (Olympus 

instruments, UK) and a DP70 camera adapter. Cell^F image analysis software was 

used to assess parameters, magnification was X40. Insulin (red), glucagon (green) and 

DAPI (blue) in pancreatic tissue harvested from lean, (A) saline (B), exendin-4 (C), 

(D-Ala2)GIP-xenin-8-Gln (D) or a combination of both peptides (E) (each at 25 

nmol/kg bw). 

 

 

A B C 

D E 



97 
 

 

 

 

 

 

 

 

 

Chapter 5 

 

Assessing the biological actions and application as an antidiabetic 

therapeutic of a novel neurotensin-xenin hybrid peptide 
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5.1 Summary  

Xenin based molecules appear to have notable antidiabetic potential and as such 

warrant further appraisal as a pharmacological therapeutic. In this study xenin-8-Gln 

was fused to a biologically active fragment of neurotensin (NT), acetyl-neurotensin(8-

13). Xenin is also said to mediate its biological actions via NTRs. It seems NT, like 

xenin, has biological actions within the endocrine system and that all three NTRs are 

involved in mediating glycaemic control, insulinotropic action, along with body 

balancing factors and protective effects. Thus, combining the biologically active 

fragments of NT and xenin may have therapeutic potential. Acetyl-neurotensin(8-13)-

xenin-8-Gln was chosen over the native peptide as it showed superior receptor binding 

and enhanced bioactivity with in vitro insulin secretion increased (P<0.01 to P<0.01). 

Acetyl-neurotensin(8-13)-xenin-8-Gln showed significant (P<0.001) beta cell 

proliferation and protection against apoptosis in BRIN-BD11 cells. Twice daily 

treatment of acetyl-neurotensin(8-13)-xenin-8-Gln in HFF mice resulted in a sustained 

improvement in glycaemic control and insulin secretion but was significantly (P<0.05 

to P<0.001) enhanced when in combination with exendin-4, also reflected in blood 

glucose profile and glycated haemoglobin (HbA1c) levels (P<0.05 to P<0.01). Glucose 

excursion had marked improvements (P<0.05) with acetyl-neurotensin(8-13)-xenin-8-

Gln in combination with exendin-4 as well as notably improved (P<0.05 to P<0.001) 

response to exogenous GIP and insulin sensitivity, reinforced by pancreatic insulin 

content. Additionally, islet and beta cell areas were unaffected by acetyl-

neurotensin(8-13)-xenin-8-Gln but were significantly increased (P<0.05 to P<0.01) 

when in combination with exendin-4. In relation to energy balance, acetyl-

neurotensin(8-13)-xenin-8-Gln only in combination with exendin-4 had weight 

reducing effects and yielded the greatest reduction (P<0.05 and P<0.001) in 

triglyceride levels. The data shows acetyl-neurotensin(8-13)-xenin-8-Gln has 

improved therapeutic efficacy in combination with exendin-4 and appears to enhance 

the therapeutic range of exendin-4 in several biological actions including glycaemic 

control, insulinotropic action and fat reduction. Thus, acetyl-neurotensin(8-13)-xenin-

8-Gln combination with exendin-4, may have the potential as a T2DM-obesity 

therapeutic. 
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5.2 Introduction 

As noted in previous chapters (Chapters 3,4), and in recent literature (Gault et al., 

2015; Hasib et al., 2017; Hasib et al., 2018a; Hasib et al., 2018b; Martin et al., 2016; 

Parthsarathy et al., 2016), xenin based molecules have notable antidiabetic potential. 

To further examine and appraise the pharmacological therapeutic potential of xenin, 

we have designed another novel hybrid peptide. On this occasion the modified 

biologically active region of xenin, xenin-8-Gln was fused to the biologically active 

fragment of neurotensin (NT), namely acetyl-neurotensin(8-13)-xenin-8-Gln. The 

truncated neurotensin fragment, neurotensin(8-13), was selected over the native 

thirteen amino acid parent peptide because it has shown superior receptor binding and 

enhanced bioactivity (Martin, 2016; Schroeder and Leinninger, 2018). The premise for 

this novel hybrid is of a similar nature to the previous (D-Ala2)GIP-xenin-8-Gln 

(Chapter 3). However, in this case xenin-8-Gln was linked to the structurally similar 

NT analogue, as both entities are believed to utilise the neurotensin receptor (NTR) to 

mediate their biological actions. (Craig, Gault and Irwin, 2018; Martin et al., 2012).   

A number of studies indicate that NT, as a neurotransmitter or as a circulating 

hormone, has a role within the endocrine system influencing glucose homeostasis and 

energy balance (Mazella et al., 2012; Schroeder and Leinninger, 2018). Satiety is the 

key in energy balance and is primarily regulated by leptin secreted from adipocytes, 

which controls food intake by acting as a hormone directly on satiety regions within 

the hypothalamus (Mazella et al., 2012; Schroeder and Leinninger, 2018). Recent 

studies have postulated that leptin may be controlled by NTSR1 expressing neurons as 

the effects of leptin were impaired in NTSR1-deficient mice (Mazella et al., 2012). 

Additionally, a study by Leinninger and colleagues (2011) revealed that NT neurons 

control leptin actions including the mesolimbic dopamine system, secretion of orexin 

and energy balance (Leinninger et al., 2011; Mazella et al., 2012). Moreover, NT has 

been implicated in the control of nutrient absorption particularly in conjunction with 

fatty acid (FA) rich food. Studies have determined that postprandially, the ingestion of 

FA substantially increases circulating levels of NT (Mazella et al., 2012). As such, NT 

is secreted from the gut in response to fat ingestion and this stimulates secretions from 

the pancreas to facilitate lipid digestion (Mazella et al., 2012).   
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Furthermore, NT has a role in glucose homeostasis, including regulating the release of 

endocrine pancreatic hormones and at low glucose levels stimulates glucagon and 

insulin release (Mazella et al., 2012). These endocrine actions have been confirmed in 

several studies (Coppola et al., 2008; Grunddal et al., 2016; Khan et al., 2017; Mazella 

et al., 2012). NT can directly mediate endocrine actions on the pancreas as this tissue 

expresses all three NTSRs (Khan et al., 2017; Mazella et al., 2012). It is postulated 

that NTSR2 initiates the effect of NT on insulin secretion, but the impact of 

NTSR3/sortilin has also been investigated (Mazella et al., 2012). This suggests that 

NTSR2 and NTSR3/sortilin beta cell pathways may work in tandem. Indeed, the 

literature confirms that within beta cells, NTSR2 and NTSR3/sortilin form 

heterodimers (Mazella et al., 2012). Interestingly, NT predominantly via NTSR2 has 

protective effects on beta cells against external cytotoxic agents including interlukin-

1 beta via the PI3 kinase pathway (Mazella et al., 2012). This protective effect is 

significant as beta cell death is a major factor in T2DM pathology (Khan et al., 2017; 

Mazella et al., 2012). Taken together, it is clear that NT, either as a neurotransmitter 

or circulating hormone, has an important role in the control of energy balance and 

glucose homeostasis (Mazella et al., 2012). 

As noted previously (Chapter 3,4), xenin derivatives have shown the ability to improve 

insulin sensitivity, augment insulinotropic response and decrease the overall 

glycaemic excursion in HFF models of obesity-T2DM. Xenin signalling can also 

regulate lipid metabolism via the NTR1 by acting directly on adipose tissue to 

stimulate lipolysis (Bhavya, Lew and Mizuno, 2018; Martin et al., 2016). Moreover, 

it seems that all three NTRs have a profound involvement in mediating glycaemic 

control, insulinotropic action, along with body balancing factors and protective effects, 

which are mediated by NT and xenin collectively, both centrally and peripherally 

(Bhavya, Lew and Mizuno, 2018; Martin et al., 2016; Mazella et al., 2012). Therefore, 

combining the biologically active fragments of NT and xenin to assemble a monomeric 

hybrid peptide, may result in an advantageous therapeutic, with improved practicality 

over individual agonists of either peptide (Irwin and Flatt, 2015).  

Within this study the biological actions and stability of the novel hybrid peptide acetyl-

neurotensin(8-13)-xenin-8-Gln were appraised. Acetyl-neurotensin(8-13)-xenin-8-

Gln was investigated both in vitro and in vivo to assess its potential as a T2DM 
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therapeutic. Given our previous negative experience with db/db mice and possible 

complications of leptin deficiency in application with NT, we decided to evaluate 

effects in HFF mice. 

 

5.3 Materials and Methods 

5.3.1 Peptides 

All peptides (Table 1) were purchased from Syn Peptide Shanghai, China. Purity was 

confirmed by RP-HPLC and characterised by MALDI-TOF MS, all previously 

described in Sections 2.1, 2.2.3, and 2.2.4. For all experimental materials and methods 

please refer to Section 2.1 and the relevant subsections.  

 

5.3.2 Plasma degradation 

The effect of murine plasma on peptide stability was assessed as described previously 

in section 2.3.2. 

 

5.3.3 Acute effects of peptides alone in the presence of GLP-1 or GIP on in vitro 

insulin secretion from BRIN-BD11 cells 

The in vitro insulin secretory activity of peptides in BRIN-BD11 cells was conducted 

as described in Section 2.5.2. BRIN-BD11 cells were incubated (20 min) with test 

peptides (10-6 – 10-12 mol/l) alone at 5.6 and 16.7 mol/l glucose and in the presence of 

GLP-1or GIP (10-7 mol/l). Following test incubations (20 min), insulin secretion was 

measured by RIA as previously described in Sections 2.5.2 and 2.5.4. 

 

5.3.4 In vitro proliferation 
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Effects of test peptides on cell proliferation in BRIN-BD11 cells was conducted as 

described in Section 2.6.2. Cells were incubated with test peptides (10-8 to 10-6 mol/l) 

for 18 hours. The primary antibody, anti-Ki-67 (1:250) and the secondary antibody, 

goat anti-rabbit Alexa Fluor® 594 (1:400) were used to detect proliferating beta cells 

by fluorescent microscopy. 

 

5.3.5 In vitro apoptosis 

The effects of test peptides on protection of BRIN-BD11 from cytokine-induced 

apoptosis was examined is as described in Section 2.6.3. Cells were incubated with 

test peptides (10-8 to 10-6 mol/l) for 18 hours and apoptosis initiated by adding caspase-

3/7 substrate reagent (ApoLive-Glow™ Multiplex assay) that results in cell lysis, 

followed by caspase cleavage of the substrate and detection of beta cell apoptosis by 

luminescence. 

 

5.3.6 In vitro cyclic AMP 

Effects of peptides on cAMP production was examined using BRIN-BD11 cells 

(Section 2.7.2). Briefly, test peptides (10-9 to 10-6 mol/l) were incubated with cells for 

60 mins, and cAMP measured using a cAMP Parameter® ELISA kit. 

 

5.3.7 Animals 

The long-term study utilised HFF male Swiss mice, as described in Section 2.9.2. Prior 

to experimentation, mice were maintained on high fat diet for 10 weeks, resulting in 

overt obesity and hyperglycaemia. 

 

5.3.8 Long-term in vivo study in high fat fed mice 
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Twice daily intraperitoneal (i.p.) injections (09:00 and 17:00 h) of either saline vehicle 

(0.9% (w/v) NaCl), exendin-4, acetyl-neurotensin(8-13)-xenin-8-Gln alone or in 

combination with exendin-4 (all peptides at 25 nmol/kg) were administered for 32 days 

(Section 2.11.1). Assessed metabolic parameters during the study included: circulating 

glucose and insulin, body weight and cumulative energy intake, monitored every 3-4 

days (Sections 2.11.1). End of treatment assessment parameters included: glucose 

tolerance (18 mmol/kg bw), HbA1c, blood glucose profile, GIP tolerance (25 nmol/kg 

bw), insulin sensitivity (25 U/kg), pancreatic insulin content, percentage fat mass, 

circulating triglycerides and cholesterol as well as islet morphology, as described in 

more detail within Sections 2.8.2, 2.8.3 and 2.11.2. 

 

5.3.9 Biochemical analysis 

Blood/plasma glucose, plasma and pancreatic insulin were assayed as described in 

Sections 2.5.4 and 2.10 

 

5.3.10 Statistical analysis 

As described in Section 2.12 

 

5.4 Results 

5.4.1 Peptide characterisation of native neurotensin, xenin-8-Gln, neurotensin(8-

13), acetyl-neurotensin(8-13) and acetyl-neurotensin(8-13)-xenin-8-Gln and 

stability in the presence of mouse plasma 

Following RP-HPLC on a C-18 analytical column, all peptides showed homogenous 

well-resolved peaks indicating a high degree of purity. Table 5.1 represents retention 

times which corresponded well with the purity information supplied by manufacturer. 

The experimental mass detected for each peptide corresponded to theoretical mass 

(Table 5.1), confirming successful synthesis. Moreover, the hybrid peptide acetyl-
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neurotensin(8-13)-xenin-8-Gln showed improved stability under plasma degradation 

for up to 8 hours (Table 5.1).  

 

5.4.2 Acute effects of neurotensin on insulin release from BRIN-BD11 cells  

Figure 5.1 (A-D) demonstrates the abilities of neurotensin to increase insulin secretion 

from BRIN-BD11 cells at various concentrations of glucose. Neurotensin increased 

(P<0.001) insulin secretion at 3.3 mmol/l glucose in a dose dependent manner 

compared to respective glucose control (Figure 5.1A). At 5.6 mmol/l glucose 

neurotensin only enhanced (P<0.05) insulin secretion at 10-6 mol/l when compared to 

control (Figure 5.1B). At higher glucose levels (11.1 and 16.7 mmol/l), neurotensin 

inhibited (P<0.05 to P<0.01) insulin secretion, especially at the higher concentrations 

examined (Figure 5.1C-D).  

 

5.4.3 Acute effects of neurotensin on insulin release from BRIN-BD11 cells in the 

presence of GIP and GLP-1  

When neurotensin was combined with GIP or GLP-1 at 5.6 mmol/l glucose, the levels 

of secreted insulin were significantly increased (P<0.001), compared glucose alone 

(Figure 5.2A-B). However, neurotensin did not augment GIP-induced insulin secretion 

(Figure 5.2A), and the insulin secretory ability of GLP-1 was actually reduced by 

neurotensin at 10-8 and 10-6 mol/l concentrations (Figure 5.2B).  

 

5.4.4 Acute effects of xenin-8-Gln on insulin release from BRIN-BD11 cells 

Figure 5.3 (A-D) demonstrates the ability of xenin-8-Gln to increase insulin secretion 

from BRIN-BD11 cells at various concentrations of glucose. Xenin-8-Gln increased 

(P<0.05 to P<0.01) insulin secretion at 11.1 and 16.7 mmol/l glucose in a dose 

dependent manner (Figure 5.3C-D), and this is also demonstrated at 5.6 mmol/l 

glucose, as higher concentrations (10-8 mol/l to 10-6 mol/l) of xenin-8-Gln increased 

(P<0.05 to P<0.001) insulin secretion (Figure 5.3B).  
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5.4.5 Acute effects of xenin-8-Gln on insulin release from BRIN-BD11 cells in the 

presence of GIP and GLP-1  

When xenin-8-Gln was combined with GIP or GLP-1 at normal physiological levels 

of glucose (5.6 mmol/l) the levels of secreted insulin were significantly increased 

(P<0.001) compared glucose alone (Figure 5.4A-B). Xenin-8-Gln also enhanced 

(P<0.05 to P<0.01) the secretory ability of GIP at higher concentrations (10-8 mol/l to 

10-6 mol/l) compared to respective control (Figure 5.4A). However, this enhancement 

ability was not demonstrated in combination with GLP-1 (Figure 5.4B). 

 

5.4.6 Acute effects of acetyl-neurotensin(8-13) on insulin release from BRIN-

BD11 cells 

Acetyl-neurotensin(8-13) significantly increased (P<0.05 to P<0.001) insulin 

secretion from BRIN-BD11 cells at lower glucose levels (3.3 mmol/l) in a dose 

dependent manner when compared to respective control (Figure 5.5A). This increase 

(P<0.05 to P<0.01) was also shown at normal physiological glucose (5.6 mmol/l) 

(Figure 5.5B), but only at higher peptide concentrations (10-8 mol/l to 10-6 mol/l). 

Conversely, at higher glucose concentrations (11.1 and 16.7 mmol/l) acetyl-

neurotensin(8-13) induced insulin secretion decreased in a dose dependent manner, as 

such the higher the concentration (10-12 mol/l to 10-6 mol/l) the less insulin secreted 

(Figure 5.5C-D). Insulin secretion was significantly decreased (P<0.05 to P<0.001) at 

16.7 mmol/l glucose by acetyl-neurotensin(8-13)  (at 10-10 mol/l to 10-6 mol/l) 

compared to glucose control (Figure 5.5D). 

 

5.4.7 Acute effects of acetyl-neurotensin(8-13) on insulin release from BRIN-

BD11 cells in the presence of GIP and GLP-1 

Acetyl-neurotensin(8-13) combined with GIP or GLP-1 at normal physiological levels 

of glucose (5.6 mmol/l) significantly increased (P<0.001) levels of secreted insulin 

when compared to the 5.6 mmol/l glucose control (Figure 5.6A-B).  However, when 

compared to GLP-1 (at 10-6 mol/l) the level of insulin secretion was significantly 

diminished (P<0.05) compared to the GLP-1 control (Figure 5.6B). 

 



106 
 

5.4.8 Acute effects of acetyl-neurotensin(8-13)-xenin-8-Gln on insulin release 

from BRIN-BD11 cells 

Acetyl-neurotensin(8-13)-xenin-8-Gln) enhanced (P<0.05 to P<0.001) insulin 

secretion from BRIN-BD11 cells at all glucose concentrations (3.3, 5.6, 11.1 and 16.7 

mmol/l) tested, but only at higher peptide concentrations (10-8 mol/l to 10-6 mol/l) 

(Figure 5.7A-D). 

 

5.4.9 Acute effects of acetyl-neurotensin(8-13)-xenin-8-Gln on insulin release 

from BRIN-BD11 cells in the presence of GIP and GLP-1 

Acetyl-neurotensin(8-13)-xenin-8-Gln combined with GIP or GLP-1 at normal 

physiological levels of glucose (5.6 mmol/l) significantly increased (P<0.001) the 

levels of secreted insulin when compared to the 5.6 mmol/l glucose control (Figure 

5.8A-B). When compared to GIP, at higher (10-12 mol/l to 10-6 mol/l) concentrations 

of acetyl-neurotensin(8-13)-xenin-8-Gln insulin secretion was significantly increased 

(P<0.001), compared to the GIP control (Figure 5.8A). 

 

5.4.10 Effects of neurotensin analogues and neurotensin-xenin-8-Gln hybrids on 

insulin release from lean mouse islets 

Isolated islets from lean mice incubated with acetyl-neurotensin(8-13), neurotensin-

xenin-8-Gln or acetyl-neurotensin(8-13)-xenin-8-Gln (10-8 mol/l or 10-6 mol/l) at 3.3 

mmol/l glucose stimulated a significant increase (P<0.05 to P<0.01) of insulin 

secretion when compared to the glucose control (Figure 5.9A). However, xenin-8-Gln 

had no effect, and neurotensin elicited a response (P<0.05) only at a higher peptide 

concentration (10-6 mol/l) from isolated islets at 3.3 mmol/l glucose (Figure 5.9A). All 

concentrations of xenin-8-Gln, neurotensin-xenin-8-Gln and acetyl-neurotensin(8-

13)-xenin-8-Gln employed stimulated a significant increase (P<0.05 to P<0.001) of 

insulin secretion from islets at 16.7 mmol/l glucose and compared to neurotensin and 

acetyl-neurotensin(8-13) (Figure 5.9B). 
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5.4.11 The effects of xenin-8-Gln, neurotensin(8-13), acetyl-neurotensin(8-13) and 

acetyl-neurotensin(8-13)-xenin-8-Gln on BRIN-BD11 cell proliferation 

Culturing of BRIN-BD11 cells in the presence of exendin-4, acetyl-neurotensin(8-13), 

xenin-25 and acetyl-neurotensin(8-13)-xenin-8-Gln (A) (at 10-6 mol/l or 10-8mol/l) for 

18 hours significantly increased (P<0.001) the proliferation frequency in comparison 

to the control culture (Figure 5.10A-B). Xenin-8-Gln alone exhibited no enhancing 

effects, but when combined with acetyl-neurotensin(8-13) as a hybrid, namely acetyl-

neurotensin(8-13)-xenin-8-Gln, beta cell proliferation was dramatically (P<0.01 to 

P<0.001) increased (Figure 5.10A). However, this increase was significantly less 

(P<0.001) when compared to exendin-4. Representative images under each culture 

condition are shown in Figure 5.10B.  

 

5.4.12 The effects of exendin-4, xenin-8, xenin-8-Gln, neurotensin(8-13), acetyl-

neurotensin(8-13) and acetyl-neurotensin(8-13)-xenin-8-Gln on BRIN-BD11 cell 

apoptosis   

BRIN-BD11 cells cultured in the presence of exendin-4, neurotensin, xenin-8, xenin-

8-Gln, neurotensin(8-13), acetyl-neurotensin(8-13), xenin-25 and acetyl-

neurotensin(8-13)-xenin-8-Gln (at 10-6 or 10-8 mol/l) for 18 hours all demonstrated a 

significant (P<0.01 to P<0.001) protective effect against capase-3/7 activated 

apoptosis in comparison to the untreated control culture (Figure 5.11). 

 

5.4.13 Effects of twice-daily administration of exendin-4, acetyl-neurotensin(8-

13)-xenin-8-Gln or a combination of both peptides on cumulative energy intake, 

body weight and percentage fat in HFF mice 

Following twice daily administration of all treatments, barring exendin-4 alone, there 

was no significant effect on cumulative energy intake over the 32 days in HFF mice 

(Figure 5.12A). However, there was a significant decrease (P<0.05 to P<0.001) in 

body weight in all exendin-4 treated mice from the fourth day of treatment (Figure 

5.12B). The percentage body fat mass also reflects this reduction (P<0.05 and 

P<0.001) in both exendin-4 and acetyl-neurotensin(8-13)-xenin-8-Gln in combination 

with exendin-4 treated groups when compared to the HFF controls (Figure 5.12C). 
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5.4.14 Effects of twice-daily administration of exendin-4, acetyl-neurotensin(8-

13)-xenin-8-Gln or a combination of both peptides on non-fasted glucose and 

insulin in HFF mice  

From the fourth day of treatment there was a significant decrease (P<0.05 to P<0.001) 

in non-fast glucose in all exendin-4 treatment groups (Figure 5.13A). Acetyl-

neurotensin(8-13)-xenin-8-Gln induced a progressive decrease in glucose, but not 

significantly (Figure 5.13A). Non-fasted plasma insulin concentrations of exendin-4 

alone and acetyl-neurotensin(8-13)-xenin-8-Gln in combination with exendin-4 

progressively increased (P<0.05 and P<0.001) from the fourth day of treatment 

(Figure5.13B). Treatment with acetyl-neurotensin(8-13)-xenin-8-Gln alone had no 

significant effect on non-fasted insulin over the treatment period, in comparison to 

HFF control mice (Figure 5.13B).  

 

5.4.15 Effects of twice daily administration of exendin-4, acetyl-neurotensin(8-

13)-xenin-8-Gln or a combination of both peptides on 24 hour blood glucose 

profile and %HbA1c in HFF mice 

Following administration over the 32 day treatment period, a 24 hour profile was 

conducted (Figure 5.14A). Non-fasted glucose levels demonstrated that exendin-4 

alone and acetyl-neurotensin(8-13)-xenin-8-Gln in combination with exendin-4 

treatment modalities induced a sustained lowering of blood glucose over the 

observation period, compared to HFF controls (Figure 5.14A). Acetyl-neurotensin(8-

13)-xenin-8-Gln treatment maintained a reduced level compared to the HFF control 

mice, but this was not significant (Figure 5.14A). Moreover, this correlated with end 

of treatment percentage HbA1c levels, as treatment with exendin-4 alone and in 

combination with acetyl-neurotensin(8-13)-xenin-8-Gln resulted in significantly 

reduced (P<0.01) HbA1c concentrations in comparison to HFF controls (Figure 

5.14B). 

 

5.4.16 Effects of twice daily administration of exendin-4, acetyl-neurotensin(8-

13)-xenin-8-Gln or a combination of both peptides on glucose and insulin in 

response to an oral glucose challenge in HFF mice 



109 
 

Only administration of acetyl-neurotensin(8-13)-xenin-8-Gln in combination with 

exendin-4 demonstrated a significant (P<0.05) improvement in glycaemic response 

post oral glucose load (Figure 5.15A). This was also reflected by overall AUC, as 

acetyl-neurotensin(8-13)-xenin-8-Gln in combination with exendin-4 significantly 

lowered (P<0.05) overall glycaemic excursion in comparison to acetyl-neurotensin(8-

13)-xenin-8-Gln, but not compared to controls (Figure 5.15B). However, none of the 

treatment groups had any significant effects on glucose-induced insulin secretion 

(Figure 5.15B). 

 

5.4.17 Effects of twice daily administration of exendin-4, acetyl-neurotensin(8-

13)-xenin-8-Gln or a combination of both peptides on glucose and insulin in 

response to GIP tolerance test in HFF mice 

Exendin-4 alone and in combination with acetyl-neurotensin(8-13)-xenin-8-Gln 

augmented the glucose-lowering action of GIP, as they maintained reduced glucose 

levels throughout assessed time points, although this effect was not significant (Figure 

5.16A). However, the AUC revealed an overall significant reduction (P<0.05) in 

glucose levels by acetyl-neurotensin(8-13)-xenin-8-Gln in combination with exendin-

4 compared with saline controls (Figure 5.16A). GIP-induced elevations of insulin for 

all HFF groups was not significantly different (Figure 5.16B). 

 

5.4.18 Effects of twice-daily administration of exendin-4, acetyl-neurotensin(8-

13)-xenin-8-Gln or a combination of both peptides on insulin sensitivity and 

pancreatic insulin content in HFF mice 

Twice daily administration of exendin-4 and acetyl-neurotensin(8-13)-xenin-8-Gln 

had no significant effect on individual glucose levels in response to exogenous insulin 

(Figure 5.17A). However, in acetyl-neurotensin(8-13)-xenin-8-Gln in combination 

with exendin-4 mice glucose levels were significantly reduced (P<0.05) at the 60 min 

time point, as well as AUC, when compared to controls and acetyl-neurotensin(8-13)-

xenin-8-Gln mice (Figure 5.17A). Pancreatic insulin content revealed that there was a 

significant (P<0.001) reduction in insulin concentrations by exendin-4 and acetyl-

neurotensin(8-13)-xenin-8-Gln in combination with exendin-4 treatment, when 
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compared to saline controls and acetyl-neurotensin(8-13)-xenin-8-Gln alone (Figure 

5.17B). 

 

5.4.19 Effects of twice daily administration of exendin-4, acetyl-neurotensin(8-

13)-xenin-8-Gln or a combination of both peptides on bone mineral density and 

bone mineral content in HFF mice 

There was no significant effect on bone mineral density (BMD) or bone mineral 

content (BMC) post twice daily administration of exendin-4, acetyl-neurotensin(8-13)-

xenin-8-Gln and acetyl-neurotensin(8-13)-xenin-8-Gln in combination with exendin-

4 (Figure 5.18A-B). 

 

5.4.20 Effects of twice daily administration of exendin-4, acetyl-neurotensin(8-

13)-xenin-8-Gln or a combination of both peptides on total cholesterol, 

triglycerides, HDL and LDL in HFF mice 

Following 32 days twice daily administration of exendin-4 alone and in combination 

with acetyl-neurotensin(8-13)-xenin-8-Gln there was a significant decrease (P<0.01 

and P<0.001) in circulating total and LDL-cholesterol (Figure 5.19A,D), with a 

decrease (P<0.05 and P<0.01) in HDL levels in all treatment groups (Figure 5.19C). 

However, there was only a decrease (P<0.01) in LDL in mice treated with acetyl-

neurotensin(8-13)-xenin-8-Gln in combination with exendin-4 (Figure 5.19B).  

 

5.4.21 Effects of twice daily administration of exendin-4, acetyl-neurotensin(8-

13)-xenin-8-Gln or a combination of both peptides on pancreatic histology in HFF 

mice 

Islet and beta cell area were increased (P<0.001) in all the HFF groups compared to 

lean controls (Figure 5.20A-B). Pancreatic islet area after 32 days treatment revealed 

that there was a significant increase (P<0.05-P<0.001) in islet area with acetyl-

neurotensin(8-13)-xenin-8-Gln in combination with exendin-4 (Figure 5.20A). 

Additionally, there was an elevation of beta cell area by acetyl-neurotensin(8-13)-

xenin-8-Gln in combination with exendin-4, with cell area significantly (P<0.01-
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P<0.001) enhanced in this treatment group compared to both lean and saline controls 

(Figure 5.20B). Moreover, both the islet and beta cell areas were significantly (P<0.05-

P<0.01) increased by acetyl-neurotensin(8-13)-xenin-8-Gln in combination with 

exendin-4 compared to acetyl-neurotensin(8-13)-xenin-8-Gln alone (Figure 5.20A-B). 

There was no significant effect on alpha cell area by any of the treatment regimens 

(Figure 5.20C). Representative islet images for all groups are shown in Figure 5.21A-

E. 

 

5.5 Discussion 

With the mediation of xenin and NT’s biological activity primarily underpinned by the 

activation of NTRs, it was essential to establish if this was maintained by the hybrid 

peptide analogue acetyl-neurotensin(8-13)-xenin-8-Gln. A recent study by Khan and 

colleagues (2017) involving the assessment of NTRs expression within the endocrine 

pancreas, supports the applicability of the initial in vitro assessment of insulin 

secretory activity, as well as beta cell growth and survival, of xenin-8-Gln, NT and 

NT-xenin analogue(s) in the BRIN-BD11 cell line and isolated mouse islets (Khan et 

al., 2017).  

The work by Khan and colleagues (2017), which was focused on the native forms of 

both peptides, correlates and corroborates the insulinotropic data generated in this 

study. Xenin-8-Gln can elicit superior insulin secretion at both low and high glucose 

concentrations, but it remains that NT and NT analogues can only enhance insulin 

secretion at lower glucose concentrations in BRIN-BD11 cells and mouse islets 

(Devader et al., 2013; Khan et al., 2017). However, the monomeric NT-xenin 

analogue, acetyl-neurotensin(8-13)-xenin-8-Gln overcomes this inability to increase 

insulin secretion at higher glucose concentrations. It appears that combining the 

modified biologically active fragment of xenin with acetylation of the active fragment 

of NT, not only extends the DPP-IV half-life of the peptide but enhances the 

insulinotropic abilities in BRIN-BD11 cells, and importantly with further insulin 

secretory superiority evidenced in isolated islets.  

Additionally, studies on the proliferative and protective effects of xenin and NT have 

noted xenin to increase proliferation. Both xenin and NT protect against streptozotocin 

induced cellular stress in BRIN-BD11 cells and NT has been shown to 
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exhibitprotective effects against caspase-3 activity (Coppola et al., 2008; Devader et 

al., 2013; Khan et al., 2017). In line with this published literature on NT (Khan et al., 

2017), acetyl-neurotensin(8-13)-xenin-8-Gln demonstrated significant beta cell 

proliferation and offered protection against beta cell apoptosis, via inhibition of the 

caspase 3/7 pathway. This suggests that the hybrid peptide may have beneficial effects 

on maintaining and/or increasing beta cell mass, with obvious positive implications 

for the treatment of diabetes (Halban et al., 2014).  

With such promising in vitro results further assessment of acetyl-neurotensin(8-13)-

xenin-8-Gln biological capabilities in vivo was warranted. Thus, a chronic 32 day 

investigation of acetyl-neurotensin(8-13)-xenin-8-Gln antidiabetic activity was 

conducted in the HFF mouse model of T2DM. The choice of animal model in which 

to study the biological effects of acetyl-neurotensin(8-13)-xenin-8-Gln was crucial to 

fully corroborating the efficacy of the hybrid peptide for the treatment of T2DM. This 

choice was of the utmost importance because of the studies linking NT to the control 

of the hormone leptin, as it acts directly on specific areas of the hypothalamus 

controlling food intake and energy expenditure (Mazella et al., 2012; Srinivasan and 

Ramarao, 2007). Therefore, the use of other genetic models of T2DM such as the 

previously utilised db/db model, which has a mutation on chromosome 4 inhibiting the 

expression of the leptin receptor, would restrict the full exploration of the true potential 

of the hybrid peptide (Faita et al., 2018; Mazella et al., 2012; Schroeder and 

Leinninger, 2018). 

Twice daily treatment of acetyl-neurotensin(8-13)-xenin-8-Gln in HFF mice resulted 

in a sustained improvement in glycaemic control and insulin secretion. Acetyl-

neurotensin(8-13)-xenin-8-Gln, although not significant, caused a progressive 

decrease in circulating glucose levels than those of the HFF saline treated control, 

similar to that seen with other xenin derived hybrid peptides (Hasib et al., 2017; Hasib 

et al., 2018a; Hasib et al., 2018b; Martin et al., 2016). Moreover, this action was 

significantly enhanced when administered in combination with the GLP-1 agonist 

exendin-4, suggesting the utility of its bioactivity to further reduce glucose levels 

(Fusco et al., 2017). This enhanced anti-diabetic action of xenin in combination with 

GLP-1 has also been demonstrated by Hasib and colleagues in HFF using a GIP-xenin 

hybrid peptide (Hasib et al., 2018b).  
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In addition, the blood glucose profile and HbA1c levels also confirm that acetyl-

neurotensin(8-13)-xenin-8-Gln in combination with exendin-4 had a superior glucose 

lowering ability than the hybrid peptide alone. Moreover, the glucose tolerance test, 

following 32 days treatment with acetyl-neurotensin(8-13)-xenin-8-Gln in 

combination with exendin-4 showed marked improvements in the glucose excursion. 

This was also noted in response to exogenous GIP injection, along with improved 

insulin sensitivity. This is reinforced by pancreatic insulin content, which revealed that 

exendin-4 and acetyl-neurotensin(8-13)-xenin-8-Gln in combination with exendin-4 

had significantly less insulin per µg/g protein, but insulin sensitivity was superior.  

Furthermore, the islet and beta cell areas were unaffected by acetyl-neurotensin(8-13)-

xenin-8-Gln alone but were significantly increased with acetyl-neurotensin(8-13)-

xenin-8-Gln in combination with exendin-4, which had similar effects to exendin-4 

alone. This is suggestive that while acetyl-neurotensin(8-13)-xenin-8-Gln does not 

enhance the action of exendin-4 it does not diminish its therapeutic action. These 

observations are in line with positive beta cell architecture effects of GLP-1 in 

numerous type 2 diabetes animal model studies (Moffett et al., 2015; Vasu et al., 

2014). This data collectively suggests that like results from previous Chapters and 

published literature, NT receptor signalling can augment sensitivity to GIP, and impart 

clear antidiabetic actions, positive attributes that are retained, or even enhanced by this 

NT-xenin hybrid (Al-Sabah, 2015; Hasib et al., 2017; Hasib et al., 2018b; Irwin and 

Flatt, 2015).   

In relation to energy balance, both NT and xenin have been shown to play a role in 

satiety, as both have anorexigenic abilities (Bhavya, Lew and Mizuno, 2018; Cooke et 

al., 2012). Initial studies indicated that this effect was influenced primarily via 

intracerebroventricularly (i.c.v.) administration, but more recently intraperitoneal (i.p.) 

administration has been shown to also facilitate these actions (Cooke et al., 2012; 

Ratner et al., 2018). The anorectic actions of NT through leptin are thought to be 

mediated via the ventral tegmental area (VTA) by the NT neurons located within the 

lateral hypothalamic area (LHA), as 15-30% of these NT neurons co-express the leptin 

receptor (Schroeder and Leinninger, 2018). Similarly, xenin is also thought to partially 

exert its influence over food intake via the hypothalamus (Kim et al., 2016). Both 

native peptides are believed to bind to the NTR1, located within the hypothalamus to 

induce their anorexic effects (Kim et al., 2016; Ratner et al., 2018).  



114 
 

Taking this into account, a recent study on a PEGylated NT peptide that induced a 

prolonged decrease in food intake (Ratner et al., 2018), along with the augmentative 

ability of a xenin hybrid, meant the potential for the dual receptor agonist, acetyl-

neurotensin(8-13)-xenin-8-Gln to effect energy balance was likely. However, acetyl-

neurotensin(8-13)-xenin-8-Gln alone or in combination with exendin-4 had no impact 

on cumulative energy intake over the 32 day treatment period in HFF mice. Thus, the 

discrepancy could be related to dose of peptide employed, as xenin appears to impact 

feeding only at high concentrations (Taylor et al., 2010), or perhaps the need for 

central administration (Cooke et al., 2012). In addition, lack of effect on feeding is 

paralleled by no significant body weight reduction in HFF mice. Indeed, it is only 

when in combination with exendin-4 that acetyl-neurotensin(8-13)-xenin-8-Gln had 

any weight reducing effects, probably linked to GLP-1 receptor effects on the 

hypothalamus (Kanoski, Hayes and Skibicka, 2016). Interestingly, GLP-1’s ability to 

reduce body weight loss via anorectic and orexigenic endocrine signals may be related 

to regulation of the expression of neuropeptides including NT (Dalvi et al., 2012; 

Good, 2012; Kanoski, Hayes and Skibicka, 2016).   

In contrast to the findings on food intake and body weight, where exendin-4 exerted 

superior body balancing effects, it was acetyl-neurotensin(8-13)-xenin-8-Gln in 

combination with exendin-4 that yielded the greatest reduction in percentage fat mass 

and triglyceride levels. Both xenin and NT have been linked with direct effects on 

adipocytes, and to play a role in lipid metabolism. Systemically, xenin has been shown 

to stimulate lipolysis on adipose tissue, and this is thought to be mediated by NTR1 as 

NTR1 mRNA is expressed on mouse adipose tissue (Bhavya, Lew and Mizuno, 2018). 

Furthermore, NT secreted from the intestine in response to postprandial fat ingestion 

has been shown to facilitate the absorption of fat. This influences the circulating levels 

of leptin as fat initiates the secretion of leptin from adipocytes (Barchetta et al., 2018; 

Mazella et al., 2012). Systemically leptin then initiates enteroendocrine cells to release 

their gastrointestinal peptides such as GLP-1 and GIP, thus working synergistically to 

regulate energy balance (Barchetta et al., 2018). This suggests that the superior 

reduction of percentage fat mass by acetyl-neurotensin(8-13)-xenin-8-Gln in 

combination with exendin-4 can be attributed to several mechanisms, with multiple 

hormone receptor pathways working in concert to elicit this effect. 
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In conclusion, this data reveals that acetyl-neurotensin(8-13)-xenin-8-Gln has 

improved therapeutic efficacy in combination with GLP-1R agonist exendin-4. In 

combination it also appears to improve the therapeutic range of exendin-4 in several 

biological actions including glycaemic control, insulinotropic action and fat reduction. 

Therefore, this novel hybrid with complementary effects in combination with GLP-1, 

may have the potential to treat not only T2DM but obesity related diabetes. 
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Table 5.1 Peptide characterisation of native neurotensin, xenin-8-Gln, neurotensin(8-13), acetyl-neurotensin(8-13) and acetyl-

neurotensin(8-13)-xenin-8-Gln and stability in the presence of mouse plasma 

 

 

 

 

 

 

 

 

 

Peptide sequences of native neurotensin, xenin-8-Gln, neurotensin(8-13), acetyl-neurotensin(8-13) and acetyl-neurotensin(8-13)-xenin-8-Gln. 

Purification of peptides confirmed by RP-HPLC, retention times recorded using ChromQuest software. Molecular mass confirmed using MALDI-

ToF, Voyager-DE BioSpectrometry Workstation and m/z ratio vs peak intensity. Plasma stability assessed by percentage peptide degraded. 

 

Peptides 

 

 

Name 

 

Primary Sequence 

 

Theoretical 

Mass 

(Da) 

 

Experimental 

Mass 

(Da) 

 

Retention 

Time 

(Min) 

Percentage degradation (%) 

2 (h) 4 (h) 8 (h) 

 

1 

Neurotensin pELYENKPRRPYIL-

OH  

 

1672.9 

 

1672.9 

 

 

14.9 

 

1.5 

 

21.2 

 

31.1 

 

2 

Xenin-8-Gln HPQQPWIL-OH   

1018.1 

 

1018.1 

 

16.1 

 

- 

 

- 

 

- 

 

3 

Neurotensin(8-

13) 
RRPYIL-OH 

 

817.0 

 

817.0 

 

13.0 

 

46.7 

 

79.3 

 

83.9 

 

4 

Acetyl-

neurotensin(8-13) 

Ac- RRPYIL-OH   

859.0 

 

859.0 

 

14.4 

 

1.8 

 

6.6 

 

10.4 

 

5 

Acetyl-

neurotensin(8-

13)-xenin-8-Gln 

Ac-RRPYIL-

HPQQPWIL-OH 

 

1859.1 

 

1859.1 

 

19.2 

 

0 

 

0 

 

8.32 
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Figure 5.1 Acute effects of neurotensin on insulin release from BRIN-BD11 cells  

 

 

BRIN-BD11 cells were incubated (20 min) with test peptide (10-12 to 10-6 mol/l) in the 

presence of (A) 3.3, (B) 5.6, (C) 11.1 and (D) 16.7 mmol/l glucose. Insulin was 

measured by RIA. Values are mean ± SEM (n=8) for insulin release. *P<0.05, 

**P<0.01 and ***P<0.001 compared to 5.6 mmol/l glucose control. +P<0.05, ++P<0.01 

and +++P<0.001 compared to respective glucose control. 
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Figure 5.2 Acute effects of neurotensin in the presence of GIP and GLP-1 on 

insulin release from BRIN-BD11 cells  
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BRIN-BD11 cells were incubated (20 min) with test peptide (10-12 to 10-6 mol/l) in the 

presence of (A) GIP and (B) GLP-1 (both at 10-7 mol/l) at 5.6 mmol/l glucose. Insulin 

was measured by RIA. Values are mean ± SEM (n=8) for insulin release. ***P<0.001 

compared to 5.6 mmol/l glucose alone. +P<0.05 and ++P<0.01 compared to respective 

GIP or GLP-1 control. 
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Figure 5.3 Acute effects of xenin-8-Gln on insulin release from BRIN-BD11 cells 

 

 

BRIN-BD11 cells were incubated (20 min) with test peptide (10-12 to 10-6 mol/l) in the 

presence of (A) 3.3, (B) 5.6, (C) 11.1 and (D) 16.7 mmol/l glucose. Insulin was 

measured by RIA. Values are mean ± SEM (n=8) for insulin release. *P<0.05, 

**P<0.01 and ***P<0.001 compared to 5.6 mmol/l glucose control. +P<0.05, ++P<0.01 

and compared to respective glucose control. 
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Figure 5.4 Acute effects of xenin-8-Gln in the presence of GIP and GLP-1 on 

insulin release from BRIN-BD11 cells  
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BRIN-BD11 cells were incubated (20 min) with test peptide (10-12 to 10-6 mol/l) in the 

presence of (A) GIP and (B) GLP-1 (both at 10-7 mol/l) at 5.6 mmol/l glucose. Insulin 

was measured by RIA. Values are mean ± SEM (n=8) for insulin release. ***P<0.001 

compared to 5.6 mol/l glucose alone. ++P<0.01 and +++P<0.001 compared to respective 

GIP or GLP-1 control. 
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Figure 5.5 Acute effects of acetyl-neurotensin(8-13) on insulin release from BRIN-

BD11 cells  

 

 

BRIN-BD11 cells were incubated (20 min) with test peptide (10-12 to 10-6 mol/l) in the 

presence of (A) 3.3, (B) 5.6, (C) 11.1 and (D) 16.7 mmol/l glucose. Insulin was 

measured by RIA. Values are mean ± SEM (n=8) for insulin release. *P<0.05, 

**P<0.01 and ***P<0.001 compared to 5.6 mol/l glucose control. +P<0.05, ++P<0.01 

and +++P<0.001 compared to respective glucose control. 
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Figure 5.6 Acute effects of acetyl-neurotensin(8-13) in the presence of GIP and 

GLP-1 on insulin release from BRIN-BD11 cells  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRIN-BD11 cells were incubated (20 min) with test peptide (10-12 to 10-6 mol/l) in the 

presence of (A) GIP and (B) GLP-1 (both at 10-7 mol/l) at 5.6 mmol/l glucose. Insulin 

was measured by RIA. Values are mean ± SEM (n=8) for insulin release. **P<0.01 

and ***P<0.001 compared to 5.6 mmol/l glucose alone. +P<0.05 compared to 

respective GIP or GLP-1 control. 
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Figure 5.7 Acute effects of acetyl-neurotensin(8-13)-xenin-8-Gln on insulin 

release from BRIN-BD11 cells  

 

 

BRIN-BD11 cells were incubated (20 min) with test peptide (10-12 to 10-6 mol/l) in the 

presence of (A) 3.3, (B) 5.6, (C) 11.1 and (D) 16.7 mmol/l glucose. Insulin was 

measured by RIA. Values are mean ± SEM (n=8) for insulin release. *P<0.05 and 

***P<0.001 compared to 5.6 mol/l glucose control. +P<0.05 ang ++P<0.01 compared 

to respective glucose control. 
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Figure 5.8 Acute effects of acetyl-neurotensin(8-13)-xenin-8-Gln in the presence 

of GIP and GLP-1 on insulin release from BRIN-BD11 cells  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRIN-BD11 cells were incubated (20 min) with test peptide (10-12 to 10-6 mol/l) in the 

presence of (A) GIP and (B) GLP-1 (both at 10-7 mol/.) at 5.6 mmol/l glucose. Insulin 

was measured by RIA. Values are mean ± SEM (n=8) for insulin release. ***P<0.001 

compared to 5.6 mmol/l glucose alone. +++P<0.001 compared to respective GIP or 

GLP-1 control. 
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Figure 5.9 Effects of neurotensin analogues and neurotensin-xenin-8-Gln 

hybrids on insulin release from isolated mouse islets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isolated mice islets were incubated for 60 min with 10-6 or 10-8 mol/l of neurotensin, 

xenin-8-Gln, acetyl-neurotensin(8-13), neurotensin-xenin-8-Gln or acetyl-

neurotensin(8-13)-xenin-8-Gln at (A) 3.3 and (B) 16.7 mmol/l glucose. Insulin release 

was measured using RIA. Values represent mean ± SEM (n=6).  *P<0.05 and 

**P<0.01 compared to respective glucose control. ++P<0.01 and ++P<0.001 compared 

to neurotensin. ^^P<0.01 and ^^^P<0.001 compared to acetyl-neurotensin(8-13).
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Figure 5.10 The effects of xenin-8-Gln, neurotensin(8-13), acetyl-neurotensin(8-

13) and acetyl-neurotensin(8-13)-xenin-8-Gln on BRIN-BD11 cell proliferation 

 

 

 

 

 

 

 

 

Proliferation frequency in BRIN-BD11 cells cultured with exendin-4, neurotensin, 

xenin-8, xenin-8-Gln, neurotensin(8-13), acetyl-neurotensin(8-13), xenin-25 and 

acetyl-neurotensin(8-13)-xenin-8-Gln (A) (at 10-6 or 10-8 mol/l) for 18 h. 

Representative images (B) showing proliferating beta cells, arrows indicate 

proliferating cells. Values are mean ± SEM (n=4).  ***P<0.001 compared to control. 

ΔP<0.05, ΔΔP<0.01 and ΔΔΔP<0.001 compared to respective acetyl-neurotensin(8-13)-

xenin-8-Gln.
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Figure 5.11 The effects of exendin-4, xenin-8, xenin-8-Gln, neurotensin(8-13), acetyl-neurotensin(8-13) and acetyl-neurotensin(8-13)-xenin-

8-Gln on BRIN-BD11 cell apoptosis   

 

 

 

 

 

 

 

 

 

 

Apoptosis frequency in BRIN-BD11 cells cultured with exendin-4, neurotensin, xenin-8, xenin-8-Gln, neurotensin(8-13), acetyl-neurotensin(8-

13), xenin-25 or acetyl-neurotensin(8-13)-xenin-8-Gln (at 10-6 or 10-8 mol/l) for 18 h. Caspase-3/7 activation was detected by luminescence. Values 

are mean ± SEM (n=3).  **P<0.01 and ***P<0.001 compared to untreated control culture. 
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Figure 5.12 Effects of twice-daily administration of exendin-4, acetyl-

neurotensin(8-13)-xenin-8-Gln or a combination of both peptides on cumulative 

energy intake, body weight and % fat in HFF mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters were measured for 6 days before and 32 days during (indicated by black 

horizontal line (B)) twice-daily treatment with saline, exendin-4, acetyl-neurotensin(8-

13)-xenin-8-Gln or a combination of both (each at 25 nmol/kg) on cumulative energy 

intake (A) and body weight (B) and % fat mass (C), in HFF mice. Values represent 

mean ± SEM (n=6-8). *P<0.05, **P<0.01 and ***P<0.001 in comparison with saline 

control. 
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Figure 5.13 Effects of twice-daily administration of exendin-4, acetyl-

neurotensin(8-13)-xenin-8-Gln or a combination of both peptides on non-fasted 

glucose and insulin in HFF mice  

 

 

 

              

 

 

 

 

 

 

 

 

                                                                                                                                                                                                

 

 

 

 

 

 

(A) Blood glucose and (B) plasma insulin was measured for 6 days before and 32 days 

during (indicated by black horizontal line) twice-daily treatment with saline, exendin-

4, acetyl-neurotensin(8-13)-xenin-8-Gln or a combination of both peptides (each at 25 

nmol/kg) in HFF mice. Values represent mean ± SEM (n=6-8). *P<0.05, **P<0.01 

and ***P<0.001 compared with saline control.  
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Figure 5.14 Effects of twice daily administration of exendin-4, acetyl-

neurotensin(8-13)-xenin-8-Gln or a combination of both peptides on 24 hour 

blood glucose profile and %HbA1c in HFF mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 24 hour blood glucose profile (A) and %HbA1c (B) were assessed following 32 

days of twice daily i.p. administration of saline, exendin-4, acetyl-neurotensin(8-13)-

xenin-8-Gln or a combination of both peptides (each at 25 nmol/kg bw) in HFF mice. 

Arrows are indicative of treatment administration. Values represent mean ± SEM 

(n=6-8). *P<0.05 and **P<0.01 compared with saline control.  

A 

B 

0

2

4

6

8

10

**
** **

Lean

Saline

Exendin-4

Ac-NT(8-13)-xenin-8-Gln

Ac-NT(8-13)-xenin-8-Gln

+ exendin-4

%
 H

b
A

1
c

0 4 8 12 16 20 24

0

10

20

Lean

Exendin-4
Ac-NT(8-13)-xenin-8-Gln + exendin-4Saline

Ac-NT(8-13)-xenin-8-Gln

**

** *

**

Time (h)

B
lo

o
d

 g
lu

c
o

s
e
 (

m
m

o
l/
l)



131 
 

A 

Figure 5.15 Effects of twice daily administration of exendin-4, acetyl-

neurotensin(8-13)-xenin-8-Gln or a combination of both peptides on glucose and 

insulin in response to an oral glucose challenge in HFF mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test were performed following 32 days twice-daily i.p. administration of saline, 

exendin-4, acetyl-neurotensin(8-13)-xenin-8-Gln or a combination of both peptides 

(each at 25 nmol/kg bw). Mice were fasted for 10 h previously. Blood glucose (A) and 

plasma insulin (B) was measured prior to and after oral administration of glucose alone 

(18 mmol/kg bw). Blood AUC values for 0-120min are also included. Values represent 

mean ± SEM (n=6-8). *P<0.05 compared with saline control. +P<0.05 compared with 

acetyl-neurotensin(8-13)-xenin-8-Gln.  
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Figure 5.16 Effects of twice daily administration of exendin-4, acetyl-

neurotensin(8-13)-xenin-8-Gln or a combination of both peptides on glucose and 

insulin in response to a GIP tolerance test in HFF mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test were performed following 32 days twice-daily i.p. administration of saline, 

exendin-4, acetyl-neurotensin(8-13)-xenin-8-Gln or a combination of both peptides 

(each at 25 nmol/kg bw) in HFF mice. Mice were fasted for 10 h previously. Blood 

glucose (A) and plasma insulin (B) was measured prior to and after i.p. administration 

of glucose (18 mmol/kg bw) in combination with GIP (25 nmol/kg bw). Blood AUC 

values for 0-90min are also included. Values represent mean ± SEM (n=6-8). *P<0.05 

and **P<0.01 compared with saline control.  
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Figure 5.17 Effects of twice-daily administration of exendin-4, acetyl-

neurotensin(8-13)-xenin-8-Gln or a combination of both peptides on insulin 

sensitivity and pancreatic insulin content in HFF mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test were performed following 32 days twice-daily i.p. administration of saline, 

exendin-4, acetyl-neurotensin(8-13)-xenin-8-Gln or a combination of both peptides 

(each at 25 nmol/kg bw) in HFF mice. Blood glucose was measured prior to and after 

i.p. administration of insulin (25 U/kg bw). Blood AAC values for 0-60 min are also 

included. Pancreatic insulin content (B) was measured by RIA following pancreatic 

hormone extraction. Values represent mean ± SEM (n=6-8). *P<0.05, **P<0.01 and 

***P<0.001 compared with saline control. +P<0.05 and +++P<0.001 compared with 

acetyl-neurotensin(8-13)-xenin-8-Gln.
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Figure 5.18 Effects of twice daily administration of exendin-4, acetyl-

neurotensin(8-13)-xenin-8-Gln or a combination of both peptides on bone mineral 

density and bone mineral content in high fat fed mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of twice daily administration of exendin-4, acetyl-neurotensin(8-13)-xenin-8-

Gln or a combination of both peptides on bone mineral density (A) and bone mineral 

content (B) measured by DEXA scanning in HFF and lean mice. Values represent 

mean ± SEM (n-6-8).  
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Figure 5.19 Effects of twice daily administration of exendin-4, acetyl-

neurotensin(8-13)-xenin-8-Gln or a combination of both peptides on total 

cholesterol, triglycerides, HDL and LDL in high fat fed mice 

 

 

 

 

 

 

 

 

 

Effects of twice-daily i.p. administration of exendin-4, acetyl-neurotensin(8-13)-

xenin-8-Gln or a combination of both peptides (each at 25 nmol/kg bw) following 32 

day administration on total cholesterol (A), triglycerides (B), HDL (C) and LDL (D) 

in HFF mice. LDL was calculated as total cholesterol - HDL - (triglycerides /5). Values 

are mean ± SEM (n=6-8). *P<0.05 **P<0.01 and ***P<0.001 compared with saline 

treated control. ++P<0.01 compared with acetyl-neurotensin(8-13)-xenin-8-Gln. 
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Figure 5.20 Effects of twice daily administration of exendin-4, acetyl-

neurotensin(8-13)-xenin-8-Gln or a combination of both peptides on pancreatic 

histology in HFF mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of twice-daily i.p. administration of exendin-4, acetyl-neurotensin(8-13)-

xenin-8-Gln or a combination of both peptides for 32 days (each at 25 nmol/kg bw) on 

islet area (A), beta cell area (B), and alpha cell area (C) in HFF mice. Values are mean 

± SEM (n=6-8). *P<0.05, **P<0.01 and ***P<0.001 compared with saline treated 

control. +++P<0.001 compared to lean control. ΔP<0.05 and ΔΔP<0.01 compared to 

neurotensin alone. 
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Figure 5.21 Effects of twice daily administration of exendin-4, acetyl-

neurotensin(8-13)-xenin-8-Gln or a combination of both peptides on pancreatic 

islet histology in HFF mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Images were captured by an Olympus System Microscope BX51 (Olympus 

instruments, UK) and a DP70 camera adapter. CellF image analysis software was used 

to assess parameters, magnification was X40. Insulin (red), glucagon (green) and 

DAPI (blue) in pancreatic tissue harvested from lean control (A) and HFF mice treated 

twice-daily with saline (B), exendin-4 (C), acetyl-neurotensin(8-13)-xenin-8-Gln (D) 

and a combination of both peptides (E) (each at 25 nmol/kg bw) for 32 days. 
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Chapter 6 

 

Attempts to optimise an unambiguous GIP receptor antagonist with 

potential for translation as an anti-obesity-T2DM therapeutic 
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6.1 Summary  

The prevalence of obesity is at an all time high with around 1 in 4 UK adults classified 

as obese. Obesity and associated insulin resistance is linked to the development of 

T2DM, but not all individuals go on to develop overt T2DM. Research suggests that 

hyper-secretion of the incretin hormone GIP has a key role to play in the development 

of obesity-T2DM. GIP is a key regulator of insulin secretion and lipid metabolism and 

these beneficial actions appear to be lost in individuals with obesity-T2DM. Studies 

with bariatric surgery show decreased GIP secretion and action as a main metabolic 

outcome which results in significant, long-term weight loss in these patients. Thus, 

there is an increasing interest in the less invasive approaches of GIP antagonism and/or 

disruption of GIPR action utilising peptide-based GIPR antagonists. However, it 

appears not to be essential to completely diminish GIP signalling, as reduction or 

partial reduction in GIP can produce beneficial anti-obesity effects. Yet, a specific 

GIPR antagonist continues to elude us. N- and C-terminally truncated GIP(3-30) and 

GIP(5-30) have recently been identified as competitive antagonists of the GIPR and 

questioned the efficacy of peer reviewed Pro3GIP antagonist. This study attempts to 

uncover a true GIPR antagonist utilising human and mouse sequences. Initial in vitro 

analysis at low and high glucose concentrations in BRIN-BD11 cells shows human 

GIP(3-30), human Pro3(3-30)GIP and mouse GIP(3-30) weakly stimulated insulin 

secretion, and significantly (P<0.01 to P<0.001) inhibited GIP-stimulated insulin 

secretion. In vivo analysis showed all peptides, with varying degrees had reduced 

(P<0.01) glucose lowering abilities when administered alone or in combination with 

human GIP (1-42). Interestingly, in those peptides with their C-terminus intact 

(position 31–42) the GIP receptor antagonistic quality was decreased. Further in vivo 

evaluation of human GIP(3-30) and GIP(5-30) and human Pro3GIP(3-30) 

demonstrated that the latter had superior antagonistic abilities (1.3-fold, P<0.05), with 

human GIP(5-30) marginally behind. Additionally, to evaluate the receptor blockading 

capacity the peptides were administered 30 min prior to a glucose plus GIP challenge. 

Human Pro3GIP(3-30) (1.4-fold, P<0.001), showed superior GIPR antagonistic 

activity in this system. These data concur with previous work on Pro3GIP and further 

evidence it as a GIPR antagonist warranting further analysis with potential for 

translation as an antiobesity-T2DM therapeutic. 
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6.2 Introduction 

In recent years the development of T2DM has been linked to obesity and associated 

insulin resistance and aging (Al-Goblan, Al-Alfi and Khan, 2014). This increased risk 

is thought to occur when, over time, pancreatic beta cell function declines and can no 

longer compensate for increased insulin demand and decreased peripheral sensitivity 

to insulin. However, surprisingly many obese individuals do not go on to develop 

T2DM, as obesity has been shown to increase in beta cell mass by 50%, thus enhancing 

insulin response to glucose (Cantley and Ashcroft, 2015). However, it is when this 

compensatory mechanism fails that subsequently leads to the development of T2DM 

(Cantley and Ashcroft, 2015). The prevalence of obesity is at an all time high, with 

around 1 in 4 UK adults classified as obese and these figures are projected to rise from 

26% to 41–48% in men and from 26% to 35–43% in women by 2030 (Cantley and 

Ashcroft, 2015; Wang et al., 2011). Thus, the likelihood of developing T2DM is also 

increased.  

The incretin hormone GIP secreted in response to elevated glucose levels, has also 

been linked to obesity-T2DM through its actions as a key regulator of lipid metabolism 

(Al-Sabah, 2015; Seino and Yabe, 2010). Interestingly, patients with T2DM exhibit a 

decreased insulinotropic response to GIP and at the molecular level, and the loss of the 

incretin effect is a possible early pathophysiological indicator of T2DM (Al-Sabah, 

2015). Moreover, it is the associated overnutrition, primarily by chronic consumption 

of dietary fats, that is thought to increase the circulating levels of GIP. Thus, ingested 

fat is known to be a potent stimulus for GIP secretion (Al-Sabah, 2015). Therefore, it 

appears that circulating GIP levels are elevated in obesity and T2DM resulting in 

excessive accumulation of visceral and subcutaneous fat deposition (Irwin and Flatt, 

2009). Thus, increased action or secretion of GIP can predispose individuals to obesity 

(Irwin and Flatt, 2009; Paschetta, Hvalrug & Musso, 2011; Nakamura et al., 2018).  

A study by Zhou and colleagues (2005) provides further evidence for the link between 

GIP and obesity through studies using insulin receptor substrate (IRS)-1-deficient 

knockout mice. They observed that if the action of insulin was diminished, as is the 

case in T2DM, then GIP could switch from fat oxidation to fat accumulation, which 

ultimately resulted in increased triglyceride storage (Zhou et al., 2005). Genetic studies 

also provided evidence that links GIP to obesity. Vogel and colleagues (2009) analysed 
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the GIPR gene and found polymorphisms, single nucleotide repeats (SNPs) within the 

coding regions or regions adjacent to these which could attribute to genetic 

predisposition to obesity (Vogel et al., 2009). This is significant because the major 

causative factor of insulin resistance in obesity-related diabetes is found in those 

individuals with centrally distributed body fat and associated metabolic dysregulation. 

This includes increased levels of circulating free fatty acids (FFA), as this type of fat 

is more lipolytic and results in lipid toxicity, initiating an inflammatory response 

(Boden, 2011; Al-Goblan, Al-Alfi and Khan, 2014). This metabolic dysfunction 

results in insulin resistance that creates a hyperglycaemic state further exacerbating 

the T2DM disease state (Al-Goblan, Al-Alfi and Khan, 2014). 

With accumulating evidence linking elevated GIP levels to development of obesity 

and insulin resistance, there is growing interest in research surrounding GIP 

antagonism, and/or disruption of GIPR action and how it could be exploited to 

potential treat obesity-T2DM (Gasbjerg et al., 2018a). Currently, it is primarily 

bariatric surgery that results in significant long-term weight loss in patients with 

obesity-T2DM (Mingrone et al., 2012; 2015). Interestingly, a number of these studies 

point to decreased GIP secretion and action as a main metabolic outcome of the 

surgical process (Mingrone et al., 2009; Xiong et al., 2015). Until recently, the most 

widely used pharmacological agent for obesity was orlistat, but current clinical 

recommendations have seen the introduction of liraglutide, the GLP-1 agonist, as an 

adjunct therapeutic with diet and physical activity for weight management (Mehta, 

Marso and Neeland, 2017; Nakamura et al., 2018; Troke et al., 2014).  Liraglutide has 

been shown in several clinical trials to offer superior and sustainable weight loss, with 

5-10%, at the higher therapeutic dosage of 3 mg than at the normal therapeutic range 

(1.8 mg). However, the long-term efficacy of liraglutide has yet to be established for 

obesity, and adverse effects such as gastrointestinal disturbances and hypoglycaemia 

along with an increased risk of medullary thyroid carcinoma should not be overlooked 

(Mehta, Marso and Neeland, 2017).  

GIP antagonism studies have included work in animal models with genetic deletions 

of the GIPR (Zhou et al., 2008; Naitoh et al., 2008), small molecules that block the 

GIP receptor (Irwin et al., 2006; Nakamura et al., 2012), immunisation against GIP 

(Irwin et al., 2009; Ravn et al., 2013), and peptide-based antagonists (Gault et al., 

2007a; Kerr et al., 2011). Importantly, an interesting study has suggested that it is not 



142 
 

entirely necessary to completely obliterate GIP signalling to gain anti-obesity benefits, 

and a reduction or even a partial reduction in GIP secretion has been shown to yield 

the anti-obesity effect (Nasteska et al., 2014). Indeed, this approach would also be 

considered to have a less detrimental effect on GIP-induced insulin secretion, that 

would be beneficial in T2DM. Thus, development of an efficacious GIP antagonist 

could mimic positive results from bariatric surgeries, without the need for major 

surgery or adverse effects. 

The Diabetes Research Group (DRG) at Ulster have generated and developed several 

peptide antagonists of GIP. Key approaches have examined N-terminally truncated 

GIP peptides (Kerr et al., 2011), amino acid substituted analogues such as Pro3GIP 

(Gault et al., 2007b; McClean et al., 2007; McClean et al., 2008) and N- and C-

terminally truncated palmitoylated GIP peptides (Pathak et al., 2015a). These studies 

have shown beneficial effects on normalising glucose tolerance, improving insulin 

sensitivity and energy intake, reversing obesity and associated metabolic disturbances. 

Furthermore, adipocyte hypertrophy, adipose tissue mass and triglyceride deposition 

in the liver and muscle of high-fat fed mice were significantly reduced along with a 

significant reduction in circulating triglycerides, cholesterol and glucagon levels 

(Gault et al., 2007b; Gault et al., 2008; McClean et al., 2007; McClean et al., 2008; 

Pathak et al., 2015a). Pro3GIP has also been shown to prevent diabetes and the 

associated metabolic disturbances in mice with early administration (Irwin et al., 

2007). However, recent research has refuted Pro3GIP as full antagonist at the human 

GIPR but rather suggesting it is a partial GIP agonist, that is linked to interspecies 

variation at receptors and ligands between humans and rodents (Hansen et al., 2015; 

Nakamura et al., 2018; Sparre-Ulrich et al., 2015).  Therefore, we sought to build upon 

our work and recent work of others to optimise truncated GIP peptides and assess their 

potential antagonist properties in vitro and in vivo. Whilst availability of a potent GIP 

antagonist would be invaluable in determining full spectrum of GIP physiology there 

is also much opportunity that GIP antagonism could actually be beneficial as a 

potential therapeutic. 

 

6.3 Materials and Methods 

6.3.1 Peptides 
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All peptides were purchased from Syn Peptide Shanghai, China. Purity was confirmed 

by RP-HPLC and characterised by MALDI-TOF MS (Table 6.1), as previously 

described in Sections 2.2.2 to 2.2.4. For all experimental materials and methods please 

refer to Section 2.1, and the relevant subsections.  

 

6.3.2 Acute effects of peptides on in vitro insulin secretion from BRIN-BD11 cells 

The in vitro insulin secretory activity of test peptides was examined in BRIN-BD 11 

cells as described in Section 2.5.2. BRIN-BD11 cells were incubated with test peptides 

(10-6 – 10-12 mol/l) alone or in the presence of native GIP (1-42) at 5.6 and 16.7 mmol/l 

glucose for 20 min. Following test incubations, insulin was measured by RIA, as 

previously described in Sections 2.5.2 and 2.5.4.  

 

6.3.3 Animals 

Acute studies used male Swiss mice as described in Section 2.9.1-2.10.2. Experiments 

for glucose tolerance studies were conducted using test peptides in overnight fasted 

mice, as outlined in Sections 2.10.1-2.10.2. 

 

6.3.4 Biochemical analysis 

Blood glucose was measured directly by the Ascencia Contour glucose meter (Bayer, 

Newbury, UK), as described in Section 2.10. 

 

6.3.5 Statistical analysis 

As described in Section 2.12 

 

6.4 Results 
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6.4.1 Acute effects of human GIP(1-42), human GIP(1-30) and mouse GIP(1-30) 

on insulin release from BRIN-BD11 cells 

Figure 6.1(A-B) demonstrate the abilities of native human GIP(1-42) and C-terminally 

truncated human and mouse GIP(1-30) to increase insulin secretion from BRIN-BD11 

cells at both 5.6 and 16.7 mmol/l glucose in a dose-dependent (10-12 – 10-6 mol/l) 

manner compared to glucose control. However, human and mouse GIP(1-30) only 

significantly increase (P<0.01 to P<0.001) insulin secretion at higher peptide 

concentrations (10-8 mol/l to 10-6 mol/l) in 5.6 (Figure 6.1A) and 16.7 (Figure 6.1B) 

mmol/l glucose. Furthermore, the potency of human GIP(1-42) and (1-30) is 

significantly less (P<0.05 to P<0.01) in comparison to mouse GIP(1-30) at 

concentrations 10-10 mol/l and 10-8 mol/l at 16.7 mmol/l glucose (Figure 6.1B).  

 

6.4.2 Acute effects of human GIP(3-30) and mouse GIP(3-30) alone or in 

combination with native human GIP(1-42) on insulin release from BRIN-BD11 

cells 

Figure 6.2(A-D) shows human and mouse GIP(3-30), at 10-7 mol/l, significantly 

reduced (P<0.001) GIP-induced (10-12 to 10-6 mol/l) insulin secretion from BRIN-

BD11 cells at both 5.6 and 16.7 mmol/l glucose. Importantly, neither human nor mouse 

GIP(3-30) had any effect on insulin secretion from BRIN-BD11 cells at either 5.6 or 

16.7 mmol/l glucose (Figure 6.2A-D). 

 

6.4.3 Acute effects of human Pro3GIP(3-30) and human GIP(5-30) alone or in 

combination with native human GIP(1-42) on insulin release from BRIN-BD11 

cells 

Human Pro3GIP(3-30) significantly decreased (P<0.01 to P<0.001) GIP-induced (10-

12 mol/l to 10-6 mol/l) insulin secretion from BRIN-BD11 at both 5.6 and 16.7 mmol/l 

glucose (Figure 6.3A-B). However, human GIP(5-30) was unable to impede the 

insulinotropic action of GIP(1-42) (Figure 6.3C-D). Indeed, at 16.7 mmol/l glucose, 

human GIP(5-30) actually stimulated (P<0.01) insulin release when compared to 

glucose alone control (Figure 6.3D).  
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6.4.4 Acute effects of human GIP(3-42) and human GIP(5-42) alone or in 

combination with native human GIP(1-42) on insulin release from BRIN-BD11 

cells 

Human GIP(3-42) was unable to block GIP-induced (10-12 to 10-6 mol/l) insulin 

secretion at 5.6 mmol/l glucose (Figure 6.4A), but was a moderately effective GIP 

blocker at 16.7 mmol/l glucose (Figure 6.4B). However, human GIP(5-42) did not 

impede the insulinotropic action of GIP at 5.6 or 16.7 mmol/l glucose (Figure 6.4C-

D), and actually evoked significant (P<0.05) insulin release when incubated alone with 

BRIN-BD11 cells at 16.7 mmol/l glucose (Figure 6.4D). 

 

6.4.5 Acute effects of native human GIP(1-42), human GIP(1-30) and mouse 

GIP(1-30) on glucose tolerance in lean mice 

The acute effects of native human GIP(1-42) and human and mouse GIP(1-30) on 

blood glucose in overnight fasted mice is shown in Figure 6.4. Human GIP(1-42) 

significantly lowered (P<0.05 to P<0.01) glucose levels (at 15, 30 and 60 min) and 

human GIP(1-30) at the 60 min time point compared to glucose control (Figure 6.5A). 

Mouse GIP(1-30) had no significant effect on glucose-lowering (Figure 6.5A). These 

observations correlate with the 0-60 min overall AUC values showing a reduction 

(P<0.05) in glucose by human GIP(1-42) and (1-30), but not mouse GIP(1-30) (Figure 

6.5B). No differences in efficacy were noted between human GIP(1-42) and human 

GIP(1-30). 

 

6.4.6 Acute effects of human GIP(3-30) alone or in combination with native 

human GIP(1-42) on glucose tolerance in lean mice 

Human GIP(3-30) alone or in combination with human GIP(1-42) demonstrated no 

significant effects on glucose levels in overnight fasted mice (Figure 6.6A-B). 

However, human GIP(3-30) blocked the ability of human GIP(1-42) ability to 

(P<0.05) reduce glucose levels (Figure 6.6A-B). 
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6.4.7 Acute effects of mouse GIP(3-30) alone or in combination with native human 

GIP(1-42) on glucose tolerance in le 

an mice 

Mouse GIP(3-30) in combination with human GIP(1-42) demonstrated a significant 

blocking (1.3-fold; P<0.05) effect on the ability of human GIP(1-42) to reduce glucose 

levels (Figure 6.7A-B). When administered alone, mouse GIP(3-30) had no effects on 

glucose levels, being similar to that of the  glucose control (Figure 6.7A-B). 

 

6.4.8 Acute effects of human Pro3GIP(3-30) alone or in combination with native 

human GIP(1-42) on glucose tolerance in lean mice 

Human Pro3GIP(3-30) alone displayed no significant effects on overall AUC blood 

glucose levels, but did decrease (P<0.05) individual glucose levels at 60 min post-

injection compared to glucose alone (Figure 6.8A-B). However, when human 

Pro3GIP(3-30) was combined with human GIP(1-42), the glucose-lowering effects of 

native GIP were lost (Figure 6.8A-B).  

 

6.4.9 Acute effects of human GIP(5-30) alone or in combination with native 

human GIP(1-42) on glucose tolerance in lean mice 

Human GIP(5-30) alone had no impact on glucose lowering in overnight fasted mice 

(Figure 6.9A-B). However, in combination with human GIP(1-42) there was a 

significant (P<0.05 to P<0.01) hindering effect on the glucose-lowering action of GIP, 

both in terms of individual and AUC values (Figure 6.9A-B).  

 

6.4.10 Acute effects of human GIP(3-42) alone or in combination with native 

human GIP(1-42) on glucose tolerance in lean mice 

Figure 6.10 reveals that human GIP(3-42) alone no effect on glucose homeostasis in 

mice (Figure 6.10A-B). In addition, human GIP(3-42) was unable to impede the 

glucose-lowering action of human GIP(1-42) (Figure 6.10A-B). 
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6.4.11 Acute effects of human GIP(5-42) alone or in combination with native 

human GIP(1-42) on glucose tolerance in lean mice 

Similar to human GIP(3-42), glucose-homeostatic actions of human GIP(5-42) were 

not apparent in overnight fasted mice, either when injected alone or in combination 

with human GIP(1-42) Figure 6.11A-B). 

 

6.4.12 Acute effects of high dose human GIP(3-30), human Pro3GIP(3-30) or 

human GIP(5-30) on glucose tolerance in lean mice 

Higher dose (100 nmol/kg) of human GIP(3-30), human Pro3GIP(3-30) or human 

GIP(5-30) had a significant glucose-lowering (P<0.01) ability at least one observation 

point during the 60 min test (Figure 6.12A). Overall glucose AUC confirmed glucose-

lowering actions of all three peptides, similar to native GIP (Figure 6.12B; Table 6.2). 

However, the efficacy of human Pro3GIP(3-30) or human GIP(5-30) was significantly 

(P<0.05) reduced when compared to native GIP (Figure 6.12B; Table 6.2). 

 

6.4.13 Acute effects of early administration of high dose human GIP(3-30), 

human Pro3GIP(3-30) and human GIP(5-30) on glucose tolerance in lean mice  

The effects of early administration (at -30 min) of 100 nmol/kg human GIP(3-30), 

human Pro3GIP(3-30) and human GIP(5-30) are shown in Figure 6.13. Interestingly, 

only human Pro3GIP(3-30) was able to block the glucose-lowering action of native 

GIP when injected 30 mins prior to GIP challenge (Figure 6.13A-B; Table 6.2). As 

such, both human GIP(3-30) and human GIP(5-30) were ineffective (Figure 6.13A-B; 

Table 6.2).  

 

6.5 Discussion 

Research by Hansen and colleagues (2016), has identified N- and C-terminally 

truncated GIP(3-30) and GIP(5-30) as competitive antagonists of the GIPR. However, 

further research demonstrated that efficacy and possible therapeutic translatability of 

GIP based peptides is underpinned by interspecies variation in the structure/function 

of GIP (Gasbjerg et al., 2018b; Hansen et al., 2016; Sparre-Ulrich et al., 2015). The 
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data infers that alteration in amino sequence structure of GIP between species, even 

by just one amino acid, can cause a significant difference in potency and receptor 

binding affinity (Sparre-Ulrich et al., 2015). The GIPR is 81% conserved between 

human and rodent species, along with some variations within the ligand sequence 

(Sparre-Ulrich et al., 2016). This is more apparent within mouse GIP, as it has three 

substitutions compared to human GIP, whereas rat has two amino acid substitutions 

(Sparre-Ulrich et al., 2015). Both rodent species have substitutions that occur at 

position 18, where arginine present in human GIP is substituted with histidine (Sparre-

Ulrich et al., 2015).  In mouse, at position 30, lysine is substituted to arginine and at 

position 34, asparagine to serine when compared to human GIP (Sparre-Ulrich et al., 

2016).  In rat, the second amino acid substitution is isoleucine for leucine at position 

40 (Sparre-Ulrich et al., 2015). 

In addition, the present work reaffirms understanding that N- and C- terminals of GIP 

are a key consideration when designing potential therapeutics. GIP receptors are from 

the class B family of G-protein coupled receptors (GPCRs) and have a large 

extracellular N-terminal domain (NTD) linked to a 7-transmembrane helical domain 

(Al-Sabah, 2015). The C-terminal region of the peptide ligand binds to the receptors 

NTD, and this allows for secondary interaction between the N-terminus of the peptide 

and transmembrane domain (TMD). Research suggests that the first two amino acids 

of the GIP N-terminus are essential for agonist properties, and that if truncated, 

receptor activation does not occur (Hansen et al., 2016). Moreover, it has been 

determined that only amino acids from position 3-30 in GIP are essential for receptor 

binding (Hansen et al., 2016). The present study utilised this information to investigate 

the impact of truncating the N- and C- terminals of GIP and substituting a proline at 

position 3, thus Pro3GIP(3-30), and comparing this effect on both human and mouse 

GIP counterparts. 

The in vitro and in vivo assessment of human GIP(1-42) and GIP(1-30) revealed that 

they had equal potency to stimulate insulin secretion. This is in line with previous work 

by the DRG and the study by Hansen and colleagues (2016), which assessed 

functionality and showed both peptides to have full agonist properties with equal 

affinity for the GIPR (Gault et al., 2011; Hansen et al., 2016). Moreover, mouse GIP(1-

30) enhanced insulin secretion from BRIN-BD11 cells. This contrasts with the study 

by Sparre-Ulrich and colleagues (2015) on interspecies variation regarding receptor 
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and ligand binding. Both human and rat GIP(1-30) have a lysine at position 30, 

whereas the mouse sequence has an arginine at position 30. Therefore, if this 

interspecies variation was a factor influencing translatability to humans, a larger 

impact in terms of insulin secretion from a rat cell-line and glucose lowering in rodents 

would be expected (Sparre-Ulrich et al., 2015). In terms of biochemical structure, it is 

somewhat surprising that lysine to arginine substitution would have such a profound 

effect. It would seem unlikely that charge is the key factor here and more likely resides 

in orientation within the peptide. At both low and high glucose concentrations, human 

GIP(3-30), human Pro3(3-30)GIP and mouse GIP(3-30) weakly stimulated insulin 

secretion, but significantly inhibited GIP-stimulated insulin secretion. However, GIP-

stimulated insulin secretion was unaffected in combination with human GIP(5-30), 

GIP(3-42) or GIP(5-42). This result contrasts with previous work using related 

analogues and GIP(3-42) (Gault et al., 2002). It is not clear why this would be the case 

but could reside in peptide quality and/or precise application in the model system in 

BRIN-BD11 which differed in passage. 

Further in vivo analysis established that all peptide analogues, some more significant 

than others, had reduced glucose-lowering abilities when administered alone or in 

combination with human GIP (1-42). Effects on glucose control were possibly more 

apparent when administered at a higher dose (100 nmol/kg bw), but even at this dose, 

none of the peptides were as effective as native GIP to lower glucose. Interestingly, 

the GIP receptor antagonistic quality was decreased in peptides with their C-terminus 

intact (position 31–42), namely human GIP(3-42) and GIP(5-42), correlating with 

recent findings by Hansen and colleagues (Hansen et al., 2016). Converse to the early 

suggested interspecies variation discrepancies of mouse and human GIP(1-30), it was 

mouse GIP(3-30) that displayed the most superior GIP antagonistic abilities in vivo 

(Hansen et al., 2016; Sparre-Ulrich et al., 2015). This could well be due to the models 

used between the two studies. 

Interestingly, following evaluation of human, rat and mouse Pro3GIP, Sparre-Ulrich 

and colleagues (2015) noted that there was lower bioactivity within the rodent system 

than in humans. The same research team noted that human Pro3GIP at the human 

receptor had full agonism activity, and rodent ligands having a similar effect. 

However, on rodent GIPRs they suggested that Pro3GIP ligands act as partial agonists 

with competitive antagonistic properties (Sparre-Ulrich et al., 2015). Yet, it was the 
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human sequence of GIPR agonist, namely native GIP(1-42), that had a lower potency 

and efficacy on all three GIPRs in these same studies, with both rodent GIP 

demonstrating equal potency and efficacy on all GIPRs (Sparre-Ulrich et al., 2015). 

Furthermore, binding studies showed that these functional differences were not due to 

binding affinity (Sparre-Ulrich et al., 2015). Thus, with this confliction of reduced 

efficacy and potency of human GIP on all receptors compared to rodent ligands, further 

studies are required to confirm the exact consequences of different species of the GIP 

ligand on receptor activation. It could be possible that position 18 of GIP may have an 

important mechanistic activation role for the GIPR, and it has been shown that position 

18 arginine substitution can produce a much more formidable antagonistic effect than 

histidine (Sparre-Ulrich et al., 2017). Taking this, and related studies on truncated 

human GIP(3-30) and GIP(5-30) into account, it seems inappropriate to completely 

rule out Pro3GIP as a competitive GIPR antagonist (Hansen et al., 2016; Sparre-Ulrich 

et al., 2015; Sparre-Ulrich et al., 2017). 

Thus, the remainder of this study focused on the further assessment of human GIP(3-

30), GIP(5-30), and Pro3GIP(3-30) in vivo. Indeed, in the current study it was human 

Pro3GIP(3-30) that yielded superior antagonistic abilities over human GIP(3-30) and 

GIP(5-30), in terms of annulling the glucose-lowering ability of human GIP(1-42). 

The data shows that although the margin of superiority is slight, the modification of 

human Pro3GIP(3-30) augments the effects of the N- an C- terminal truncations 

further. Additionally, to further assess the receptor blockading capacity of these 

analogues they were administered 30 min prior to a glucose plus GIP challenge. Once 

again it was human Pro3GIP(3-30) that had superior GIPR antagonistic activity over 

both human GIP(3-30) and GIP(5-30) confirming superior biological effects. Thus, 

human Pro3GIP(3-30)  may have a greater affinity to the GIPR and/or a prolonged 

circulating half-life, perhaps due to the amino acid substitution resulting in increased 

efficacy as a GIPR antagonist and potential as a novel functional GIP antagonist. 

However, further studies would be required to confirm this. In support of these 

findings a subsequent study by Sparre-Ulrich and colleagues (2017), determined that 

even though rat GIP(3-30) had superior affinity as a competitive antagonist on the rat 

GIPR in vitro and in perfused rat pancreas, human GIP(3-30) still displayed 

antagonistic qualities (Sparre-Ulrich et al., 2017). There are some limitations within 

the current study, particularly related to the glucose homeostatic mechanism(s) of 
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action in the in vivo studies. Thus, GIP is known to potently augment insulin secretion 

(Campbell and Drucker, 2013), and this was not measured in the current study. In 

addition to this, GIP also has notable extrapancreatic glucose-lowering actions (Al-

Sabah, 2015; Baggio and Drucker, 2007), that would also need to be considered. 

However, it is clear that these peptides, and especially human Pro3GIP(3-30) had GIP 

blocking actions. 

Overall, these studies have called in to question some of the recent previous work on 

GIPR antagonists, and in particular, the impact of species variation in the amino acid 

sequences of both the GIP ligand and receptor (Hansen et al., 2016; Sparre-Ulrich et 

al., 2015; Sparre-Ulrich et al., 2017). In agreement with previous work on Pro3GIP(1-

42) (Gault et al., 2007ab; McClean et al., 2007; McClean et al., 2008), the current data 

confirms GIPR blocking ability of human Pro3GIP(3-30). Given that GIPR blockade 

has been suggested as a useful treatment option for obesity and obesity-driven forms 

of T2DM (Irwin et al., 2006; Irwin et al., 2009; Kerr et al., 2011; Naitoh et al., 2008; 

Nakamura et al., 2012; Pathak et al., 2015a; Ravn et al., 2013; Zhou et al., 2008) 

further detailed analysis is warranted to explore human Pro3GIP(3-30) as a potential 

obesity-T2DM therapeutic. 
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Table 6.1 Summary of purified native human GIP(1-42) and N- and C-terminally truncated GIP peptides; RP-HPLC retention times and 

MALDI-TOF MS of peptides 

 

 

Peptide was purified by injecting (1ml) into a Phenomenex Aeris peptide 3.6µ XB-C18 250*15mm HPLC column equilibrated with 0.12% 

(TFA)/H20 at a rate of 6 ml/min using 0.1% TFA in 70% acetonitrile/H20. Surveyor Plus Liquid Chromatograph/HPLC (Thermo Finnigan ,San 

Jose, California, USA). Absorbance was measured at 214 nm, retention times recorded using ChromQuest software. Molecular mass confirmed 

using MALDI-ToF, Voyager-DE BioSpectrometry Workstation and m/z ratio vs peak intensity. 

Peptides Name Sequence Theoretical 

Mass (Da) 

Experimental 

Mass (Da) 

Retention 

Time (min) 

1 Human GIP(1-42) YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 4983.6 4982.8 19.8 

2 Human GIP(1-30) YAEGTFISDYSIAMDKIHQQDFVNWLLA QK-NH2 3531.9 3530.6 21.0 

3 Mouse GIP(1-30) YAEGTFISDYSIAMDKIRQQDFVNWLLA QR-NH2 3579.0 3578.4 21.3 

4 Human GIP(3-30) EGTFISDYSIAMDKIHQQDFVNWLLAQ K-NH2 3297.7 3296.3 20.7 

5 Mouse GIP(3-30) EGTFISDYSIAMDKIRQQDFVNWLLAQR-NH2 3344.7 3342.5 21.0 

6 Human Pro3GIP(3-30) PGTFISDYSIAMDKIHQQDFVNWLLAQK-NH2 3265.7 3263.4 20.9 

7 Human GIP(3-42) EGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 4749.3 4749.2 19.3 

8 Human GIP(5-30) TFISDYSIAMDKIHQQDFVNWLLAQK-NH2 3111.5 3110.2 20.6 

9 Human GIP(5-42) TFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 4563.1 4562.3 19.4 
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A 

B 

Figure 6.1 Acute effects of human GIP(1-42), human GIP(1-30) and mouse 

GIP(1-30) on insulin release from BRIN-BD11 cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRIN-BD11 cells were incubated (20 min) with test peptides (10-12 to 10-6 mol/l) in 

the presence of (A) 5.6, or (B) 16.7 mmol/l glucose. Insulin was measured by RIA. 

Values are mean ± SEM (n=8) for insulin release. *P<0.05, **P<0.01 and ***P<0.001 

compared to 5.6 mmol/l glucose alone. ∆P<0.05 and ∆∆P<0.01 compared to mouse 

GIP(1-30). 
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Figure 6.2 Acute effects of human GIP(3-30) and mouse GIP(3-30) alone or in 

combination with native human GIP(1-42) on insulin release from BRIN-BD11 

cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRIN-BD11 cells were incubated (20 min) with test peptides (10-12 to 10-6 mol/l) alone 

or in combination with native human GIP(1-42) (10-7 mol/l) in the presence of (A & 

C) 5.6 or (B & D) 16.7 mmol/l glucose. Insulin was measured by RIA. Values are 

mean ± SEM (n=8) for insulin release. *P<0.05, **P<0.01 and ***P<0.001 compared 

to relevant glucose alone. ∆P<0.05 and ∆∆P<0.01 ∆∆∆P<0.001 compared to human 

GIP(1-42). 
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Figure 6.3 Acute effects of human Pro3GIP(3-30) and human GIP(5-30) alone or 

in combination with native human GIP(1-42) on insulin release from BRIN-BD11 

cells 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

BRIN-BD11 cells were incubated (20 min) with test peptides (10-12 to 10-6 mol/l) alone 

or in combination with native human GIP(1-42) (10-7 mol/l) in the presence of (A & 

C) 5.6 or (B & D) 16.7 mmol/l glucose. Insulin was measured by RIA. Values are 

mean ± SEM (n=8) for insulin release. *P<0.05, **P<0.01 and ***P<0.001 compared 

to relevant glucose alone. ∆P<0.05 and ∆∆P<0.01 ∆∆∆P<0.001 compared to human 

GIP(1-42). 
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Figure 6.4 Acute effects of human GIP(3-42) and human GIP(5-42) alone or in 

combination with native human GIP(1-42) on insulin release from BRIN-BD11 

cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRIN-BD11 cells were incubated (20 min) with test peptides (10-12 to 10-6 mol/l) alone 

or in combination with native human GIP(1-42) (10-7 mol/l) in the presence of (A & 

C) 5.6 or (B & D) 16.7 mmol/l glucose. Insulin was measured by RIA. Values are 

mean ± SEM (n=8) for insulin release. *P<0.05, **P<0.01 and ***P<0.001 compared 

to relevant glucose alone. ∆P<0.05 and ∆∆P<0.01 ∆∆∆P<0.001 compared to human 

GIP(1-42). 
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Figure 6.5 Acute effects of native human GIP(1-42), human GIP(1-30) and 

mouse GIP(1-30) on glucose tolerance in lean mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blood glucose (A) concentrations were measured before and after intraperitoneal 

injection of glucose alone (18 mmol/kg bw), or in combination with native human 

GIP(1-42), human GIP(1-30) or mouse GIP(1-30) (each at 50 nmol/kg bw) in fasted 

mice. Glucose area under the curve (AUC) (B). Values for 0-60 min post injection are 

also shown. Values represent mean ± SEM (n=5-6). *P<0.05 and **P<0.01 compared 

with glucose alone. 
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Figure 6.6 Acute effects of human GIP(3-30) alone or in combination with 

native human GIP(1-42) on glucose tolerance in lean mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blood glucose (A) concentrations were measured before and after intraperitoneal 

injection of glucose alone (18 mmol/kg bw), or in combination with native human 

GIP(1-42), human GIP(3-30), or human GIP(3-30) and native human GIP(1-42) 

combined (each at 50 nmol/kg bw) in fasted mice. Glucose area under the curve (AUC) 

(B) values for 0-60 min post injection are also shown. Values represent mean ± SEM 

(n=5-6). *P<0.05 and **P<0.01 compared with glucose alone. 
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Figure 6.7 Acute effects of mouse GIP(3-30) alone or in combination with native 

human GIP(1-42) on glucose tolerance in lean mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blood glucose (A) concentrations were measured before and after intraperitoneal 

injection of glucose alone (18 mmol/kg bw), or in combination with native human 

GIP(1-42), mouse GIP(3-30), or mouse GIP(3-30) and native human GIP(1-42) 

combined (each at 50 nmol/kg bw) in fasted mice. Glucose area under the curve (AUC) 

(B) values for 0-60 min post injection are also shown. Values represent mean ± SEM 

(n=5-6). *P<0.05 compared with glucose alone or ΔP<0.05 compared to human GIP(1-

42). 
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Figure 6.8 Acute effects of human Pro3GIP(3-30) alone or in combination with native 

human GIP(1-42) on glucose tolerance in lean mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blood glucose (A) concentrations were measured before and after intraperitoneal 

injection of glucose alone (18 mmol/kg bw), or in combination with native human 

GIP(1-42), human Pro3GIP(3-30), or human Pro3GIP(3-30) and native human GIP(1-

42) combined (each at 50 nmol/kg bw) in fasted mice. Glucose area under the curve 

(AUC) (B) values for 0-60 min post injection are also shown. Values represent mean 

± SEM (n=5-6). *P<0.05 and **P<0.01 compared with glucose alone. 
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Figure 6.9 Acute effects of human GIP(5-30) alone or in combination with native 

human GIP(1-42) on glucose tolerance in lean mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blood glucose (A) concentrations were measured before and after intraperitoneal 

injection of glucose alone (18 mmol/kg bw), or in combination with native human 

GIP(1-42), human GIP(5-30), or human GIP(5-30) and native human GIP(1-42) 

combined (each at 50 nmol/kg bw) in fasted mice. Glucose area under the curve (AUC) 

(B) values for 0-60 min post injection are also shown. Values represent mean ± SEM 

(n=5-6). *P<0.05 and **P<0.01 compared with glucose alone or ΔP<0.05 and 

ΔΔP<0.01 compared to human GIP(1-42). 
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Figure 6.10 Acute effects of human GIP(3-42) alone or in combination with native 

human GIP(1-42) on glucose tolerance in lean mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blood glucose (A) concentrations were measured before and after intraperitoneal 

injection of glucose alone (18 mmol/kg bw), or in combination with native human 

GIP(1-42), human GIP(3-42), or human GIP(3-42) and native human GIP(1-42) 

combined (each at 50 nmol/kg bw) in fasted mice. Glucose area under the curve (AUC) 

(B) values for 0-60 min post injection are also shown. Values represent mean ± SEM 

(n=5-6). *P<0.05 and **P<0.01 compared with glucose alone. 
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Figure 6.11 Acute effects of human GIP(5-42) alone or in combination with native 

human GIP(1-42) on glucose tolerance in lean mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blood glucose (A) concentrations were measured before and after intraperitoneal 

injection of glucose alone (18 mmol/kg bw), or in combination with native human GIP 

(1-42), human GIP (3-42), or human GIP (3-42) and native human GIP (1-42) 

combined (each at 50 nmol/kg bw) in fasted mice. Glucose area under the curve (AUC) 

(B) values for 0-60 min post injection are also shown. Values represent mean ± SEM 

(n=5-6). *P<0.05 compared with glucose alone. 
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Figure 6.12 Acute effects of high dose human GIP(3-30), human Pro3GIP(3-30) 

or human GIP(5-30) on glucose tolerance in lean mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blood glucose (A) concentrations were measured before and after intraperitoneal 

injection of glucose alone (18 mmol/kg bw), or in combination with native human 

GIP(1-42), human GIP(3-30), or human Pro3GIP (3-30) and native human GIP(1-42) 

combined (each at 100 nmol/kg bw) in fasted mice. Glucose area under the curve 

(AUC) (B) values for 0-60 min post injection are also shown. Values represent mean 

± SEM (n=5-6). *P<0.05, **P<0.01, ***P<0.001 compared with glucose alone or 

ΔP<0.05 and ΔΔP<0.01 compared to human GIP(1-42).
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Figure 6.13 Acute effects of early administration of high dose human GIP (3-30), 

human Pro3GIP (3-30) and human GIP(5-30) on glucose tolerance in lean mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blood glucose (A) concentrations after early intraperitoneal injection of saline vehicle 

(0.9% (w/v), NaCl) or saline in combination with native human GIP(1-42), human 

GIP(3-30), human Pro3GIP(3-30) or human GIP(5-30), 30 min prior to administration 

of a glucose load (18 mmol/kg bw), alone or in combination with human GIP(1-42) 

(100 nmol/kg bw) in fasted mice. Glucose area under the curve (AUC) (B) values for 

-30-60 min post injection are also shown. Values represent mean ± SEM (n=5-6). 

*P<0.05, **P<0.01, ***P<0.001 compared with glucose alone or ΔP<0.05, ΔΔP<0.01 

and ΔΔΔP<0.001 compared to human GIP(1-42) or +++P<0.001 compared to human 

Pro3GIP(3-30). 
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Table 6.2 Summary of acute effects of high dose and early administration of 

human GIP (3-30), human Pro3GIP (3-30) and human GIP(5-30) on glucose 

tolerance in lean mice 

 

 

Summary of  blood glucose concentrations measured before and after high dose 

intraperitoneal injection of glucose alone (18 mmol/kg bw), or in combination with 

native human GIP(1-42), human GIP(3-30), or human Pro3GIP (3-30) and native 

human GIP(1-42) combined (each at 100 nmol/kg bw) AUC values 0-60 min post 

injection (Figure 6.12) and early intraperitoneal injection of saline vehicle (0.9% (w/v), 

NaCl) or saline in combination with native human GIP(1-42), human GIP(3-30), 

human Pro3GIP(3-30) or human GIP(5-30), 30 min prior to administration of a glucose 

load (18 mmol/kg bw), alone or in combination with human GIP(1-42) (100 nmol/kg 

bw) in fasted mice AUC values -30-60 min post injection (Figure 6.13). Values 

represent mean ± SEM (n=5-6). *P<0.05, **P<0.01, ***P<0.001 compared with 

glucose alone or ΔP<0.05, ΔΔP<0.01 and ΔΔΔP<0.001 compared to human GIP(1-42) or 

+++P<0.001 compared to human Pro3GIP(3-30). 

Glucose tolerance test 

Treatment 

group 

Blood glucose AUC  

(mmol/l.min) 

Glucose 860.5 ± 72.29 

High dose human GIP(1-42) 544.9 ± 16.62*** 

High dose human GIP(3-30) 638.3 ± 31.22* 

High dose human Pro3GIP(3-30) 708.8 ± 66.84*Δ 

High dose human GIP(5-30) 687.7 ± 23.75*Δ 

Early administration glucose 1053 ± 39.25 

Early administration human GIP(1-42) 770.3 ± 55.18*** 

Early administration human GIP(3-30) 719.2 ± 45.42*** +++ 

Early administration human Pro3GIP(3-30) 1058 ± 28.10ΔΔΔ 

Early administration human GIP(5-30) 646.8 ± 29.73*** +++ 
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7.1 Treating Type 2 diabetes 

T2DM is the major non-communicable disease pandemic that accounts for 90% of all 

diabetes cases (Public Health England, 2018). Presently, the risk prevalence of T2DM 

is exacerbated and driven forward by high calorific diets and obesity that today is 

considered a societal ‘norm’ (Public Health England, 2018). T2DM was ranked as the 

6th leading cause of death in 2015 and is a priority non-communicable disease targeted 

by world leaders across the globe (Public Health England, 2018; WHO, 2016).  In the 

UK alone, 3.8 million people live with T2DM and 200,000 people are newly diagnosed 

every year (Public Health England, 2018). T2DM is not only a major public health 

problem but also a financial burden, both directly and indirectly (Diabetes UK, 2014; 

NHS, 2018). Therefore, development of novel T2DM therapeutics is not only relevant, 

but essential in the management of T2DM. With all cases of T2DM and obesity, those 

who are detected and appropriately managed can generally prevent and/or delay the 

onset of associated complications and go on to live longer, better quality, healthier 

lives (Davies et al., 2018; WHO, 2016). 

The primary aim when treating T2DM is to develop safe and efficacious 

pharmaceuticals that are effective in terms of glycaemic control and maintaining 

HbA1c at or below target levels. Thus, reducing long-term microvascular and 

macrovascular risks associated with the disease (Davies et al., 2018; Marchetti et al., 

2009). Additionally, associated risk of atherosclerotic cardiovascular disease 

(ASCVD) and chronic kidney disease are now recommended to be considered for all 

T2DM therapeutic regimens (Davies et al., 2018). Currently, pharmaceutical agents 

such as biguanides, sulfonylureas, thiazolidinediones, SGLT2, DPP IV inhibitors and 

incretin mimetics aim to not only reduce glucose levels but assist in protecting and/or 

preventing pancreatic beta cell dysregulation and reduced sensitivity to insulin (Brandt 

et al., 2018; Marchetti et al., 2009). However, available agents for T2DM all have 

varying efficacy and adverse effects including increased risk of hypoglycaemia and 

weight gain, thus limiting their merit in being safe and effective.  

Additionally, in comparison to notable benefits of certain types of bariatric surgery 

that can restore metabolic control and sustain long-term weight loss (Irwin and Flatt, 

2015; Meek et al., 2016; Singh et al., 2015), none of the currently approved 

pharmaceutical agents are able to fully replicate this scenario (Capozzi et al., 2018). It 
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is postulated the metabolic changes in bariatric surgeries, such as Roux-en-Y Gastric 

Bypass (RYGB), are due to complex, multifaceted mechanisms and that 

pharmacological manipulation of a single metabolic pathway is unable to replicate this 

fully Currently, lifestyle changes and weight loss induced by very low calorie diets 

(624–700 kcal/day) is the only regimen that even come close to the success of bariatric 

surgery (Capozzi et al., 2018; Mehta, Marso and Neeland, 2017; Steven et al., 2016). 

However, compliance to these extreme lifestyle changes remains a key challenge to 

long-term sustainability and the regimes may not be applicable to all cases (Mehta, 

Marso and Neeland, 2017; Steven et al., 2016). The idea of targeting multiple 

receptors, rather than lone metabolic pathways, could represent one way to better 

replicate the benefits of bariatric surgeries for patients with T2DM (Brandt et al., 

2018). 

 

7.2 Single hybrid peptide multiple receptor agonists 

In recent times the beneficial antidiabetic actions of novel incretin-based therapies 

have been demonstrated, and these therapies have been suggested to protect beta cells 

against apoptosis and promote differentiation and proliferation (Brandt et al., 2018; 

Marchetti et al., 2009). As the variety of available incretin-based agents continues to 

grow, including pronounced longer-lasting action (for example formulations allowing 

for once weekly injection), the benefit to people living with T2DM should also 

dramatically increase (Bhat et al., 2013; Brandt et al., 2018; Finan et al., 2014; 

Rosenstock et al., 2015). However, these GLP-1 based therapies are still limited to 

modulation of a single receptor mediated pathway.  

As such, novel forms of incretin-based and incretin-like therapies are now being 

engineered as dual and triple monomeric/hybrid peptides (Bhat et al., 2013; Brandt et 

al., 2018; Finan et al., 2014; Rosenstock et al., 2015). Furthermore, utilising non-

classic intestinal and neuronal hormones has become increasingly popular within this 

paradigm, as it is now understood that neural/hormonal signals between the gut and 

brain have a major role in development of T2DM and obesity (Capozzi et al., 2018). 

Thus, novel hybrid peptide therapies aim to have an extended therapeutic scope in 

comparison to their single target counterparts as the receptors targets are extensively 

disseminated across tissues (Irwin and Flatt, 2015). Ultimately, this would lead to 
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improved therapeutic efficacy, with the potential for lower dosage, thereby reducing 

or eliminating adverse effects (Capozzi et al., 2018; Irwin and Flatt, 2015). There have 

been several proof-of-concept studies with dual acting peptide hormone agonists, and 

these include but not limited to GLP-1-GIP, GLP-1-oxyntomodulin and GLP-1-gastrin 

agonists (Capozzi et al., 2018; Fosgerau and Hoffmann, 2015). Interestingly, a very 

recent study has documented the remarkable benefits of a dual GIP and GLP-1 receptor 

agonist, LY3298176, in T2DM patients (Frias et al., 2018), that further promotes the 

usefulness of this avenue of therapeutics. 

This thesis has applied the principles of dual agonist technology to provide further 

proof of concept. In Chapters 3-5, the incretin hormone GIP was fused to the non-

classical xenin peptide hormone, as well as creation and characterisation of xenin-

neurotensin based hybrids. Initially, the studies built on work by Hasib et al., (2017), 

to augment therapeutic ability of GIP-xenin by combined treatment with the 

established GLP-1 agonist, exendin-4, in different models of T2DM (Capozzi et al., 

2018; Hasib et al., 2017). This work was progressed to establishing antidiabetic effects 

and anorectic benefits of xenin and neurotensin, as well as related hybrid peptides in a 

mouse model of T2DM-obesity. Finally, the focus in Chapter 6 was to further 

investigate an alternative approach to GIP therapeutics by development of a specific 

GIPR antagonist that has the potential to be utilised as a therapeutic in obesity-

diabetes. These studies also build from previous positive work on GIPR antagonism at 

Ulster (Gault et al., 2007a; Gault et al., 2008; Irwin et al., 2007; Kerr et al., 2011; 

McClean et al., 2007; McClean et al., 2008; Pathak et al., 2015a).   

 

7.3 GIP-xenin hybrid 

It is now well understood that under hyperglycaemic conditions of T2DM in humans, 

the insulin releasing action of GIP is reduced, even with exogenous administration of 

large doses (Capozzi et al., 2018). It is only when the hyperglycaemia is alleviated that 

the insulinotropic action of GIP is restored (Capozzi et al., 2018). Thus, a single 

targeting GIP therapy may not provide prominent therapeutic value in the treatment of 

T2DM (Capozzi et al., 2018; Hasib et al., 2017). Therefore, the rationale that 

augmenting GIP action, using the co-secreted hormone xenin known to potentiate GIP 

effects, was demonstrated by Hasib et al., (2017) by the dual agonist hybrid, 
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(DAla2)GIP/xenin-8-Gln. Chapters 3 and 4 have assessed (DAla2)GIP/xenin-8-Gln 

alone, and in combination with exendin-4, in two separate mouse models of contrasting 

T2DM aetiology, namely diet-induced HFF and genetically induced db/db mice (Faitia 

et al., 2018; Katsuda et al., 2013; King, 2012; Winzell and Ahren, 2004). Thus, it has 

already been established that the loss of endogenous GLP-1 and its glucose-lowering 

effects can be overcome in T2DM by exogenous administration of stable GLP-1 

analogues such as exendin-4 (Nauck, 2016). This combined treatment approach could 

potentially enhance the effects of the GIP-xenin hybrid by activation of an additional 

signalling pathway and by concomitantly reducing hyperglycaemia (Capozzi et al., 

2018; Hasib et al., 2017). Comparatively, Chapters 3 and 4 had some similar outcomes, 

but there was also evidence of contrasting effects, likely related to the mouse model 

employed. 

To summarise, over the treatment period used, circulating glucose and HbA1c levels 

were lowered in both mouse models by (DAla2)GIP-xenin-8-Gln in combination with 

exendin-4. Notably, circulating insulin were much greater in response to treatments in 

HFF mice than db/db mice, and this likely reflects the beta cell dysfunction that is 

apparent in db/db mice (Faita et al., 2018). Thus, it could suggest that the benefits of 

(DAla2)GIP-xenin-8-Gln and exendin-4 are both somewhat dependent on intact beta 

cell function. Assessment of insulin secretion from islets isolated from HFF mice at 

the end of the study confirmed this view. However, glucose tolerance in the HFF model 

was not improved by either treatment group, yet benefits were apparent in the db/db 

model, especially in mice treated with (DAla2)GIP-xenin-8-Gln in combination with 

exendin-4. This could imply that activation of multiple target pathways results in 

glucose-lowering actions independent of insulin. Indeed, it is well known that GIP and 

GLP-1 possess important extrapancreatic antihyperglycaemic actions (Al-Sabah, 

2015; Campbell and Drucker, 2013; Capozzi et al., 2018; Marín-Penalver et al., 2016). 

In relation to this, insulin sensitivity was unaffected in the db/db model, whereas the 

HFF had improvement in the (DAla2)GIP-xenin-8-Gln treatment group and more so 

in the combination group. In addition, lipid metabolism, as evidenced by total 

cholesterol and triglycerides levels, was improved by treatment regimens in HFF mice, 

possibly by augmentation of GIP action and/or sensitivity facilitated or enhanced by 

xenin, as it too plays a role in lipid metabolism (Capozzi et al., 2018; Craig, Gault and 

Irwin, 2018; Hasib et al., 2017). Finally, both the HFF single treatment groups had 
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improved sensitivity to GIP with the combination group most improved, contrary to 

the db/db model as this parameter was unaffected by either treatment. This may well 

be linked to differences in disease severity and ambient glucose levels between the two 

mouse models. Histological staining and assessment of pancreatic architecture would 

also conform to this viewpoint. 

Comparatively, these two contrasting models of T2DM show the strengths and 

limitations of (DAla2)GIP-xenin-8-Gln as a single dual agonist treatment option and 

as a combined therapeutic approach with exendin-4. In the less severe HFF model with 

intact beta cell function, (DAla2)GIP-xenin-8-Gln alone, was as effective as 

(DAla2)GIP-xenin-8-Gln in combination with exendin-4. However, the main benefits 

in db/db mice were largely observed only when (DAla2)GIP-xenin-8-Gln was 

combined with exendin-4. This is suggestive that hyperglycaemia in this model is so 

severe, that GLP-1 is required to reduce hyperglycaemia to allow (DAla2)GIP-xenin-

8-Gln to exert positive effects. Indeed, a number of studies in animals and humans 

have shown that the antidiabetic effects of GIP can be restored by concomitant 

reductions of hyperglycaemic (Frias et al., 2017; Gault, 2018; Skow, Bergmann, and 

Knop, 2016). It is presumed that the same scenario is important in db/db mice. 

Overall Chapters 3 and 4 have demonstrated that (DAla2)GIP-xenin-8-Gln alone or in 

combination with exendin-4 is primarily suited as a T2DM therapeutic in less severe 

presentations of the disease. Whereas the more severe manifestation of T2DM, the 

db/db model, it was clear that (DAla2)GIP-xenin-8-Gln therapeutic action was only 

enhanced by the addition of exendin-4 and significantly inhibited alone even with its 

dual agonist attributes (Hasib et al., 2017). Thus, possible pharmacological 

intervention with (DAla2)GIP-xenin-8-Gln alone or in combination with exendin-4 

may need to be further considered in relation to disease status of the patient. 

 

7.4 Neurotensin-xenin hybrid 

With the premise that novel xenin-containing hybrid peptides are effective antidiabetic 

agents, neurotensin was considered a good candidate for development into a hybrid 

peptide. Neurotensin (NT) has several antidiabetic actions and is known to facilitate 

absorption of fatty acids in the small intestine (Barchetta et al., 2018; Mazella et al., 
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2012). Additionally, xenin is structurally related to neurotensin (NT), with similar 

biological actions including appetite suppression, modulation of lipid metabolism and 

glucose homeostasis (Anlauf et al., 2000; Craig, Gault and Irwin, 2018; Khan et al., 

2017; Mazella et al., 2012). Thus, combining elements of these two peptides, forming 

acetyl-neurotensin(8-13)-xenin-8-Gln, had the potential to modulate several 

regulatory pathways including glucose and energy balance, and as with (DAla2)GIP-

xenin-8-Gln, this may also be augmented by addition of exendin-4 to the regimen. 

Preliminary studies with acetyl-neurotensin(8-13)-xenin-8-Gln established that 

receptor binding and activation was intact, an important quality when developing and 

fusing novel hybrid peptides (Al-Sabah, 2015; Capozzi et al., 2018; Fosgerau and 

Hoffmann, 2015). Acetyl-neurotensin(8-13)-xenin-8-Gln in vitro, and ex vivo in 

isolated islets, greatly increased insulin secretion at higher glucose levels compared to 

acetyl-neurotensin(8-13) and native NT, which only enhanced at lower concentrations. 

This is consistent with published literature (Khan et al., 2017). Furthermore, acetyl-

neurotensin(8-13)-xenin-8-Gln maintained the proliferative and anti-apoptotic 

qualities shown by both parent peptides (Khan et al., 2017). Thus, these data confirm 

that the key antidiabetic actions for the NT/xenin hybrid remain, and further in vivo 

assessment was warranted. 

The model of choice was HFF mice, based on previous observations in Chapters 3 and 

4. Biological assessment revealed that acetyl-neurotensin(8-13)-xenin-8-Gln had 

reduced efficacy in terms of glucose-lowering and insulin secretion capabilities when 

compared to exendin-4 alone, or both drugs in combination, following sub-chronic 

injection regimens. However, more importantly, in some instances acetyl-

neurotensin(8-13)-xenin-8-Gln in combination with exendin-4 outperformed exendin-

4 alone in terms of antidiabetic benefits, particularly in relation to glucose tolerance 

and insulin sensitivity.  Interestingly, it was exendin-4 alone that had superior effects 

on satiety and body weight, even though both NT and xenin are known to have roles 

in regulating energy balance pathways (Barchetta et al., 2018; Craig, Gault and Irwin, 

2018; Mazella et al., 2012). However, acetyl-neurotensin(8-13)-xenin-8-Gln in 

combination with exendin-4 did positively modulate lipid metabolism as both 

triglycerides and fat mass were reduced in this group of mice. It is also postulated that 

NT modulates leptin concentrations and signalling in the periphery as well as in the 
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central nervous system (Barchetta et al., 2018), and assessment of leptin action may 

have been a useful addition to these studies.  

To summarise, initial in vitro actions of acetyl-neurotensin(8-13)-xenin-8-Gln 

suggested promise as an antidiabetic, but these were not fully translated to the in vivo 

setting in HFF mice. Although there does seem to be potential if acetyl-neurotensin(8-

13)-xenin-8-Gln is utilised as a combined therapeutic, as shown in this study with 

exendin-4. When in combination with exendin-4, acetyl-neurotensin(8-13)-xenin-8-

Gln proved to have equally desirable or superior therapeutic attributes than exendin-4 

alone, and thus may still have potential as a T2DM therapeutic. More detailed studies 

using this molecule and in particular, effects on other physiological parameters are 

warranted.  

 

7.5 GIP antagonism 

As previously discussed, under T2DM conditions GIP action becomes dysregulated, 

with GIPR signalling linked to obesity development as elevated GIP levels increase 

fat deposition (Al-Sabah, 2015; Capozzi et al., 2018; Gasbjerg et al., 2018a). This is 

further evidenced by decreased GIP secretion and action being suggested as a primary 

metabolic benefit associated with bariatric surgery (Mingrone et al., 2009; Xiong et 

al., 2015). The focus of Chapter 7 was therefore to elucidate a GIPR antagonist as the 

validity of currently characterised GIPR antagonistic have been called into question 

(Gasbjerg et al., 2018a; Gasbjerg et al., 2018b; Hansen et al., 2016; Sparre-Ulrich et 

al., 2017). 

The study utilised GIP-based peptides with various amino acid substitutions and N- 

and C-terminus variations from the native sequence. As with the previous studies, it 

was essential to uncover which peptides maintained receptor binding, but on this 

occasion have lost activation capabilities, ensuring receptor antagonistic qualities 

(Hansen et al., 2016). Keeping in mind that to procure benefits from GIPR antagonism, 

it is not entirely necessary to fully eliminate GIPR signalling, as a partial reduction of 

GIP signalling can yield the beneficial in obesity (Nasteska et al., 2014). Moreover, 

the GIPR antagonist, (Pro3)GIP, that was shown to have various benefits in rodent 

models obesity and T2DM (Gault et al., 2007a; Gault et al., 2008; Irwin et al., 2007; 
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Kerr et al., 2011; McClean et al., 2007; McClean et al., 2008; Pathak et al., 2015a), 

has now been confirmed as a weak partial GIPR agonist rather than a full GIPR 

antagonist (Sparre-Ulrich et al., 2017; Pathak et al., 2015a). 

Initial in vitro assessment identified human GIP(3-30), human Pro3(3-30)GIP and 

mouse GIP(3-30) to significantly inhibit GIP-stimulated insulin secretion, which was 

unaffected by human GIP(5-30), GIP(3-42) or GIP(5-42). As would be expected, all 

peptides had reduced glucose-lowering ability when compared to native GIP, although 

peptides with their C-terminus intact, namely human GIP(3-42) or GIP(5-42) were less 

potent as GIPR antagonists. The findings were indicative of the C-termini importance 

in receptor activation and consistent with published literature (Hansen et al., 2016). 

This was further supported by findings that at higher dosages, the C-terminally 

truncated human GIP(3-30), Pro3(3-30)GIP and GIP(5-30) displayed superior GIP 

antagonistic properties. Although further assessment would be required to be 

definitive, the data suggest that human Pro3(3-30)GIP has greater ligand affinity 

without receptor activation, which could be attributed to addition of a proline at 

position 3, as these attributes are not displayed by human GIP(3-30). Therefore, human 

Pro3(3-30)GIP appeared to represent the most useful GIPR antagonist. 

The findings of this study further support the previous literature on Pro3GIP as a tool 

to block full GIP receptor activation (Gault et al., 2007a; Irwin et al., 2007; McClean 

et al., 2007; Pathak et al., 2015a). However, more in depth analysis including insulin 

secretion analysis, binding studies and assessment of longer-term biological effects in 

a suitable in vivo model would be required to be totally definitive. In addition, use of 

CRISPR/Cas9 and targeted genome editing (Nishimura and Fukagawa, 2017) to create 

a cell-line with specific knockout of the GIPR would also be useful to confirm 

specificity of these peptides. 

 

7.6 Advancements of work and related limitations 

The dual agonist peptides assessed in this thesis have shown that, under certain 

instances, there are major advantages of modulating naturally occurring peptides into 

multifunctional, dual receptor agonists. This approach broadens therapeutic 

applicability, which can be further enhanced by combining the dual agonist with 

another treatment option, such as a GLP-1 mimetic. However, it must also be noted 
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that there are limitations when developing monomeric peptides in comparison to the 

predictability of single receptor agents. This would include prediction of translation of 

benefits from the in vitro to the in vivo setting, as noted with acetyl-neurotensin(8-13)-

xenin-8-Gln hybrid. More significantly, this may also raise the question of 

applicability of translation from the animal model to the clinical setting, due to the 

multifaceted mechanisms of T2DM (Fosgerau and Hoffmann, 2015). However, the 

data also encourage the premise of enhanced therapeutic applicability with triple gut 

hormone receptor agonism, by use of a GLP-1 mimetic in combination with either the 

GIP/xenin of NT/xenin hybrid peptides. This does raise the possibility of potential for 

generation of a single tri-agonist peptide for diabetes. Indeed, of late there has been 

some headway made in terms of generating and characterising triple-acting hybrid 

peptides that show clear antidiabetic promise (Capozzi et al., 2018; Finan et al., 2015; 

Fosgerau and Hoffmann, 2015), and this could be considered as a future avenue for 

the dual acting hybrids described here.  

In addition, the work from this thesis also highlights the issues of interpretation and 

understanding of data derived from different established mouse models of diabetes. 

Thus, despite best efforts, no animal model can completely and accurately mimic the 

complex aetiology of human T2DM. Despite this obvious limitation, it is still 

noteworthy that for new T2DM drugs to make it towards human use, they must first 

show efficacy and safety in such rodent models. Further to this, modulation of GIP 

structure to produce a specific GIPR antagonist demonstrated how N- and C- termini 

truncations of the native peptide can dramatically alter the biological action. This 

could, as evidenced in Chapter 6, lead to generation of a suitable GIPR antagonist for 

the treatment of obesity and related diabetes (Irwin and Flatt, 2015). The limitations 

of currently characterised GIPR antagonists has been aptly described in a number of 

recent publications (Gasbjerg et al., 2018ab; Hansen et al., 2016; Pathak et al., 2015a; 

Sparre-Ulrich et al., 2017). However, it should also be noted that a recently 

characterised dual GIP and GLP-1 receptor antagonist evoked significant reductions 

in body weight in T2DM patients (Frias et al., 2018). Thus, the full impact of GIPR 

signalling on the development of obesity and related T2DM may well require further 

characterisation. Nonetheless, taken together, the current studies would suggest that 

whilst manipulating and integrating peptide structures to produce multi-acting hybrid 

peptides is encouraging, care is required to ensure that the overall impact on each 
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individual receptor binding and activation is not compromised. As such, small 

alterations in the structure of GIP can result in generation of potent GIPR antagonists. 

The timing of peptide administration could be another consideration as inducing beta 

cell rest during the light phase in mice and beta cell stimulation during their active 

dark phase has been shown to improved treatment effects such as reducing glucose 

concentrations and enhancing insulin sensitivity compared to other dosing regimens 

(Pathak et al., 2017b). A final obvious limitation of peptide based therapies is the route 

of administration in humans, and the need for subcutaneous injection as opposed to 

oral delivery (Scheen et al., 2017). However, recent advancements with possible oral 

delivery of the GLP-1 mimetic, semaglutide (Scheen, 2017), could dramatically 

change the landscape of incretin based therapies for diabetes.  

 

7.7 Future work 

This thesis has provided invaluable data and evidence of the therapeutic utility of gut-

derived peptides with regards to T2DM and obesity therapy. However, further analysis 

is warranted to fully elucidate their treatment potential, including assessment of safety 

and testing in humans. In addition, investigation of the sustainability of therapeutic 

effects of the hybrids when the treatment regimen has ceased would be interesting, 

thus determining their potential treatment longevity. Essentially, long-lived benefits 

would suggest disease altering effects of the hybrid peptides would certainly be 

considered as a benefit. Additionally, a lipid challenge test as a supplementary 

assessment parameter following treatment would also be helpful with further 

understanding of lipid metabolism and flow cytometry to analyse ex vivo adipose tissue 

to assess inflammatory response variation amongst treatment groups.  With molecular 

targets now a major focus in drug therapy, the analysis of peptides effects on micro 

RNAs (miRNAs) should also not be neglected. As such, miRNAs are now considered 

to be key regulators of gene expression within T2DM disease pathology including 

pancreatic beta cell dysfunction, proliferation and apoptosis as well as adipocyte 

regulation and related cardiovascular pathophysiology (Ding, Sun and Shan, 2017; 

Feng, Xing and Xie, 2016; Shantikumar et al., 2012). Furthermore, knockout mice 

could be utilised to understand receptor activation as well as the utility of 

CRISPR/Cas9 technology to knockout specific receptors within cell-lines to establish 
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receptor balance of each hybrid is also of importance. In addition, an assay to directly 

assess the pharmacokinetic profile of each of the novel peptides would also provide 

valuable information for future work with experimental drugs, by offering more 

information in relation to optimum dosing schedules. With these additional studies, 

the ultimate aim would be to generate a scientific rationale for progression of these 

novel peptide therapies towards studies in humans.  

 

7.8 Overall conclusion  

Collectively the data accumulated from this thesis demonstrates that designer hybrid 

peptides and combination therapy can elicit positive biological effects and improved 

therapeutic efficacy in T2DM. The observed benefits on glycaemic control and 

circulating lipids are directly in line with the new 2018 treatment goals published by 

the American Diabetes Association (ADA) and the European Association for the study 

of Diabetes (EASD). This consortium have noted that antidiabetic drugs should reduce 

hyperglycaemia, minimise weight gain and lower cardiovascular risk (Davies et al., 

2018). It is clear that the novel drugs described within this thesis warrant further 

investigation as potential T2DM treatments based on these recognised and approved 

treatment goals. 
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