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ABSTRACT 
 

This thesis presents a framework for the improvement and maintenance of the QoS (Quality of 

Service) of networked video games. Hardware and software are monitored by certain variables and 

decisions are made based on the range of these. A high QoS is sought after by all players of video 

games, however delivering this has proven to be difficult at times. Cloud gaming technology has 

greatly improved distributed processing, though there are still factors inhibiting it. High load on 

servers and high round trip time to the user’s devices and consoles are preventing the users from 

achieving a high QoS. With games becoming more accessible, the range of devices that they can be 

executed on increases, though the quality varies from device to device. The servers which the game 

providers utilise can come under stress. For example, the hugely popular augmented reality game 

Pokémon Go came under fire from users as the servers could not handle the stress of the huge number 

of connected users resulting in server outages [1]. Another challenge is the issue of latency as many 

users may suffer from a low bandwidth internet connection which results in a poor user experience. 

It would be ideal for all game players to achieve a high QoS regardless of the device they are using, 

their connection to the server and the condition of the server. The research hypothesis underpinning 

the work described here is that cloud gaming techniques can be utilised to improve a user’s QoS 

A novel and adaptable architecture that combines cloud and fog assistance with self-adaptation 

techniques, in which the client adapts to a situation, is proposed as a solution to this problem. By 

employing available resources from the game server (cloud) and other under-utilised network nodes 

local to the device (fog), a game player’s QoS may be improved. Self-adaptation procedures are the 

last resort solution of the architecture should there be no available resources both locally and globally. 

Testing of this architecture is carried out under various conditions from varying latencies and packet 

loss to data packets of differing size being distributed and self-adaptation occurring due to different 

in-game elements. Results from experiments based on varying pressures in the game world and 

network conditions show that, by constantly monitoring the QoS of the game and the network, 

effective decisions can be made to improve a declining QoS. A smaller data packet transmitted 

frequently provides a greater improvement in comparison to a larger data packet transmitted less 

frequently. 
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1.1 OVERVIEW 

This thesis proposes an architecture for improving and maintaining the QoS provided in video games. 

A wide variety of factors can affect QoS, for example there is the specification of the client device and 

the current scene within the video game within the client. Example metrics from the client and game 

include FPS (Frames per Second), GPU (Graphical Processing Unit) and CPU (Central Processing Unit) 

usages. From all the factors it can be argued that the most important of these is the FPS value of the 

game [2]. By improving these metrics, the overall QoS provided improves. It can be argued that with 

an improvement in QoS, the Quality of Experience (QoE) also improves since if a good QoS is provided 

then a good QoE is only dependent on subjective measures from the user such as their current mood 

[3]. With devices becoming increasingly network aware, the utilisation of distributed resources can 

help prevent and reverse a declining QoS. As some nodes on a network, such as other computers, can 

be under-utilised, processing can be distributed to these. These nodes must also be monitored 

regarding resources and the network between them. 

In this thesis, an adaptive architecture will be proposed in response to low QoS in video games. This 

architecture will draw upon cloud and fog assistance and self-adaptation techniques to maintain a 

high QoS. The main features of a video game will be identified and methods of their distribution 

detailed. Each of these features will have a set of resource requirements which will be fulfilled 

somewhere along the network or be reduced until the client device itself can handle it. The constant 

change in resource requirements and availability requires a Decisions Manager who will optimise the 

distribution process. 

The chapter continues as follows: In Section 1.2, distributed processing is examined and becomes 

more specific with video streaming and cloud distribution. The section also explains the benefits of 

fog computing for improving the QoS of a video game. Section 1.3 sees the introduction of the 

research objectives of this thesis that go towards creating an architecture that will improve a user’s 

QoS. Section 1.4 is a summary of the thesis contributions and section 1.5 is an outline of the thesis 

structure. 

1.2 THE DISTRIBUTION OF PROCESSING 

The phrase “many hands make light work” crosses over into the realms of computing and becomes 

the term distributed processing or distributed computing. Distributed processing is defined as 

hardware or software components, located in a computer network, which communicates and 

coordinate their actions by passing messages for higher overall efficiency [4], [5]. There are many 

benefits to distributed processing, one of which is performance enhancement. Multiple computers or 
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devices working on a problem can solve the problem much faster than a computer or device working 

alone. Games are applications that can benefit greatly from distributed processing. 

At present, there are two methods of utilising distributed processing to benefit video games:  

1. Streaming media 

a. Video Streaming 

b. Graphics Streaming 

2. Adding additional hardware to the network 

Of the two methods, the process of streaming media is the most popular with Video Streaming being 

used the most in the current industry. A live example of this is PlayStation Now [6]. Video streaming 

is the process of rendering on the server and sending the resulting images to the client device while 

Graphics streaming is the process of sending graphics commands to the client device which will then 

render the game images. Much research in the literature focuses on streaming media approaches 

which has resulted in many different frameworks: 

1. Co-operative Video Sharing 

Co-operative video sharing is the process of sharing video contents with other users. Relating to 

games, the video that is streamed down to a group of users can be decoded co-operatively. This 

process of streaming video and the decoding of players videos who are in the same gaming scene, 

via a secondary network, that most modern devices can be connected to, can reduce server 

transmission rate [7]. 

2. Asymmetric Graphics Rendering 

Asymmetric Graphics Rendering is the process of encoding the left or right view of a 3D scene 

differently from its opposite, which can reduce the bandwidth required to transmit the 3D stream. 

It has been shown, [8]–[10], that encoding one view at a high enough quality and encoding the 

other at a quality above a set threshold does not noticeably lessen the quality. 

3. Mobile Cloud Gaming 

Mobile cloud gaming is the process of playing a game that resides on the cloud on a mobile device. 

The two current approaches to this are Mobile Cloud Video Gaming (MCVG) and Mobile Browser 

Gaming (MBG). MCVG is the streaming of video down to the mobile device whereas MBG is 

graphics rendering on the client side. In [11], a system is proposed which is adaptable and changes 

between MCVG and MBG based on network conditions. 
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4. Games@Large 

Games@Large was an EU project focused on enabling consumer electronics platforms and devices 

to be video game ready [12], however, it was shut down in 2010. This example also combines 

Video Streaming and Graphics Streaming into an adaptable architecture as seen in [13]–[16]. 

1.3 RESEARCH OBJECTIVES 

Section 1.2 presented the current methods of distributed processing in video games which are to 

stream video and to distribute to the cloud. The number of issues with these methods such as the 

potential for server overload, can be reduced by implementing fog assistance as well as self-

adaptation. By utilising fog computing, round trip times can be reduced as well as reducing server 

strain, and self-adaptation will allow the device to adapt to its current situation when there are no 

resources available on the network. Therefore, this thesis proposes that by distributing processing to 

under-utilised resources and focusing on specific QoS metrics, a user’s QoS can be improved. The focus 

on these is channelled into the combination of cloud assistance with fog assistance and self-

adaptation. The overall aim of the thesis is to provide an architecture which monitors a game’s state 

and makes decisions taking account of the state of the client device, network nodes and the state of 

the network in its decision-making process. The results of these decisions are intended to improve the 

QoS provided and therefore improve the user’s overall QoE. The following research objectives for this 

work have been identified: 

1. To review existing methods of distribution in video games, in particular, how they distribute 

data and which data they choose to distribute. 

2. To determine which parameters can be used in a decision-making architecture, in which the 

outcome of all decisions is to improve the QoS provided.  

3. To develop an adaptable architecture which will utilise the cloud and fog resources available 

to improve QoS. This architecture can then be tested against differing data types and 

connection variations. Self-adaptation will be included as a last resort - in the unlikely event 

that no resources are available from either the cloud or fog, the client device can adapt itself. 

1.4 THESIS CONTRIBUTIONS 

In this thesis, an adaptable architecture is presented that improves upon a declining QoS and then 

maintains the improvement. This architecture makes decisions based on information from all over a 

network and employs under-utilised resources to provide a good QoS. The information is stored in 

Management Information Bases (MIBs) which are present on all devices. A MIB is a virtual information 
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store which holds objects “whose values collectively reflect the current state of the network” [17]. 

The MIBs here hold data such as the game’s current FPS rate, the bandwidth of the connection and 

the current GPU usage. If the resource values within a MIB, such as CPU usage, are low then the device 

that the MIB belongs to will be flagged as being able to provide some assistance with CPU intensive 

tasks. Under-utilised resources, such as low CPU and GPU usage rates of devices, can be employed to 

provide assistance. The closer an under-utilised device is to a client requiring assistance the more likely 

it will be drafted in to assist. By employing a device much closer to the client to provide assistance, 

processing pressure is taken from the server which reduces the likelihood of a server crash. The QoS 

provided is improved as the server can operate efficiently, any tasks handed off for outside processing 

can be executed, and results returned faster. If there are no available resources to assist with 

processing, a fail-safe procedure is in place in the form of self-adaptation. In the case of self-

adaptation, unnecessary objects not core to the gameplay can be completely removed so as to free 

some of the client device’s resources.  

The main goal of this research is to develop an adaptable architecture which will utilise cloud and fog 

resources to improve the QoS provided. The hypothesis being worked from is that cloud gaming 

techniques can be utilised to improve a user’s QoS. 

The main contributions of this research are: 

• The evaluation of current Cloud and Fog Computing methods in relation to video games and 

the improvement in the QoE provided. 

• The development of an architecture which utilises Cloud and Fog computing concepts and 

combines these with a self-adaptation component to create an adaptable architecture for 

the improvement of QoS in networked games. 

• The analysis of the architecture and the results from experimental testing. 

The proposed contributions have been peer reviewed in the following conference proceeding: 

• Hull, C. et al. FRAGED: A Framework for the Adaptive Game Execution and Delivery to 

Improve the Quality of Experience in Network Aware Games. PGNet 2014, Liverpool. 

1.5 THESIS STRUCTURE 

The remainder of the thesis contains five further chapters: Background and Literature Review, 

Architecture, Experimental Method and System Setup, Results, and Conclusion. 
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Chapter 2 is the literature review of related work and covers a wide variety of areas. The related 

research is divided into five areas: Streaming Games, Distributed Environments, Distributed 

Management, Fog Computing and Saving Energy. The area of streaming games focuses mainly on the 

cloud and the streaming of data to the client. Some of the methods proposed have an adaptable 

architecture, which is similar to one of the core objectives (Section 1.3).  

Chapter 3 explains the proposed architecture that utilises distributed resources to improve a user’s 

QoS in network aware games. The architecture is discussed in high-level to low-level detail from the 

range of possible scenarios for a client to the decision-making involved and the role of Remote 

Procedure Calls (RPCs) and the network within the architecture. 

Chapter 4 focuses on the architectures ability to make decisions. The decision making is a theoretical 

analysis of the architecture with regard to its ability to decide how best to assist a client and decisions 

such as which network node will assist are explored. 

Chapter 5 presents the results of the distribution of data and the adaptation of the client to its current 

situation. The distribution of data in this architecture is explored in a number of ways as a variety of 

methods are used with different network conditions. The self-adaptation ability is a component which 

executes only when there are no resources available on the network; this is the fail-safe of the 

architecture. 

Chapter 6 concludes the thesis by evaluating the objectives established in section 1.3. Suggestions for 

future work are proposed to improve upon the completed work and extend the scope of research 

before presenting a statement concluding this work. 
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 
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2.1 OVERVIEW 

This chapter presents background research and a literature review carried out in a variety of areas. 

The related research can be divided into five areas: Streaming Games, Distributed Environments, 

Distributed Management, Fog Computing and Saving Energy. Each area is related to the overall aim of 

this work which is to develop an architecture that utilises distributed resources to improve the QoE of 

networked games. 

2.2 INTRODUCTION 

In this chapter, existing research relating to distributing processing is discussed. In this research, there 

are many variations of distributed data and many variations in the type of environment the data is 

distributed within. As discussed in Chapter 1, by monitoring and improving QoS measures within a 

network, both hardware and software, the QoE that is observed by the user can be improved.  

The area of streaming games focuses mainly on the cloud where client devices connected to the cloud 

have the game streamed to them. Data streamed to the client can take one of two forms, video or 

graphics commands. Some of the methods proposed under streaming games are found to be highly 

adaptable to the current situation of the network. One of the research objectives of Chapter 1 

highlights the need for such an adaptable architecture. 

A distributed environment is one in which networked computers cooperate to achieve a common goal. 

In such an environment, there can be multiple servers over which load balancing can take place or one 

server which can delegate processing to remote clients. This research considers multiple server 

situations as well as distributed virtual environments. The employment of additional hardware to 

assist with processing falls under this area. 

Distributed Management is required to oversee the distribution of data over the current environment. 

There are many different methods of distributed management, the research for this thesis will focus 

on agents. These agents can be better understood as a set of rules. If a condition is met, then the 

agent will act. For example, if the frames per second at which a game is running drops below a set 

threshold then a process will be executed. 

Fog computing is very similar to cloud computing with the difference being that the processes 

executed in the Fog are being executed much closer to the client device. An advantage is that the 

result of the executed process is received much quicker by the client in comparison to the result being 

transmitted from the cloud. 
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Through distribution, it is possible to save energy. By employing underutilised nodes within a network 

clients or servers under pressure can be relieved of tasks. This can reduce the load on the system and 

therefore reduce its own energy consumption. 

The final section of this chapter summarises the literature review and identifies opportunities for the 

development of an adaptable architecture. 

2.3 STREAMING GAMES 

The concept of media streaming is not new with attempts made to display media on computers dating 

back to the mid-20th century. Little progress was made with this due to the hardware’s limited 

capabilities [18]. Nowadays significant developments have been made on home networking including 

streaming technology associated with game giants Nintendo, Sony and Microsoft. For example, the 

Wii-U can wirelessly stream data to the gamepad controller with only a 1/60th of a second delay [19], 

and PlayStation Vita and a variety of smartphones and Tablets can provide a similar function for 

PlayStation and Xbox consoles respectively. Steam OS and associated computer hardware can stream 

games over the home network direct to a television [20]. Other significant developments include the 

Nvidia Shield [21] which can come in the form of an Android TV box or tablet. Owners have the option 

to stream games from their home PC or Nvidia’s own streaming service GeForce Now, which is 

specifically for the Shield.  

The rise of Nvidia’s GeForce Now isn’t the only commercial change with regards to streaming games. 

For a long time the giants of this arena were OnLive [22] and Gaikai [23], however, as of 2012 Sony 

acquired Gaikai, and in 2015 Sony acquired OnLive’s patents meaning that OnLive services would be 

discontinued. During 2015 Sony released a cloud gaming service dubbed ‘PlayStation Now’. This 

service allows the streaming of PlayStation 3 games on PlayStation 4 and other compatible devices 

including PCs via a thin client on the device. Currently, there are two approaches to streaming games, 

namely video streaming and graphics streaming. These are implemented in a variety of research 

platforms including Mobile Cloud Gaming (MCG), the Games@Large framework, Remote Visualisation 

and Asymmetric Graphics Rendering. 

2.3.1 MOBILE CLOUD GAMING 

MCG is the process of playing a game that resides on the cloud on a mobile device. This is now seen 

as a form of Gaming as a Service. Being able to tap into the seemingly unlimited power of the cloud, 

mobile cloud gaming can overcome the limitations of the mobile device. 
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A detailed summary of MCG is provided in [11]. Two current approaches to MCG are discussed below: 

Mobile Cloud Video Gaming (MCVG) and Mobile Browser Gaming (MBG) as seen in Figure 2.1a and 

2.1b.  

 

(a) Mobile Browser Gaming (MBG)                  (b)  Mobile Cloud Video Gaming (MCVG) 

Figure 2.1. Two approaches to Mobile Cloud Gaming adapted from [11] 

MCVG allows the mobile device to act as a receiver for the in-game video as the video is streamed, 

whereas for MBG the web browser of the mobile device is the game container and the rendering of 

the game graphics is carried out on the mobile side. 

The key advantages, such as utilising a Thin-Client, and disadvantages, such as the need for a strong 

network, of a MCG system are discussed. In [11] a framework is proposed for the next generation of 

MCG and the main findings of this work are the proposed framework and the issues with regards to 

creating it. The main advantage of the designed framework is its adaptability, also known as dynamic 

cloud integration. The proposed system can switch between the video streaming of MCVG and the 

client-side graphical rendering of MBG based on the network conditions by on-loading and off-loading 

game components between the device and the cloud.  

The key finding in this paper is that the division of game components and splitting them between the 

cloud and the device can improve a player’s gaming experience as more processing power is available 

via the cloud. 

The research approach used in [11] defines two case studies, an augmented-reality cloud game and a 

context-aware cloud game to illustrate the next generation of MCG. The augmented reality cloud 

game is Google’s own Project Glass [24] in which the player’s view is captured, and the cloud responds 

by providing gaming content such as coins displayed in the player’s view. The context-aware cloud 

game takes the location of the player, via GPS and delivers gaming content. 
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This research is connected to the wider research field as other authors are looking at adaptable 

frameworks that can switch between video and graphics streaming and others are looking at 

offloading processes to the cloud to improve processing capability. Some research looks specifically at 

video streaming and proposes a system in which gateways are placed between access points and the 

media servers [25]. Based on the device the client is using, the video stream can adapt its quality. The 

client may also be able to connect to another gateway allowing them continuous access to their video 

stream. This is similar to the work in [11] as a system is created that can adapt based on the client’s 

device. The research in these papers is very relevant to our project as we will be creating an adaptable 

game delivery system in which game components will be offloaded to the cloud and other devices 

available. 

2.3.2 GAMES@LARGE  

Games@Large was a four-year EU project focused on enabling consumer electronic platforms and 

devices to be video game ready. According to [26] the goal of Games@Large was to “provide 

instantaneous, ubiquitous access to high-end videogames”. This was to be achieved without 

specialised hardware at any end of the network and without the requirement of significant network 

resources. The Games@Large framework has two approaches to streaming games; these are graphics 

and video streaming [13]–[16]. 

Graphics streaming is used mainly for end devices, such as a PC, with accelerated graphics support 

typically having screens of higher resolution [14], [16]. All calls on the OpenGL or DirectX library are 

intercepted, encoded and streamed. Using this streaming method, encoding is much less demanding 

and independent from the image resolution of the device. With this, high image quality is achieved as 

the game scenes are directly rendered for the desired screen. However, bit-rates are less predictable, 

and high peaks of data rate are expected, especially for scene changes where numerous textures have 

to be loaded by the graphics card [15].  

Video streaming in the Games@Large approach is only used when graphics streaming is not 

applicable, an example of this type of situation is when the client lacks the required graphics hardware. 

With video streaming, the rendering takes place on the server and the resulting frame buffers are 

captured and encoded as a H.264 video stream [13]. This is explained in more detail in [14] which goes 

further in saying that the rendering commands are intercepted and modified before their execution 

to exactly meet the client’s properties without any image degradation or processing delay. This type 

of streaming is computationally demanding due to the H.264 encoding on the server side and the 

decoding on the client side [16].  
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From this research, it can be seen that a low-end device with low graphics capability will require video 

streaming while a more capable device such as a desktop will utilise graphics streaming. They describe 

a framework that, based on the end user’s device, will adapt and use either graphics or video 

streaming. 

The research approach used in these papers varies. In [15] and [16] the Games@Large framework is 

tested with experiments such as adding artificial traffic to the network with tools such as jPerf [27]. In 

[15] the graphics commands were compressed before being transmitted on the network for the 

graphics streaming approach using real-time compression, the result was that the delay was 

significantly reduced. The research in [16] provided no experimental results, this paper discusses 

accelerated video streaming and presents the advancements in video encoding which is enhanced for 

games. 

The Games@Large framework is a significant step in the direction of adaptive game streaming and is 

linked closely to Mobile Cloud Gaming (Section 2.3.1). The research in [28] discusses the 

Games@Large framework, with a particular focus on the video streaming approach. The framework 

is applied to games which employ a skybox or skydome, these are backgrounds which make the game 

world seem larger than what it is. The skybox/skydome will take up the majority of any scene and with 

these encoded in a faster manner, the stream can be presented to the user quicker. This is similar to 

the research in [13]–[16] as an aspect of the Games@Large framework is being utilised. This literature 

is significant as, with this project, we are looking to implement a framework that can adapt based on 

the conditions of the network and keep the players QoS high. 

The research here contributes to the knowledge of the Games@Large framework, providing detail on 

graphics and video streaming and results from experiments that prove its validity against traditional 

approaches. 

2.3.3 REMOTE VISUALISATION 

Remote Visualisation is the process of connecting to a remote server and utilising its CPU and GPU 

power. It is claimed that “image compression alone cannot guarantee interactive framerates” [29]. To 

reduce the strain on bandwidth, several techniques are used including reducing quality during 

animations. The main finding of this research is that lossless image compression algorithms coupled 

with parallel processing can significantly increase framerates and that at the time of writing, hardware 

compression had very little impact. 

A key finding of this research is video streaming can be made more efficient with the bandwidth 

reducing techniques found in [29]. In the wider research field, this work is similar to [28] as it also 
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focuses on video streaming to make it a faster process. Another paper of note is [30] in which remote 

visualisation of large 3D models occurs with a MPEG-4 streaming architecture. The MPEG-4 encoding 

is seen to be the bottleneck and more specifically the motion estimation. Results in this paper show 

that with motion estimation being carried out elsewhere, the encoding process is carried out at a 

faster rate. 

The work in remote visualisation is relevant to this project as processing is being passed off to another 

PC and improving upon the QoS that the client is receiving. 

2.3.4 ASYMMETRIC GRAPHICS RENDERING 

Asymmetric graphics rendering is the process of encoding the left or right view of a scene differently 

in comparison to the other; this applies to 3D gaming. An example of this is that the left view of a 

scene has 150 metres of view while the right scene only has 100 metres of view. By reducing the 

bandwidth required to transmit the stream, 3D gaming can be enhanced. 

3D display gaming on mobile devices is on the rise [31], [32] and with this, an asymmetric graphics 

rendering approach has been proposed [33]. The research shows the left and right views of a scene 

being encoded at different bitrates to overcome the challenge of ensuring a good QoE when streaming 

3D video over a network. 

The key finding of this research area is that by transmitting one view as medium quality and the other 

as low, a better peak signal to noise ratio is gained over a case where both views are transmitted as 

medium quality. “In this way, the user experience can be greatly improved whether under the same 

network condition (increase video quality) or the same video quality (decrease network delay).” [33] 

The research gap addressed by [33] is that by altering a view on a 3D video stream, bandwidth usage 

can be reduced while maintaining the QoE for the user. In the wider research field, this research links 

in with mobile cloud gaming and video streaming as a 3D video stream that is modified to require less 

bandwidth is proposed for mobile devices. This is relevant to the project as mobile devices may be 

incorporated into the system and reducing bandwidth usage is a priority regardless of the client 

device. 

2.4 DISTRIBUTED ENVIRONMENTS  

Multiple devices working together on a problem can solve the problem much faster in comparison to 

a single device. Many games operate over a distributed environment, most notably the area of 

Massively Multiplayer Online Games (MMOs). The most famous of MMOs is World of Warcraft [34]. 
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This giant of the video games industry has a many servers to many clients set-up. The core idea is that 

with many servers, the massive number of clients connected can be looked after.  

With the increasing number of devices on a network, it can be argued that there is much processing 

power going to waste. Video game data can be distributed to these under-utilised nodes and therefore 

not require the need for additional hardware. 

The research discussed below addresses client-server distribution, distributed virtual environments, 

adding additional hardware in the form of micro clouds and AI Partitioning. 

2.4.1 CLIENT SERVER DISTRIBUTION 

From the research presented in [35], [36] it is evident that eventually, a client server system will slow 

down when supplying a game service. When facilitating a massively multiplayer online game (MMOG), 

“the single server becomes a bottleneck due to insufficient network bandwidth” [35]. The major 

problem with client-server systems is scalability.  

A possible solution to the single server problem is to incorporate a distributed client-server 

architecture [36]. A group of clients is connected to a server with each server being connected to run-

time infrastructure services. Figure 2.2 illustrates this approach. 

 

Figure 2.2: Distributed Client Server Architecture [36] 

To distribute the work amongst the server’s, two approaches have been suggested: virtual world 

subdivision and participant subdivision (Table 2.1). 
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Table 2.1: Two approaches to dividing work amongst servers. 

Type of Division Explanation 

Virtual World Subdivision With each group assigned to a server, the client connects to the 

server which their avatar belongs to. 

Participant Subdivision Clients connect to the server based on their geographical 

location. 

 

With the increased number of servers, this solution allows for more players to enter a game. Problems 

with this potential solution are highlighted in [35] with the main problem being server overload. Game 

players tend to group in towns and cities; some zone servers could suffer from heavy load. Load 

balancing will be needed in a situation such as this, and a server would be dedicated to devising a load 

balancing strategy. Now the problem lies with the load balancing server as it would become a 

bottleneck. 

The answer to creating a more responsive environment is not as simple as adding more servers. One 

approach presents us with a hybrid peer to peer MMOG cloud architecture [35].  Figure 2.3 presents 

this hybrid peer to peer MMOG cloud and its setup with regards to a section devoted to game servers, 

another for game regions data storage and a third for the character database. 

 

Figure 2.3: Hybrid P2P MMOG Cloud Architecture [35] 

With the architecture on the cloud, there is more opportunity for resource allocation. The game 

servers have a P2P connection with each other allowing them to communicate load information and 

player information. As seen in Figure 2.3 there is a client server connection between the game servers 

and character database and the game regions storage. Having this data stored elsewhere allows for 

the game servers to focus more on the gameplay. As with all game servers, there is the potential to 

become overloaded, and the proposed architecture has a server load management procedure to 

prevent this. The top priority is to serve the players with a low response time which can be achieved 
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by choosing the server closest to them, if this becomes overloaded a neighbouring server is chosen 

that serves the same game region and has a low load. If this server is also overloaded a neighbouring 

server which serves another region and has a low load is chosen, if this too is overloaded then a distant 

server which can take on more players is chosen. 

When compared to a multi-server architecture this approach performed better as it allowed more 

players to be catered for. The average response time for these players was lower, and when under 

load there is a smaller deadline miss ratio. 

2.4.2 DISTRIBUTED VIRTUAL ENVIRONMENTS 

A distributed virtual environment is defined in [37] as a software system that  can “connect 

geographically dispersed users into a shared virtual space and support the interaction between the 

users and the shared world.”  

The research in [38] proposes a model of event communication within distributed virtual 

environments (DVE). The model adapts based on the network resource requirements of the events 

such as bandwidth and latency. Quake II was chosen for a case study, measuring bandwidth, latency 

and packet loss requirements of a multiplayer game. Individual event streams, which are different 

interactions within the virtual world, were measured against these metrics. The overall results of these 

can be seen in the Table 2.2. 

Table 2.2: The results of Bandwidth, Latency and Packet Loss research when playing Quake II  

Measurement Result 

Bandwidth The majority of the bandwidth for an individual stream was taken up by the 

header, statistics and entities. 

Latency As the latency increases, the playability of the game decreases. This being in 

respect to both the overall and individual event streams. 

Packet Loss Similar to latency, with an increase in packet loss there is a decrease in game 

playability. 

 

The results of the work in this paper show that when adapting to the variation in wireless networks, 

individual event streams having different resource requirements can be taken into consideration. 

2.4.3 MOBILE GAMES WITH MICRO CLOUDS 

The use of Gamelets in cloud gaming to reduce its drawbacks of latency, server scalability and lack of 

client side game data for latency hiding and synchronisation techniques is proposed in [39]. A Gamelet 
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is an extra piece of hardware placed within the network local to the client and is designed to take over 

the task of rendering from the cloud servers.  A major advantage of this system is that video is 

streamed only within the local network allowing each user to receive larger bandwidth and not 

experience greater costs. 

The challenges for such a system, along with a proposed solution are explained in Table 2.3. 

Table 2.3: Challenges with implementing Gamelets 

Challenge Solution 

Zone Distribution With the size of modern games, this is addressed by dividing the 

world and resources into zones. A Gamelet can share the 

rendered data of its zone with another Gamelet to improve 

efficiency. 

Distributed Rendering This helps slow the inevitable obsoletion of hardware as game 

graphics improve quickly over time. 

Security Due to the addition of new hardware, there is a loss of 

centralised control. This can be overcome by handling problems 

only up to Gamelet level, and not client level. 

Content-Based Adaptive 

Streaming 

To reduce bandwidth consumption, the properties of game 

content are exploited. An example of this is “static game regions 

are streamed at a lower frame rate.” 

 

The results of the experiment carried out in this paper, in which a test game was created on the 

system, presented two limitations on distributed rendering: 

1. With the constant adding and removing of game zones there is a large zone handling 

overhead. By altering zone size, this can be reduced. 

2. A predictive method is used to download game zones. A player moving close to zone 

boundaries triggers the download of the zones and they could potentially fill up the memory 

of the Gamelet quick and possibly for nothing. 

 

This existing work has shown that with the addition of more hardware to an architecture, the user can 

experience a higher QoS. With this finding it can be argued that by having access to existing nodes 

that are local to the client, instead of adding more hardware locally, the user will experience a higher 

QoS without the need of additional hardware. 
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2.4.4 AI PARTITIONING 

The process of AI partitioning in which the AI is divided into a high-frequency (high transmission rate) 

component and low-frequency (low transmission rate) component is detailed in [40]. The high-

frequency component, being computationally simple, is placed on the server with the low-frequency 

component being placed on the client as it is more intensive. 

One issue, as seen in many MMOG’s, is that the AI used is simple, and this is because the servers being 

used have insufficient power to handle a more complex one. The solution employed in [40] is that the 

extra processing power of the client machines can be utilised. Therefore, the AI can be partitioned, 

and some processing offloaded to the client machine. 

Experimental results show that even in a high latency environment this technique of partitioning AI is 

effective as it can tolerate a high round trip time. 

2.5 DISTRIBUTED MANAGEMENT 

The distributed environments seen in the section above can be managed via load balancing. Load 

balancing is the process of distributing the load over separate systems thereby increasing the 

processing power available [41]. In [42] load balancing is examined within Grid Computing, with a 

discussion on six different load balancing algorithms, these are as follows: 

1. Fuzzy Based Approach: A rule base is created, and then these rules take the form of IF-THEN 

statements. 

2. Genetic Algorithm Based Approach: Solutions from a population are taken, and a new 

population is created. Over several generations of solutions, an optimal solution is formed. 

3. Agent-Based Approach: With this approach, computer programs known as agents act on 

behalf of the user. These Agents can communicate with each other to determine where a task 

is to be executed.  

4. Hybrid Approach: This approach focuses on nodes swapping between a static state, in which 

there is no need for continuous monitoring, and dynamic state which requires continuous 

monitoring. 

5. Policy-Based Approach: The computation time of a job is calculated on some nodes; the 

average time is then taken and is updated in an iterative scheduling approach. 

6. History-Based Approach: A job execution history is used to estimate a job’s start time. 

 

The approach we will focus on here is the Agent-Based Approach. For gaming, Agents can be utilised 

to distribute game services and therefore improve a user’s gaming experience 
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2.5.1 AGENT PROPERTIES 

A software agent is a computer program that acts on behalf of the user. Agents are seen to have two 

important qualities, first is to be able to satisfy the objective assigned to them by deciding which 

actions need to be taken and second is to be able to communicate with other agents [43]. 

The properties of mobile agents can be found within [42] and [43]. The majority of these are similar 

within both papers, with 3 in total being different.  

The main properties which all agents will have are being reactive meaning it responds to changes in 

the environment and being autonomous meaning it controls its own actions. Agents are also goal-

oriented/pro-active meaning that the agent doesn’t simply react but acts towards a goal and finally, 

to be temporally continuous, meaning the agent is always running to perform what it has been 

assigned to do. 

Other properties which some agents have are that they are communicative/social meaning that the 

agent will communicate with other agents and people. The agent is learning to allow it to adapt its 

behaviour to fit its environment and it can be mobile allowing it to travel to different nodes. The agent 

can be flexible, meaning that its actions are not pre-determined, truthful, meaning it will not 

communicate false information and finally rational, meaning it should never prevent its goals from 

being achieved. 

With agents being autonomous, they have the capability to decide for themselves how best to go 

about achieving their delegated goal. The agent can be thought of as being in a close-coupled continual 

interaction with its environment leading it into the Perceive Think Act Cycle [46] also known as the 

Sense Decide Act Loop [43], this is presented in Figure 2.4 below. 

 

 

 

Figure 2.4: Sense, Decide, Act Cycle 

The agent continually senses the environment, on the basis of this information they decide which 

action to perform next in pursuit of the delegated goal, and they then perform the action which will 

change the environment. Once having acted, the agent will sense the environment again. 

 

 

Sense 

Decide Act 
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2.5.2 THE NEED FOR AGENTS 

A distributed system allows for users to offload processes to other more powerful nodes on the 

network. These systems are flexible and scalable. However with this area there comes challenges, 

including the following [44], [47]: 

1. Addition and removal of nodes.  

2. The distributed system should be adaptable when environment conditions change. 

3. A variety of hardware and software will be utilised. 

4. A guaranteed minimum QoS. 

Limitations are also present in client/server approaches. The authors of [48] present five major issues: 

Centralised Management, Scalability, Bandwidth Wastage, Response Time and Fault Tolerance. 

The challenges and limitations identified above have generated more research in the area of software 

agents. 

2.5.3 BENEFITS 

There are several benefits to employing agents in a system. These include: network load reduction, 

network latency overcome and dynamic adaptation [37] [39]. 

With these benefits, it is seen that the best way to manage a distributed system is with agents. These 

benefits have also been recorded in our paper [3], beside each of them is the benefit in terms of a 

networked game. 

Table 2.4: Agent Benefits as found in [3] 

Benefit In relation to a Networked Game 

Network load reduction Instead of all the calculations for AI being 

transferred to another device or node, the agent 

can travel to the device and then start 

transmitting results. 

Network latency overcome The agent will be stored on a node and, when 

required, can travel to the device to carry out 

the task. 

Dynamic adaptation Users join and disconnect from games 

constantly; this ever-changing topology requires 

software that will react to the changing 

environment. 
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2.5.4 MOBILE CODE PARADIGMS 

The research in [50] describes three mobile code paradigms, that extend from the client-server 

paradigm, for designing a distributed application, namely: Remote Evaluation, Code on Demand and 

Mobile Agent. Table 2.5 explains these in terms of the location of components before and after the 

execution of a service. 

Table 2.5: Mobile code paradigms 

 

As seen from the row with the mobile agent paradigm, before execution it will have the know-how 

but not the resources, the agent will then travel to the site (Site B) that has the resources and execute 

the service there. Unlike the other paradigms, the agent is the only entity involved. 

 2.5.5 AGENT COMMUNICATION AND EXPLORATION 

The authors of [51] provide three different models of agent communication. These models are 

detailed in Table 2.6. 

 

 

 

 

Paradigm Before After 

Site A Site B Site A Site B 

Client-Server  

A 

know-how 

resources 

B 

 

A 

know-how 

resources 

B 

Remote Evaluation know-how 

A 

resources 

B 

 

A 

know-how 

resources 

B 

Code on Demand resources 

A 

know-how 

B 

resources 

know-how 

A 

 

B 

Mobile Agent know-how 

A 

resources  know-how 

resources 

A 
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Table 2.6: Communication methods of agents 

Communication 

Method 

Explanation 

Face to Face When two agents are on the same node, information can be exchanged 

between both. 

Pebble Model When an agent visits a node, they can leave a pebble (data packet) which is 

visible to all other agents and can be picked up by any other agent visiting the 

node. 

Whiteboard Model Like the pebble model, the agent can leave information on a public 

whiteboard of the current node. When another agent visits this node the 

information is visible to it and can be modified by it. 

 

Another topic addressed in [51] is that of agent exploration. When the agents are operating on a 

network in which all nodes are labelled, exploration can be executed via depth-first search (DFS) or 

breadth-first search (BFS). Figure 2.5 below presents a graphical representation of these search 

methods. 

 

Figure 2.5: Graphical Representation of Depth-first and Breadth-first searches [51] 

An alternative method of exploration on a labelled network is a piecemeal exploration in which the 

agent returns home periodically during exploration. 

 2.5.6 POLLING METHODS  

As software agents are separate computer programs, they can operate on their own without the 

interaction of the node that sent them, hence allowing them to operate offline as well as online. This 

ability provides two approaches to data acquisition known as Polling Modes. The work in [52] proposes 

two polling modes allowing mobile agents to retrieve real time and offline data. These modes are 

known as: Get ‘n’ Go and Go ‘n’ Stay. Table 2.7 outlines these methods. 
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Table 2.7: Polling Modes 

Mode Explanation 

Get ‘n’ Go This mode is used for the collection of real-time data. The network is 

divided into several areas with a mobile agent assigned to each. This agent 

visits all nodes in its area and then returns to its originating node. 

Go ‘n’ Stay This mode is used for the collection of data that can be analysed offline. 

An agent is sent to each node on the network; the agent can stay for an 

allotted amount of time and then return. 

 

The above polling modes help back up the adaptability of agents as the node they are currently on is 

not required to be constantly available on the network, therefore, reducing the power consumption 

of the node. 

This is relevant as agents will be required to travel. This travel is realised in Chapters 4 and 5 which 

detail the experimental method and system setup aswell as the results of the experiments. 

2.5.7 AGENTS FOR OVERLAY NETWORKS 

An overlay network is a computer network which is built on top of one or more existing networks. 

Overlay networks are created by the hosts and servers and can “enhance end-to-end application 

performance and availability” [53]. These overlay networks monitor themselves, however, as this was 

not their intended purpose it is a burden. This waste of resources can be prevented with the 

introduction of multi-agent technology, allowing for the network to focus on other things. The 

research proposes introducing a main test agent and an assistant test agent. Each agent has a variety 

of components as experiments were carried out with results showing that the agent framework can 

provide a service to measure parameters of the overlay network. 

From this research, it can be argued that the addition of agents to a network can improve its efficiency 

as resources are not spent on monitoring the network. 

2.5.8 SYSTEM AGENT RESEARCH 

In [54] an architecture is proposed that employs mobile agents for resource transactions. The 

proposed has three parts: game server, encapsulated game group (EGG) and game group manager. 

There is a peer to peer connection within the EGG and a client server connection between the server 

and the managers of the EGG’s, with a manager being chosen when the EGG is being set up. The agents 

within the system set up in game transactions between players by travelling within EGG’s and further 
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afield. This is relevant to the work in our project as agents will be employed to travel distances in-

house and further afield. 

Another model of note is that found in [55]. In this research, mobile agents are used to report on 

changes of routing in grid systems. Along with execution agents who carry out the tasks of the user, 

there are routing agents which are categorised into short distance agents and long-distance agents. 

Short distance agents can only travel to local nodes while long distance agents can travel much further. 

This research is similar to that in [54] as agents travel short and long distances however the work here 

categorises these into short and long distance agents while [54] uses the same agents to travel short 

and long distances. 

The frameworks designed here have a significant influence on this project as a variety of agents can 

be used to access the required resources for a game. Short-distance agents can operate in-house, 

medium-distance agents can operate within the area of the Fog and the long-distance agents can 

operate outside the Fog to the Cloud. These agents will travel to their destination and open a channel 

for resources to be streamed along [3]. 

2.5.9 METRICS  

To measure the effectiveness of agents in a distributed system, we require metrics. Metrics are 

standards of measurement that, with regards to this project, can be used to measure the QoS a player 

is receiving. Metrics can be found throughout the literature helping to compare old systems with new 

within two categories: QoS and QoE. QoS metrics are focused on the network such as the current 

latency whereas QoE metrics which are usually centred on the user such as their current mood. 

TYPE OF GAME BEING PLAYED IS KEY  

When defining the minimum network conditions required to play a game, it can be seen that these 

vary based on the game genre. Both [54] and [55] highlight this and agree that a first person shooter 

will require a much lower latency than that of a real-time strategy game. Background work in [56] 

found a study that concluded with the user’s QoE being significantly impacted by the type of game 

they were playing [58]. Experimental results have shown that cloud-based first-person shooter players 

are less accepting of poor network conditions than those of other game genres. An example of this is 

found in [59] as a latency of more than 100ms can affect a gamers experience in the first person 

shooter Call of Duty. Simulation games such as The Sims are less effected by latency due to their less 

time-sensitive nature. 
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DIRECT AND INDIRECT METRICS 

QoS measurements focus on the network level metrics such as packet loss, jitter and one-way delay 

[60]. With the volume of multimedia content, emerging and being consumed, increasing rapidly, these 

measures are seen to no longer be sufficient with ways to assess user satisfaction via QoE methods 

being researched. QoE measurements are very user-centric involving measures not related to the 

network such as the current mood of the user. An example of a QoE metric is the mean opinion score 

(MOS) [13] in which having played a game, the player’s rate certain aspects of it such as 

responsiveness. 

When it comes to assessment, two types of metrics have been defined:  

• Direct Metrics 

o These are metrics that directly affect user perception. They can be obtained from data 

such as variations in delay and packet loss. 

• Indirect Metrics 

o These metrics are not directly related to the quality of the delivered content but still 

affect the experience. 

Examples of Direct metrics include: 

• Peak Signal to Noise Ratio (PSNR): Compares each pixel of the original images to those of the 

received. 

• Structural Similarity (SSIM): Compares structure contrast and luminance of the original and 

received images. 

• Video Quality Metric: Compares colour and blurring of the original and received images. 

Examples of Indirect metrics include: 

• Start-up time: Time from the user querying the system until they receive the requested 

content. 

• Response Time: Time for a specific action to occur on screen. 

• Delivery Synchronisation: Time difference in the delivery of content to different users. 

• Freshness: Time between content being created and received by the user. 

• Blocking: Describes the irregularity of the video. 

 

With games being a form of multimedia, these metrics may be utilised when measuring the QoS and 

QoE of a framework.  
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RESPONSIVENESS AS THE MOST CRITICAL OF MEASURES 

The authors of [57] claim that the responsiveness of a system is the most critical metric in respect to 

QoS. The responsiveness in this paper, defined as Response Delay, has the same definition as the 

response time of [60]. 

Response Delay has been divided into four cloud based game components [57]: 

1. Network Delay: The round-trip time of the network or more specifically the time to transmit 

a command to receiving the game screen. 

2. Processing Delay: The time from receiving the command to sending the result. 

3. Game Delay: The time the software of the game takes to process a command and render the 

result. 

4. Playout delay: The time it takes for a client to receive its results from the server and display 

them. 

 

Figure 2.6: Time frames in measuring response delay [57] 

From Figure 2.6 above it can be seen that each of the components can be assigned a time frame 

equation. The “t” at each point represents an amount of time. 

• Network delay is equal to (t1-t0) and (t3-t2) 

• Processing Delay and Game Delay are equal to (t2-t1) 

• Playout Delay is equal to (t4-t3) 

 

The total Response Delay can be calculated with t4 – t0. From [57] it can be seen that Response Delay 

can be considered a crucial metric as it directly affects a user’s experience and performance. 
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The authors of [61] also refer to Response Delay. The Response Delay here has three components with 

one component split further: 

1. Tclient: This is a combination of the first part of the network delay and playout delay seen 

above. It is the time it takes to send information, e.g. player movement, to receiving and 

playing the video. 

2. Tnetwork: The delays described below can be placed in between t0 and t1 in the diagram 

above.   

a. Taccess: The time for data to move from the client to the first internet connected 

router. 

b. Tisp: The time for data to move from the router to the “peering point connecting the 

ISP to the next hop transit network.” 

c. Ttransit: The time for the data to move from the “peering point” to the front-end 

server at the datacentre. 

d. Tdatacenter: The time for the data to move from the front-end server to the hosting 

server 

3. Tserver: This is similar to the processing delay and game delay. This is the time spent 

processing the received information, generating video and transmitting this back to the client. 

 

The research here has broken down response delay into smaller delays through which calculations can 

be carried out to determine in which part of the network the most delay is occurring. From this, we 

can determine responsiveness to be the most critical of measures. 

CONTINUOUS ANALYTICS 

The work in [62] presents CAMEO: Continuous Analytics for Massively multiplayEr Online games on 

the cloud. With MMOs there is an abundance of communities that inform and entertain players. 

Analytics are used by these communities to produce reports such as the best overall character class 

for damage [63]. The authors believe that the analysis process can benefit from the cloud. CAMEO can 

mine information and present results based on the mined information. 

The system was tested by analysing the game RuneScape. At the time of publication, this was the 

largest data collection and analysis of RuneScape to date. The behaviour of almost three million 

characters was analysed along with the progress of half a million characters being followed closely for 

a week. With CAMEO being connected to cloud services, Amazon EC2 was compared against a local 

cloud provider with the Amazon service able to carry out the task of collecting player identities much 
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quicker. Regardless of cloud service provider, the results of testing with CAMEO prove that continuous 

data analysis of MMOGs can be carried out with cloud resources. 

In this project, the concept of continuous analysis can be utilised to assess the network and have it 

adapt, then assess again and so on. 

EVALUATING AN EXPERIENCE 

Not only does the type of game being played have an impact on a player’s experience, but there are 

other aspects that influence the overall experience of a game playing session. As discussed earlier, 

metrics can be divided into those which affect QoS and those which affect QoE. The research in [64] 

focuses on the QoE providing detail on three categories: Influencing Factors, Interaction Performance 

and Quality Features. The following tables detail the subcategories of these. 

Table 2.8 shows the subcategories of Influencing factors: User factors with four measures, System 

factors with five measures and Context Factors with four measures. 

Table 2.9 shows the subcategories of the Interaction Performance factors: System Performance with 

four measures and User Performance with three measures. 

Table 2.10 details the subcategories of Quality Features. All of these, except for Player Experience, 

have no further division. Player Experience has three measures. 
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Table 2.8: The subdivisions of Influencing Factors [64] 

User Factors System Factors Context Factors 

Experience: Based on the gaming 

experience of the player.  

Game Genre: Game genres 

include shooter, real-time 

strategy, etc. 

Physical Environment 

Factors: Where the 

game is being played. 

Playing Style: Players have many 

styles, these including achievement 

hunters or a socializer.  

Game Structure: Is the game a 

single player, co-op against 

the game, player v player, etc. 

Social Context: Playing 

with other players and 

relationships with 

them. 

Intrinsic Motivation: Behaving in a way 

which is personally rewarding. 

Game Mechanics and Rules: 

Individual to each game. 

Extrinsic Motivation: 

Behaving in a way to 

achieve an award. 

Static and Dynamic User factors: Static 

factors include age and gender while 

dynamic includes the current 

emotional status and how distracted 

the player is. 

Technical System Set-up: 

Characteristics of the server 

and network requirements. 

Service factors: Running 

costs etc. 

 Design Characteristics: The 

design of the system and the 

design of the game. Individual 

to each system and game. 
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Table 2.9: The subdivisions of Interaction Performance [64] 

System Performance User Performance 

User Interface Performance: Input and output 

performance of the interface. 

Perceptual Effort: Understanding the system 

and its outputs. 

Backend Platform Performance: Input and 

output performance of the backend of the 

platform 

Cognitive Workload: The cost of achieving a 

task, the task here being obtaining an outcome. 

Game Performance: The success of the game. Physical Response Effort: The physical effort 

required to play the game. 

Communication Channel Performance: 

Performance of carrying input and output from 

and to the user. 

 

 

Table 2.10: The subdivisions of Quality Features [64] 

Interaction Quality The quality of the input and output and the behaviour of the player 

interacting with the game. 

Playing Quality This is the level at which a player can learn, control and understand the 

game. [65]   

Aesthetic Aspects The user’s perception of the look and feel of the system. 

Player Experience Flow, Challenge, Control: How the game flows, the challenges it presents 

and the control the user has over these. 

Immersion: How much the user feels to be in the game and not simply 

playing a game. 

Positive and Negative Affect: How the game affects the player. 

Acceptability How acceptable the user is towards the system. 

 

From Tables 2.8, 2.9 and 2.10, it can be seen that measuring the QoE can be a long and difficult task. 

In our approach, a strong focus is placed on QoS metrics as it may be argued that when a good QoS is 

achieved then the QoE depends only on the player and their condition when playing, such as their 

mood. 
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USING LOD TO IMPROVE QOS  

In computer graphics, level of detail (LoD) is the rendering of more or fewer polygons of an object 

depending on its distance from the viewport of a camera. The further away the object is, the less detail 

is required. Figure 2.7 below shows that even with significantly fewer triangles used to render an 

object it still keeps its shape. The fewer triangles used the further away the object will be. 

 

Figure 2.7: The LoD of a rabbit as found in [66]. 

An adaptation framework inspired by the LoD mechanism to improve a player’s experience is 

proposed in [66]. With this approach, the updates of some entities are prioritised over others. Two 

types of messages are used for the message passing protocol: Asynchronous and Synchronous 

Messages. Three types of components are used in the model: Entity, Group and Mode. An entity 

represents a game object, with each belonging to a group, each group has a role and each group has 

a communication rate assigned to them. A drastic change in network settings results in the 

reassignment of groups to an appropriate mode based on the new communication capabilities. 

The experiment proved that the difference between the game experience with the adaptation 

framework and without is significant. With the LoD inspired framework the most important entities 

were given a high priority and so were updated first, without this the messages for updates were sent 

at pre-determined intervals and therefore gameplay suffered. 

This level of adaptability can be utilised within the proposed framework. If there are no resources 

available for the client device to pass off processing to, then the device itself could lower the LoD to 

help improve performance. 

2.6 FOG COMPUTING  

Fog computing is very similar to cloud computing with one of the main differences being that 

distribution occurs closer to the user, for example from another client or local edge device. In [67] we 

see the benefits of Fog computing for a business focusing on the Internet of Things. Of these, the 

benefit that stands out is the “Lower operating expense” benefit. As data is processed locally instead 

of on the cloud, network bandwidth is conserved. Having data processed closer to where it is required 
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“solves the challenges of exploding data volume, variety and velocity.” Figure 2.8 is adapted from [68] 

and shows the processing of distributed data in an environment which employs Fog computing. 

 

Figure 2.8. Distributed Data Processing in an Environment Utilising Fog Computing (adapted from 

[68]) 

In November 2015 ARM, Cisco, Dell, Intel, Microsoft and Princeton University Edge Computing 

Laboratory founded the OpenFog Consortium. The purpose of this group is to assist with the 

implementation of fog computing in “advanced concepts in the digitised world” to alleviate issues 

from latency and bandwidth to the challenge of communication [69].  Two different architectures 

currently utilise Fog Computing in a game context, EdgeCloud and CloudFog. 

2.6.1 EDGECLOUD 

The authors of [70] propose the augmentation of existing cloud infrastructure with an EdgeCloud to 

improve on-demand gaming. An EdgeCloud can be argued to be Fog computing as network nodes, 

referred to as participating peers are local to the user and house specialised hardware. An example of 

a participating peer is a games console. With the millions of games consoles sold annually the 

argument is made that the service provided can be improved by including these within the 

architecture. Figure 2.9 details the architecture of the EdgeCloud which consists of a data centre, peers 

and a co-ordinator for assigning peers to clients. 
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Figure 2.9. The EdgeCloud Architecture (adapted from [70]) 

The EdgeCloud focuses on game streaming through remote access. A co-ordinator is used in this 

architecture to decide which clients are to be served by which peers. The peer that the client is 

connected to is given an application which it serves to the clients in the form of a video stream.   

This architecture focuses on how to meet the strict latency requirements of cloud gaming. The game 

itself is brought much closer to the client via their games console or another suitable node. Each 

suitable node (participating peer) will have specialized resources necessary for gaming. The client 

connects to the node, and a video stream of the game is transmitted to them.  

The results of this architecture show it to be an improvement over the currently-in-use cloud gaming 

architecture. Evaluating the EdgeCloud in [70], with the utilisation of peers, the EdgeCloud was able 

to serve roughly 90% of the connected population with an 80-millisecond latency in comparison to 

Amazon’s EC2 which was only able to serve 70% with the same latency. 

The problem with this architecture is within the participating peers itself. Each of these peers hosts all 

of a game’s data. With the wide variety of video games available this can become a problem as each 

peer can only hold a certain number of games. As well as this, by adding more games to the peer pool, 

there is potential to increase bandwidth usage as large files are transmitted across a network.  

2.6.2 CLOUDFOG  

Yuhua Lin and Haiying Shen authored two papers in 2015 both of which introduce a system known as 

CloudFog [71], [72]. This system proposes the use of supernodes which are close to the end users. 

These supernodes hold the responsibility of rendering game videos and streaming them to the clients. 
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The cloud still has a very important role in this system which is to handle the intensive computation 

of the virtual world’s new game state. From the cloud, updates are transmitted to the supernodes 

which then renders and streams video to the connected clients. This system also accounts for client 

nodes that may not be able to form connections with supernodes. In this case, the clients connect 

directly to the cloud. Figure 2.10 below details the CloudFog Architecture. 

 

Figure 2.10. The CloudFog Architecture as adapted from [72] 

CloudFog focuses on video streaming to the clients. Each client will connect to its local supernode and 

through this connection receive a game video stream. As seen in Figure 10, each client will provide 

input which is transmitted to the cloud, the cloud then updates each supernode on changes, and then 

each supernode sends game video to the clients connected to it. 

The gap filled by this research is similar to that of EdgeCloud in that it focuses on the reduction of 

latency in cloud gaming. With the introduction of extra servers closer to the end users, which have up-

to-date information on the state of the game world, there is less distance for the data to cover to be 

received by the client and therefore a lower latency. 

The results of this architecture have shown an increase in user coverage due to the added servers, a 

reduction in response latency as the data is much closer to the clients and a reduction in bandwidth 

consumption as supernodes are updated with the game state and video is streamed to the clients. 

The problem with this architecture lies within the supernodes. New hardware is added to a network 

which will already have underutilised nodes. Instead of adding new hardware, a similar approach can 

be taken to EdgeCloud by utilising specialised hardware (games consoles) already in existence. 
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2.6.3 EDGECLOUD VS CLOUDFOG  

With both of these architectures it can be seen that they are very similar: 

• Both focus on the reduction of latency in cloud gaming. 

• Both utilise nodes close to clients. 

• Both stream video from Fog nodes to clients. 

However, in some areas they are different: 

• EdgeCloud stores an application on its Fog node while CloudFog sends updates of game state 

to its Fog node. 

• EdgeCloud utilises existing hardware such as game consoles to become Fog nodes while Cloud 

Fog introduces new hardware to the network. 

With these similarities and differences, it can be argued that a combination of these two architectures 

would lead to a more beneficial system. With EdgeCloud the downloading of applications to 

participating peers can be potentially both time and bandwidth consuming. With CloudFog, the 

addition of new hardware to a network in which there is potentially a wide variety of under-utilised 

network nodes seems to be a waste. A combination of these two architectures would result in a 

system in which smaller data packets, i.e. only information updates instead of large application files, 

would be sent to the fog nodes. This combination would also employ underutilised nodes as its fog 

nodes in comparison to purchasing, setting up and maintaining new server nodes. 

The architecture proposed in this thesis is very similar to the combination of these architectures. By 

updating nodes close to the clients, information can be transmitted to the clients in a much shorter 

time in comparison to the information coming directly from the cloud. The nodes close to the clients 

will take the form of under-utilised network nodes, for example a games console that is on but not 

being used or even the router supplying the Wi-Fi connection. 

2.7 SAVING ENERGY 

The aim of this work is not to save energy but to improve a client’s QoE through the utilisation of 

under-utilised network nodes. However, it may be argued that client energy is saved using this 

architecture. A diagram from [73] details that with an increase in CPU Utilisation there is also an 

increase in power consumption. Figure 2.11 below shows the correlation. 
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Figure 2.11. CPU Utilisation to Power Consumption as found in [73] 

The area of green computing is still relatively new. The focus of the research found has been to utilise 

distributed resources to save energy. In [74] the role of computer virtualization to save energy is 

discussed. By replacing a standalone server with a virtual server which runs on a variety of computers, 

PC resources are used more efficiently. This paper discusses the challenges of virtualization as well as 

providing an example in NComputing [75]. NComputing is a desktop virtualisation solution provider in 

business from 2003. As PC’s have become more powerful over the years; applications begin to use 

less of the processing power of the machine. NComputing introduces additional hardware in the form 

of a small box through which each client can connect to a single machine. Many clients can be 

connected to one machine. Patil [74] also goes on to discuss other methods of saving energy in this 

paper including the user of a computer’s sleep and hibernate modes. 

Sarkar and Misra discuss the theoretical modelling of fog computing in [76]. An investigation compares 

energy consumption and service latency. In Cloud and Fog approaches it is found that as requests from 

the client to the cloud increase there is a close to linear increase in processing energy required. It is 

also claimed that, with Internet of Things applications, if around 25% of client requests require real-

time services then an improvement in energy consumption of 40.48% is observed in the fog computing 

architecture. 

Other articles of note which support the case for distributing load to save power are [77]–[79]. In [77] 

Cao, Zhu and Wu design and develop an “energy-aware scientific workflow scheduling algorithm to 

minimize energy consumption.” One step of the algorithm is to choose a best fit data center based on 

a variety of factors such as energy cost and time to complete workflow. Experimentation results had 

shown a reduced energy consumption, energy cost and CO2 emissions. In [78] a three-part 
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architecture that manages the sharing of resources in Mobile Cloud Computing. The simulation results 

of the proposed architecture have shown that it assists in reducing “handover delay, packet loss, 

average queuing delay and device lifetime. Energy is saved through the selection of a virtual machine 

based on which machine allows for the minimum amount of energy required for communication. In 

[79] Hassan et al address the issue of energy expenditure, which is a key issue faced by cloud providers, 

by proposing a “capacity-sharing mechanism in a federated cloud environment.” The overall goal of 

this mechanism was to maximize the social welfare of the cloud providers and reduce the energy cost. 

The model used in testing had shown that different cloud providers were motivated to cooperate 

within a federation based on their evaluation of profit and energy cost. 

2.7.1 GREEN GAMING 

The authors of [80] discuss cloud gaming from the perspective of green computing. The green features 

of gaming on the cloud are presented and these include easier software maintenance, no client 

compatibility issues and higher utilisation of hardware. A novel architecture is presented which 

improves upon mobile cloud gaming. The authors build upon the knowledge that as more 

sophisticated graphics rendering becomes available on mobile devices, this can be utilised to “reduce 

the transmission bandwidth of game images.” Figure 2.12 presents the system. 

 

Figure 2.12. A mobile cloud gaming system that uses layered coding  ([80]). 

This process of sending rendering commands to the client is very similar to previously discussed 

architectures in which graphics commands are transmitted from server to client. However as seen 

from Figure 2.12, enhancement layer information is also transmitted to the client. This is the layered 

coding of the system. The base layer render of the image, carried out on the client, combined with the 

enhancement layer information leads to a high-quality image displayed on the client device. The 

results of this layered coding are compared to the direct coding used in the cloud. The layered coding 

is seen to achieve a lower bit rate at a similar video quality in comparison to a direct coding approach. 
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2.8 SUMMARY 

The focus of this thesis is on the utilisation of distributed resources to improve the QoE of network 

aware games. The background research areas considered in this thesis are: Streaming Games, 

Distributed Environments, Distributed Management, Fog Computing and Energy Saving. 

A key trend with research focused on streaming game technologies is to consider mobile devices as a 

core client device even though these devices are much less capable than the latest games consoles. 

The game itself is not stored on the client but rather in the cloud. With its resources, the cloud can 

run the game, dealing with its processes and stream the game down to the mobile device. 

Improvements in mobile networks and the rise of 4G allows for faster streaming.  

Research into distributed systems provided us with an insight into architectures other than client-

server and peer-to-peer. The disadvantages of client server approaches have been identified, and it is 

evident that many systems incorporate multiple servers to overcome these disadvantages such as the 

potential for server overload which can occur if many players are within the same area in the virtual 

world. Other systems may not directly employ multiple servers, but use the concept of distributing 

resources over several nodes. Systems of note in this category are those which use micro clouds in 

mobile games with the micro clouds housing a section of the game world and that which uses the 

client’s machine to assist with AI calculations to improve the overall AI in a game. 

As distributed resources will be utilised to improve the overall QoE, some form of management of 

these resources is required. One possible solution to providing this control is via the use of agents. 

Agents can be used to inform the cloud that resources are required and to assist in bringing these 

resources to the user’s device. These resources can reside anywhere, from in the cloud itself, the local 

exchange or even a neighbour’s PC. Research has shown the many benefits of Agents and how they 

operate, and they appear to be a suitable solution in assisting with the distributed resources. 

QoS and QoE metrics are the predominant measurement mechanisms to see if there has been an 

improvement between old and new systems. In the proposed project, more of a focus will be placed 

on the QoS metrics as it can be argued that if a good QoS is provided then a good QoE should follow. 

Building on the process of utilising the cloud, another area of note is that of Fog Computing. The Fog 

is very similar to the cloud except for its location which is much closer to the end user. With a more 

local option to use for extra processing and storage, the major benefit is the lower transmission time 

from the Fog to the client. ‘Lag’ is at the forefront of an online gamer’s mind and the utilisation of the 

Fog can help improve the QoS provided to them and therefore improve their QoE. 
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Another area of note in this research is that of energy saving. While this is not the overall aim of this 

thesis it is important to keep this in mind as ‘Going Green’ is becoming more popular and becoming 

more of a necessity. 

Table 2.11 summarises the main research areas covered in this chapter. 

Table 2.11: Summary of research areas for this thesis. 

Research Relevant Models 

Streaming Games Mobile Cloud Gaming ([11], [25]) 

Games@Large ([26], [13]–[16], [16], [28]) 

Remote Visualisation ([29], [30]) 

Asymmetric Graphics Rendering ([31], [32], [33]) 

Distributed Environments Client Server Distribution ([35], [36]) 

Distributed Virtual Environments ([37], [38]) 

Mobile Games with Micro Clouds ([39]) 

AI Partitioning ([40]) 

Distributed 

Management 

Agents System Agent Research: Use of agents for resource transactions, 

categorisation of agents based on the distance they can travel 

([3], [37], [43]-[55]) 

Metrics Direct and Indirect Metrics, Responsiveness, Continuous 

Analytics, Improvement of Quality via Level of Detail 

([13], [52] -[66]) 

Fog Computing EdgeCloud ([70]) 

CloudFog ([71], [72]) 

Energy Saving Green Gaming ([73]-[76]) 

 

With the areas in Table 2.11 researched, we plan to maintain a game player’s quality of experience, 

regardless of which device is being utilised, through the use of a system of distributed game asset 

streaming and code execution. 

Streaming Games research proved the validity of an architecture which would be adaptable to the end 

user’s device as the systems could choose between video streaming and graphics streaming. Research 

into Distributed Environments has shown that the distribution of processing benefits the end user and 

it can be argued that by being able to access nodes more local to the client device, instead of adding 

additional hardware to the network, that the benefits will be seen without the cost of added 
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hardware. An adaptable, distributed environment requires management and the most suitable way 

to manage this environment is through the use of agents. Agents are best suited to monitoring the 

environment and making decisions based on the wide variety of metrics available. The architecture 

proposed in this thesis can be seen as a combination of both Cloud and Fog Computing. By utilising 

nodes local to the end user (Fog), information can be transmitted to the client much faster while the 

nodes further away (Cloud) can be relieved of some processing. It is not a goal of this work to save 

energy, however, the research into Energy Saving has shown that, with the reduction in utilisation of 

resources, there is a reduction in energy usage. 
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CHAPTER 3 ARCHITECTURE 
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3.1 OVERVIEW 

Within this chapter, an architecture is presented that can be implemented to improve a user’s QoS in 

playing an online game through the utilisation of distributed resources. Firstly, the overall architecture 

is detailed and discussed. Then a range of possible scenarios for client support is explored i.e. server 

assistance, local client assistance or self-adaptation. Finally, the nature of databases and architecture 

intelligence is explained along with events and the role of RPCs and the network and its effect on the 

architecture. 

3.2 INTRODUCTION 

QoS attributes such as FPS, and the CPU and GPU usages can be used as indicators of how well a 

system is doing and therefore should be monitored within an intelligent system that might adapt to 

the situation. The most important QoS measure, in a single player game, is arguably the FPS count. It 

can be seen that this is the most significant factor in providing a high QoS as it affects the regularity of 

the game [81] and it is a relatively straightforward attribute to measure. The proposed architecture 

takes into consideration the state of the client device, the network over which game data is 

transmitted, the server which supplies game data and its current state and the game itself. By 

considering all the available data, the architecture will be able to improve a user’s QoE by focusing on 

the QoS provided. The QoS can be enhanced by utilising resources that are potentially available on 

the server or another network node. A fail-safe is implemented in this architecture in the form of self-

adaptation in which the client will adapt to its current situation if there are no resources available 

elsewhere.  

Based on the relevant research areas such as Cloud and Fog Computing, and the QoS requirements of 

a client such as to maintain an FPS above a certain threshold i.e. the game must run above 30FPS at 

all times, the architecture comprises of adaptive software that distributes processing when the QoS 

provided falls. This architecture combines three different configurations that can be utilised to 

maintain a good QoS: Given good quality remote connections (Cloud Computing), the availability of 

local resources (Fog Computing), and when there are no network resources available (Self-

Adaptation). Cloud Computing is represented in the architectural diagrams by the server which can 

carry out processing for the client and transmit results to them from a distance. Fog Computing is 

represented by the network nodes which are close to the client and can also carry out processing tasks 

for the client. Cloud and Fog Computing are very similar, the only difference being a matter of distance. 

Self-Adaptation is contained within the client itself; this is the fail-safe of the architecture and executes 

only when there are no resources available from the network for assistance. This approach executes 

only when the others have failed and will attempt to maintain a good QoS. Self-Adaptation will remove 
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unnecessary objects from the game-world such as ambient AI e.g. fish in a lake. Objects are removed 

based on their priority. Higher priority objects can be removed but this will only occur if there is no 

other option. This process applies to both single-player and multi-player scenarios in which the priority 

of objects can change from one to the other. 

The three elements of this architecture are as follows: 

1. The Client: This comprises a game and the device that it runs on. Each game will have a 

different resource requirement and each device will have a different level of capability. 

2. The Network: This includes everything between the Client and the Server, from routers to 

exchanges and other clients and devices. 

3. The Server: This is very similar to the client in that it is also divided into the game (content and 

resource requirements) and the device (capability). 

This architecture requires a wide range of information to be able to improve a user’s QoE effectively. 

The game data, device data and network data are all values which are measured, such as frame rate, 

CPU usage and packet loss, with all being stored in a local database (DB) on each node. The data 

utilised by the architecture is explored further within the Databases and Intelligence sub-section. It is 

based on this stored data that decisions will be made that will lead to the improvement of a user’s 

QoE. 

The remainder of this chapter goes on to explain the architecture in detail. Firstly, it begins with a 

high-level explanation of the architecture and then moving on to an explanation of the possible 

scenarios that would be encountered by the architecture and how it would adapt to these scenarios. 

The chapter then moves on to explaining the DBs and Intelligence, Events and RPC’s and finally 

focusing on the Network and its effect on the Architecture. 

3.3 THE ARCHITECTURE 

Figure 3.1 shows the proposed architecture. The purpose of this architecture is to provide a client with 

a high QoS, regardless of client and network conditions, through the utilisation of distributed 

resources. The distributed resources are represented by Node 0 and Node X; these nodes can have 

resources available to be able to provide assistance to Node 1 and therefore deliver a high QoS. The 

three elements (the Client, Network and Server) are illustrated along with the DBs through which 

distribution and assistance decisions can be made by intelligence nodes located in all devices running 

the game. Elements of a basic Simple Network Management Protocol (SNMP) are at work within this 

architecture [82], [83]. In the same way, SNMP gathers information from a diverse range of systems 



44 
 

and acts upon that information, this architecture collects data from agent-like Remote Procedure Calls 

(RPCs) and stores it in local databases (DBs) upon which the local intelligence will act. The RPC allows 

a node to call a function on a remote node, for example, a client could send an RPC to the Server in 

the same way an Agent would be sent asking for assistance and this would cause the server to check 

its resource availability. 

 

Figure 3.1 The proposed architecture which combines Cloud assistance (represented by the server), 

with Fog Assistance (represented by Node X) and Self-Adaptation (occurs within Node 1 – Client) 

The server maintains the state of the game of all connected clients and will have data stored relating 

to the condition of the server and the network. The server’s intelligence, a component which can make 

a variety of decisions based on information fed to it from the DB, will decide whether to assist a node 

itself, pass it off to another more capable node or inform a client device that it will have to self-adapt. 

For example, the server receives an RPC from a client detailing a declining framerate. The server will 

then send an RPC to the client asking for its game and client data and from this it can deduce which 

game component from graphics, physics and AI is causing the decline. When the server has this data, 

it can then decide where distribution will take place based on the information within the server DB - 

the data stored within this is explained within the sub-chapter ‘Explanation of DBs and Intelligence. If 

the server has the available resources, it can take on the extra processing and assist the client. If this 
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is not possible, then the task can be passed to a network node (Node X in Figure 3.1) which can assist 

the client and if this is not possible then the client must adapt to its current situation. Node X 

represents local network nodes such as PCs, games consoles and other video game ready devices. 

The network covers all devices between the client and the server. Each device will have different 

capabilities and differing connection types and speeds. Network device data consisting of capability 

and connection data will feed into the DB on the server. The network device will send its capability 

data (CPU usage etc.) to the server and along with its connection status to the struggling client (round 

trip time and connection type). If the server does not have the available resources to provide 

assistance to a client requiring aid, then processing can be passed off to a node on the network which 

has the required resources and a reliable connection. 

Within the client, data relevant to the game, such as FPS, will feed into the Game DB. Simultaneously 

data relating to the client device, such as CPU percentage usage, will feed into the Device DB. Client 

decisions, made by the intelligence portion, include which element to ask for assistance with and 

which element to reduce if an RPC has been received relaying the message to self-adapt. All decisions 

are made based on data in the Game and Device DBs. 

From Figure 3.1 it can be seen that, via the network, a single client is connected to many network 

nodes. These network nodes encompass everything, from the server supplying game data to the local 

network exchange as well as devices local to the user. This proposed architecture combines the Cloud 

with the Fog and an added form of assistance, dubbed Self-Adaptation, created for this architecture. 

The Cloud element of this architecture takes the form of all nodes that are a large distance away from 

the client device, represented by Node 0 – Server within Figure 3.1. The Fog element takes the form 

of all nodes that are local to the client, for example, devices in the same building, nearby building or 

local town. The Fog is very similar to the Cloud with a difference being distance as devices that can 

assist with processing are found closer to the client device. The Self-Adaptation element is contained 

within the client itself and is represented by the Intelligence node within Node 1 – Client in Figure 3.1. 

If all else fails with regards to acquiring assistance from other sources, then the client can adapt to 

help maintain a good QoS. This element will begin executing if a signal is received notifying the client 

that no assistance can be provided. The Self-Adaptation will then begin to reduce non-essential game 

elements, such as the number of particles within a particle effect, which will have a positive effect on 

the QoS and possibly the QoE had by the user. 
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3.4 DATABASES AND INTELLIGENCE 

In this section, there is a discussion of the role of the databases and the intelligent components found 

in each network node. The role of the databases is to store information about the device itself, the 

video game and the network. The role of the intelligence is more complex in that it must make 

decisions based on the information within the database as well as the information it receives from 

outside sources such as a server or other node. 

The databases store a lot of information relevant to the architecture. The table below summarises the 

data required and where it is stored. 

Table 3.1. The databases and information required for this Architecture:  

Client/Network Node Server 

Game Device Network Device/Network 

1. FPS 

2. Current Level of 

Detail (LOD) 

3. Resource 

Requirement of 

Tasks 

4. Number of objects 

on screen (AI, 

Physics, Graphics) 

5. Priority of on-

screen objects 

1. CPU usage 

2. GPU usage 

3. RAM usage 

4. Device Type 

5. Receiving/Providing 

Assistance 

1. Latency from server 

2. Packet Loss from 

server 

3. Connection Type 

4. Latency from device 

5. Packet Loss from 

device 

1. CPU usage 

2. GPU usage 

3. RAM usage 

4. Number of devices 

connected 

 

Each of these database entries are explained below. The values of each will determine which game 

element from AI, Physics and Graphics gets processed and where. 

Within the Game section on the Client/Network Node: 

1. FPS: The frames per second count that the game is running at. If this value falls below a certain 

threshold then some form of assistance is required.  
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2. Current LOD: A game utilises LOD techniques to improve or reduce the quality of all objects. 

A lower LOD will provide a higher FPS count as objects become more pixelated in appearance 

and therefore take less time to draw.  

3. Resource Requirement of Tasks: Each task, for example an explosion moving many objects, in 

a game has a resource requirement; if the resources to run the task are not available then the 

task will be run elsewhere. For example, a task could require 10% of the CPU processing power 

and 20% of the GPU. 

4. Number of Objects on screen: The number of objects of each element on the computer screen.  

5. Priority of on-screen objects: Each object or group of objects on-screen will have a priority. 

Objects that are core to the gameplay, such as a non-player character that is crucial for 

furthering the game, will have a high priority whereas ambient AI, such as fish in a pond or a 

flock of birds, will be a low priority.  

Within the Device section of the Client/Network Node: 

1. CPU Usage: The percentage of CPU power in use, if this value increases too much, then the 

computer will slow, affecting game performance.  

2. GPU Usage: The percentage of GPU power in use, if this value increases too much, then the 

computer will slow affecting in-game performance.  

3. RAM Usage: The amount of RAM in use. The less RAM available the slower the computer is.  

4. Device Type: The devices on the network will vary, knowing what they are will give some 

indication to their abilities and therefore it can be determined if they can assist or not. Highly 

capable PCs can aid whereas mobile devices and tablets cannot.  

5. Receiving/Providing Assistance: This is a note on the device which states whether it is receiving 

or providing assistance or if it is available. This will allow the server to determine whether the 

device can be used to assist another. 

 

Within the Network section of the Client/Network Node: 

1. Latency from server: This value is the time it takes for a signal to be sent from the server. If 

this value is too high and assistance is required, then it will be necessary to distribute 

processing to somewhere other than the server or for local changes to occur. 

2. Packet Loss from server: This is the rate at which data packets are transmitted from the server 

but do not reach the destination. An experiment in which volunteers played a first-person 



48 
 

shooter over a varied network conditions found that a higher latency (around 200ms) and a 

lossless connection was preferred over a lower latency with just 0.75% packet loss [56].  

3. Connection Type: Clients can connect to the network through either a 3G/4G connection 

wireless connection, a wireless connection in-house to a hub or via a wired connection.  

4. Latency from device: This is similar to Latency from server. In this case, this is the latency from 

an assisting node to a client that requires assistance. If this value is too high, then it will be 

necessary to distribute processing to somewhere other than this device. 

5. Packet Loss from device: This is similar to Packet Loss from server. In this case, this is the 

packet loss from an assisting node to a client that requires assistance. If this value is too high, 

then it will be necessary to distribute processing to somewhere other than this device. 

Within the Device/Network section of the Server: 

1. CPU usage, GPU Usage, RAM Usage: These are the same as the headings under the Device of 

the Client/Network Node. 

2. Number of Devices Connected: This is the total number of devices connected to the server. 

This value can help determine whether there are other nodes available to potentially provide 

assistance.  

These values can vary, some only slightly as there is a limited number of entries such as the Priority of 

on-screen objects can be either High or Low, others such as FPS can vary greatly. Depending on how 

much they deviate from an optimum value, the intelligence will act. These values will affect what is 

distributed and where. The most important of these values is the FPS value, once this begins to fall 

then action will be taken, also if it increases dramatically with a change in other values, then action 

will be taken. Regardless of if there is distribution occurring or not the DB will be monitored frequently 

by the intelligence. 

With this architecture, the first intelligence to act is the clients. The client will make a decision as to 

whether it needs assistance or not. The first metric to be checked is the FPS. If this begins to drop over 

a set period of time, then action needs to be taken. Likewise, if there is an increase then action may 

need to be taken. If the FPS drops then a change in the number of objects on the screen is more than 

likely the cause, this can be checked as it is a metric stored in the DB. The priority of these objects will 

then also be checked, if they are of a very high priority then ideally they should be kept to the local 

device and if not then they can be cleared for distribution or reduction in self-adaptation. A decision 

tree for the client/network node intelligence is detailed in Figure 3.2. 
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Figure 3.2. The decision tree of the client/network node intelligence. 

All values in Table 3.1, underneath the heading of Client/Network Node, fit into the above decision 

tree. The first measure being looked at in each cycle of the intelligence, as it checks the database 

periodically, is the current FPS. Regardless of whether the FPS is above a certain threshold or below, 

decision making will progress through the tree. If the FPS is low, then it needs to be determined if this 

is caused by assisting another machine. If assistance is being provided, then this must be reduced to 

facilitate the maintenance of a higher QoS. If assistance is not being provided then the database must 

be examined to determine which element between AI, Physics and Graphics has the highest number 

of objects on screen and being processed. For each of these three in-game elements, there can be 

several sub-elements. The priority of this group is then checked, if it is a high priority, then it would 

be ideal to have this group processed locally and so the next highest number of objects is checked 

until a low priority is found that has a high resource requirement. If a low priority group is found, then 

an RPC is sent to the server asking for assistance with this group. If no low priority group is found that 

has a high impact on resources, then the group with the highest number of objects becomes the topic 

of the RPS sent to the server.  

The RPC that is sent to the server will contain the following information: 

• Whether it is an AI, Physics or Graphics element. 

• A more specific description of what sub-element it is, such as its name. For example, AI Birds 

which could be a flock of birds in-game. 
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• The number of objects within the sub-element. For example, 5 objects contained within AI 

Birds. 

• The resource requirement of the task. 

Once this RPC is sent to the server, the client may or may not receive an RPC in return informing it to 

self-adapt. If this RPC is not received, then the client will be receiving assistance either from the server 

or another network node and can continue monitoring its database. If this RPC is received, then the 

sub-element that was chosen by the client will begin to be reduced. After this, there is a check on the 

FPS and if it increases then the client can continue monitoring its database. If not, then the client will 

continue to reduce the same element to a point where the core of it remains. If there is still no change 

having reduced a sub-element, then the client will move on to reduce the next sub-element which has 

both high volume and a high resource impact. If this reduction continues until only a fraction of the 

objects remain then the current LOD of the game will be examined. If it is high, then it can be lowered 

until there is a positive change in the current FPS. If the LOD is reduced to its lowest possible value, 

then game sub-elements will begin to be removed until the FPS improves. These will be removed on 

a low priority basis. 

If the FPS within the database is found to be high, then it must be noted if there are external factors 

causing this. The DB is checked to see if the client is currently receiving assistance. If not then the 

client can continue monitoring itself, if assistance is being received then the current latency and packet 

loss between the client and the assisting node must be checked. If either of latency or packet loss are 

high, then the assistance must be stopped as these can prevent data arriving at the destination which 

can potentially lead to a decrease in processing and eventual increase in the current FPS. The server 

will receive a message from the client asking for help from another node as the network condition 

between the current node and itself is too poor to transmit data across. 

Another step attached to this decision tree is if an RPC is received that asks the client to inform the 

server of its current situation. This branch focuses on the providing assistance ability of the client. The 

end user can state whether they would like to provide assistance if asked, they may want to for some 

form of reward and may not if they are within a competitive gaming environment in which carrying 

out additional processing may affect their performance. If they choose not to assist, then the client 

will continue its monitoring and if they wish to assist, the client will update the server on its current 

information. The server will then make a decision as to whether the client is required or not. In this 

case, if an RPC is not returned then the client will continue monitoring itself, however, if an RPC is 

returned then the client will be required to assist another. Once this is confirmed, the network quality 

between the assisting node and struggling node will need to be determined. If both the latency and 

packet loss are low, then data transmission between the two nodes can begin. Once this occurs, the 
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assisting node will continue to monitor its situation and can cancel its provision of assistance if its FPS 

falls. If the network quality between the assisting and struggling node is poor then the assisting node 

will inform the server that it cannot assist, and the server will find another. 

This decision tree allows the client to adapt appropriately to dynamic situations. More intelligence can 

be found operating on the server. A decision tree for the server intelligence is detailed in Figure 3.3. 

 

 
 

Figure 3.3. The decision tree of the server intelligence. 

The server intelligence begins when an RPC is received from the client asking for assistance. The first 

step taken here is to compare the server’s available resources against the resources required by the 

client. If the server has the available resources, then it will begin transmitting game data to the client 

and then monitor its resource availability. If the required resources are not available, then the server 

will look to another device on the network to assist the struggling client. If there are no other devices 

on the network besides the server and the struggling client, then the server will send an RPC to the 

client informing it to begin its self-adaptation process. If there are other nodes on the network, then 

the server will RPC them all asking for their resource availability information, and once it receives all 

of this information, then it will compare the values of each network node against the struggling client’s 

requirements. If there are no nodes suitable for the task, then the server will RPC the struggling client 

to self-adapt. If there is only one node that can assist, then the server will inform the node to check 

the connection between itself and the struggling client. If the connection is good, then the node can 
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assist and if the connection is poor then the server will be told by the node that it cannot assist, and 

the server will then RPC the client informing it to self-adapt. If there is more than one node that is 

capable of assisting and at least one has a good quality connection with the struggling client, then the 

node with the best connection will be chosen to assist. There is a possibility that even though many 

nodes can assist, the network is too poor to transmit data over, if this is the case, then the server will 

RPC the client to begin self-adaptation. 

The decision tree’s in Figures 3.2 and 3.3 show an adaptable architecture. If any of the conditions 

change at any time, for example, an assisting nodes FPS drops then the node will halt all assistance 

provision. The struggling client that just had its assistance cut off will notice a drop in its own FPS 

through which it continues along its series of decisions to then RPC the server for assistance. From 

here the server will either help the client itself, find another suitable candidate node or RPC the client 

back to begin self-adaptation. 

3.5 CLIENT SCENARIOS 

 As explained previously in this chapter, this architecture combines cloud assistance, fog assistance 

and self-adaptation to provide a high QoS, which in turn will help provide a high QoE. With these three 

approaches, each client can have their QoS improved three different ways: 

1. Assisted by the server (Cloud) 

2. Assisted by a local network node (Fog) 

3. Limited access to network resources or high priority processing is required (Self-Adapt) 

The first and second of these are similar, with the only difference being which node is assisting the 

client. Firstly, it will be determined if the server can aid, if not then a local node will be messaged for 

assistance and then finally if not then self-adaptation will begin. 

The first of these architectural scenarios, in which the server assists the client, is shown in Figure 3.4 

with components explained in Table 3.2. 
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Figure 3.4. The Server Assisting the Client 

Table 3.2. Items in Figure 3.4 explained 

Item Explanation 

Node 1 – Client: 

Game World 

Player actions, such as shooting, cause events within the game world. Each 

event will have a variety of Graphics, AI and Physics jobs. Each job can then be 

split into many tasks. For example, a Physics job can have a task to roll rocks 

down a hill and another task cause a sheet to move in response to wind. Data 

from the Game World such as the number of objects on screen feeds into the 

DB. 

Node 1 – Client: 

DB 

Data from the Game, Client Device and Network feed into here. 

Node 1 – Client: 

Intelligence 

This component reads data from the DB and makes decisions based on that 

data. The decision here being to ask for assistance with a group of jobs.  

RPC 1 A message for the Server asking for assistance with an element from Graphics, 

AI or Physics.  

Node 0 – 

Server: 

Intelligence 

This component will receive RPCs asking for assistance. It will check its 

resource availability, found in the DB on the Server, against the needs of the 

client and find it can assist. The relevant job is then executed in the game 

world. 

RPC 2 Contains information relevant to the element which Node 1 – Client is 

struggling with. For example, positional data of game objects. This is passed 

directly into the Game World of the client. 
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The starting point of this architecture is when the client begins to struggle under the current load. As 

the end user continues to move their in-game character around the game world, the DB on the client 

is updated. Data in this DB includes the current FPS, GPU percentage usage and CPU percentage usage. 

This data is accessed by the intelligence component (Figure 3.4) on the client device and it is here that 

critical decisions, with regards to the end users QoE, are made. If the intelligence deems that the client 

is struggling and requires assistance, then a message in the form of an RPC is transmitted to the server. 

This RPC is received by the server intelligence and informs it that the transmitting client requires 

assistance and what it requires assistance with for example a CPU intensive task such as AI pathfinding. 

This RPC will trigger the server to compare its resource availability with the needs of the client, and if 

there are the resources available then it will begin data transmission. From the server, the relevant 

data is transmitted via RPC’s along the network and to the struggling client. For example, they can 

contain positional data of in-game AI objects and a message telling the client to stop local processing 

of those AI objects. As the client is now relieved of some processing, it will check its DB and compare 

the values against minimum QoS values. Provided the values within the DB are higher than the 

minimum values then no further assistance will be asked for. 

The second of the scenarios, in which a local network node such as another client provides assistance, 

is detailed in Figure 3.5 with Figure items explained in Table 3.3. 
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Figure 3.5. A local network node assisting the Client 

Table 3.3. Items in Figure 3.5 explained 

Item Explanation 

RPC 1 The local network node receives an RPC informing it to begin assisting a client 

with a task. This node will have been chosen due to its best fit in terms of 

resources available and connection health. 

Node X: 

Intelligence 

This component will receive the RPC to assist and begin execution of the 

required task within the Game World. Once this begins the Intelligence will 

receive the game data and pack it into an RPC. 

Node X: Game 

World 

The task will be executed here and then the necessary game data will be sent 

to the intelligence. 

RPC 2 Contains Information relevant to the element which Node 1 – Client is 

struggling with. For example, positional data of game objects. This information 

is passed directly into the Game World of the client. 
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This scenario will only occur if the first scenario, where the server assists the client, is not feasible. The 

first scenario may not be feasible if, for example, the condition of the connection between the client 

and the server is poor or the server may not have the available resources to assist the client with their 

task. Classifying a poor connection depends on the type of game being played. For example, a simple 

turn based game will not require the same network speeds as that of a competitive first person 

shooter as data is not required instantly.  So, as in the first scenario, the client messages the server 

asking for assistance and the server checks to see if it has the resources available and that the network 

is stable. If for any reason there are no resources, or the network is unstable then this scenario begins. 

The server will send an RPC out to all network nodes asking for information about them such as their 

current CPU and GPU usage, their current FPS if they are a client playing a game and their latency and 

packet loss to the struggling client. This information is then sent back to the server from each node. 

From this information, the server will be able to determine which network node is the best fit for 

assisting the struggling client. The struggling client will want assistance from a node that is close, has 

a good connection and low CPU and GPU usage values. At the same time, if the node assisting is 

another game player then the end user will only want to assist a client whose processing needs will 

not affect their experience. Bearing this in mind, only game clients that inform the server that they 

allow their resources to be utilised by others will be considered. 

The third of the scenarios, Self-Adaptation, is detailed in Figure 3.6 with Figure items explained in 

Table 3.4. 

 

Figure 3.6. Self-Adaptation occurs within the Client 
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Table 3.4. Items in Figure 3.6 explained 

Item Explanation 

RPC This is a message from the Server telling the Client to begin Self Adaptation. 

This will be because there are no resources available on the network to assist. 

Node 1 – Client: 

Intelligence 

This component will receive the RPC and look at the data available in the DB to 

see which element it can begin to reduce in number based on the number of 

each element and its priority. It will then reduce this element within the Game 

World. The Intelligence will closely monitor the DB, when an improvement in 

QoS is seen then the Self-Adaptation process will stop. 

Node 1 – Client: 

Game World 

Player actions such as shooting cause events within the game world. Each 

event can have a variety of Graphics, AI and Physics jobs. Each job can then be 

split into many tasks. Data from the Game World such as the number of 

objects on screen feeds into the DB. The Game World will be affected as 

elements are removed in an attempt to improve the current QoE. This will be 

reflected in the data entered into the DB. 

Node 1 – Client: 

DB 

Data from the Game, Client Device and Network feed into here. 

 

This scenario is a fail-safe in that if the server cannot assist and neither can any other network node 

then the client must carry out its own improvements. This scenario begins when the server receives 

all network node data and finds that there are no nodes available to provide assistance, another case 

may be that the condition of the client’s connection is so poor that to provide assistance would be a 

waste of resources. An RPC will be received by the intelligence component on the client informing it 

that it must adapt to its current situation itself. Based on the data received from the DB, the 

intelligence component will make a decision to reduce a game element that is causing it to struggle. 

For example, the DB could show that there is a very high concentration of particles in the current 

scene, these could be from a fire animation. This information could be backed up by a very high GPU 

usage value and low FPS. With this data, it would be decided to begin reducing the current number of 

particles within the fire animation while monitoring the FPS and GPU usage. By reducing the particles 

in the particle effect and monitoring the DB, the intelligence will be able to find an optimum number 

of particles that can remain in the game world and still have a high FPS and low GPU usage. Removing 

the fire animation from the scene completely would see a very sudden improvement in values. 

However, this would then take away from the immersion aspect of the game [84]. By simply reducing 

the number of particles, the game element remains, and the FPS increases and the immersion of the 
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game is not affected as much. Other elements that can be reduced include the number of physics 

objects or artificial intelligence (AI) objects in the scene. For example, as shown in Figure 3.7, a building 

that is collapsing can have fewer objects falling as some can be grouped together or a flock of birds in 

the background, which are not affecting gameplay, can be reduced in number. 

 

Figure 3.7. The grouping of building objects and reduction in a flock of birds due to Self-Adaptation 

With these three scenarios (Server Assistance, Client Assistance and Self-Adaptation) there is always 

a way for the client device to improve upon the QoS if it begins to fall. The server that provides game 

data is the first node to provide assistance. If this is unavailable for any reason, then all available 

network nodes are examined for the best fit for the client and finally, if there are no other network 

nodes available then the client itself will adapt to its situation through the reduction of in-game 

elements. 

3.6 EVENTS AND RPCS 

Each video game can be broken down into core tasks that ultimately occur due to the actions of the 

end user. Figure 3.8 shows the breakdown of these actions into eventual tasks. 

 

Figure 3.8. The breakdown of a game into many tasks. 

As a game is running, the player will execute actions through pressing a button. This button press can 

cause an event such as the destruction of a building. This event can then go on to run any number of 
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AI, Physics and Graphics Jobs. For example, AI characters running away, Graphics animations in the 

form of fires and Physics in the form of parts of the building falling. Each job is made up of many tasks. 

For example, the AI running away will need to run to a specific location and not visit a previous one. 

Other AI could be characters running towards the building. Many graphics tasks could be multiple fire 

animations as well as water animations. Many physics tasks would be separate parts of the building 

collapsing at different times. Each of these tasks will have a priority aswell as a resource requirement. 

It is with this requirement that it can be determined whether a task will be executed locally, on the 

server or elsewhere on the network. The priority of the task can determine whether the task is run at 

full capacity on the client device, distributed via the network or the client can self-adapt in which the 

number of objects can be reduced. 

Detailed on the Architecture Figures (Figures 3.1, 3.4, 3.5, 3.6) are RPCs. The RPCs are similar to agents 

as they carry information within this architecture and execute it. The RPC from a client to a server will 

carry information either asking for assistance and for which problem or informing the server of its 

resource availability. The RPC from a server to a client can be a message saying to self-adapt or game 

data to assist with processing on the client’s issue. Similarly, the client to client RPC will be game data 

such as object position being transmitted from one client to another. 

3.7 THE NETWORK AND ITS EFFECT 

Even though there have been vast improvements made to network infrastructure, there are still 

unreliable areas and complications that can occur. The three metrics considered in this architecture 

are the Latency, Packet Loss Percentage and the Connection Type. All three can greatly affect the 

network. The Latency is the time data takes to get from one location to another, if this is too high then 

data is taking too long to be received and processed by the destination device. The Packet Loss 

Percentage is the percentage of data packets dropped between the transmission point and the 

destination. If this is too high, then no data is being received to be processed. With Latency and Packet 

Loss, if either of these is high then there will not be an accurate read on the FPS of the client device if 

processing is being distributed. If data is taking too long to be received or not being received at all 

then little or no processing is occurring at the destination. If less data is processed, then FPS will be 

high as only some local processing will be taking place. This is a false positive as objects on screen that 

should be performing some action are not, causing a reduction in the immersion of the game and 

possible reduction in the QoE provided. Therefore, while distribution is taking place, the Latency and 

Packet Loss must be monitored closely. The connection type comes into focus more when looking for 

assistance, a device may be performing well, but this could be over a mobile network which could run 

out of data at any time or drop signal completely.  
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3.8 SUMMARY 

This chapter has discussed the proposed architecture that will aim to improve the QoE of an end user 

by focusing on the QoS provided. The analysis of techniques currently in use, shown in chapter two, 

have shown that each of the Cloud and the Fog have their benefits and drawbacks. By combining the 

cloud and fog approaches along with a fail-safe in the form of self-adaptation, an architecture has 

been created that will help to provide a high QoS which in turn will provide a high QoE for the end 

user. In this architecture chapter, three client scenarios are explored and show that whatever the 

situation of all components, the architecture will adapt to benefit the client. 
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CHAPTER 4 EXPERIMENTAL METHOD AND SYSTEM SETUP 
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4.1 OVERVIEW 

This chapter presents the method and system setup designed to test the architecture proposed in 

Chapter 3. There is a focus on the decision-making ability of the architecture. The decisions made 

within the Architecture are: which game element (AI, Graphics, Physics) to ask for assistance with and 

which network node will assist which client based on a wide variety of metrics such as device type, 

capability and connection condition. 

4.2 INTRODUCTION 

In Chapter 3 an architecture was proposed that intends to deliver a high QoS for an end user. A high 

QoS can be supplied via the utilisation of distributed resources. As technology improves, in relation to 

both hardware and software, and the number of devices connected to a network increases, then there 

is an increased amount of resources available. Instead of adding additional resources to an already 

highly resourced network as some research suggests [39], this architecture utilises the resources 

already available. This distributed architecture can find available resources in the game server which 

can be providing game content or on other nodes discovered along the network such as at an exchange 

local to the end user or on another end user’s device. The client will react to its current situation, if 

the need arises, and will inform the server of its requirement for assistance. The server can provide 

assistance, or it can instruct another network node to assist. This architecture also contains a fail-safe 

mechanism which is required due to the unpredictable nature of a computing environment. 

Within Chapter 3, three scenarios were identified, namely: 

1. The client is assisted by the server. 

2. The client is assisted by a local network node.  

3. The client can self-adapt. 

This chapter focuses on developing these scenarios into experiments and explaining the findings. 

Firstly, Section 4.3 describes a paper based illustration of the decision-making process. The decisions 

illustrated here are the client choosing which element to ask for assistance with and the decisions 

made by the server to improve a client’s low QoS. Section 4.4 describes the design of the Distribution 

experiments of Section 4.5 and the Self-Adaptation experiments of Section 4.6. As seen from the 

above list, the client can receive assistance from either the server or another network node. Section 

4.5 explores the improvement in QoS of a client through assistance from a node that has the resources 

available. The Self-Adaptation experimental scenario in Section 4.6 shows how Self-Adaptation will 

improve the QoS when all other avenues are exhausted. 
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As explained in Chapter 3, the most important measure in the architecture is the FPS as it can be seen 

to be the most significant factor in providing a high QoS. Therefore, the focus of the experiments 

within this chapter is to provide a high FPS for the end user. 

4.3 DECISION-MAKING ILLUSTRATION 

The core of the proposed architecture is the decision-making processes that it follows were both the 

client and the server have decisions to make. For example, the client needs to decide which game 

element to ask the server for assistance with, or the server has to determine whether it can assist a 

struggling client or not. 

As highlighted in Section 3.4 of Chapter 3, there is a decision tree for each of the client and the server. 

This section details experiments that show the decision-making ability of this architecture for both the 

client and the server. 

4.3.1 CLIENT DECISION: WHICH ELEMENT TO ASK FOR ASSISTANCE WITH 

The first illustration demonstrates how a client decides which element to ask for assistance with 

between AI, Physics and Graphics. Each of these elements affects the client device in different ways, 

and therefore different amounts of each are required to cause a client to struggle with its 

performance. For example, a client may be able to handle 1300 AI objects navigating throughout a 

game world before it begins to show signs of struggling performance. The same client may begin to 

struggle when the total number of physics objects increases beyond 1800 objects, and finally, it may 

take 40,000 particles in particle effects to cause the same client to show poor performance. Clients 

with different capabilities will be able to run different amounts of these elements. Therefore, the 

client must be able to determine which of the three is causing the drop in performance. Some 

benchmark software can be run on the client before playing a game, with this the client will be able 

to determine how it performs when running high numbers of these elements. Once benchmarking is 

complete the client can store the amounts it could run and compare with these whenever the 

performance falls when playing the game. 

Figure 4.1 is adapted from Figure 3.4 found in the Architecture Chapter. It details the part of the 

decision tree that this illustration focuses on which is how a client would decide which element to ask 

for assistance with out of the three focused in this thesis: AI, Physics and Graphics. The remainder of 

Figure 3.4 focuses on whether the client receives an RPC to assist another node or if an RPC is received 

to begin the Self-Adaptation feature of the Architecture. 
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Figure 4.1. Deciding which element to ask for assistance with between AI, Physics and Graphics. 

The purpose of this illustration is to show the client deciding which game element to ask for assistance 

with based on Figure 4.1. To begin with, a low FPS will have been detected by the client. Firstly, the 

client will check if they are providing assistance to another as this can lower the QoS. If they are aiding 

another, then this will be stopped, and the FPS checked again. If the FPS is low and they are not 

assisting then the element, between AI, Physics and Graphics, with the highest number of objects and 

lowest priority will be selected as the element to be processed elsewhere. If there is a case where all 

elements are of a high priority within the current game scene, then the one chosen is that which has 

the highest number of objects as it will have the largest impact on QoS. Once an element has been 

chosen, then an RPC will be sent to the server asking for assistance. If an RPC is not received in return 

informing the client to self-adapt, then it can continue monitoring its FPS. It must be kept in mind that, 

between these three game aspects, that there will be a ratio involved as the number of particles within 

a particle effect will be far greater than the number of AI objects within an AI task. The ratio observed 

for this illustration is 1 AI object, to 1 Physics object to 20 particles. In a real-world scenario, it would 

be ideal, before playing a game, for a client to be tested to find its ratio of AI : Physics : Graphics. This 

ratio can then be used to find which element has the highest number of objects and can be processed 

elsewhere on the network. Table 4.1 show the results of this illustration. 

 

 

 

 



65 
 

Table 4.1. The results in which a client decides which element to reduce based on varying object 

counts and priorities. 

Client AI Object 

Count 

AI 

Priority 

Physics 

Object 

Count 

Physics 

Priority 

Graphics 

Particle 

Count 

Graphics 

Priority 

Element to 

distribute 

1 1200 Low 500 High 20,000 High AI 

2 200 High 1500 Low 20,000 High Physics 

3 200 High 500 High 60,000 Low Graphics 

4 1000 Low 800 Low 20,000 High AI 

5 800 Low 1000 Low 20,000 High Physics 

6 600 High 800 Low 60,000 Low Graphics 

7 1000 High 1500 High 20,000 High Physics 

8 1000 Low 2000 Low 20,000 Low Physics 

 

The results in Table 4.1 show which game element the client would ask for assistance with based on 

object count and priority. The values for the object count are based on empirical testing carried out 

during research. A ratio of 1:1:20 was observed. An object count would be considered to be the highest 

if it was above the ratio. The priority of the elements varies from test to test as there is a variety of 

each element in games today with each having a different effect on overall gameplay. For example, a 

high priority AI could be the enemy shooting back at your character while a low priority AI could be a 

flock of birds in the sky. A set of decisions can be observed in these results: 

1. If there is a high number of low priority elements, then ask for assistance with this element. 

2. If there is more than one low priority element, then choose the element with the most objects. 

3. If all elements have a high priority then, to have the largest impact on QoE, the element with 

the largest number of objects must be chosen. This decision will be made based on the ratio 

decided. 

By asking for assistance with the element with the highest number of objects and lowest priority then 

the client will experience the best change it can. The purpose of this illustration was to show which 

element a client would choose to be assisted with based on two variables: the object count and the 

priority. 
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4.3.2 SERVER DECISION: MULTIPLE CLIENTS CONNECTED 

The second illustration details the decision-making ability of the server. Many clients can be connected 

to the server with some requiring assistance, some able to provide assistance and others that are able 

to maintain a high QoS without receiving or providing assistance. 

A network is comprised of a dynamically varying number of devices with a range of specifications. Each 

device may be considered a node, and each node may require assistance, may be able to provide it or 

may be on the borderline of requiring it in which case they can be more closely monitored. 

Figure 4.2 is also found in Chapter 3 as Figure 3.3. It details the decision-making process of the server 

within this Architecture and is the focus of this Server Decision Illustration. 

 

Figure 4.2. The decision tree of the server intelligence. 

The server monitors communication from the client agents and decides how to best allocate resources 

to improve the client QoS. The server needs to decide where a client will receive assistance from or if 

the client must adapt to its current situation. This decision is made based on data from the nodes such 

as its current FPS, CPU and GPU usage, latency and packet loss percentage to the server and the type 

of device. 

The first level of the decision made is based on the FPS of the device as this will determine whether a 

device will be able to provide assistance or not. A device is marked as being able to assist if its FPS is 

above 45 FPS, this value has been chosen as a midway point between the lowest expected FPS of 



67 
 

games today which is 30 FPS and the sought after 60 FPS. If the FPS is lower than this, then the device 

will not be considered as its own QoS comes first. If this measure is met, then the remaining data 

collected can be compared to the needs of the client. 

The next values measured on the nodes that can assist are their CPU and GPU usage values. If one of 

these values is less than 40% usage, then this node will be marked as being able to provide assistance 

with this type of processes. Based on experimental testing the 40% boundary usage was chosen, this 

could potentially change in a real-world scenario. If a node has 30% usage on its GPU and 60% usage 

on its CPU, then the node is marked as being able to aid with GPU processes. A node can aid with both 

types of processes (CPU and GPU processes) if both usage values are above 40% then the node will no 

longer be marked as being able to help. For the purpose of this paper-based illustration, a node will 

need help with CPU or GPU processes if either components percentage usage is above 70%, this is an 

example percentage and could potentially change in a real-world scenario. 

If the device requiring assistance has a good connection and the server has enough resources 

available, then the server can help. In this illustration, a good connection is considered as having less 

than 100ms latency and less than 2% packet loss as testing found this to be so. The boundary values 

for latency and packet loss have been chosen as examples; these would be subject to change based 

on game type i.e. a first-person shooter will require lower boundary values in comparison to a turn-

based card game. If the server is unable to help, then a network node with resources available can 

assist. However, if the connection is poor then the device must help itself as, regardless of resource 

availability, the results of calculations must arrive quickly. 

Device type is the least important regarding this experiment; it is included as the variety of devices 

able to play high-quality games is increasing. In this experiment, a device can be a PC, Laptop or 

Mobile. This variable only comes into play when finding nodes that can potentially aid a client. If a 

mobile is a network node found to be having the necessary resources to be able to provide assistance, 

it will not be used to provide assistance as a mobile will more than likely not have the same idle 

amount of CPU and GPU power as a laptop or PC. Other issues with mobile devices include battery 

power and connection reliability. 

Table 4.2 shows the metrics of six example nodes connected to the server which have transmitted an 

RPC asking for assistance. 
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Table 4.2. The metrics of the six nodes connected to the server which are in need of assistance in an 

illustration to show the decision-making process of the server. 

Node FPS CPU % GPU % Latency to 

Server 

Packet loss 

% to server 

Device 

Type 

1 15 95 95 60 0.2 PC 

2 25 85 85 200 3 PC 

3 20 90 90 75 0.1 Laptop 

4 23 88 65 50 0.5 PC 

5 25 65 90 35 0.3 PC 

6 19 90 90 70 0.3 Laptop 

 

Going back and examining Figure 4.2, it can be seen that the next step in this process is to contact 

other nodes to find out their current resource availability and to determine whether they can assist 

those in need. Table 4.3 below provides example data of four nodes which have the possibility of 

providing assistance. 

Table 4.3. The metrics of the four nodes which the server was able to contact with regards to 

potentially assisting those in need. 

Node FPS CPU % GPU % Latency to 

Server 

Packet loss 

% to server 

Device 

Type 

7 75 20 20 45 0.4 PC 

8 65 20 45 85 0.1 Laptop 

9 70 45 20 90 0.1 Laptop 

10 46 39 39 70 0.2 Mobile 

 

The values found in Tables 4.2 and 4.3 show some of the possible variation of device capabilities. Table 

4.4 is the result of the server asking the nodes that can assist to find the latency and packet loss to 

each of the nodes that require assistance. This is example data. The results here will then be used to 

determine if and where a node gets assistance from.   
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Table 4.4. The latency and packet loss between the nodes of Tables 4.3 and 4.2. 

Node That Can 

Assist 

Node Requiring 

Assistance 

Latency Packet Loss % 

7 1 100 0.4 

2 200 1 

3 40 0.05 

4 90 0.3 

5 80 0.2 

6 120 0.3 

8 1 150 0.4 

2 200 1.2 

3 110 0.5 

4 50 0.1 

5 80 0.2 

6 90 0.3 

9 1 300 2 

2 220 1.5 

3 90 0.15 

4 80 0.3 

5 50 0.1 

6 120 0.4 

10 1 500 1 

2 250 2 

3 180 0.4 

4 100 0.2 

5 120 0.2 

6 140 0.3 

 

The values found in Tables 4.2 to 4.4 show some of the possible variations of device capability and 

connection health. In this paper-based illustration, the server will see this information and make 

decisions. With the clients and connection having these example values, the results of this decision-

making are found in Figure 4.3. 

 



70 
 

 

Figure 4.3. A paper-based analysis of the Server Decision-Making. 

As can be seen from Figure 4.3, each client that requires assistance either receives it or is messaged 

to begin Self-Adaptation. Client 1 is assisted by the server as it has the lowest FPS with a good 

connection to the server and the server has the available resources. Client 2 is struggling with a weak 

network connection to all network nodes and therefore would benefit more from Self-Adaptation. 

Client 3 requires assistance with both CPU and GPU intensive processes. Therefore, a network node 

that can provide these is searched for and found in Client 7. Client 4 needs assistance with CPU 

intensive tasks, and the node that can assist is Client 8. Client 5 requires assistance with GPU intensive 

tasks, and the node that can support with these is Client 9. Client 6 also requires help with both CPU 

and GPU processes, however as there are no more available nodes for this it must self-adapt. To reflect 

the wide variety of game-ready devices, each client also has a device type with a rule in place that 

The following is a list of clients that require assistance:  
Client 1: PC with a FPS count of 15. This device requires CPU&GPU assistance. 
Client 2: PC with a FPS count of 25. This device requires CPU&GPU assistance. 
Client 3: Laptop with a FPS count of 20. This device requires CPU&GPU assistance. 
Client 4: PC with a FPS count of 23. This device requires CPU assistance. 
Client 5: PC with a FPS count of 25. This device requires GPU assistance. 
Client 6: PC with a FPS count of 19. This device requires CPU&GPU assistance. 

 
The following is a list of clients that can provide assistance (A Mobile cannot):  

Client 7: PC, it can provide help with CPU&GPU tasks. 
Client 8: Laptop, it can provide help with CPU tasks. 
Client 9: Laptop, it can provide help with GPU tasks. 
Client 10: Mobile, it can provide help with CPU&GPU tasks. 

 
The following client will be assisted by the server as it has the lowest FPS with an ideal network 
connection and the server has the available resources: Client 1 
 
Client 2’s Lag and Packet Loss Percentage are too high to send information to (from both the 
server and other nodes), therefore this client will begin reducing the number of objects in its 
current scene. 
 
Client 3 needs help from another who can offer CPU&GPU resources. The client that will assist is 
Client 7 as the Latency and Packet Loss % are the lowest between these two nodes. 
 
Client 4 needs help from another who can offer CPU resources. The client that will assist is Client 8 
as the Latency and Packet Loss % are the lowest between these two nodes. 
 
Client 5 needs help from another who can offer GPU resources. The client that will assist is Client 9 
as the Latency and Packet Loss % are the lowest between these two nodes. 
 
Client 6 needs help from another who can offer CPU&GPU resources. As there are no nodes 
available to provide assistance at this time, Client 6 will receive an RPC to begin Self-Adaptation. 
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even though the CPU and GPU usage are low, if the device is a mobile then it cannot help. The most 

important reason for this rule is due to the limited battery life of a mobile to the large variation in 

mobile networks.  

4.4 SUMMARY OF DECISION MAKING 

These illustrations have shown how the decision-making ability of the architecture works with 

example values. In 4.3.1 the client decides which game element to ask for assistance with based on 

the element object count and priority. A low priority will be chosen over a high priority and a high 

count will be chosen over a low count in order to benefit the client as soon as possible. Secondly the 

decision making of the server is explored in 4.3.2. In this illustration ten clients are connected to the 

server, six of these are marked as requiring assistance with the remained marked as being able to 

assist. Each node has been provided with example values which vary from node to node in order to 

replicate a real-world scenario. The server goes through a set of rules in order to determine where 

each node will receive/provide assistance. Each of these experiments shows the core of this 

architecture which is its ability to make decisions which will result in an improved QoE for all. 

4.5 DISCUSSION 

Chapter 4 focuses on the experimental method and system setup for the architecture proposed in 

Chapter 3 and paves the way for the results covered in Chapter 5. 

The illustrations of section 4.3 show how the decision-making ability of the architecture works. In 4.3.1 

a decision is made by the client as to which game element to ask for assistance with, based on the 

object count of the element and its priority. A low priority will be chosen over a high priority, and a 

high object count will be chosen over a low object count in order to benefit the client as soon as 

possible. Section 4.3.2 explores the decisions made by the server. There are many clients connected 

to the server, some requiring assistance and others able to provide it. The server then makes decisions 

to improve the QoS of each client requiring assistance based on the metrics of all network nodes 

connected to the server. In this illustration, the architecture displays the three ways in which a client’s 

QoS can be improved: Server Assistance, Node/Client Assistance and Self-Adaptation. Through this 

architecture, a client will be able to have its QoS improved. 
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CHAPTER 5 RESULTS 
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5.1 OVERVIEW 

In this results chapter, the distribution aspect of the architecture is investigated. AI and Physics 

processes are distributed in different ways along varying network conditions. There are many ways of 

distributing data; the two focused on for these experiments are constant positional updates of objects, 

which is split into full and partial distribution for both AI and Physics, and waypoint data for objects 

which is solely for AI. The self-adaptation ability of the client is also investigated. This component of 

the architecture executes only when there are no resources available on the network. 

Following the presentation of the findings of the experimental scenarios, there is a discussion of the 

results before concluding the chapter. 

5.2 EXPERIMENTAL DESIGN 

The following sections, 5.3 and 5.4, are experiments run within Unity 3D to show the Distribution (5.3) 

and Self-Adaptation (5.4) capabilities of the architecture. The Distribution section focuses on the 

distribution of data as a client is being assisted. AI data and Physics data are distributed separately 

and in various ways. Each method of distribution is tested against varying network conditions.  The 

Self-adaptation section focuses on the fail-safe of the architecture which executes when there are no 

resources available to provide assistance and the client receives an RPC informing it to begin the Self-

Adaptation process. This section shows each game element separately building up, in object count, 

over time and its effect on a client, the client would then receive an RPC to self-adapt and reduce that 

element. Table 5.1 shows the experiments within each section. 
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Table 5.1. The Experiments as found in Sections 5.3 and 5.4. 

Scenario Experiment Section 

The Distribution of 

Data 

Section 5.3 

Full Distribution of AI 

Objects 

5.3.2 

Partial Distribution of 

AI Objects 

5.3.3 

Sending Path Data of 

AI Objects 

5.3.4 

Full Distribution of 

Physics Objects 

5.3.5 

Partial Distribution of 

Physics Objects 

5.3.6 

Self-Adaptation 

Section 5.4 

AI 5.4.2 

Physics 5.4.3 

Graphics 5.4.4 

 

5.3 THE DISTRIBUTION OF DATA 

The aim of this experimental scenario is to show the effect distributing processing has on the client 

device and to show which method of distribution is best. The processing distributed here is AI and 

Physics tasks. The AI and Physics tasks are distributed in different ways along varying network 

conditions. Three forms of processing distribution are investigated for the AI task; full distribution, 

partial distribution and sending path data, and two forms for the Physics task; full distribution and 

partial distribution. Full distribution involves the entirety of a task being handed over to another 

network node. With partial distribution, a portion of the task is handed over. The sending of path data, 

which is AI specific, has the assisting node calculating a route for each object, placing the points to 

visit into an array and then transmitting the arrays to the client device. To find the best form of 

distribution each for AI and Physics, the network over which the distribution takes place will vary in 

quality. For each form, there are seven different network variations used: an unaffected network, 

packet loss variations of 5%, 10% and 15% and latency variations of 100ms, 200ms and 300ms. Testing 

found these variations to yield the greatest difference in results. 
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5.3.1 EXPERIMENTAL SETUP 

An experimental testbed was constructed using the Unity3D game engine to find the best form of 

distribution for AI and Physics processes. Both the client and the assisting node are running an instance 

of the game with groups, of the game object being tested, spawning at set intervals on both. Once the 

client decides to ask for assistance, it will then stop some or all the local processing of that game 

element and begin to receive data for that element. The data it receives is positional data which, 

depending on the experiment, is either a single position to visit or an array of positions. Only a network 

node with enough resources will be selected to provide assistance. Therefore, the assisting node in 

this situation must have more resources than the client. To create a gap in resources between the 

client and the assisting node, the client was a deliberately under-resourced Virtual Machine (VM). The 

specification of the assisting network node is as follows:  

• 8GB Memory 

• I7-3770/3.4Ghz 

• 4 CPU 

• Intel HD Graphics 

The VM (Client) was created through Virtual Box with the following specification: 

• 1024MB Memory 

• 1 CPU 

• Execution Cap: 50% 

• 128MB Video Memory 

Testing had shown that by reducing the execution cap to 50% provided enough of a resource gap 

between the client and the assisting node and therefore the assisting node will have enough resources 

to help when required. Having this percentage, any higher resulted in the client running high counts 

of objects before asking for assistance. For example, in the case of full distribution, the assisting node 

struggled to update the client device with the immediate high number of objects. Having a low 

execution cap allowed for the client to ask for assistance with a lower number of objects which the 

node acting as the server could handle. 

These experiments contain results for FPS and CPU percentage. FPS is worked out in-game (see 

Appendix A) while CPU percentage is recorded via MSI Afterburner [85]. GPU percentage usage is 
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absent from these final results as there was no way to get a reliable result, this could be due to the 

VM being under-resourced (see Appendix B). There are also test results for varying network conditions 

so as to have a better understanding of how these distribution methods would perform in the real 

world. Network quality was varied using the software package Clumsy 0.2 [86] as follows (see 

Appendix C): 

• Packet loss percentage at 5%, 10% and 15% 

• Latency at 100ms, 200ms and 300ms 

These experiments transmit relatively small amounts of simple data in comparison to modern triple-

A games, and so high packet loss percentages and latencies were used to compensate for this. The 

data transmitted is the position of the object and only a maximum of 500 objects is used. 

The three AI distribution methods explored are explained below: 

1. Full Distribution (Section 5.2.2): In this case, the server takes over all currently existing AI 

objects and those still to be created. The client does no AI processing. The server executes the 

AI calculations and moves the objects accordingly. Through the use of Unity’s built-in 

networking, more specifically the Network Transform Script [87], the movement of the AI 

object is synced between the assisting node and the client. The server is in full control of the 

AI. Therefore, any time an object moves on the server its movement will be copied by the 

client. Instead of the client processing a path for each object to follow, the client simply has 

each move to a position fed to it by the server (see Appendix D). 

2. Partial Distribution (Section 5.2.3): The same approach as above is used, however only objects 

that are spawned after the distribution is requested will be handled by the server. All AI 

objects that exist prior to asking for assistance will still be controlled by the client. This method 

allows for less dependency on the network as some objects are being processed locally, it also 

produces less strain on the server as fewer objects need to be processed by it. 

3. Transmitting Path Data (Section 5.2.4): In this case, once assistance is requested, the client 

prepares to receive an array of positions to visit for each AI object, both existing and those yet 

to be created. The assisting node will calculate a path for each AI object currently on screen 

and then send that path to the client in the form of an array of positions. The client receives 

this array and has the corresponding object visit each position in the array. In this method the 

client will be moving exactly like the assisting node, however just slightly behind as the array 

takes some time to be transmitted to the client (see Appendix E).  
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The sending of the pathfinding data is similar to the full and half distribution methods. The only 

difference being the frequency of data transmission. The full and half distribution methods involve 

constant positional updates which will have an object move only a small number of pixels at a time 

whereas the sending of pathfinding data involves updating a list of scattered points in the game world 

that each object must visit. The constant positional updates will be small yet frequent in comparison 

to the larger but infrequent update to the list of points that each object must visit. 

The two Physics distribution methods are as follows: 

1. Full distribution (Section 5.2.5): this works in the same way as the AI full distribution 

experiment. The assisting node handles all processing of all currently existing physics objects 

and those still to be spawned. 

2. Partial Distribution (Section 5.2.6): this works in the same way as the AI half distribution 

experiment. The assisting node handles all processing of physics objects created after the 

receiving of the message to provide assistance for the client. 

Both AI and Physics have a Full Distribution and Half Distribution approach of distributing data. The 

Full distribution approach is based on most client-server games in that the server handles the 

processing of the objects and updates the client on the objects’ positions in the game world. With 

Partial Distribution, the client continues to handle some of the processing. The reasoning for this 

approach is that it may perform better in comparison to Full Distribution if the network is strained as 

less information needs to be transmitted from the assisting node to the client, it also reduces the 

number of resources required on the node. The Transmission of Path Data is another approach for the 

AI as each AI object will have a path calculated for it by a node before it moves within the game world 

on the client. This method also provides positional updates for the objects; these are less frequently 

transmitted however they are larger as each packet will contain a list of multiple points to visit within 

the game world. The reason for this approach is that it may perform very differently across different 

network conditions. 

5.3.2 FULL DISTRIBUTION OF AI OBJECTS (EXPERIMENT 1) 

In this experiment, ten AI objects are spawned every second up to a maximum amount of 500 objects. 

Empirical testing had shown this spawn rate to place enough pressure on the client VM to affect its 

performance and not too much as to create periods of “hanging” where nothing is happening. The 

maximum object count is set to 500 as experimentation had shown the assisting node, when 

distribution occurs, to be able to handle this maximum. Increasing this further showed a decline in 

results as the node struggled to process the objects and transmit the relevant data. 
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HOW A SYSTEM REACTS WITH NO DISTRIBUTION 

A baseline was established for reference in this experiment for FPS and CPU usage. Figure 5.1 shows 

the FPS on the client processing in-game data itself with no assistance. As can be seen, the FPS falls 

before beginning to level out to an average of 50FPS. The FPS is seen to vary quite a bit due to the low 

resource availability of the system not being able to cope immediately with the spawning objects.  

 

Figure 5.1. FPS against an increasing number of AI objects and increasing elapsed time (No 

Distribution) 

Figure 5.2 shows the CPU percentage usage against the number of AI objects.  

 

Figure 5.2. CPU against an increasing number of AI objects and increasing elapsed time (No 

Distribution). 
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In both Figure 5.1 and Figure 5.2 it can be seen that if the AI object count were to increase any further 

than 500 then both the FPS and CPU usage would suffer. Both data series level out as the experiment 

remains at 500 objects, however the linear regression trendline predicts both will continue to decline. 

EFFECT OF DISTRIBUTION ON AN UNAFFECTED NETWORK 

It can be expected that by distributing AI processing, there should be an improvement in both the FPS 

and the CPU percentage usage. Figure 5.3 shows the FPS when processing is distributed over an 

unaffected network. For the client to ask for assistance the average FPS of the previous 3 seconds 

must be below 70FPS. 70FPS was chosen as the limit based on Figure 5.1, if a lower limit were chosen 

there would be less likelihood of assistance being requested. A moving average is taken over 3 seconds 

to smooth out the variations in the graph, the window allows enough time for a spike in FPS to settle. 

At times, there are random drops in FPS for only a second, taking an average allows for these to occur 

without penalty. If the action was taken based on one FPS value, then there is the possibility that an 

assisting node is being employed for no worthwhile reason. Figure 5.3 shows that with distribution, 

even though the number of AI objects on the client’s screen is increasing, the FPS can remain at an 

acceptable level. Unfortunately, as the number of objects increases the FPS does not remain above 

70FPS. However, it remains higher than a client which does not receive assistance (Figure 5.1). In this 

case, distribution occurred at 20 seconds where the average FPS over a 3 second period fell below the 

limit of 70FPS. 

 

Figure 5.3. FPS against an increasing amount of AI objects. Distribution occurs at 20 seconds. 

Figure 5.4 shows the CPU percentage when distribution occurs. As can be seen, around the time of 

distribution there is no immediate improvement, however, the CPU peaks at 100% for around 10 

seconds. This plateau in CPU usage could be due to the handover in processing occurring and the 

under-resourced VM taking time to deal with the change. The CPU percentage usage then begins to 

0 20 40 80 10
0

14
0

16
0

20
0

22
0

26
0

28
0

32
0

34
0

38
0

40
0

44
0

46
0

50
0

50
0

50
0

50
0

0

20

40

60

80

100

120

0 3 6 9 12 14 17 20 23 26 29 32 35 37 40 43 46 49 52 55 58

AI Object Count

Fr
am

es
 P

er
 S

ec
on

d

Elapsed Time in Seconds



80 
 

drop and remains around 60%. This is in no way a dramatic improvement over no distribution, but an 

improvement nonetheless as the CPU remains at a lower percentage usage. 

 

Figure 5.4. CPU against an increasing amount of AI objects. Distribution occurs at 20 seconds. 

From comparing Figures 5.1 and 5.2 and Figures 5.3 and 5.4, it can be seen that by distributing 

processing to another node there is a marked improvement on the client. The data series of Figures 

5.3 and 5.4 show the improvement that can be made when processing is handled by another network 

node. The trendlines on each are also an improvement as they do not predict as large a decline. 

EFFECT OF DISTRIBUTION ON FPS OVER AN INCREASING PACKET LOSS 

This method of distribution was also tested over six different network variations: three different 

packet loss percentages (5%, 10% and 15%) and three different latencies (100ms, 200ms and 300ms). 

Figures 5.5, 5.6 and 5.7 show the effect an increasing packet loss percentage has on the clients FPS. 
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Figure 5.5. FPS when distributing over a network 

with 5% Packet Loss. Distribution occurred at 18 

seconds. 

Figure 5.6. FPS when distributing over a network 

with 10% Packet Loss. Distribution occurred at 

16 seconds. 

 

Figure 5.7. FPS when distributing over a network with 15% Packet Loss. Distribution occurred at 7 

seconds. 

In Figure 5.5, with a 5% packet loss, distribution occurs at 18 seconds as the average FPS over 3 

seconds falls below the 70FPS limit. It can be seen that there is a slight improvement in FPS, for a time 

after 18 seconds. However, it seems to dip and then improve again around 50 seconds. This second 

dip could be due to data being received after being lost and the improvement is due to the maximum 

number of objects having been spawned. In Figure 5.6, with a 10% packet loss, distribution occurs at 

16 seconds. Similarly, to the 5%, there is a slight improvement of just under 10FPS initially. Comparing 

this to the 5% FPS graph, no second improvement is viewed. The FPS towards the end of this 

experiment lies flatter on average in comparison to its 5% counterpart. Figure 5.7 shows the FPS with 

a 15% packet loss, in this case, distribution occurs at 7 seconds. Assistance begins a lot earlier here as 

a sharp drop in FPS brought the 3 second average below 70FPS, this drop could have been due to the 

VM struggling with the spawn of AI objects. The FPS remains higher than its counterparts at 5% and 
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10% Packet Loss as the trendline is more centred at roughly 80FPS. This high FPS could be due to the 

game not having to receiving as much data data. Therefore, it is not having to move as many objects 

which may be causing a higher FPS than normal. The fall in FPS at the end of the graph signifies the 

end of the experiment as programs are shut down. Similarly, to Figures 5.5 and 5.6, an initial 

improvement is seen once distribution occurs which then declines again after a short time.  

These trends show that by increasing the packet loss percentage of the network, the average overall 

FPS will increase, however, this is due to data not being received and the client not moving as many 

objects. Less processing will lead to a greater FPS value. Regardless of the packet loss, the results show 

that once distribution occurs each client instance is seen to have an improvement in FPS. However, it 

must be taken into consideration that if packet loss is too high, then inaccurate results will follow. The 

decision-making ability of this architecture will ensure that if the packet loss is too high, then 

distribution will need to occur elsewhere (Figure 3.2). Packet Loss percentage is one of the metrics 

utilised in this architecture and helps form a decision on where distribution will take place. 

EFFECT OF DISTRIBUTION ON CPU USAGE OVER AN INCREASING PACKET LOSS 

Figures 5.8, 5.9 and 5.10 below show the effect an increasing packet loss percentage has on the clients’ 

CPU usage. 

   

Figure 5.8. CPU % when distributing over a 

network with 5% Packet Loss. Distribution 

occurred at 18 seconds.  

Figure 5.9. CPU % when distributing over a 

network with 10% Packet Loss. Distribution 

occurred at 16 seconds. 

0 40 80 14
0

18
0

24
0

30
0

34
0

38
0

44
0

50
0

50
0

50
0

0
20
40
60
80

100

0 4 8 1216202428323640444852566064

AI Object Count

CP
U

 %

Elapsed Time in Seconds

0 40 80 14
0

18
0

22
0

28
0

32
0

38
0

42
0

48
0

50
0

50
0

0
20
40
60
80

100

0 4 8 12162024283236404448525660

AI Object Count

CP
U

 %

Elapsed Time in Seconds



83 
 

 

Figure 5.10. CPU % when distributing over a network with 15% Packet Loss. Distribution occurred at 7 

seconds. 

In Figure 5.8, with a 5% packet loss, distribution occurs at 18 seconds. The CPU, a few seconds after 

distribution appears to reduce in usage. Shortly before the second dip in FPS (Figure 5.5 at around 40 

seconds), the CPU usage appears to increase slightly again. The trend shows that shortly after 

distribution there is an improvement in CPU usage which is then, after another short period, cancelled 

out at the usage increases again. The average CPU usage here is around 70%. In Figure 5.9, with a 10% 

packet loss, distribution occurs at 16 seconds. The CPU peaks at 100% around the time of distribution, 

due to the handover in processing, and then falls to below 80% for the remainder of the experiment, 

the fall at the end of the graph is the end of the experiment. The CPU peak in usage causes the large 

drop in FPS in Figure 5.6. Shortly after distribution occurs, the CPU usage improves in a similar fashion 

to the 5% packet loss. However, shortly after this improvement, there is an increase in the usage again 

between 28 seconds and 40 seconds with the usage then remaining around 80% for the rest of the 

experiment. Figure 5.10, with a 15% packet loss, begins distribution at 7 seconds. The CPU varies 

mostly between 50% and 80% for this experiment and roughly mirrors the FPS graph as in some cases 

when the FPS dips the CPU peaks as expected. There is a peak of 100% usage at the end of the graph 

signifying the end of the experiment and programs being shut down. Comparing these results to the 

5% and 10% packet loss instances, there is an improvement once distribution occurs, however, the 

usage is slightly lower on average in Figure 5.10 due to the lesser amount of data received by the 

client, this gives a false positive. 

These trends in CPU usage show that by increasing packet loss percentage, there will be an increasing 

variation in CPU usage as seen by the difference between Figure 5.8 and 5.10. There is a general 

increase in usage between the 5% and 10% results as the client struggles with the start stop nature of 

the object data and attempts to maintain a high FPS. This usage then decreases as the packet loss 

percentage increases as less data is being received and therefore less processing is occurring client-
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side. The overall increase in packet loss sees an increase in the variation of CPU percentages; this could 

be due to the start-stop nature of the objects as sometimes data is received to move them and others 

it is not. Regardless of the packet loss, once distribution occurs each client instance is seen to have an 

improvement in CPU usage. The decision-making ability of this architecture will ensure that if the 

packet loss is too high, then distribution will need to occur elsewhere as packet loss is a metric which 

helps make the decision of where distribution will take place. 

EFFECT OF DISTRIBUTION ON FPS OVER AN INCREASING LATENCY 

Another network condition tested is latency. Latency is the length of time information takes to get 

from point A to B along a network. In relation to QoE, this delay would reduce the experience for the 

player as it increases as actions take longer to perform. For example, a player hits a wall to knock it 

down. If there is a low latency, then the wall will fall immediately, yet if there is a high latency then 

the wall will fall after a delay. With the reduction in latency comes an increase in game immersion.  

The latency variations experimented on were 100ms, 200ms and 300ms as empirical testing found 

this variation to provide the greatest difference in results. Figures 5.11, 5.12 and 5.13 show the effect 

an increasing latency has on the client’s FPS. 

   

Figure 5.11. FPS when distributing over a 

network with 100ms latency. Distribution 

occurred at 40 seconds. 

Figure 5.12. FPS when distributing over a 

network with 200ms latency. Distribution 

occurred at 32 seconds. 
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Figure 5.13. FPS when distributing over a network with 300ms latency. Distribution occurred at 7 

seconds. 

In Figure 5.11, with a 100ms latency, distribution occurred at 40 seconds. In this case, there is no 

improvement in the average FPS of the client device. Around the 45 second mark, there is a peak 

improvement over 80FPS which is followed shortly after by smaller peaks, however overall the 

distribution halts the decline in FPS. In Figure 5.12, with a 200ms latency, distribution occurred at 32 

seconds. In this case, distribution causes the overall decline in FPS to slow for a short period of time 

as it peaks above 100 FPS on two occasions, however, eventually the FPS begins to decline further. 

Towards the end of the experiment there is a slight increase in the average FPS, again this could be 

due to the end of the spawning of the AI objects. Figure 5.13 shows how the FPS reacted to a 300ms 

latency when distribution occurred at 7 seconds. Once distribution occurred there is a slight 

improvement in the FPS as seen from the trend. However, this then drops before levelling out and 

finally dropping again.  

Similar to packet loss, an increasing latency during the distribution process will eventually lead to a 

high FPS value. This value, when seen with a high latency or packet loss, is a false positive. Lesser 

amounts of data are being processed by the client device leading the device to perform better and 

therefore provide a higher framerate. The immersion of the game would be affected as some objects 

would not be moving. 

EFFECT OF DISTRIBUTION ON CPU USAGE OVER AN INCREASING LATENCY 

Figures 5.14, 5.15 and 5.16 show the effect an increasing packet loss percentage has on the clients’ 

CPU usage. 
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Figure 5.14. CPU % when distributing over a 

network with 100ms latency. Distribution 

occurred at 40 seconds. 

Figure 5.15. CPU % when distributing over a 

network with 100ms latency. Distribution 

occurred at 32 seconds. 

 

Figure 5.16. CPU % when distributing over a network with 100ms latency. Distribution occurred at 7 

seconds. 

In Figure 5.14, with a 100ms latency, distribution took place at 40 seconds. As with the FPS counterpart 

of this experiment, Figure 5.11, distribution halts the increase in CPU usage. In Figure 5.15, with a 

200ms latency, distribution occurred at 32 seconds. The CPU usage here is roughly level for a time 

before increasing at around 45 seconds. This increase is mirrored in the FPS graph of Figure 5.12 as 

the FPS decreases. Figure 5.16 shows how the CPU reacted to a 300ms latency and distribution 

occurred at 7 seconds. CPU usage does not improve with the distribution of the AI processing as it 

increases over time to peak at 100% usage at 52 seconds. The final peak of 100% usage at the end of 

the graph signifies the end of the experiment and programs being shut down. 

These trends show that by increasing the latency of a network, the variation in CPU usage will rise 

significantly as seen by comparing Figure 5.14 and 5.16. Overall there is a general increase in the CPU 
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usage, this could be due to the nature of the data transmission as objects may or may not receive 

information on where to move to next. 

DISCUSSION 

By fully distributing the AI, there is a good increase in FPS viewed along a good network connection. 

The CPU usage improves too. By creating poorer network conditions, it can be seen that these 

improvements diminish.  With the poorest of network conditions, the FPS hits low peaks unacceptable 

to users as does the CPU. Both packet loss and latency are metrics used within the proposed 

architecture with both helping to make the decision of where to distribute processing. In the case of 

these experiments, the 5% packet loss and 100ms could, separately, be the upper limit of what is 

allowed of a connection to distribute processing over. A combination of these would yield worse 

results as when sending information over a network affected separately with these, there was a slight 

improvement on the client. 

5.3.3 PARTIAL DISTRIBUTION OF AI OBJECTS (EXPERIMENT 2) 

In this experiment 10 AI objects are spawned every second up to a maximum amount of 500 objects. 

Empirical testing had shown this spawn rate to place enough pressure on the client VM to affect its 

performance and not too much as to create periods of “hanging” where nothing is happening. The 

maximum object count is set to 500 as testing had shown the assisting node, when distribution occurs, 

to be able to handle this maximum. Increasing this further showed a decline in results as the assisting 

client struggled to process the objects and transmit the relevant data. 

The difference between this experiment and experiment 1 lies in the fact that a smaller amount of 

data is distributed. In this case, only the objects spawned after assistance is requested will be handled 

by the assisting node. It is believed that this method of distribution will perform better under poorer 

network conditions as less information is being transmitted. As seen from the full distribution of AI 

objects the network affected the results in a significant way. It is predicted that with less information 

to send, the FPS and CPU levels will not be affected as much. However, it also must be taken into 

consideration that some objects will still be handled locally which will influence the FPS and CPU of 

the client in comparison to if those objects were processed elsewhere. 

EFFECT OF PARTIAL DISTRIBUTION ON AN UNAFFECTED NETWORK 

Figures 5.17 and 5.18 shows the half distribution of the AI objects over an unaffected network. In this 

instance, distribution occurred at 39 seconds. The FPS in Figure 5.17 shows no increasing improvement 

with the assistance from another node and, in comparison to the FPS of the Full Distribution over a 

good network (Figure 5.3), the partial distribution performs poorly. It could be argued, based on Figure 
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5.17, that there is a slowing down in the rate at which FPS falls once distribution occurs. For the first 

39 seconds of the experiment, the FPS falls by roughly 50FPS and over the following 10-15 seconds, 

which are when distribution occurred, the FPS falls by around 5-10FPS. There is no increasing 

improvement, however, it can be seen that partial distribution has a smaller positive effect. The CPU 

also shows no improvement after distribution as from this point the CPU usage increases. This increase 

could be due to the multitasking that the client now comes under as some AI objects have a path 

processed for them locally while others are moved via positional updates from another node. 

 

Figure 5.17. FPS with Partial Distribution over an unaffected network. Distribution occurred at 39 

seconds. 

 

 

Figure 5.18. CPU % with Partial Distribution over an unaffected network. Distribution occurred at 39 

seconds. 
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This method of distribution was also tested over six different network variations: three different 

packet loss percentages (5%, 10% and 15%) and three different latencies (100ms, 200ms and 300ms). 

Figures 5.19, 5.20 and 5.21 show the effect an increasing packet loss percentage has on the clients 

FPS. Although partial distribution was seen to have no increasing improvement over an unaffected 

network, there is a small positive effect in the form of a slower decline. It is predicted that, over poorer 

network conditions, this method’s slower decline may outperform the full distribution method. 

EFFECT OF PARTIAL DISTRIBUTION ON FPS OVER AN INCREASING PACKET LOSS 

   

Figure 5.19. FPS with Partial Distribution over a 

network with 5% Packet Loss. Distribution 

occurred at 32 seconds. 

Figure 5.20. FPS with Partial Distribution over a 

network with 10% Packet Loss. Distribution 

occurred at 36 seconds. 

 

Figure 5.21. FPS with Partial Distribution over a network with 15% Packet Loss. Distribution occurred 

at 11 seconds. 

In Figure 5.19, with a 5% packet loss, distribution took place at 32 seconds. Once distribution occurred, 

on average, the FPS began to level out before dropping a final time to around 40 FPS. For this 
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be much improvement due to the variety of information having to be processed by the client device. 

In Figure 5.20, with a 10% packet loss, distribution occurred slightly later at 36 seconds. With this 

packet loss variant, there is no improvement or even levelling out of the FPS count once distribution 

occurs as seen by the trend. In Figure 5.21, with a 15% packet loss, distribution happened at 11 

seconds which is much earlier in comparison to the other packet loss percentages. This variation sees 

the FPS remain around 60 FPS shortly after distribution occurs. Similar to previous experiments at the 

highest end of the packet loss or latency spectrums tested, Figure 5.21 shows a better FPS overall, this 

is a false positive as less data is being received by the client in comparison to the results of Figures 

5.19 and 5.20. As less data is being received the client device is having to process less information and 

therefore providing a higher FPS. Evidence of this in-game was that few of the AI objects were moving 

at all as distribution occurred early on only some were being processed locally.  

Comparing Figures 5.19 and 5.20 with Figures 5.5 and 5.6, which are results from the full distribution 

experiment, the full distribution method is seen to perform better for FPS. Once AI objects have 

stopped spawning, the full distribution method shows a levelling out of the FPS in both cases whereas 

partial distribution shows a continuing decline. Both Figures 5.7 and 5.21 show that 15% packet loss 

has too great an effect. 

EFFECT OF PARTIAL DISTRIBUTION ON CPU USAGE OVER AN INCREASING PACKET LOSS 

Figures 5.22, 5.23 and 5.24 show the effect an increasing packet loss percentage has on the client’s 

CPU usage. 

   

Figure 5.22. CPU % with Partial Distribution over 

a network with 5% Packet Loss. Distribution 

occurred at 32 seconds. 

Figure 5.23. CPU % with Partial Distribution over 

a network with 10% Packet Loss. Distribution 

occurred at 36 seconds. 
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Figure 5.24. CPU % with Partial Distribution over a network with 15% Packet Loss. Distribution 

occurred at 11 seconds. 

In Figure 5.22, with a 5% packet loss, distribution occurred at 32 seconds. Once distribution occurred 

the data series shows the CPU usage levelling out, this is reflected in Figure 5.19 as the FPS levels out 

aswell. However, this usage then increases to over 90% on average and the FPS drops again as seen in 

Figure 5.19 due to the increase in the number of objects requiring positional data from the assisting 

client. The sharp drop at the end of the graph is the game client being stopped and therefore the CPU 

not being required for game processing. In Figure 5.23, with a 10% packet loss, distribution occurred 

at 36 seconds. The CPU usage is seen to level out for around 15 seconds after distribution before 

increasing similarly to Figure 5.22; this would also be due to the increased number of objects receiving 

information from the assisting client. In Figure 5.24, with a 15% packet loss, distribution occurred at 

11 seconds. Similarly, to the FPS, the CPU usage varies little throughout this experiment. Only a small 

amount of AI objects are processed locally and a lot of data is being lost due to the high packet loss 

percentage. Therefore, there is little variation. 

The trends in these experiments show that by increasing the packet loss percentage there is a 

decreasing chance of distribution improving the FPS or CPU usage. As seen in the 5% and 10% packet 

loss experiments, the distribution of some of the AI objects slowed both the decrease in FPS and 

increase in CPU usage. Nonetheless, this effect is lessened as the packet loss percentage increases as 

the FPS continues to decrease and CPU usage increase regardless of distribution. 

Comparing these results to their full distribution counterparts, Figures 5.8-5.10, there is similar 

performance for a period of time. The full distribution causes the CPU usage to level out for the 

remainder of the experiment, however, the partial distribution levels out the CPU usage for a short 

amount of time before it increases towards the end of the experiment as seen by the data series. With 

regards to an increasing packet loss, the full distribution method performs better. 
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EFFECT OF PARTIAL DISTRIBUTION ON FPS OVER AN INCREASING LATENCY 

Another network condition tested is latency. The latency variations used were 100ms, 200ms and 

300ms. Figures 5.25, 5.26 and 5.27 show the effect an increasing latency has on the clients FPS. 

   

Figure 5.25. FPS when distributing over a 

network with 100ms latency. Distribution 

occurred at 23 seconds. 

Figure 5.26. FPS when distributing over a 

network with 200ms latency. Distribution 

occurred at 25 seconds. 

 

Figure 5.27. FPS when distributing over a network with 300ms latency. Distribution occurred at 18 

seconds. 

In Figure 5.25, with a latency of 100ms, distribution occurred at 23 seconds. As seen by the trend, 

distributing the data caused no change in the declining FPS rate. This graph shows a very varied FPS 

and is a good example of why the FPS is calculated from an average. At the 5 second mark, there is a 

large drop in FPS for only a second, if distribution occurred based on a single second’s value, then 

distribution would have occurred here. In Figure 5.26, with a latency of 200ms, distribution occurred 

at 25 seconds. As with the previous experiment in Figure 5.25, distribution had no effect on the FPS 

as it continued to decline. Towards the end of the experiment the FPS, on average, show signs of some 
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improvement. In comparison to Figure 5.25, the results of Figure 5.26 are over a longer period, and 

therefore the FPS may have improved as there was no more extra incoming information. In Figure 

5.27, with a latency of 300ms, distribution occurred at 18 seconds. Similarly, to the previous 

experiments, distribution had no effect on the declining FPS. Even though distribution occurred 

earlier, there were larger amounts of data being received which had an adverse effect on FPS. 

These trends show that partial distribution does not improve the FPS over a network affected by 

latency. Even the lowest latency tested showed that this distribution method has no effect on the FPS 

as it continues to decline. The latency will have affected the time taken for data to arrive at the client. 

Interestingly, had the first tested latency experiment been left to run longer, there may have been an 

improvement seen at the end as the client had no more extra data incoming. This conclusion can only 

be drawn as with the 200ms latency experiment there was an improvement in FPS at the end as the 

maximum number of AI objects had been spawned for some time. 

Comparing these results to the full distribution method, Figures 5.11 – 5.13, overall the partial 

distribution method is out performed. Interestingly, Figure 5.26 sees a more level FPS for a period of 

time before falling again which is similar to the full distribution result in Figure 5.12. However, the 

following sharp decline in FPS in Figure 5.26 at around 50 seconds shows that partial distribution 

performs at a lower standard in comparison to full distribution. 

EFFECT OF PARTIAL DISTRIBUTION ON CPU USAGE OVER AN INCREASING LATENCY 

Figures 5.28, 5.29 and 5.30 show the effect an increasing latency has on the clients’ CPU usage. 

   

Figure 5.28. CPU % with Partial Distribution over 

a network with 100ms latency. Distribution 

occurred at 23 seconds. 

Figure 5.29. CPU % with Partial Distribution over 

a network with 200ms latency. Distribution 

occurred at 25 seconds. 
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Figure 5.30. CPU % with Partial Distribution over a network with 300ms latency. Distribution occurred 

at 18 seconds. 

In Figure 5.28, with a 100ms latency, distribution occurred at 23 seconds. The CPU usage falls to just 

above 0% on two occasions, none of which have any correlation with the FPS values. The majority of 

the experiment sees the CPU remain above 60% usage with several occasions being almost 100%. The 

drops in CPU usage could be a process outside of the game executable affecting the under-resourced 

VM. In Figure 5.29, with a 200ms latency, distribution occurred at 25 seconds. Distribution of 

processing was ineffective in halting the increase in CPU usage in this experiment. On some occasions, 

there are dramatic drops in CPU usage which, when compared to Figure 5.26, show increases in FPS. 

However, overall the CPU usage increases to numbers that are not acceptable due to a combination 

of low resources, latency and the method of partial distribution which, as seen in Figures 5.17 and 

5.18, only slows the decline in QoS. In Figure 5.30, with a 300ms latency, distribution occurs earlier 

than the other experiments at 18 seconds. In this instance, the CPU usage seems to perform its best 

which results in a better FPS rate aswell. However, as distribution occurred relatively early on there 

are fewer objects to process locally. This, combined with the poor network conditions resulting in 

positional information arriving very late leads to a better processing ability as less data is being 

processed. Towards the end of the experiment it is seen that the CPU usage increases again overall 

leading to the conclusion that even though less data is being processed locally, the network is affecting 

the arrival of data and therefore affecting the overall CPU usage. 

Comparing these results to the full distribution experiment, Figures 5.14 – 5.16, the full distribution 

method provides better results. This is especially evident in Figure 5.14 and Figure 5.15 in which the 

CPU usage is more consistent and lower towards the end of the experiment. 
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DISCUSSION 

By only distributing some of the AI objects there is no increasing improvement to overall FPS or CPU 

usage even over an unaffected network. The local processing of some objects and the distribution of 

others is a combination that had little effect on the performance of the client as the decline in QoS 

was slowed. When compared with Figures 5.3 and 5.4, distributing all the objects will produce better 

results in comparison to partial distribution. When creating poor network conditions, the best 

situation that could be hoped for with this method of distribution is that the decrease in FPS and 

increase in CPU usage is slowed. The lowest packet loss percentage was the only experiment to show 

a levelling out of the metrics when distribution occurred. As either packet loss or latency increases 

both the FPS and CPU will drop in performance. At the highest packet loss and latency both FPS and 

CPU usage seemed to show improvement, however, this was due to data either taking too long to be 

received and therefore processed or it not being received at all. It is easier for the system to process 

less data therefore providing better results on paper, however, the immersion of the game would be 

affected as some objects fail to move. 

5.3.4 SENDING PATH DATA OF AI OBJECTS (EXPERIMENT 3) 

This experiment is very different to the previous two AI experiments. The previous experiments 

focused on constant positional updates from the assisting node. This experiment has the assisting 

node sending the calculated path each AI object has to follow to the client. It was believed here that 

a less frequent data transmission, although a bigger packet, would perhaps perform better in 

comparison to a high-frequency transmission of smaller data packets. The assisting node created a 

path for each AI object to follow and stored each point to go to in an array. The array for each object 

was then transmitted to the client for it to append it to the bottom of an ever-growing array of points 

to visit for each AI object.  

In this experiment, 10 AI objects were spawned every second, increasing to a maximum of 500 objects. 

This is the same spawn rate and maximum as the previous experiments. Similar to the full distribution 

experiment, this experiment also took all processing from the client and handed it off to an assisting 

node.  

Figures 5.31 and 5.32 show the effect the sending of path data has on FPS and CPU usage over a good 

quality network. In this instance, distribution occurred at 21 seconds. Both graphs show an approach 

that does not benefit the client. Figure 5.31 presents the FPS of the client. Once distribution occurs, 

the FPS falls to around 5FPS showing no signs of improving. Similarly, the CPU usage of the client 

remains very high once distribution occurs, with no sign of improvement. For a long period, the CPU 
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percentage usage is at 100%. The sudden drop at the end of Figure 5.32 is the end of the experiment 

and the game executable being closed. This method of distributing data has proven to be too much 

for the under-resourced client due to the size of the data packets being received with each packet 

being an array of positions that an AI object must visit. When comparing this to Figures 5.3 and 5.4, it 

can be seen that small constant positional updates are much easier for an under-resourced client to 

process than large and less frequent positional arrays which result in low framerates and high CPU 

usage. 

 

Figure 5.31. FPS when transmitting path data over an unaffected network. Distribution occurred at 21 

seconds. 

 

 

Figure 5.32. CPU % when transmitting path data over an unaffected network. Distribution occurred at 

21 seconds. 
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Based on the results in Figures 5.31 and 5.32, there was no reason to proceed with testing this method 

over various network conditions. 

5.3.5 FULL DISTRIBUTION OF PHYSICS OBJECTS (EXPERIMENT 4) 

The approach in this experiment is similar to that of the full distribution of AI Objects, the only 

difference here being that it is Physics objects that are being distributed. In this experiment, 10 Physics 

objects are spawned every second up to a maximum amount of 500 objects. Empirical testing had 

shown this spawn rate to place enough pressure on the client VM to affect its performance and not 

too much as to create periods of “hanging” where nothing is happening. The maximum object count 

is set to 500 as testing had shown the client acting as the server, when distribution occurs, to be able 

to handle this maximum. Increasing this further showed a decline in results as the assisting client 

struggled to process the objects and transmit the relevant data. 

HOW A SYSTEM REACTS WITH NO DISTRIBUTION 

Before showing the results of distribution there must first be a good baseline to compare to. Figure 

5.33 is the FPS of the client if there was no distribution. As can be seen, the FPS is on a slow decline 

throughout the experiment. The line itself is full of spikes and dips, these are due to the low resource 

availability of the system not being able to cope immediately with the spawn of the objects. Figure 

5.34 shows the CPU usage during this experiment. As the FPS slowly falls, the CPU usage slowly 

increases. The CPU graph mirrors the FPS graph, this is expected as when the FPS falls, for example at 

around 57 seconds, there is a CPU spike that hits 100% usage roughly two seconds before. Distribution 

is required here to prevent the increasing reduction in FPS and increase in CPU usage. 

 

Figure 5.33. FPS against an increasing number of Physics objects (No Distribution) 
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Figure 5.34. CPU % against an increasing number of Physics objects (No Distribution) 

Now having seen the condition of the FPS and CPU percentage it can be predicted that by passing off 

the processing of the Physics there will be an improvement in both the FPS and the CPU percentage 

usage. This prediction is based on the results from Experiment 1, the Full Distribution of AI in which 

an improvement was seen when distributing AI processes (Figures 5.3 and 5.4). Figure 5.35 shows the 

FPS when distribution can occur. This is tested over a university network through which no software 

is used to affect the network. For the client to ask for assistance, the average FPS of the previous 3 

seconds must be below 70FPS. 

EFFECT OF DISTRIBUTION ON AN UNAFFECTED NETWORK 

Figure 5.35 shows that with distribution, even though the number of Physics objects on the client’s 

screen is increasing, the FPS can remain at an acceptable level. In this case, distribution occurred at 

38 seconds where the average FPS fell below 70FPS. With the distribution of Physics data in place, the 

FPS became less varied and remained between 60-80FPS. 
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Figure 5.35. FPS against an increasing number of Physics objects. Distribution occurred at 38 seconds. 

Figure 5.36 shows the CPU percentage when distribution occurs. As can be seen, once distribution 

occurs the CPU usage begins to drop to between 60% and 80% usage for the majority of the time. 

When comparing this to Figure 5.34, the CPU when there is no distribution, the CPU usage is more 

stable with less variation. 

 

Figure 5.36. CPU % against an increasing number of Physics objects. Distribution occurred at 38 

seconds. 

Comparing Figures 5.35 and 5.36 and Figures 5.33 and 5.34, there is a noticeable difference when 

processing of these objects is passed off to another node. As predicted, the client begins to improve 

on both its frame rate and CPU usage. 
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EFFECT OF DISTRIBUTION ON FPS OVER AN INCREASING PACKET LOSS 

This method of game processing distribution was also tested over six different network variations: 

three different packet loss percentages (5%, 10% and 15%) and three different latencies (100ms, 

200ms and 300ms). Figures 5.37, 5.38 and 5.39 show the effect an increasing packet loss percentage 

has on the clients FPS. 

   

Figure 5.37. FPS when distributing over a 

network with 5% Packet Loss. Distribution 

occurred at 40 seconds. 

Figure 5.38. FPS when distributing over a 

network with 10% Packet Loss. Distribution 

occurred at 44 seconds. 

 

Figure 5.39. FPS when distributing over a network with 15% Packet Loss. Distribution occurred at 45 

seconds. 

In Figure 5.37, with a 5% packet loss, distribution occurred at 40 seconds. Distribution occurred after 

a sharp decline in FPS brought the average of the past three seconds under the 70FPS limit. In this 

instance, distribution did not result in an increase in FPS. Instead, the FPS remained between 20FPS 

and 40FPS. Changing from local processing to receiving positional data about each object over poor 

network conditions will have placed too much strain on the client device in this instance, leading to a 
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low FPS rate. This is a good example of an instance in which there was an unexpected result, which 

can occur regardless of set-up. Having such a low FPS would negatively affect the QoS and therefore 

the QoE, therefore the proposed architecture would decide to distribute the data elsewhere provided 

there are enough resources available and network conditions allow. In Figure 5.38, with a 10% packet 

loss, distribution occurred at 44 seconds. This variation presents much better results in comparison to 

Figure 5.37. However, this will be due to the increased packet loss leading to less data being received 

by the client device which has less processing to do and therefore can produce a higher FPS. A similar 

effect is shown in Figure 5.39, with a 15% packet loss distribution occurred at 45 seconds. Even less 

data is received by the client device eventually leading to an increased FPS. Packet Loss is measured 

within the proposed architecture due to potential results such as these, a high FPS would provide a 

high QoS and therefore high QoE, however, if there is also a high Packet Loss then this will result in a 

high FPS. By making sure that the Packet Loss is low, situations such as these false positives can be 

avoided. 

These trends show that even a low packet loss percentage can have a large effect on the client device 

when receiving data from another network node. Increasing this percentage further leads to a false 

positive as even though they have higher FPS rates, less data is received by the client device. 

EFFECT OF DISTRIBUTION ON CPU USAGE OVER AN INCREASING PACKET LOSS 

Figures 5.40, 5.41 and 5.42 show the effect an increasing packet loss percentage has on the clients’ 

CPU usage. 

   

Figure 5.40. CPU % when distributing over a 

network with 5% Packet Loss. Distribution 

occurred at 40 seconds. 

Figure 5.41. CPU % when distributing over a 

network with 10% Packet Loss. Distribution 

occurred at 44 seconds. 
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Figure 5.42. CPU % when distributing over a network with 15% Packet Loss. Distribution occurred at 

45 seconds. 

In Figure 5.40, with a 5% packet loss, distribution occurred at 40 seconds. When there is a single sharp 

decline in FPS for only a second, this can sometimes reflect in the CPU usage as a small peak. 

Distribution occurred here because the FPS dropped dramatically enough to cause the average FPS to 

be below 70FPS. At 41 seconds the CPU usage peaks to 100% and does not move from here. When 

comparing Figure 5.37 and Figure 5.40 it is seen that the increase in CPU usage is slightly after the 

drop in FPS. A sudden and large drop in FPS caused distribution which then caused an increase in CPU 

usage. Similar to Figure 5.37, this is a good example of an unexpected result, and should this occur, 

the proposed architecture would seek assistance for this client elsewhere. In Figure 5.41, with a 10% 

packet loss, distribution occurred at 44 seconds. Similarly, to the FPS, these are much better results 

when compared to the lower packet loss percentage. This is due to the lesser amount of data being 

received by the client which leads to better processing values. Figure 5.42, with a 15% packet loss, 

sees distribution at 45 seconds and as in Figure 4.45, there is a better CPU usage presented when 

comparing these to Figure 5.40. 

These trends draw the same conclusion as the FPS graphs as even a low packet loss percentage can 

have a large effect on the client. By receiving less data each time, there is more of a likelihood of 

obtaining better results. These better results are not a true reflection of the type of experience that 

would be had by the user and why packet loss is measured within the proposed architecture. If it were 

not measured, there would be a high QoS but low QoE as the FPS would remain high but the objects 

on screen would not be moving as positional data for them is not received. By having packet loss in as 

a QoS measure, there is a greater assurance of providing a high QoE. 
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EFFECT OF DISTRIBUTION ON FPS OVER AN INCREASING LATENCY 

Another network condition tested is latency. The latency variations used were 100ms, 200ms and 

300ms. Figures 5.43, 5.44 and 5.45 show the effect an increasing latency has on the clients FPS. 

   

Figure 5.43. FPS when distributing over a 

network with 100ms latency. Distribution 

occurred at 38 seconds. 

Figure 5.44. FPS when distributing over a 

network with 200ms latency. Distribution 

occurred at 37 seconds. 

 

 

Figure 5.45. FPS when distributing over a network with 300ms latency. Distribution occurred at 40 

seconds. 

In Figure 5.43, with a 100ms latency, distribution occurred at 38 seconds. In this instance, it can been 

seen that distribution of processing helps to increase the average FPS again. By having another 

network node handle the physics processes and update the client with positional data, the FPS of the 

client can remain above 60FPS even with an increasing number of objects. In Figure 5.44, with a 200ms 

latency, distribution occurred at 37 seconds. In this instance, distribution of processing did not help 

increase the FPS, however, it did help to keep it from reducing further. Increasing the latency has led 
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to a larger variation in FPS after distribution, this is due to the later arrival of the positional data. In 

Figure 5.45, with a 300ms latency, distribution occurred at 40 seconds. A large drop in FPS, which 

brought down the average below 70FPS, caused distribution to occur. By distributing data, there is no 

improvement in FPS, and in this case, the architecture would seek to distribute the data elsewhere to 

improve the QoS provided. 

These trends show that latency will have an increasingly worse effect on FPS when distributing data 

as seen by the difference in results in Figures 5.43 and 5.44.  

Comparing these results to the packet loss variation (Figures 5.37 – 5.39), this method of physics 

distribution is more tolerable of a varying latency than packet loss. The same conclusion of data not 

arriving affecting the FPS and providing a false positive cannot be drawn here. From these results it 

can be seen that increasing latency has the predicted effect of lowering FPS. Further comparison of 

these results to the full distribution of AI over an increasing latency (Figures 5.11 – 5.13) show that a 

different ruleset will be needed for physics as the FPS declines in comparison to an increase for AI over 

an increasing latency. 

EFFECT OF DISTRIBUTION ON CPU USAGE OVER AN INCREASING LATENCY 

Figures 5.46, 5.47 and 5.48 show the effect an increasing latency has on the clients’ CPU usage. 

   

Figure 5.46. CPU % when distributing over a 

network with 100ms latency. Distribution 

occurred at 38 seconds. 

Figure 5.47. CPU % when distributing over a 

network with 200ms latency. Distribution 

occurred at 37 seconds. 

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

50
0

50
0

0
20
40
60
80

100

0 4 8 1216202428323640444852566064

Physics Object Count

CP
U

 %

Elapsed Time in Seconds

0 20 80 12
0

16
0

20
0

26
0

30
0

36
0

42
0

46
0

50
0

50
0

0
20
40
60
80

100

0 4 8 1216202428323640444852566064

Physics Object Count

CP
U

 %

Elapsed Time in Seconds



105 
 

 

Figure 5.48. CPU % when distributing over a network with 300ms latency. Distribution occurred at 40 

seconds. 

In Figure 5.46, with a 100ms latency, distribution occurred at 38 seconds. Once distribution occurs, 

there is an improvement in the CPU usage as its average begins to decrease. This latency seems to 

have little effect on the CPU as the graph is a similar shape to Figure 5.36 in which no distribution took 

place. In Figure 5.47, with a 200ms latency, distribution occurred at 37 seconds. Similar to the 

difference in FPS graphs of the same latencies, a 200ms latency leads to no improvement in CPU usage 

however the CPU usage, on average, no longer increases. In Figure 5.48, with a 300ms latency, 

distribution occurred at 40 seconds. Shortly before distribution, the CPU usage peaks at 100% usage 

and once distribution begins there is no change in the CPU. This constant 100% usage results in the 

low FPS found in Figure 5.45 and will have been caused by a combination of an under-resourced VM, 

poor network conditions and local and distributed processing of physics objects. 

These trends show that latency has a more traditional effect on CPU usage in comparison to packet 

loss in the sense that as the network conditions worsen so too does the CPU % usage. 

With the full distribution of the physics objects, when data is transmitted over a good quality network, 

there is an improvement in both FPS and CPU usage. However, once the network conditions begin to 

change, there is an increasingly deteriorating effect on both the FPS and CPU. Increasing the packet 

loss percentage of the network produces the worst results as less data is being received by the client 

and giving false-positive results as a high FPS is recorded but fewer objects are moving on screen. 

Increasing latency has a better effect in comparison to packet loss as at the lowest latency tested there 

is an improvement in FPS as well as the CPU usage. Increasing latency further leads to a halt in the 

decline of FPS and increase in CPU. If data could be distributed over two different networks, one 

affected by packet loss and the other affected by latency then the network with the latency issue may 

be chosen provided the latency value is not too high. The proposed architecture measures both 
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latency and packet loss to avoid a poor performance and false high performance due to network 

issues. Decisions would be made to avoid this and to assist clients found in this situation. 

DISCUSSION 

By fully distributing the physics objects, there is a good increase in FPS and CPU usage viewed along a 

good network connection as seen in Figures 5.35 and 5.36. Like the full distribution of AI objects, 

Experiment 1, by creating poor network conditions, these improvements diminish. An increasing 

latency is seen to cause both the FPS and CPU to decline in performance. An increasing packet loss 

has the opposite effect as both the FPS and CPU improve; this is a false positive. Data is either received 

at a slower rate or not at all leading to less processing being carried out and therefore higher 

performance. In the case of these experiments, a 100ms latency could be the maximum latency 

accepted by a user as both the FPS and CPU usage improved slightly and remained constant once 

distribution occurred. With regards to packet loss, as seen from the results, a percentage of less than 

5% could be accepted as to have 5% or above would greatly affect performance. This could be explored 

in future work. 

5.3.6 PARTIAL DISTRIBUTION OF PHYSICS OBJECTS (EXPERIMENT 5) 

This experiment is very like that of the Partial Distribution of AI Objects experiment, the only 

difference being that Physics processing is distributed here. In this experiment, 10 Physics objects are 

spawned every second up to a maximum amount of 500 objects.  

It is believed with this experiment, that although over a good network the results may not be as high, 

over a poor network, performance should be better. As seen from the full distribution of Physics 

objects the network affected the results in a big way, it is predicted that with less information to send, 

the FPS and CPU levels will not be affected as much. However, it also must be taken into consideration 

that some objects will still be handled locally which will have a bigger effect on the FPS and CPU in 

comparison to if they were distributed. 

EFFECT OF PARTIAL DISTRIBUTION ON AN UNAFFECTED NETWORK 

Figures 5.49 and 5.50 show the partial distribution of Physics objects over a good network. In this 

instance, distribution occurred at 42 seconds. A large drop in FPS brought the average below 70FPS 

resulting in the call for distribution. A few seconds after distribution there is another large drop in FPS. 

This drop is reflected in the CPU usage in Figure 5.50 which sees a usage of 100% for a short period. 

Soon after this drop, the FPS begins to recover again however it becomes highly varied, the CPU is 

similarly affected. This drop in FPS, peak in CPU usage and high variation after distribution is due to 

the local processing of the Physics objects combined with the processing of incoming data and 
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applying it to the corresponding Physics objects causing the FPS to fluctuate between 40-80FPS at 

times. 

 

Figure 5.49. FPS against an increasing number of Physics objects. Distribution occurred at 42 seconds. 

 

Figure 5.50. CPU % against an increasing number of Physics objects. Distribution occurred at 42 

seconds. 

EFFECT OF PARTIAL DISTRIBUTION ON FPS OVER AN INCREASING PACKET LOSS 

This method of distribution was also tested over six different network variations: three different 

packet loss percentages (5%, 10% and 15%) and three different latencies (100ms, 200ms and 300ms). 

Figures 5.51, 5.52 and 5.53 show the effect an increasing packet loss percentage has on the clients 

FPS. 
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Figure 5.51. FPS when distributing over a 

network with 5% Packet Loss. Distribution 

occurred at 29 seconds. 

Figure 5.52. FPS when distributing over a 

network with 10% Packet Loss. Distribution 

occurred at 50 seconds. 

 

Figure 5.53. FPS when distributing over a network with 15% Packet Loss. Distribution occurred at 41 

seconds. 

In Figure 5.51, with a 5% packet loss, distribution occurred at 29 seconds. The trend shows that even 

with distribution the FPS continues to fall but then improves by 20FPS around 20-25 seconds later as 

no more objects are spawned. In Figure 5.52, with a 10% packet loss, distribution occurred at 50 

seconds. Shortly after assistance is provided, the FPS improves. However, in this instance, as 

distribution occurred so late there were no physics objects passed off for processing elsewhere so 

here all of the objects were processed locally. The improvement in FPS could be due to the end of the 

spawning of the objects. In Figure 5.53, with a 15% packet loss, distribution occurred at 41 seconds. 

The need for distribution was after 380 physics objects had spawned. However, there will still be 

objects passed off for processing. In this case, there is an improvement in FPS a short time after 

distribution. 
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The trends here show the effect packet loss has on FPS when partially distributing data. An 

improvement is seen in each of the results. However, this only occurs whenever the spawning of 

objects has been stopped. Distribution occurred later than expected in Figures 5.52 and 5.53 and the 

distribution in Figure 5.51 had no effect on the FPS which only improved when there were no longer 

any more objects to spawn. 

EFFECT OF PARTIAL DISTRIBUTION ON CPU USAGE OVER AN INCREASING PACKET LOSS 

Figures 5.54, 5.55 and 5.56 show the effect an increasing packet loss percentage has on the clients’ 

CPU usage. 

   

Figure 5.54. CPU % when distributing over a 

network with 5% Packet Loss. Distribution 

occurred at 29 seconds. 

Figure 5.55. CPU % when distributing over a 

network with 10% Packet Loss. Distribution 

occurred at 50 seconds. 

 

Figure 5.56. CPU % when distributing over a network with 15% Packet Loss. Distribution occurred at 

41 seconds. 

In Figure 5.54, with a 5% packet loss, distribution occurred at 29 seconds. Similar to the counterpart 

FPS graph, distribution had little to no effect on the CPU usage as the trend shows it continuing to 

0 40 10
0

16
0

22
0

28
0

34
0

40
0

46
0

50
0

50
0

50
0

50
0

0
20
40
60
80

100

0 5 1015202530354045505560657075

Physics Object Count

CP
U

 %

Elapsed Time in Seconds

0 60 14
0

20
0

28
0

36
0

42
0

48
0

50
0

50
0

50
0

50
0

50
0

0
20
40
60
80

100

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84

Physics Object Count

CP
U

 %

Elapsed Time in Seconds

0 20 60 12
0

16
0

20
0

26
0

32
0

38
0

44
0

50
0

50
0

50
0

50
0

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Physics Object Count

CP
U

 %

Elapsed Time in Seconds



110 
 

increase to its maximum of 100% usage. There seems to a small effect in that for a few seconds after 

assistance is provided the CPU usage remains around 60% before increasing. The low FPS of Figure 

5.51 is reflected here as the CPU usage is very high. In Figure 5.55, with a 10% packet loss, distribution 

occurred at 50 seconds. In this instance, no physics objects were passed off as distribution was asked 

for when 500 (the maximum used) objects had spawned therefore the CPU usage remains high. The 

packet loss of the network had no effect on this experiment as no data was transmitted over it. In 

Figure 5.56, with a 15% packet loss, distribution occurred at 41 seconds. Distribution was requested 

for later than expected. However, some 120 objects were handled away from the client meaning 380 

were processed locally. The high packet loss working on the 120 objects combined with the local 

processing of 380 objects leads to a better result in comparison to Figure 5.54. However, as with 

previous experiments, it is seen that a high packet loss will provide better results on paper. On screen, 

objects will not move as data is not received meaning no processing is taking place leading to better 

overall results. 

With this method of distribution, it performs poorly over a low packet loss percentage. This is evident 

in Figures 5.51 and 5.54 as, with a rough 50/50 split in processing distribution, there is a constant low 

FPS and high CPU usage. Comparing the full distribution results to these, Figures 5.37 and 5.40 (5% 

packet loss), neither method is effective at a low percentage. With either, the most that can be 

attained is a levelling out of FPS and CPU usage. 

EFFECT OF PARTIAL DISTRIBUTION ON FPS OVER AN INCREASING LATENCY 

Another network condition tested is latency. The latency variations used were 100ms, 200ms and 

300ms. Figures 5.57, 5.58 and 5.59 show the effect an increasing latency has on the clients FPS. 
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Figure 5.57. FPS when distributing over a 

network with 100ms latency. Distribution 

occurred at 10 seconds. 

Figure 5.58. FPS when distributing over a 

network with 200ms latency. Distribution 

occurred at 9 seconds. 

 

Figure 5.59. FPS when distributing over a network with 300ms latency. Distribution occurred at 49 

seconds. 

In Figure 5.57, with a 100ms latency, distribution occurred at 10 seconds. The average value of the 

previous 3 seconds fell below the 70FPS limit put in place, therefore, assistance was required. Based 

on the data series, the average FPS improves until around 35 seconds and then fluctuates between 

20FPS and 40FPS due to the increased amount of data being received. The last 20 seconds of this 

experiment see the FPS improve again as there are no more physics objects created. In Figure 5.58, 

with a 200ms latency, distribution occurred at 9 seconds. The data series and trendline here are almost 

the same as Figure 5.57 as distribution sees an improvement to FPS for a while before falling and then 

increasing towards the end of the experiment. In Figure 5.59, with a 300ms latency, distribution 

occurred at 49 seconds. Before this point, the FPS was on a slow decline which then improved slightly 

once assistance was provided. 
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The trends here show that there is an improvement in FPS once objects stop spawning as the creation 

of 10 physics objects every second consumes the resources of the poorly resourced VM. The most 

noticeable improvement occurs in Figure 5.57 with the lowest latency and with the worst results 

shown in Figure 5.59, this was expected. In the 300ms latency experiment, distribution occurred very 

late, and only 60 of the objects were passed off to another node while the other 440 were processed 

locally, this lead to a better FPS over the other experiments. 

EFFECT OF PARTIAL DISTRIBUTION ON CPU USAGE OVER AN INCREASING LATENCY 

Figures 5.60, 5.61 and 5.62 show the effect an increasing latency has on the clients’ CPU usage. 

   

Figure 5.60. CPU % when distributing over a 

network with 100ms latency. Distribution 

occurred at 10 seconds. 

Figure 5.61. CPU % when distributing over a 

network with 200ms latency. Distribution 

occurred at 9 seconds. 

 

Figure 5.62. CPU % when distributing over a network with 300ms latency. Distribution occurred at 49 

seconds. 

In Figure 5.60, with a 100ms latency, distribution occurred at 10 seconds. This graph is very varied as 

there are many peaks and drops. The trend shows that when assistance is provided, there is a small 

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

50
0

50
0

50
0

50
0

0
20
40
60
80

100

0 5 1015202530354045505560657075

Physics Object Count

CP
U

 %

Elapsed Time in Seconds

0 40 10
0

16
0

22
0

30
0

38
0

46
0

50
0

50
0

50
0

50
0

50
0

0
20
40
60
80

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Physics Object Count

CP
U

 %

Elapsed Time in Seconds

0 60 12
0

18
0

24
0

30
0

38
0

44
0

50
0

50
0

50
0

50
0

50
0

0
20
40
60
80

100

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84

Physics Object Count

CP
U

 %

Elapsed Time in Seconds



113 
 

improvement, on average, of the CPU usage which then increases to almost 100% usage. As seen from 

the FPS results of this experiment there is a small improvement in FPS towards the end; the same 

happens with the CPU usage. This is due to the end of the spawning of physics objects. In Figure 5.61, 

with a 200ms latency, distribution occurred at 9 seconds. In this instance, it takes almost 10 seconds 

before there is a small improvement in the CPU usage which is not maintained as the average almost 

peaks at 100% usage similar to Figure 5.60. The trend of this graph also shows an improvement in 

usage towards the end of the experiment again due to the end of object creation. In Figure 5.62, with 

a 300ms latency, distribution occurred at 49 seconds. Assistance is provided late here and the majority 

of the objects, 440 of them, are processed locally while only 60 are passed off. Once assistance is 

provided there is a drop of roughly 20% in CPU usage. This drop is a combination of the end of object 

creation and not having to process as much incoming data. 

The trends here show that, similar to the FPS graphs, once the objects stop spawning, CPU usage 

begins to improve again as resources are freed up. It is better to compare Figures 5.60 and 5.61 here 

as the results of Figure 5.62 are very different. Increasing the latency increases the likelihood of poorer 

performance in relation to CPU usage. As more objects continue to spawn the CPU usage will suffer, 

however, once this subsides the CPU will begin to improve again. 

DISCUSSION 

Comparing the results of this experiment to experiment 4, it seems that complete distribution of all 

objects performs better than partial distribution. It was predicted that, with this method, there would 

be better client performance when distributing over poor network conditions. This prediction was 

false as the partial distribution of objects leads to a greater variation in client performance regardless 

of network condition. At the highest packet loss and latency each of FPS and CPU usage seemed to 

show improvement. However, this was due to data either taking too long to be received and therefore 

processed or it not being received at all. 

5.3.7 SUMMARY OF DISTRIBUTION 

The purpose of these distribution experiments is not to show that data can be distributed but how it 

can be distributed and how these methods perform over varying network conditions. Based on these 

results it can then be determined which method would be best utilised within the architecture. Only 

AI and Physics processes have been experimented with.  

AI distribution was tested over three variations, and these were a full distribution in which all objects 

were handled off-client, partial distribution in which only some objects were handled off client and 

the sending of path data in which all objects were handled off-client but in a different way. The full 
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and half distribution methods involved updating the client with constant positional data on each 

object while the sending of path data involved updating the client on a list of waypoints for each object 

to visit, this data was much less frequent in transmission. 

Physics distribution was tested over two variations, and these were a full distribution and half 

distribution. These approaches were the same as the AI examples as the client was updated with 

positional data on each object that was being processed off-client. 

Each of these five experiments were then tested over seven network variations: An unaffected 

network, packet loss percentages of 5%, 10% and 15% and latencies of 100ms, 200ms and 300ms. 

Empirical testing found these variations in packet loss and latency to provide the greatest variation in 

results. Each experiment has the FPS and CPU usage recorded.  

By far the best approach used, regardless of AI or Physics distribution is the full distribution method. 

With this method, when the average FPS fell below 70FPS, all objects currently in the game world and 

those still to be spawned would be handled by another network node. This other network node then 

constantly updated the client on the current position of each object. Over a good network, the 

improvement was very visible as seen from the results as both the FPS and CPU improves. With the 

other approaches of half distribution and the sending of data for AI, the best-case scenario that was 

viewed was the decline of FPS and increase in CPU usage to stop and for each to level out. Both packet 

loss and latency are metrics used within the proposed architecture with both helping to make the 

decision as to where processing can be distributed. 

By fully distributing the AI in experiment 1, there is a good increase in FPS and CPU usage when 

distributed along a good network connection. By creating poor network conditions, these 

improvements diminish.  With the poorest of network conditions, the FPS hits low peaks unacceptable 

to users as does the CPU.  

Partially distributing the AI objects, experiment 2, saw no improvement to overall FPS or CPU usage 

even over an unaffected network. The local processing of some objects and the distribution of others 

is a combination that had a negative effect on the performance of the client. When compared with 

experiment 1, distributing all the objects produced better results in comparison to partial distribution. 

When creating poor network conditions, the best situation that could be hoped for with this method 

of distribution is that the decrease in FPS and increase in CPU usage is slowed and levels out. As either 

packet loss or latency increases both the FPS and CPU will drop in performance. At the highest packet 

loss and latency tested, each of FPS and CPU usage seemed to show improvement, however, this was 
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due to data either taking too long to be received and therefore processed or it not being received at 

all. 

The distribution of AI processing by transmitting path data from assisting node to client produced 

results poor enough that it was concluded not to test over a network affected by packet loss or latency. 

By fully distributing the physics objects, there is a good increase in FPS and CPU usage viewed along a 

good network connection as seen in Figures 5.35 and 5.36. Similar to the full distribution of AI objects, 

experiment 1, by creating poor network conditions, it can be seen that these improvements diminish.   

Similar to the comparison of experiments 1 and 2, comparing the results of experiment 4 to 

experiment 5 sees that complete distribution of all physics objects performs better than partial 

distribution. It was predicted that, with partial distribution, there would be better client performance 

when distributing over poor network conditions. This prediction was false as the partial distribution 

of objects leads to a greater variation in client performance regardless of network condition.  

The poorest of network conditions tested in these experiments see both the FPS and CPU usage 

perform well; this is a false positive as data is either received at a slower rate or not at all leading to 

less processing being carried out and therefore higher performance. It is for this reason that both 

latency and packet loss percentage are monitored within the proposed architecture. 

5.4 CLIENT ADAPTATION 

This is the last resort of the proposed architecture in that if a client requires assistance and there are 

no available network resources then it must reduce its processing. Regarding AI, Physics and Graphics, 

this takes the form of reducing the number of AI objects, Physics Objects or particles in a particle 

effect. For this experimental scenario, there are three sets of results: AI, Physics and Graphics. For 

each of the experiments of this scenario there are results on the FPS, CPU and GPU of the client device. 

It is possible to use GPU results for this scenario as there is no VM involved, these experiments were 

run on a PC. 

5.4.1 EXPERIMENTAL SETUP 

This set of experiments were run on a PC with:  

• 8GB Memory 

• I7-3770/3.4Ghz 

• 4 Core CPU 
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• Intel HD Graphics 

The experiments were created in Unity3D version 5. The FPS is calculated within the game while the 

CPU and GPU percentages are retrieved from MSI’s Afterburner. Figure 5.63 is adapted from Figure 

3.2 found in the Architecture Chapter. It details the part of the decision tree that this scenario focuses 

on which is Client Adaptation. The Client will be forced to reduce the AI, Physics or Graphics presence 

on screen to improve the QoE provided as, for these experiments, there are no resources available on 

the network to assist with and therefore the client must adapt. 

 

Figure 5.63. Client Adaptation 

Figure 5.63 begins with the client receiving an RPC informing it to begin the self-adaptation process. 

The client will then begin to reduce the element, from AI, Physics and Graphics, which has the 

highest number and lowest priority to improve the QoS. This process continues until there is an 

improvement in the FPS, after which the architecture continues to monitor the FPS. If the FPS is low, 

then the architecture begins again from the start of the decision tree found in Chapter 3, Figure 3.2. 

If there is a game scene in which all objects within are of a high priority, then the client will reduce 

the current level of detail, however, if this is already low or the reduction has no effect on the FPS 

then objects must be removed. The paper-based analysis in section 4.3.1 presents how an element 

would be chosen. 

The experiments in this section show the improvement in a client when each element is reduced. As 

the paper-based analysis covers the selection of the element, this scenario focuses on each element 

increasing over time and then being reduced, showing the improvement to the system regarding 

performance. Each element in its experiment is seen as having the lowest priority with the highest 

number of objects. Therefore, it will be reduced as seen from the results in Table 4.1. Due to the 

higher resource availability of the PC that these experiments were run on, 30FPS was chosen as the 

lowest limit for the frame rate. 30 FPS has been chosen as it is the framerate which all companies set 

as the minimum target for their games. Once the average FPS, over 3 seconds, falls below 30 FPS, 
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then the reduction in the element will begin. The reduction is slow to find the optimum number of 

objects for 60 FPS. A rate of 60 frames per second is the main target of games companies.  

5.4.2 CLIENT REDUCTION OF AI OBJECTS (EXPERIMENT 6) 

In this experiment, the client has an increasing number of AI objects. Twenty AI objects are created 

every second to have a visible effect on the frame rate. As seen from the FPS in Figure 5.64, as the 

number of objects increases, the FPS decreases. The FPS is monitored every second with the average 

being taken of the previous 3 seconds. Once the average FPS falls below 30, then the reduction in the 

number of AI objects begins.  

Figure’s 5.64, 5.65 and 5.66 show the FPS, CPU usage and GPU usage as the client self-adapts to a 

situation focused entirely on AI objects. 

   

Figure 5.64. FPS of a client self-adapting to AI. 

The process began at 83 seconds. 

Figure 5.65. CPU usage of a client self-adapting 

to AI. The process began at 83 seconds. 

 

 

Figure 5.66. GPU usage of a client self-adapting to AI. The process began at 83 seconds. 
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Figure 5.64 shows a declining FPS rate as the number of AI objects increases. At 83 seconds the average 

FPS is low enough for self-adaptation to begin and as AI objects are removed from the scene, the FPS 

improves. Figure 5.65 shows the CPU percentage usage during this experiment. The most it can be 

seen to vary is around 4%. This shows that this experiment had little to no effect on the CPU usage of 

the PC. Figure 5.66 shows a declining and then improving GPU usage. The GPU percentage usage 

remains at 0% for a considerable time. This is interesting as it would be expected that with a declining 

FPS the GPU usage would increase as frames become harder to render. Looking at forums such as 

Tom’s Hardware [88] and Reddit [89], this seems to be quite a common issue with PC games. Fixes 

include purchasing a new CPU cooler as the CPU can overheat causing the GPU to crash and plugging 

the monitor into the graphics card instead of the motherboard. A crash is a worst-case scenario, as 

seen from Figure 5.66, by reducing the number of AI objects on screen the GPU begins to recover. The 

spike along the 0% line is the GPU attempting to recover, only when the object count is low enough 

can the GPU begin to perform again. 

5.4.3 CLIENT REDUCTION OF PHYSICS OBJECTS (EXPERIMENT 7) 

In this experiment, the client has an increasing number of physics objects. Fifty physics objects are 

created every second to have a visible effect on the frame rate. As seen from the FPS graph, as the 

number of physics objects increases, the FPS decreases. The FPS is monitored every second with the 

average being taken of the previous 3 seconds. Once the average FPS falls below 30 then the reduction 

in the number of physics objects can begin.  

Figure’s 5.67, 5.68 and 5.69 show the FPS, CPU usage and GPU usage as the client self-adapts to a 

situation focused entirely on Physics objects. 

   

Figure 5.67. FPS of a client self-adapting to 

Physics. The process began at 43 seconds. 

Figure 5.68. CPU usage of a client self-adapting 

to Physics. The process began at 43 seconds. 
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Figure 5.69. GPU usage of a client self-adapting to Physics. The process began at 43 seconds. 

Figure 5.67 shows a declining FPS rate as the number of Physics objects increases. At 43 seconds the 

average FPS is low enough for self-adaptation to begin and as Physics objects are removed from the 

scene, the FPS improves. However, as the reduction rate is slow, the FPS remains under 30 for almost 

20 seconds. Once the number of objects falls under 2000, then the FPS begins to improve again. In 

this situation, the rate of reduction would need to increase over time for the client to be able to 

continue gaming at an acceptable FPS sooner. Figure 5.68 shows the CPU percentage usage during 

this experiment. The most it can be seen to vary is around 4%. This shows that this experiment had 

little to no effect on the CPU usage of the PC. Figure 5.69 shows a declining and then improving GPU 

usage. This is similar to the GPU result of the AI portion of this experiment as the GPU remained at 0% 

usage for a considerable amount of time due to the high number of physics objects. However, as the 

number of Physics objects decreases, the GPU usage recovers. The three spikes along the 0% line are 

the GPU attempting to recover, only when the number of physics objects is low enough can the GPU 

recover again. 

5.4.4 CLIENT REDUCTION OF GRAPHICS (EXPERIMENT 8) 

In this experiment, the client has three particle systems. A particle system is a component of many 

games that utilises a large number of small images to simulate certain kinds of “fuzzy phenomena” 

such as a fire [90]. Testing showed that a huge number of particles was required to slow the system 

down. Therefore, the number of particles was increased per update cycle. Each update cycle saw each 

particle system increase the number of particles it emits by 100 (total of 300 each cycle). As seen from 

the FPS graph, as the number of particles increases, the FPS decreases. The FPS is monitored every 

second with the average being taken of the previous 3 seconds. Once the average falls below 30 FPS, 

then the reduction in the number of particles onscreen can begin.  

15
00

18
00

21
00

20
74

20
33

19
85

19
36

18
88

18
55

18
55

18
55

18
55

18
55

0

20

40

60

80

31 37 43 49 55 61 67 73 79 85 91 97 10
3

Physics Object Count

GP
U

 %
Elapsed Time in Seconds



120 
 

Figure’s 5.70, 5.71 and 5.72 show the FPS, CPU usage and GPU usage as the client self-adapts to a 

situation focused entirely on Graphics in the form of particle effects. 

   

Figure 5.70. FPS of a client self-adapting to 

Graphics. The process began at 78 seconds. 

Figure 5.71. CPU usage of a client self-adapting 

to Graphics. The process began at 78 seconds. 

 

Figure 5.72. GPU usage of a client self-adapting to Graphics. The process began at 78 seconds. 

Figure 5.70 shows a declining FPS rate as the number of particles increases. At 78 seconds the average 

FPS is low enough for self-adaptation to begin and as Graphics objects are removed from the scene, 

the FPS improves. Similar to experiment 7, the reduction rate is slow however the FPS climbs steadily 

and does not remain low for an extended period such as in Figure 5.64. In this situation, the reduction 

rate may be increased slightly to allow for a higher framerate sooner. Figure 5.71 shows the CPU 

percentage usage during this experiment. For the majority of the time, the CPU percentage does not 

vary much between 15% and 25%. At around 124 seconds there is a spike sending the percentage 

above 35%, this then settles as soon as it appears, this could be due to a background process. The 

same can be said of the increase to just below 35% towards the end of the experiment. However, 

another suggestion is that the high functioning GPU is the cause. Figure 5.72 shows a GPU usage that 

does not vary much as it is constantly above 93%. Some correlation can be seen between this and the 
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FPS in Figure 5.70. The result is very different from the previous two experiments in which the GPU 

usage fell to 0% in both. This may be because the particle systems were easier for the GPU to maintain 

in comparison to AI and Physics processes. 

5.4.5 SUMMARY OF SELF-ADAPTATION 

The purpose of the self-adaptation experiment set was to show how a client would react when under 

pressure from an increasing amount of AI objects, Physics objects and Graphics particles. Self-

adaptation began when the average FPS fell below 30 FPS, and the number of objects on screen was 

reduced. The reduction of these objects was stopped once the average FPS was 60 FPS or above. 

The AI self-adaptation had 20 AI objects spawned every second to place an increasing amount of 

pressure on the system. Each of these objects would be pathfinding their way throughout the game 

world. Once the average FPS fell below 30 FPS, the self-adaptation process began in which the number 

of objects began to reduce at a rate of between 2 to 5 objects per second. The improvement in FPS 

was immediate and the CPU usage was unaffected during this experiment as the usage percentage 

varied by around 3%. The GPU usage shows a period of 0% usage as the GPU crashes for a time as the 

AI objects increase. Once the number of objects reaches a more acceptable level the GPU begins to 

function again. 

The Physics self-adaptation had 50 Physics objects spawned per second. Each of these objects had 

force applied to them upon creation causing them to immediately interact with the game world. Once 

self-adaptation began, the rate of reduction was on average eight objects per second. In this instance, 

the FPS did not immediately improve. With a larger number of objects, the rate of reduction would 

need to be higher to see a better turn-around. The CPU usage of this experiment reacted similarly to 

the AI in that it remained unaffected. The GPU usage also reacted in a similar fashion to the AI 

experiment as it too crashed for a period. Both the FPS and GPU usage drop quickly here, therefore, a 

slower spawn rate would have benefitted the results. 

The Graphics self-adaptation had on average 1100 particles created each second until self-adaptation 

was required at which point the rate of reduction was around 360 particles per second. The FPS here 

does not show an immediate improvement but one over time. The large spawn rate caused the FPS 

to drop quickly, however, the rate of reduction was much slower causing a slow return to an 

acceptable FPS level. The CPU usage here provided the most varied results as well as an on average 

higher usage in comparison to the previous self-adaptation experiments. Reduction in the number of 

particles shows a small drop in the CPU usage with a slight increase of around 10% towards the end. 
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The self-adaptation process is the fail-safe in the proposed architecture. This process is only required 

if the client needs assistance and cannot receive it from a server or other network node. The objects 

are reduced at a low rate so that the client can find the maximum number of objects for a high 

framerate as a fast reduction would mean a lesser number of objects and possible reduction in the 

immersion of the game. It would be ideal to have as many objects as possible on the screen to help 

with game immersion for example if a client cannot process 100 birds in the sky but can process 50 

then a reduction of either 5 or 10 objects per second would leave 50 in the game. If the number of 

objects were reduced at a faster rate, for example, 20 objects per second, the number of birds would 

be much lower, potentially affecting the game experience. Self-adaptation allows the user to continue 

playing their game even when there are no resources available for the distribution of data. 

5.5 DISCUSSION 

Chapter 5 has focused on the results of experiments created to support the architecture proposed in 

Chapter 3. Section 5.3 contains five experiments which focus on several methods of distribution for 

both AI and Physics tasks; these are also tested against various network conditions to find the best 

distribution method for the game element. Section 5.4 contains three experiments which explore the 

self-adaptation component of the proposed architecture. This component only executes when there 

are no resources available on the network. Therefore, the client will begin reducing an element. The 

decision of which element to reduce is the same as which element to ask for assistance with in section 

4.3. 

The aim of the experiments in section 5.3 is to explore methods of distribution for both AI tasks and 

Physics tasks and to determine which would perform best under a range of network conditions. Three 

forms of processing distribution were investigated for AI; full distribution in which all AI objects are 

handled elsewhere, partial distribution in which a portion of the AI objects are handled elsewhere 

while others are handled locally, and the sending of path data in which the path each object had to 

follow was calculated elsewhere and transmitted to the client. Two forms of processing distribution 

were investigated for physics and these were full distribution and partial distribution, both of these 

methods operated in the same way as the AI methods of the same name. For each form, there are 

seven different network variations used: an unaffected network, packet loss variations of 5%, 10% and 

15% and latency variations of 100ms, 200ms and 300ms. It was discovered that the best approach for 

distribution of both the AI and Physics tasks was the full distribution method. With this method, when 

the average FPS fell below 70FPS then all objects currently in the game world and those still to be 

spawned would be handled by another network node. This other network node then constantly 
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updated the client on the current position of each object. This approach to distribution had the best 

performance regardless of network condition. 

Section 5.4 saw the exploration of the self-adaptation component and the benefit that this would have 

to the client in a situation where there would be no possibility of distribution. This process will begin 

if a client receives an RPC from the server informing it to self-adapt as explored in section 4.3. Each 

game element from AI, Graphics and Physics was self-adapted separately, as it would occur within this 

architecture. Each experiment has shown an improvement in the overall performance of the client 

once the process begins. There is a slow rate of reduction in the number of objects to find the highest 

number of objects that can still be on screen for a high framerate. By keeping as many of the original 

objects as possible, there is less likelihood of reducing the overall game immersion. However as seen 

from experiments 7 and 8, the rate of reduction would benefit from increasing over time instead of 

staying at a flat rate, this would lead to a quicker improvement in the performance of the client. 

Altogether these experiments prove the validity of the architecture proposed in chapter 3. This 

architecture utilises resources widely available on the network to improve the QoS and therefore the 

QoE of a client’s device. Decisions are made by both the struggling client and server to facilitate this 

improvement in QoE. A fail-safe has been included in the architecture in the form of self-adaptation 

which will help the client improve its QoS when the distribution of processing is not possible. 
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CHAPTER 6 CONCLUSION 
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6.1 INTRODUCTION 

The overall aim of this work was to research and develop an architecture that would improve a 

user’s QoE of a network aware game by improving the QoS provided through the utilisation of 

distributed resources. The architecture developed combined cloud and fog computing as well as a 

self-adaptation component. The background research of the surrounding areas describes the 

benefits and drawbacks of both cloud and fog computing. Much of the research focused on adding 

hardware to a network to facilitate either the cloud or fog, therefore providing justification for this 

research which focuses on utilising hardware that is already present within the network. 

The testing of this unique combination of cloud computing, fog computing and a self-adaptation 

component fell into three areas: 

1. Decision-Making 

2. Distribution 

3. Client Adaptation 

The Decision-Making area focused on the decision-making ability of the architecture. Firstly, it was 

demonstrated how a client would decide which element to ask for assistance with between AI, 

Physics and Graphics. Then the servers process was focused on with how it would react with 

multiple clients. In this paper-based analysis, many clients were connected to the server with some 

requiring assistance, some able to provide and others that are able to maintain a high QoS without 

receiving or providing assistance. Here the server decides which client will receive assistance from 

where, based on values including CPU %, GPU % and device type. 

The Distribution area focused on the AI and Physics elements specifically and a variety of ways that 

these could be distributed along a network. In order to find the best method of distribution for these 

elements, each was tested against various network conditions. The results from these experiments 

show that the best method of updating the struggling client is with constant positional updates on 

objects as this performed best under all network conditions. 

The Client-Adaptation area focused on the fail-safe implemented into this architecture which will 

only execute if there are no resources available either locally or globally to aid a client. The reason 

this is a fail-safe is due to the removal of unessential game objects from the game world. In order to 

maintain a high QoS this may be unavoidable. 
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6.2 EVALUATION OF OBJECTIVES 

As established in the introductory chapter of this thesis, the research objectives were as follows: 

1. To review existing methods of distribution in video games. How they distribute data and 

which data they choose to distribute. 

2. To determine which metrics can be used in a decision-making architecture, in which the 

outcome of all decisions is to improve the QoS provided. These metrics can then be 

prioritised. 

3. To develop an adaptable architecture which will utilise the cloud and fog resources available 

to improve QoS. This architecture can then be tested against differing data types and 

connection variations. Self-adaptation will be included as a last resort. In the unlikely event 

that no resources are available from either the cloud or fog, the client device can adapt the 

game itself. 

The existing research was split into five areas: Streaming Games, Distributed Environments, 

Distributed Management, Fog Computing and Energy Saving.  The area of Streaming Games 

contained the most relevant models. Although there was little detail in the data that was distributed 

within these models, there was much more detail in the process used to distribute the data with the 

main benefit gleaned from this area being the adaptable nature of the models. This adaptability 

transferred over into the final architecture. The Distributed Environments area yielded interesting 

details with regards to Distributed Virtual Environments in which a model of event communication 

was proposed, the results for which show that when adapting to the variation in wireless networks, 

individual event streams have different resource requirements. Other research in this area shows 

that the introduction of additional hardware to a network can improve upon the service provided 

aswell as partitioning AI processes into high and low frequency components. The area of Distributed 

Management focused on Agents and their benefits aswell as metrics. The RPCs found within the 

proposed architecture represent the Agents found in research as they have many of their properties 

and therefore benefits. Fog Computing yielded two models: EdgeCloud and CloudFog. The 

architecture proposed can be seen as a combination of these two models as smaller data packets are 

transmitted, and under-utilised nodes are employed to assist. The final area of energy saving is small 

as the aim of this thesis was not to save energy but to improve a client’s QOE through the utilisation 

of under-utilised network nodes. However, it can be argued that the client’s energy is being saved 

via this architecture. 
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Within the proposed architecture are metrics which are core to the overall proper function, these 

are found in Chapter 3. Each metric is involved within a decision which will ultimately result in the 

improvement of QoS provided and therefore QoE. The values utilised are as follows: 

• FPS 

• Current Level of Detail 

(LOD) 

• Resource Requirement 

of Tasks 

• Number of objects on 

screen (AI, Physics, 

Graphics) 

• Priority of on-screen 

objects  

• CPU usage 

• GPU usage 

• RAM usage 

• Device Type 

• Number of devices 

connected 

• Latency 

• Packet Loss Percentage 

• Connection Type 

 

The main metric through which the decision-making process begins is the FPS metric as it is arguably 

the most significant factor in providing a high QoS as it affects the smoothness of the game as 

discussed in Chapter 3. 

The final objective focused on the creation of the architecture. The proposed architecture combined 

Cloud computing with Fog Computing and an added component referred to as Self-Adaptation. The 

Cloud represents all network nodes not local to the client such as a server in another country and 

the Fog represents all network nodes local to the client such as the local network exchange. When a 

Client’s FPS begins to drop it messages the server informing it of the situation. The Server (Cloud) 

will then see if it can help, if not then it will examine network nodes closer to the client (Fog) in 

relation to their resource availability and finally if there are not resources available locally then the 

Client will be informed that it must adapt to its situation through the reduction in the number of 

unessential game objects (Self-Adaptation). At each stage, there is a decision to be made such as: 

1. Does the client require assistance? 

2. Can the server assist?  

3. Which network node can assist?  

4. Which element can be reduced?  

The metrics established within Chapter 3 fuel these decisions. 
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6.3 FUTURE WORK 

The following are suggestions for future work to improve upon the completed work and extend the 

scope of the research: 

• With the utilisation of distributed resources and spreading load, there is an argument for the 

possible energy saving implications of this architecture. As a client is not running at full 

capacity to support a low FPS and server is not expected to provide assistance to all 

struggling nodes there is potential to save energy. 

• The Graphics element is only focused on within the Self-Adaptation component of the 

architecture. This could be explored further by identifying Graphics processes which can be 

passed off to another node. These methods can then be tested against varying network 

conditions. 

• The proposed architecture can be explored further regarding adaptability as many clients 

can connect or disconnect at any given time. The local networks of assisting nodes can be 

strained at any given time as devices connect and disconnect to them. It is unlikely that as a 

client Self-Adapts that there will be no resources available at a later stage on the network, 

therefore the server could become aware of connecting clients and immediately assign them 

to assist provided they have the available resources and an acceptable connection. 

• The methods developed could be integrated into a generic platform for games development. 

Various game types could be covered by the platform and it would adapt to different 

processing demands. A first-person shooter may be more focused on delivering a more 

intelligent AI while a third person sand-box game may be more focused on physics and 

graphics as the game world surrounding the player changes over time. 

6.4 CONCLUDING STATEMENT 

The research presented in this thesis has shown that it is possible to improve a user’s QoE by 

focusing on improving the QoS provided through the utilisation of already present network 

resources. 
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APPENDIX 

 

A. The code used within Unity to calculate the applications current FPS. Each update method 

cycle a integer value called count is incremented by 1. Every second a method called 

SaveCount is run which saves the current total of update cycles and resets the count to 0. 

After 3 seconds and then every second after that the ReadFPS method is run which takes the 

previous three count values and averages them. If the average is below 70 then more code 

will execute depending on the method of distribution. 
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B. An example of an MSI Afterburner Output. This result is from the experiment showing the 

Effect of Distribution on an Unaffected Network under Full Distribution of AI Objects 

(Experiment 1). As can be seen the GPU Usage results are meaningless aswell as the RAM and 

Pagefile Usage.  

 

 

 

 

 

 



137 
 

 

C. The software package Clumsy 0.2 was used to vary network quality. The only functions used 

out of the six available were Lag (Latency) and Drop (Packet Loss Percentage) 
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D. The code used within Unity to contact the server to take control of the objects and send 

positional updates via the built in NetworkTransform component. If the average FPS falls 

below 70 then a command is sent to the server commanding it to switch on the 

NetworkTransform component on each object. With this on, the position of each object will 

be updated on the client constantly. 
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E. The code used within Unity to enable the transmission of Path Data from the Assisting Node 

to the Client. Once the FPS falls below 70, two Boolean values are changed to true. This then 

enables the sending of data from the assisting node to the client which enables a script called 

ClientAiMoveToPosArray. On the Assisting Node a Path is created for each object to follow 

and through a ClientRPC this path is transmitted to the object and appended to the end of a 

list of positions for it to visit. 
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