
I 

 
 

 

 

 

 

 

Transfer of antibiotic resistances between enterococci in 

biofilm 

By 

Michael Conwell MBioMedSci 

School of Biomedical Sciences 

Faculty of Life and Health Sciences 

Ulster University 

 

A thesis presented to Ulster University for the degree of Doctor of Philosophy 

November 2017 

 

I confirm that the word count of this thesis is less than 100,000 

 



II 

 
 

CONTENTS  

 ACKNOWLEDGEMENTS i 

 DECLARATION iii 

 LIST OF TABLES iv 

 LIST OF FIGURES v 

 ABSTRACT ix 

 ABBREVIATIONS xi 

 PUBLICATION, CONFERENCE ABSTRACT, ORAL 

PRESENTATION 

xviii 

1.  Chapter 1, General Introduction 1 

1.1.  Introduction 2 

1.2.  Enterococcus – genus, species and infection 3 

1.3.  Antibiotics: mode of action 5 

1.3.1.  Macrolides 5 

1.3.2.  Streptogramins and lincosamides  6 

1.3.3.  Beta-lactams 6 

1.3.4.  Aminoglycosides 7 

1.3.5.  Fluoroquinolones 7 



III 

 
 

1.3.6.  Glycopeptides 8 

1.3.7.  Lipopeptides  9 

1.3.8.  Rifampicin 10 

1.3.9.  Oxazolidinones 11 

1.4.  Antibiotic resistance: biochemical mechanisms 11 

1.4.1.  Macrolides, streptogramins, and lincosamides 12 

1.4.2.  Beta-lactams 12 

1.4.3.  Aminoglycosides 13 

1.4.4.  Fluoroquinolones 13 

1.4.5.  Glycopeptides 14 

1.4.6.  Lipopeptides  15 

1.4.7.  Rifampicin 16 

1.4.8.  Oxazolidinones 16 

1.5.  Development of antibiotic resistance 17 

1.6.  Fitness cost of antimicrobial resistance 19 

1.7.  Horizontal gene transfer: the crux of bacterial evolution 20 

1.7.1.  Transduction 23 

1.7.2.  Transformation 24 



IV 

 
 

1.7.3.  Conjugation 26 

1.8.  Sources of antibiotic resistant bacteria in the environment 28 

1.8.1.  Livestock practices facilitating antibiotic resistance 28 

1.8.2.  Antibiotic resistant bacteria in wastewater 32 

1.8.3.  Sources of antibiotic resistance from agricultural practices 33 

1.8.4.  Animal sources of antibiotic resistant bacteria 35 

1.9.  Identifying horizontal gene transfer Hotspots in the 

environment 

37 

1.10.  Horizontal gene transfer dynamics in the environment 39 

1.11.  Biofilm: an environment conducive for the dissemination 

of antimicrobial resistance 

40 

1.12.  Enterococcus – a genus of bacteria that can model 

antibiotic resistance, biofilm formation and subsequent 

horizontal gene transfer 

43 

1.12.1.  Enterococcal HGT practices 45 

1.12.2.  Enterococcal biofilm formation capability 48 

1.13.  Potential for human infection sourced from the natural 

environment 

50 

1.14.  Conclusion 51 



V 

 
 

1.15.  Hypothesis and Aims  

 

52 

2.  Chapter 2, General Materials and Methods 53 

2.1.  Isolation of enterococci 54 

2.2.  Confirmation of enterococci 54 

2.2.1.  Growth in azide dextrose 54 

2.2.2.  Aesculin hydrolysis 55 

2.2.3.  Catalase test 55 

2.2.4.  Gram staining 55 

2.2.5.  Growth at 45oC 55 

2.3.  Storage of isolates and standard growth conditions 56 

2.4.  Growth curves 56 

2.5.  Antimicrobial disc diffusion assay 57 

2.6.  Antimicrobial minimum inhibitory concentrations 59 

2.7.  Generation of rifampicin resistant strains 61 

2.8.  Stability of resistance under no selection 61 

2.9.  2.9. NCBI gene analysis and primer design from published 

enterococcal MGEs 

61 



VI 

 
 

2.10.  Creation and acquisition of PCR primers and FISH probes 62 

2.11.  Plasmid extractions 65 

2.12.  Clumping assay 66 

2.13.  Liquid phase conjugation methodology 66 

2.14.  Solid phase conjugation methodology  67 

2.15.  Detection of antibiotic resistance genes in transconjugants 

and their donors 

67 

2.16.  Sponge preparation for incubation with enterococci  68 

2.17.  Enterococcal sponge binding assay 68 

2.18.  Enterococcus Conjugation in the presence of sponge 69 

2.19.  Conjugation within a biofilm 69 

2.20.  Biofilm examination techniques 70 

2.20.1.   Biofilm production in enterococci 70 

2.20.2.  Enterococcal biofilm growth 70 

2.20.3.  Biofilm formation in static microplates visualised with 

crystal violet 

70 

2.20.4.  Biofilm formation in polystyrene tubes 71 

2.20.5.  Air liquid interface biofilm formation 71 

2.20.6.  Submerged coverslip biofilm formation 71 



VII 

 
 

2.20.7.  Biofilm formation on coated substrates 71 

2.20.8.  Biofilm index measurements 72 

2.20.9.  Biofilm formation in the presence of total cell lysate 72 

2.20.10.  Biofilm formation using DNA  72 

2.20.11.  Biofilm formation using the gene frame® 73 

2.20.12.  Elimination of parents in a conjugal biofilm 73 

2.21.  Fluorescent imaging of enterococci 73 

2.22.  Fluorescent in situ hybridisation (FISH)  75 

2.22.1.  FISH protocol for visualisation of planktonic enterococci 75 

2.22.2.  FISH protocol for visualisation of enterococcal cells in 

biofilm 

75 

2.22.3.  FISH protocol for visualisation of vancomycin vanA in 

enterococcal biofilms 

76 

2.22.4.  FISH on sponge frozen sections from Enterococcus 

conjugation experimentatio 

77 

2.23. Statistics 77 

3.  Chapter 3, Characterisation of environmentally isolated 

enterococci for their ability to carry out horizontal gene 

transfer 

78 



VIII 

 
 

3.1.  INTRODUCTION  79 

3.1.1.  Antibiotic resistant “superbugs” 79 

3.1.2.  Enterococci in the extra-enteric environment 80 

3.1.3.  Antibiotic resistance in enterococci 80 

3.1.4.  Horizontal gene transfer in enterococci 82 

3.2.  Aim and Objectives 86 

3.3.  MATERIALS AND METHODS 86 

3.4.  RESULTS 87 

3.4.1.  Selection of Enterococcus faecalis and Enterococcus 

faecium with the potential to undergo horizontal gene 

transfer 

87 

3.4.2.  Characterisation of candidate enterococci for conjugation 

studies – general antimicrobial susceptibility 

90 

3.4.3.  Characterisation of candidate enterococci for conjugation 

studies – Biofilm formation and clumping 

92 

3.4.4.  Shortlisting potential conjugation partners based on 

antibiotic resistance profiles, biofilm formation, phenotypic 

clumping and phenotypes of interest from gene database 

analysis 

102 



IX 

 
 

3.4.5.  Determination of antibiotic minimum inhibitory 

concentrations of the shortlist of enterococci 

104 

3.4.6.  Generation of rifampicin resistance in susceptible 

‘recipient’ isolates 

106 

3.4.7.  Vancomycin ‘heteroresistance’ phenotypes in enterococci 107 

3.4.8.  Mobile genetic element characterisation on enterococci 

with strong antibiotic resistance phenotypes 

109 

3.5.  DISCUSSION 113 

3.5.1.  Selection of Enterococci from biobank 113 

3.5.2.  Characterisation of enterococci – General antimicrobial 

susceptibility 

114 

3.5.3.  Characterisation of enterococci – Biofilm formation 117 

3.5.4.  Characterisation of enterococci – Clumping assay 118 

3.5.5.  Composition of enterococcal MGE associated genes of 

interest 

120 

3.5.6.  Minimum inhibitory concentrations of donor and recipient 

enterococci 

121 

3.5.7.  Susceptible recipients and the subsequent generation of 

rifampicin mutants 

124 

3.5.8.  Qualitative MGE characterisation assays on donor isolates 125 



X 

 
 

4.  Chapter 4, Environmentally isolated enterococci can 

transfer unique antimicrobial resistance genes to one 

and other in vitro and in vivo 

128 

4.1.  INTRODUCTION  129 

4.1.1.  Horizontal gene transfer  130 

4.1.2.  In vitro and in vivo horizontal gene transfer amongst 

bacteria 

131 

4.1.3.  Sources bacterial horizontal gene transfer in the 

environment 

132 

4.1.4.  Enterococcal presence in the environment: Faecal 

contamination 

133 

4.1.5.  Enterococcal presence in aquatic ecosystems 133 

4.1.6.  Potential substrates for HGT in the environment 134 

4.2.  Aim and Objectives 136 

4.3.  MATERIALS AND METHODS 136 

4.4.  RESULTS 137 

4.4.1.  Selection and testing of enterococcal conjugation partners 

from the candidate subset population 

138 

4.4.2.  Improving the conjugation protocol and generating high 

efficiency transconjugants T1-T4 

143 



XI 

 
 

4.4.3.  Antibiotic resistance profiles, transferred genotypes and 

stability of the acquired resistance traits of the enterococcal 

transconjugants T1-T4 

148 

4.4.4.  The effects of environmental pressures (temperature and 

nutrient availability) on the conjugation process 

158 

4.4.5.  Atypical conjugal interactions between enterococci using 

sponge as a substrate 

160 

4.5.  DISCUSSION 167 

4.5.1.  Partnering of compatible enterococci for HGT of AMR 167 

4.5.2.  Liquid phase conjugation attempts 167 

4.5.3.  Isolation of a transconjugant (T1) using solid phase 

conjugation 

168 

4.5.4.  Isolation and phenotypic characterisation of 

transconjugants T1-4. 

169 

4.5.5.  Transfer of AMR genes in enterococcal transconjugants 173 

4.5.6.  Stability of acquired AMR phenotype in the 

transconjugants 

174 

4.5.7.  Variations in temperature and nutrient deprivation reduce 

conjugal efficiency 

174 

4.5.8.  Possible interactions of enterococci with other organisms 175 



XII 

 
 

4.5.9.  Enterococcal conjugal interactions using sponge as a 

substrate 

176 

5.  Chapter 5, Enterococci produce biofilm that supports 

the inter and intraspecies transfer of antibiotic 

resistance traits 

180 

5.1.  INTRODUCTION  181 

5.1.1.  Biofilm: an introduction 181 

5.1.2.  Enterococcal biofilm: Mechanism of infection 182 

5.1.3.  Cell communication and conjugation potential 183 

5.1.4.  Enterococcal biofilm extracellular matrix  184 

5.1.5.  Contradictions of enterococcal biofilm literature 185 

5.2.  AIM AND OBJECTIVES 188 

5.3.  MATERIALS AND METHODS 188 

5.4.  RESULTS 189 

5.4.1.  Enterococcal growth characteristics in standard and nutrient 

depleted growth media 

190 

5.4.2.  Traditional (standard) biofilm formation assays applied to 

enterococci 

192 

5.4.3.  Improvement of enterococcal biofilm formation on 

standard biofilm apparatuses using substrate modifications 

195 



XIII 

 
 

5.4.4.  Assessing the effects of cell lysate and eDNA on the ability 

of enterococci to form biofilm 

200 

5.4.5.  The gene frame biofilm apparatus (GBA): A novel biofilm 

development tool for microscopic visualisation of fragile 

enterococcal biofilm. 

206 

5.4.6.  The effects of nutrient deprivation on enterococcal biofilm 

formation 

213 

5.4.7.  The effects of antibiotic stress on enterococcal biofilm 

formation and cellular characteristics 

217 

5.4.8.  Utilisation of fluorescent in situ hybridisation to visualise 

enterococci inside biofilm and minimise artefacts with 

standard fluorescence techniques 

220 

5.4.9.  Modification of fluorescent in situ hybridisation to target 

the mobile vanA vancomycin resistance gene conjugally 

transferred in the creation of T1 

222 

5.4.10.  Using the gene frame biofilm apparatus, ‘triple selection’ 

and fluorescent in situ hybridisation to isolate 

transconjugants from conjugation reactions within 

enterococcal biofilm 

227 

5.5.  DISCUSSION 235 

5.5.1.  Optimisation of biofilm formation: Enterococcal growth 

characteristics 

235 



XIV 

 
 

5.5.2.  Traditional biofilm assays applied to enterococci yield 

inconsistent biofilm. 

236 

5.5.3.  Microplate surface coating to improve cellular adhesion 

and subsequent biofilm formation  

239 

5.5.4.  Substrate composition directly affects enterococcal biofilm 

formation 

240 

5.5.5.  Modulation of the enterococcal biofilm: Effect of cell 

lysate and eNDA on formation 

242 

5.5.6.  The gene frame biofilm apparatus (GBA): A novel biofilm 

development tool for microscopic visualisation of fragile 

enterococcal biofilm. 

244 

5.5.7.  Identification of macro-scaffolding and cellular distribution 

of enterococcal biofilm using the GBA 

245 

5.5.8.  Enterococcal biofilm development mediated by the gene 

frame biofilm apparatus (GBA) 

247 

5.5.9.  Effects of nutrient deprivation and conA staining to 

demonstrate biofilm formation in a strong biofilm 

producing enterococcal isolate 

249 

5.5.10.  Effects of nutrient deprivation and conA staining to 

demonstrate biofilm formation in a “no-biofilm” producing 

enterococcal isolate. 

251 



XV 

 
 

5.5.11.  Antibiotic selective pressure and nutrient deprivation 

affects spatial density, chain forming characteristics, 

granularity, and size of MF06036 early biofilm cells 

253 

5.5.12.  Creation of a fluorescent in situ hybridisation protocol for 

the examination of enterococci in biofilm states. 

255 

5.5.13.  Utilisation of FISH to detect vancomycin resistant E. 

faecalis in the gene frame biofilm apparatus (GBA) 

255 

5.5.14.  Recovery of transconjugants from inside enterococcal 

biofilm 

258 

5.5.15.  Using double selection with rifampicin and vancomycin to 

eliminate conjugative partners but not their transconjugant 

in a biofilm state. 

261 

5.5.16.  Application of triple selection (lysozyme in tandem with 

double antibiotic selection) to destroy conjugative partners 

but not their transconjugant.  

261 

5.5.17.  Microscopic visualisation of in situ conjugation in biofilm 

using selection, Live/dead imaging and fluorescent in situ 

hybridisation. 

263 

6.  Chapter 6, General Discussion 265 

6.1.  Conclusion 287 

6.2.  Future directions 289 



XVI 

 
 

6.3.  Concluding remark 

 

291 

7.  References 

 

292 

8.  Published manuscript 350 



I 

 
 

ACKNOWLEDGEMENTS 

The last four years of my PhD have been astounding. From the trials and tribulations of 

matching bacterial conjugation partners, to the feeling of pure ecstasy when I saw the first 

positive conjugation plate. Sitting to write my thesis I knew what lay before me, and I am 

extremely grateful to Professor James Dooley and Doctor Patrick Naughton for the trials 

that I put you through over the course of my thesis composition. I am glad things remained 

“amicable”! James, you can rest assured, that I know now, that amicable is not a synonym 

of prolific. I am forever thankful for the expertise, knowledge and ‘door is always open’ 

approach that you two have provided for me throughout my PhD and thesis. Without your 

guidance, I would never have been able make it to the end. 

I would like to thank Allison, my collaborating buddy for enterococcal sponge 

interactions and all-round sponge expert. I would like to thank Syed and Jason for keeping 

me from going insane in my last year of research. Syed for the deep philosophical chats 

in the office and Jason for our runaway conversations on the fine art of brewing and craft 

beer. I would like to thank Mary for your enthusiasm to learn the tricks of Enterococcal 

conjugation and being a key lab colleague during the former days of my PhD research. 

To all the Micro team past and present thank you. To Laura, thank you for all that you 

have done for me and my family in and out of the lab over the years, you have been a 

great friend. I would like to thank the technical staff in the CMB, including Ian for his 

table-top autoclave skills and the stores team Davey, Rob and Lisa for the VIP treatment 

regarding consumable needs. 

To my family back home – mum, dad and Órla. As everyone keeps telling me, you can 

take the man out of Strabane, but you can’t take Strabane out of the man. If it were not 

for you I would simply not be at this point in my life today. You always knew what I was 



II 

 
 

destined for in life and you encouraged me to take it by the reins. I am a proud man to 

have such an amazing family. To my extended family – Rosemary, Robert and the best 

man in the world Stephen. Thank you for the nurturing support you have given me over 

the last eight years to push through, hand in hand with Breedge. To my other family, the 

St John family, you welcomed me with open arms and watched me go through my PhD 

with admiration, for that I thank you. 

Thank you, Spotify, for the hundreds of hours of pep music, invigorating my writing when 

things were slowing. 

Finally, to my own family, Breedge, Sophia and Clio. Breedge, you are my soul mate and 

we’ve been through it all, our PhDs and all the rest. From the moment, we met in the first 

week of our undergraduate degree. You are my rock, my wife. You understand exactly 

what it is like to go through this process and together we have finally achieved success. 

My daughter Sophia, you have been the whole reason why I continued to push myself to 

finish this thesis. Thank you for picking me back up when things were tough, with a smile, 

a laugh and saying ‘da da’ with such enthusiasm. 

 

 

 

 

 

 

 

 



III 

 
 

DECLARATION 

"I hereby declare that with effect from the date on which the thesis is deposited in the 

Research Office of the University of Ulster, I permit: 

 

1. The Librarian of the University to allow the thesis to be copied in whole or in part 

without reference to me on the understanding that such authority applies to the provision 

of single copies made for study purposes or for inclusion within the stock of another 

library.  

2. The thesis to be made available through the Ulster Institutional Repository and/or 

EThOS under the terms of the Ulster eTheses Deposit Agreement which I have signed.  

 

 

 

 

 

 

IT IS A CONDITION OF USE OF THIS THESIS THAT ANYONE WHO CONSULTS 

IT MUST RECOGNISE THAT THE COPYRIGHT RESTS WITH THE AUTHOR AND 

THAT NO QUOTATION FROM THE THESIS AND NO INFORMATION DERIVED 

FROM IT MAY BE PUBLISHED UNLESSTHE SOURCE IS PROPERLY 

ACKNOWLEDGED 

 



IV 

 
 

LIST OF TABLES 

Table 2.1   

 

Antibiotic susceptibility breakpoints for enterococci 

relative to disc concentration 

 

58 

Table 2.2  

 

Antibiotic minimum inhibitory concentration breakpoints 

(24 hours) for enterococci. 

60 

Table 2.3  

 

Primer sequences used in this study 63 

Table 2.4  

 

Probes used for FISH  64 

Table 3.1  

 

Transposons of interest within the mobilome of 

enterococci 

 

85 

Table 3.4.1  

 

Candidate enterococci selected for compatibility testing. 

 

89 

Table 3.4.2 

 

Disc diffusion antimicrobial resistance profiles of selected 

enterococci. 

 

91 

Table 3.4.3  Identification of pheromone producing ‘recipient’ isolates 

vs clumping ‘donor’ isolates expressed as clumping ability 

based on guidelines from 3.4.5. 

 

97 

Table 3.4.4. 

 

Collation of antimicrobial resistance genes identified from 

PubMed gene database analysis in E. faecalis and E. 

faecium. 

 

100 

Table 3.4.5  Collation of conjugation genes identified from PubMed 

gene database analysis in E. faecalis and E. faecium 

 

101 

Table 3.4.6 Shortlist of potential conjugation isolates of enterococci 

based on selection criteria outlined in figure 3.4.1. 

103 

Table 3.4.7 

 

Minimum Inhibitory Concentration profiles of enterococci 

to antibiotics. 

 

105 

Table 4.4.1  

 

Isolation of transconjugants T1-4 147 

Table 4.4.2  Minimum inhibitory resistance profiles of parental 

enterococci and their transconjugants. 

 

150 

Table 4.4.3  Transferred antibiotic resistance genes identified by PCR. 

 

156 

Table 4.4.4  Conjugation frequency of T1 under temperature and 

nutrient deprivation 

159 



V 

 
 

LIST OF FIGURES 

Figure 1.1  

  

Modes of bacterial horizontal gene transfer. 

  

22 

Figure 1.2  The biofilm cycle. A generalised Illustration highlighting the 

key stages of biofilm establishment and maturation. 

 

42 

Figure 1.3  

 

Overview of enterococcal pheromone based conjugation. 

 

44 

Figure 1.4  Transfer of enterococcal plasmid pCF10. 

 

47 

Figure 3.4.1.  Flow Diagram outlining selection criteria used to identify a 

subgroup of isolates compatible for horizontal gene transfer. 

 

88 

Figure 3.4.2.  Ability of selected enterococci to form biofilm in 96-

microwell plates stained with crystal violet. 

 

95 

Figure 3.4.3.  Bright field macroscopy outlining the degree of variation of 

clumping ability of selected enterococci. 

 

96 

Figure 3.4.4.  Phase contrast microscopy of donor enterococci induced into 

clumping with the addition of recipient pheromone. 

 

98 

Figure 3.4.5.  Establishment of a gene database based on Antimicrobial 

resistance genes and horizontal transfer genes.  

 

99 

Figure 3.4.6.  

 

Assessing vancomycin (vanA) resistance amongst the donor 

isolates. 

 

108 

Figure 3.4.7.  Agarose gel electrophoresis of plasmid extraction from E. 

faecalis isolates using the alkaline lysis method for large 

plasmids. 

 

111 

Figure 3.4.8.  

 

Antimicrobial resistance stability of MF06035 and MF06036 

under continuous sub-culture. 

 

112 

Figure 4.4.1  

 

Pie chart detailing potential Enterococcus conjugation 

partners based on mobile and intrinsic antibiotic resistance. 

 

140 

Figure 4.4.2.  Liquid phase conjugation methodology. 

 

141 

Figure 4.4.3.  

 

Liquid phase Enterococcus conjugation: partnering the 

vancomycin resistant MF06036 with the cephalothin 

resistant MF06036/MW01043/MW03061 plated on double 

vancomycin cephalothin selection. 

 

142 

Figure 4.4.4.  Solid phase conjugation methodology. 

 

145 



VI 

 
 

Figure 4.4.5.  

 

Solid phase conjugation: Isolation of T1. 

 

146 

Figure 4.4.6.  PCR detection of E. faecalis SodA genomic DNA used for 

species identification in parent and transconjugant 

enterococci. 

 

151 

Figure 4.4.7.  PCR detection of vanA in parent and transconjugant 

enterococci. 

 

152 

Figure 4.4.8.  

 

PCR detection of ermB in parent and transconjugant 

enterococci. 

 

153 

 

Figure 4.4.9.  PCR detection of tetL in parent and transconjugant 

enterococci. 

 

154 

Figure 4.4.10.  

 

PCR detection of tetM in parent and transconjugant 

enterococci. 

 

155 

Figure 4.4.11.  Stability of transferred antibiotic resistance phenotype. 

 

157 

Figure 4.4.12.  Interactions between enterococci and sponges from similar 

geographical isolation sites. 

 

162 

Figure 4.4.13.  Protocol created to isolate fresh transconjugants from 

conjugation reactions in the presence of sponge. 

 

163 

Figure 4.4.14.  

 

Enterococcal conjugation in sponge represented with 

Tukey’s box plot. 

 

164 

Figure 4.4.15.  Optimisation of fluorescent in situ hybridisation to detect 

enterococci in whole mount sponge after conjugation. 

 

165 

Figure 4.4.16.  

 

Fluorescent in situ hybridisation on S. lacustris cryosections 

to identify E. faecalis MF06036 after a conjugation reaction 

within the sponge. 

 

166 

Figure 5.4.1.  Enterococcal growth characteristics in broth. 

 

191 

Figure 5.4.2.  Traditional biofilm assays applied to enterococci yield 

inconsistent biofilm.  

 

194 

Figure 5.4.3.  Microplate surface coating to improve Enterococcus cellular 

adhesion and subsequent biofilm formation.  

 

198 

Figure 5.4.4.  Substrate composition directly affects enterococcal biofilm 

formation. 

 

199 

Figure 5.4.5.  Modulation of the enterococcal biofilm: Effect of cell lysate 

on formation. 

 

202 



VII 

 
 

Figure 5.4.6.  Modulation of the enterococcal biofilm: Effect of eDNA on 

formation. 

 

203 

Figure 5.4.7.  

 

The gene frame biofilm apparatus (GBA): A novel biofilm 

development tool for microscopic visualisation of fragile 

enterococcal biofilm. 

 

205 

Figure 5.4.8.  Comparing ‘traditional’ biofilm assays against the gene 

frame biofilm apparatus (GBA). 

210 

Figure 5.4.9.  Identification of macro-scaffolding and cellular distribution 

of enterococcal biofilm using the gene frame biofilm 

apparatus (GBA). 

 

211 

Figure 5.4.10.  Enterococcal biofilm development mediated by the gene 

frame biofilm apparatus (GBA). 

 

212 

Figure 5.4.11.  Effects of nutrient deprivation on biofilm formation 

characteristics and conA staining in proficient biofilm 

producing enterococci. 

215 

Figure 5.4.12.  

 

Effects of nutrient deprivation on biofilm formation 

characteristics and conA staining in non-biofilm producing 

enterococci.  

 

216 

Figure 5.4.13.  Selective pressure and nutrient deprivation affects spatial 

density, chain forming characteristics, granularity, and size 

of MF06036 early biofilm cells. 

 

219 

Figure 5.4.14.  Creating a fluorescent in situ hybridisation (FISH) assay for 

rapid examination of enterococci in biofilm states. 

 

221 

Figure 5.4.15.  Utilisation of FISH to detect the vancomycin resistance 

gene in E. faecalis using the gene frame biofilm apparatus 

(GBA). 

224 

Figure 5.4.16.  The gene frame biofilm model utilised to detect conjugation 

between enterococci in a biofilm substrate. 

 

226 

Figure 5.4.17  Selection plate isolation of T1 from biofilm under both 

starvation and standard growth conditions. 

231 

Figure 5.4.18.  Using double selection with rifampicin and vancomycin to 

eliminate Enterococcus conjugative partners but not their 

transconjugant in a biofilm state. 

 

232 

Figure 5.4.19. 

 

Using rifampicin, vancomycin and lysozyme to eliminate 

the conjugal partners MW01105Rif and MF06036 but not 

their transconjugant, T1. 

 

233 



VIII 

 
 

Figure 5.4.20.  Microscopic visualisation of transconjugants in biofilm 

under standard growth conditions by killing parents with 

double selection and lysozyme. 

234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IX 

 
 

ABSTRACT 

Antibiotic resistance is an urgent and increasing problem in human and animal healthcare. 

While it is recognised that the environment must provide an opportunity for resistance to 

develop and spread, direct evidence for the mechanisms involved is still lacking. This 

research utilised enterococci from an agrarian environment to demonstrate horizontal 

gene transfer (HGT) of antibiotic resistance genes in specific reservoirs. 

Screening a biobank of over 600 environmental isolates referencing previous partial 

characterisation data resulted in the selection of eleven Enterococcus faecalis and four E.  

faecium strains that exhibited potential for conjugation via a pheromone-dependent 

pathway. These isolates had prolific and diverse antimicrobial resistance profiles. 

Conjugal transfer of antibiotic resistance phenotypes was determined using a solid agar 

mating method followed by a standard antibiotic selection test resulting in different 

transfer patterns. Multiple gene transfer was observed in single reactions. An interspecies 

conjugal transfer of vancomycin resistance from E. faecalis to E. faecium was identified 

while the remaining reactions were within the same species. Transfer efficiencies ranging 

from 2 × 10−1 to 2.3 × 10−5 were determined. Interspecies transfer of vancomycin 

resistance among environmental isolates of enterococci had not previously been 

characterised, along with alternating transfer of different determinants from the same 

donor to different recipients. In certain cases, antimicrobial resistance to non-transferred 

resistance was elevated in transconjugants (T1, T2 and T4). 

A novel biofilm apparatus model, based upon a Gene Frame, was developed to allow non-

destructive analysis of Enterococcus biofilm. Fluorescently tagged Concanavalin A was 

used to label extracellular matrix material and bacteria were identified by fluorescent in 

situ hybridization (FISH) and DAPI staining. This unique model was more reproducible 
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than standard biofilm assays and it proved to be flexible in that it was adapted to identify 

antibiotic resistance genes. This novel system was used to demonstrate that interspecies 

transfer of vancomycin resistance takes place in bacterial biofilms, which are considered 

to be the natural state for environmental bacteria. Additionally, multiprobe FISH targeted 

to vanA on mobile elements demonstrated for the first-time vancomycin staining inside 

enterococcal biofilm. 

Another potential reservoir of bacteria in an aquatic environment is the freshwater sponge. 

Enterococcus conjugation experiments were performed on Ephydatia fluviatilis and 

Spongilla lacustris, two sponge species that exist in similar geographical topography to 

where the enterococci were isolated. Enterococci were shown to bind to sponge material 

and HGT of vancomycin resistance was demonstrated in both sponge species by the 

modified FISH assay and by direct antibiotic selection methods.  

Overall, this thesis highlights that enterococci of environmental origin are capable of 

transferring important resistance determinants in and out of biofilm, of their own 

construction. Their survival under harsh environmental conditions, such as low 

temperature and nutrient limitation, reduced but did not eliminate their ability to 

conjugate. Enterococcus faecalis and faecium have the potential to propagate 

antimicrobial resistance in the natural environment. An assessment of the impact of 

environmental conditions on HGT rates could help to preserve useful antibiotics from 

selection for resistance. 
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1.1. Introduction  

The continual escalation of antibiotic resistance in human and animal pathogenic bacteria 

is a serious threat to public health. Multi-resistant organisms such as methicillin resistant 

Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE) are major 

threats to human health prognosis in hospitals across the world (Warnke et al., 2013). 

These multi-resistant bacteria are also being identified in the natural and built 

environment (Huijbers et al., 2015). Understanding the dynamics of resistance transfer 

will be essential in determining how best to minimise this problem. In the last decade, a 

fundamental reappraisal of how bacteria grow under natural conditions has taken place 

(Haruta and Kanno, 2015). It is now clear that many bacteria exist as part of complex 

communities attached to surfaces, embedded in polymeric matrices of their own devising 

(Flemming et al., 2016). This is known as a biofilm. Biofilms were first identified in 

aquatic environments, such as rock surfaces in streams, but have now been recognised as 

major contributors to infection (Høiby et al., 2014). They allow colonisation of catheters 

and other indwelling devices, as well as forming directly on body surfaces e.g. chronic 

wounds and the lung epithelia of individuals suffering from Cystic Fibrosis (CF) (da Silva 

et al., 2015). In spite of the recognition of the ubiquitous nature of biofilms, it is not 

known how the physiological processes within them are regulated (Santos-Beneit, 2015; 

O’Toole and Wong, 2016). Antibiotic resistance transfer mechanisms are well described 

for bacteria growing in planktonic culture, but understanding on how efficiently they 

function in biofilm are limited (Van Acker et al., 2014). This review recounts the mode 

of action, biochemical mechanisms and origins of antimicrobial resistance. It considers 

the current environmental sources of antibiotic resistance. Finally, it discusses the 

dissemination of antibiotic resistance through extensive gene transfer events, using 
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intermediaries such as biofilm, all with relevance to enterococci as a model organism for 

studying such processes. 

Members of the genus Enterococcus, have developed resistance to a significant number 

of antibiotics, as discussed further in sections 1.3 and 1.4. They have increasingly become 

more infectious to humans and they are now widely implicated in bacterial disease 

progression. Their natural environment, in the gut of warm-blooded animals, is conducive 

for antibiotic resistance development. Many enterococcal antibiotic resistance genes are 

capable of being transferred to other bacteria. The unique characteristics of enterococci 

are discussed within this literature review and, collectively, they present enterococci as 

useful model organisms for studying processes of bacterial conjugation on these novel 

substrates in an effort to understand the escalating global emergence of antibiotic 

resistance.  

 

1.2. Enterococcus – genus, species and infection 

Enterococcus is a genus of lactic acid gut bacteria that are facultative anaerobes (Domig 

et al., 2003). Different species have been found in human (E. faecalis, E. faecium, E. 

caccae), animal (E. faecium, E. canintestini) and insect guts (E. casseliflavus, E. faecalis, 

E. faecium). They have been recovered from fermented foodstuffs (E. hermanniensis, E. 

thailandicus) and dairy produce (E. italicus, E. lactis), as well as from soil (E. durans, E. 

hirae) plant (E. plantarum) and aquatic (E. aquimarinus, E. quebecensis) microcosms 

(Mundt, 1961; Mundt, 1963; Ator and Starzyk, 1976; Mundt, 1986; Lebreton et al., 2014). 

Their characteristic ubiquitous nature reflects their hardiness, with the ability to grow 

under elevated temperature (45oC), pH (pH 9.6) and salinity (6.5% NaCl) (Sherman, 

1938). There are 36 identified species within the genus and, to date, 26 have been 
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associated with human infection (Ruoff et al., 1990; Teixeira and Merquior, 2013; 

Lebreton et al., 2014).  

Enterococci have become some of the most prevalent healthcare associated pathogens 

(Arias and Murray, 2012). Modernisation of bacterial disease interventions as well as 

prophylactic treatments prior to invasive medical procedures has contributed to increased 

prevalence of enterococci (DiazGranados et al., 2005). Enterococcal infections can be 

extensively resistant to antibiotics (Muray, 1998). Vancomycin resistance in enterococci 

historically has been the most concerning in the nosocomial environment due to the 

importance of vancomycin as a drug of last resort (Taneja et al., 2004). Nosocomial 

enterococci have been identified as resistant to penicillin, aminoglycosides, linezolid, 

quinupristin/dalfopristin, daptomycin, tetracycline and erythromycin (Gilmore et al., 

2014). 

The most infectious multidrug resistant enterococci are E. faecium and then E. faecalis 

(Moellering, 1992). Over 50% of all identified pathogenic E. faecium are multidrug 

resistant (Hidron et al., 2008). In the same study Hidron et al. (2008) identified that 40% 

of medical device associated infections were due to vancomycin and ampicillin resistant 

E. faecium only. E. faecalis is less commonly resistant to vancomycin and is the primary 

causative agent for human endocarditis (Murdoch et al., 2009). Other infective 

enterococci include E. durans, E. avium, E. gallinarum and E. casseliflavus (Gordon et 

al., 1992). Enterococcal pathogenesis typically results in urinary tract infections, 

abdominal, pelvic and soft tissue infections and they can translocate to cause bacteraemia, 

endocarditis and even septicaemia (Fisher and Phillips, 2009). 

Antibiotics have been effective antimicrobial agents used to combat bacterial infection 

(Lorian, 2005). They are split into classes based on their chemical structure and mode of 
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action (Walsh, 2003). They act through several pathways to either kill or inhibit the 

growth of bacteria, as discussed below. 

 

1.3. Antibiotics: mode of action 

 

1.3.1. Macrolides 

Macrolides are an effective group of antibiotics against bacteria and have historically 

been used to treat serious infection. Their general mode of action works through inhibiting 

bacterial protein synthesis, thus arresting bacterial growth (Dunkle et al., 2010). 

Macrolides interact with the ribosomes in the nascent peptide exit tunnel (NPET) 

(Schlünzen et al., 2001). The NPET is a channel that allows the passage of newly 

assembled polypeptides from the peptidyl transferase centre (PTC) (Tu et al., 2005). The 

macrolide-ribosome binding interaction in these narrow conduits acts as a barrier for the 

transfer of polypeptides from the PTC through the NPET, effectively reducing protein 

synthesis through a bottleneck (Menninger, 1985). As the macrolide-ribosome interaction 

blocks the NPET it has been suggested that proteins can still pass through the blockade 

and that polypeptide assembly does not fully shut down (Tu et al., 2005; Kannan et al., 

2012). Recent work has determined that the macrolide mode of action has additional 

functions (Ramu et al., 2011). Not only do macrolides create a blockade in the NPET, 

they can stop synthesis of peptides at the amino acid level when bound to the ribosome 

(Arenz et al., 2014; Sothiselvam et al., 2014). The ribosome-macrolide interaction can 

act specifically on recognisable C-terminal amino acids during assembly from the 

peptidyl donors and the aminoacyl-tRNA acceptor, arresting translation (Kannan et al., 

2014). 



6 

 
 

1.3.2. Streptogramins and lincosamides  

Streptogramins and lincosamides are structurally different classes of antibiotics that 

utilise a general mode of action for antibacterial action (Wilson, 2009). They all bind to 

the ribosomal peptidyl transferase centre on the 50S ribosome. Specific binding occurs at 

the bottom of the cleft where peptide transfer occurs within overlapping binding sites of 

the oxazolidinones (Long and Vester, 2016). Streptogramins bind adjacent to the peptidyl 

transferase centre at the entrance to the NPET, similar to the macrolides (Poehlsgaard and 

Douthwaite, 2005). They work by interfering with peptide transfer of peptidyl/amino 

acyl-tRNA or largely blocking transfer. Lincosamides bind adjacent to the A site of the 

peptidyl transferase centre (Gaillard et al., 2016). 

 

1.3.3. Beta-lactams 

Beta-lactam antibiotics are some of the oldest and most utilised used drugs against 

bacteria. The general mode of action of beta-lactams functions through disruption of the 

peptidoglycan cell wall of bacteria (Page, 2012). The drugs target a variety of high and 

low molecular weight penicillin binding proteins (PBP) (Tipper and Strominger, 1965). 

These PBPs, of which there are two classes (A and B), carry out the functions of 

polymerising glycan strands (glycotransferase) and crosslinking them (transpeptidase) 

during peptidoglycan synthesis (Sauvage et al., 2008). Class A PBPs contain both 

glycotransferase and transpeptidase functions, whereas class B contain only 

transpeptidase activity (Cho et al., 2014). Beta-lactams directly target the transpeptidase 

sites located on PBPs covalently modifying them (Uehara and Bernhardt, 2011). 

Additionally, inhibition of transpeptidase acts to deplete glycan and other precursors, 

which has a compounding effect on all aspects of peptidoglycan complexes, even those 

unrelated to the targets of beta-lactams (Cho et al., 2014). The targeting of several PBP’s 
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and the secondary depletion of peptidoglycan precursors acts to effectively stave off 

peptidoglycan modelling, initiating breakdown and compromising the bacterial cell wall 

leading to cell death and, ultimately, lysis (Uehara et al., 2009). 

 

1.3.4. Aminoglycosides 

Aminoglycosides are a class of broad-spectrum of antibiotics with variations in their 

structural composition, containing amino-modified glycosides (Wang and Bertozzi, 

2001). Aminoglycosides mode of action works through binding to the 30S subunit of 

ribosomes (Bryan and Kwan, 1983).  Aminoglycosides act on the rRNA and binding 

disrupts protein synthesis, primarily by disabling ribosome proofing during protein 

translation, a mechanism vital for cell survival (Davis, 1987). Aminoglycoside binding to 

rRNA varies between drugs. Neomycin and gentamycin can bind to the A site targeting 

the 16S rRNA via interaction with bases A1409 and G1494, whereas paromomycin binds 

to four bases in the same site (A1408, A1493, C1407-G1494, and U1495) (Noller, 1991; 

Recht et al., 1996). They also destabilise the cell membrane through altering the Mg2+ 

bridges (Shakil et al., 2008). 

 

1.3.5. Fluoroquinolones 

Fluoroquinolones are a group of topoisomerase inhibitors that can form a complex with 

DNA gyrase and topoisomerase IV, disabling DNA replication and instigating dsDNA 

breaks (Hooper, 2001). Fluoroquinolones directly act upon topoisomerase IV, which 

contains subunits ParC and ParE, which function to bind DNA and hydrolyse ATP 

respectively (Champoux, 2001; Wang, 2002). They also act upon the subunits GyrA and 

GyrB of DNA gyrase which function in the same way as ParC and ParE respectively 
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(Bates et al., 2011; Vos et al., 2011). Fluoroquinolones form a ternary complex with the 

topoisomerase-DNA complex inhibiting DNA replication through arrest of 

topoisomerase functionality (Heddle et al., 2000; Anderson and Osheroff, 2001; Drlica 

and Malik, 2003). They can also overstimulate topoisomerase dsDNA strand breakage 

consequentially inducing cell death (Drlica, and Malik, 2003; Nitiss, 2009).  

Anderson et al. (1998) demonstrated that fluoroquinolones stimulate topoisomerase IV to 

carry out simultaneous dsDNA breakage and arrest re-ligation. Oppegard et al. (2016) 

determined that when fluoroquinolones form a ternary complex with the topoisomerase-

DNA complex, they either arrest re-ligation through low levels of Mg2+, or they catalyse 

dsDNA breakage through high levels of Mg2+, leading to unstable DNA interactions. The 

fluoroquinolones alter the DNA structure affecting Mg2+ metal binding affinity 

explaining the Mg2+ induced variation in the drugs modes of action. 

 

1.3.6. Glycopeptides 

Glycopeptide antibiotics general mode of action works through inhibition of 

peptidoglycan biosynthesis which results in cell death (Cegelski et al., 2002). 

Glycopeptides bind to the peptidoglycan precursor lipid II, preventing the transportation 

of lipids essential for peptidoglycan assembly, through the inhibition of the bactoprenol-

phosphate (C55-P) recycling process (Schneider et al., 2009). This also negatively affects 

the assembly of wall teichoic acid, thereby affecting two of the major components of the 

Gram positive cell wall compromising cellular integrity and killing the cell (Swoboda et 

al., 2010).  

Vancomycin is a well-known glycopeptide (Kirst et al., 1998). Its mechanism of 

peptidoglycan inhibition functions through attachment to the D-Ala-D-Ala terminus on 
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lipid II (Barna and Williams, 1984). Vancomycin-lipid II complex becomes sequestered, 

unable to undergo transglycosylation terminating C55-P regeneration (Arthur et al., 1992; 

Billot-Klein et al., 1992). The sequestered complex (Park’s nucleotide) builds in the 

cytoplasm, unable to be recruited for peptidoglycan synthesis (Cegelski et al., 2002). The 

lipoglycopeptide oritavancin was developed to target VRE and MRSA and it has been 

discovered that the mode of action of this drug acts primarily through inhibition of the 

wall teichoic acid which yields the same biocidal effects as other glycopeptides (Singh et 

al., 2017). 

 

1.3.7. Lipopeptides  

Lipopeptides are a diverse group of antibiotics with a good degree of variation in their 

mode of action (Baltz et al., 2005). Daptomycin is one of the most recent lipopeptides to 

be used as an effective antibiotic for Gram positive infections (Straus and Hancock, 

2006). The mechanism is therefore not fully understood (Miller et al., 2016). The 

molecule shares similarity to the cationic antimicrobial peptides found as part of the 

mammalian immune response. Their molecular mechanisms have been postulated based 

on shared structure and therefore antibiotic activity (Straus and Hancock, 2006).  

The two major postulations on daptomycin mode of action share similarity and are as 

follows. Calcium-bound daptomycin eases its way inside the bacterial membrane, where 

it forms a pore-like structure negating membrane potential through ion leakage 

(Silverman et al., 2003). Zhang et al. (2014a) demonstrated that daptomycin can associate 

itself into a pore-like structure on the cell membrane in the presence of the phospholipid 

phosphatidylglycerol, with two oligomers arranged individually two-by-two. Another 

article from members of the same group, Zhang et al. (2014b) determined that daptomycin 
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action on liposomes permeabilised membranes to anions but not cations. This agrees with 

the postulated one way de-polarisation of cellular membrane potential mode of action.  

The second postulation comes from work carried out by Chen et al. (2014). This research 

group identified that daptomycin membrane incorporation yields a calcium and 

phospholipid phosphatidylglycerol expansion of the outer membrane vesicle. Continuous 

incorporation of daptomycin causes lipids to accumulate at the surface of the membrane, 

whilst the vesicle reduces in size. This increase and then decrease of the vesicle suggests 

recruitment of lipids from the vesicle membrane. As this process reaches maturation, 

water-pores temporarily form, potentially allowing ion leakage and membrane 

destabilisation. This would agree with work conducted by Pogliano et al. (2012) Whereby 

they visualise daptomycin-mediated distortion of B. subtilis cellular membranes by using 

fluorescent microscopy. 

 

1.3.8. Rifampicin 

Rifampicin is a semisynthetic antibiotic that was primarily designed to target 

Mycobacterium tuberculosis (Heifets, 1994). The exact details of its mechanism of action 

have not yet been fully elucidated (Unissa and Hanna, 2017). What is understood is that 

rifampicin binds to RNA polymerase, an enzyme which catalyses RNA polymerisation 

during DNA transcription. Rifampicin attaches directly to the beta-subunit of the 

polymerase, genetically encoded by rpoB (Campbell et al., 2001). The binding complex 

inhibits the bound beta-subunit, terminating RNA polymerisation after it starts to 

function, leading to cell death (Somoskovi et al., 2001; Floss and Yu, 2005). 

 

 



11 

 
 

1.3.9. Oxazolidinones 

Oxazolidinones such as linezolid and tedizolid are fully synthetic antibiotics with strong 

bacteriostatic effects on Gram positive bacteria. Their general mode of action acts through 

inhibition of bacterial protein synthesis. Like the macrolides, oxazolidinones bind to the 

A site of the peptidyl transferase centre on the 50S ribosomal subunit only (Leach et al., 

2007). They therefore block the attachment of the growing amino acyl chain to the amino 

acyl tRNA during protein translation (Shinabarger, 1999). The binding sites for 

oxazolidinones overlaps with those of clindamycin and chloramphenicol (Douros et al., 

2015). Shaw et al. (2008) determined that tedizolid also had affinity with 23S rRNA 

peptidyl transferase, suggesting secondary antibacterial functionality. However, as 

tedizolid is a new drug, further research is required to identify the mechanism (Zhanel et 

al., 2015). 

 

The antibiotic classes mentioned here have been historically used to treat Gram positive 

infections amongst others. The caveat with their mode of action is that bacteria such as 

E. faecalis, E. faecium, S. aureus and M. tuberculosis display resistance mechanisms to 

all these antibiotics. 

 

1.4. Antibiotic resistance: biochemical mechanisms 

The specific mechanism of antibiotic resistance to the antibiotics mentioned above are 

discussed here. All these resistance mechanisms can be found with a degree of smiliarity 

in E. faecalis and E. faecium. 
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1.4.1. Macrolides, streptogramins, and lincosamides 

The general mechanism of bacterial macrolide, streptogramin and lincosamide resistance 

involves the use of an enzyme (MLSB) encoded in ermB (Pérez-Trallero et al., 2007). 

This enzyme can methylate an adenine subunit on the 23s rRNA (50S ribosome) reducing 

the ribosome binding affinity for these drugs (Johnston et al., 1998). Additional 

biochemical mechanisms include the macrolide efflux pump mefA in Streptococcus 

pyogenes (Clancy et al., 1996). The presumptive ABC transporter Lsa in E. faecalis V583 

is able to increase the MIC of members of the streptogramin family (quinupristin-

dalfopristin) as compared to E. faecium without Lsa (Singh and Murray, 2005). 

 

1.4.2. Beta-lactams 

Beta-lactam resistance varies slightly depending on the specific drug member of the 

family. Penicillins, carbapenems and cephalosporins have decreasing effectiveness in 

enterococci. Penicillins are effective on susceptible isolates, while use of cephalosporins 

can actually promote enterococcal infection due to the prevalence of high levels of 

resistance (Shepard and Gilmore, 2002). Resistance to beta-lactams involves Pbp5 in 

enterococci and Pbp2a in S. aureus (Gonzáles et al., 2001). These are low affinity class 

B penicillin binding proteins, which can continue to synthesise peptidoglycan in the 

presence of beta-lactams (Canepari et al., 1986).  Pbp5 in enterococci has been shown to 

confer resistance to ampicillin and cephalosporins (Rice et al., 1991; Arbeloa et al., 

2004). 
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1.4.3. Aminoglycosides 

Aminoglycoside resistance mechanisms can vary depending on the species of bacteria. 

Enterococci can have a moderate tolerance to aminoglycosides due to poor drug uptake. 

This often can result in species of enterococci with significant minimal inhibitory 

concentration (MIC) values for aminoglycosides (Chow, 2000). Aslangul et al. (2006) 

demonstrated poor uptake of gentamycin in gentamycin resistant enterococci, without 

identification of specific resistance genes. An intrinsic rRNA methyltransferase (EfmM) 

was identified as contributing to kanamycin and tobramycin resistance in E. faecium 

through methylation of the C1404 residue on 16S rRNA (30S ribosome) (Galloway-Peña 

et al., 2012). This significantly reduced aminoglycoside binding affinity. Secondarily, 

aminoglycoside acetyltransferases such as encoded by aac(6’)-li contribute to 

intermediate levels of aminoglycoside resistance in enterococci (Costa et al., 1993) 

 

Enterococci also possess significantly higher levels of aminoglycoside resistance located 

on their ‘mobilome’ and the biochemical mechanism operates through enzymatic drug 

modification. Examples include other aminoglycoside acetyltransferases (AAC(6ʹ)-Ie-

APH(2ʹʹ)-Ia) and phosphotransferases (APH(2ʹʹ)-I) (Kristich et al., 2014). These enzymes 

typically phosphorylate (ATP) a hydroxyl group or acetylate (acetyl-CoA) amino groups. 

Nucleotidyltransferases also function to adenylate (ATP) hydroxyl groups on 

aminoglycosides. 

 

1.4.4. Fluoroquinolones 

Quinolone (fluoroquinolone) resistance is expressed through several biochemical 

resistance mechanisms. The quinolone resistance determinants (QRD) are a range of 

genes across several species of bacteria which code for mutated topoisomerase IV and 
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DNA gyrase. Examples include SMqnr, qnrA/B/C/D/S, (pentapeptide repeat proteins). 

These resistance determinants have been identified in Stenotrophomonas maltophilia, 

Escherichia coli, Enterobacteriaceae, and some homologues in E. faecalis (Arsene & 

Leclercq, 2007; Aedo et al., 2014; Kanamori et al., 2015; Yanat et al., 2017). These QRDs 

cannot complex with quinolones and as such abolishes the bactericidal effects of the drug.  

The second mechanism of quinolone resistance involves the use of multidrug efflux 

pumps such as the qepA quinolone efflux pump in S. maltophilia and Enterobacteriaceae. 

Enterococci, such as E. faecalis V583 have been predicted to have multidrug efflux 

functionality, with 34 presumptive pumps (Pazoles et al., 2001).  Two E. faecalis efflux 

pumps EmeA and EfrAB (ABC multidrug pump) have presumed function as quinolone 

efflux pumps. EmeA has had quinolone efflux confirmed and EfrAB has been suggested 

to function in the same way due to similarity to the E. coli pump (Lefort et al., 2000; 

Moon et al., 2010). 

 

1.4.5. Glycopeptides 

The biochemical mechanism of glycopeptide resistance involves modification of the 

antibiotic target. Enterococci that are glycopeptide resistant encode the production of 

mutated peptidoglycan precursors which significantly reduce the binding affinity of 

glycopeptide antibiotics. The usual D-Ala-D-Ala end termini are either modified to a D-

lactate (x1000 reduction in binding affinity) or D-ser (x7 reduction in binding affinity). 

These mutated precursors retain their original functionality and can be used to produce 

peptidoglycan.  

Cremniter et al. (2006) described a secondary glycopeptide resistance mechanism in E. 

faecium involving activation of a secondary transpeptidase (Ldtfm). This transpeptidase 



15 

 
 

could crosslink peptidoglycan chains at the third position (L-Lys) rather than the fourth 

position (D-Ala) that typically is used by the penicillin binding proteins. Additionally, the 

peptide precursors were synthesised as tetrapeptides (using D, D-carboxypeptidase) over 

the traditional pentapeptides, producing a zero-binding affinity for glycopeptides. 

 

1.4.6. Lipopeptides  

The mode of action of daptomycin has not been unequivocally identified. Resistance to 

the drug has mostly been identified in bacteria (S. aureus) isolated from patients, post-

therapy (Hayden et al., 2005). Biochemical resistance mechanisms remain elusive, but 

have been associated with staphylococcal intrinsic gene mutations in rpoB/C (RNA 

polymerase subunits), MprF (lysylphosphatidylglycerol synthetase) and YycG (histidine 

kinase) (Galimand et al., 2011). However, in daptomycin resistant E. faecium these genes 

were not mutated in the tested strains (Muller et al., 2006). Arias et al. (2011) created 

daptomycin resistant enterococcal strains in a similar fashion to the daptomycin resistant 

S. aureus, and did not identify mutations in the four associated staphylococcal resistance 

genes within the enterococci. They did identify polymorphisms in the phospholipid 

associated cls and gdpD genes in enterococci, as well as liaF (part of the cell envelope 

remodelling in response to antibiotics), however this did not translate to gene mutations 

in S. aureus. This has suggested separate mechanisms of antibiotic resistance for different 

Gram positive species of bacteria. 

Daptomycin resistant enterococci had distinct alterations to the cell envelope requiring 

further investigations for significance. These mutations along with the structural 

alterations have been suggested to modify the cell envelope in such a way as to reduce 

daptomycin membrane interactions, including cellular uptake. 
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1.4.7. Rifampicin 

The majority of rifampicin resistance originates in mutations to the rpoB subunit of RNA 

polymerase as it is the binding site of the drug. These mutations lower the binding affinity 

of the drug to the subunit. A secondary mechanism of enzymatic drug inactivation has 

also been documented. RpoB gene polymorphisms have been identified in a large number 

of different bacterial species. Many of the specific mutations have also been identified 

across species. Point mutations are enough to significantly reduce rifampicin binding 

affinity and increase drug MIC. Multiple antibiotic resistance has been documented with 

rpoB mutations. The rpoB H486Y mutation significantly increased the MIC of 

cephalosporin resistance in both E. faecalis and E. faecium (Kristich and Little, 2012).  

The mechanism is not fully understood, but multidrug efflux pumps have been implicated 

in M. tuberculosis as being overexpressed in rifampicin resistance mutations (Louw et 

al., 2011). Additionally, Cui et al. (2010), determined that a rpoB mutation (Position 1862 

alanine to glutamic acid substitution) in S. aureus caused heteroresistance to vancomycin 

and daptomycin. Conversely, and for reasons yet to be fully identified, daptomycin 

therapy against a rifampicin resistant enterococci abolished antibiotic resistance 

(Reynolds and Courvalin, 2005). 

 

1.4.8. Oxazolidinones 

Oxazolidinone (Linezolid) resistance originates from mutations to the V domain of 23S 

rRNA. The G2576U mutation in the central loop of the V domain has been identified as 

a linezolid resistance mutation (Bozdogan and Applebaum, 2004). It is believed that this 

mutation reduces the binding affinity of linezolid (Marshall et al., 2002). Martínez-

Martínez et al. (1998) confirmed observations that selected linezolid resistant E. faecalis 

contain a higher concentration of ribosomes with the G2576U mutation. This has been 
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suggested as the principle mechanism of amplification of linezolid resistance based on 

selective pressure from antibiotic therapy (Kristich et al., 2014). 

 

1.5. Development of antibiotic resistance 

The number and variation of biochemical and physiological mechanisms responsible for 

the development of tolerance/resistance to biologically active compounds are vast 

(Davies, 2010). Bacterial evolution is based on “out surviving” other organisms and 

comes from significant genetic plasticity allowing varied mutational augmentations, 

acquisition and exchange of genetic material affecting transcriptional activity. These 

adaptations of bacterial genetics have allowed the development of resistance to the 

majority of antibiotics used therapeutically. Several of these resistance mechanisms are 

not fully understood, such as the specific interactions of the multidrug efflux systems in 

enterococci or the “spontaneous” generation of total resistance in Mycobacterium 

tuberculosis (Davies and Davies, 2010; Hürlimann et al., 2016; Unissa and Hanna, 2017).  

The lack of complete understanding of the dynamics of these evolved antibiotic resistant 

pathogens and their dissemination has significantly contributed to the rapidly 

proliferating antibiotic resistance crisis (Losos and Lenski, 2016). Louis Pasteur and 

Robert Koch identified that bacteria can cause infectious disease. The identification and 

deployment of benzylpenicillin by Alexander Fleming in the early 20th Century proved 

that antibiotics were effective therapeutic agents against bacterial infection (Davies and 

Davies, 2010). Shortly after the deployment of benzylpenicillin, antibiotic development 

and usage flourished, and so too did the appearance of antibiotic resistance (Hotchkiss, 

1951). Antibiotics were exclusively natural compounds for a long period until technology 

caught up to their complexity. Their biosynthetic pathway and dynamic biological effects 
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were challenging to identify and understand (Strohl, 1997; Brötze-Oesterhelt and 

Brunner, 2008). It took 31 years to synthesise benzylpenicillin in the laboratory, owing 

to its complex chirality and functionality (Nikolaou and Montagnon, 2008). The field of 

genetics has origins in the physiological modes of action of benzylpenicillin (Vazquez et 

al., 1969). To this day, knowledge of the fundamental understandings of the natural 

biological interactions of antibiotics is still limited (Yeh, 2009; Chevereau, 2015). 

Bacterial natural resistance to antimicrobials existed before human influence and their 

mechanisms of resistance largely remain unchanged (Giedraitienė, 2011; Miller, 2014). 

Before benzylpenicillin could be manufactured for therapeutic use, bacterial resistance 

(penicillinase) was discovered by members of the Nobel Prize winning penicillin research 

team (Abraham and Chain, 1940). Sulphonamides were deployed in 1937 targeting 

bacterial C1 metabolism; and efflux/target alteration resistance emerged in less than three 

years (Kashmiri and Hotchkiss, 1975; Davies and Davies, 2010).  

The conserved nature of bacterial resistance mechanisms and the rapid identification of 

resistance shortly after, or even before the discovery of the therapeutic use of an 

antibiotic, indicated that a significant quantity of bacterial resistance genes evolved before 

human influence (D’Costa, 2011; Gaze, 2013). This occurred most likely in microcosms 

of natural selection between microbiota (D’Costa et al., 2006). Usage of therapeutic 

concentrations of antibiotics selects for heterogeneously resistant clones of an individual 

species of bacteria. Therefore, perpetuating pre-existent resistant genes initially generated 

from instances of natural selection (Baquero et al., 2002). This heterogeneous makeup of 

antimicrobial resistance is a possible explanation for the emergence of streptomycin 

resistant Mycobacterium tuberculosis during the first ever patient treatment of 

tuberculosis with streptomycin in 1944 within the same patients (Davies and Davies, 

2010). 



19 

 
 

Bacterial resistance in many cases may have evolved long before human intervention. 

However, the antibiotic resistance crisis is proliferating at a rate much faster than only 

selecting for heterogeneously resistant clones of a susceptible bacterial isolate. The rapid 

proliferation can be explained by horizontall gene transfer. 

 

1.6. Fitness cost of antimicrobial resistance 

Contrary to the generalised belief that AMR is the natural mode of microbial evolution, 

it is in fact a pathway of fitness cost for many microorganisms (Andersson and Hughes, 

2010). These fitness advantages are survival of each resistant clone, however at a cost of 

growth rate and metabolic adaptability (Vogwill and MacLean, 2015). Fitness cost is not 

always observed in tested microorganisms, but when it is, it usually arrives through 

counter selection against antibiotic resistance in an antibiotic-free environment (zur 

Wiesch et al., 2011). Chromosomal mutations or insertions have the greatest cost to 

microbial fitness as they can alter the nature of conserved genes with undesired microbial 

metabolic changes (MacLean et al., 2010). MGE introduction to a new host, which can 

contain a great degree of varied genes encoding metabolically inclusive functions are 

significantly less of a burden on the new host compared to genomic mutations/inclusions 

(Vogwill and MacLean, 2015). The apparent lack of serious fitness cost of the acquisition 

of AMR, which is most commonly by means of MGE highlights the inherent danger of 

plasmid mediated AMR propagation. 
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1.7. Horizontal gene transfer: the crux of bacterial evolution 

The mobile nature of antibiotic resistance was first discovered in the late 1950’s 

highlighting how localised sources of ancient antibiotic resistance genes could 

disseminate to the members of a pathogenic microcosm of bacteria (Davies, 2008). 

Horizontal gene transfer of antibiotic resistance is as ancient as the naturally evolved 

antibiotic resistance genes themselves (Brown, 2003).  

Whilst it has been determined that a great variety of antimicrobial resistance genes existed 

before human influence, there is no doubt that dissemination of resistance has occurred 

due to the use of antibiotics (Berglund, 2015). Tuberculosis has remained a serious human 

pathogen for as long as recorded human history, despite effective antimicrobial therapies 

(Rothschild et al., 2001; Lawn and Zumla, 2012). Streptomycin and isoniazid were 

effective antibiotics for patients with tuberculosis and dissemination of resistance was 

prompt (Finken et al., 1993; Mitchison, 1998). Combination therapies comprising as 

many as five second line drugs such as, cycloserine, amoxicillin, clarithromycin, 

moxifloxacin, and kanamycin in combination with neurotoxic concentrations (1200mg 

daily dose) of linezolid are currently the only way to defeat tuberculosis (Koh et al., 

2009). Even with inclusive combinations of anti-TB drugs, in many places extremely drug 

resistant tuberculosis (XDR) is rife (Shah et al., 2007; Sotgiu et al., 2009). Similarly, to 

the totally drug resistant K. pneumoniae (which can partake in horizontal gene transfer of 

antimicrobial resistance genes), totally resistant (TDR) tuberculosis has indications of, 

but non-confirmatory evidence for horizontal gene transfer events (Davies and Davies, 

2010). For now, it appears that TDR M. tuberculosis has evolved due to mutations as a 

result of selective pressure alone. Perhaps the only positive outcome from the rise of 

bacterial antimicrobial resistance is that through studying their mechanisms, improved 

understanding of bacterial cell structure and function has been achieved. 
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The horizontal gene exchange process generates extremely varied recombinant bacterial 

genomes which can involve introduction or removal of large quantities of DNA into the 

transcriptionally active genome (Ochman et al., 2000). This process can occur in three 

primary forms as described and illustrated below (Figure 1.1): 
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Figure 1.1. Modes of bacterial horizontal gene transfer. Transformation involves the 

uptake of naked DNA which may contain resistance genes (green). Conjugation involves 

the transfer of mobile genetic elements, most commonly plasmids (purple) which likely 

contain resistance genes. Transduction occurs through the unpacking of DNA from a 

previous host by adsorbed bacteriophages. Adapted from: Kim, G., 2007. Attack of the 

superbugs: antibiotic resistance. Science Creative Quarterly. 01.07: Cellular Resistance. 
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1.7.1. Transduction 

Transduction is the process of infection of a bacterial host with a bacteriophage (phage) 

that has completed a lytic cycle in a prior host and incorporated some host DNA. This 

can involve generalised transduction, repacking random DNA fragments from the host, 

or specialised transduction which involves taking DNA from the initial integration site as 

illustrated in figure 1.1 (Schicklmaier and Schmieger, 1995). Bacteriophages are viruses 

that infect bacteria and require the metabolic activity of a bacterial host to replicate and 

package their viral genetic material. Phages can be categorised based on their replication 

strategy as temperate or lytic. Temperate phage replication cycle involves lysis, or 

recombination using a phage associated integrase. Lytic phages have a host lysis 

replication cycle only. Temperate phages are known for their ability to carry out 

horizontal gene transfer. The temperate phages ΦFL1C, ΦFL2A, and ΦFL3B were shown 

to be capable of generalised transduction of antibiotic resistance into E. faecalis OG1RF 

and JH2-2 recipients (Yasmin et al., 2010). The lytic phage EFRM31, isolated from a pig 

farm, amplified in E. faecalis was capable of transferring gentamicin resistance to E. 

faecium and was the first interspecies transduction event reported in enterococci 

(Mazaheri Nezhad Fard et al., 2011). Viral transduction is limited by the size of the phage 

capsid to a maximum of 100 Kilobases (Jiang and Paul, 1998). Phage global population 

is postulated to be more than 1031 with an estimated 1025 infections per second (Hendrix, 

2003; Lima-Mendez et al., 2007). With an associated phage for every bacterial species 

and a large infection frequency there is little doubt that phages are a large component of 

bacterial evolution, including antibiotic resistance development. 
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1.7.2. Transformation 

Transformation is the process of a bacterium internalising and expressing extracellular 

(naked) DNA, taken from the surrounding milieu, through homologous recombination as 

illustrated in figure 1.1 (Chen and Dubnau, 2004). This uptake of naked DNA allows 

direct integration of adaptive genetic traits facilitating bacterial survival against biocidal 

attack (Croucher et al., 2011). There are now over 80 species of bacteria that have 

demonstrated transformative uptake of naked DNA, such as Bacillus subtilis 168, 

Streptococcus pneumoniae R6, Neisseria meningitidis MC58 and Vibrio cholera N16961 

(Lorenz & Wackernagel, 1994; Johnsborg et al., 2007; Johnston et al., 2014). The unique 

characteristic of bacterial transformation is that the mechanism is contained within the 

bacterium, which is typically inactive until competency has been achieved (Lorenz & 

Wackernagel, 1994). Therefore, transformation can only be triggered as an opportunistic 

process.  The mechanism of DNA internalisation is conserved across the identified 80+ 

species of bacteria, accounting for the transport processing differences between Gram 

positive and negative bacteria (PilQ secretin channel) (Chen & Dubnau, 2004; Johnston 

et al., 2014).  

Many aspects of the transformation mechanism require species specific validation. The 

general process will be explained here with the Gram positive B. subtillis and Gram 

positive S. pneumoniae systems discovered so far. Competence is regulated through 

bacterial growth phases, which vary from species to species, B. subtillis (stationary phase) 

S. pneumoniae (early log phase). Other species can receive DNA at any physiological 

state e.g. N. gonorrhoeae (Dubnau, 1999). Competence is variable between species 

during transformation and is regulated by alternative sigma factors, transcription 

activators and regulators (Johnston et al., 2014). LexA, the suppressor to the “SOS” 

bacterial DNA damage response mechanism also functions as a competency suppressor 
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(Butala et al., 2009). Competency can be induced as a response to stress that threatens the 

viability of bacterial cells, such as antibiotics (streptomycin in S. pneumoniae) and 

nutrient deprivation (H. influenza) and DNA stress (UV exposure in Legionella 

pneumophila) (Redfield, 1991; Prudhomme et al., 2006; Charpentier et al., 2011). 

Once competency has been reached, Gram negative T4P proteins (similar to type II 

secretion and type IV pilli systems), and Gram positive T4P (ComGC pilin) comprise a 

transformation pilus (Tfp). This pilus protrudes from the outer cell surface (observed up 

to 3µm) and binds to extracellular dsDNA (Johnsborg et al., 2007; Laurenceau et al., 

2013; Mann et al., 2013). The Tfp brings the bound DNA to a dsDNA cell surface 

receptor (ComEA), which delivers the DNA to a nuclease (EndA) that degrades one 

strand leaving ssDNA for internalisation through ComEC (Puyet et al., 1990; Provvedi 

& Dubnau, 1999; Bergé et al., 2002). The ssDNA can now be integrated using 

homologous recombinases (RecA) with the assistance of a single strand protecting 

mediator (DNA processing protein A (DprA) in S. pneumoniae) (Beernink & Morrical, 

1999; Mortier-Barrière et al., 2007; Claverys et al., 2009).  

Transformation heredity can be far reaching. Kay et al. (2002) demonstrated 

transformative uptake of aadA antibiotic resistance gene from transplastomic tobacco 

plants into Acinetobacter sp. BD413 bacteria. Conferring resistance to spectinomycin and 

streptomycin. Additionally, studies discussed by Woo et al. (2003) demonstrated the 

uptake of antibiotic resistance genes by B. subtillis from S. aureus when treated with 

antibiotics that degraded S. aureus bacterial cell wall. Although the number of confirmed 

species of bacteria capable of taking up DNA by transformation is less than 100, the 

reality of undocumented uptake of naked DNA and genetic fragments from other 
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organisms is that this is likely to occur on a large scale with DNA fragments as large as 

150 kilobases (Song et al., 2003). 

 

1.7.3. Conjugation 

Conjugation is a common process of transferring large quantities of DNA between 

bacteria, and is instigated through direct contact as illustrated in figure 1.1 (Buchanan-

Wollaston et al., 1987). Plasmids are some of the most common elements of DNA 

transferred through conjugation, such as the Inc18 incompatibility, and sex pheromone 

plasmids in enterococci (discussed in subsequent sections) (Ochman et al., 2000; Gilmore 

et al., 2014).  

The general mechanism of bacterial conjugation, as originally described for members of 

the Enterobacteriaceae, is as follows When two bacteria come into close contact, the 

plasmid containing donor bacterium utilises an F pilus (sex pilus) to make physical 

contact with the plasmid free recipient bacterium (Zechner et al., 2012). 

Depolymerisation shrinks the F pilus to such an extent that the two bacterial cell 

envelopes are touching (Sana et al., 2014). Membrane proteins synthesised by the plasmid 

form a channel between the two connected bacteria (Grohmann et al., 2003). Nucleases 

(assisted with auxiliary proteins) break the plasmid DNA at the origin of replication (oriT) 

separating a single strand of plasmid DNA into a relaxosome intermediate (Howard et al., 

1995). This relaxosome can pass through the channel into the recipient whilst the other 

strand remains in the donor. Both strands will be re-synthesised creating two identical 

plasmids. This process is known as rolling circle replication (Khan, 2005).  

Conjugative plasmids contain Mob (DNA mobilisation genes), Mpf (mating pair 

formation genes) and Tra (transfer genes encoding pili) which allow them to transfer from 

the donor to the recipient, hence they are known as autonomically self-replicating 
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(Garcillán-Barcia et al., 2009; De la Cruz et al., 2010). Mobilisable plasmids such as 

RSF1010 can be horizontally transferred between bacteria, but do not contain the Tra 

machinery necessary to accomplish this autonomously (Davison, 1999). They require 

assistance from Tra containing helper plasmids, such as RP4 in the case of RSF1010 or 

from the recipient (Mergeay et al., 1985).  

Genome integrating elements can transfer genes into the host genome, specifically 

antibiotic resistance genes (Ochman et al., 2000; Wang et al., 2004). These conjugative 

elements, such as Tn916 (E. faecalis – tetracycline resistance) and CTnDOT (Bacteroides 

thetaiotaomicron – tetracycline and erythromycin resistance) can self-excise from the 

host and intermediate across to a recipient cell and integrate into the genome (Scott and 

Churchwood, 1995; Whittle et al., 2002; Burrus and Waldor, 2004).  

Conjugative plasmids and elements have the ability of transferring cross a wide range of 

hosts. The IncQ mobilizable plasmids have been postulated to be compatible with all 

Gram negative bacteria, such that they were frequently utilised as a cloning vector 

(Davison et al., 1990). The enterococcal Tn916 element has been identified in over 36 

genera of bacteria within the Deinococcus-Thermus, Actinobacteria, Firmicutes, 

Fusobacteria and Proteobacteria phyla (Roberts and Mullany, 2009; Ciric et al., 2013). 

As with all other methods of horizontal gene transfer, conjugation has played an important 

role in the evolution of bacteria, particularly the evolution of antibiotic and ultraviolet 

resistance within localised sources of diverse species of bacteria under external stress 

(Dahlberg et al., 1998; Davies and Davies, 2010; Clewell et al., 2014). Antibiotic 

resistance horizontal gene transfer is postulated to occur in the natural environment. Many 

species of bacteria, harbouring antibiotic resistance genes have been identified in the 

natural environment as discussed below. 
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1.8. Sources of antibiotic resistant bacteria in the environment 

Antibiotics are most commonly ascribed as biologically active compounds that elicit 

bactericidal effects. However, from an early stage these compounds demonstrated 

secondary, beneficial biological processes when administered to complex eukaryotic 

organisms (Hao et al., 2014). These beneficial processes are still not fully understood, yet 

antibiotic functions are mostly exploited in this way (Prescott and Dowling, 2013). When 

industrial antibiotic production improvements yielded economically viable products, a 

massive influx of non-prescription based purchasing perpetuated their usage in numerous 

applications, mainly in the food production and pharmacological sectors (Boyd, 2001; 

Adorka et al., 2015). Over the years this has resulted in millions of tons of antibiotics 

saturating the natural environment (Li et al., 2015). The decades-long overuse of 

antibiotics by humans has placed significant stress on bacteria, producing antibiotic 

resistance phenotypes at rates much greater than “survival of the fittest” selection from 

microbial soil microcosms (Amábile-Cuevas, 2015). 

The natural environment is the communal bacterial macrocosm of the planet, providing a 

link between all living organisms and bacteria (Finlay, 2002). Saturating the natural 

environment with antibiotic stress has created heterogeneous sources of antibiotic 

resistant microbes with capabilities of global dissemination. As such, antibiotic resistant 

bacteria have been identified from sources both directly, and linked to the natural 

environment. 

 

1.8.1. Livestock practices facilitating antibiotic resistance 

Industrial livestock production consumes up to two thirds of all produced antibiotics 

globally (Van Boeckel et al., 2015). Huge pressure applied to this sector has given way 
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to a drive for maximum yields in meat and dairy production (Delgado, 2003; Walker et 

al., 2005). Outside the EU, Animals are packed in confined spaces and fed significant 

quantities of animal feed (Fraser, 2001; Grave et al., 2006). Prophylactic antibiotic 

supplementation in these feeds acts as a growth promoter through modifications of animal 

GI tract microbiota and reduces inter-animal infection in the short term (Gaskins et al., 

2002; Sarmah et al., 2006). The result of this intensive approach is an environment which 

is conducive for the creation of resistant bacteria with capabilities of zoonotic infection. 

Examples include the multidrug resistant E. faecalis, E. faecium and E. coli which have 

been isolated from animal meats for human consumption (Garcia-Migura et al., 2014).  

A lesser known example of antibiotic selection pressure exerted on livestock rests within 

the fish farming sector. Fish husbandry aquaculture utilises similar confinement strategies 

as seen in the battery farming practices used for mammalian and avian livestock (Barton 

and Iwama, 1991). However, for fish such as trout these strategies are detrimental to their 

immune system (Leonardi and Klempau, 2003). In an attempt to combat 

immunodeficiency and lack of good sanitary practice, there has been increase in the 

prophylactic use of antibiotics relevant to human disease in the aquaculture of fish (Barton 

and Iwama, 1991; Naylor and Burke, 2005). Common examples include overuse of 

chloramphenicol, florphenicol and oxytetracycline in trout and salmon aquaculture which 

leach into sediments and the surrounding environment (Miranda and Zemelman, 2002; 

Lalumera et al., 2004; Seoane et al., 2014). Since antibiotics are used so generously, 

increased background concentrations of antibiotics deposited by fish excrement, and 

water contamination from antibiotic fish baths escape the limits of the farming zones into 

the natural environment, such as the communal waterways of rivers and lakes. Therefore, 

perpetuating selective pressures on indigenous bacteria as well as contaminants capable 

of human infection (Kim et al., 2004; Sørum, 2006; Cabello, 2006). 
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One of the most pertinent examples of antibiotic supplementation in livestock farming 

practices gone awry, lies within the meat industry. Glycopeptide resistant enterococci 

were first discovered in poultry and pig farms used in meat production in Denmark in 

1997 (Bager et al., 1997). Overuse of the glycopeptide avoparcin as a prophylactic growth 

stimulator in pig and poultry to prevent necrotic enteritis was widespread throughout 

Europe in the mid-1990’s (Kaldhusdal and Hofshagen, 1992). Avoparcin shares a similar 

chemical structure to vancomycin, which was used for serious human drug resistant 

infection (Barna and Williams, 1984). Vancomycin (vanA) resistant enterococci were 

identified in humans that consumed pork from origins that had avoparcin dosing regimens 

Garofalo et al., 2007). Enterococci are not known to be pathogenic in swine, however the 

discovery of drug resistant enterococci led to the implementation of antibiotic resistance 

surveillance in livestock (Mathew et al., 2007). The vanA gene was the only vancomycin 

determinant linked to avoparcin usage (Simonsen et al., 1998). The results of a 23 year 

surveillance study on swine VRE in Europe and the USA identified several clones that 

existed both in humans and pigs (Freitas et al., 2011). E. faecalis CC2 and E. faecium 

CC17 and CC5 all possessed the same mobile genetic element (Tn1546) encoding vanA 

on unrelated plasmids.  

The effects of overuse of antibiotics can be clearly observed in the effluents of livestock 

farming sectors. Slurry and organic waste from agrarian practices including meat and 

dairy production likely contain antibiotic residues and bacteria, many of which display 

limited biodegradability (Balcioğlu and Ötker, 2004). Sulfamethoxazole and 

ciprofloxacin were shown to have biocidal effects on wastewater bacteria (Pseudomonas 

putida) when first tested after a wastewater biodegradation assay by Al-Ahmad et al. 

(1999). The fluoroquinolone class of antibiotics were not fully removed (15% remained) 

during wastewater treatment and can be introduced into the natural environment, and 
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concentrated in sludge used for agricultural purposes (Duong et al., 2008). 

Fluoroquinolone non-biodegradability is the cause of persistant contamination and 

advanced oxidation techniques may be the only way to treat contamination (Frade et al., 

2014). These non-biodegradable antibiotics will produce selective pressure at very low 

concentrations and sit in containment facilities, exposing indigenous and faecal 

contaminant microbes to selective pressure for antimicrobials. Avoparcin was banned at 

the turn of the 20th century and more recent European surveillance reports have seen a 

reduction in vancomycin resistance, further linking prophylactic overuse in the livestock 

industry to the development antibiotic resistance (de Jong et al., 2012). 

 

Examination of environmental propagation of zoonotic bacteria to humans is limited, and 

there has been a call for a more detailed understanding of environmental reservoirs of 

antibiotic resistance (Allen et al., 2010). A significant pressure for the development of 

AMR strains of zoonotic pathogens comes from the metaphylactic processes in place 

from the livestock industry. Whereby a sick animal induces the mass treatment of all 

neighbouring animals in an attempt to prevent spread of any disease (Woolhouse et al., 

2015). The geographical terrain of many of livestock farms and related industries exists 

in, or adjacent to hydrological processes with significant human interaction (wastewater) 

(Woli et al., 2004; Ulén et al., 2007; Daniels, 2011). Herein lies the potential for zoonotic 

infections from tainted environmental water sources linked back to livestock and meat 

production industries.  
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1.8.2. Antibiotic resistant bacteria in wastewater  

Wastewater treatment plants deal primarily with human sewage (Adriano, 2001). They 

link human effluents to the natural environment through treatment processes that utilise 

the hydrological properties of waterways. Antibiotics commonly contaminate sewage 

from human origins, especially clinical sewage (Östman et al., 2017). Therefore, 

antibiotics can be directly leached into the wider environment through wastewater 

treatment facilities using natural waterways (Batt et al., 2006). Due to the constant 

pressures from hospital sources of effluent, high concentrations of MDR (multidrug 

resistant) human pathogenic bacteria are likely to concentrate in the receiving waters and 

sludge of wastewater treatment plants (Kemper, 2008). The mechanisms of wastewater 

treatment have the potential to bring diverse species of bacteria and the non-

biodegradable antibiotics discussed above, into prolonged contact with each other (da 

Silva et al., 2006). This coming together of waste contaminants will only contribute to 

the potential leaching of MDR pathogens and mobile AMR (antimicrobial resistance) 

genes into the natural environment, and even back to humans. These antibiotic resistant 

human pathogens have been previously shown to move into the environment through 

breaches of containment and elimination processes that occur during wastewater 

treatment (Lupo et al., 2012).  

The Enterococcus genus of bacteria is one of the most studied faecal indicator bacteria as 

well as an indicator of localised antibiotic resistance presence, such as vancomycin, 

erythromycin and tetracycline (da Silva et al., 2010) Resilient pathogens which can 

survive wastewater treatment processes have been shown to enter receiving waters and 

therefore increase the potential for propagation back to humans (Rizzo et al., 2013). 

Reinthaler et al. (2003) identified that the highest resistance rates of E. coli were 

identified throughout wastewater treatment facilities and receiving waters that functioned 
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to serve municipal and hospital sources. Lanthier et al. (2010) determined that enterococci 

with antibiotic resistance determinants, present in surface waters contained within a 

watershed in eastern Ontario, Canada, were more likely to originate from wastewater or 

agricultural sources. This identified the natural environment as a source of potential 

infective enterococci which originated from medical and farming practices, which 

themselves are postulated as entrenchment sites for antibiotic resistance.  

Fick et al. (2009) identified concentrations of ciprofloxacin of 14µg/ml in the effluent of 

a wastewater plant in Hyderabad, India. This single effluent plant received wastewater 

from 90 drug manufacturers from the Patancheru industrial area. Water in adjoining lakes 

were determined to have contamination levels of ciprofloxacin up to 6.5µg/ml as a result 

of the complete failure of wastewater treatment in an area with a large consortium of 

global pharmaceutical industries (Tong et al., 2008). This is an example of significantly 

increasing the base level of antibiotic selection on indigenous and foreign microbes 

through mishandling of water treatment, and many examples of this occurrence may go 

unreported (Mompelat et al., 2009).  

 

1.8.3. Sources of antibiotic resistance from agricultural practices 

The use of animal slurry in agricultural practices has been shown to harbour bacteria with 

clinically relevant antibiotic resistances and the potential to infect humans. Examples 

include Pseudomonas spp and Bacillus cereus (tetracyclines and macrolides) (Jensen et 

al., 2001; Sengeløv et al., 2003, Byrne-Bailey et al., 2008). Additionally, many farming 

practices utilise the fertilising properties of treated wastewater to cut down on fresh water 

usage in agrarian practices (Pedrero, 2010). Examples of breaches of wastewater 

treatment with antibiotic resistant bacteria are well documented. Gao et al. (2012) 
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identified tetracycline (TetO) and sulphonamide resistance in a large population of 

bacteria in the receiving waters of a wastewater treatment plant in Michigan USA. Huang 

et al. (2012) demonstrated that effluent water bacteria tested in wastewater treatment 

plants in Beijing China, 59% were resistant to ampicillin and 44% were resistant to 

chloramphenicol. They also demonstrated that the MIC’s to penicillin, ampicillin, 

cephalexin, chloramphenicol, tetracycline and rifampicin were above the base level of 

antibiotic contamination. Taken together these suggest that prolonged exposure to 

antibiotic contamination will only further propagate these heterogenic isolates.  

The base levels of antibiotic and heavy metal contamination in wastewater effluent can 

reach concentrations as high as µg/L (Segura et al., 2009). Heavy metal contamination 

(copper, zinc and arsenic) can contribute to co-selection against antimicrobial resistance 

(Seiler and Berendonk, 2012). Berglund et al. (2015) detected four out of ten tested 

antibiotics downstream of wastewater effluent, with trimethoprim concentrations as high 

as 47ng/L and ciprofloxacin, clarithromycin and clindamycin at concentrations below 

20µg/L. These concentrations of antibiotics detected downstream of wastewater 

treatment plants serve to increase the MIC’s of indigenous bacteria residing in soils when 

irrigated with similarly sourced water (Gatica and Cytryn, 2013). Compounding these 

facts, horticultural practices employed during the growing seasons coupled with a dry 

climate create a high risk for the introduction of floods of antibiotic resistant bacteria 

(Gelsomino et al., 2006). This would occur during runoff from large hydrological process 

that could make their way back into recreational waters and drinking water treatment 

systems, exasperating incidences of the kinds of breaches currently observed across the 

world. 

 



35 

 
 

1.8.4. Animal sources of antibiotic resistant bacteria 

Evidence suggests that wild animals that live in co-existence with the human built 

environment are more likely to harbour antibiotic resistant bacteria, as compared to wild 

animals independent of human influence (Rolland et al., 1985; Allen et al., 2010). They 

have also been suggested to help spread antibiotic resistance through indirect contact with 

human processes (Allen et al., 2010). The majority of wild mice tested in England 

contained bacteria resistant to beta lactam antibiotics, something that would not be 

expected without human influence (Gilliver et al., 1999). A study on the antibiotic 

resistance profiles of E. coli from mammals from densely populated human residencies 

of Mexico including: primates, rodents and marsupials determined that they harbour 

antibiotic resistances similar to those detected in human isolates (Souza et al., 1999). 

Migratory birds carry the greatest risk for sourcing and mechanically propagating 

antibiotic resistance, due to their dual compatibility with the built and natural 

environment (Middleton and Ambrose 2005; Sjölund et al., 2008). Studies on bird species 

determined that birds localised close to the human environment (Great cormorants and 

mallards from ponds and lakes from Lower Silesia region, and swans from Wroclaw, 

Poland) yielded E. coli with a wide range of antimicrobial resistance profiles 

(Kuczkowski et al., 2016). This could be compared to birds that spend significant 

amounts of time outside the human environment, and therefore have limited contact with 

humans. Such as greylag geese and Canada geese from park and grassland in the outskirts 

of Zoetermeer and Molengreend nature reserve, Netherlands, where lower rates of 

resistance were observed (Cole et al., 2005; Dolejska et al., 2007; Kuczkowski et al., 

2016). Feral pigeons can carry zoonotic pathogens and often come into close contact with 

humans (Simpson, 2002). Silva et al. (2009) determined that 38% of E. coli recovered 

from Brazilian feral pigeons were resistant to antibiotics. Radimersky et al. (2010) 
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isolated E. faecalis and E. faecium from urban feral pigeons in the Czech Republic. They 

discovered that these isolates harboured significant antibiotic resistance, including 

tetracycline (tetM) and vancomycin (vanA) resistance determinants. Butaye et al. (2002) 

recovered enterococci from racing pigeons with a higher antibiotic resistance frequency 

as compared to the feral pigeons described by Radimersky et al., citing human influence 

over the selection for antibiotic resistance determinants of animals in closed 

environments. 

Insects have been shown be carriers of human pathogens and have been implicated as a 

mobile reservoir for several human pathogens such as, Salmonella spp, Pseudomonas 

aeruginosa, and Yersinia pseudotuberculosis (Graczyk et al., 2001; Zurek and Gorham 

2008). Multi-drug resistant enterococci have been identified in house flies (Musca 

domestica) isolated from human food preparation sites (Macovei and Zurek, 2006). 

Macovei et al. (2008) also determined that these M. domestica had the capability to 

transfer MDR enterococci to human food. M. domestica possess many features that make 

them the perfect vehicle for the transmission of zoonotic pathogens from their origin 

source (often located in areas of low human population density) directly into human 

environments. They have a direct relationship with bacterial reservoirs during their life 

cycle (Zurek and Nayduch, 2016). The nature of faecal storage in the production of 

slurries, as well as containment facilities for organic waste by-products of livestock 

farming provides a niche environment for M. domestica and other mobile insects such as 

cockroaches (Nwosu, 2001; Beuchat, 2006; Zurek and Ghosh, 2014).  M. domestica are 

attracted to food preparation processes, and have specific feeding/excretion methods that 

encourage the deposition of pathogenic enterococci onto foodstuffs for human 

consumption (Graczyk et al., 2001; Zurek and Gorham, 2008). 
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The presence of antibiotic resistant bacteria in the natural environment is unquestionable. 

The majority of the identified species of bacteria are understood in terms of their human 

interaction (zoonotic, nosocomial, commensal, indigenous etc.). What is not understood, 

is the exact nature of horizontal gene transfer of AMR, facilitating the evolution of 

individual species of bacteria, in hotspot areas created by human practices. Knowledge 

of horizontal gene transfer in the environment is essential to combat the progression of 

the antibiotic crisis. 

 

1.9. Identifying horizontal gene transfer Hotspots in the environment 

The main issue with identifying and analysing the propagation of specific antibiotic 

resistance genes in potential environmental reservoirs (wastewater treatment plants, 

aquatic biofilms etc.) and animal reservoirs (GI tracts and excrement) is that culture plate 

and molecular detection assays cannot accurately identify horizontal gene transfer 

between two specific bacteria from an environment with thousands of species (Ochman 

et al., 2000; Soucy et al., 2015). This excludes the number of potential instances of 

transfer that are unknown amongst non-culturable bacteria, local uncharacterised species 

and intermediaries that may occur during propagation (Nielsen et al., 2013). 

Many studies on horizontal gene transfer describe a single known AMR transfer target; 

however, there may be several AMR genes transferred, in a process where detection 

assays may only scan for a single target (Crisp et al., 2015; Ravenhall et al., 2015). 

Christie et al. (1987) were one of the first groups to describe two different conjugation 

reactions with the E. faecalis plasmid pCF10. When an interspecies reaction was carried 

out, tetracycline resistance transferred along with a 16-kb region of the plasmid from E. 

faecalis into Bacillus subtilis. Compared to the initial intra-species reaction between two 
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E. faecalis transferring a 25-kb region containing tetracycline resistance. In this case the 

resistance phenotype was the same, however the genetic transfer involved a smaller 

region from the plasmid.  

Moubareck et al. (2003) determined multiple gene transfers of vanA and ermB from four 

E. faecium isolates into another susceptible E. faecium. In every instance, both vanA and 

ermB were transferred in vitro conferring vancomycin and erythromycin resistance. Two 

of the donors had additional resistance genes (tetL-tetracycline and ant(6)-streptomycin) 

which were only identified in the transconjugants due to prior knowledge of the gene 

presence in the donors. Studies on conjugation of single gene phenotype/genotype may 

not account for these additional genetic determinants which may translate as additional 

AMR phenotypes. This study also utilised in vivo conjugation using the same isolates. 

Transconjugants isolated from in vivo conjugation were not uniformly resistant to 

vancomycin and erythromycin like the in vitro experimentation, with a small percentage 

(14%) of alternating vancomycin or erythromycin phenotypes. This suggests that like the 

pCF10 conjugation investigations, these two AMR genes are located on the same 

transferrable element but can be transferred in a two-component system. These research 

investigations highlight the potential for varied transfer of genetic determinants based on 

inter/intra-species conjugation reactions, which may include AMR genes. 

Therefore, a more accurate disseminator of potential horizontal gene transfer (HGT) 

hotspots would be scanning for common structures associated with AMR, such as those 

on the mobile genetic elements that carry AMR genes (Lupo et al., 2012). Rizzo et al. 

(2013) suggested integrons, such as the resistance integrons (RI) of MGE’s as an 

alternative indicator for potential HGT hotspots. They have a common structure and are 

associated with many MGE’s and AMR genes. Resistance integron gene cassettes have 

been determined to carry the majority of all antibiotic resistance groups 
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(aminoglycosides, beta-lactams, rifampicin, macrolides etc.) making them a stable 

general solution for identifying potential HGT hotspots (Partridge et al., 2009). However, 

it is still important to understand the specifics of antibiotic resistance transfer as the 

presence of antibiotic resistance genes may facilitate persistence due to therapeutic 

failure. 

Identifying potential hotspots for HGT is an essential step in the combat of AMR 

interbacterial propagation. Understanding the dynamics of HGT under totally natural 

conditions is another essential step towards understanding AMR propagation.   

 

1.10. Horizontal gene transfer dynamics in the environment 

The increasing incidences of AMR bacteria in correlation with the overuse and inadequate 

disposal of antibiotics have clearly been demonstrated (Davies and Davies, 2010). 

However, an in depth understanding of AMR in the complex natural and built 

environment remains elusive (Holmes et al., 2016). There are two known methods with 

which the proliferation of AMR has occurred. Selective stress placed upon populations 

of bacteria and HGT (Courvalin, 2008). Studies on prevalence of drug resistant bacteria 

may not always point to a HGT origin, as is the case with rifampicin resistance generation 

and M. tuberculosis multidrug resistance (Telenti et al., 1993).  

There are an abundance of investigations detecting a large proportion of the known 

antimicrobial resistance genes in wastewater treatment systems (Dröge et al., 2000; 

Reinthaler et al., 2003; Szczepanowski et al., 2008). Investigations such as these, give 

convincing conclusions that HGT occurs in these environments, as there are diverse 

bacterial species as well as mobile AMR genes. The issue with direct confirmation of 
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these statements is in confirming HGT itself with native bacteria, as the number of 

potential recipient isolates in the environment are high (Sørensen et al., 2005).  

A focused approach to understanding HGT in the environment is necessary to reduce the 

large number of variables at any given time. Whilst bacteria have been shown to conjugate 

under planktonic conditions, substrate conjugation may be a more likely mode of natural 

HGT due to the concentration of bacteria on solid surfaces. Bacterial biofilm has been 

postulated to be the substrate of choice for such processes. 

 

1.11. Biofilm: an environment conducive for the dissemination of antimicrobial 

resistance 

Bacterial evolution can be driven by horizontal gene transfer of AMR (Juhas et al., 2009). 

Bacterial biofilm is an environment that would facilitate this process. In the natural 

environment bacteria form communities encased in a protective sheath called a biofilm 

(Mohamed and Huang, 2007, Deligianni et al., 2010). Biofilms have definitively been 

shown as augmenters to nosocomial infection, as they allow anchorage of a community 

of bacteria to host tissue as well as medical devices providing a site of continual 

reproduction and shelter from biocides (O'Toole et al., 2000).  

Biofilms allow pathogenic bacteria to establish successful colonies, providing a 

continuous source of life threatening infection, protected from therapeutic interventions. 

An example of such infections includes enterococcal endocarditis, especially within the 

hospitalised communities of immunocompromised patients (Deligianni et al., 2010). 

These biofilms form (figure 1.2) when an initial colonising bacterium loses its motility 

and permanently binds to a surface to avail of favourable growth conditions (O'Toole et 

al., 2000). The initial coloniser will modulate the environment in a way that allows other 
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bacteria to adhere to the matrix (Mohamed and Huang, 2007, O'Toole et al., 2000). 

Otherwise these bacteria could not grow at the site of initial attachment due to factors 

such as unfavourable oxygen saturation or iron availability (Whitchurch et al., 2002).  

Their adherence to the multi-polymer matrix allows them to contribute to the community 

with specific virulence factors (enterococcal asa1, esp and gelE) or to avail of the initial 

environment created by an initial colonising member (O'Toole et al., 2000; Vuong et al., 

2004; Gill et al., 2005; Farahani, 2016). The type IV pili present on P. aeruginosa aid in 

the formation of biofilm in the presence of S. aureus through pilin binding to the eDNA 

components of the extracellular polymeric substance (EPS) (Yang et al., 2011). 

Multispecies biofilms avail of co-operative aggregation to further strengthen the EPS 

matrix structure making them harder to eradicate than single species biofilms (Rickard et 

al., 2003). 

Mature biofilms can have several different species of bacteria increasing the difficulty of 

total eradication of the biofilm community (Boles et al., 2004, Rochex et al., 2008). A 

multispecies biofilm will likely have members that have unique resistances to pH, 

salinity, temperature as wells as their own AMR profiles. Members that have varied AMR 

profiles increase the likelihood of displaying resistance to any given antimicrobial agents 

(Burmølle et al., 2010). 

 

 

 

 

 



42 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
b
io

ti
c 

su
rf

ac
e:

 

ri
ch

 i
n
 n

u
tr

ie
n
ts

, 

ir
o
n
, 
C

O
2
, 
lo

w
 

o
sm

o
la

ri
ty

 

P
la

n
k
to

n
ic

 

E
n
te

ro
co

cc
i 

Ir
re

v
er

si
b
le

 

b
in

d
in

g
 

P
ro

d
u
ct

io
n
 o

f 
E

S
P,

 

g
el

it
in

as
e,

 

at
ta

ch
m

en
t/

ag
g
re

g
at

i

o
n
 o

f 
cl

o
n
es

 t
h
ro

u
g
h
 

q
u
o
ru

m
 s

en
si

n
g

 

M
o
d
u
la

ti
o
n
 o

f 

en
v
ir

o
n
m

en
t 

al
lo

w
s 

at
ta

ch
m

en
t 

o
f 

o
th

er
 

b
ac

te
ri

a 

S
ec

re
ti

o
n
 o

f 
eD

N
A

 

M
u
lt

i-
o
rg

an
is

m
 s

ec
re

ti
o
n

 o
f 

p
o
ly

sa
cc

h
ar

id
es

 a
n
d
 e

x
o
p
o
ly

m
er

s 

M
at

u
ra

ti
o
n
 o

f 
b
io

fi
lm

 

an
d
 b

ac
te

ri
al

 c
o
m

m
u
n
al

 

re
le

as
e 

 

F
ig

u
re

 1
.2

 T
h

e 
b
io

fi
lm

 c
y
cl

e.
 A

 g
en

er
al

is
ed

 I
ll

u
st

ra
ti

o
n
 h

ig
h
li

g
h
ti

n
g
 t

h
e 

k
ey

 s
ta

g
es

 o
f 

b
io

fi
lm

 e
st

ab
li

sh
m

en
t 

an
d
 m

at
u
ra

ti
o
n
. 
C

re
at

ed
 u

si
n

g
 

in
fo

rm
at

io
n
 f

ro
m

 D
u
n
n

y
 e

t 
a
l.

 (
2
0
1
4
).

 
 



43 

 
 

Examination of natural HGT processes occurring in host bacterial biofilm is inherently a 

difficult task due to the number of unknown variables at play. Variables such as MGE 

compatibility, compatibility between two isolates of bacteria, and finally getting them 

inside biofilm and capturing successful HGT. Assessment of conjugation under these 

conditions has never truly been accomplished without some molecular modification 

(Green Fluorescent Protein (GFP) reporter incorporation) to donor bacteria plasmids 

(Hausner and Wuertz, 1999; Cook et al., 2011). Identifying conjugation partners that can 

carry out HGT naturally, and form biofilm of their own creation would make them 

suitable model organisms for studying this important phenomenon. 

 

1.12. Enterococcus – a genus of bacteria that can model antibiotic resistance, biofilm 

formation and subsequent horizontal gene transfer 

The difficulty associated with acquiring knowledge of environmental conjugation can be 

reduced to a straightforward investigation by using members of the Enterococcus genus 

to model natural conjugal mating pair HGT. Enterococcus faecalis and E. faecium are 

well known for their proficiency in this process, they possess significant AMR genes as 

discussed in sections 1.3 and 1.4 and they can form biofilm (discussed further here). 

Whilst front line care deals with the consequences of the antibiotic resistance crisis and 

research investigations aim to prevent further generation and propagation of antibiotic 

resistance (Edwards et al., 2013), there is a gap in knowledge linking these unique traits 

of enterococci to antibiotic resistance propagation. As mentioned previously, high levels 

of antibiotic resistance can be transferred through horizontal gene transfer, and bacterial 

biofilm matrices can make this possible under a great variety of environmental conditions.  
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Figure 1.3. Overview of enterococcal pheromone based conjugation. Plasmid free 

enterococci secrete sex pheromones into the extracellular environment. When the plasmid 

free enterococci sense a compatible plasmid containing bacteria, pheromone production 

is directed towards out-competing the inhibitor production in the plasmid containing 

bacteria. Once a threshold has been reached and the inhibition mechanism has been 

overcome, binding of the pheromone occurs to the cell surface binding sites on the 

plasmid containing bacteria. Induction of aggregation and the production of aggregation 

substance occurs. The plasmid containing bacteria clump together along with the plasmid 

free enterococci increasing surface area and allowing conjugation to occur. Created with 

information from Dunny and Berntsson, (2013). 
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1.12.1. Enterococcal HGT practices 

The most prolific enterococcal characteristic is their ability to conjugate efficiently with 

different genera of pathogens (Clostridium difficile and E. coli) (Kozlowicz et al., 2006). 

This allows for the movement of large quantities of genetic information to and from VRE 

based on little more than spatial location. Such an example would be the identification of 

a (vanA) vancomycin resistance gene with identical gene sequences to an Enterococcus 

determinant in a pathogenic S. aureus MRSA strain (Magi et al., 2003; Périchon and 

Courvalin, 2009).  

Enterococci are known for their unique sex pheromone conjugation system. Enterococci 

use sex pheromone peptides along with quorum sensing to aggregate potential donor 

strains to allow greater efficiency of horizontal gene transfer (as illustrated in figure1.3) 

(Palmer et al., 2010; Clewell, 2011). All enterococci, produce a specific pheromone that 

induces the expression of aggregation substance, a cells surface protein, from the PrgB 

aggregation gene located on all sex pheromone inducible plasmids (as illustrated in figure 

1.4) (Palmer et al., 2010). Bacteria that contain a sex pheromone responsive plasmid have 

their own pheromone production inhibited by a plasmid produced binding protein (the 

inhibitor – iCF10) (Kozlowicz et al., 2006; Palmer et al., 2010; Clewell, 2011). The 

machinery for the production of the inhibitor is also encoded on the plasmid. The inhibitor 

interacts with the pheromone receptor in the same way as the pheromone peptide acting 

in a competitive nature. This mechanism can be overcome by the presence of un-inhibited 

pheromone at a median concentration 80 fold higher than the inhibitor, produced by a 

plasmid free Enterococcus when it reaches a certain cell density through quorum sensing 

(Hirt et al., 2002; Lysakowska et al., 2012). Once the inhibition system has been 

successfully out competed, downstream signalling activates the production of aggregation 

substance causing the clumping of the donor strain, making it competent for conjugation 
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(figure 1.4) (Clewell, 2011; Lysakowska et al., 2012). This allows the E. faecalis strain 

to conjugate with the donor at efficiencies up to 10-1 transconjugants per donor (Hirt et 

al., 2002; Donelli et al., 2004). They have also been previously instigated in two 

directional interspecies HGT of antibiotic resistance to other enterococci, staphylococci 

and streptococci (Palmer et al., 2010; Gomez et al., 2011) 
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Figure 1.4. transfer of enterococcal plasmid pCF10. The first fully characterised plasmid 

harbouring tetracycline resistance, created for illustration of the mechanism of sex 

pheromone conjugation in this thesis. 1 – recipient cells secrete 8 amino acid long 

hydrophobic sex pheromones bound by a plasmid encoded binding protein that is cleaved 

by enhanced expression of pheromone (Eep). 2 – The plasmid pCF10 containing donor 

also possess the same machinery but is inhibited by production of PrgY transcribed from 

the plasmid pCF10 to prevent auto aggregation. 3 – The plasmid pCF10 also produces an 

inhibitor inert molecule to competitively bind PrgZ/X. 4 – When the extracellular 

concentration of the cleaved pheromone reaches a threshold level, competitive binding 

with the inhibitor is outperformed and the pheromone is taken into the donor cell and 

releases a transcriptional block of the Tra family of repressors. Internalisation of the 

pheromone induces the transcription of Asc10 the aggregation protein which allows for 

tight physical contact between donor and recipient and subsequent conjugation. Created 

with information from Dunny and Berntsson, (2013). 
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1.12.2. Enterococcal biofilm formation capability 

Biofilms are an essential element of enterococcal nosocomial infection, by providing a 

location for the attachment of a population of bacteria to an abiotic surface, such as the 

heart valves during endocarditis (O'Toole et al., 2000). Enterococcal biofilms can 

establish successful chronic colonies causing bacteraemia and culminating into life-

threatening systemic infections (septicaemia) (Deligianni et al., 2010). These biofilms 

can form when a particularly virulent strain, such as VRE V583 or V586, permanently 

attaches to an abiotic surface on or around indwelling catheters Thus, gaining a foothold 

on internal human tissues and even obtaining access to the vascular system through 

potential catheter related injuries (Sahm et al., 1989; O'Toole et al., 2000). The initial 

colonising isolate produces anchoring sites through excretion of DNA and polymeric 

substances, paving the way for later additions of new members using the DNA as an 

attachment site (Mohamed and Huang, 2007; O'Toole et al., 2000). The step wise addition 

of new members to the microcolony biofilm means that late adaptors can consist of 

bacteria that could never form biofilm at the specific site due to issues with nutrient 

availability and oxygen saturation (Whitchurch et al., 2002).  

Having several attachment sites may allow more pathogenic strains of bacteria to enter 

the biofilm, creating continual seeding sites for chronic, systemic infection (O'Toole et 

al., 2000; Gill et al., 2005; Vuong et al., 2004). Mature biofilms are not completely 

defined by specific quantity or variation in bacterial species, they are however usually 

harder to eradicate due to increased surface area of attachment, variation in species of 

bacteria and formation characteristics of the biofilm itself (Boles et al., 2004; Rochex et 

al., 2008).  Where enterococci are concerned, the expression of the enterococcal surface 

protein (ESP) cell wall-associated protein has been shown improve adhesion and 

therefore biofilm formation (Toledo-Arana et al., 2001). Studies by Kristich et al. (2004) 
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and Tendolkar et al. (2004) concluded that ESP must act in coordination with various 

factors involved in enterococcal biofilm formation and its presence can improve 

formation. Hence, enterococcal biofilm is now described as multifactorial in nature 

(Dunny et al., 2014; Garg et al., 2017) Additionally, enterococcal gelatinase contributes 

to biofilm during infection by hydrolysing host tissues (collagen, fibrinogen, fibrin) into 

derivatives (gelatin, various peptides, amino acids) and is recognised as a key virulence 

factor (Hancock and Perego, 2004). Mediated through the Fsr quorum response, 

gelatinase provides both nutrients and anchoring sites for the development of biofilm 

through aiding in the production of aggregation substance (Fisher and Phillips, 2009; 

Thurlow et al.,, 2010).  

As previously stated, multispecies biofilms are generally harder to eradicate due to 

variations in tolerance to biocides amongst the inter-biofilm species. Enterococcal 

infection originating in a biofilm has been shown to have significantly higher tolerance 

to biocides, including antibiotics, rendering many ineffective (ECDC, 2013). This is the 

main advantage to the thick polymeric matrices completely encasing the community of 

bacteria (O'Toole et al., 2000).  

Multispecies biofilms are in general more advanced in terms of structural integrity and 

spatial organisation of its members compared to single species biofilms. Indirect evidence 

for previous HGT events was detected by Schwartz et al. (2003), when they identified the 

enterococcal vancomycin vanA gene in wastewater and drinking water biofilms, with no 

detectable presence of enterococci. It was postulated that enterococci were once present 

in this localised source of biofilm, either through leaching from another biofilm or 

introduction of genetic material from various enterococcal sources. They also detected 

the mecA methicillin resistance gene found in staphylococci in hospital wastewater 
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biofilms further bolstering the notion of undescribed natural HGT processes within 

biofilm. 

Direct experimental evidence for enterococcal conjugation in biofilm has only been 

identified once. Cook et al. (2011) performed biofilm mediated enterococcal conjugation 

with genetically modified, characterised plasmids on laboratory strains of enterococci, 

but it was carried out in a manner that highlighted a limitation in their experimental 

design. The possibility of planktonic conjugation was not accounted for in their 

methodology, particularly as the enterococcal plasmid pCF10 can be transferred through 

planktonic conjugation (Christie and Dunny, 1986).  

 

1.13. Potential for human infection with enterococci sourced from the natural 

environment 

The Republic of Ireland has the highest percentage of vancomycin resistant enterococci 

in Europe (ECDC, 2015). Surveillance for the EU/EEA in 2015 reported that E. faecium 

with resistance to vancomycin was at 45.8% of all isolates tested. The second and third 

highest incidence rates of vancomycin resistance in E. faecium was in Cyprus at 28.6% 

and Croatia at 25.8%. The EU/EEA population weighted mean was 8.3% and, in general, 

the vancomycin resistance incidence rates are increasing in hospital acquired infections.  

The effects observed in nosocomial niches can be postulated to be attributed to the natural 

environment, as hospital effluents drain into these environments. Enterococcal resistance 

propagation and infection has been described as a foodborne zoonosis and global 

importance has been placed on Enterococci due to their high levels of antibiotic resistance 

and conjugation abilities (Nilsson, 2012). The European commission has set a motion to 

prosecute authorities in Ireland over severe continual breaches of wastewater treatment 
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standards set under EU council directive 91/271/EEC; whereby 38 agglomerations were 

in breach of standards including the detection of E. faecalis. These rules were put in place 

in the year 2000, and 13 years later infringement of Irish water standards were continuing 

(European commission, 2012).   

There exists clear evidence of persistent contamination of communal waterways by a 

bacterium which is known to form biofilm in this environment, harbours significant AMR 

gene traits and is competent at conjugation of these genes. This is a model example of 

re/introducing potentially augmented, infective bacteria to humans.  

 

1.14. Conclusion 

As antibiotic resistance continues to prevail, identification of antibiotic resistance genes 

in bacterial pathogens with similar gene sequence identity to other organisms is 

important. Bacterial pathogens efficiently pass on antimicrobial resistance genes through 

contact mediated horizontal gene transfer. Resistant members of the enterococcal family 

can easily form biofilm and conjugate antibiotic resistance genes, such as vancomycin 

determinants. A lack of knowledge regarding this potential environmental source of AMR 

could be helping to perpetuate the antibiotic resistance crisis globally.  
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1.15. Hypothesis and Aims  

 

General Hypothesis: 

 

Environmentally isolated E. faecalis and E. faecium form natural biofilms which facilitate 

the transfer of antibiotic resistance genes. 

  

Aims: 

 Characterise environmentally isolated E. faecalis and E. faecium for their ability 

to carry out horizontal gene transfer. 

 Determine the biofilm production capabilities of enterococci and define the 

unique characteristics contained within their own biofilm. 

 Demonstrate conjugation in E. faecalis using traditional laboratory assays and 

any extensions to the methodology that can be carried out to mimic the 

environment from which they were isolated.  
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Chapter 2 

 

General Materials and Methods 
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2.1. Isolation of enterococci 

The E. faecalis and E. faecium used in this study were previously isolated from various 

sources feeding into river headwaters in the Blackwater catchment in County Monaghan, 

Republic of Ireland (Daniels, 2011). Isolation sites are detailed in table 3.4.1. Briefly, 

water was collected and filtered using the Millipore Microfil membrane filtration system 

with 0.45µm filters (Merck Millipore, Hertfordshire, UK). Volumes of 1-50ml of water 

samples diluted in maximum recovery diluent (Oxoid, Hampshire, UK) were filtered and 

grown on Slanetz and Bartley agar (Oxoid). Plates were incubated for four hours at 37°C 

and 44 hours at 42°C respectively.  

 

2.2. Confirmation of enterococci 

Phenotypic identification of isolates as Enterococcus was previously carried out using: 

aesculin hydrolysis, PhenePlate™ analysis, Gram staining, catalase activity, PYRase and 

azide tests (Kuhn et al., 2000; Ahmed et al., 2005; Daniels, 2011). A selection of these 

tests were used to ensure no contamination of the stock cultures. 

 

2.2.1. Growth in azide dextrose 

An enterococcal universal tube suspension in sterilised azide dextrose broth (Oxoid – 

CM0868) was created using a nichrome wire loop, taking a single colony of bacteria. 

Cultures were incubated at 37oC for 24 hours. An increase in turbidity indicated bacterial 

growth and therefore successful growth in the presence of azide (Devriese et al., 1992). 
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2.2.2. Aesculin hydrolysis 

 

Enterococcal isolates were spread on bile aesculin agar (Oxoid – CM0888) and incubated 

at 37oC for 24 hours. Positive hydrolysis was indicated with a colour change from straw 

yellow to black (Ruoff et al., 1990). 

 

2.2.3. Catalase test 

Enterococcal isolates were smeared on a glass slide, air dried and hydrogen peroxide (3% 

vol/vol) was dropped directly onto the smear. A positive reaction was indicated by the 

presence of bubbles of oxygen created by the reaction (Taylor and Achanzar, 1972). A 

negative reaction confirmed enterococci. 

 

2.2.4. Gram staining 

Standard Gram staining was employed using safranin as the counterstain (as discussed in 

Beveridge, 2001). Indications of enterococci are confirmed by visualisation of Gram 

positive cocci. 

 

2.2.5. Growth at 45oC 

Tryptone soy broth (TSB) (Oxoid – CM0129) bacterial suspensions were created in 

universal tubes and incubated at 45oC for 24 hours. A change in turbidity confirmed 

growth. Enterococci can grow at 45oC (Martínez et al., 2003). 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Mart%C3%ADnez%20S%5BAuthor%5D&cauthor=true&cauthor_uid=14633102
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2.3. Storage of isolates and standard growth conditions 

Isolates to be used in experiments were taken from the deep freezers (-80oC) using a 

sterile toothpick and transferred onto an appropriate growth medium. All bacteria were 

maintained on tryptone soy agar (TSA) slants, (Oxoid – CM0131) at 4oC throughout each 

experimental time-period. Fresh cultures were thawed after each experiment. All growth 

and experiments, unless specifically mentioned, were carried out on TSB, or TSA at 37oC 

for 24 hours incubated statically under aerobic conditions. All chemicals and antibiotics 

used were obtained from Sigma-Aldrich (Dorset, UK), unless otherwise stated. 

 

2.4. Growth curves 

Growth curves were calculated using the viable plate count method (Meynell and 

Meynell, 1965). Each Enterococcus isolate to be counted was serially diluted in 

phosphate buffered saline (PBS) (Oxoid – BR0014) from a single colony grown overnight 

(16 hours) statically in TSB, under aerobic conditions. The serial dilutions were measured 

using a spectrophotometer (600nm). The serially diluted enterococci were spread on TSA 

at a volume of 0.1ml and incubated at 37oC overnight (16 hours). Colonies were counted 

(between 30-300) and colony forming units (CFU) were calculated (CFUml-1 = Colonies 

counted/volume plated x dilution factor) and growth curves were constructed using CFU 

and turbidity measurements over time. 

 

 

 

 

 

 



57 

 
 

2.5. Antimicrobial disc diffusion assay 

Enterococcal isolates were tested for the presence of antimicrobial resistance phenotypes 

using the disc diffusion assay under European Committee on Antimicrobial Susceptibility 

Testing (EUCAST) guidelines (EUCAST 2016). Enterococci were selected for testing 

based on results from the clumping assay identifying them either as potential conjugation 

recipients or donors. An 18-hour culture of bacteria grown in TSA was re-suspended in 

PBS to a MacFarland 0.5 standard. The bacterial suspension was swabbed and spread 

over the surface of a dried Iso Sensitest plate. Antibiotic discs (Oxoid) were stamped on 

the plates using a disc dispenser (Oxoid). Antibiotics used were ampicillin (10µg), 

amoxycillin (25µg), cephalothin (30µg), ciprofloxacin (5µg), erythromycin (30µg), 

gentamicin (120µg), imipenem (10µg), linezolid (10µg), neomycin (30µg), 

oxytetracycline (30µg), quinupristin/dalfopristin (15µg), streptomycin (25µg), 

trimethoprim (5µg), trimethoprim/Sulfamethoxazole (25µg), tetracycline (30µg), 

teicoplanin (30µg), and vancomycin (30µg). Plates were incubated for 24 hr at 37oC. 

Zones were measured (mm) and compared to EUCAST guidelines. E. faecalis ATCC 

29212 was used as a susceptibility control.   
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Table 2.1 Antibiotic susceptibility breakpoints for enterococci relative to disc 

concentration 

  

Antibiotic 

Disc 

concentration 

(µg) 

Zone diameter Breakpoint 

(mm) 

S ≥ R < 

Ampicillin 10 10 8 

Amoxicillin 25 10 8 

Cephalothin 30 18 14 

Ciprofloxacin 5 15 15 

Erythromycin 30 23 13 

Gentamicin 120 8 8 

Imipenem 10 21 18 

Linezolid 10 19 19 

Neomycin 30 18 15 

Oxytetracycline 30 19 14 

Quinupristin/Dalfopristin 15 22 20 

Streptomycin 25 14 14 

Sulfamethoxazole/Trimethoprim 1.25 + 23.75 21 21 

Trimethoprim 5 50 21 

Teicoplanin 30 16 16 

Tetracycline 30 18 15 

Vancomycin 30 12 12 
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2.6. Antimicrobial minimum inhibitory concentrations 

Minimum inhibitory concentrations were determined using the broth microdilution 

protocol outlined by Wiegand et al. (2008) with the addition of p-Iodonitrotetrazolium as 

described by Amir et al. (2013) as a colorimetric indicator to confirm naked eye 

observations of inhibition. Antibiotics used were: vancomycin 512-1µg/ml, erythromycin 

1024-0.25µg/ml, streptomycin 1024-2µg/ml, tetracycline 256-0.5µg/ml, trimethoprim 

16-0.008µg/ml, teicoplanin 32-0.25µg/ml, rifampicin 512-1µg/ml, kanamycin 2048-

1µg/ml (Gibco-ThermoFisher), chloramphenicol 1024-1µg/ml and gentamycin 1024-

1µg/ml. All experiments were carried out using Muller Hinton broth and iso-sensitest 

broth for trimethoprim. Resistance/susceptibility was determined according to the 

EUCAST breakpoint publications version 6 (EUCAST, 2016).  
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Table 2.2. Antibiotic minimum inhibitory concentration breakpoints (24 hours) for 

enterococci. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Breakpoints determined from the EUCAST breakpoint publications version 6 (EUCAST, 

2016). 

 

 

 

  

 

MIC (µg/ml) 

Antibiotic S ≥ R < 

Ampicillin  4 8 

Amoxicillin  4 8 

Ciprofloxacin  4 4 

Erythromycin  4 4 

Gentamicin  128 128 

Impenem  4 8 

Kanamycin  1024 1024 

Linezolid  4 4 

Quinupristin/Dalfopristin  1 4 

Streptomycin  512 512 

Trimethoprim  0.03 1 

Tetracycline  4 4 

Teicoplanin  2 2 

Vancomycin  4 4 
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2.7. Generation of rifampicin resistant strains 

Due to the relative antimicrobial sensitivity of all recipients identified and in order to 

perform counter-selection in conjugation experiments, rifampicin resistance was 

generated. The rifampicin sensitive pheromone-producing isolates were grown in sub-

minimum inhibitory concentrations of the antibiotic to log phase (eight hours at 37oC in 

TSB). Successive generations were sub-cultured daily in increasing two-fold 

concentrations of the antibiotic until isolates could grow in at least 32 µg/ml (seven days 

of culturing) of rifampicin starting from 0.5µg/ml up to a maximum of 512µg/ml. All 

donor isolates in this study were susceptible to rifampicin excluding MW02102, 

MW03025 and MW03051 which displayed an MIC of 8 µg/ml. All recipients were 

resistant to rifampicin (denoted as Rif) as compared to the donors. 

 

2.8. Stability of resistance under no selection 

E. faecalis MF06036 and MF06035 with established vancomycin resistance phenotypes 

were subjected to weekly sub-culture on TSA under zero antimicrobial stress for six 

months. Incrementally, isolates were spread on TSA plates containing 10µg/ml of 

vancomycin and incubated for 24 hours at 37oC and viable counts were determined. 

 

2.9. NCBI gene analysis and primer design from published enterococcal MGEs 

Antimicrobial resistance genes which have been shown to be located on mobile elements 

were analysed. This was accomplished by systematically going through deposited partial 

and complete plasmid sequences with identified genes in the NCBI gene database. All 

entries associated with antimicrobial resistance and plasmid/mobile element genes were 

collated to create a database of all genes of interest. Their associated plasmid and 
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enterococcal species were also recorded. Nucleotide sequence information for each gene 

was recorded and collated in FASTA format. These sequences were aligned in ClustalX 

(Larkin et al., 2007) to highlight sequence identity between sequence variations of the 

same genes. Sections of identical sequence between gene variants of the same gene were 

inputted to the NCBI primer – BLAST programme to create a single set of primers. This 

approach ensured selection of mobile antibiotic resistance phenotypes using one primer 

set per gene, across all tested enterococci where possible. This information allowed 

published primers to be cross checked for the precise amplification location on the gene 

of interest.  

 

2.10. Creation and acquisition of PCR primers and FISH probes 

All primers used in this study were screened and acquired in the same way. Published 

primer/probe sequences were subjected to BLAST against a consortium of all published 

specific gene sequences for E. faecalis and E. faecium to confirm specificity. 

Primers/probes that were created were first subjected to primer-BLAST. Primers/probes 

were cross checked for specificity to all genes in the gene database. After confirmation 

of specificity, primers/probes were analysed for stability using the PCR primer stats tool 

in the sequence manipulation suite (Stothard, 2000). All primers/probes were acquired 

through the ThermoFisher custom DNA primers and, where specifically stated, Integrated 

DNA Technologies primer creation tools. Antibiotic resistance gene primers were 

controlled with E. faecalis ATCC 29212. Staphylococcus aureus ATTC 43300 was used 

as a non-specific control for Enterococcus probes. 
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Table 2.3  Primer sequences used in this study 

Gene Primer  Sequence 5' to 3' 
Size 

(bp) 
Reference 

tetK tetK F TTAGGTGAAGGGTTAGGTCC 718 Aarestrup, 2000 

 tetK R GCAAACTCATTCCAGAAGCA   

tetL tetL F ATAAATTGTTTCGGGTCGGTAAT 1077 
Trzcinski et al., 

2000 

 tetL R AACCAGCCAACTAATGACAATGAT  

tetM tetM F GTTAAATAGTGTTCTTGGAG 657 Aarestrup, 2000 

 tetM R CTAAGATATGGCTCTAACAA   

tetO tetO F GATGGCATACAGGCACAGAC 614 
Choi and Woo, 

2015 

  tetO R CAATATCACCAGAGCAGGCT   

tetS tetS F TGGAACGCCAGAGAGGTATT 660 
Choi and Woo, 

2015 

  tetS R ACATAGACAAGCCGTTGACC   

tetT tetT F AAGGTTTATTATATAAAAGTG 169 
Aminov et al., 

2001 

  tetT R AGGTGTATCTATGATATTTAC   

tetW tetW F GAGAGCCTGCTATATGCCAGC 168 
Choi and Woo, 

2015 

  tetW R GGGCGTATCCACAATGTTAAC   

ermB ermB L AGGGTTGCTCTTGCACACTC 119 This study 

 ermB R CTGTGGTATGGCGGGTAAGT   

vanA vanA L CTACTCCCGCCTTTTGGGTT 109 This study 

  vanA R TTCACACCGAAGGATGAGCC     

E. faecalis  FL1 ACTTATGTGACTAACTTAACC 360 
Jackson et al., 

2004 

16s rRNA FL2 TAATGGTGAATCTTGGTTTGG   
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Table 2.4  Probes used for FISH 

Target Probe  Sequence 5' to 3' Reference 

Enterococcus 

vanA 
vanA 1 GCAAGTCAGGTGAAGATGGA This study 

 vanA 2 AGGAGCATGACGTATCGGTA This study 

E. faecalis 

16S rRNA 

ENF 

191 
GAAAGCGCCTTTCACTCTTATGC 

Wellinghausen 

et al., 2007 

E. faecium 

23S rRNA 

ENU 

1470 
GACTCCTTCAGACTTACTGCTTGG 

Wellinghausen 

et al., 2007 

Bacteria    

16S rRNA 

EUB 

338 
GCTGCCTCCCGTAGGAGT 

Amann et al., 

1990 
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2.11. Plasmid extractions 

The alkaline lysis method for large plasmids was used (Sambrook and Russell 2001). 

Overnight (16 hours) cultures of enterococci in TSB were diluted 1/10 and propagated 

for four hours at 37oC. Up to 1.5 ml of bacterial suspension was taken in an Eppendorf 

tube and centrifuged at 13,000 x g for 30 seconds. Samples were aspirated to dry, re-

suspended in 100 µl ALS1 (10 mM EDTA pH 8.0, 50 mM glucose and 25 mM Tris-Cl 

pH 8.0) containing lysozyme (30 mg/ml), and incubated for 10 minutes at 40oC. Fresh 

ALS2 (0.2 N NaOH, 10% SDS) at 200µl was added to the tube and inverted gently five 

times. Fresh ALS3 (100ml stock made from: 5 M potassium acetate (60 ml), glacial acetic 

acid (11.5 ml) and H2O (28.5 ml)) at 150µl was then added and inverted a further five 

times and stored at 4oC for 16 hours. Upon completion tubes were brought to room 

temperature and centrifuged for five minutes at 13,000 x g. Supernatant was transferred 

to a fresh tube and precipitated with 2 volumes of ethanol and inverted once.  Tubes were 

centrifuged for five minutes at 13,000 x g. Samples were gently aspirated; 1ml of ethanol 

was added and centrifuged for two minutes at 13,000 x g. Tubes were again aspirated and 

re-suspend with 50µl of TE (20µg/ml RNase). Sufficient time for precipitate to dissolve 

was required (24-96 hours at 4oC). Extractions were analysed on a 0.75% agarose gel for 

3.5 hours at 100 volts. Other methods tested included the Kado and Liu method (1981), 

the Anderson and McKay method (1983) and the Williams method (2006). 
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2.12. Clumping assay 

To test if an isolate could be a pheromone producing recipient or a pheromone responsive 

donor, cells were grown overnight (16 hours) in 20 ml of TSB statically. Cells were 

pelleted by centrifugation (10,000 x g) for 15 minutes at 4oC. Supernatant was removed 

and filter sterilised (Millipore 0.22 micron filters) providing pheromone-enriched broth. 

The clumping assay consisted of 500µl pheromone-enriched broth, 500µl fresh TSB, and 

20µl of an overnight culture (16 hours) added in a 1.5ml Eppendorf tube (Eppendorf, 

Stevenage, UK) and incubated for four hours (37oC rotating at 150 rpm). From the final 

suspension, 20µl was dropped on a glass slide and a coverslip (22mm) was applied. 

Clumping was determined by microscopy. Isolates that induced clumping but did not 

clump in the presence of other supernatants were deemed potential recipients. Isolates 

that readily clumped were characterised as potential donors. Cells were imaged using 

phase contrast with 100x (Nikon plan fluor 1.3 oil ph3 DLL) on a Nikon eclipse E400 

with a Nikon DS-fi1c. Images were captured with NIS-elements and processed in imageJ 

(NIH). 

 

2.13. Liquid phase conjugation methodology 

Selected conjugation partners were grown overnight (16 hours) in TSB at 37oC. Cell free 

supernatant, containing pheromone from a presumptive recipient isolate, was added to 

the presumptive donor and incubated for four hours at 37oC, allowing time for the 

aggregation of the presumptive donor. The donor was added in equal volume (500µl) to 

the recipient in an Eppendorf and incubated for 20 minutes to 24 hours at 37oC statically. 

Finally, the conjugation reaction was spread on a double selection TSA plate 

(vancomycin (10µg/ml), cephalothin (30µg/ml)) and incubated for 24 hours at 37oC. 

Colonies were counted and conjugation efficiency was calculated (number of 
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transconjugant colonies/number of donor bacteria added to conjugation reaction). 

Controls consisted of streaking the conjugation partners individually onto a double 

selection TSA plate. 

 

2.14. Solid phase conjugation methodology  

Solid phase conjugation experiments were carried out using the solid agar mating method 

described by Cook et al. (2011). Potential donor and recipient isolates (after a 90-minute 

growth in fresh TSB from a 1/10 dilution from an overnight (16 hour) culture in TSB) 

were added together at a ratio of 1:9 onto a non-selective TSA plate and allowed to 

conjugate for 24 hours. The resulting lawn was re-suspended in 1ml of PBS, diluted (1/50-

1/250) and spread onto TSA selection plates containing appropriate antibiotic 

combinations. Plates were incubated for a further 24 hours and transfer efficiencies were 

calculated (number of donors per transconjugant). Selection plates were comprised of 

TSA with rifampicin (100µg/ml) and either vancomycin (10µg/ml); erythromycin 

(50µg/ml); tetracycline (16µg/ml); or kanamycin (512µg/ml). Antibiotic free TSA was 

used as a control. All conjugation reactions were performed at 37ºC. 

 

2.15. Detection of antibiotic resistance genes in transconjugants and their donors 

Antibiotic resistance genes were detected using colony PCR (Tsuchizaki et al., 2000). 

Template DNA was added at a final concentration of 200 ng (in 1µl) to 19µl of mastermix 

at a final concentration of 1.5mM of Mg2+ total (2µl of 1x PCR buffer and 0.6µl of 

separate MgCl2), 0.2mm dNTP’s each, 0.5µM forward and reverse primer and 1.0U of 

Taq polymerase. Primer sequences (Table 2.2) were selected based on antibiotic genes of 

interest as determined by transferred MIC phenotypes. All PCR reactions were run for 30 
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cycles with a final extension of five minutes. Samples were analysed by electrophoresis 

with Tris-Borate EDTA (TBE), in 1.5% agarose with ethidium bromide (final 

concentration 0.5µg/ml) at 100 volts and visualised on an Alpha Imager (Cell biosciences 

Heidelberg, Germany). 

 

2.16. Sponge preparation for incubation with enterococci  

Sponge gemmules were treated with 1% H2O2 for 10 mins (Rasmont 1970; Elliott & Leys 

2007) and stored in deionised water at -20ºC until needed. Multiple gemmules were 

hatched into Universal tubes with 20 ml ultraviolet (UV) treated (10 mins at 254 nm) 

mineral water. Once sponges had hatched, they were fed 500 µl of food mixture (Interpet: 

Nutrifry no. 1 mixed in autoclaved distilled water, concentration of 0.4 mg/ml). Sponges 

were fed for four days prior to experimentation. The size of the sponges ranged from 5 - 

36 mm2 for S. lacustris and 0.5 - 48 mm2 for E. fluviatilis.  

 

2.17. Enterococcal sponge binding assay 

One millilitre of E. faecalis MF06036 (5x105 CFU/ml) was added to a universal tube of 

sterile water containing a single Spongilla lacustris (five days’ post hatching, 5-36 mm2) 

and incubated for 24 hours at 20oC. The sponge was removed from the tube, washed in 

sterile PBS, cut in half and stained with 1% crystal violet for 15 minutes in the well of a 

6-well plate. The sponge was dry mounted on a glass slide and imaged on an OLYMPUS 

CX21 bright field microscope with 40x/0.65 and 100x/1.25 oil, plan objectives. Sponge 

sections were examined for evidence of enterococcal binding to tissue. 
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2.18. Enterococcus Conjugation in the presence of sponge 

Conjugation partners were grown individually in TSB (2±0.5x109 CFU/ml 

approximately). They were then diluted 1/10 and grown for 90 minutes before being 

mixed. Universal tubes containing 19 ml of sterile water and sponge were inoculated with 

one ml of the mixed cells. The tubes were incubated at 20ºC for 24 hours. After 

incubation, the tubes were agitated and the water removed. To all of the tubes, 100μl of 

autoclaved deionised water was added and all biological material collected at the bottom 

of the tubes was homogenised. If the tube contained a sponge, this was also homogenised. 

All homogenates were plated on double selection plates and incubated at 37 °C for 48 

hours before colony counts were performed. Controls consisted of sponge incubated 

under the same conditions with a single conjugation partner; or without any conjugation 

partners; or conjugation partners without sponge in the tube. 

 

2.19. Conjugation within a biofilm 

A biofilm-forming enterococcal conjugation partner was added (30µl of TSB 1% glucose 

with enterococcal cells (2.5x109CFU/ml)) to a gene frame on a 0.75% gelatin coated slide, 

sealed and incubated at 37oC for 24 hours. The plastic seal was removed under sterile 

conditions in a cell culture hood, and biofilm was washed in sterile PBS to remove 

planktonic cells. The second conjugation partner was added (30µl) to the pre-established 

biofilm, sealed and incubated for 24 hours at 37oC. The gene frame was removed, biofilm 

was washed with PBS, and the biofilm was dried in a cell culture hood. Biofilm was 

scraped and homogenised using a scalpel and Dimethyl sulfoxide (DMSO) (30µl). The 

homogenate was added to double selection plates and incubated for 24 hours at 37oC 

before CFU’s were counted. Starved biofilms were created using stationary phase cells in 

spent TSB media. 
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2.20. Biofilm examination techniques 

2.20.1. Biofilm production in enterococci 

Enterococci were grown overnight (16 hours) in TSB in round bottomed 96-well plates 

(ThermoFisher, Lutterworth, UK). Each culture was transferred (100µl) to a new 96-well 

plate with eight replicates and incubated for 48 hours at 37 oC. Planktonic cells were 

removed by washing three times with PBS and 100µl of 1% crystal violet was added to 

each well and incubated for 15 minutes. Plates were again washed with PBS three times, 

inverted and air dried in a fume hood. Glacial ethanol (200µl) was used to solubilise the 

dried crystal violet for 15 minutes before 125µl was transferred to a fresh plate (Flat 

bottomed – ThermoFisher) to be read on a VersaMax microplate reader (Molecular 

Devices, Berkshire, UK) at 570nm. 

 

2.20.2. Enterococcal biofilm growth 

Enterococcal biofilm formation involved the use of TSB (1% glucose) grown for 24-48 

hours statically at 37oC. 

 

2.20.3. Biofilm formation in static microplates visualised with crystal violet 

Biofilms were grown in 96-well polystyrene microplates for 48 hours, dried, washed three 

times with sterile PBS and stained with 1% crystal violet for 15 minutes. Crystal violet 

was removed, plates were gently washed with PBS and air dried. Crystal violet was 

solubilised with 200µl of 95% ethanol in each biofilm coated well for 15 minutes and 

absorbance was read at 570nm. 
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2.20.4. Biofilm formation in polystyrene tubes 

Biofilms were grown in 14 ml round bottomed polystyrene tubes (Greiner – 

SigmaAldarich) for 48 hours. Tubes were washed, dried, stained with 1% crystal violet 

for 15 minutes, washed with PBS, air dried and examined by eye. 

 

2.20.5. Air liquid interface biofilm formation 

Microplate biofilms were grown with a coverslip semi-submerged, situated transverse to 

the bottom of the microwell for 48 hours. Coverslips were removed, and either stained 

with crystal violet (1% for 15 minutes) or mounted wet/dry for phase contrast microscopy. 

 

2.20.6. Submerged coverslip biofilm formation 

Submerged coverslips were grown in the same fashion as the air liquid interface assay 

with the difference being that the coverslips were lying on the bottom of the well. 

 

2.20.7. Biofilm formation on coated substrates 

Glass bottomed 16-well plates were used to grow standard 24 hour biofilms with either 

no coating or with a gelatin or collagen surface coating. Gelatin (SigmaAldrich) was 

prepared as a 2% (w/v) stock in tissue grade H2O, autoclaved and coated on the surfaces 

(10µl/cm2) and dried in a tissue culture hood for two hours. Collagen type I was prepared 

as a 0.1% (w/v) solution in 0.1M acetic acid. Substrates were coated (10µl/cm2) and dried 

overnight (16 hours) in a tissue culture hood with UV. Substrates for both gelatin and 

collagen were rinsed with sterile H2O and used for biofilm formation experiments. 
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2.20.8. Biofilm index measurements 

Microwell biofilms were grown for 24 hours. To account for variances in cell population 

between isolates, the optical density of the planktonic microwell content was measured 

with absorbance at 600nm. Wells were then treated with 0.1% safranin, washed with PBS 

and dried. The dried wells were solubilised in ethanol and absorbance was measured at 

450nm. To get the biofilm index OD450 was divided by OD600 (Leuck et al., 2014).  

 

2.20.9. Biofilm formation in the presence of total cell lysate 

A 1% final concentration of SDS (62.5µl of a 16% stock solution of SDS) was added to 

one millilitre of enterococci from an overnight growth (16 hours) in TSB (that was 

washed in PBS) and incubated for two minutes at room temperature to facilitate lysis. 

Cell lysate was centrifuged at 13,000 x g for five minutes at room temperature. Cell lysate 

supernatants were removed from pelleted tubes into fresh tubes. Normal biofilms were 

grown in microwells with or without the addition of total cell lysate based on a 1% vol/vol 

concentration of cell lysate to biofilm growth media used. Biofilms were quantified using 

the biofilm index and normal biofilms were used as controls. 

 

2.20.10. Biofilm formation using DNA  

Total DNA was extracted from a mid-log phase enterococcal isolate grown in TSB and 

incubated at 37oC statically. DNA was purified and measured using a QIAamp DNA Mini 

Kit (Qiagen, Manchester, UK) and a NanoDrop 8000 (ThermoFisher). A 20µg/ml stock 

of enterococcal DNA was added to a normal biofilm formation assay at a final 

concentration of 0, 0.1, 1 and 10% percentage volume of total DNA by total volume of 

biofilm formation media. This was carried out in the same fashion as the biofilm 
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formation using total cell lysate. Biofilms were quantified using the biofilm index and 

normal biofilms were used as controls. 

 

2.20.11. Biofilm formation using the gene frame® 

Double sided adhesive Gene frames (ThermoFisher) were adhered to glass microscope 

slides coated with gelatin (at a concentration of 10µg/cm2) and UV sterilised. Under a 

cell culture hood, normal biofilms were grown within the confines of the gene frame well 

and sealed using the top side adhesive and supplied coverslips. Biofilms were grown for 

24 hours statically at 37oC. Starved biofilms were created by incubating stationary phase 

enterococci with spent nutrient media under normal biofilm growth conditions 

 

2.20.12. Elimination of parents in a conjugal biofilm 

Gene frame biofilm conjugation experiments were carried out as previously described. 

After conjugation, had occurred, antibiotic selection was applied directly to the conjugal 

biofilms incubated at 37oC for 24 hours. Lysozyme (2mg/ml) was then added to the 

conjugal biofilm (as determined with a lysozyme MIC) for an additional 24 hours at 37oC. 

Biofilms were then subjected to LIVE/DEAD and FISH staining protocols and imaged 

with the fluorescence microscope. 

 

2.21 Fluorescent imaging of enterococci 

Hoechst 33342 DNA stain was prepared in stocks of 10µg/ml in DMSO, and was 

optimised for detecting enterococci at working concentrations (diluted in PBS) of 

0.1µg/ml in planktonic suspensions, 2.5µg/ml in biofilm and 3µg/ml in sponge. All 

Hoechst incubation times were 15 minutes at room temperature.  
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Concanavalin A (conA) Texas red conjugate (Invitrogen, Renfrew, UK) was used as a 

novel biofilm stain for enterococcal biofilm and was made into a stock solution of 1mg/ml 

in 0.1M sodium bicarbonate (pH 8.3). When long-term storage was required in solution, 

2mM sodium azide was added allowing aliquots to be frozen or refrigerated. Working 

concentrations of conA were 25-50µg/ml and incubation times were 30-60 minutes at 

room temperature. 

The LIVE/DEAD BacLight bacterial viability kit L7012 (ThermoFisher) was used for 

live dead staining of enterococci. Stock solution preparation was followed as per 

instructions in the kit. Cell suspensions were centrifuged at 10,000 x g for 15 minutes and 

washed with deionised H2O and re-suspended in 0.85 NaCl. Component A and 

component B were mixed in equal volumes thoroughly. The stain was added at 3µl to 

each millilitre of bacteria cell suspension and incubated at room temperature for 15 

minutes (20 minutes for biofilm). A 5µl sample of stained bacteria was placed between a 

coverslip for fluorescent imaging, and for biofilms, stains were washed off with PBS, 

dried and mounted using mounting medium (Vectashield) for fluorescence microscopy. 

Microscopy was carried out with a 100x objective on a Nikon eclipse E400 with a Nikon 

DS-fi1c using a G2-A and UV filter set. Images were captured with (NIS-elements and 

image j (NIH)). 
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2.22. Fluorescent in situ hybridisation (FISH) techniques 

 

2.22.1. FISH protocol for visualisation of planktonic enterococci 

Experimentation was completed by smearing enterococcal cells from an overnight growth 

(16 hours) in TSB onto a gelatin coated slide. The protocol was adapted from Warr et al. 

(2005). Cell smears were fixed in 50% ethanol/PBS for 15 minutes. Cells were 

permeabilised in 20µl of lysozyme (0.5mg/ml, 0.1M Tris-HCl, 0.05M EDTA for 65 

minutes at 37oC in a prewarmed humidified chamber. Lysozyme was washed off with 

PBS and cells were dehydrated to ethanol at increments of 50%, 70% and 100% for three 

minutes in each stage. Volumes of 10-20µl of FISH probes were used at concentrations 

between 5-10ng/µl in hybridization buffer (0.9M NaCl, 20mM Tris-HCl (pH 7.5) and 

0.1% (w/v) SDS) and were incubated and optimised in temperatures of 45-55oC from 15 

minutes to 24 hours with formamide concentrations from 0-60%. Cells were washed (3x5 

minutes) in wash solution (0.9M NaCl, 20Mm Tris-HCl (Ph 7.5) at room temperature, air 

dried and mounted in vectashield hardset antifade for fluorescent microscopy (Vector 

laboratories, Cambridgeshire, UK). Slides were imaged with a 100x objective on a Nikon 

eclipse E400 with a Nikon DS-fi1c using a G2-A and UV filter set. Images were captured 

with (NIS-elements and image j (NIH)). 

 

2.22.2. FISH protocol for visualisation of enterococcal cells in biofilm 

Working from the method described above (section 2.25.1): Enterococci were grown in 

tryptone soy broth (TSB) to approximately 2.5x109 CFU/ml. Cells were harvested, re-

suspended and diluted 1:200 in TSB (1% glucose) and were inoculated into gene frames, 

adhered to 0.75% gelatin-coated microscope slides. Biofilms were developed on the 

slides which were incubated at 37oC for 24hrs. Biofilms were washed with PBS and fixed 
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in 97% ethanol for five minutes. Fixed biofilms were permeabilised with lysozyme 

(1mg/ml) for 30 minutes at 37oC and probed (table 2.3) with either ENF 191, ENU 1470 

or EUB 338 in 10% formamide for 24hrs at 50oC. Cells were washed (3x5 minutes) in 

wash solution (0.9M NaCl, 20Mm Tris-HCl (Ph 7.5) at room temperature and air dried. 

Slides were mounted with vectashield mounting medium for fluorescence microscopy. 

Slides were imaged with a 100x objective on a Nikon eclipse E400 with a Nikon DS-fi1c 

using a G2-A and UV filter set. Images were captured with (NIS-elements and image j 

(NIH)). 

 

2.22.3. FISH protocol for visualisation of vancomycin vanA in enterococcal biofilms 

Vancomycin resistant E. faecalis (VRE) were grown in tryptone soy broth (TSB) to 

approximately 2.5x109 CFU/ml. Cells were harvested, re-suspended and diluted 1:200 in 

PBS, TSB or TSB (vancomycin 10µg/ml). VRE were inoculated into 25µl gene frames, 

adhered to 0.75% gelatin-coated microscope slides. Biofilms were developed on the 

slides which were incubated at 37oC for 24hrs. Biofilms were washed with PBS and fixed 

in 97% ethanol for five minutes. Fixed biofilms were incubated with two distinct 

fluorescein labelled FISH probes specific to vanA for 2-24hrs at 50oC in 10% formamide. 

An Alexa fluor 594 probe targeted to E. faecalis 16S rRNA was used as a control. Probes 

are listed in table 2.3. Slides were mounted with vectashield mounting medium for 

fluorescence microscopy. Slides were imaged with a 100x objective on a Nikon eclipse 

E400 with a Nikon DS-fi1c using a G2-A and UV filter set. Images were captured with 

(NIS-elements and image j (NIH)). 
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2.22.4. FISH on sponge frozen sections from Enterococcus conjugation 

experimentation  

After conjugation experimentation in the presence of sponge, sponges were fixed in 50% 

ethanol PBS for 24hrs at -20°C for crysosectioning. Ten micron sections were cut through 

whole sponges and deposited on 0.75% gelatin coated slides. ENF 191 with a 5’ Texas 

red fluorophore was hybridised to sponge sections for 90 minutes in a hybridisation 

chamber at 10 ng/μl as described previously (Waar et al., 2005). Hoechst was added for 

15 minutes at room temperature (0.5μg/ml). Sudan black B was used to reduce tissue 

autofluorescence in sponge tissue. Fresh Sudan black at a concentration of 0.1% diluted 

in 70% ethanol was added at the end of fluorescent staining for five minutes at room 

temperature (Sun et al., 2011). Slides were mounted with vectashield hardset antifade for 

fluorescent microscopy. Slides were imaged with a 100x objective on a Nikon eclipse 

E400 with a Nikon DS-fi1c using a G2-A and UV filter set. Images were captured with 

(NIS-elements and image j (NIH)). 

 

2.23. Statistics 

Plate based assays such as the clumping and biofilm assays were performed at least three 

times with eight biological repeats each time. Assays performed on the gene frame 

biofilm apparatus were performed five times with six biological repeats. Microscopy 

based statistics came from 10 regions of interest with three independent repeats. Averages 

were taken and when appropriate standard error of the mean is displayed. Significance 

was computed using GraphPad prism 6 t-test function, one way and two-way analysis of 

variance. 
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isolated enterococci for their ability to 

carry out horizontal gene transfer 
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3.1. INTRODUCTION  

 

3.1.1 Antibiotic resistant “superbugs” 

The 2010’s marked a major shift in the global understanding of antimicrobial resistant 

(AMR) infection. The mass media broadcast of the growing ineffectiveness of antibiotic 

therapy has proliferated across the globe, and is beginning to reach a critical status. 

Conglomerating google searches of news reports from 2016 has highlighted, over 

100,000 articles referencing ‘antibiotic resistance’. Comparing this statistic to the 

previous decade of stable numbers of around 16,000, clearly AMR has come to the 

forefront of the general public’s understanding of the 21st century disease. The term 

‘superbug’ was used to describe bacteria that were genetically engineered for useful 

purposes; however, this name no longer bears positive merit and has become synonymous 

with antibiotic resistant pathogenic bacteria (Horikoshi and Grant, 1991; Alum and 

Obuba 2015). The term has evolved in the last decade to include an ever-expanding list 

of bacteria. Almost 20 bacterial species are now commonly identified as AMR superbugs, 

with the compounding description as ‘multi’ drug resistant (Control and Prevention, 

2013). The overuse of antibiotics has undoubtedly caused the rapid proliferation of these 

AMR trends. Recent research has shown that some of these deadly pathogens such as 

Methicillin Resistant Staphylococcus aureus (MRSA) are developing acquired 

resistances from other superbugs, such as Vancomycin Resistant Enterococcus faecalis 

(VRE) (Ray et al., 2003; Weigel et al., 2003; Zhu et al., 2010). Therefore, it is of utmost 

importance to understand when, where and how these interactions can take place in situ, 

in order to limit the spread of current AMR phenotypes as well as preventing novel 

proliferation. 
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3.1.2 Enterococci in the extra-enteric environment 

Environments where humans and domesticated animals share resources has shown cross 

colonisation of enterococci from various origins, including VRE and pathogenic strains 

of E. faecium (Witte, 2000). Enterococci isolated from pigs was shown to be highly 

similar to human isolates when using Multilocus Sequence Typing (MLST) isolate 

characterisation profiles as well as antimicrobial resistance phenotypes (Hasman et al., 

2005). Enterococci are used to monitor mammalian faecal contamination in the wider 

environment (Raisanen et al., 2007; Purnell et al., 2011). From this monitoring activity, 

it has been noted that enterococci can be capable survivors in the harsh ex vivo 

environment. There is no direct evidence to suggest that enterococci can grow in 

oligotrophic environmental waterways; however, they have been shown to grow in beach 

sands and water supplemented with kelp (Yamahara et al., 2009; Imamura et al., 2011). 

The possibility for enterococci to grow in environmental waterways has been stipulated 

from successful experiments conducted on E. coli O157:H7 (Vital et al., 2008). Lleo et 

al. (2005) demonstrated that E. faecalis and E. faecium could enter a starvation state or 

the viable but non culturable (VBNC) state when introduced to extended oligotrophic 

conditions. They remained viable for 40 days in sterilised lake water at 4oC without direct 

illumination, and up to 2 months at room temperature under the same conditions.  

 

3.1.3 Antibiotic resistance in enterococci 

As antibiotic resistant enterococci can possess so many AMR genes, identification of 

resistance phenotypes can take up to five days in many health clinics. Treatment varies 

from a single antibiotic targeted to susceptible phenotypes; to complicated dosing 

regimens with combinations of antibiotics because, extensive resistance phenotypes are 

present (Drews et al., 2006; Habib et al., 2009). Enterococci can possess several intrinsic 
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resistance phenotypes; such as resistance to penicillins, aminoglycosides, and 

cephalosporins; as well as many acquired AMR genes. The extensive resistance 

phenotypes associated with enterococci can be explained by their natural ecology (Bonten 

et al., 1998; Fisher and Phillips, 2009). Enterococci are commensals of human GI and 

would therefore have been exposed to antibiotics. This selective pressure with 

antimicrobial therapy and the current examples of enterococcal AMR observed can be 

linked as cause and effect (Gilmore et al., 2014). 

Enterococci possess several complex mechanisms of AMR. Most noted are the 

glycopeptide resistance mechanisms to vancomycin/teicoplanin. Glycopeptides are 

primarily effective against Gram positive bacteria as the drugs target the D-Ala D-Ala 

peptide residues of peptidoglycan during cell wall synthesis, thereby destabilising cell 

wall integrity through impaired enzyme mediated transglycosylation (Arthur and 

Courvalin, 1993; Courvalin, 2006). Resistance mechanisms are underpinned simply by 

modification of the D-Ala D-Ala binding site to D-Ala D-Ser therefore impairing drug 

binding affinity and overcoming any bactericidal effects (Courvalin, 2006). 

Aminoglycosides inhibit protein synthesis through binding to ribosomal 16S rRNA and 

enterococci are intermediately resistant to aminoglycosides. Generally, uptake of these 

antibiotics is limited by their facultative anaerobic metabolism (Aslangul et al., 2006). 

Additionally, drug uptake bottlenecks include aph(2’’)-I phosphotransferase that uses 

ATP to phosphorylate a hydroxyl group on the antibiotic; and AAC(6’)Ie-APH(2’’)-Ia 

acetyltransferase that uses acetyl-CoA to acetylate an amino group on the antibiotic. 

These aminoglycoside enzymes are commonly located on MGE’s (Kak et al., 2000; 

Galloway-Pena et al., 2012). Rifampicin acts by binding to the beta subunit of RNA 

polymerase, halting transcription (Wehrli et al., 1968). General resistance to rifampicin 
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comes through point mutations in the rpoB gene which reduces binding affinity of the 

drug (Enne et al., 2004). 

 

3.1.4 Horizontal gene transfer in enterococci 

A significant factor for the rise in prominence of enterococcal infections is extensive 

multidrug resistance (MDR), another factor, which in many ways is more important in 

the long term is: proficient gene transfer mechanisms. When the genome of E. faecalis 

OG1X, one of the first and most studied ‘benign’ isolates was sequenced, no foreign 

DNA, indicative of horizontal gene transfer was detected (Bourgogne et al., 2008). When 

examining the NCBI gene databases, it was clear that MDR enterococci possess 

significant (>25%) quantities of acquired genetic material. Most enterococcal 

antimicrobial resistance genes are on mobile genetic elements, including plasmids. These 

invasive enterococci now possess complex mechanisms which can efficiently transfer 

these AMR genes (Thomas and Nielsen, 2005).  

One of the most interesting and studied mechanisms of horizontal gene transfer in 

enterococci is sex pheromone mediated plasmid transfer in E. faecalis (Panesso et al., 

2005). There are many mobile element variants across E. faecalis and E. faecium with a 

range of AMR genes (Kristich et al., 2014). The AMR genes associated with pheromone 

mediated plasmids transfer with high efficiency (Hirt et al., 2002). These plasmids are 

sensitive to specific short chain peptides produced by plasmid deficient members, which 

when successfully bound to ‘donor’ members induce aggregation substance production 

(Waters and Dunny, 2001; Waters et al., 2003). Aggregation substance induces clumping 

of donors containing pheromone plasmid, significantly increasing efficiency of bacterial 

plasmid conjugation as seen in figure 1.4 (Yagi et al., 1983). This process of horizontal 
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gene transfer occurs primarily amongst E. faecalis species, but interspecies transfer has 

been recorded (vancomycin (vanA) resistance from E. faecium to E. faecalis) (Heaton et 

al., 1996). Tetracycline resistance transfer has been extensively demonstrated on the 

pheromone responsive plasmid pCF10 (Christie et al., 1987). These efficient pheromone 

responsive plasmids have thus far not been shown to replicate outside the Enterococcus 

genus (Kristich et al., 2014). However, enterococci have several other ways of 

accomplishing horizontal gene transfer. They possess other plasmids (Inc18) containing 

AMR genes that can transfer to members outside their genus (Staphylococcus and 

Streptococcus) through conjugation (Zhu et al., 2010). Although this method is less 

efficient than sex pheromone plasmid transfers, both mechanisms involve the seeding of 

undesirable AMR phenotypes (tetracycline, gentamycin, erythromycin, beta lactamase 

and streptomycin genes) to pathogenic strains (Ray et al., 2003). The final method of 

gene exchange utilised by enterococci is the transfer of transposons encoding AMR 

genes.  

Transposons are important genetic inclusions in the strain identity of many enterococci, 

often responsible for strain specific virulence and resistance phenotypes (Kristich et al., 

2010). The main categories of enterococcal transposon are: - composite, Tn3 family and 

conjugative transposons. Transposons discussed here are summarised in table 3.1. The 

most relevant composite transposon regarding AMR would be Tn5281, which contains 

the aac -6’/ aph – 2’’ aminoglycoside modifying enzyme responsible for resistance to all 

aminoglycosides except streptomycin (Kristich et al., 2010). Tn1547 encodes variable 

resistance to vancomycin (Rand et al., 2007). Tn3 – family transposons include Tn917 

which encodes resistance to macrolides, lincosamides and streptogramin B and shares 

100% identity to the Tn551 macrolide resistance transposon in S. aureus (Wu et al., 

1999). No Tn3 – family transposon can transfer, however the most significant Tn3 
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transposon with relevance to AMR is Tn1546 which contains the vanA, vancomycin 

resistance cluster, and can be located in Inc18 plasmids and therefore transferred through 

conjugation (Arthur et al., 1993). The vanA subtype results in the highest AMR to 

vancomycin as well as teicoplanin and has been shown to transfer into S. aureus on an 

Inc18 plasmid, demonstrating how vancomycin can make its way from VRE into MRSA. 

Finally, conjugative transposons include Tn916 which encodes resistance to tetracycline 

and shows identity to elements in pneumococcal strains and they can transfer whole 

elements through site excision, transfer and integration through intercellular transfer 

(Shaw and Clewell, 1985).  
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Table 3.1. Transposons of interest within the mobilome of enterococci. 

 

 

 

 

 

 

 

    

Transposon Categorisation Function (genotype) Host range 

Tn5281 composite Gentamycin (aac -

6’/ aph – 2’’)  

Enterococcus, Staphylococcus. 

aureus, Streptococcus 

agalactiae, Mycoplasma 

Tn1547 composite vancomycin 

(vanB1) 

Enterococcus, 

Tn917 Tn3 Erythromycin 

(ErmB) 

Enterococcus, Staphylococcus, 

Streptococcus, Lactococcus,, 

Bacillus, Listeria, 

Paenibacillus 

Tn1546 Tn3 vancomycin (vanA) Enterococcus, Bacillus, 

Staphylococcus, Oeskorvia, 

Streptococcus, Rhodococcus, 

Arcanobacterium 

haemolyticum, Paenibacillus 

Tn916 Conjugative Tetracycline (TetM) Enterococcus, Staphylococcus, 

Streptococcus, Lactococcus, 

Lactobacillus, Bacillus, 

Clostridium, Leuconostoc, 

Listeria, Mycoplasma, 

Actinobacillus, Acholeplasma, 

Acinetobacter, Alcaligenes, 

Butyrivibria, Citrobacter, 

Erysipelothrix, Escherichia, 

Fusobacterium, Granulicatella, 

Haemophilus, Neisseria, 

Pseudomonas, Thermus, 

Ureaplasma, Veillonella, 

anaerobes 
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3.2 Aim and Objectives 

 

This chapter aimed to demonstrate the compatibility of enterococci to conjugate in the 

extra-enteric environment.  

 

Objectives: 

• Test the antibiotic resistance phenotypes of Enterococcus faecalis and 

Enterococcus faecium 

• Test the compatibility of these isolates to commit to horizontal gene transfer of 

antibiotic resistance 

• Examine the ability of the isolates to form biofilm using standardised protocols  

 

 

 

 

 

 

 

 

3.3 MATERIALS AND METHODS 

 

 

All the materials and methods carried out in this chapter are detailed in chapter two. 
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3.4 RESULTS 

 

3.4.1 Selection of Enterococcus faecalis and Enterococcus faecium with the potential 

to undergo horizontal gene transfer 

The outline of the process of carrying out characterisation tests on selected enterococci is 

detailed below. Selection of enterococci involved testing the compatibility of isolates to: 

conjugate, have antimicrobial resistance, and biofilm formation ability. By fulfilling these 

criteria, all bacteria would have the highest possibility of passing on AMR genes through 

HGT. The candidate isolates were chosen from 665 total enterococci. These enterococci 

had previous characterisation data by Daniels, (2011) aiding in rapid selection of a 

manageable number if isolates. There were 23 candidates partially characterised in the 

previous study to contain AMR genes and demonstrate phenotypic clumping (Daniels, 

2011). These isolates consist of 14 E. faecalis and 9 E. faecium, a good spread of clinically 

relevant species. The enterococcal isolate nomenclature was devised previously (Daniels, 

2011) 
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Figure 3.4.1. Flow Diagram outlining selection criteria used to identify a subgroup of 

isolates compatible for horizontal gene transfer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

98 isolates 
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Enterococcus  
Biobank 

23 isolates compatible for 
horizontal gene transfer 

Has conjugal compatibility 

Can form biofilm 

At least one antibiotic resistance phenotype  

65 isolates 
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 Table 3.4.1. Candidate enterococci selected for compatibility testing. From Daniels, 

(2011). 

List of Enterococci detailing isolate name, species, isolation site and the diversity index 

from the isolation source. Diversity index calculated using Simpsons Diversity Index. 

PhP type details the grouping of relevant isolates from their unique source site. Two 

isolates with the same PhP type from the same isolation source share the same type of 

PhenePlate biochemical fingerprint. Clustering strength indicates the fit of each isolate 

within its PhP type: *** strong, ** intermediate, * weak, - unreliable information. Si 

indicates that the isolate is of a single unique PhP type. Information tabulated from 

Daniels, (2011). 

 

 

 

 

Isolate Species 

Isolation 

source 

Diversity 

index from 

source PhP type  

Clustering 

strength  

MF04019 E. faecium Farm 4 0.97 si *** 

MF04010 E. faecalis Farm 4 0.97 si *** 

MF06035 E. faecalis Farm 6 0.95 6 *** 

MF06036 E. faecalis Farm 6 0.95 6 *** 

MF06019 E. faecium Farm 6 0.95 si - 

MF06030 E. faecium Farm 6 0.95 5 *** 

MF07008 E. faecium Farm 7 No information 

ST01053 E. faecium Storm 1 0.92 si *** 

ST01063 E. faecium Storm 1 0.92 3 *** 

ST01109 E. faecium Storm 1 0.92 2 ** 

ST02011 E. faecalis Storm 2 0.476 1 ** 

ST02227 E. faecalis Storm 2 0.476 1 ** 

MW01038 E. faecalis Water site 1 0.712 3 *** 

MW01021 E. faecalis Water site 1 0.712 si ** 

MW01105 E. faecalis Water site 1 0.712 si ** 

MW02102 E. faecalis Water site 2 0.712 si *** 

MW02077 E. faecium Water site 2 0.961 2 *** 

MW02087 E. faecalis Water site 2 0.712 2 ** 

MW02043 E. faecalis Water site 2 0.712 2 *** 

MW03020 E. faecalis Water site 3 0.712 2 ** 

MW03025 E. faecalis Water site 3 0.712 3 *** 

MW03051 E. faecalis Water site 3 0.712 4 *** 

MW03061 E. faecium Water site 3 0.961 2 *** 
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3.4.2 Characterisation of candidate enterococci for conjugation studies – general 

antimicrobial susceptibility 

The first compatibility assay applied to the 23 selected enterococci was the disc diffusion 

assay. There were 19 antibiotics used in this assay, most of which have been used 

historically to treat enterococcal infection. Some antibiotics (Trimethoprim and 

sulphonamides) are not clinically relevant but were used in this assay as a control. The 

least effective antibiotics on the group, in descending order of total number of resistant 

isolates (indicated with parentheses) were: trimethoprim (23), ampicillin (17), 

streptomycin (16), amoxicillin (16), sulfamethoxazole + trimethoprim (15), tetracycline 

(13), cephalothin (13), and erythromycin (10). The most effective antibiotics were 

ciprofloxacin, neomycin and linezolid with total susceptibility for all isolates tested. 

Gentamycin and imipenem both had one resistant isolate, oxytetracycline and teicoplanin 

had 2 resistant isolates, quinupristin/dalfopristin had 3 and vancomycin resistance was 

displayed by 8 isolates. 

Isolate MF06035 and MF06036 were the most multiresistant with resistance to 11 of the 

19 antibiotics tested. ST01109 and MF06019 were resistant to 10 antibiotics. MW01038, 

MW03020, ST02011, MF04010 and MW03051 were resistant to nine antibiotics. 

MW02102, MW03025, MF06030, MW02043 and MW01105 were resistant to eight 

antibiotics. MW02077 and MW03061 were resistant to seven antibiotics and ST02227 

was resistant to five. ST01063 and ST01053 were resistant to four antibiotics. Finally, 

MF07008, MF04019, MW01021 and MW02087 were resistant to three antibiotics. The 

most resistant isolates of enterococci were isolated from poultry litter apart from 

MF04019. The single isolate from the septic tank (ST01109) was the third most resistant 

isolates. The single bovine isolate had one of the lowest resistance profiles.
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Table 3.4.2. Disc diffusion antimicrobial resistance profiles of selected enterococci.  

Enterococcal isolate Resistance  

  AMP VAN E S TET CIP Q,D TRI TEI GEN AMO IMP OXY S,T N CEP LIN 

MF06035 R R R R S S S R R S R S S R S R S 

MF07008 R S S R R S S I S S S S S S S S S 

MF06036 R R R R R S S R R S R S S R S S S 

MW01038 R R S R S S S R S S R S S R S R S 

ST01053 S S R S R S R I S S S S S S S S S 

MW02102 R R S R S S S R S S R S S R S R S 

MW03020 R R S R S S S R S S R S S R S R S 

MW03025 R R S R S S S R S S R S S R S R S 

MW03051 R R S R S S S R S S R S S R S R S 

ST02011 R R R R S S S R S S R S S R S R S 

ST01063 S S R S R S R R S S S S S S S S S 

MF04019 S S R S R S S I S S S S S S S S S 

MW01105 R S S R S S S R S S R S S R S R S 

MW02077 R S R R S S R R S S R R S S S S S 

MW02043 R S S R S S S R S S R S S R S R S 

ST01109 R S S R R S S R S S R S R R S R S 

MW01021 S S S R R S S I S S S S S S S S S 

MF06019 R S R S R S S R S S R S R R S R S 

MF04010 R S S R R S S R S S R S R R S R S 

ST02227 S S R R R S S R S R S S S S S S S 

MF06030 R S S S R S S R S S R S S R S R S 

MW03061 R S S S R S S R S S R S S R S S S 

MW02087 S S R S R S S I S S S S S S S S S 

ATCC29212 S S S S S S S I S S S S S S S S S 

AMP - Ampicillin, VAN - vancomycin, E - erythromycin, S - streptomycin, TET - tetracycline, CIP - ciprofloxacin, Q,D - quinupristin/dalfopristin, TRI - trimethoprim, TEI – teicoplanin, GEN - 

gentamycin, AMO - amoxicillin, IMP - imipenem, OXY - oxytetracycline, S,T - sulfamethoxazole + trimethoprim, N - neomycin, CEP - cephalothin, LIN - linezolid. * R – resistant; S – susceptible; I 

– Intermediately susceptible   
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3.4.3 Characterisation of candidate enterococci for conjugation studies – Biofilm 

formation and clumping 

The second criterion for strain selection was based on the ability to form biofilm. This 

method provided information on the ability of the 23 enterococcal isolates to form biofilm 

using the 96-well crystal violet absorbance assay. The assay is well characterised and has 

delineations of biofilm formation quantity. Two thirds of the tested isolates formed 

biofilm using this method and half of those were strong biofilm producers. There was a 

good representation of biofilm forming ability present among the isolates, combining this 

data with the antimicrobial data allowed for examination of the final characterisation 

assay for compatibility amongst the isolates for conjugation studies. 

The third compatibility assay was designed as the crucial step in highlighting any 

relationship between any two isolates to carry out horizontal gene transfer. The clumping 

assay would visually demonstrate compatibility of two isolates with a phenotypic 

aggregation of the cells of one isolate with the supernatant of the other. Figure 3.4.3. 

demonstrates the range of clumping intensity observed across all tested isolates ranging 

from 1 to 6 (devised in this study). Isolates that produced no reaction were labelled as 1. 

Isolates that produced a weak reaction were labelled as 2. Isolates that produced either a 

weak reaction with 1 high density clump or less than 5 high density clumps were labelled 

as 3. Isolates that produced 5 to 20 high density clumps were labelled as 4. Isolates that 

contained over 20 high density clumps were labelled as 5. Finally, any isolate that 

produced a reaction which clumped the entire visual field contained within the well 

(reducing the opacity of the TSB) were labelled as 6. 

Table 3.4.3. details the output of the clumping assay tested on all isolates, the assay 

revealed that MW01105, ST01109 and MW02043 were the best pheromone producing 

enterococci. They could not clump in the presence of the supernatant of other isolates, yet 
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they could induce the clumping reaction in those isolates. In general, the most effective 

potential donor isolates at clumping to all isolates were MF04010, MF06030, MF04019, 

MF06019 MF06035, MW02087, MW03025 and MW03020 in descending order of 

general clumping intensity. Potential recipient isolate MW01105 induced the highest 

number of clumping reactions, followed by MW02043. Recipient isolate ST01109 

induced the lowest clumping intensity including five results scoring 1 on the clumping 

scale. 

To understand how clumping affected cells at the microscopic level, all isolates were 

examined with phase contrast microscopy. This tool was invaluable when defining weak 

clumping, as defined by the clumping scale: clumping intensities of 1 and 2 (no reaction 

and weak reaction respectively). All potential donor isolates of enterococci were exposed 

to supernatant from each of the three pheromone producers for four hours in a 24-well 

microplate at 37oC. Figure 3.3.4.(a) illustrates the typical reaction observed when 

aggregation signalling is activated. Figure 3.3.4.(b) is a high-resolution micrograph of a 

high density clumping reaction. Figure 3.3.4.(c) was the largest recorded clumping 

reaction (clumping in the entire field of view) and occurred between E. faecalis MF06035 

and the supernatant of MW01105. Figure 3.3.4.(d) was a control illustrating the absence 

of clumping that occurred when MF06036 supernatant was added to MW01105 in a 

reverse reaction. 

The final step required for categorisation of the candidate isolates of enterococci involved 

extensively screening the NCBI (https://www.ncbi.nlm.nih.gov/gene) gene database for 

all published mobile genetic elements as well as AMR genes (table 3.4.4) and conjugation 

genes (table 3.4.5) present contained within the elements for E. faecalis and E. faecium. 

All information was collated in a database listing all genes of interest as well as any 

variations in homology of the same gene.  Descriptions of the genes and their aliases are 

https://www.ncbi.nlm.nih.gov/gene
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detailed in tables 3.4.4. and 3.4.5. These genes were used to select antimicrobials to use 

in MIC testing on the selected enterococci as well as any PCR tests to confirm genes and 

any further gene transfer events. 
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Figure 3.4.2. Ability of selected enterococci to form biofilm in 96-microwell plates 

stained with crystal violet. 

 

Figure 3.4.2 Crystal violet absorbance at 570nm after the crystal violet 96 well 24-hour 

biofilm formation assay on enterococci using tryptone soy broth incubated at 37oC 

statically under aerobic conditions. Optical density correlates to relative biofilm strength: 

Strong biofilm - ≥0.241, weak biofilm 0.121-0.24, non-biofilm ≤0.120. Seven isolates 

produced strong biofilm. Eight isolates produced weak biofilm. Eight isolates did not 

produce biofilm (MF07008, ST01053, ST01063, MF04019, MW02077, MW01021, 

ST02227 and MW02087). Data representative of eight biological repeats, independently 

repeated three times. Using multiple comparison analysis of variance, p values for each 

strong biofilm compared against weak biofilm and no biofilm producers is <0.0001. each 

isolate had eight biological controlS, independently repeated three times. 
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Figure 3.4.3. Bright field macroscopy outlining the degree of variation of clumping ability 

of selected enterococci. 

 

 

 

 

 

 

 

 

 

 

Low powered bright field microscopy detailing variation of inter-isolate clumping 

proficiency. Clumping reactions occur when the pheromone from one of two compatible 

isolates is added to the other in planktonic conditions. Clumping intensity was graded 

from 1-6. 1 – no reaction, 2 – weak reaction, 3 – weak reaction and/or up to five of high 

density clumps, 4 – five to 20 high density clumps, 5 – more than 20 high density clumps, 

6 – confluence of high density clumps spanning entire well. 
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Table 3.4.3. Identification of pheromone producing ‘recipient’ isolates vs clumping 

‘donor’ isolates expressed as clumping ability based on guidelines from 3.4.5. 

Table 3.4.3. MW01105, ST01109 and MW02043 induced clumping in the other 

candidate isolates but could not be clumped themselves, rendering them as free 

pheromone producing potential ‘recipient’ isolates. Their pheromone was added to the 

other candidate isolates (potential ‘donors’) and the subsequent clumping reactions were 

graded using a scale of 1-6 relative to intensity of clumping using macroscopic 

visualisation assays 

Clumping of enterococci in the presence of cell free supernatant pheromone 

Enterococcal isolate 

Clumping intensity from macroscopic control ranges (0-

6) 

  MW01105   ST01109   MW02043   

MF06035 6 
 

5 
 

4 
 

MF07008 4 
 

1 
 

4 
 

MF06036 4 
 

4 
 

3 
 

MW01038 4 
 

2 
 

5 
 

ST01053 3 
 

1 
 

5 
 

MW02102 4 
 

2 
 

3 
 

MW03020 3 
 

3 
 

4 
 

MW03025 4 
 

3 
 

4 
 

MW03051 3 
 

3 
 

4 
 

ST02011 3 
 

4 
 

2 
 

ST01063 4 
 

1 
 

5 
 

MF04019 2 
 

1 
 

1 
 

MW02077 1 
 

2 
 

1 
 

MW01021 4 
 

1 
 

5 
 

MF06019 5 
 

3 
 

4 
 

MF04010 6 
 

4 
 

4 
 

ST02227 4 
 

1 
 

4 
 

MF06030 5 
 

3 
 

5 
 

MW03061 4 
 

3 
 

3 
 

MW02087 4   2   1   

ATCC29212 0  0  0  
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Figure 3.4.4. Phase contrast microscopy of donor enterococci induced into clumping with 

the addition of recipient pheromone. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.4. Phenotypic clumping micrographs of enterococci, examined with phase 

contrast. (A) 20x micrograph of E. faecalis MF06036 with the supernatant of E. faecalis 

MW01105, (Control and Prevention, 2013), the typical reaction observed when 

aggregation signalling is activated. (B) 100x micrograph of MF06036 with the 

supernatant from E. faecium ST01109. (C) 40x image of a large reaction between E. 

faecalis MF06035 and the supernatant of MW01105. (D) 100x Negative clumping 

reaction of MF06036 supernatant added to MW01105. Red arrow indicates microscopic 

clumping; scale bars represent ten microns. 
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Figure 3.4.5. Establishment of a gene database based on Antimicrobial resistance genes 

and horizontal transfer genes.  
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Table 3.4.4. Collation of antimicrobial resistance genes identified from PubMed gene database analysis in E. faecalis and E. faecium. 

 

 

 

 

 

 

 

 

 

 

Gene name Phenotype Identified resistance Mobile element       

vanA D-Ala-D-Lac ligase  Vancomycin pS177, pWZ1668, pWZ1668, pTW9, 

pWZ7140, pWZ909, pF856, p5753cA, pZB18 

vanB D-alanine--D-lactate ligase  Vancomycin pVEF1, pVEF3, pIP816, EF2294, pMG2200  

pVEF2 

vanZ Teicoplanin resistance protein Teicoplanin pDO2, pS177, pWZ1668, pTW9, pWZ7140  

pWZ909, pF856, pVEF1, pVEF3, pIP816  

p5753cA 

aadE  Aminoglycoside 6-adenylyltransferase Streptomycin pDO2, pS177, 

pF856, pEF418 

   

ermB rRNA adenine N-6-methyltransferase Erythromycin pS177, pWZ1668, pTW9, pWZ7140, 

pWZ909, pF856, pRUM 

aphA Aminoglycoside 3'-phosphotransferase  Kanamycin pDO2, pS177, pF856, pCoo 
 

pRE25 Aminoglycoside phosphotransferase type III aminoglycosides pDO2, pRE25 
  

cat Chloramphenicol acetyltransferase chloramphenicol pDO2, pRE25, pCPPF5, pRUM, pEF-01 

tetL MFS family major facilitator transporter, 

tetracycline: cation symporter 

Tetracycline pDO1, pM7M2, pAMalpha1 

tetM Tetracycline resistance protein Tetracycline pM7M2, p5753cB, pCF10 
  

tetP Tetracycline resistance protein Tetracycline pDO1 
   

sace Streptothricin acetyltransferase  Streptothricin pDO2       
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Table 3.4.5. Collation of conjugation genes identified from PubMed gene database 

analysis in E. faecalis and E. faecium. 

 

 

 

  

 

 

 

 

 

Conjugation genes     

Gene name Identified phenotype Aliases     

prgB Aggregation substance pCF10, pMG2200, pAM373, pTW9, 

pTEF1, pTEF2, 

prgQ Pheromone peptide inhibitor pCF10, pMG2200, pTEF1,  

prgX Pheromone receptor pCF10, pMG2200, pBEE99,  

traA Pheromone binding protein PZB18, pHTbeta, pTW9, pMG1, 

pAM373 

traB Pheromone shutdown protein pCF10, pMG2200, PZB18, pTW9 

traE1 Regulator for conjugation pHTbeta, pAM373 
  

traG Conjugation protein pCF10, pMG2200, pTW9, pMG1, 

pAM373, pDO3, PZB18, pBEE99 
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3.4.4 Shortlisting potential conjugation partners based on antibiotic resistance 

profiles, biofilm formation, phenotypic clumping and phenotypes of interest from 

gene database analysis 

There were 15 of the 23 candidate enterococci chosen with strong potential to carry out 

HGT (table 3.4.5). These isolates had the highest levels of clumping intensity with the 

three pheromone producing isolates, their AMR phenotypes were diverse and each isolate 

contained at least one testable phenotype that was shown to be contained on MGE’s. 

Finally, these isolates all produced biofilm. The isolates that were eliminated (MF07008, 

ST01053, ST01063, MF04019, MW02077, MW01021, ST02227 and MW02087) did not 

produce biofilm under selection conditions and had the lowest compatibility when 

examined using the clumping assay. These isolates had useable AMR profiles however, 

they were eliminated to reduce the population to a more workable number based on the 

other two criteria. 
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Table 3.4.6. Shortlist of potential conjugation isolates of enterococci based on selection 

criteria outlined in figure 3.4.1. 

Enterococcal name, conjugation role and mobile antimicrobial resistance phenotypes 

Isolate Species Role Antimicrobial resistance phenotypes 

MF06035 E. faecalis Donor van, ery, str, tri, tei 

MF06036 E. faecalis Donor van, ery, str, tet, tri, tei 

MW01038 E. faecalis Donor van, str, tri 

MW02102 E. faecalis Donor van, str, tri 

MW03020 E. faecalis Donor van, str, tri 

MW03025 E. faecalis Donor van, str, tri 

MW03051 E. faecalis Donor van, str, tri 

ST02011 E. faecalis Donor van, str, tri 

MF06019 E. faecium Donor ery, tet 

MF04010 E. faecalis Donor str, tet, tri 

MF06030 E. faecium Donor tri 

MW03061 E. faecium Donor tri 

MW01105 E. faecalis Recipient str, tri 

MW02043 E. faecalis Recipient str, tri 

ST01109 E. faecium Recipient str, tet, tri 

van - vancomycin, ery - erythromycin, str - streptomycin, tri - trimethoprim, tei - teicoplanin,  
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3.4.5 Determination of antibiotic minimum inhibitory concentrations of the shortlist 

of enterococci 

Once the 15 isolates were shortlisted (table 3.4.6), the next step was to determine their 

MIC’s to all antimicrobials present on MGE’s. MIC’s were required to establish selection 

criteria in subsequent conjugation attempts as well as indicating potential for genotyping 

AMR genes based on resistance phenotype. Of all the isolates tested, most demonstrated 

at least two antibiotic resistance phenotypes (Table 3.4.7.). MW01105 was resistant to 

streptomycin (at least 4 times more resistant than the others) and gentamycin (twice as 

high as other donors). MW02043 was resistant to kanamycin. ST01109 only 

demonstrated intermediate resistance to trimethoprim. MF06035 was resistant to six 

antibiotics (vancomycin, erythromycin, streptomycin, trimethoprim, teicoplanin and 

gentamycin) demonstrating the highest resistance to gentamycin of all isolates. Isolate 

MF06036 was similarly resistant to six antibiotics (vancomycin, erythromycin, 

streptomycin, tetracycline trimethoprim, and teicoplanin) displaying the highest 

resistance to vancomycin.  

The isolates (MW01038-ST02011) appeared to show a typical susceptibility to 

vancomycin in broth microdilution assays up to 24 hours. However, exposing the bacteria 

to longer exposure times showed a limited increase in resistance, making the isolates 

heteroresistant (denoted in figure 3.4.6.). Additionally, ST02011 was resistant to 

kanamycin (at least x4 higher than the other isolates). MF06019 was resistant to 

erythromycin (x32 higher compared to EUCAST breakpoints) and kanamycin. MF04010 

was one of two isolates that was resistant to tetracycline (x8 higher than the general 

resistance phenotype found in the laboratory strains) as well as demonstrating resistance 

to gentamycin. MF06030 and MF03061 were both resistant to tetracycline and 

kanamycin.  
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Table 3.4.7. Minimum Inhibitory Concentration profiles of enterococci to antibiotics.  

  

Enterococcal isolate                        MIC (µg/ml) at 24 hours 

  VA E SM TET TMP TE KAN CHL GEN  

E. faecalis MW01105 
1 0.5 >1024R <0.5 0.13I 2 128 

4 64R 

E. faecalis MW02043 0.5 <0.25 32 <0.5 0.06 <0.25 >1024R 4 32 

E. faecium ST01109 2 8 128 <0.5 0.5I <0.25 256 4 32 

E. faecalis MF06035 256R >1024R 1024R 8 >16R >32R 64 8 128R 

E. faecalis MF06036 >512R >1024R >1024R 128R >16R >32R 64 8 16 

E. faecalis MW01038 4H <0.25 256 <0.5 >16R 0.5 256 8 32 

E. faecalis MW02102 4H <0.25 256 <0.5 >16R 1 64 8 32 

E. faecalis MW03020 4H <0.25 256 64R 0.25I <0.25 64 4 32 

E. faecalis MW03025 8R/H <0.25 256 1 1I <0.25 64 8 32 

E. faecalis MW03051 4H <0.25 256 1 0.5I 1 64 4 32 

E. faecalis ST02011 4H 32R 128 <0.5 0.25I <0.25 1024R 8 32 

E. faecium MF06019 1 >1024R 64 <0.5 0.06 <0.25 >1024R 8 16 

E. faecalis MF04010 1 <0.25 1024R 128R 0.13I <0.25 256 4 64R 

E. faecalis MF06030 0.5 <0.25 64 16R 0.13I <0.25 >1024R 4 32 

E. faecium MF03061 1 1 32 32R 0.06 <0.25 1024R 4 32 

*VA, vancomycin; E, erythromycin; SM, streptomycin; TET, tetracycline; TMP, trimethoprim; TE, teicoplanin; RIF, rifampicin; 

KAN, kanamycin; R, resistant; I, intermediately resistant; H, heteroresistant 
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3.4.6 Generation of rifampicin resistance in susceptible ‘recipient’ isolates 

The data in table 3.4.2, combined with table 3.4.7, highlighted that the designated 

recipient isolates were either completely susceptible to the antibiotics of interest in 

this study (ST01109) or they carried the same antibiotic resistance phenotypes as 

the donors (MW01105 and MW02043). Capture of future horizontal gene transfer 

attempts required double antibiotic selection plates. The double selection would 

contain two antibiotics; each inhibiting the growth of a specific conjugation partner. 

Growth on these plates would only occur if a transconjugant was created from the 

conjugation partners with resistance to both antibiotics. Therefore, these recipient 

isolates needed a unique AMR phenotype. Propagation on doubling concentrations 

of rifampicin was carried out until the three potential recipient isolates became 

uniquely resistant. From this point, any reference to these isolates contains the 

suffix (Rif).  

MW01105Rif had an MIC >1024µg/ml, MW0204Rif had an MIC of 64µg/ml, 

ST01109Rif had an MIC >1024µg/ml. The EUCAST environmental cut-off 

(ECOFF) MIC for rifampicin is 4µg/ml, making these potential recipients at least 

16 times as resistant as the cut-off value. The potential donors had their MIC for 

rifampicin determined: MF06035, MW01038, MW03020, ST02011, MF06019, 

MF06035, MW03061 had an MIC <0.5µg/ml. MF06036 had an MIC of 2µg/ml, 

MF04010 had an MIC of 4µg/ml. MW02102, MW03025, MW03051 had an MIC 

of 8µg/ml, making them the only potential donors to have an ECOFF resistance to 

rifampicin. 
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3.4.7 Vancomycin ‘heteroresistance’ phenotypes in enterococci 

When examining AMR using the disc diffusion assay, isolates MW01038, 

MW02102, MW03051 and ST02011 tested positive for vancomycin resistance. 

However, they tested susceptible using the MIC assay as per the 24-hour incubation 

time outlined in EUCAST susceptibility testing for vancomycin resistance. Upon 

testing susceptibility for greater lengths of time it was noted that the four isolates 

mentioned here grew colonies in vancomycin selection plates containing double the 

vancomycin MIC at 8µg/ml. When the isolates were tested for the vanA and vanB 

genes it was noted that only MF06035 and MF06036 tested positive. This result is 

reflected in each isolates MIC. The vancomycin “heteroresistant” isolates and the 

low-level resistance isolate (MW03025) did not test positive for vanA and vanB. 

These isolates were labelled as presumptively “heteroresistant” as their phenotype 

does not reflect the absolute resistance demonstrated by MF06035 and MF06036 

but they can grow beyond the MIC value for vancomycin after longer incubation 

times. 
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Figure 3.4.6. Assessing vancomycin (vanA) resistance amongst the donor isolates.  

 

Figure 3.4.6. Gel electrophoresis of vancomycin vanA PCR from candidate 

enterococci growing from a six-hour growth in TSB. Gel concentration was 1.5% 

and was ran in TBE at 100 volts for 35 minutes. The gel was created with ethidium 

bromide at a final concentration of 0.5μg/ml.  

 

Lane M – 100bp ladder 

Lanes 1-10 – vanA PCR result for isolates MW01105Rif (1), MW02043Rif (2), 

ST01109Rif (3), MF06035 (4), MF06036 (5), MW01038 (6), MW02102 (7), 

MW03020 (8), MW03025 (9) MW03051 (10), ST02011 (11), MF06019 (12), 

MF04010 (13), MF06030 (14), MW03061 (15), Negative control (16).  
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3.4.8 Mobile genetic element characterisation on enterococci with strong 

antibiotic resistance phenotypes 

Alkaline lysis plasmid extraction assays were carried out to identify plasmids in the 

donor isolates. The Sambrook and Russell alkaline lysis plasmid extraction 

protocols were tested extensively as described in the general materials and methods. 

This protocol was effective at isolating plasmid content from E. coli, however even 

with extensive literature searches and specially modified protocols for Gram 

positive bacteria including ‘coccus’ specific adaptions, the agarose gel shown in 

figure 3.4.7 was the only result with banding in the anticipated locations. 

Additionally, The Kado and Liu, Anderson and McKay, and the Williams methods 

were tested using the entire eluate of each extraction with up to 96-hour 

resuspension times from the alkaline lysis protocol on the four E. faecalis donors. 

Each protocol was carried out independently twenty times, with modifications to 

electrophoresis voltage (50-200 Volts) and time (90-300 minutes), concentration of 

agarose in the gel (0.5-1.75%) with little success. Figure 3.4.7 had high molecular 

weight bands indicative of plasmid content (indicated with red arrows) in MF04010 

with 2 distinct bands on and above the 23kb marker. Isolates MF06036 displayed 

at least one band at the same location on the gel as the upper band from MF04010. 

It appeared that MF06035 may also have a band in the same region however it is 

too faint to confirm banding. 

Due to the equivocal results of plasmid extractions, a secondary testing assay was 

devised to provide data highlighting the phenotype of plasmid persistence. This 

assay would test the stability of antimicrobial resistance from a resistance gene 

(only shown in MGE’s) over a period of time (figure 3.4.8). Therefore MF06035 

and MF06036 were propagated in TSB only or in TSB with vancomycin selection 
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at 10 µg/ml. The isolates were tested at regular intervals over the course of 25 

weeks. Under no selection both isolates remained resistant to vancomycin at the 

conclusion of the experiment. 
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Figure 3.4.7. Agarose gel electrophoresis of plasmid extraction from E. faecalis 

isolates using the alkaline lysis method for large plasmids.  

Gel electrophoresis of ALS plasmid extraction from E. faecalis growing from a six-

hour growth in TSB. Gel concentration was 0.75% and was ran in TBE at 80 volts 

for four hours. The gel was created with ethidium bromide at a final concentration 

of 0.5μg/ml. Red arrows indicate high molecular weight banding.  

Lane M – HindIII digest of lambda DNA 

Lanes 1-4 – ALS plasmid extraction for isolates MF04010 (1), MF06036 (2), 

MF06035 (3), MF06030 (4) Negative control (5). 

   M        1         2          3         4         5        

  23Kb  
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Figure 3.4.8. Stability of MF06035 and MF06036 vanA vancomycin resistant E. 

faecalis isolates. Both E. faecalis isolates were propagated in and out of 

vancomycin selection. At each time point isolates were subjected to a standardised 

CFU count to examine loss of resistance phenotype. After 25 weeks of propagation 

there was no drop off in resistance phenotype. Maintenance in vancomycin 

produced CFU counts lower than those that were propagated in TSA only. 
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3.5. DISCUSSION 

 

Enterococcal isolates were taken from a biobank containing environmentally isolated 

bacteria. They were characterised for traits suitable to conjugate mobile elements 

containing prolific antimicrobial resistance genes, and having biofilm forming ability. 

 

3.5.1. Selection of Enterococci from biobank 

Understanding the dynamics of how E. faecalis and E. faecium carry out horizontal gene 

transfer highlighted the importance of selecting candidates that would meet specific 

requirements phenotypically. As horizontal gene transfer, can involve pheromone 

responsive plasmids, Inc18 plasmids and conjugative transposons; all having the ability 

to transfer the same gene types, selection criteria had to account for all possibilities 

(Figure 3.4.1.). Antimicrobial resistance phenotype was chosen as it is the most well-

regarded of all traits relevant to human colonisation from enterococci, and is the main 

concern for treatment of nosocomial pathogens. It is also the most straightforward 

acquired trait to examine when analysing horizontal gene transfer. The second selection 

criterion involved clear demonstration of phenotypic aggregation amongst the candidates 

and was vital for pairing isolates for horizontal gene transfer events. Testing compatibility 

using the clumping assay, any positive results would demonstrate the potential for 

successful transfer of genetic material from one ‘donor’ bacterial isolate to another 

‘recipient’ isolate. The final characteristic desired for this study was the ability of each 

candidate to form biofilm. Isolates that can form biofilm would allow for testing internal 

conjugation of AMR.  
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Screening the biobank of 655 partially characterised enterococci produced 23 isolates 

which could be tested for their ability to harbour AMR phenotypes, conjugation 

possibility and biofilm formation capability. 

The list of 23 enterococci (Table 3.4.1.) included E. faecalis and E. faecium only. These 

species were selected as they are the most frequently isolated, commensal and pathogenic 

enterococci in human infection. The sources of these isolates are shown in table 3.4.1 and 

they vary from animal faeces to storm water run-off into waterways of an agrarian 

environment (Daniels 2011).  

 

3.5.2. Characterisation of enterococci – General antimicrobial susceptibility 

The first trait to be examined in the 23 isolates of enterococci was the phenotypic 

presentation of AMR. Isolates were selected on the prerequisite of having at least one 

resistance phenotype. As can be observed in table 3.4.2. the isolates demonstrate a broad 

AMR profile across the 19 antibiotics: with identifiable resistance in all tested antibiotics, 

excluding ciprofloxacin, neomycin and linezolid. Ciprofloxacin is usually therapeutically 

effective against E. faecalis infection and is commonly used to treat secondary 

endocarditis and primary non-resistant UTI (Carlier and Courvalin, 1990). It acts on DNA 

gyrase and topoisomerase IV working on protein synthesis. However, there are isolates 

of E. faecium that possess resistance to quinolones (MIC90 >128µg/ml) and therefore 

ciprofloxacin. There does seem to be a link to vancomycin (vanA) resistance and 

increased resistance of ciprofloxacin (MIC90 >128µg/ml) in E. faecium but this 

phenomenon is not observed in E. faecalis vanA resistance (MIC90 2µg/ml) (Information 

on relationship between vancomycin (vanA) resistance and increased resistance of 

ciprofloxacin accessed through The Antimicrobial index (TAMI): accessed through 

http://antibiotics.toku-e.com, and discussed by Amirkia and Qiubao, (2011)).  
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Neomycin resistance in enterococci is accomplished through an acquired gene encoding 

4',4"-aminoglycoside nucleotidyltransferase (Carlier and Courvalin, 1990). The other 

aminoglycosides tested on the 23 isolates (gentamycin and streptomycin) demonstrate 

opposing susceptibilities; gentamycin testing revealed susceptibility in 22 of the 23 

enterococci; whereas streptomycin testing revealed resistance in 16 of the 23 enterococci. 

It was evident that these enterococci demonstrated intrinsic resistance to streptomycin, 

something that is generally observed in many isolated strains. Streptomycin resistance 

generally presents with the highest degree of resistance among all aminoglycosides. With 

reference to streptomycin: where resistance presents itself usually the same isolates of 

enterococci have high tolerance to beta lactam antimicrobials. This can be observed in 

table 3.4.2. where seven enterococci display resistance to three out of four (ampicillin, 

amoxicillin, cephalothin) beta lactam antimicrobials when resistant to streptomycin; 

inversely there are 4 enterococci that display total susceptibility to the same beta lactams 

and streptomycin. There was only a single instance where isolate ST02227 displayed 

resistance to streptomycin and susceptibility to all beta lactams tested (ampicillin, 

amoxicillin, imipenem, cephalothin).  

Despite a majority resistance to tested beta lactams there was only one isolate 

(MW02077) resistant to the carbapenem, imipenem, the drug most commonly used in for 

the treatment of susceptible enterococcal infections. It acts only as a bacteriostatic agent 

and is never used in clinical treatment of infection as a monotherapy as a result. The 

observed tolerance to cell wall inhibitors does appear to directly influence whether 

enterococci display intrinsic resistance to streptomycin (uptake limited efficacy). The 

general resistance to streptomycin and susceptibility to gentamycin among the tested 

isolates matches the phenotype expressed by the bifunctional enzyme, Aac(6′)-Ie-

Aph(2″)-Ia. This enzyme provides resistance to gentamycin amongst other 
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aminoglycosides but not streptomycin, which fits the antimicrobial phenotypes profiles 

observed in table 3.4.2. and could be functional within the isolates (Chow, 2000).  

Linezolid works well as a bacteriostatic antimicrobial against persistent E. faecalis and 

E. faecium infections, as it acts through inhibition of the 30S ribosome initiation complex 

(Shinabarger et al., 1997). This specific mechanism of action significantly reduces rates 

of resistance in E. faecalis and E. faecium and acquiring resistance usually involves 

mutations in the majority of its 23S rRNA gene copies, as compared to rifampicin 

resistance only requiring a single point mutation. There were 11 enterococci resistant to 

tetracycline, and three of those bacteria were also resistant to oxytetracycline. 

Tetracycline resistances were first described on mobile elements in enterococci and are 

the most studied in conjugative transfer events. Tetracycline resistance was one of the 

earliest resistances (1961) identified in enterococci and with increased selective 

pressures, has had a sufficiently long time to propagate on mobile elements (van Schaik 

et al., 2010). Therefore, these tetracycline resistances would be suitable markers to 

examine horizontal gene transfer in these selected enterococci.  

Vancomycin resistance was observed in eight of the 23 selected enterococci and was of 

interest for future conjugation assays. It is the unique identifying resistance of enterococci 

(VRE), is situated exclusively on mobile elements and has significant relevance to clinical 

treatment of AMR pathogenic infections: in many countries vancomycin was a controlled 

drug, used as a last stand antibiotic, yet resistance still developed in human strains. Two 

vancomycin resistant isolates (MF06035 and MF06036) were the only isolates to 

demonstrate resistance to teicoplanin. Interestingly, published enterococcal mobile 

genetic element data shows a link between vancomycin resistance and teicoplanin 

resistance on mobile elements (Tn1546). Two forms of folate pathway inhibition 

antimicrobials were used on the 23 selected isolates in folate deficient media 

(trimethoprim, and sulfamethoxazole & trimethoprim,). Fifteen isolates demonstrated 
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total resistance to the folate antimicrobials. Five enterococcal isolates demonstrated 

intermediate susceptibility to trimethoprim. However, they demonstrated susceptibility 

when tested on sulfamethoxazole & trimethoprim as a potential synergistic interaction. 

The increasing trend of susceptibility with complexity of mode of action of these folate 

pathway inhibition antimicrobials (as they target several steps in the folate metabolism 

within enterococci) is interesting. However, the fact that enterococci can absorb 

exogeneous folate, reversing the efficacy of folate pathway drugs such as trimethoprim 

questions the effectiveness of using this group of drugs (Wisell et al., 2008; Silverstein 

and Hopper, 2014). This was confirmed in this study when repeating the disc diffusion 

assay on media containing folate (Muller Hinton) as opposed to Iso-sensitest. All folate 

pathway antimicrobials were completely ineffective on the enterococci.  

Quinupristin/dalfopristin proved relatively effective against the selected enterococci with 

only three isolates demonstrating resistance. This compound antimicrobial is only used 

in selective cases of persistent enterococcal infection due to toxicity contraindications, 

and resistance is only beginning to emerge. Typically, quinupristin/dalfopristin is 

ineffective against E. faecalis due to intrinsic resistance (uptake limitations and efflux 

pumps), however in this study the only isolates resistant were in fact E. faecium (Linden 

et al., 2001). Finally, there were eight isolates that demonstrated resistance to 

erythromycin. Erythromycin resistance has been linked to a pheromone responsive 

plasmids (pLG2) and conjugative transposons (Tn917 and Tn3871 Tn1545 Tn5385) and 

are of importance for attempts to conjugate AMR genes in this study. 

 

3.5.3. Characterisation of enterococci –Biofilm formation 

With varied antimicrobial resistance profiles, many of which are potentially mobile, the 

second trait examined in the 23 enterococcal isolates was their ability to form a biofilm. 
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The biofilm protocol was carried out according to protocols described in Daniels, (2011) 

and is regarded as the standard biofilm assay. This assay has been used extensively for 

batch testing biofilm formation capabilities of many microorganisms in vitro. The 

objective at this stage was to establish if any enterococcal isolates produced biofilm in 

any quantity. The results of this assay are outlined in figure 3.4.2. There is a clear variation 

amongst the selected isolates for their relative biofilm formation capability. Seven isolates 

presented with strong biofilm, eight isolates formed weak biofilm and eight isolates were 

produced no biofilm. Whilst this method uses optical density to quantitate values from 

relative absorbance at 570nm, these results are still quite subjective. However, it was clear 

that some isolates produced biofilm as they were visible to the naked eye. Seven out of 

the eight vancomycin resistant isolates formed biofilm. At this stage, these results further 

select candidate isolates for future horizontal gene assays. 

 

3.5.4. Characterisation of enterococci – Clumping assay 

The final trait tested was a direct analysis of the 23 enterococci for their compatibility to 

carry out successful horizontal gene transfer. Compatibility was identified using the well-

established clumping assay. When two isolates are compatible and the cell free 

supernatant containing pheromone from one is introduced to a liquid suspension of the 

other, a clumping reaction occurs which can be visible to the naked eye. Figure 3.4.3. 

contains macrographs demonstrating the variation in clumping intensity of the isolates 

from no reaction 3.4.3(1) to highly reactive 3.4.3(6). There appears to be little difference 

between 3.4.3(1) and 3.4.3 2) apart from a size difference between the mass of cells in 

the centre of each well. In figure 3.4.3(1) the relatively small concentrating of cells 

occurred due to the rotational force applied from the orbital incubator that the experiments 

were incubated in. In figure 3.4.3(2) the central mass of cells is much larger. When 

examined under phase contrast microscopy, the cells formed small clumps containing on 
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average 6-10 chains as exemplified in figure 3.4.4 (a – red arrow). These small dense 

chains concentrated in the centre of the well but took up more space resulting in a larger 

central mass. Figure 3.4.3(3-6) visibly show an increase in the number of macroscopic 

clumps observed with the naked eye. These individual clumps can have lengths up to 1 

centimetre and represent high compatibility of the pheromone contained in the 

supernatant to the activation of aggregation signalling in the subject isolate. The 

microscopic visualisation of clumping in the enterococci in this thesis were comparable 

to the observed clumping in the literature (Donelli et al., 2004). Table 3.4.3 is the output 

of the clumping assay when applying the control ranges outlined in figure 3.4.3.  

The first significant findings from the clumping assay was the identification of ‘donor’ 

isolates and ‘recipient’ isolates. Recipient isolates (MW01105, ST01109 and MW02043) 

were identified based on their cell free supernatants inducing clumping reactions in the 

other 20 isolates but not themselves: applying cell free supernatant from the now labelled 

‘donor’ isolates produced no clumping on the ‘recipient’ isolates. It is clear from table 

3.4.3. that there is strong compatibility to conjugate between the donor and recipient 

isolates with most reactions being categorised as 4-6 in intensity. Clumping response in 

the literature tend to be graded qualitatively (Franz et al., 2001). The physical 

characteristics of a weak clumping reaction can be difficult to differentiate from typical 

microadhesions at play with plasmid-free isolates (Muscholl-Silberhorn, 1993). Daniels, 

(2011) described weak clumping reactions that could only be visible under prolonged 

microscopy. In an attempt to include microscopic clumping phenotypes and clumping 

reactions visible to the naked eye, grading from 1-6 was employed in this thesis. The 

grading was aimed to provide more detailed quantification of clumping strength than 

strong or weak, as described by Donelli et al. (2004). Examples of clumping reactions are 

shown microscopically under phase contrast in figure 3.4.4. Enterococci do not naturally 

exist in clumps in vitro so demonstration of large bodies of ‘clumped’ cells surrounded 
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by a soup of free floating diplococcus cells, often in chains demonstrates the effect of the 

phenomena on donor isolates.  

 

3.5.5. Composition of enterococcal MGE associated genes of interest 

Before selecting final candidate isolates the NCBI microbial gene database was searched 

for AMR and conjugation genes against E. faecalis and E. faecium, verified to be on 

mobile genetic elements. A database was created listing all queries of AMR genes and 

conjugation genes. This database contained gene name information, alias names, where 

appropriate - descriptions of genes, locations on named mobile elements, accession 

numbers and FASTA sequences. This information database was used to identify AMR 

phenotypes of interest as well as conjugative possibilities to select for in the final 

subgroup of enterococci. Over 20 AMR and 18 conjugation genes were identified and all 

genes with identical aliases had their sequences aligned using clustal X. These sequences 

were used to generate universal primer sequences to search for genes of interest related 

to AMR and HGT in both E. faecalis and E. faecium. All AMR gene types that were 

identified through searching the microbial gene database (Accessed 01/2014-03/2014) 

were collated and are summarised in tables 3.4.4. and 3.4.5. Searching the microbial gene 

database guaranteed that all genes selected at the time of accession were confirmed with 

access to FASTA sequences and gene variants present in other enterococcal MGE’s. 

Selected genes were only chosen based on their presence on plasmids and transposons. 

All mobile elements identified containing the specific published genes of interest with 

confirmed functions are listed under aliases in tables 3.4.4 and 3.4.5.  

This protocol was undertaken to ensure genes of interest are in fact limited to MGE’s and 

when creating or purchasing published primers that they would universally amplify all 

homologues of the same gene. There was an unforeseen consequence of this method of 
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ensuring primers could be designed to universally amplify a gene, taking account of single 

nucleotide polymorphisms (SNP’s): There was an issue within enterococcal gene 

nomenclature. Genes that are described in publications can often not be located in the 

published NCBI gene database. Additionally, primers used in the literature for 

enterococcal research, listed as amplifying unique genes, do in fact amplify the same 

gene. This was clear upon further analysis of the ‘aggregation genes’: - agg, prgB, and 

asa1. When searching the NCBI gene database there was no entry for the agg gene, 

additionally prgB and asa1 share significant homology (96% identity) and carry out the 

same function. A paper in question has primer sets for each aggregation ‘gene’ and lists 

each as a unique virulence factor and separate gene (Choi and Woo, 2015). However, 

when these primers were aligned in clustal it was found that all three can amplify the prgB 

and asa1 genes. This is an example of ensuring diligence when analysing conjugative 

traits in enterococci and indeed in all aspects of gene analysis. 

 

3.5.6. Minimum inhibitory concentrations of donor and recipient enterococci 

When 15 isolates had been shown to exhibit all the hallmarks of carrying out HGT of 

AMR, further characterisation experiments were required in order to start testing 

conjugation assays on pairs of enterococci. Minimum inhibitory concentration testing was 

carried out using vancomycin, erythromycin, streptomycin, tetracycline, trimethoprim, 

teicoplanin, kanamycin, chloramphenicol and gentamycin in accordance with the mobile 

AMR genes shown previously. Testing the isolates using MIC revealed new resistance 

profiles specific to enterococci that were not identified using the disc diffusion assay. 

Firstly, there were eight isolates that tested positive for vancomycin resistance in the disc 

diffusion assay, when tested in the MIC assay revealed that only MF06035 and MF06036 

were resistant to vancomycin.  
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Regarding the other isolates labelled in table 3.4.7 as heteroresistant: five produced MIC’s 

on the susceptibility cut off value of 4µg/ml; whereas MW03025 technically tested 

resistant at 8µg/ml. These tests were recorded after incubation at 37oC for 24 hours, as is 

the standard procedure for vancomycin testing in enterococci. Interestingly the MIC 

values and the disc diffusion values contrast for these isolates, highlighting issues with 

disc diffusion as a standalone assay for identifying resistance phenotypes in bacteria. 

Other discrepancies with the disc diffusion assay highlighted the failure to capture 

gentamycin resistance in MW01105 and MF06035; tetracycline resistance in MW02102; 

susceptibility in ST01109 as compared to the MIC. The disc diffusion assay labelled 

MW02043, MW01038, MW03020, MW03025 and MW03051 as resistant to 

streptomycin whilst the MIC’s were not resistant (in accordance with EUCAST MIC’s) 

however enterococcal, low level aminoglycoside resistance is recognised as having a 

range of 4-256 µg/ml in general (Chow, 2000).  

Whilst disc diffusion assays are commonly used, their interpretation can lead to 

misdiagnosis of susceptibility (Sabol et al., 2005). MIC testing relies on absolute 

resistance to specific concentrations of antimicrobials and is therefore much more 

accurate in the interpretation of susceptibility results. As there are several standard testing 

protocols (CLSI & EUCAST) utilising different materials for testing as well as a myriad 

of associated physical errors (agar surface moisture, drying conditions, formulations of 

media and antimicrobials) which are continuously monitored and updated, it can be easy 

for breakpoints from only a year or two to jump categories of susceptibility and resistance 

(Swenson et al., 1989; Liu et al., 2012; Palavecino and Burnell, 2013). Therefore, reliance 

on previous data using disc diffusion assay as a mono-susceptibility assay is unreliable. 

The broth microdilution MIC testing also utilised iodonitrotetrazolium chloride (INT), 

which changes from straw/yellow to pink/red when metabolised by bacteria (Kuete et al., 
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2010). The addition of INT ensured accurate readouts of MIC in the broth microdilution 

assay (Onajole et al., 2011).  

The six isolates were labelled as heteroresistant, as when the MIC plates were further 

incubated for another 12-48 hours they began to grow considerably. Changing the INT 

colour from straw to pink in vancomycin concentrations up to a maximum of 16µg/ml 

(Resistance >4µg/ml). This phenomenon was not deemed as a reduction in antimicrobial 

efficacy over time, as vancomycin is bactericidal not bacteriostatic. This phenomenon of 

heteroresistance did not occur in any of the other nine isolates at these time points. Upon 

the further analysis of the disc diffusion results, adhering to the EUCAST breakpoint 

guidelines for vancomycin action on enterococci, these isolates demonstrated colonies 

inside zones <12mm with fuzzy edges, and were therefore deemed resistant. This can 

commonly cause heteroresistance as there was clearly a sub population resistance 

phenotype present. All isolates were tested by PCR for the mobile vancomycin resistance 

genes (figure 3.4.6) and as can be seen, only MF06036 and MF06035 tested positive for 

the gene. All other isolates were negative, including the heteroresistant isolates.  

The PCR testing in combination with resistance phenotypes confirms these isolates 

display heteroresistance to vancomycin and may in fact possess one of the low level non-

mobile vancomycin gene clusters (Courvalin, 2006). Vancomycin heteroresistance has 

been reported in E. faecium previously (Alam et al., 2001) whereby isolates from a patient 

were passaged in vancomycin to increase their resistance profiles. Unlike the enterococci 

in this thesis, the isolates from Alam et al. (2001), including the susceptible population 

tested positive for vanA gene. They also could only isolate the heteroresistant 

subpopulation through E-test, however their method of discovery of heteroresistance 

through treatments in vancomycin was the same as in this thesis. It appears that this is the 

first time that vancomycin heteroresistance has been observed in E. faecalis and as such 
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this is an area with potential for future investigation (Alam et al., 2001; Hsueh et al., 

2005; Fitzgibbons et al., 2011; Klare et al., 2012).  

The final use of the MIC table was to establish a list of priority partnering for attempts at 

transfer of AMR genes. Through analysis of table 3.4.7 some designated donor isolates 

stood out as the most likely candidates to pass on antimicrobial resistance genes. Donor 

isolates MF06035 and MF06036 were of most interest as they were resistant to six 

antimicrobials each, having MIC values greater than the tested maximum concentration 

for three (erythromycin, streptomycin and trimethoprim) and five antibiotics 

(vancomycin, erythromycin, streptomycin, trimethoprim and teicoplanin) respectively. 

Published scientific reports outlining donor isolates transferring AMR genes typically 

present with one or two resistance phenotypes. Vignaroli et al. (2011) had isolated 

enterococci from similar sources to the ones tested in this thesis and subjected them to 

conjugation. They captured a maximum of two antibiotic resistance determinants (vanA 

and ermB).  Having two donor isolates with six resistance phenotypes linked to mobile 

resistance genes would give a high chance of success. Donor isolates ST02011 and 

MF04010 were also of interest due to the strength of their compatibilities to the recipient 

isolates, and having two and three resistance phenotypes that could transfer with high 

probability during conjugation.  

 

3.5.7. Susceptible recipients and the subsequent generation of rifampicin mutants 

An identified issue that arose after the MIC and disc diffusion assays, was that none of 

the designated recipient isolates contained unique resistance determinants that could be 

exploited for counter-selection against donor strains. The most straightforward approach 

to isolating a unique antimicrobial resistance phenotype amongst the recipient isolates 

was to create one. As stated previously, rifampicin resistance can be generated with ease 
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in enterococci (Kristich and Little., 2012). In their study, enterococci were grown at 

200µg/ml (rifampicin) in agar plates for 24 hours to isolate rifampicin resistant mutants. 

These mutants were discovered as an unexpected side effect on testing intrinsic 

cephalosporin resistance in enterococci. The mutants were derived from the E. faecalis 

OG1 strain and carried a mutation in the rpoB gene. Spontaneous rifampicin mutants are 

often used as recipient for enterococcal conjugation assays (Gilmore et al., 2014). It’s an 

antimicrobial not commonly used in the treatment of enterococcal infections and chances 

of resistance in the selected donor isolates would be low as resistance emerges from 

hospital acquired strains exposed to specific antimicrobial stress (Poole, 2012; Munita 

and Arias, 2016). MIC tests were carried out on all isolates after the rifampicin resistance 

generation assay as can be seen in table 3.4.7. MW01105, MW02043 and ST01109 were 

now resistant to rifampicin and displayed much higher MIC’s than the donor isolates.  

 

3.5.8. Qualitative MGE characterisation assays on donor isolates 

Several protocols for the extraction of whole plasmid content were carried out on the 

enterococcal donor isolates of interest. The majority of all extractions were fruitless, 

however on a single occasion there were concentrated bands of DNA present at molecular 

weights consistent with mobile elements previously studied (Clewell et al., 2014). 

However, when these bands were excised from the gels for purification and with a 

commercial gel purification kit, plasmid recovery was too low for sequencing. The low 

recovery and resolution from gel electrophoresis could be attributed to a large number of 

plasmids present within each isolate. The plasmid extraction work carried out in this 

thesis built on what was carried out previously (Daniels, 2011) and provided successful 

plasmid bands, giving additional credence to the success of forthcoming conjugation 

attempts. Future investigations could focus on midi or maxi preps to gather more plasmid 

DNA using the successful protocol that was tested in this thesis. They could also focus 
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on more advanced plasmid extractions, such as pulse field gel electrophoresis (Freitas et 

al., 2011). 

A final phenotypic identification test to establish the presence of mobile elements in the 

enterococcal donor isolates was to establish antimicrobial resistance stability. Many 

plasmids introduced into an organism will not stability replicate or disperse during 

partitioning inside the host without selective pressure (Peeters et al., 1988; Kiewiet et al., 

1993; Summers et al., 1993). Most enterococcal plasmids that contain virulence and 

AMR genes are traditionally low copy number (2-10 copies) and are relatively large (over 

100kb) (Clewell et al., 2014). These plasmids cannot actively pass through cellular 

membranes and rely on successful host replication (Hayes and Van Melderen, 2011). 

They can include accessory partition mechanisms which either instigate a killing 

mechanism in unsuccessful plasmid replication during cellular replication or they 

guarantee the equal movement of plasmid copies during cytokinesis (Hayes and Barilla, 

2006; Schumacher, 2012).  

Many enterococcal MGE’s have replication components, including the incompatibility 

Inc18 plasmids, whose name has often been disassociated with identical replication 

functions (Novick, 1987). In enterococci this term refers to plasmids with replication 

initiators that have high sequence homology to the plasmids originally described for the 

Inc18 incompatibility plasmids (Brantl et al., 1990). These low copy number MGE’s can 

help explain the difficulty in isolating high molecular weight DNA in the ALS plasmid 

extraction protocols discussed previously.  

MF06035 and MF06036 were selected to assess the stability of vancomycin resistance 

through continuous propagation. This assay involved subculturing the two isolates in and 

out of selection to establish any drop off in bacterial numbers associated with failure of 

maintenance of MGE’s responsible for vancomycin resistance. Typically, unstable or 
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incompatible plasmids will yield to plasmid free progeny through continuous 

subculturing (Scott, 1984; Novick, 1987; Ryan and Parulekar, 1991). As can be seen in 

figure 3.4.8 there is no appreciable drop-off, of MGE AMR containing progeny (TSA 

containing vancomycin) versus all progeny (Liu et al., 2011). There are however 

differences in total cellular count versus MGE containing progeny, indicating that these 

MGE’s containing vancomycin resistance do not fully segregate upon fission. This 

example of incomplete stability transfer could explain how vancomycin heteroresistance 

can occur. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



128 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Chapter 4 

 

Environmentally isolated 

enterococci can transfer 

antimicrobial resistance genes to 

one and another in vitro and in an 

environmental in vivo model. 
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4.1. INTRODUCTION  

 

The prokaryotic world is one where survival is a constant challenge, and therefore 

necessitates continuous adaptation (Hacker and Carniel., 2001). With the ever changing 

milieus created by human presence, a great number of bacterial cell populations have 

adapted to survive in environments with significant selection against them (Ley et al., 

2006). Some of the main survival adaptations of bacteria are located in plasmids, 

transposons, insertion sequences and integrons (Frost et al., 2005). These, often 

transmissible elements contain virulence, pathogenicity and survival genes which have 

permitted the adaptation of a plethora of bacterial species (Shapiro, 2012). Plasmids are 

ubiquitous in enterococci, especially the conjugative plasmids found in Enterococcus 

faecalis and the Inc18 plasmids found in Enterococcus faecium (Fisher and Phillips, 

2009). Whilst these plasmids vary enormously in size and copy number per cell, they 

frequently carry antimicrobial resistance genes (Noble et al., 1992). Enterococci have 

evolved to harbour these AMR (antimicrobial resistance) genes on mobile elements, and 

as such the majority of all antimicrobial resistance traits observed in the genus are 

contained within them. The large quantity of extrachromosomal DNA within enterococci 

can be attributed to its commonality in many environmental niches (Paulsen et al., 2003). 

This can be used to theorise how they exist now as human GI (gastro intestinal) 

commensals. With their ability to acquire survival qualities, enterococci are organisms 

that are hard to eradicate. They can pass on a plethora of their survival traits in a single 

instance through contact with another plasmid free bacterium, in environments with dense 

cell populations such as the gut (Palmer et al., 2010; Byappanahalli et al., 2012). Survival 

traits such as vancomycin resistance (vanB), aggregation substance, bacteriocin 

production and ultraviolet resistance have been transferred on the pheromone responsive 

plasmid, pMG2200 (Zheng et al., 2009). Enterococci are found in many places outside 
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the GI tract, and it was hypothesised that these strains will conjugate as observed in the 

literature and on the evidence collated in chapter three. 

 

4.1.1. Horizontal gene transfer  

 

Horizontal gene transfer (HGT) is the translocation of genetic elements from one 

bacterium to another (Zhaxybayeva and Doolittle, 2011). Conjugation is the primary 

method of horizontal gene transfer amongst the Enterococcus genus (Clewell and Dunny, 

2002). Viral transduction is emerging as a means of HGT and transformation has yet to 

be demonstrated within enterococci (Mazaheri Nezhad Fard et al., 2011; Gilmore et al., 

2014). Enterococci have been shown to conjugate both on solid surfaces and in 

suspension (Lampkowska et al., 2008). Plasmids such as pCF10 and pAD1 were 

demonstrated as mobile, through planktonic enterococcal conjugation (Christie et al., 

1987; Clewell and Weaver, 1989). It was noted that these plasmids transfer with the use 

of a sex pheromone signalling pathway, allowing for efficient gene transfer at maximum 

rates of 10-1 transconjugants to donors for pCF10 and pAD1 (Clewell et al., 1982; Christie 

et al., 1987). There are plasmids such as pAMβ1 which transfer well under solid surface 

conditions, but have low transfer efficiency under planktonic conditions (Vescovo et al., 

1983). Conjugative transposons are present within enterococci, chromosomally bound, 

with the ability to be excised into a circular non-replicable intermediate that can conjugate 

to other bacteria and insert into its genome (Clewell et al., 1995). The majority of these 

elements have a broad host range and carry many antimicrobial resistance genes (Kristich 

et al., 2014). Significant steps in molecular genetics in the last few years, has allowed for 

the discovery of varied and extensive genomic islands of horizontal transfer origins (Lam 

et al., 2012). As such there are now integrative conjugative elements (ICE’s) which have 

been shown to be mobile, such as the Tn916 family (Roberts and Mullany, 2009). There 

are also pathogenicity islands, so called due to the extent of virulence and antimicrobial 
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resistance traits located within them (Dobrindt et al., 2004; Gilmore et al., 2014). As more 

studies are published on the enterococcal genome, an emerging “mobilome” has been 

described, listing all the conjugative elements as well as horizontally transferred 

sequences (Mikalsen et al., 2015). It has become clear only recently, the huge extent of 

the role that the enterococcal genus has played on horizontal gene transfer events, with 

particular reference to antimicrobial resistance (Jain et al., 2016). 

 

4.1.2. In vitro and in vivo horizontal gene transfer amongst bacteria 

Most studies on horizontal gene transfer amongst enterococci and other bacteria, are 

tested through in vitro analyses of the organism with conditions favourable to the bacteria 

(Ray and Nielsen, 2005). Most tests either involve conditions conducive for the transfer 

of traits either in broth or on a solid phase in situ (Lampkowska et al., 2008). These 

investigations have been crucial for the understanding of the roles played by bacteria in 

the process of HGT, and they have highlighted the adaptability and host range of the 

genus Enterococcus. The limitation with the action of in vitro examinations across the 

board are that bacteria either live communally in vivo, or in suspension/biofilm in the ex 

vivo environment (Lorenz and Wackernagel, 1994; Pacio et al., 2003). Many studies have 

been published on the occurrence of HGT in vivo (Gilmore et al., 2014). With specific 

reference to enterococci: examples of in vivo transfer of plasmids from Lactobacillus 

reuteri and Lactococcus lactis into Enterococcus faecalis was demonstrated in the faecal 

content of mice and rats, with variations of efficiency based on sub therapeutic 

concentrations of appropriate antimicrobials (Morelli et al., 1988). Dahl et al. (2007) 

demonstrated that in vivo conjugation was not only more efficient, it allowed for the 

continued survival of transconjugants post transfer. Lester et al. (2006) demonstrated how 

isolates of enterococci from animal origin can transfer AMR genes into human isolates 

within human GI tracts. These studies have formed the basis of what is known with 
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regards to potential source origins of new AMR gene propagation into the 

commensals/pathogens of humans causing serious human infection. 

 

4.1.3. Sources of bacterial horizontal gene transfer in the environment 

The human GI tract is a large, diverse reservoir for the containment of bacterial species 

with prolific antimicrobial resistance traits, and increased selective pressure in a confined 

space (Salyers et al., 2004; Bäckhed et al., 2005). This increased pressure would therefore 

perpetuate horizontal gene transfer; however, it is worth noting the possibility of 

environmental sources of horizontal gene transfer, such as soils, sands, stagnant water 

sources as well as stationary host organisms that exist in aquatic ecosystems (Allen et al., 

2010; Davies and Davies, 2010). Horizontal gene transfer has been demonstrated in the 

environment previously.  Bacillus thuringiensis were shown to transfer cry1Ac (encoding 

an insecticidal protein) between strains in un-supplemented soil with a conjugation 

frequency of 10-5 and in infected Anticarsia gemmatalis larvae with a conjugation 

frequency of 10-1 (Vilas-Bôas et al., 1998). Dahlberg et al. (1998) demonstrated 

interspecies conjugation of the plasmids pB7, pBF1 and pB9 from the soil bacterium 

Pseudomonas putida into several species of recipients. This included the aquatic 

bacterium Aeromonas hydrophila (conjugation frequencies of 10-2) and the human 

associated pathogen Serratia marcescens (conjugation frequencies of 10-4). Henschke and 

Schmidt (1990) showed in situ transfer of plasmid pFL67-2 from E. coli into soil 

microbiota, where transconjugants were phenotypically characterised as P.  fluorescens. 

Van Elsas et al. (1988) demonstrated bacterial conjugation of plasmid RP4 from 

Pseudomonas sp., on the rhizosphere of wheat germs at maximum transfer frequencies of 

10-2.  
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4.1.4. Enterococcal presence in the environment: Faecal contamination 

Enterococci are found in human and animal faeces in abundance, however they only 

represent <1% of all bacteria present in the GI tract (Salyers et al., 2004). Historically 

enterococci have been used as an indicator of human faecal contamination in the 

environment and in places of human presence (Hussain et al., 2007; Colford et al., 2012). 

Enterococci can be found in a varied number of places, including soil, water sources, and 

plant fauna (Teixeira and Merquior, 2013). Using enterococcal identification tests as a 

means for faecal contamination can prove difficult due to the range in locations that they 

can be found (Field and Samadpour, 2007). Additionally, studies have begun to 

demonstrate that enterococci may survive in these ex vivo environments with specific 

ecological compositions such as sand, and waters rich in seaweed/plankton (Gilmore et 

al., 2014). It is clear that enterococci are equipped to deal with the extra-enteric 

environment and as a result they may be able to remain competent for HGT for significant 

periods of time.  

 

4.1.5. Enterococcal presence in aquatic ecosystems 

The rise of nosocomial pathogens harbouring horizontally transferred AMR genes is of 

great concern; however, it raises questions regarding the importance of human exposure 

to AMR bacteria from sources beyond the hospital care setting. Detection of horizontally 

transferred AMR genes in clinically isolated bacteria may have origins in the natural 

environment (Canton, 2009). Wastewater treatment and drinking water facilities have 

been identified as hotspots for the identification of such bacteria (Rizzo et al., 2013). 

These observations have yielded a hypothesis that aquatic environments may function as 

conduits for the propagation of AMR, increasing baseline infective and resistive traits of 

bacteria. These aquatic environments act as sinks for many sources of microorganisms, 

maintaining them and in the case of enterococci could allow them to thrive if not treated 
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correctly. This provides opportunity for cell mediated contact thus facilitating HGT. 

However, our understanding of environmental factors and processes with a potential of 

contributing to increased AMR transfer is limited (Berendonk et al., 2015).  

 

4.1.6. Potential substrates for HGT in the environment 

 

Experimental and analytical evidence from water systems mainly suggests that aquatic 

biofilms may be hotspots of horizontally transferred AMR genes (Balcázar et al., 2015). 

Conjugative plasmid transfers in biofilms have been observed in flow chambers 

(Christensen et al., 1998) and biofilms in a drinking water treatment plants have been 

identified as a reservoir for AMR genes (Farkas et al., 2013). While it has been 

documented regarding soils, that a wide range of biotic factors have an impact on 

conjugative AMR transfer (Aminov, 2011), this research area has remained largely 

unexplored for aquatic environments. For example, potential in vivo facilitation of 

conjugative AMR transfer by aquatic filter feeders has been suggested by Lupo et al. 

(2012), but evidence is still outstanding. Hence there is a need for a greater understanding 

of the potential for organisms in aquatic environments to facilitate bacterial horizontal 

gene transfer. An example of a potential ‘substrate’ organism that could be utilised by 

enterococci would be freshwater sponges. 

 

There are 14 species of freshwater sponges found in Europe with most of these having a 

wide geographic distribution (Økland & Økland 1996). Ephydatia fluviatilis and 

Spongilla lacustris are the most widely found in rivers and lakes on hard or soft sediment 

in Europe, North America and Asia (Annandale 1911; Poirrier 1969; Økland & Økland 

1996). They are active in water temperatures between 5 and 30ºC producing gemmules 

outside of this range (Poirrier 1969; Økland & Økland 1996). Gemmules are protective 

bodies capable of reforming the sponge when favourable conditions return. The majority 
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of sponge tissue is comprised of a collagenous matrix with a broadly similar structure to 

type IV collagen found in mammals. Ephydatia fluviatilis and Spongilla lacustris were 

found actively growing in the same regions that the enterococci in this study were isolated 

from. 
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4.2. Aim and Objectives 

 

The primary aim of this chapter was to determine whether E. faecalis and E. faecium of 

environmental origin can conjugate AMR genes. 

 

Objectives: 

• Enterococci were assessed on their ability to naturally conjugate AMR 

phenotypes and genotypes with high efficiency 

• Determine enterococcal ability to retain acquired AMR profiles when placed in a 

zero-stress environment  

• To identify if enterococci can continue to conjugate AMR genes under 

environmental stresses, such as nutrient deprivation and sub-optimal 

temperatures  

• To assess the ability of enterococci to bind to aquatic organisms such as 

Ephydatia fluviatilis and Spongilla lacustris and determining whether these could 

act as a substrate for HGT 

 

 

 

 

 

 

 

 

4.3. MATERIALS AND METHODS 

 

All the materials and methods carried out in this chapter are detailed in chapter two. 
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4.4. RESULTS 

 

In this chapter 15 isolates of enterococci were tested in a series of experiments to discover 

conjugal transfer of AMR phenotypes. These isolates were paired in accordance with 

inverse susceptibility to two unique antibiotics and incubated together under various 

conditions to allow for any potential transfers to occur. Initial experiments were 

successful but transconjugants were only obtained with quadruple length incubation times 

(96 hours), at efficiencies much lower than published literature. Optimisation, in the form 

of: changing the conjugation substrate to a solid surface; changing conjugation partners 

to the rifampicin resistant potential recipients; changing ratios of donor to recipients 

introduced during conjugation to 1:9; and increasing the conjugation time to 24 hours was 

required. After optimisation, successful, repeatable conjugation occurred and four unique 

transconjugants were selected for further study. These transconjugants displayed all the 

characteristic AMR phenotypes and tested genotypes of both parents, transferred with 

high efficiency and remained stable. Additional, successful conjugation reactions were 

carried out under poor ambient conditions closely related to those found in the wider 

environment. Finally, the same parents used in the initial conjugation reactions were used 

to successfully conjugate on two sponge species Spongilla lacustris and Ephydatia 

fluviatilis. 
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4.4.1. Selection and testing of enterococcal conjugation partners from the candidate 

subset population 

The 15 isolates of enterococci that were determined to be compatible for conjugation 

using criteria from chapter three, were arranged according to unique antimicrobial 

resistance phenotypes. Figure 4.4.1 summarises all possible partnering from the 15 

isolates. Any isolate in this group can potentially carry out HGT with another isolate. 

Isolates listed in the intrinsic section (blue) can only play the role of recipient if they were 

chosen, as the resistance phenotypes are non-transferable. Isolates listed in the mobile 

resistance section (orange) can play the role of donor to isolates from the intrinsic section 

(blue), as well as having the potential to play either role when partnered together with 

another isolate from the same section. This grouping allowed for quick drafting of HGT 

partners to be applied to the conjugation protocols. 

 

Conjugation reactions were carried out using an optimised Tremblay and Archambault, 

(2013) protocol (figure 4.4.2). MF06036 was chosen as a potential conjugation partner 

due to its strong resistance profile, particularly vancomycin resistance. This isolate was 

susceptible to cephalothin. Conjugation partners MF06030, MW01043 and MW03061 

were selected as vancomycin susceptible, cephalothin resistant isolates. These isolates 

were tested in the liquid phase conjugation protocol (figure 4.4.2). Selection plates were 

incubated for 96 hours, and the MF06030 reaction had a transconjugant donor efficiency 

of 5.7x10-11, the MW01043 reaction had a transconjugant donor efficiency of 1.3x10-10, 

and the MW03061 was negative. Repeat experiments increased the conjugation time to 

24 hours and the selection time to 72 hours. These changes yielded an MF06030 reaction 

with a transconjugant donor efficiency of 3.4x10-10. The MW01043 reaction had a 

transconjugant donor efficiency of 3.8x10-10, and the MW03061 reaction had a 

transconjugant donor efficiency of 4.1x10-11. Control selection plates with the 
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conjugation partners individually spread out confirmed no growth. Enterococcal 

phenotypic identification tests (as mentioned in chapter two) confirmed the identified 

colonies as enterococci.  

 

Expected conjugation efficiencies for enterococci were x 10-1-5 for a 24-hour selection 

time, which was much higher than the data obtained here. The conjugation efficiencies 

were improved MF06030 (6 fold), MW01043 (2.5 fold) and MW03061 (positive 

colonies), however the changes made resulted in conjugation efficiencies that were still 

well behind what was observed in the literature.
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Figure 4.4.1 Pie chart detailing potential Enterococcus conjugation partners based on 

mobile and intrinsic antibiotic resistance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.1. A pie chart detailing potential conjugation partners based on antibiotic 

resistance. Standardised conjugation methodologies capture the transfer of antibiotic 

resistance. This pie chart groups all the unique antibiotic resistance phenotypes 

discovered in chapter one into intrinsic or mobile resistance categories. Intrinsic 

resistance cannot be transferred and as such any isolate in the RIF or CEP sub-category 

can be utilised as a potential recipient matched with any isolates from the mobile 

resistance category. All isolates in the mobile resistance category can be partnered with 

any isolate outside their own sub category as either a potential recipient or a donor. CEP 

- cephalothin, RIF - rifampicin, TET - tetracycline, KAN - kanamycin, STR - 

streptomycin, ERY - erythromycin, GEN – gentamycin, VAN – vancomycin. 
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Figure 4.4.2. Liquid phase conjugation methodology. Conjugation between the enterococcal isolates was initially tested using this method. A recipient 

was mixed with a donor in liquid phase and allowed to conjugate for 20 minutes to 24 hours. After conjugation, the partners and potential transconjugants 

were plated on double antibiotic selection. 
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Figure 4.4.3. Liquid phase Enterococcus conjugation: partnering the vancomycin 

resistant MF06036 with the cephalothin resistant MF06036/MW01043/MW03061 plated 

on double vancomycin cephalothin selection. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.3. Liquid phase conjugation experiment. A) MF06036 acted as a donor for the 

potential transfer of vancomycin resistance into the three potential cephalothin resistant 

recipients MF06030, MW01043 and MW03061. B) Control TSA plate showing growth 

of the three recipient isolates. C) Double selection plate showing no growth of any of the 

four potential parental isolates. D) TSA double selection plate after the 20-minute 

conjugation incubated for 96-hours. The reaction with MF06030 had a conjugation 

efficiency of 5.7x10-11, the reaction with MW01043 had a conjugation efficiency of 

1.3x10-10 and the reaction with MW03061 was negative E) A repeat of experiment (D) 

with a 24-hour conjugation time and incubated for a further 72 hours. The reaction with 

MF06030 had a conjugation efficiency of 3.4x10-10, the reaction with MW01043 

contained had a conjugation efficiency of 3.8x10-10 and the reaction with MW03061 had 

a conjugation efficiency of 4.1x10-11. 
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4.4.2. Improving the conjugation protocol and generating high efficiency 

transconjugants T1-T4 

Detection of colonies on the double selection plates in the previous experiment were 

indicative of successful transfer of AMR phenotype, however the long incubation times 

and protocol efficiency indicated unreliability in the protocol and thus needed to be 

refined. Therefore, MW01105Rif was used, as its rifampicin resistance was the highest 

level tested in this study as well as being the most universal recipient isolate. A change 

in protocol most notably using solid phase conjugation surface and longer conjugation 

time (figure 4.4.4) ensured successful capture of AMR transfer (figure 4.4.5). 

 

As MF03035, MF06036 and MF04010 were strong clumping isolates and contained at 

least three mobile AMR phenotypes, they were selected for partnering with the three 

recipient isolates MW01105Rif, ST01109Rif and MW02043Rif based on suitability 

requirements from figure 4.4.1. These enterococcal partnerings permitted the isolation of 

various transconjugants, 4 of which were selected for further analysis. Transconjugant T1 

as explained in figure 4.4.5 was the result of donor MF06036 passing vancomycin 

resistance to MW01105Rif with high efficiency (7.8±0.8x10-3). Transconjugant T2 was 

the result of donor MF04010 passing tetracycline resistance to MW01105Rif, this reaction 

was the least efficient at 2.3±0.8x10-5. Transconjugant T3 was the result of donor 

MF06036 passing tetracycline resistance to ST01109Rif; this reaction had an efficiency of 

1.8±0.3x10-4 and was an interspecies transfer event. Finally, transconjugant T4 was the 

result of donor MF06035 passing vancomycin resistance to MW01105Rif; this reaction 

had the highest observed transfer efficiency 1.22±0.3x10-1. MW02043Rif could not be 

successfully used in a conjugation reaction. 
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The transconjugant donor efficiencies obtained using the solid phase conjugation 

protocol were as expected from the literature, and were on average 1.2x108 times more 

efficient than the observed reactions using the liquid phase conjugation protocol. Once 

transconjugants had been repeatedly created and phenotypically confirmed as 

enterococci, further examination was carried out. 
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Figure 4.4.4. Solid phase conjugation methodology. Conjugation between the enterococcal isolates was revised using this method. A recipient was 

mixed with a donor in liquid phase at a ratio of 9:1 and immediately plated on TSA for 24 hours, aggregates were then scraped, suspended and plated 

on double selection for an additional 24 hours.
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Figure 4.4.5. Solid phase conjugation: Isolation of T1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.5. Successful isolation of transconjugant (T1). (A) Control TSA plate showing 

growth of isolates MW01105Rif, MF04010, MW03020, MW03025 and MF06036. (B) 

Rifampicin (100 µg/ml) control TSA plate showing growth of only MW01105Rif. (C) 

Vancomycin (10 µg/ml) control TSA plate showing growth of only MF06036. In both 

Figure (B) and (C) the other isolates act as negative growth controls. (D) Successful 

isolation of T1 from the solid phase 24-hour conjugation of MF06036 and MW01105Rif 

incubated for 24 hours at 37oC on a double selection plate (rifampicin (100 µg/ml) and 

vancomycin (10 µg/ml)). (E-F) Control TSA plates showing the normal growth (E) of 

both parents and transconjugant (T1) and double selective growth (F) of T1 only. The 

orange specs observed in the vancomycin and rifampicin plates are particles of rifampicin 

impurity that do not dissolve in TSA.  

a b 
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Table 4.4.1 Isolation of transconjugants T 1-4. 

VAN – vancomycin, TET – tetracycline, RIF- rifampicin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transconjugants generated, parental isolates and transfer efficiencies 

Transconjugant Donor isolate Recipient 
Resistance 

phenotype  
Efficiency 

T1 MF06036 MW1105Rif VAN + RIF 7.8±0.8x10-3 

T2 MF04010 MW1105Rif TET + RIF 2.3±0.8x10-5 

T3 MF06036 ST01109Rif TET + RIF 1.8±0.3x10-4 

T4 MF06035 MW1105Rif VAN + RIF 1.22±0.3x10-1 
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4.4.3. Antibiotic resistance profiles, transferred genotypes and stability of the 

acquired resistance traits of the enterococcal transconjugants T1-T4 

Further investigation into all possible antibiotic resistance phenotypes/genotypes, as well 

as the stability of the transconjugant resistance was carried out on transconjugants T1, 

T2, T3 and T4. 

Minimum inhibitory concentrations of antimicrobials were determined for the 

transconjugants to see how many phenotypes transferred as well as if MIC values 

changed, as compared to their respective parental isolates (table 4.4.2). T1 accepted 

transfer of four AMR phenotypes (vancomycin, erythromycin, trimethoprim and 

teicoplanin) from MF06036, as well as quadrupling its MIC to tetracycline. 

Transconjugant T2 accepted transfer of tetracycline only from MF04010, as well as 

doubling its MIC to chloramphenicol. Transconjugant T3 accepted tetracycline resistance 

from MF06036. Interestingly T3 had a kanamycin MIC value, half that of ST01109Rif and 

double that of MF06036, as well as halving its MIC to erythromycin. Transconjugant T4 

accepted transfer of four AMR phenotypes (vancomycin, erythromycin, trimethoprim and 

teicoplanin) from MF06035. Interestingly T4’s MIC for vancomycin was double that of 

MF06035.  

After confirming that the four transconjugants had received AMR phenotypes from the 

donor isolates, PCR was carried out to confirm the presence of genes that are linked to 

the demonstrated phenotypes (Table 4.4.4). Initially the E. faecalis SodA gene (figure 

4.4.6) was tested on the parents and transconjugants as a final confirmatory step in the 

identification of transconjugants as enterococci. Enterococcus faecium ST01109Rif and 

its transconjugant T3 did not produce positive banding as expected. The Enterococcus 

faecalis ATCC29212 was used as a positive control. 
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As vancomycin resistance transfer was observed phenotypically, the vanA gene was 

tested for in the recipient MW01105Rif, its donors MF06036 and MF06035, and the 

transconjugants T1 and T4. The vanA gene (figure 4.4.7) was identified in the donors and 

the transconjugants but not in the recipient and there was a similar finding for the 

erythromycin resistance gene ermB (figure 4.4.8). The recipients MW01105Rif and 

ST01109Rif, the donors MF04010 and MF06036 and the transconjugants were all 

investigated for the presence of seven tetracycline genes (tetK, tetL, tetM, tetO, tetS, tetT, 

tetW). The tetracycline gene tetL (figure 4.4.9) and tetM (figure 4.4.10) were found in the 

donors with tetM being transferred to both T1 and T2 with only tetL being transferred to 

T2. None of these tetracycline genes were identified in the recipients.  

 

To assess if the transfer of AMR could be selected out of the transconjugants through 

propagation in negative stress, transconjugants T1, T2 and T4 were cultured daily on 

AMR selection; normal media then tested in AMR selection; and normal media only, for 

25 days. Figure 4.4.11 illustrates that, positive selection controls have in all cases (apart 

from T3 day 20) lower CFU’s than the negative selection control. 
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Table 4.4.2. Minimum inhibitory resistance profiles of parental enterococci and their transconjugants.  

Enterococcal isolate 

  

                     MIC (µg/ml) at 24 hours 

  VA E SM TET TMP TE KAN CHL GEN  

MW01105Rif 1 0.5 >1024R <0.5 0.13I 2 128 4 64R 

ST01109Rif 2 8 128 <0.5 0.5I <0.25 256 4 32 

MF06035 256R >1024R 1024R 8 >16R >32R 64 8 128R 

MF06036 >512R >1024R >1024R 128R >16R >32R 64 8 16 

MF04010 1 <0.25 1024R 128R 0.13I <0.25 256 4 64R 

T1 >512R >1024R >1024R 2 >16R >32R 64 8 32 

T2 1 <0.25 >1024R 128R 0.13I 2 64 8 16 

T3 1 <0.25 >1024R 128R 0.5I <0.25 128 8 32 

T4 >512R >1024R >1024R 8 >16 R >32R 128 8 32 

*VA, vancomycin; E, erythromycin; SM, streptomycin; TET, tetracycline; TMP, trimethoprim; TE, teicoplanin; KAN, 

kanamycin; CHL, chloramphenicol; GEN, gentamycin 
R,resistant; I, intermediately resistant 
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Figure 4.4.6. PCR detection of E. faecalis SodA genomic DNA used for species 

identification in parent and transconjugant enterococci. 

 

Lane M – 100bp ladder 

Lanes 1-10 – SodA PCR result for isolates MW01105 Rif (1), ST01109 Rif (2), MF04010 

(3), MF06035 (4), MF06036 (5), T1 (6), T2 (7), T4 (8), T3 (9) ATCC 29212 (10). 

 

 

 

 

 

 

 

 

 

    M        1          2         3          4         5          6         7          8         9         10      

 

360  
bp 



152 
 
 

 

 

 

 

 

 

 

 

 

Figure 4.4.7. PCR detection of vanA in parent and transconjugant enterococci. 

 

Lane M – 100bp ladder 

Lanes 1-6 – vanA PCR result for isolates MW01105Rif (1), MF06036 (2), T1 (3), 

MF06035 (4), T4 (5), Negative control (6). 
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Figure 4.4.8. PCR detection of ermB in parent and transconjugant enterococci. 

 

Lane M – 100bp ladder 

Lanes 1-6 – ermB PCR result for isolates MW01105Rif (1), MF06036 (2), T1 (3), 

MF06035 (4), T4 (5), Negative control (6). 
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Figure 4.4.9. PCR detection of tetL in parent and transconjugant enterococci. 

 

Lane M – 100bp ladder 

Lanes 1-6 – tetL PCR result for isolates MW01105Rif (1), MF04010 (2), T2 (3), 

Negative control (4). 
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Figure 4.4.10. PCR detection of tetM in parent and transconjugant enterococci. 

 

Lane M – 100bp ladder 

Lanes 1-7 – tetM PCR result for isolates MW01105Rif (1), MF04010 (2), TC2 (3), 

ST01109Rif (4), MF06036 (5), TC3 (6), Negative control (7). 
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Table 4.4.3. Transferred antibiotic resistance genes identified by PCR. 

 

 

 

 

 

vanA – vancomycin resistance, ermB – erythromycin resistance, tetM/L – tetracycline 

resistance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transconjugant Genes transferred 

T1 vanA, ermB 

T2 Tet M, Tet L 

T3 Tet M 

T4 vanA. ermB 
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Figure 4.4.11. Stability of transferred antibiotic resistance phenotype. The transconjugants T1-T4 were continuously propagated in and out of selection and tested in 

selective conditions daily for 25 days to assess if transferred resistance phenotypes would be selected for regardless of external antibiotic stress on the transconjugants. 

There was no drop-off, of the numbers of progeny which can produce AMR even when placed out of selection for 25 days (red lines) when compared to conditions 

that ensure upkeep of AMR progeny (green lines) Propagation and counting in TSA (pink line) acted as a negative selection control and propagation in TSA and 

counted in TSA (tet/van) (red line) acted as a positive selection control. No significant change in CFU’s as the experiment went on. T1 and T4 CFUs were significantly 

higher in TSA (p 0.0002 and P 0.0031 respectively) compared to counting in selection (van) across the experimental time course.
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4.4.4. The effects of environmental pressures (temperature and nutrient 

availability) on the conjugation process 

In an attempt to understand how conjugation may occur in the natural environment (from 

which the enterococci were isolated): the conjugation reaction that produced T1 was 

carried out under sub-optimal temperature conditions. MF06036 and MW01105Rif were 

conjugated under the same protocol as in figure 4.4.4 with incubation temperatures 

changed, as shown in table 4.4.4. As expected the total number of transconjugants isolated 

from the selection plates decreased non-linearly, with reductions in temperature and 

therefore, so too did conjugation efficiency (37oC - 7.8±0.8x10-3, 20oC - 3.6±0.3x10-5, 

and 4oC - 3.6±0.9x10-9).  When repeating the experiment with nutrient deprivation, 

efficiencies were further reduced (37oC – 1.0±0.2x10-5, 20oC – 7.4±1.5x10-7, and 4oC - 

3.3±1x10-12).  

The reduction in conjugation efficiency after removal of nutrients did not produce similar 

sized decreases (37oC with nutrients compared to nutrient deprivation at 37oC was 780 

fold less efficient, 20oC with nutrients compared to nutrient deprivation at 20oC was 48 

fold less efficient, 4oC with nutrients compared to nutrient deprivation at 4oC was 1090 

fold less efficient) as compared to the temperature reductions in the presence of nutrients. 

An additional conjugation reaction was performed whereby the normal conjugation 

protocol was employed with continuous antibiotic stress, reducing normal efficiency 

tenfold from 7.8±0.8x10-3 down to 7.8±0.4x10-4 at 37oC. 

Environmental conditions such as lower temperature and lack of nutrients as expected 

reduced enterococcal conjugation efficiency, but did not abolish the ability to produce 

transconjugants. The “naked” conjugation observed in the laboratory is unlikely to 

happen in the natural environment and is an inherent bias of laboratory experimentation. 

It was evident that substrate conjugation is the preferred method of conjugation amongst 

the collection of isolates in this laboratory. 
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Conjugation reactions creating T1 under nutrient deprivation and sub-optimal 

temperature. The conjugation reaction depicted in figure 4.4.5 was repeated with reduced 

temperature and again with reduced temperature and nutrient deprivation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.4.4. Conjugation frequency of T1 under temperature and nutrient deprivation 

 

Conjugation temperature 

Nutrient conditions 37oC 

 

20oC 

 

4oC   

Standard nutrients 7.8±0.8x10-3 

 

3.6±0.3x10-5 

 

3.6±0.9x10-9 

 
Nutrient deprivation 1.0±0.2x10-5 

 

7.4±1.5x10-7 

 

3.3±1x10-12 

 



160 
 
4.4.5. Atypical conjugal interactions between enterococci using sponge as a 

substrate 

The environmentally isolated, conjugal Enterococcus partners have been shown to 

conjugate under starvation, and at low temperatures. There was interest in establishing if 

they could find another host when out of their natural GI environment. Spongilla lacustris 

is a sponge that exists in fresh water streams within similar environments from which the 

enterococci were isolated. A simple assay was tested on S. lacustris to see if enterococci 

interact in any way with the sponge. After 24-hour incubation in water with a sponge 

hatchling at 20oC, with multiple washing steps, it was evident that enterococci attach to 

S. lacustris spongin (figure 4.4.12).  

 

As enterococci demonstrated an ability to attach to the spongin of Spongilla lacustris, a 

protocol was devised and optimised (figure 4.4.13) to detect if enterococcal attachment 

to spongin could provide a host environment whereby conjugation could take place. The 

sponge conjugation assay was performed on S. lacustris and Ephydatia fluviatilis with a 

water only control. As seen in figure 4.4.14, both reactions where sponge is present 

produce significant numbers of T1 as compared to the control (p values - unpaired t test 

with welches correction). Sponge controls with no bacteria added did not show any 

growth on double selection plates. Treatments with both sponge species and enterococci 

had significantly higher (p<0.0001) numbers of transconjugants compared to controls 

with enterococci and no sponge.  No conjugation was observed in 52.4% of the “no 

sponge” control tubes, compared to 2.5% and 0% in E. fluviatilis and S. lacustris 

respectively. Enterococcus conjugation frequencies in water only, with no sponge were 

7.00x10-8. Enterococcus conjugation frequencies in the presence of E. fluviatilis was 

1.26x10-6 per sponge at 48hrs on selection. Enterococcus conjugation frequencies in the 

presence of S. lacustris was 1.05x10-6 per sponge at 48hrs on selection. Enterococcus 
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conjugation in the presence of sponge was over 500 times more efficient than in water 

alone. There was no significant difference in the number of transconjugants between the 

sponge species (p=0.5796). 

 

Due to the significant increase in conjugation frequency of enterococci in the presence of 

sponge, attempts to visualise enterococci within sponge tissue was carried out. 

Specialised fluorescent in situ hybridisation microscopic assays were developed in a rapid 

assessment format for analysis of bacterial presence within sponge. Whole sponges were 

treated in this protocol without dissection as illustrated in figure 4.4.15(a). The white 

spongin tissue in (a) is where the majority of enterococci were identified. Figure 4.4.15(b) 

and (c) show co-localization between Hoechst nuclear stain and the FISH probe specific 

for E. faecalis (ENF). Further modification of the protocol (chapter 2) permitted capture 

of pinpoint fluorescence, providing clear imagery of individual enterococcal cells within 

the spongin tissue of the whole mounted sponge (figure 4.4.15(d) and (e)). 

 

Detailed microscopic investigation of enterococcal presence inside sponge required 

cryosectioning frozen sponge tissue, post enterococcal conjugation (figure 4.4.16). 

Fluorescence signal of the ENF probe was significantly brighter as compared to whole 

mounted sponge (figure 4.4.15.) permitting examination of the spatial location of 

enterococci in the tissue. Enterococci appear to exist heterogeneously within the sponge 

tissue, with frequent features that appear to show enterococci in contact with each other 

(arrows). Features such as DNA content of the sponge (figure 4.4.16.(b)) and anchoring 

spicules (figure 4.4.16.(d)) identify the sections as sponge tissue. 
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Figure 4.4.12. Interactions between enterococci and sponges from similar geographical 

isolation sites. 

 

Micrographs depicting colocalization of E. faecalis MF06036 with the sponge Spongilla 

lacustris. Sponges were incubated in universal tubes at 20oC with E. faecalis (1x105 

CFU/ml) for 24 hours. Sponge was removed, washed in sterile PBS, cut in half and 

stained (1% crystal violet) for 15 minutes. The sponge was dry mounted and imaged on 

an OLYMPUS CX21 bright field microscope with 40x/0.65 and 100x/1.25 oil, plan 

objectives. Image on the left is a low power micrograph depicting the brightly stained 

gemmule (pink) which has a large agglomeration of E. faecalis attached to the periphery 

of the gemmule. The body of the sponge (spongin) exists in the white plane of the 

micrograph which did not stain brightly. The image on the right is a high-powered 

magnification, region of interest from the low powered micrograph on the left (zone 

depicted by a dashed red square). The enterococci are clearly depicted on and adjacent 

to the gemmule and on top of the spongin. Scale bar represents ten microns. 
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Figure 4.4.13. Protocol created to isolate fresh transconjugants from conjugation reactions in the presence of sponge. The standardised conjugation 

reaction developed in this study was applied to a universal tube containing a sponge. The ratios were optimised to 14:1 recipient to donor. Reactions took 

place in water at 20oC for 24 hours. Water was removed and sponge was washed with sterile water. Sponges were transferred to new tubes, homogenised 

in sterile PBS and added to double selection plates. Controls with no sponge were also performed.  
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Figure 4.4.14. Enterococcal conjugation in sponge represented with Tukey’s box plot. 

 

A Tukey’s box plot illustrating the results from the conjugation in the presence of sponge 

experimentation. Conjugation reactions between MF06036 and MW01105Rif to create T1 

were performed in tubes containing either E. fluviatilis, S. lacustris or water only. All 

experiments contained seven replicates and were independently repeated three times 

under the optimised protocol described in figure 4.4.13. E. fluviatilis had two outliers 

which were significantly higher than the median values of both sets of sponge data. 

Factoring the outliers E. fluviatilis had significantly higher numbers of transconjugants 

located in and on its tissue as compared to the water only control. Recovery of 

transconjugants from S. lacustris experiments yielded positive numbers in every instance 

as compared to E. fluviatilis and water only and numbers recovered were significantly 

higher than the water only control. Significance was calculated using the unpaired t test 

with welches correction. Sponge controls with no bacteria added did not show any growth 

on double selection plates. Zero rate conjugation was observed in 52.4% of the “no 

sponge” water control tubes, compared to 2.5% and 0% in E. fluviatilis and S. lacustris 

respectively. Conjugation efficiencies as transconjugant per donor per sponge are: E. 

fluviatilis – 1.26x10-6, S. lacustris -1.05x10-6, water - 7.00x10-8. 
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Figure 4.4.15. Optimisation of fluorescent in situ hybridisation to detect enterococci in 

whole mount sponge after conjugation. Fluorescent micrographs using in situ 

hybridisation to visualise MF06036 on and inside sponge whole mounted tissue (a) is a 

low magnification dark filed micrograph of a whole mounted S. lacustris: gemmule – 

central yellow shell, spongin – fibrous matrix of white collagen based tissue. (b+c) 

Unprocessed sponge whole mount imaged at 100x magnification with Hoechst (b) and 

ENF Enterococcus faecalis probe (c). In an unprocessed state, it is possible to visualise 

enterococci using FISH, with significant background signal. Hoechst staining gives good 

contrast for bacteria. (d) Red channel fluorescent micrograph of ENF FISH staining on a 

flattened sponge between a glass coverslip and slide incubated for additional time with 

probes (24 hours). ENF probe signal is much improved over (c). (e) The same processing 

as in (d) with the addition of Sudan black B, which helps reduce background noise. 

Enterococci are clearly visible in (e), to the extent that individual cells can easily be 

observed. White scale bars represent ten microns. 

 

 

a 
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Figure 4.4.16. Fluorescent in situ hybridisation on S. lacustris cryosections to identify E. 

faecalis MF06036 after a conjugation reaction within the sponge. Fluorescent in situ 

hybridisation on ten-micron sponge sections using the ENF E. faecalis probe (Texas red 

fluorophore) after a conjugation reaction in the presence of sponge. (a) Section of S. 

lacustris examined with red fluorescence. (b) Overlay of the same section as (a) 

examined with blue, red and bright field imaging channels. (c) Section of E.  fluviatilis 

examined under red fluorescence. (d) Overlay of the same section as (c) examined with 

red and bright field imaging channels. ENF positive (red cells) E. faecalis can be 

observed throughout the entire sponge tissue on all sections. Bacteria often appear in 

clusters of several individuals in close proximity to each other (white arrows). 

Enterococci also stain with the Hoechst DNA stain with no photo-conversion (b). 

Characteristic sponge spicules were present (yellow arrows). Scale bar represents 10 

microns. 
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4.5. DISCUSSION 

 

Enterococci were partnered, and conjugation protocols were developed to generate 

transconjugants, of which four were analysed (T1-T4). Enterococci were able to 

conjugate under sub-optimal conditions as well as on sponges’.  

 

4.5.1. Partnering of compatible enterococci for HGT of AMR 

 

As there was a large collection of isolates to work with, partnering involving well known 

AMR phenotypes as described in the literature and annual clinical surveys (vancomycin, 

tetracycline) were selected for first (Gilmore et al., 2014; Rossolini et al., 2014). 

Vancomycin resistance in enterococci is the most well known in clinical settings and 

tetracycline resistance determinants are present in one of the most studied plasmids 

(pCF10). 

 

4.5.2. Liquid phase conjugation  

 

Laboratory based conjugation amongst enterococci was first described by Jacob & Hobbs, 

(1974); and Dunny and Clewell, (1975). The original protocol employed the use of Oxoid 

nutrient broth number 2 media, and used isolated sex pheromone, which resulted in 

successful isolation of the transconjugants. Over the years, the protocol has been refined 

into several varied methods. The method described in figure 4.3.2 is an extension of the 

original method updated by Tremblay and Archambault, (2013) and optimised for this 

study. Several groups of conjugation partners were selected for conjugation through this 

protocol.  

The majority of attempts at conjugation through this method were unsuccessful. There 

was one partnering involving MF06036 transferring vancomycin resistance into the 

vancomycin susceptible, cephalothin resistant MF06030, MW01043 and MW03061. 

Initial success was achieved with a conjugation time of 20 minutes and incubation on 
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selection for 96 hours. The entire conjugation liquid phase for each of the three reactions 

was plated and transfer efficiency was extremely low, with a maximum of 1.3x10-10 as 

compared to the typical x10-3 to -7 for plasmids, (Andrup and Anderson, 1999; Cook et al., 

2011). The experiment was repeated with longer conjugation times, up to 24 hours, which 

improved efficiency by 66% to 3.4x10-10 (figure 4.4.2 (e)).  

The reaction involving MW03061 went from a negative reaction in the 20-minute 

exposure to a positive reaction with the same efficiency as the reaction with MW01043. 

It has been reported, and is generally accepted, that successful, repeatable conjugation 

between two enterococci should produce transconjugants on selection growth plates in 

the first 24 hours with maximum efficiency obtained at 48 hours (Lampkowska et al., 

2008; Gilmore et al., 2014). The successful conjugation attempts observed in figure 4.4.2 

display conjugation efficiencies similar to those observed for conjugal transposon transfer 

(x10-9) by Marcinek et al. (1998). However, the issues with repeatability of the data 

collected here combined with final protocols that do not represent what is reported in the 

literature rendered this experiment too unreliable, and an alternative methodology was 

needed. 

 

4.5.3. Isolation of a transconjugant (T1) using solid phase conjugation 

 

The first change made to the conjugation protocol after the results from the initial 

experiments was to use recipients with a single unique antibiotic resistance phenotype for 

all partnering attempts. In this case it was rifampicin resistance. These isolates were 

MW01105Rif, MW02043Rif and ST01109Rif, demonstrating aptness as recipients in 

pheromone based compatibility for conjugation as well as having broad susceptibility 

profiles to antibiotics (excluding their rifampicin resistance). Changes in AMR profiles 

could only be from successful conjugation. The second change made to the process was 

the inclusion of a solid phase conjugation surface (Figure 4.4.4) to replace the liquid phase 
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that was used in the previous protocols. This solid phase allowed successful 

transconjugants to grow in tandem with both parent isolates, before being inhibited by 

double selection. Certain plasmids can transfer more efficiently under specific 

circumstances. Plasmid pCF10 transfers efficiently during filter mating, where cells are 

concentrated in close proximity allowing efficient exchange between donors and 

recipients (Gomez et al., 2014). Efficient mating in liquid cultures would typically occur 

with bacteria that possess conjugation pili, such as the F pilus attributed to E. coli (Lawley 

et al., 2003). Enterococci are more likely to efficiently conjugate on solid surfaces, where 

cell contacts are readily available. 

The revised protocol using a solid phase for conjugation ensured only transconjugants 

could grow. When comparing this method to the previous one, solid phase conjugation 

was the superior method, repeatedly producing transconjugants with efficiencies over 

1x108 million times higher than the initial liquid phase method.  

The nature of these transfers indicated the potential for a specific class of plasmid being 

transferred, (Inc18), as discussed in the introduction (Zhu et al., 2010). To confirm that 

this reaction was indeed conjugation and not a spontaneous MF06036 rifampicin mutant, 

post-conjugation selection was performed on the parents and the transconjugants (Figure 

4.4.5 (e-f). The control plate (e) shows growth of all three enterococci and (f) shows 

growth of transconjugants only.  

 

4.5.4. Isolation and phenotypic characterisation of transconjugants T1-4. 

 

Four transconjugants were selected for further testing using the protocol as observed in 

table 4.4.1. T1 (figure 4.4.5) and three more (T2-T4). These transconjugants had their 

AMR phenotypes analysed using MIC’s and compared to their parental isolates (table 

4.4.2) The phenomenon of multiple AMR transfers is reported but occurrences are much 

lower than reports of single AMR transfer. Vignaroli et al. (2011) identified multiple gene 
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transfer (ermB and vanA) between enterococci isolated from farm animal sources. 

Reported cases of antibiotic resistance transfer from enterococci of this origin usually 

report co-transfer with other determinants, such as vanA and aggregation substance 

reported by Paoletti et al. (2007).  

Transconjugants T1 and T4 received four AMR phenotypes (vancomycin, erythromycin, 

trimethoprim and teicoplanin) from MF06036 and MF06035 respectively. Moubareck et 

al. (2003) demonstrated the potential for up to four antibiotic resistance genes to be 

conjugally transferred (vanA, ermB, tetL ant(6)) in a large 180kb plasmid, amongst 

enterococci of animal origin. Those that received four genes had low transfer efficiency 

(10-9) as compared to single or double gene (vanA and ermB) transfer (10-2 to -5). Silveira 

et al. (2013) reported multiple gene conjugal transfer of the same genotype/phenotypes 

(vancomycin, erythromycin and tetracycline) from similar sources to Moubareck et al. 

(2003) and the enterococci used in this study. They alluded to one or several MGEs. 

Enterococcal conjugation on the scale of up to four transferred phenotypes is rarely 

reported, those that do are from animal origin. Regarding this study, this is the first report 

of four phenotype transfers to include trimethoprim and teicoplanin determinants with 

high conjugation efficiency (10-1 to -3), demonstrating the prolific abilities of enterococcal 

conjugation beyond straightforward single gene transfer.  

As concerns of Enterococcus as a nosocomial pathogen continue to escalate, combined 

with observations of increased virulence, questions on the source origins of AMR 

phenotypes and real examples of natural horizontal transfer of AMR genes have emerged 

(Arias and Murray, 2012; Di Cesare et al., 2014). Jutkina et al., 2016 describes how 

metagenomic analysis of HGT in the environment is not enough to understand the origins 

and spread of AMR. There is a global desire for direct detection of such events. This body 

of work highlights the natural HGT of AMR phenotypes and genes at high frequency in 



171 
 
enterococcal isolates from the natural environment, an ecological niche never tested for 

propagation of AMR in enterococci previously.  

 

The vancomycin donor MF06036 was responsible for AMR HGT events which resulted 

in the isolation of two different types of transconjugants (T1 and T3). T3 was created 

through an interspecies conjugation reaction from E. faecalis into E. faecium 

demonstrating the broad host range of these mobile AMR phenotypes. When tested, these 

two transconjugants have differing AMR profiles that match the donor in parts but not 

each other. This is the first observation, of this kind in enterococci isolated from an 

agrarian environment and suggests a two-component conjugation system that can 

independently transfer a single component during conjugation. Christie et al. (1987) 

observed two separate conjugation systems for the tetracycline pCF10 plasmid. A 25kb 

tra region and a 16kb region (Tn925) different from tra that also transferred tetracycline 

resistance. Interestingly, there were several increases to the MIC of the tested antibiotics 

in the transconjugants, raising concerns on the peripheral effect of horizontal gene transfer 

to the hardiness of transconjugants.  

T1 had a quadrupling of tetracycline MIC, T2 had a doubling of chloramphenicol MIC 

and T4 had a doubling of vancomycin resistance. These increases in MIC to non-

transferred AMR phenotypes indicates an underlying danger in the propagation of AMR, 

in that through the action of additional mechanisms involved in bacterial survival, the 

transfer of mobile elements can increase non-specific responses to antimicrobials. 

Alterations to the putative enterococcal multidrug efflux pumps could cause general 

increases to groups of antimicrobials (Molale and Bezuidenhout, 2016). Overexpression 

of the E. faecalis EfrAB (ABC transporter), a putative multidrug efflux pump in E. coli 

caused efflux of norfloxacin (Lee et al., 2003).  Hürlimann et al. (2016) examined EfrAB 

for its ability to function as an effective efflux pump in E. faecalis. They discovered that 
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deletion of the efflux genes had minimal effect on MIC for drugs such as acriflavine. 

However, when they overexpressed EfrAB, they discovered that the efflux pump could 

transport a large consortium of drugs including norfloxacin. They concluded that the 

standard state of this efflux pump functions at a low level in E. faecalis and they 

postulated that plasmids could cause its overexpression. This information is pertinent in 

the future directions of enterococcal AMR HGT research.  

 

T3 was the only Enterococcus to demonstrate a reduction in general MIC as compared to 

the parental strains. MIC to kanamycin and erythromycin was halved.  Similarly, Gevers 

et al. (2003) demonstrated that when E. faecalis JH2-2 transconjugants were created from 

tetM resistant Lactobacillus, MIC’s to tetracycline were lower. No explanation was 

provided in Gevers et al. (2003) however an explanation for this reduction could be the 

introduction of altered machinery components encoded on the plasmid which could cause 

a reduction in efflux function. An inverse reaction to what was observed by Hürlimann et 

al. (2016). 

  

Lee et al. (2007) determined that when CMY-2 and DHA-1 beta lactamases were 

conjugally transferred between Klebsiella pneumoniae clinical isolates, OmpK35/36 

porins greatly diminished (loss). This caused uptake limited reductions to the MIC of 

several antibiotics including imipenem. Doménech-Sánchez et al. (2003) determined that 

modification of porins can reduce MICs to aminoglycosides, such as chloramphenicol. 

Porins do not feature in enterococci, however antibiotic uptake rates can influence the 

MIC of aminoglycosides. Aslangul et al. (2006) determined that alterations to gentamycin 

MIC was directly based on drug uptake impairment caused by variations in the affinity 

of the N,N′-dicyclohexylcarbodiimide receptor responsible for transportation of the 
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cationic aminoglycosides. Direct evidence for such observations has not yet been 

determined, however deductions related to drug uptake mutations are entirely plausible. 

Transfer efficiencies reported in table 4.4.1 coincide with those observed in the literature. 

Transfer of vancomycin and/or erythromycin resistance was observed with a frequency 

of 10-1-10-3 obtained for donors isolated from poultry litter. In our hands the transfer 

frequency for tetracycline was lower (10-4-10-5). However, Vignaroli et al. (2011) showed 

frequencies of 10-6-10-9, where transfer occurred from donor strains isolated from animal 

faeces to a human E. faecium strain.   

 

4.5.5. Transfer of AMR genes in enterococcal transconjugants 

 

As there were strong observed phenotypic transfers of AMR amongst the transconjugants, 

PCR investigations into gene transfer events were carried out with primers listed in table 

2.2. Figure 4.4.7 shows the transfer of the vanA gene into T1 and T4 from MF06036 and 

MF06035. MW01105Rif tested negative for vanA. The same reaction occurred for the 

transfer of ermB the erythromycin determinant gene as seen in Figure 4.4.8. Co-transfer 

of vanA and ermB has been shown before from pig isolates to human isolates (Vignaroli 

et al., 2011). Tetracycline gene PCR testing was time consuming and required significant 

optimisation (as described in the general materials and methods), however tetL was 

present in T2 and its donor MF04010, and tetM was present in T2, T3 and their respective 

donors. All other tetracycline primers did not amplify tetracycline genes in the tested 

enterococci. However, the identification of tetL and tetM was indicative of the action of 

mobile transposons and has frequently been observed in the literature. Moubareck et al. 

(2003) described the movement of vancomycin, erythromycin and tetracycline genes 

from food animal origins to human gut commensals. Silveira et al. (2013) determined 

cross transfer of similar genes between enterococci from animal, human, the natural 

environment and food origins. Examples such as these highlights how ex vivo reservoirs 
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of enterococci can potentially cross propagate with isolates with the ability to cross the 

GI barrier into the bloodstream causing peripheral infection. Table 4.4.3 is a summary of 

the gene transfer events identified in the four transconjugants.  

 

4.5.6. Stability of acquired AMR phenotype in the transconjugants 

 

To assess if the transferred AMR phenotypes demonstrated in the transconjugants were 

stable, a continuous propagation and selection assay was carried out for 25 days (figure 

4.4.11). If AMR phenotype was not stable, there would be a gradual reduction in CFU of 

transconjugant propagated in TSA and counted in selection (red lines). T1 and T4 were 

tested in vancomycin, T2 and T3 were tested in tetracycline with no significant difference 

amongst any growth condition. All transconjugants retained their acquired AMR, 

suggesting that the conjugal MGE’s studied here also code for maintenance and highly 

conserved replication systems (Werner et al., 2013) which supports their stability in 

transformed cells and prevents benign progeny from succeeding. In chapter 3 Alkaline 

lysis experimentation yielded inconsistent results, and although phenotypic data was 

acquired that strongly indicated plasmid/MGE transfer, another approach can be 

considered for future investigations. Whole genome sequencing of target isolates and 

transconjugants would provide quantifiable information on the genotype of any MGE’s 

within. This is a chap and affordable solution to the issues of the methodology reported 

here. 

 

4.5.7. Variations in temperature and nutrient deprivation reduce conjugal efficiency 

In this study, conjugation of enterococcal AMR genes has been demonstrated in several 

isolates; as well as inter-species transfer. This novel interaction was accomplished using 

environmentally isolated individuals. In keeping with the environmental conditions from 

which the enterococci were isolated, an experiment was carried out to analyse whether 
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enterococci can continue to conjugate under sub-optimal temperatures and lack of 

nutrients. Both nutrient deprivation and reductions in temperature from the optimal 37oC 

will lower bacterial metabolic activity (Rivkin and Legendre, 2001). Retention of MGE’s 

and HGT is undoubtedly metabolically intense (Glick, 1995). Conjugation reactions that 

would create T1 were carried out at temperatures detailed in table 4.4.4. The optimal 

temperature of 37oC; the maximum temperature that freshwater tributaries’ reaches in the 

height of summer 20oC; and 4oC, which accounts for median lowest water temperature 

for over 75% of the year (unpublished data).  

Conjugation occurred at 20oC, and at 4oC. In fact, recovery of transconjugants at 4oC 

(x10-5) is statistically similar to recovery rates observed in the literature for standard in 

vitro conjugation at 37oC (x10-3 to -7) (Andrup and Anderson, 1999; Cook et al., 2011). 

The fact that enterococci still retain enough metabolic activity to carry out HGT at 

temperatures that should significantly reduce their biological functionality, and under 

nutrient starvation reveals the potency of the mechanism. 

 

4.5.8. Possible interactions of enterococci with other organisms 

 

Environmentally isolated enterococci have demonstrated HGT, even in unfavourable 

conditions. These characteristics help fulfil the criteria to propagate AMR in the 

environment. It is well understood that enterococci possess virulence genes coding for 

the attachment to type IV collagen, as well as genes coding for gelatinase (Daniels, 2011). 

These virulence genes allow enterococci to bind to and ultimately colonise animal tissue, 

such as an endocarditis vegetation. When enterococci are introduced to the bloodstream 

of a human, they can bind to the endothelium of damaged heart valves using collagen 

binding proteins and form a vegetation through encasement in a matrix of fibrin as part 

of the damage response of the endothelium (McCormick et al., 2002). These vegetations 



176 
 
significantly increase the risk of mortality through septicaemia and cardiac arrest (Wilson 

et al., 1984; Maki and Agger, 1988).  

Fresh water sponge Spongilla lacustris, are composed of collagenous matrix called the 

mesohyl (Krasko et al., 2000; Exposito et al., 2002). They exist ubiquitously across many 

waterways in Western Europe, including the same sites that the enterococci in this study 

were isolated (Manconi and Pronzato, 2008).  

Therefore, a simple attachment assay was performed (figure 4.4.12) to establish if 

enterococci bind S. lacustris. The results of this assay revealed that MF06036 easily 

bound S. lacustris. Combining this result with evidence from Gevers et al. (2003) which 

suggested sponge-like membranes (cellulose esters filter) with a 0.45µm pore size 

improves conjugation efficiency, revealed novel opportunities to try and perform 

Enterococcus conjugation reactions on the sponge.  They noted that filter mating using a 

0.2µm filter produced zero transconjugants using E. faecalis JH2-2 as a recipient and 14 

(tetM) Lactobacillus isolates. Using the sponge like membrane they achieved success 

(50% success rate at a frequency of 10-4 to -6). In our study, replicating environmental 

conditions would ensure any results can be extrapolated to occur in the agrarian aquatic 

ecosystem. 

 

4.5.9. Enterococcal conjugal interactions using sponge as a substrate 

 

It was immediately noticeable that enterococci concentrate on sponge (figure 4.4.12) 

which explains the higher number of transconjugants recovered from S. lacustris and 

then Ephydatia fluviatilis as observed in figure 4.4.14. When applying the protocol to 

sponge negative tubes, conjugation does occur, but the frequency is significantly 

(P=0.001) lower than what is observed in positive tests (figure 4.4.14). This can be 

explained due to the lower concentration of enterococci, when diluted in 20mls of water 

without nutrients. These findings are similar to what was observed in table 4.4.4. 
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However, when freshwater sponge was introduced, not only is conjugation frequency 

increased, the majority of transconjugants were isolated from homogenised sponge 

tissue. The concentration of transconjugants inside sponge demonstrated here coincide 

with the success attained by Gevers et al. (2003). 

 

In order to examine the entire sponge matrix, a FISH protocol was derived from protocols 

used to examine sponge conjugation and optimised (figure 4.4.15).  All transconjugants 

were located in the white sponge mesohyl as seen in figure 4.4.15 (a). The FISH protocol 

was so successful at identifying enterococci, that individual sponges were simply 

subjected to the FISH protocol and whole mounted on a glass coverslip and imaged with 

a simple epifluorescent microscope. The signal was significantly improved when Sudan 

black B was added 4.4.15 (e). The protocol devised in in figure 4.4.15 allowed for rapid 

speciation of any bacteria of choice in a complex eukaryotic organism, unveiling 

prospects of extensive research opportunities for bacterial interactions located in situ and 

in vivo.  

When whole sponge sections were examined with FISH, E. faecalis was found throughout 

the sponge mesohyl as seen in figure 4.4.16. Although enterococcal distribution appears 

sporadic, distinct groupings of enterococci were observed, indicating possible 

conjugation sites. This study was not able to identify at this stage whether conjugation 

occurs by sponge filtration of bacterial water suspension, or by attachment of enterococci 

directly to the mesohyl. Most likely this is a consequence of the sponges’ filter feeding 

activity. Freshwater sponges pump large water volumes through their canal system while 

stripping them of particulate matter, which inevitably concentrates bacteria and other 

waterborne particles in close physical proximity to each other (Ostroumov, 2005). 

However, a physical concentration effect of the filtration process may not be the sole 

explanation for the observed distribution of E. faecalis in the sponge mesohyl. Many 
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enterococci can produce gelatinase, which may be a reason for their high pathogenic 

potential with regard to endocarditis (Thurlow et al., 2010). This enzyme may also 

facilitate entry into the sponge tissue and may even enable them to feed on collagen, 

which is an important component of the mesohyl, particularly in new tissue (gemmules) 

(Alexander et al., 2015).  

The tight grouping observed by FISH could indicate a sponge based substrate for 

conjugation to occur. Irrespective of the method of enterococcal conjugation that occurs 

here, what is known is that these naturally isolated sponge hatchlings, concentrate E. 

faecalis that have had vancomycin resistance transferred to them within a closed sterilised 

system. Un-inoculated sponges were also homogenised and plated on TSA as a control 

of the sponge pre-sterilisation process. These plates were persistently free of bacteria with 

an occasional fungal growth. Studies in the literature could not be found for bacterial 

conjugation in sponges, or other filter feeding organisms. Therefore, the work presented 

here is completely novel. 

This novel process demonstrates for the first time how E. faecalis can survive in agrarian 

waterways, conjugate their resistance genes to other bacteria and propagate prolific 

resistance upwards to bacterial pathogens of humans. The sponge experiments can be 

seen as an analogy to such comparative studies, in that the sponge represents the filter 

medium and the tube wall represents the other solid surface. Similarly, to an artificial 

filter medium in the aforementioned assays, at the end of the experiment the sponge tissue 

contains a much higher number of transconjugant cells than the tube walls as the other 

solid surface.  

Conjugative horizontal gene transfer could also be enhanced as a stress response (Beaber 

et al., 2004). The production of agents with inhibitory properties that could exert a sub 

lethal stress or selection on bacteria has been verified for many sponge species. Therefore, 

an apparent sponge-microbe association can be concluded to exist (Thomas et al., 2010). 
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Antibiotics found in cell culture of B. cereus isolated from Halichondria japonica, a 

Japanese marine sponge produced potent antibacterial activity specifically to 

enterococci (Nagai et al., 2003).  In the natural environment, these interactions between 

sponge and microbes could create a microenvironment, where conditions could be 

conducive to conjugation.  The observed effect of a high number of transconjugants in 

the sponges has been very similar for both species in the test. Hence it can be quite safely 

assumed that it may also apply to other species of freshwater sponges. Whether the 

potential of aquatic filter feeders to facilitate AMR transfer also extends to other 

taxonomic groups, requires further investigation. Considering the enormous scale of filter 

feeding activity in many lakes and rivers and the transformative effect filter feeding can 

have at ecosystem level (Karatayev et al., 1997), research into the impact of filter feeding 

organisms is bound to provide valuable insights in the scale of AMR transfers in aquatic 

systems. 
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5.1.  INTRODUCTION  

 

5.1.1. Biofilm: an introduction 

Biofilm is the nomenclature given to the physical orientation and localisation of bacteria 

from the planktonic phase to solid phase on a substrate (McLean et al., 2010). Once this 

change in phase is initiated, development both through cellular division and the 

introduction of new individuals generally occurs, until a multispecies community has 

formed (Rickard et al., 2003). As bacteria are generally found on solid surfaces it is 

accepted that the biofilm state is common for all bacteria; especially when analysing 

human infection (enterococcal endocarditis and UTI’s) where binding usually occurs to 

human tissues (Mah and O’Toole, 2001). It has been theorised that bacterial biofilm 

communities exist as a complex microcosm capable of higher order processes, compared 

to observed planktonic prokaryotic processes (Davies et al., 1998). Discovered process 

such as the N-acyl-L-homoserine lactone signalling systems in Gram negative bacteria, 

are responsible for conjugation and virulence gene expression inside biofilm (Taga and 

Bassler, 2003). Analogous quorum sensing pathways also exist to control virulence gene 

expression in enterococcal biofilm (Qin et al., 2000). Biofilm matrices and their cellular 

components have a multifaceted structure comprising selective organisation of 

individuals (Dunny et al., 2014). Cells congregate around an inter-branched extracellular 

milieu in order to facilitate a quorum based coordination of expression characteristics and 

metabolic processes (O’Toole et al., 2000). Biofilm models of ‘development’ and 

biological function were initially based upon research carried out on Pseudomonas 

aeruginosa and P. fluorescens, (Monds and O’Toole, 2009). With regards to enterococci, 

models of development are not fully understood, and an understanding of biological 

functions is just beginning to emerge (Gilmore et al., 2014). 

 



182 
 
5.1.2. Enterococcal biofilm: Mechanism of infection 

The first reports of enterococcal biofilm associated infection came in 1986, from patients 

who were suffering with infections sourced from vascular access ports containing mature 

single and multispecies biofilms, including E. faecalis (Reed et al., 1986). Then in 1990, 

enterococcal high molecular weight, surface exposed protein expression levels were 

discovered to increase when enterococcal biofilms were grown on silicone substrates 

(Lambert et al., 1990). This led the way for the identification of E. faecalis as a 

component of catheter biofilm, and as such raised awareness of persistent enterococcal 

infection. Since then efforts have been made to effectively create substrates non-

supportive for biofilm formation, for use with human implants and usage of medical 

equipment/devices over extended periods of time (Raad et al., 1995). To this day 

Enterococcus infections can still translocate to bacteraemia from biofilm associated 

catheter infections, even with effective antimicrobial treatments vancomycin, telavancin 

in combination with heparin (Luther et al., 2016). 

 

It was shown that 84% of all tested E. faecalis isolates from human origins had the ability 

to form biofilm, whereas only 15% of human E. faecium isolates could produce biofilm 

(Baldassarri et al., 2001; Duprè et al., 2003; Seno et al., 2005; Prakash et al., 2005; 

Baldassarri et al., 2006). Opportunistic infections associated with endocarditis disease 

models and persistent catheter infections (which can translocate and cause septicaemia), 

had a greater biofilm formation capability than commensal counterparts (Dworniczek et 

al., 2005). Seno et al. (2005) were the first group to conclude that biofilm production in 

enterococci could be graded into weak, intermediary or strong, based on biomass. 

 

It is well known that bacterial biofilm makes up a significant portion of tooth plaque, and 

E. faecalis makes up the majority of all species of enterococci isolated from dental 
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infection (Dahlén et al., 2000). Interestingly, studies have produced conflicting results on 

whether enterococci isolated from different human isolation sites form strong or weak 

biofilm as a result of biofilm formation assay choice.  Duggan and Sedgley, (2007) using 

the polystyrene 96-well biofilm formation assay concluded, that oral enterococci don’t 

produce biofilm using the threshold set by Mohammed et al. (2004), where OD570nm 

greater than 0.5 are considered biofilm producers. However, when comparing to the 

Sandoe et al. (2003) method (where OD570 greater than 0.0 are considered biofilm 

producers) concluded that all their tested isolates were biofilm producers. Indications that 

methodology choice is responsible for variation in the literature rather than strain 

difference between enterococci is apparent when comparing the biofilm producing 

assessment criteria of Sandoe et al. (2003) and Mohammed et al. (2004). Additionally, 

studies that use substrate coated with human components have been shown to form strong 

biofilms with human associated enterococci. George and Kishen, (2008) demonstrated 

that substrate modification with human saliva on glass and using single rooted anterior 

teeth yielded strong biofilm formation for oral E. faecalis compared to the results from 

Duggan and Sedgley, (2007). 

 

5.1.3. Cell communication and conjugation potential 

Cook et al. (2011) described for the first-time, plasmid transfer inside enterococcal 

biofilm, where sex pheromone signalling recruited horizontal gene transfer between well 

characterised human isolates. Additionally, they demonstrated increases in enterococcal 

plasmid copy numbers from a maximum of five copies per planktonic cell versus a 

maximum of 15 copies per biofilm cell, something indicative of increased conjugation 

competency. This form of conjugation relies on signalling peptides in the same fashion 

as the two component fsr quorum response for biofilm formation, development and 

virulence (Hancock and Perego, 2004; Chen et al., 2017). Herein lies the potential to 



184 
 
conclude novel cell to cell signalling interactions unique to the biofilm environment of 

enterococci.  

 

5.1.4. Enterococcal biofilm extracellular matrix  

The extracellular matrix of enterococcal biofilm is composed of polymeric substances 

such as polysaccharides, proteins and extracellular DNA (eDNA) (Erlandsen et al., 2004). 

The importance of eDNA in initial formation of enterococcal biofilm has been tested and 

shown to be a regulator of early set down, but not as influential on biofilms close to 

maturity (Teng et al., 2009). Evidence has surfaced likening the function of 

polysaccharides to eDNA, supporting the structure of the extracellular matrix (Barnes et 

al., 2012). The polysaccharide gene epa has been shown to function to supplement 

biofilm formation through mediated synthesis of cell surface polysaccharides (Teng et 

al., 2002). The observed sugar dependant fluctuations in Enterococcus biofilm forming 

ability can be partially explained by experimentation in the bopA-D (biofilm on plastic) 

genes first carried out by Hufnagel et al. (2004). Using plasmid pTV1-OK, a 

chromosomal transposon mutation was created with a single insertion in the bopB open 

reading frame (ORF). This insertion caused an 84% reduction in biofilm production in in 

a strong biofilm producing E. faecalis.  A triple deletion mutant was created by deleting 

the 3’ end of bopA, the 5’ end of bopC and all bopB ORFs. Leaving only bopD, a putative 

sugar binding transcriptional regulator with high similarity to maltose metabolism 

proteins. Increased presence of bopD mRNA was attributed to increased biofilm 

formation in the transposon mutant with the triple deletion of bop genes. Hufngel et al. 

(2004) concluded that the functional characteristics of the bopD protein could be used to 

explain sugar dependant variation in biofilm formation.  

Biochemical characterisation of enterococcal biofilm has been partially accomplished by 

analysing water and alkaline soluble polysaccharide compositions of biofilm extracellular 
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matrix, in alkaline and starvation conditions (typically observed in human oral cavities) 

(Chen et al., 2017). This study revealed reductions in matrix water soluble 

polysaccharides under these stresses. However, studies on the composition of 

extracellular matrix are still lacking (Gilmore et al., 2014). 

The lectin, concanavalin A, binds to α-mannopyranosyl and α-glucopyranosyl residues of 

carbohydrates (McSwain et al., 2005). Enterococcal cell wall components feature 

lipoteichoic acids with kojibiose containing an α-D glucopyranosyl residue (Hogendorf 

et al., 2010). When concanavalin A is coupled with a fluorescent stain such as Alexa 

Fluor 594, polysaccharides contained on the cell surface of enterococci as well as 

extracellular polysaccharide components may be visualised. Therefore, this simple 

system can be used as an enterococcal biofilm stain.  

 

5.1.5. Contradictions within enterococcal biofilm literature 

Whilst biofilm and its formation is a well investigated topic, enterococcal-specific biofilm 

characteristics and formation are less understood (Barnes et al., 2012). There are less than 

two dozen reports in the literature relating to the understanding of enterococcal biofilm 

characteristics. Studies tend to focus on interventions to prevent or destroy enterococcal 

biofilm. Due to the low numbers of publications interspaced by years, there are no 

universally accepted standard methods for analysing biofilm in enterococci. Variations in 

reports of biofilm formation and characteristics for enterococci are reported, even as far 

as standard biofilm formation media, which varies greatly from publication to publication 

as discussed in (Dunny et al., 2014).  

The consensus of literature reviews appears to be that biofilm formation capability is only 

a function of the specific characteristics of growth, substrate and biofilm promotors in the 

system (Fisher and Phillips, 2009; Gilmore et al., 2014). There are also distinctive biofilm 

formation variations based on static or laminar flow growth conditions (Garrett et al., 



186 
 
2008). Optimisation of biofilm biomass using these characteristics may have a negative 

impact on the functionality of bacteria in the biofilm state, as a model of in vivo persistent 

antibiotic resistant infection (Nguyen et al., 2011). There is a growing consensus that 

bacteria modulate their produced biofilm to adapt to changing conditions of stress; rather 

than producing biofilm in large quantities as a function of their pathogenicity or 

supplemental growth conditions (Garrett et al., 2008; Stewart et al., 2015). 

 

Biofilm studies are assay dependent. Whether it’s a measure of biofilm formation based 

on cell counting alone, the ratio of cells to biomass, or dry biomass alone (Hufnagel et 

al., 2004; Kristich et al., 2004; Rosa et al., 2006; Creti et al., 2006). There is a clear need 

for a consensus regarding standardisation of growth conditions for enterococci prior to 

testing clinically relevant hypothesises. 

There exists a drive for insight on the workings of enterococcal biofilm, as the 

environment is conducive for exchange of information, especially when coupled to the 

knowledge of intercellular signalling pathways such as the fsr and Acyl-homoserine 

lactone systems (Parsek and Greenberg, 2000; McDougald et al., 2012). It may be that 

horizontal gene transfer within a biofilm is inefficient as compared to laboratory 

methodologies (Cook et al., 2011). However, any level of horizontal gene transfer that 

spreads antibiotic resistance is significant. Understanding these processes will unlock the 

opportunity for a calculated approach, dealing with increasingly resistant opportunistic 

infections through effective treatment and preventative strategies. 

 

It is clear that, in order to make relevant comparisons to clinical pathogenesis, laboratory 

biofilm assay assays need to reflect the conditions that enterococci are exposed to during 

infection. Such parameters would include nutrient content, substrate composition and 

mechanical/chemical stress (Van Wamel et al., 2007; Mohamed et al., 2007). Biofilm 
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assays that work on Gram negative, flagellated P. aeruginosa, which binds to most abiotic 

surfaces, are likely to be inefficient when used in conjunction with Gram positive, non-

flagellated E. faecalis which binds to biotic surfaces (O’Toole and Kolter, 1998; O’Toole 

et al., 2000). 
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5.2.AIM AND OBJECTIVES 

 

The primary aim of this chapter was to determine that E. faecalis and E. faecium of 

environmental origin can produce biofilm that supports the transfer of antibiotic resistant 

traits among themselves.   

 

Objectives: 

• Enterococci were assessed on their ability to form optimal biofilm when 

subjected to favourable growth conditions and substrate  

• Substrate composition was tested against the ability of enterococci to form 

biofilm 

• Components such as DNA and cell lysate were tested during enterococcal biofilm 

formation assays to assess any modulations biofilm formation 

• Stress conditions such as cellular starvation was applied to enterococcal biofilm 

formation studies. 

• Using customised florescence microscopy assays, antibiotic resistance genes 

were examined inside enterococcal biofilm 

• Visualisation of enterococcal conjugation inside biofilm  

 

 

 

 

 

5.3 MATERIALS AND METHODS 

 

All the materials and methods carried out in this chapter are detailed in chapter two. 
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5.4 RESULTS 

 

This chapter demonstrates that enterococcal biofilm can be a fickle substance, verified by 

the inconsistent results obtained with established biofilm assays (figure 5.4.2). 

Polystyrene materials inversely affect biofilm formation proficiencies of enterococci 

(figure 5.4.3 and 5.4.4). Traditional staining and optical density assays yielded variation 

and miscategorising of specific enterococcal biofilm forming capabilities (5.4.2, 5.4.3 and 

5.4.4). Utilising inert glass surfaces, substrate improvements and biofilm indices, accurate 

representation of enterococcal biofilm forming ability was achieved (5.4.4). Even with 

biofilm formation optimised, established assays heavily damaged macro-structures and 

often removed significant quantities of material (5.4.2). Therefore, a new assay was 

created to address issues associated with fragile biofilm (5.4.7 and 5.4.8). 

The gene frame biofilm apparatus (GBA) allowed for a less intrusive examination of 

enterococcal biofilm, revealing novel characteristics (5.4.9). Due to the in situ nature of 

the gene frame biofilm on microscope glass, initial set down and early biofilm formation 

of enterococcal biofilm was captured for the first time microscopically (5.4.10). The 

biofilm stain ConA was used to identify initial biofilm producing cells in early biofilm 

development and highlight the biofilm scaffold during biofilm maturation. ConA was 

tested as a visual aide to identify biofilm biomass amongst enterococci with success. 

Nutrient deprivation as well as antimicrobial stress was shown to have dramatic effects 

on the macrostructure, scaffold and cellular distribution of bacteria within enterococcal 

biofilm (5.4.11, 5.4.12 and 5.4.13). Fluorescent in situ hybridisation assays were created 

to identify enterococci inside biofilms (5.4.14). This assay was used to examine mobile 

genetic element bound genes such as vanA vancomycin resistance gene for the first time 

inside intact biofilm (5.4.15). Finally, the gene frame biofilm model was adapted to 

visualise and capture conjugation within biofilm amongst environmentally isolated 

enterococci for the first time (5.4.16-5.4.20). 
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5.4.1. Enterococcal growth characteristics in standard and nutrient depleted growth 

media 

The first steps in developing enterococcal biofilm were to determine the specific growth 

characteristics of each isolate that produced transconjugants in chapter 2 (MF06036, 

MF06035 MF04010, ST01109Rif and MW01105Rif). Isolates were grown in various media 

and their absorbance at 600nm was read in a spectrophotometer at the indicated time 

points (figure 5.4.1). Growth in Tryptone Soy Broth revealed that all isolates grew in a 

similar fashion both at 37oC and 20oC. At the higher temperature, log phase was achieved 

after the first hour and growth reached stationary phase at six hours, decline started at 48 

hours. At the lower temperature, the discrepancies between the growth rates of each 

isolate were more apparent. A slow steady log phase over the first 24 hours was apparent, 

and as such, stationary phase was much more stable over the time course of the 

experiment.  

Starvation growth conditions in spent TSB revealed an increase in average optical density 

amongst the isolates from 0.003 at 0 hours to 0.02 at 48 hours at 37oC indicating residual 

growth. The overall lack of growth for isolates in starvation was expected. Isolates grown 

at 37oC were all consistently similar whereas isolates grown at 20oC were more varied. 

By eight hours all isolates at the higher temperature were in stationary phase and the same 

occurred at 48 hours for isolates at the lower temperature.    

With the growth curves calculated for the conjugation partners, biofilm formation 

capabilities could be tested in systems that could be used for microscopic visualisation of 

conjugation. 
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Figure 5.4.1. Enterococcal growth characteristics in broth. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.1. Enterococcal growth curves represented as logarithmic graphs showing 

absorbance at 600nm for the indicated time periods, incubated statically up to 120 hours. 

Optical density correlates to relative turbidity of each well. Isolates were grown in both 

37oC (red) and 20oC (blue) in Tryptone Soy Broth (above) and spent Tryptone Broth 

(below). MF36 - MF06036, MF35 - MF06035, MF10 - MF04010, ST09Rif - ST01109Rif 

and MW05Rif – MW01105Rif. Error bars represent standard error of the mean. 

Experiment repeated three times. Using analysis of variance one-way, p values for 37oC 

versus 20oC were <0.0001 for both graphs. 
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5.4.2. Traditional (standard) biofilm formation assays applied to enterococci 

 

Once growth characteristics were established, biofilm formation capabilities of the 

isolates used in the previous conjugation assays (as well as a positive and negative biofilm 

control) were tested with various established assays.  

The crystal violet microplate assay was carried out for 48 hours at 37oC statically in 

polystyrene microplates. This technique applied to the isolates confirmed the biofilm 

strength of the negative and positive control isolates (MF01028 and MW02102) (figure 

5.4.2(a). The conjugation recipient MW01105Rif was established as a biofilm non-

producer, well below the margin of weak biofilm formation capability. This was in 

contrast with the biofilm producing result of MW01105Rif in figure 3.4.2. ST01109Rif and 

MF04010 presented as strong biofilm producers. Additionally, MF06035 and MF06036 

presented as weak biofilm producers similarly to what was shown in the initial biofilm 

formation assay (figure 3.4.2).  

The tube formation assay was carried out for 48 hours grown at 37oC for isolates 

MW01105Rif, ST01109Rif, MF04010, MF06035, and MF06036 (figure 5.4.2(b)). Tubes 

1, 3 and 4 are indistinguishable from each other, tube 2 is marginally more stained with 

crystal violet and tube 5 displays the greatest crystal violet staining. These results display 

no correlation to what was observed in the crystal violet assay. MW01105Rif and 

MF04010 appear with the same staining intensity in the tube formation assay but are 

described as non-biofilm producing and strong biofilm producers respectively in the 

microplate assay.  

Microscopic visualisation techniques were employed on MF04010, the strongest biofilm 

producer determined with the crystal violet absorbance assay. The air liquid interface 

assay investigated the growth of enterococci on a glass coverslip at an interface of two 

media for 48 hours, and incubated statically at 37oC (figure 5.4.2(c)). Whilst the isolates 

grew on the glass coverslip interface, the formation characteristics were weak, (visible 
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removal of biofilm during washing steps) and when imaging coverslips, a degree of 

variation was observed between replicates. Variations include identifiable changes to 

biomass on the coverslip between replicates (observed by eye). Biofilms were imaged 

both dry and ‘wet’ in mounting medium. Dry biofilms displayed small quantities micro-

aggregates typical of early biofilm formation in the first few hours. Figure 5.4.2(d): little 

biofilm was detected using this assay. The submerged coverslip in a microplate incubated 

for 48 hours statically at 37oC produced the clearest results, when stained with crystal 

violet and imaged using phase contrast. The clear boundary between the internal and 

external biofilm structure is apparent with the majority of micro colonies contained within 

the biofilm boundary. Cells appear to concentrate at the leading edge of the biofilm. This 

assay suffered the same variation in depicting biofilm biomass between replicates (data 

not shown) as the coverslip assay.  

It was clear that the enterococci were not adhering sufficiently to the substrates employed 

with the standardised assays for biofilm formation. Therefore, steps were taken to 

improve adhesion and subsequent biofilm formation. 
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Figure 5.4.2. Traditional biofilm assays applied to enterococci yield inconsistent biofilm.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4.2. Data depicting variations in enterococcal biofilm formation based on the assay 

applied using TSB (1% glucose). (a) A crystal violet microplate assay carried out for 48 hours at 

37oC statically in polystyrene microplates with a known non-biofilm producing (MF01028) and 

strong producing (MW02102) control. (b) The tube formation assay was carried out for 48 hours 

at 37oC and stained with crystal violet (1% for 15 minutes) for isolates MW01105Rif (1), 

ST01109Rif (2), MF04010 (3), MF06035 (4), MF06036 (5). (c) A 40x magnification micrograph 

of the air liquid interface assay applied to MF04010 on a glass coverslip at an interface of two 

mediums for 48 hours, incubated statically at 37oC. (d) A 40x magnification micrograph of the 

air liquid interface biofilm assay carried out on MF04010 stained with crystal violet (1% 15 

minutes). (e) A 40x magnification micrograph of the submerged coverslip assay in a six-well 

microplate incubated with MF04010 for 48 hours statically at 37oC stained with crystal violet 

(1% 15 minutes) and imaged using phase contrast under wet conditions. Scale bar represents 50 

microns across all three micrographs. MF04010 significantly different from other isolates 

(p<0.0001). Experiments have eight biological repeats, independently repeated three times. 
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5.4.3. Improvement of enterococcal biofilm formation on standard biofilm 

apparatuses using substrate modifications 

The issues with established biofilm retention on substrate (especially glass) were assessed 

with the addition of collagen and gelatin surface coating. MW01105Rif, MF04010 and 

MF06036 were selected as representatives of strong, weak and non-biofilm producing 

isolates. They were grown normally on collagen and gelatin coated microplates for 24 

hours, stained with safranin, examined visually and with absorbance readings (figure 

5.4.3(a)). Through examining the microplates, MW01105Rif had comparable staining 

intensity between no coating and collagen coating, with reduced staining intensity for 

gelatin coating. MF04010 had strong staining across all three conditions, with a large 

central biomass on the uncoated well. An additional, large biomass was observed at the 

edge of each well. MF06036 had weak staining across all three conditions with no coating 

appearing to have stronger staining. Isolates displayed a degree of variation between 

replicates but were consistently distinguishable.  

Absorbance readings of microplate assays (figure 5.4.3(b)) revealed that MW01105Rif 

grown on a microplate with no coating produced strong biofilm, whilst MF04010 and 

MF06036 produced strong and weak biofilm respectively. This data displays 

inconsistencies for MW01105Rif from figure 5.4.2, where the isolate was non-biofilm 

producing. Additionally, MW01105Rif and MF04010 displayed marked reductions (p 

<0.0001) in biofilm formation ability on coated substrate. 

 

There were clear issues with the biofilm formation capabilities of the tested enterococcal 

isolates. Therefore, examination of biofilm production as a function of different substrate 

compositions was carried out (figure 5.4.4), normalising inter-isolate growth kinetics by 

using the biofilm index. This would allow comparison of biofilm production factoring in 

the growth rate of each isolate. This approach would provide a more accurate result of 
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biofilm formation capability over total biomass staining. Enterococcal isolates were 

incubated normally for 24 hours in polystyrene and glass bottomed microplate plates with 

no coating or coated with collagen or gelatin. The total cell count absorbance was 

measured at 600nm, wells were washed and stained with safranin and measured at 450nm. 

Biofilm index values were created by dividing the OD450/600 absorbance readings. 

Biofilm strength was measured as <0.1 weak, 0.1-1 moderate and >1 strong (Leuck et al., 

2014).  

 

When examining the differences between biofilm formations on differing material 

substrates, stronger biofilms were produced on polystyrene for all isolates (figure 

5.4.4(a)), excluding MF06036. Paired T-testing between glass and polystyrene indicated 

significant differences (p 0.0029). The effects of substrate material on biofilm were most 

significant with isolates MW01105Rif and MF04010 with a 75% and 65% difference 

observed respectively. Standard deviation was 58% greater among the biofilms developed 

on polystyrene versus glass substrate biofilms. Biofilms were also grown on glass coated 

with either collagen or gelatin and compared to no coating controls (figure 5.4.4(b)). 

MF01028 had significant increases in biofilm formation when grown with substrate 

coatings of both gelatin and collagen (p <0.0001). It exhibited almost a doubling of 

biofilm formation projecting its abilities into the moderate biofilm formation category. 

MW02102 also had significant increases in biofilm formation, with substrate coating. 

Yielding over a threefold increase in biofilm formation ability on both gelatin and 

collagen (p <0.0001) projecting it well above the strong category of biofilm formation. 

MW01105Rif had a significant (p <0.0001) increase in biofilm formation with gelatin 

coating projecting its formation capabilities into the strong biofilm formation category 

with a tripling effect.  



197 
 
The only remaining significant change in biofilm formation occurred with MF04010 

gelatin coating, whereby a significant (p 0.0004) 23% increase in biofilm was determined. 

ST01109Rif MF06035 and MF06036 saw no significant change in biofilm formation 

ability in the presence of different coatings.  However, ST01109Rif was the only isolate 

whereby introduction of coatings caused a decrease in biofilm production (statistically 

insignificant).  

 

The data collected here identified that substrate composition had a direct effect to the 

ability of the tested enterococci to form biofilm. With generalised improvements from the 

inclusion of collagen or gelatin substrate, the effects of total cell lysate and eDNA (known 

factors in biofilm formation) were tested next. 
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Figure 5.4.3. Microplate surface coating to improve Enterococcus cellular adhesion and 

subsequent biofilm formation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.3. Addition of collagen and gelatin to microplates to improve biofilm formation. 

Standard biofilms were grown with a representative non-biofilm producing (MW01105Rif), weak-

producing (MF06036) and strong-producing (MF04010) Enterococcus on coated wells of a 

microplate, incubated at 37oC statically under aerobic conditions. Wells were stained with 

safranin (0.1% 15 minutes) and examined visually (a) and with absorbance readings at an optical 

density of 450nm (b). Non-biofilm producing isolates had optical density readouts below 0.17, 

weak biofilm producers were between 0.17 and 0.23 and strong biofilm producers had optical 

densities higher than 0.23. Scale bars represent standard error of the mean. No coating was 

significantly different for MW01105Rif (p <0.0001) and MF04010 (p 0.0001) compared to 

collagen and gelatin. Experiments have eight biological repeats with three independent repeats.  
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Figure 5.4.4. Substrate composition directly affects enterococcal biofilm formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.4. Effects of substrate composition on biofilm formation. Previously known 

non-biofilm producing (MF01028) and strong producing biofilm (MW02102) 

enterococcal isolates were incubated with the five conjugation partners in TSB (1% 

glucose) at 37oC for 24 hours in (a) polystyrene and glass bottomed microplate plates as 

well as (b) no coating, collagen (10µg/cm2 from 0.1% stock) or gelatin (10µl/cm2 from 

2% w/v stock). After incubation, absorbance was measured at 600nm, wells were washed 

and stained with safranin (0.1% 15 minutes) and measured at 450nm. Biofilm index 

values were created by dividing the OD 450/OD600. Biofilm strength was measured as 

<0.1 weak, 0.1-1 moderate and >1 strong. Error bars represent standard error of the mean. 

Polystyrene was significantly higher compared to glass across all isolates (p 0.04). Using 

two-way analysis of variance, no coating was significantly lower (p 0.001) compared to 

collagen and gelatin. Experiments were carried out with eight biological controls and four 

independat repeats 
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5.4.4. Assessing the effects of cell lysate and eDNA on the ability of enterococci to 

form biofilm 

Extracellular DNA makes up part of the enterococcal biofilm matrix and is present in the 

initial set down of cells during biofilm formation. Additionally, fratricide is common in 

the biofilm environment. Therefore, total cell lysate (figure 5.4.5) and eDNA (figure 

5.4.6) were added to enterococcal biofilms to assess any improvements in formation that 

would occur.  

MW01105Rif, MF06036 and T1 were selected as they were conjugation partners and the 

subsequent transconjugant from successful transfer of genetic material from chapter 4. 

From figure 5.4.5, MW01105Rif was neither significantly affected by the lysate of the 

other isolates or had any affect with its lysate on the other isolates including self-testing. 

The lysate of MF06036 had a significant effect on both itself (p=0.0003) and T1 (p 

0.0002) with increases in biofilm formation by 2.6-fold and 0.5-fold, respectively. The 

lysate from T1 had the most profound effect observed with almost a tripling of biofilm 

formation ability when added to MF06036 (p <0.0001). When its own lysate was added 

back it produced a significant increase (0.63 fold) in biofilm formation ability (p 

<0.0001). 

When testing the effects of extracellular DNA added to biofilm media (figure 5.4.6), 

MF01028 had no change in its biofilm forming ability. MW02102 had significant 

decreases in its biofilm formation ability at all concentrations of DNA (p values of 0.0009 

for 0.1% DNA, <0.0001 for 1% DNA and 0.0004 for 10% DNA, respectively).  

MW01105Rif had insignificant increases in biofilm formation proficiency. ST01109Rif had 

significant increases in biofilm proficiency by 3.2-fold at 0.1% (p 0.00019) and 1.8- fold 

at 10% eDNA (p <0.0001) but not for 1% eDNA. MF04010 gained the most proficiency 

in biofilm formation anility with the addition of 0.1% eDNA (p 0.002) producing a 2.3-

fold increase and most significantly a 3.8-fold increase with 1% eDNA (p <0.0001) but 
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saw a slight decrease when 10% eDNA was added. MF06035 and MF06036 saw some 

insignificant fluctuation in biofilm formation ability. 

The improvements offered by total cell lysate and eDNA were too inconsistent for a 

general adoption to the laboratory methodology for biofilm formation for the conjugation 

partner enterococci. Additionally, adoption of these parameters along with substrate 

improvements would make the methodology too complex for rapid, repeatable and 

reliable biofilm formation assays. 
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Figure 5.4.5. Modulation of the enterococcal biofilm: Effect of cell lysate on formation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.5. A graph showing the effect of total cell lysate from conjugal partners 

MW01105Rif, MF06036 and their T1 on their subsequent biofilms. A one millilitre 16-

hour overnight incubation of enterococci were lysed in SDS (1% final concentration for 

two minutes), washed (PBS) and centrifuged at max RCF for five minutes at room 

temperature and had the total cell content added back to fresh isolates at the start of a 

biofilm formation assay to assess the effect, total cell lysate would have on biofilm 

growth. Error bars represent standard error of the mean. MF06036 biofilm with MF06036 

lysate was significantly stronger compared to control (p 0.0003). MF06036 biofilm with 

T1 lysate was significantly stronger compared to control (p < 0.0001). T1 biofilm with 

MF06036 lysate was significantly stronger compared to control (p 0.0002). T1 biofilm 

with T1 lysate was significantly stronger compared to control (p < 0.0001). Data 

representative of eight biological repeats, independently repeated three times. 
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Figure 5.4.6. Modulation of the enterococcal biofilm: Effect of eDNA on formation. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.6. A graph showing the effect of eDNA on the subsequent biofilms of 

enterococci. Represented by a non-biofilm producing and a strong producing biofilm 

formation isolates and the conjugation partners. Extracted enterococcal DNA (stock 

concentration 20µg/ml) was applied to fresh enterococcal biofilm formation assays as a 

0%, 0.1%, 1% or 10% by volume DNA diluted in TSB (1% glucose) media for 24 hours 

incubated statically at 37oC. Error bars represent standard error of the mean. MW02102 - 

0.1% eDNA (p 0.0009), 1% eDNA (p <0.0001) and 10% DNA (p 0.0004). ST01109Rif - 

0.1% eDNA (p 0.00019) and 10% eDNA (p <0.0001). MF04010 - 0.1% eDNA (p 0.002) 

1% eDNA (p <0.0001). Data representative of eight biological repeats, independently 

repeated three times. 
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With the biofilm formation inconsistencies rectified and the true nature of biofilm 

produced by environmental isolates of enterococci established, it was imperative to 

address the issue of unwanted biofilm destruction during microscopic visualisation 

processing discovered in figure 5.4.2. Therefore, the gene frame biofilm apparatus (GBA) 

was created (figure 5.4.7). 
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Figure 5.4.7. The gene frame biofilm apparatus (GBA): A novel biofilm development tool for microscopic visualisation of fragile enterococcal biofilm. 

1. A double side adhesive gene 

frame (blue) attached to glass 

slide coated with gelatin 

2. Liquid bacteria suspension 

(red) added to microwell 

created by gene frame (25μl) 

3. Flexible plastic coverslip 

added to create a sterile 

biofilm microcosm  

5. Flexible plastic coverslip 

removed to allow for 

visualisation staining 

 

4. Incubated statically for 24 

hours at 37oC 

 

6. Gene frame removed and 

biofilm mounted for 

microscopic visualisation 

 

Oil 

 100x/1.25 
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5.4.5. The gene frame biofilm apparatus (GBA): A novel biofilm development tool 

for microscopic visualisation of fragile enterococcal biofilm. 

The gene frame biofilm apparatus (GBA) allowed for in situ microscopic analysis of 

enterococcal biofilm without intrusive processing. Due to this novel attribute of the 

model, comparisons of the traditional visualisation methods and the gene frame method 

were made. From figure 5.4.8, the coverslip method (i) was employed against the gene 

frame (ii). All biofilms were grown for 24 hours under standard growth conditions. The 

coverslip method retained a small quantity of the biofilm pre-processing, evident by the 

lack of extracellular content within the biofilm boundary (dashed line). The gene frame 

method produced biofilm with high density that retained the vast majority of extracellular 

content within the biofilm boundary.  

Figure 5.4.8(b(i)) highlights free floating, detached biofilm masses that occur when 

processed for traditional microscopic visualisation techniques; whereas in figure 

5.4.8(b(ii)) the gene frame method generated minimal biofilm surface detachment. There 

were zero instances of free floating biofilm mass in the gene frame experiments.  

Figure (5.4.8 (c)) highlights the differences in cell retention between traditional (i) and 

gene frame (ii) methods. The traditional methods rend large quantities of cells into the 

planktonic phase; whereas the gene frame sufficiently minimised this phenomenon, but 

not without total elimination. 
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As the gene frame preserved the majority of enterococcal cellular and extracellular 

content, novel macrostructures were identified as well as unique cellular compositions 

(figure 5.4.9).  

Both figures 5.4.9((a) and (b)) highlight the interconnected branched structure of 

MF04010 biofilm. This structure was not observed in every isolate. 

The high cellular density seen in figure 5.4.9(c) was visualised throughout the entire 

macrostructure of all observed biofilms and cellular morphology was coccus, compared 

to the chain-form and diplococcus morphology observed in figure 5.4.9(d). Biofilm 

visualised in early development contained an abundance of diplococci. All cells in biofilm 

stain with conA, however what was observed in figure 5.4.9(c) was heterogeneous 

overstaining on individuals that were interspaced throughout the internal structure of the 

biofilm. This phenomenon was ubiquitous for all mature biofilms observed. Initial 

attachment to the substrate can be observed in figure 5.4.9(d), the long chain of 17 clones 

reveals the nature of production of EPS in abundance for biofilm formation. Cells in the 

centre of the chain are the first to develop strong localisation of conA staining. The 

surrounding milieu of younger ‘set down’ diplococcal cells demonstrated no such staining 

localisation.  

 

Analysis of cellular composition in early biofilm formation allowed for the screening of 

biofilm ‘development’ amongst the enterococcal isolates using the GBA to capture the 

formation in situ figure 5.4.10.  

Figure 5.4.10(i) was captured two hours after the biofilm growth experiment started. The 

cells on the upper left staining red with conA has the appearance of an initial set down 

diplococcus which has recruited a single Enterococcus. On the right, there is a consortium 

of pairs of diplococci, demonstrating early congealment and the formation of a micro-
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colony of biofilm. Instances of these were noted through the surface area of the gene 

frame.  

Figure 5.4.10(ii) was captured four hours after biofilm growth had started. The centre 

chain of diplococcus clones was again noted in similar fashion to what was observed in 

figure 5.4.9. This is the first instance of cellular variation in conA staining with strong 

staining on the transverse of the polar regions of the majority of cells.  

Figure 5.4.10(iii) was captured at the six-hour time point. The distinctive feature of this 

micrograph are the moderately sized aggregates of cells. The upper aggregate displays 

recruitment of several diplococcus chains into a consortium. This micrograph was a cross 

section through the two aggregates. The lower aggregate is much larger than the upper 

aggregate as it projects into the z axis to a much greater extent than the upper aggregate. 

The lower aggregate was distinctly hollow and devoid of individuals, replaced with EPS, 

stained red with conA. The upper aggregate was a stack of enterococci two cells thick 

and the conA staining is not highlighted in this micrograph. 

Figure 5.4.10(iv) was captured at the eight-hour time point. At this time, large quantities 

of extracellular material were identified by the conA staining. This micrograph highlights 

five small colonising groups of enterococci that accumulated together to form a micro-

community of biofilm state cells.  

Figure 5.4.10(v) was captured 12 hours after commencement of the experiment. At this 

stage, there were extensive communities of biofilm states with up to 50 individual 

members, whereby the surrounding extracellular content was noticeably larger than the 

cell population. Branching structures can be seen stained with conA at the lower end of 

the micro-community. ConA staining is heterogeneous at this stage with some cell pole 

staining observed.  

Figure 5.4.10(vi) was taken at the end of the 24-hour experiment. The majority of the 

surface of the gene frame was coated with biofilm communities varying in size with 
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macro-colonies containing hundreds of individuals. This micrograph taken at 40x 

magnification shows the large consortium with DNA overstaining at the upper right of 

the image. The general appearance of the communities indicates that around 50% were 

interconnected, whilst the remainder were isolated in small communities.  

 

As the GBA was a successful tool to assay enterococcal biofilm formation under 

laboratory conditions, assays were carried out to compare standard biofilm versus biofilm 

formation under stress. 
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Figure 5.4.8. Comparing ‘traditional’ biofilm assays against the gene frame biofilm 

apparatus (GBA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.8. Micrographs depicting ‘traditional’ biofilm assays versus the gene frame 

biofilm apparatus (GBA) applied to MF04010. All biofilms were grown for 24 hours at 

37oC under static growth conditions with PBS (1% glucose), processed and mounted for 

microscopic visualisation. (a)  40x micrographs of the coverslip method (i) employed 

against the gene frame (ii). (b) 40x phase contrast micrographs. (b (i)) highlighting free 

floating, detached biofilm masses that occurred when processed for microscopic 

visualisation. (b (ii)) the gene frame method generated minimal biofilm surface 

detachment. (c) 100x micrographs imaged with fluorescence and Hoechst DNA staining. 

The traditional method (i) dislodged large quantities of cells into the planktonic phase 

through processing. The gene frame (ii) minimised this phenomenon. 
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Figure 5.4.9. Identification of macro-scaffolding and cellular distribution of enterococcal 

biofilm using the gene frame biofilm apparatus (GBA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.9. Micrographs depicting novel macrostructures from enterococcal biofilm 

growth in the GBA imaged with fluorescence microscopy. Biofilms were grown for 24 

hours at 37oC statically. (a) A 20x micrograph of a 24-hour biofilm produced by MF04010 

imaged under dark field lighting. (b) A 10x composite micrograph of another 24-hour 

biofilm produced by MF04010 using dark field and the G2-A filter. The G2-A filter 

captured the red fluorescence staining of conA bound to the EPS produced by MF04010. 

Both (a) and (b) highlight the interconnected branched structure of MF04010 biofilm. 

This structure was not observed in every isolate. (c-d) high powered 100x fluorescent 

micrographs of MF06036 24-hour (c) and two-hour (d) biofilm stained with SYTO9 

(green) and conA (red). The high cellular density seen in (c) was visualised throughout 

the entire macrostructure of all observed biofilms.  
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Figure 5.4.10. Enterococcal biofilm development mediated by the gene frame biofilm 

apparatus (GBA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.10. Region of interest Micrographs depicting the biofilm development of 

MF04010 during biofilm growth in the GBA. Biofilms were stained with conA (red) and 

Hoechst (blue) and imaged with florescence microscopy. (i) A 100x micrograph of a 

two-hour biofilm growth. (ii) A 100x micrograph of a four-hour biofilm growth. (iii) A 

100x micrograph of a six-hour biofilm growth. (iv) A 100x micrograph of an eight-hour 

biofilm growth. (v) A 100x micrograph of a 12-hour biofilm growth. (vi) A 40x 

micrograph of a 24-hour biofilm growth. Scale bar for 100x micrographs (i-v) represents 

10 microns. Scale bar for the 40x micrograph (vi) represents 50 microns. 
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5.4.6. The effects of nutrient deprivation on enterococcal biofilm formation 

As enterococcal biofilms are postulated to exist in the natural environment, and nutrient 

deprivation is a commonality of extra enteric life of a bacterium, biofilm formation 

experiments were tested with starved enterococci.  

The strong biofilm producer MW02102 was grown for 24 hours in gene frames with 

nutrients (figure 5.4.11(i)) or incubated at stationary growth phase under nutrient 

deprivation (figure 5.4.11(ii)), stained and imaged with Hoechst and conA. Under both 

conditions biofilm formation was clearly evident. Figure 5.4.11(a) highlights the clear 

biofilm community from the planktonic milieu. The white dashed line indicates the 

boundary of the biofilm. This was the most profound incidence of a defined biofilm 

boundary under liquid phase microscopy (free floating planktonic cells can be seen to the 

left of the boundary. This isolate produced long chains containing tens of individuals 

(5.4.11(a(i)) that formed interconnected biofilm (5.4.11(a(ii)). Under nutrient deprivation 

the observed cellular content of biofilm was composed primarily of diplococci. However, 

there was still evidence of aggregation of micro biofilm communities containing 10 to 20 

individuals. Cells concentrated at the upper edge of the biofilm environment built 

upwards in the z-axis, creating a gradient whose boundary is indicated with the yellow 

dashed line. Figure 5.4.11(c) was a 24-hour biofilm created with nutrient deprivation on 

isolate MF06035. During set down and formation of biofilm the bacteria created channels 

embedded into the substrate, from which the majority of biofilm micro-communities are 

situated.  

It was clear that nutrient deprivation altered biofilm formation and did not eliminate the 

functional characteristics, only microscopic morphology. As in figure 5.4.11, nutrient 

deprivation still permitted biofilm formation. Therefore, investigations into the effects of 

nutrient deprivation were carried out on MF01028 (figure 5.4.12): an isolate previously 

characterised as a biofilm non-producer and confirmed in this study as a weak biofilm 
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producer (biofilm index on uncoated glass). MF01028 was grown under standard biofilm 

formation conditions for 24 hours (5.4.12(a)) and under nutrient deprivation conditions 

(5.4.12(b)) stained and imaged with Hoechst and conA. From figure (5.4.12(a (ii))) there 

is no appreciable conA staining. Cells do aggregate in the typical way observed up to this 

point (5.4.12(a(i))). Figure 5.4.12(b(ii)) contrasts with 5.4.12(a(ii)) highlighting strong 

conA staining typical of good microscopic biofilm adhesion and production of 

extracellular components. Cells form smaller aggregates and the composition of single 

diplococcal cells is significantly increased, as is also the case in figure 5.4.11.  

MF01028 biofilm images were processed in Image J and pixel intensity was measured 

and compared (figure 5.4.12(c)) to MW02102 the strong biofilm producer. There was no 

significant difference between conA staining in standard or starved growth conditions for 

MW02102. This data corroborates with what was discovered in figure 5.4.11.  There was 

a significant difference (p <0.0001) of conA pixel intensity between standard and starved 

biofilm growth. Pixel intensity for conA staining with nutrient deprivation for MF01028 

a classified non- producing biofilm isolate was the same as MW02102, a classified strong 

biofilm producer. 
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Figure 5.4.11. Effects of nutrient deprivation on biofilm formation characteristics and 

conA staining in proficient biofilm producing enterococci. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.11. Micrographs depicting the effects of standard nutrient supplementation (a) 

and nutrient deprivation (b and c) on biofilm formation in biofilm producing enterococci 

in the GBA. Biofilms with standard nutrient supplementation (TSB (1% glucose) were 

grown for 24 hours at 37oC statically. Starved biofilms were grown with nutrient depleted 

TSB (1% glucose) and a stationary phase culture of enterococci for 24 hours at 37oC 

statically. (a) 40x micrographs of standard biofilm growth using MW02102, stained with 

Hoechst (blue (a)) and conA (red (b)). (b) 40x micrographs of starved biofilm formation 

using MW02102, stained with Hoechst (blue (a)) and conA (red (b)). (c) 40x micrographs 

of starved biofilm formation using isolate MF06035. Scale bar represents 30 microns. 

The white dashed lines indicate the boundary of biofilms. The yellow dashed line 

represents a change in biofilm height in the z-axis. 
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b(ii) 

c(ii) 
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Figure 5.4.12. Effects of nutrient deprivation on biofilm formation characteristics and 

conA staining in non-biofilm producing enterococci.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.12 Micrographs and graph depicting the effects of standard nutrient supplementation 

(a) and nutrient deprivation (b) on biofilm formation in non-biofilm producing biofilm isolate 

MF01028 in the GBA.  Biofilms with standard nutrient supplementation (TSB (1% glucose) were 

grown for 24 hours at 37oC statically. Starved biofilms were grown with nutrient depleted TSB 

(1% glucose) and a stationary phase culture of enterococci for 24 hours at 37oC statically. (a) 40x 

micrographs of MF01028 subjected to the standard biofilm growth conditions, stained with 

Hoechst (blue (a)) and conA (red (b)). (b) 40x micrographs of starved biofilm formation using 

MW02102, stained with Hoechst (blue (a)) and conA (red (b)). Scale bar represents 30 microns. 

(c) A graph comparing conA pixel intensity of both standard and starved biofilm EPS production 

between the strong biofilm producer MW02102 and the non-producer MW01028. Significance 

(**) equates to a p value of 0.0001 Ten regions from each gene frame were imaged for statistics, 

independently repeated three times. 

a(i)   

a(ii) 

 b(i)  b(ii)

 c 
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5.4.7. The effects of antibiotic stress on enterococcal biofilm formation and cellular 

characteristics 

As with the effects of starvation, there was interest in seeing if antibiotic selective 

pressure would affect any characteristics of enterococcal biofilm formation at the 

microscopic level. Therefore, experiments were carried out involving growing biofilm 

with MF06036 subjected to antimicrobial stress and compared to starvation and standard 

growth conditions (figure 5.4.13). The most immediate observed effect is the spatial 

characterisation of MF06036 as it laid down biofilm.  

Under standard (5.4.13(a)) nutrient growth conditions bacteria formed biofilm with a high 

cellular density, and the cells were primarily arranged as diplococci. Cellular granularity 

in phase contrast is low, with cells appearing as black spheres. Apparent changes are due 

to cells not being in the same z-axis. Under starvation (5.4.13(b)), bacteria form biofilm 

communities with low cell density and have a similar diplococcus morphology. 

Granularity remains low during cellular starvation. Adding sub inhibitory concentrations 

of vancomycin (10µg/ml) to pre-established biofilm (5.4.13(c)) had a marked effect on 

cell density, where cells are almost completely touching. Cells still retained a diplococcus 

morphology; however cellular granularity slightly increased. When subjecting a biofilm 

to sub inhibitory concentrations of vancomycin (10µg/ml) throughout the growth phase 

as well as post growth (5.4.13(d)) there were dramatic changes compared to post growth 

addition of vancomycin and even more so from standard growth conditions. Cells were 

visibly larger, had taken on chain form variations. These cells had apparent ‘grains’ of 

phase contrast compared to standard nutrient and even nutrient deprivation. Enterococci 

exist in high cell density, but are much less organised compared to the other conditions. 

Cellular size changes were quantified in image J (5.4.13(e)). Nutrient biofilm average cell 

size was 0.51µm, starved biofilm was 0.52µm, and vancomycin post-biofilm formation 

stress was 0.64µm, which was significantly larger (P<0.0001). Vancomycin stress 
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conditions throughout produced an average cell size of 0.92µm, significantly increases 

cell length along the transverse of the cell (p <0.0001) compared to the other three growth 

conditions. 
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Figure 5.4.13. Selective pressure and nutrient deprivation affects spatial density, chain 

forming characteristics, granularity, and size of MF06036 early biofilm cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.13. Phase contrast micrographs and a graph depicting the effects of starvation and vancomycin 

stress on MF06036’s cellular and biofilm morphology. Experiments were carried out at 37oC incubated 

statically for 24 hours. (a) A 100x micrograph depicting biofilm growth using standard TSB (1% glucose). 

(b) A 100x micrograph depicting biofilm growth using nutrient depleted TSB (1% glucose) with a 

stationary phase culture of MF06036. (c) A 100x micrograph depicting the effects of sub inhibitory 

concentrations of vancomycin (10µg/ml) to pre-established biofilm growth with TSB (1% glucose). (d) A 

100x micrograph depicting the effects of sub inhibitory concentrations of vancomycin (10µg/ml) 

throughout the biofilm growth phase as well as post growth. Scale bar represents ten microns. (e) A graph 

quantifying the change in cellular size observed under the stress of starvation and antibiotic selective 

pressure.  Cellular size changes were quantified in Image J by measuring the diameter of the transverse of 

cells. Significance (***) equates to a p value of 0.0001. Ten regions from each gene frame were imaged for 

statistics, independently repeated three times. 
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5.4.8. Utilisation of fluorescent in situ hybridisation to visualise enterococci inside 

biofilm and minimise artefacts with standard fluorescence techniques 

At this stage, there were issues with microscopic visualization that prevented visualisation 

of enterococcal conjugation inside biofilm. Issues with photo-conversion from Hoechst 

nuclear stains (data not shown) across the G2-A filter on the microscope, and the lack of 

specificity of Hoechst warranted a staining protocol that could image enterococci 

specifically. The solution to these problems was the development of an in-house FISH 

assay for rapid identification of enterococci in the biofilm state. Figure 5.4.14(a(i)) is E. 

faecium FISH probe imaging of ST01109RIf with Alexa fluor 594 probes targeted to 23s 

rRNA in a standard 24-hour biofilm. Figure 5.4.14 (a(ii)) is an E. faecalis Alexa fluor 594 

probe targeted to 16s rRNA on an MF06036 standard 24-hour biofilm. The two 

Enterococcus probes effectively stained E. faecalis and E. faecium where individual cells 

were clearly visible within biofilm. Figure 5.4.14 (b) is an EUB FISH probe labelled with 

fluorescein that targets the majority of non-marine bacteria, shown here binding to 

MF06036 in a standard 24-hour biofilm. Figure 5.4.14 (c) is a collection of negative 

binding controls to highlight any natural autofluorescence in the enterococcal isolates.  

Figure 5.4.14(c(i)) is a phase contrast image of MF06036 biofilm cells. Figure 

5.4.14(c(ii)) is an overlay image of the same region using the G2-A red filter showing no 

autofluorescence with FISH probes. Figure 5.4.14(c(iii)) is an overlay image of the same 

region using the B2-A green filter showing no autofluorescence with FISH probes. This 

FISH technique eliminated the photo-conversion caused by Hoechst and allowed methods 

of investigating the presence of specific isolates of enterococci and even some mobile 

genes (vanA) as in the next section below.  
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Figure 5.4.14. Creating a fluorescent in situ hybridisation (FISH) assay for rapid 

examination of enterococci in biofilm states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.14 Micrographs of a fluorescent in situ hybridisation (FISH) assay developed to analyse 

enterococcal cellular presence in biofilm states. (a(i)) A 100x micrograph depicting E. faecium FISH probe 

imaging of E. faecium ST01109RIf with Alexa fluor 594 (red) probe targeted to 23s rRNA in a standard 24-

hour biofilm. (a(ii)) A 100x micrograph depicting E. faecalis FISH probe imaging of E. faecalis MF06036 

with Alexa fluor 594 (red) probe targeted to 16s rRNA in a standard 24-hour biofilm. (b) A 100x 

micrograph of the EUB FISH probe labelled with fluorescein (green) that targets the majority of non-

marine bacteria, shown here binding to MF06036 in a standard 24-hour biofilm. (c) A collection of 100x 

magnification, negative binding controls to highlight any natural autofluorescence in the enterococcal 

isolates.  (c(i)) A phase contrast image of MF06036 biofilm cells. (c(ii)) An overlay image of the same 

region using the G2-A red filter showing no autofluorescence with FISH probes. (c(iii)) An overlay image 

of the same region using the B2-A green filter showing no autofluorescence with FISH probes. Scale bar 

represents 10 microns. Arrows identify bacteria.  
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5.4.9. Modification of fluorescent in situ hybridisation to target the mobile vanA 

vancomycin resistance gene conjugally transferred in the creation of T1 

The standard FISH assay described in 2.23.1 was modified to target several binding sites 

across the vanA vancomycin gene, as described in 2.23.3. This allowed for the 

identification vanA inside cells inside MF06036 biofilm. Figure 5.4.15 (a) is a negative 

biological control using MF04010 for fluorescein probes targeted to the vanA 

vancomycin resistance gene. Figure 5.4.15(a(i)) uses phase contrast to highlight 

MF04010 biofilm, whereby the leading edge is clearly visible. Towards the tail end of the 

central mass occasional diplococci and short chains of no more than four cells are visible. 

(5.4.15(a(ii))) The green fluorescence channel showing no localised intercellular staining, 

with minimal green autofluorescence displayed (high saturation due to the gain intensity 

utilised to capture high intensity images on the camera).  

Figure 5.4.15(b) depicts the addition of sub inhibitory (10µg/ml) vancomycin to 

MF06036 biofilm milieu for 24 hours after initial biofilm formation. Figure 5.4.15(b(i)) 

is a phase contrast image of treated biofilm: of note is the large array of interconnected 

biofilm structures and apparent cellular stacking in the z-axis. Variation in light intensity 

highlights extracellular components. Figure 5.4.15(b(ii)) is a green channel overlay of the 

same region as in figure 5.4.15(b(i)): there is an increased diffuse signal when vanA 

probes are added to MF06036 biofilm. Additionally, there are instances of heterogeneous 

single cell fluorescence not observed in the control.  

Figure 5.4.15(c) depicts the addition of sub inhibitory (10µg/ml) vancomycin to 

MF06036 during biofilm formation (24 hours) and another post biofilm formation 

addition for 24 hours. Figure 5.4.15(c(i)) is a phase contrast image of treated biofilm. Cell 

size variations are apparent with phase contrast imagery, with the presence of apparent 

fratricidal cells. Figure 5.4.15(c(ii) is a green channel overlay of the same region is in 

figure 5.4.15(c(i)).  There is total cellular staining in both single and diplococcal cells. 
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Cells that had higher granularity with phase contrast emit a stronger FISH signal. 

Intercellular staining varies from heterogeneous intercellular staining to apparent 

membranous staining. There were several instances of all cells within a chain-form having 

staining; and others where only the lead cell presents with positive staining.  
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Figure 5.4.15. Utilisation of FISH to detect the vancomycin resistance gene in E. faecalis 

using the gene frame biofilm apparatus (GBA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.15. Micrographs of FISH detection of plasmid bound vanA fluorescein (green) resistance genes 

in enterococcal biofilm. (a) 100x micrograph overlays of a negative biological control using MF04010 and 

fluorescein probes targeted to the vanA vancomycin resistance gene. (a(i)) Phase contrast imaging to 

highlight MF04010, 48-hour biofilm cells grown with TSB (1% glucose) at 37oC incubated statically. 

Media was replaced at the 24-hour time point. (a(ii)) Green fluorescent imaging of the same region. (b) 

100x micrograph overlays of the addition of sub inhibitory (10µg/ml) vancomycin for 34 hours, to the 

vanA positive MF06036 in a 24-hour pre-established biofilm grown with TSB (1% glucose) at 37oC. (b(i)) 

Phase contrast imaging MF06036 vancomycin exposed biofilm. (b(ii)) Green fluorescent imaging of the 

same region. (c) 100x micrograph overlays of the addition of sub inhibitory (10µg/ml) vancomycin to the 

biofilm formation media TSB (1% glucose) during the formation of isolate MF06036’s biofilm (24 hours). 

Media was replaced at the 24-hour time point with vancomycin TSB (1% glucose) for an additional 24 

hours. (c(i)) Phase contrast imaging MF06036 vancomycin exposed biofilm. (c(ii) Green fluorescent 

imaging of the same region. Scale bar represents ten microns. Arrowhead – fluorescence artefact, Arrow 

– cell positive for vanA staining. 

 a(i) 

 b(i) 

 c(i) 

 a(ii) 

 b(ii) 

 c(ii) 
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Sufficient data had been acquired demonstrating novel conjugation of environmental 

isolates of enterococci, and that enterococci can form biofilm: The final step in this thesis 

was to test if environmentally isolated enterococci can conjugate inside biofilm. The in-

house protocol devised (Figure 4.4.15) in this study was capable of efficiently 

establishing biofilms of similar surface size which could be grown in a sealed 

environment that could then have a fresh planktonic conjugation partner added to 

established biofilm cells. This reaction could then be incubated without the risk of 

contamination and be assessed by traditional selection plates or by novel microscopic 

approach. 
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Figure 5.4.16. The gene frame biofilm model utilised to detect conjugation between enterococci in a biofilm substrate. 

2. Incubated for 
24 hrs to 
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biofilm 

3. Conjugation partner 
bacteria added after 
washing planktonic 
biofilm cells 

4. Transconjugant 
biofilm is washed to 
remove planktonic 
cells 

5. Transconjugant biofilm 
scraping is homogenised in 
PBS and added to 
transconjugant selection 
plate 

6. Biofilm and conjugation partner are 
incubated for 24 hrs to form 
transconjugant biofilm 

7. Transconjugant biofilm is 
dried and scraped with a 
scalpel and DMSO 

 

8. Enterococci designated 
to form biofilm added 
to gene frame well 

1. Gene frame attached to glass 
slide coated with gelatin 
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5.4.10. Using the gene frame biofilm apparatus, ‘triple selection’ and fluorescent in 

situ hybridisation to isolate transconjugants from conjugation reactions within 

enterococcal biofilm 

Using the gene frame biofilm model isolation of T1 from true biofilm was possible.  

From three bars shown in figure 5.4.17, compatible enterococci can and do conjugate 

within a biofilm. Interestingly, conjugation in a biofilm created primarily by the recipient 

(biofilm created with MW01105Rif) had an efficiency of 2.01x10-3; double that of the 

biofilm primarily created by the donor (biofilm created with MF06036) at 1.01x10-3. 

Conjugation in the mixed enterococcal biofilm was 3 times as efficient as the donor 

biofilm with an efficiency of 3.04x10-3. Statistically there is no difference between these 

three types of biofilm conjugation tests excluding a comparison of the donor only biofilm 

against the mixed biofilm (p value of 0.0048 ** using welches correction). However, it is 

clear how a mixed biofilm (without accounting for planktonic enterococci) yields an 

improvement in the generation of transconjugants.  

Applying nutrient deprivation conditions to the same biofilm conjugation reaction 

produced transconjugants. The efficiency of conjugation was reduced (7.18x10-4, 

1.03x10-3, and 1.54x10-3) and the ratio of transconjugants between the MF06036, 

MW01105Rif and the mixed biofilm remained the same. 

 

After proving that the tested enterococci can conjugate inside biofilm of their own 

creation as an end-point assay, protocols were devised to visually observe the result of 

enterococcal conjugation inside biofilm. The simplest way to carry this out would be to 

eliminate the parental isolates post conjugation inside biofilm. This would allow for the 

visualisation of transconjugants using a simple live/dead stain. Figure 5.4.18 was the first 

protocol tested using double antibiotic selection to eliminate the parental isolates and 

leave the transconjugant alive. Figure 5.4.18 shows that the action of double selection 
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alone inhibits MW01105Rif and MF06036. However, this assay clearly produces cells that 

stain green with the live stain (SYTO9).  As expected T1 has a much higher ratio of Live: 

dead as compared to its parents. This assay demonstrates a flaw in the process of using 

double selection alone. It was simply not enough to visualise live transconjugants alone. 

Some parental cells tested positive with the live stain, at concentrations known to cause 

no growth.  

 

As a response to the data gathered and shown in figure 5.4.18. Lysozyme was added to 

the reaction to degrade compromised cells that may stain as live using the live/dead 

staining protocol. Figure 5.4.19(a) demonstrates the action of lysozyme on the parent 

isolates and T1 when employed at the MIC. Lysozyme alone is effective at inhibiting 

planktonic MW01105Rif, MF06036 and T1 (MIC’s = 10.4 mg/ml, 20.8 mg/ml, and 

10.4mg/ml respectively), and is even more effective when compounded with double 

selection (MIC’s = 0.8, 0.162, and 2.6 mg/ml respectively).  

The live dead assay with lysozyme (2 mg/ml) was performed on the isolates again with 

dramatic effects (figure 5.4.19(b)). The results yielded a total kill response for 

MW01105Rif, a 3% live staining response for MF06036; whereas T1 had a 55% live 

staining response. The grey compromised bars in this graph considers cells stained with 

SYTO9 but exhibited gross morphological changes associated with compromising of 

cellular integrity.  Cells were recoded as live if SYTO9 staining was present on a cell 

with the absence of propidium iodide staining; however, staining alone was not enough 

to rule a cell as ‘live’. Many cells that were stained with SYTO9 only were counted as 

‘live’, but when examining cell morphology, it was clear that the cells had varying 

degrees of compromised envelopes.  

Figure 5.4.19(c-e) highlight the variations in singular SYTO9 staining. The red arrow 

indicates healthy cells, noting the characteristic morphology of enterococci: diplococcus, 
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with smooth cellular envelopes and clear bounded green fluorescence. The yellow arrows 

highlight compromised cells which are dead but overpoweringly stain green. The cells 

highlighted with the white arrow appear normal, but when examined closely cell 

elongation is present as well as dysmorphic furrowing in the lower cell.  These cells vary 

in morphology, however there are clear differences between those shown in yellow 

arrows versus those shown with red arrows. The blue arrow is an example of total 

destruction of enterococcal chain form. 

 

With the data gathered in figure 5.4.19 a biofilm conjugation reaction was established 

with MW01105Rif and MF06036 (Figure 5.4.20). Figure 5.4.20(a-c) clearly demonstrates 

microscopically the synergistic killing of MW01105Rif (a), MF06036 (b) and what can 

only be the successful conjugation of MW01105Rif and MF06036 (c) highlighted with live 

SYTO9 green imaging.  

Figure 5.4.20(d) is a total cell count of the three biofilms visualised in 5.4.20(a-c). 

Compared to figure 5.4.19(b) the number of cells stained live was higher (MW01105Rif 

3.6%, MF06036 1.75%). However, when comparing compromised cells in the same 

fashion the results are the same. The total cell count of the conjugation biofilm yielded 

higher numbers of live cells, as well as dead cells (including compromised cells). As this 

was a biofilm conjugation experiment with MW01105Rif, MF06036 and freshly created 

T1, these increased numbers of dead and compromised cells were expected when 

compared to figure 5.4.19 (b) T1 only biofilm.  

Figures 5.4.20(e-f) are fluorescent micrographs of a biofilm conjugation reaction between 

E. faecalis MF06036 and E. faecium ST01109Rif. Due to the selection conditions, the only 

remaining enterococci in this biofilm are MF06036 (all blue stained cells that do not co-

localise with red staining) and the resultant transconjugant from the conjugation reaction, 

which is stained with the FISH probe. This assay provided visual evidence for 
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enterococcal conjugation within biofilm. Washing steps during the methodology ensured 

planktonic cells were washed away and binding controls ensured that non-specific signal 

did not interfere with data collection. The Hoechst photo-conversion does not enter the 

B2-A blue filter on the fluorescent microscope. 
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Figure 5.4.17 Selection plate isolation of T1 from biofilm under both starvation and 

standard growth conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.17. Graphs depicting the isolation frequencies of T1 from standard and starved biofilm 

where MF06036 and MW01105Rif successfully conjugated inside biofilm. Biofilms were grown 

with one isolate for 24 hours. Planktonic cells were removed with PBS and the corresponding 

conjugation partner was added (at the same cell concentration as the initial isolate at the 

beginning of biofilm formation), and incubated for a further 24 hours. Planktonic cells were 

removed with PBS and biofilms were scraped, re-suspended in PBS and added to selection plates 

(vancomycin 10µg/ml and rifampicin 100µg/ml) for a further 24 hours. Transconjugant growth 

was recorded and displayed in the graphs above. Starved biofilms used nutrient depleted TSB 

(1% glucose) and stationary phase isolates. MF06036 biofilm represents biofilm created by 

MF06036 which had MW01105Rif added after 24 hours. MW01105Rif biofilm represents biofilm 

created by MW01105Rif which had MF06036 added after 24 hours. Mixed biofilm represents 

biofilm created with the addition of MW01105Rif and MF06036 and grown for 48 hours with 

media replacement at the 24-hour time point. Error bars represent standard error of the mean. 

Mixed biofilms had statistically higher CFU/ml compared to MF06036 biofilms under standard 

conditions (p 0.048) and starvation (p 0.013). Experiments were carried out with 6 biological 

repeats and five independent repeats. 
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Figure 5.4.18. Using double selection with rifampicin and vancomycin to eliminate 

Enterococcus conjugative partners but not their transconjugant in a biofilm state. 

 

 

 

  

  

 

 

 

 

 

 

 

 

Figure 5.4.18. A bar graph depicting the total cell count of live and dead bacteria stained 

with SYTO9 (green) and propidium iodide (red). Individual biofilms were grown for 24 

hours (TSB 1% glucose, 37oC). Biofilms were washed to remove planktonic cells and 

exposed to double selection (vancomycin 10µg/ml and rifampicin 100µg/ml) for 24 

hours. Error bars represent standard error of the mean. Significance *** p 0.0002, 

significance ** p 0.0032. Experiments were carried out with 6 biological repeats and five 

independent repeats 
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Figure 5.4.19. Using rifampicin, vancomycin a nd lysozyme to eliminate the conjugal 

partners MW01105Rif and MF06036 but not their transconjugant, T1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4.19. Graphs and micrographs depicting the action of adding lysozyme to double selection 

elimination conditions of the T1 conjugation reaction to eliminate MF06036 and MW01105Rif in biofilm. 

(a) A minimum inhibitory concentration graph demonstrating the killing action of lysozyme on the parent 

isolates and T1 with and without double antibiotic selection (vancomycin 10µg/ml and rifampicin 

100µg/ml). (b) A repeat experiment of (a) using triple selection - vancomycin (10µg/ml) and rifampicin 

(100µg/ml) and lysozyme (2 mg/ml). Error bars represent standard error of the mean. (c - e) 100x region of 

interest micrographs highlighting the variations in using the live (green)/dead (red) staining kit for 

assessment of total killing of MF06036, MW01105Rif and survival of T1 under ‘triple selection’. The 

outlined arrow indicates healthy cells. Filled arrows highlight compromised cells which are dead but 

overpoweringly stain green. The cells highlighted with the arrowhead appear normal, but when examined 

closely cell elongation is present as well as dysmorphic furrowing in the lower cell.  The star is an example 

of total destruction of enterococcal chain form. Scale bar represents ten microns. Significance *** p 0.0001, 

significance ** p 0.002. Lysozyme and double selection group MIC was significantly (p 0.02) lower than 

lysozyme alone. Experiments were carried out with 6 biological repeats and five independent repeats. 

a 

b 

d e 

c 
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Figure 5.4.20. Microscopic visualisation of transconjugants in biofilm under standard 

growth conditions by killing parents with double selection and lysozyme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4.20. Micrographs and a graph visualising the successful selection of T1 from MF06036 and 

MW01105Rif conjugation inside biofilms. (a) 100x fluorescent micrograph of a standard 24-hour biofilm 

made with MW01105Rif. (b) 100x fluorescent micrograph of a standard 24-hour biofilm made with 

MF06036. (c) 100x fluorescent micrograph of a standard 24-hour conjugation reaction with MW01105Rif 

inside biofilm. Subfigures (a-c) were visualised with Live/dead (green/red) after treatment with double 

selection (10µg/ml vancomycin, 100µg/ml rifampicin) to inhibit/kill cells. The biofilm was then treated 

with lysozyme (2 mg/ml) for a further 24 hours to eradicate the compromised cells. (d) A graph showing 

the total cell count of the three biofilms visualised in (a-c). Error bars represent the standard error of the 

mean. Sub-figures (e-f) are fluorescent micrographs of a conjugation reaction between E. faecalis MF06036 

and E. faecium ST01109Rif inside biofilm. Biofilm was created, and enterococci allowed to conjugate for 

24 hours. Post conjugation, biofilm was treated with tetracycline (30 μg/ml) for 24 hours, and then treated 

with lysozyme (2 mg/ml) for an additional 24 hours. (e) 100x fluorescent micrograph showing Hoechst 

staining of tetracycline and lysozyme treated biofilm post enterococcal conjugation. (f) FISH staining of 

same region as (e) with probes specific for E. faecium only. White dashed ovoid depicts region of interest 

with total cell count stained blue (e) and stained red (f) with E. faecium cells only. Scale bar represents ten 

microns. Significance *** p 0.0001, significance ** p 0.002. Experiments were carried out with 6 biological 

repeats and five independent repeats. 
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5.5 DISCUSSION 

 

 

 

5.5.1. Optimisation of biofilm formation: Enterococcal growth characteristics. 

The conjugation partners MW01105Rif, ST01109Rif, MF04010, MF06035 and MF06036 

were responsible for the creation of T1, T2, T3 and T4. They formed visible biofilm when 

tested with the polystyrene biofilm formation assay (figure 3.4.2). These experiments 

were designed to analyse and characterise biofilm formation in enterococci. Tryptone soy 

broth (TSB) was chosen as the standard growth medium as previous studies determined 

that biofilm growth phase was longer (6-8 hours versus 4 hours) as compared to brain 

heart infusion (BHI) (Kristich et al., 2004). Spent TSB was used to induce cell starvation 

amongst the Enterococcus isolates. Conjugation was successful on S. lacustris and E. 

fluviatilis at 20oC, near the maximum recorded temperature for waterways in the United 

Kingdom (Hanna and Garner, 2015). Therefore, growth characteristics at 20oC were also 

determined to account for the feasibility of the phenomenon occurring in the natural 

environment.  

 

As expected, the Enterococcus isolates had reduced growth rates at lower temperatures, 

and therefore took longer to reach stationary phase, as also observed by Morandi, (2005) 

when 21 enterococci isolated from dairy products displayed reduced growth rates at 25oC 

as compared to 37oC in non-fat dry milk reconstitutions. Enterococcus growth rates in 

standard TSB medium at 20oC were comparable to those described by Čermák et al. 

(2009) where bacteria reached stationary phase at the 24-hour time point. Initiation of 

growth, duration of the log phase and establishment of stationary phase at 37oC were 

comparable to what was observed by Pessione et al. (2012). Measurements of optical 

density and recording of values were carried out according to the same guidelines 

demonstrated previously (Čermák et al., 2009). Mothey, (2013) used minimal growth 
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medium to effectively limit the growth characteristics of Streptococcus mutans, In this 

study the start and endpoint optical densities were around 0.07 (675nm). When spent TSB 

media was applied to E. faecalis and E. faecium, a similar growth limiting effect was 

observed. Spent TSB was created by filter sterilising and re-using the TSB used to grow 

the isolates. The average starting optical density at 570nm for each isolate was started as 

low as possible for the spectrophotometer and at end point, OD trended upwards 

consistently. This indicated that although the media was used to grow the isolates to 

stationary phase, growth continued either as a function of metabolic activity of the 

bacteria (Figdor et al., 2003) or limited presence of nutrients available in the spent 

medium when added back to isolates for growth analysis (Ahmed et al., 2014). The E. 

faecalis and E. faecium used in this study grew in a similar way to those grown in M1 

semi defined medium, with the slight increase in optical density equal to what was 

observed by Zhang et al. (2013a). Zhang et al. (2013a) reported that when wild type E. 

faecium was grown in M1 medium as a negative control for other supplements, OD600nm 

increased from 0.0025 to higher than 0.1 by the end of the experiment (15 hours). These 

growth curves enabled biofilm formation experiments to be created accounting for the 

differences in formation at lower temperatures; as well as how long it takes for the 

enterococci to reach log, stationary and decline phase in both standard and spent growth 

media. 

 

5.5.2. Traditional biofilm assays applied to enterococci yield inconsistent biofilm. 

To better understand the biofilm formation characteristics of the E. faecalis and E. 

faecium isolates used for conjugation, a selection of the most popular standard assays was 

tested. Toledo-Arana et al. (2001) demonstrated the ability of enterococcal strains to 

adhere to polystyrene and form biofilm, creating the microplate biofilm assay: reading 

the optical density of solubilised crystal violet as a direct measurement of biomass. 
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Therefore, the crystal violet assay was tested on the conjugation isolates; as well as two 

isolates known for their biofilm capabilities, tested previously (Daniels 2011). E. faecium 

MF01028 and E. faecalis MW02102 were reconfirmed as non-biofilm and strong biofilm 

producers, respectively. A selection criterion for biofilm formation intensity from Rosa 

et al. (2006) was applied to the other isolates.  

 

First described by Christensen et al. (1982): the tube biofilm formation assay assesses 

identification of biofilm by visualisation of distinctive crystal violet staining on the inside 

surface of the cell culture tubes. Stain generally concentrates at the air liquid interface 

and at the bottom of the tube itself. However, results were difficult to compare between 

isolates and the assay itself is entirely subjective. Results from the tube formation assay 

were different from the more widely used crystal violet microplate assay. Hassan, (2011) 

assessed the capabilities of the tube formation assay against the ‘gold standard’ 

microplate assay and determined that three isolates produced false positive results and 19 

were false negative. Explanations such as these determine that the tube formation assay 

is an unreliable assay for characterisation of biofilm formation.  

 

The air liquid interface has been demonstrated as a relevant assay for the analysis of 

bacterial biofilm adherence and formation on a glass substratum, especially when applied 

to motile bacteria (Koza et al., 2009). As Enterococcus are non-motile, expectations of 

the validity of this assay were low; barring the fact that they are facultative anaerobes, 

and would have relatively uniform planktonic density throughout the media for the 

duration of active growth. The E. faecalis and E. faecium isolates could form biofilm on 

glass coverslips at the air liquid interface. However, these biofilms had the appearance of 

an immature biofilm and had weak attachment to the glass surface. Cellular density was 

low considering the isolates were grown in nutrient rich biofilm media. The air liquid 
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interface method has not been widely used to evaluate Enterococcus biofilm formation. 

Opperman et al. (2009) conducted a study on biofilm formation inhibition of Gram 

positive (including Enterococcus), but not Gram-negative biofilms. This study utilised 

the air liquid interface biofilm model for P. aeruginosa and E. coli but not for 

Enterococcus. This is most likely due to relative motility of bacteria determining where 

biofilm will be deposited. O’Toole, (2011) showed motile bacteria such as P. aeruginosa 

form strong biofilm at the air-liquid interface, whereas the non-motile S. aureus forms 

strong biofilm at the bottom of the same microtiter plates. E. faecalis and E. faecium are 

relatively non-motile bacteria and as such would be expected to behave similarly to S. 

aureus. 

 

The submerged coverslip biofilm formation assay is essentially the microplate assay with 

a glass insert at the bottom of the well to capture biofilms for imaging. This protocol was 

first utilised on OG1RF: a laboratory modified human oral isolate of E. faecalis (Guiton 

et al., 2009) to quantify biofilm produced on polyvinyl chloride (PVC) coverslips using 

the same approach as the microplate assay, with an additional application of confocal 

microscopic visualisation. This experimental approach was used on the Enterococcus 

isolates with varying degree of success. Results obtained in figure 5.4.2(d) are comparable 

to what was observed by Guiton et al. (2009) and their wild type OG1RF. The observed 

appearance of Enterococcus biofilm shown here is a typical feature of enterococcal 

organisation (Lyer and Hancock, 2012). The typical E. faecalis biofilm appears as a static 

monolayer of well-spaced cells with various quantities of heterogeneous extracellular 

polymeric substances as observed in Barnes et al. (2012).  Figure 5.4.2(e) highlights cell 

concentrating at the boundary of the biofilm. Microscopic visualisations of Enterococcus 

biofilm boundaries are rarely reported and identification of structures whereby cells 

accumulate at the boundary is novel. To our knowledge these findings have never been 



239 
 
reported before with environmentally isolated, E. faecalis especially one that can 

conjugate its tetracycline resistance genes.  

 

The main limitation of the biofilm visualisation assays was that the processing removed 

large quantities of cells and extracellular material. Enterococcus can exist in chain form 

and has been suggested by Guiton et al. (2009) that if cells exist in this form prior to 

initial ‘set down’ in early biofilm formation that the individual cell surface is reduced, 

lowering available binding sites to the abiotic substrate. The microscopic processing 

would easily create enough mechanical sheer force to remove chains that may only be 

bound to the substrate by a small number of individuals. Whilst biofilm formation on 

plastic is initially profound, the electrostatic charges at play with polystyrene material 

could influence adherence once a threshold number of cells had set down (van Merode et 

al., 2006). Therefore, a direct approach to improving cellular adhesion to substratum was 

employed. 

 

5.5.3. Microplate surface coating to improve cellular adhesion and subsequent 

biofilm formation. 

Reporting on variance and discrepancies between biofilm assays is rarely reported for 

enterococcal biofilm research. Leuck et al. (2014) described an inherent limitation of the 

polystyrene microplate biofilm assay which results in increased variation of biofilm 

formation capabilities of clinically relevant Enterococcus strains. Biofilm formation 

assay results described above highlight the variations first mentioned by Leuck et al. 

(2014) Their proposed amendments for analysis of clinically relevant biofilm formation 

included: measurements of biofilm formation as a fraction of direct biomass and cell 

density (biofilm index), as cell density may affect biofilm biomass. They suggested that 

a polystyrene substrate may not allow for the expression of all adhesins that would be 
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used in the attachment to a complex substrate such as tissue. Whilst the ‘gold standard’ 

polystyrene dish assay remains a useful tool with capabilities of correlating biofilm 

formation on abiotic surfaces to human infection (Sandoe et al., 2003), suggestions of 

improvements to the assay for reduced standard deviation and relevance to infection 

models such as endocarditis have been made (Leuck et al., 2014).  

 

Improving biofilm formation to allow for increased substrate adherence would manage 

the limitations of the microscopic visualisation and characterisation of enterococcal 

biofilm. MF04010 and MF06035 tested positive for the collagen adhesion protein ace by 

PCR, and MF06035 tested positive for the ability to hydrolyse collagen and gelatin 

previously (Daniels, 2011). Therefore, investigation of improved binding assays was 

undertaken (figures 5.4.3 and 5.4.4). The application of type IV collagen or gelatin to the 

bottom of the microplate surface significantly reduced the biomass of MW01105Rif and 

MF04010, but not MF06036 as expected based on the absence of specific collagen and 

gelatin interaction pathways. It was clear from figure 5.4.3 that either polystyrene itself 

or coating the wells with material specific to cell adherence during in vivo infection 

played a role in the biomass production of enterococcal biofilm. Re-evaluation of 

substrate composition and measurement of biofilm relative to bacterial cell number was 

measured next. 

 

5.5.4.  Substrate composition directly affects enterococcal biofilm formation. 

Microscopic investigations into the Enterococcus biofilm are often used to examine 

biofilm forming ability or to assess the extent of chemically mediated biofilm destruction 

(Toledo-Arana et al., 2001; Hancock and Perego, 2004; Dunavant et al., 2006). 

Investigations into improvement of adhesion to aid in visualisation of characteristics have 
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rarely been carried out. Paganelli et al. (2013) used poly-L-lysine coated glass coverslips 

to improve cell adherence to glass for microscopic biofilm visualisation. Figure 5.4.4 

details the undertaking of improving biofilm formation in enterococci. Since it has been 

postulated that polystyrene material composition can affect the deposition of bacteria onto 

its surface, glass was tested as a suitable replacement substrate for biofilm formation. The 

visual effect on enterococcal biofilm created by formation on glass and polystyrene has 

been shown by Janek et al. (2012). Glass is used in the majority of microscopic 

investigations and is an inert substance that should minimise any potential electrostatic 

interactions with E. faecalis and E. faecium to ones of cellular attachment only (van 

Merode et al., 2006). Glass substrate significantly reduced the biofilm forming ability of 

all tested enterococci excluding MF06036. The effect of glass substrate was enough to 

reduce MF01028 to a weak biofilm producer from a moderate one. Clearly polystyrene 

has a cumulative effect on the Enterococcus biofilm unreflective of true enterococcal 

adhesion for clinically relevant biofilm formation; and glass substrate generally reduces 

an isolate’s biofilm relative to cell number (Paganelli et al., 2013). The biofilm index 

measurements revealed biofilm formation ability relative to cell growth, reflecting a more 

precise measure of biofilm (Leuck et al., 2014). 

 

Collagen and gelatin were chosen as testable substrate improvements that could be 

applied to glass as they best reflected the materials that enterococci attach to during 

infection. Application of collagen and gelatin to the glass substrate had a profound 

improvement on biofilm formation ability for MF01028, MW02102, MW01105Rif and 

gelatin coating improved biofilm formation for MF04010. Bukhari, (2013) showed that 

collagen IV coated microplates in one instance significantly improved biofilm formation 

in an ace positive E. faecalis strain BS12297. Birkenhauer et al. (2014) noted that 

collagen coating of microplates improved cell surface attachments and subsequent 
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biofilm formation (40% increase for MRSA M05-35 against uncoated wells) in 

Staphylococcus biofilm compared to P. aeruginosa. They described Staphylococcus as 

inefficient biofilm producers as compared to P. aeruginosa. The improvement noted in 

staphylococcal biofilms could be associated to their mechanism (eap -extracellular 

adherence protein) of attaching to biotic substrates in a similar fashion to enterococcal 

attachment mechanisms (esp, gelE). From the literature and the results, it was clear that 

substrate coating was a viable method of improving enterococcal biofilm formation. 

Overall gelatin coating improved biofilm formation the greatest (gelatin - 62% average 

increase; collagen – 60% increase) amongst all tested isolates. Gelatin glass coating was 

also easier and faster compared to collagen coating. Therefore, gelatin coated glass was 

selected as the substrate of choice for all further examinations. 

 

5.5.5.  Modulation of the enterococcal biofilm: Effect of cell lysate and eNDA on 

formation.  

Enterococcal cell lysis during early biofilm development is a well-documented 

phenomenon (Thomas et al., 2008; Barnes et al., 2012; Paganelli et al., 2013 and Dunny 

et al., 2014). Fratricidal lysis and subsequent DNA release can contribute towards 

enterococcal biofilm formation and eDNA is an integral component of early biofilm 

formation. Therefore, two experiments were devised to test the presence of total cell 

lysate or total DNA content on the Enterococcus isolates. Dunny et al. (2014) discussed 

enterococcal fratricide and biofilm development: cells sensitive to the peptide lactone 

GBAP express the fratricidal inducing GelE and the immunity from fratricide SprE genes. 

Cells insensitive to GBAP, or immunity mutants would not be protected from fratricidal 

lysis. Therefore, the conjugation partners MW01105Rif, MF06036 and T1 had their total 

cell lysate tested on each other as well as self-tested. The lysate from MW01105Rif had 
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no effect to biofilm formation; however, MF06036 and T1 lysate had a significant effect 

on biofilm formation when tested against each other and self-tested.  

 

Barnes et al. (2012) demonstrated potential non-fratricidal sources of eDNA for the 

accumulation of enterococcal biofilm during early development, as DNA was present in 

abundance with cellular lysis. Therefore, MF06036 DNA content was applied to biofilm 

formation investigations as shown in figure 5.4.6. In all cases, excluding MF01028 and 

MW02102, biofilm formation increased with the application of total DNA content. 

Increases with ST01109Rif and MF04010 were significant. The data in figures 5.4.5 and 

5.4.6 show general increases in biofilm formation capabilities in the presence of total cell 

lysate or eDNA. These data support the experiments conducted by Paganelli et al. (2013): 

whereby an autolysin deficient Enterococcus was resistant to lysis, released less eDNA 

and reduced biofilm formation. Rostami et al. (2017) discussed stabilisation roles for 

eDNA in multispecies biofilm as well as showing that DNA degradation reduced the 

diversity of multi-species biofilms: suggesting that DNA is more than scaffolding but 

rather anchoring points for other species of bacteria. Conclusions can be made that the 

importance of eDNA may lie beyond stabilisation and improvement of biofilm formation. 

Experimental levels of SDS were diluted at a final concentration (0.01%) determined to 

be essentially SDS-free by Post et al. (1998) and therefore would not adversely affect 

results. 

 

Surface adhesion was generally improved with the addition of gelatin to the inert glass 

substratum. Additions of cell lysate and eDNA improved biofilm formation for select 

enterococcal single species biofilm. Compounding effects of substrate enhancements, cell 

lysate and eDNA were not equal to the effects observed on an individual basis. It appeared 

at least in this case that once maximum biofilm formation had been achieved strength 
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could not be improved. However, these conditions improved retention when processed 

for microscopic visualisation of biofilm on glass coverslips; but when manipulation of 

coverslips was required; it still created damage to biofilm.  

 

 

5.5.6.  The gene frame biofilm apparatus (GBA): A novel biofilm development tool 

for microscopic visualisation of fragile enterococcal biofilm. 

It was easy to damage biofilm when mounting the coverslip to a glass slide. An alternative 

approach/apparatus was required to preserve samples as much as possible during the 

processing. There are numerous pieces of equipment for modelling biofilms, minimising 

intrusions caused by the aforementioned processing: such as the drip-flow biofilm reactor 

(DBR), Calgary biofilm device (CBD) and the tubular biofilm reactor (TBR) (Xu et al., 

1998; Ceri et al., 1999; Winn et al., 2014). Equipment such as these are highly specialised, 

can be expensive and time consuming to set up. There existed no such model for 

examination of static biofilm. Many reactors involve insertion of coupons, chips or other 

inclusions and require physical removal for processing in the same fashion as the 

coverslip biofilm method. 

 

The gene frame biofilm apparatus was born from the need to analyse biofilm created by 

bacteria in situ, without exposing ‘naked’ biofilms to mechanical stresses associated with 

visualisation assays. It needed to be able to allow for attachment and growth of mature 

static biofilms fixed in position on a useful substrate such as a glass microscope slide. 

The gene frame was created by ABgene primarily for in situ PCR investigations of 

mammalian cells. It was repurposed here to allow for creation of biofilms that could be 

imaged without hindrance. The system could be sealed and made sterile. Low and 

medium power magnification was possible without mounting and could be carried out at 
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any time during the biofilm growth phase. Figure 5.4.7 outlines the process of using the 

gene frame biofilm model. One of the most valuable uses of this method is that the gene 

frame creates a micro-well (25μl) whereby the biofilm can be grown to a specific size: 

nutrient conditions can be altered without damaging the biofilm and full staining 

protocols can be carried out in the well itself. The GBA allowed for detailed investigations 

of enterococcal biofilm that previously were difficult to obtain with adequate precision. 

Comparisons of the GBA against traditional assays were made before adopting the assay 

fully. 

 

Instances of biofilm retention, detached biofilm when mounting and cellular retention 

were measured and compared between ‘traditional’ assays and the GBA using E. faecalis 

MW02102. Improvements of biofilm and cellular retention are clearly evident in figure 

5.4.8. The improvements attributed to the GBA were significant therefore; the GBA was 

employed to assess all future biofilm experiments. 

 

5.5.7. Identification of macro-scaffolding and cellular distribution of enterococcal 

biofilm using the GBA. 

The gene frame allowed for unobtrusive analysis of enterococcal biofilm, revealing novel 

macro-organisation of adhered biofilm. Figure 5.4.9(a-b) presents low powered images 

of MF04010 biofilm. MF04010 was the best biofilm producer of all enterococci used in 

this study that also was responsible for creation of a transconjugant. These biofilms were 

grown in the GBA, carefully washed and imaged with dark field microscopy. Subfigure 

(b) had concanavalin A (conA) Alexa fluor 594 staining applied, but was processed in the 

same fashion as in subfigure (a). The branching macro structure was composed of cells, 

could only be visualised in unopened GBA and the feature was removed upon opening 

and staining of the biofilm. This form of novel structure could not be found in the 
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literature with reference to E. faecalis and E. faecium using low powered fluorescence 

microscopy.  

Biofilms formed under enclosed laminar flow can create strings of biofilm called 

‘streamers’ from mature colonies of biofilm (Wang et al. (2016). The slower the flow the 

thicker these streamers will become. Enterococci isolated from the natural environment 

have never been shown to form streamers, however S. aureus has been shown to form 

streamers (Kim et al., 2014). Streamers are the result of deformation and or detachment 

from the main body of biofilm (Biswas et al., 2016). As the GBA is an enclosed 

environment, where cells cannot escape form the mature biofilm, it is possible that 

seeding of cells from biofilm is incomplete and can form a structure with similar 

appearance to streamers. De-attachment and reattachment has been shown in 

staphylococci previously and could occur with enterococci and the unique characteristics 

within the GBA (Fux et al., 2003). Streamers have weak attachments and are difficult to 

image (imaged in situ). Likewise, the novel structures identified in figure 5.4.9 had weak 

attachments and could be moved and dislodged by moving the GBA whilst imaging on 

the microscope.    

Another explanation for the ‘thick streamers’ observed in figure 5.4.9 could be a result of 

alteration in genetic regulation, due to the sealed environment creating atypical gradients 

of growth as a result of nutrient availability or chemical composition (Sauer et al., 2002; 

Van Loosdrecht et al., 2002). Additionally, Hall-Stoodley et al. (2004) illustrated 

connecting structures between mature colonies of biofilm which have the same 

appearance as the structures observed in figure 5.4.9.  

As with all pure microscopic visualisation, the possibility that this observation could be 

from some of ‘artefact’ cannot be definitively ruled out without the use of more advanced 

microscopic techniques. This was not possible during this research investigation and is 
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definitely a result that could be developed with methods of laminar flow applied to the 

GBA.  

The typical appearance of enterococcal biofilm is exemplified by Janek et al. (2012) 

where cells aggregate around non-branched EPS boundaries with strain specific cellular 

morphology.  The biofilm stain conA can be seen at this low power magnification 

displaying localisation with the bacterial cells. High power magnification of this 

phenomenon was not possible as it interfered with the macrostructure observed here. 

Experiments utilising high power magnification are shown in subfigure (c-d). Subfigure 

(c) highlights the strong cellular attachment and biofilm under the same conditions as (a-

b). Higher resolution of conA staining was observed in (c) from the heterogeneous macro 

staining from subfigure (b). The GBA was tested for proficiency at detecting early ‘set 

down’ of enterococci and exceled at imaging diplococci attached to the gelatin coated 

substrate without the need for high resolution electron microscopy as observed in Barnes 

et al. (2012).  

 

At the conclusion of these experiments the GBA was deemed a successful method for the 

analysis of enterococcal biofilm as it had unveiled new structural organisation of E. 

faecalis. These structures were never seen before for enterococci isolated from the 

environment, and was accomplished using a simple epifluorescent microscope, cheap 

materials, was easy to assemble, sterilise and used an emerging enterococcal biofilm stain 

(conA).  

 

5.5.8.  Enterococcal biofilm development mediated by the gene frame biofilm 

apparatus (GBA). 

The GBA detected initial cellular adherence to the substratum allowing visualisation of 

enterococcal biofilm development using fluorescent staining. Numerous experiments 
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have analysed in detail many aspects of enterococcal biofilm composition, cellular 

activity and factors at play as reviewed by Fisher and Phillips, (2009), and Gilmore et al. 

(2014). Nonetheless visual investigations of initial cellular attachment and production of 

extracellular polymeric substances (EPS) are limited (Bales et al., 2013). Previous 

investigations have focused on EPS in mature biofilm (Jung et al., 2015). The regulation 

of adhesins and other factors can greatly influence biofilm formation. As a result, 

enterococcal biofilm structure at any stage of development can vary species to species or 

even from isolates of the same species (Dunny et al., 2014). Therefore, investigations into 

biofilm ‘development’ regarding cellular composition and production of EPS were 

carried out.  

 

The use of conA as a stain for EPS in biofilm formation has only recently been established 

(Jung et al., 2015; Ridan and Benxiang, 2014). Production of EPS occurs during 

enterococcal biofilm formation and since conA binds to polysaccharide residues, it can 

be used as a selective stain to examine biofilm formation in enterococci. The EPS 

fromation during biofilm development as observed in figure 5.4.10 is direct evidence of 

biofilm development, as cell count increases in tandem with biofilm until EPS staining 

overcomes the co-localisation with DNA staining as seen in mature biofilm (figure 

5.4.10(vi)). Instances of conA EPS staining was lower in enterococci with chain forms. 

Providing further evidence that, enterococci that exist in chain form do not form biofilm 

at the same level as counterparts in diplococcus form. Guiton et al. (2009) demonstrated 

that Atn (autolysin) deletion E. faecalis mutants caused adherence defects, subsequently 

increasing chaining, potentially reducing binding availability. They suggest that chaining 

phenotype is an inefficient morphology for biofilm formation which agrees with the 

decreased conA staining and observed here.  
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5.5.9.  Effects of nutrient deprivation and conA staining to demonstrate biofilm 

formation in a strong biofilm producing enterococcal isolate. 

Nutrient deprivation and antimicrobial stress investigations into enterococcal biofilm 

formation have been studied previously (Liu et al., 2010; Ran et al., 2015). These studies 

utilised reference strains E. faecalis ATCC 29212 (isolated from human urine), and 

ATCC 33186 (animal isolated quality control strain). Studies into starvation of 

enterococci isolated from the natural environment are lacking. Therefore, investigations 

into the effects of nutrient deprivation were carried out on the environmentally isolated 

E. faecalis and E. faecium are discussed below. 

 

Enterococcus faecalis MW02102 created a strong biofilm with extensive cell chain form 

characteristics (5.4.11) in contrast to evidence of weak biofilm attachments to substratum 

in chain form as discussed by Guiton et al. (2009). This isolate was the only one tested 

that existed in chain form in a mature biofilm on such a large scale. Starved biofilm 

eliminated the chain from observed under standard growth conditions. This could reflect 

the reduction of cellular metabolism and as such, reduction of cellular replication (Giard 

et al., 2000). The cells enter a state whereby they conserve functions to survive longer. 

ConA staining is markedly reduced in MW02102 indicating a lack of production of EPS. 

Hoechst overstaining typical of eDNA presence is reduced in starvation and cellular 

boundaries are clearly visible. Liu et al. (2010) demonstrated the persistence of biofilm 

forming ability of E. faecalis (ATCC 29212) during starvation using both PBS and 

nutrient depleted BHI on human dentin substrate. They identified that the nature of 

substratum can affect enterococcal biofilm formation, suggesting that substratum 

comprising human elements such as dentin improved biofilm formation in a similar 

fashion to collagen and gelation as observed in figure 5.4.4. They also corroborate the 

findings of Lleo et al. (2007) stating that starved enterococci form the weakest biofilm as 
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compared to standard growth conditions. The starvation biofilm formation data obtained 

in figure 5.4.11 agrees with the literature findings with identifiable low density biofilms, 

as expected with limited nutrient availability.  Chen et al. (2017) using E. faecalis (ATCC 

33186) also argued that starvation and increased alkalinity observed in the oral cavity 

reduces water soluble polysaccharides as a defence mechanism from increased pH stress 

and therefore reduces biofilm biomass. They reported that starvation alone was the 

biggest contributor to reduced biofilm formation when using nutrient depleted TSB.  

 

Additional instances of cell concentrating at the biofilm boundary seen under subfigure 

(b) further highlights the validity of this phenomenon described in 5.4.2. The reduction 

in conA staining observed in figure 5.4.11 agrees with the results reported from Chen et 

al. (2017). The channelling effect observed in the MF06035 biofilm in figure 5.4.11(c) 

has never been reported for enterococcal biofilm formation on glass substrate. 

Explanations as to the occurrence of this phenomenon could be that the bacterial biofilm 

formation lead projection sites occur in this way; initial microfluidics at play placed cells 

into these channels (Kim et al., 2012); or imperfections of gelatin surface coating beyond 

what was observed in surface coating imperfection testing (data not shown) gave way to 

these channels. The apparent ‘zone of clearing’ of gelatin coated microscope glass around 

aggregates of cells, has the appearance of MF06035 mediated hydrolysis of the gelatin 

into the surrounding media and cells (Su et al., 1991). 
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5.5.10. Effects of nutrient deprivation and ConA staining to demonstrate biofilm 

formation in a “no-biofilm” producing enterococcal isolate. 

E. faecium MF01028 was classified as a non-biofilm producing isolate based on several 

biofilm experiments carried out here and previously by Daniels, (2011). However, during 

starvation testing it was noted that adhesion to glass substrate was extremely high as 

compared to nutrient conditions. Microscopic investigation into the biofilm morphology 

during starvation was carried out as seen in figure 5.4.12. The first observation was that 

this non-biofilm producing Enterococcus, when placed in the GBA with gelatin coating, 

formed attachments to the substrate. The most immediate difference between growth 

conditions with DNA staining was that the cellular distribution was more uniform under 

starvation and there were less instances of aggregation of several enterococci with high 

cellular density. This effect has been noted throughout this research study.  

 

The most striking effect is the increased detection of EPS during cellular starvation. 

Evidence from the previous paragraph suggests that EPS (or specific elements of its 

composition) decreases when known biofilm producers are starved. Liu et al. (2010) used 

a direct measure of CFU per biofilm block to conclude that biofilm was “weakest” under 

starvation. They did not assess EPS composition directly, regardless of cell population at 

the end of biofilm formation. Chen et al. (2017) employed dry weight measurement and 

examination of polysaccharides to conclude that biomass decreases with starvation in a 

known biofilm producer. Both groups utilised known biofilm producing strains of E. 

faecalis and did not use a non-biofilm producing control in their investigations. The 

phenomenon, of increased EPS production through increased staining, only occurred in a 

known non-biofilm producing isolate in this investigation.  

The work carried out for this thesis and the literature in question both have compelling 

evidence showing that under starvation, cells have limited growth rates which functions 
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to lessen biofilm development, as there will be a smaller population of biofilm state 

bacterial cells. In support of these contradictory findings, Gao et al. (2016) demonstrated 

that during starvation in a multi-species biofilm reaction that enterococci form improved 

biofilms and resist starvation more effectively, even with limited growth. These improved 

biofilms excluded cell population in biofilm assessment, similarly to the assessment 

carried out in figure 5.4.11 and 5.4.12. Ran et al. (2015) showed increased levels of gelE 

and ace expression when enterococci were starved. These elements improve attachment 

and biofilm formation on collagenous and gelatinous substrates, such as human tissue. 

Starvation induction in E. faecalis MF01028 and in E. faecalis described by Gao et al. 

(2016) and Ran et al. (2015) could prime cells to form strong attachments and biofilm to 

defend against prolonged starvation as a survival mechanism. This would not be observed 

unless direct assessment of EPS formation relative to surrounding cells was assessed, as 

shown in figures 5.4.11 and 5.4.12. 

 

Quantification of conA staining was required in order to make such comparisons, as 

outlined in these last two paragraphs. Quantification of conA staining has been 

accomplished previously for EPS production in biofilm by Mueller et al. (2006). They 

captured confocal images of EPS staining with conA on marine phototropic biofilm and 

were quantified using image quantification software. Quantification of conA staining in 

E. faecalis biofilm had never been carried out and with the previous report of Mueller et 

al. (2006), was done so as follows. Measurements of pixel intensity of red fluorescence 

for conA staining in figure 5.4.11 and 5.4.12 was accomplished and is shown in 5.4.12(c). 

As evidence demonstrates, there was no significant difference in conA intensity for the 

strong biofilm producing MW02102 during starvation and normal growth. However, 

there was a significant (p<0.0001) difference in conA staining intensity for the non-

biofilm producing MF01028 during starvation and normal growth. Combining the 
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evidence shown here and investigations into starvation, conclusions on conA staining can 

be made. ConA is a useful stain for investigating enterococcal biofilm forming ability and 

re-evaluation of adherence for non-biofilm producing isolates should be considered when 

performing examinations into enterococcal biofilm formation at the microscopic level 

(Jung et al., 2015). ConA staining, direct assessment with microscopy and image 

quantification revealed for the first time, an increase in EPS production because of cell 

starvation in E. faecalis that tested negative for biofilm formation using standardised 

biofilm assays. 

 

5.5.11. Antibiotic selective pressure and nutrient deprivation affects spatial density, 

chain forming characteristics, granularity, and size of MF06036 early biofilm cells. 

Investigations into MIC of antimicrobials have previously demonstrated a profound effect 

on enterococcal cellular morphology (Chau et al., 2011). Using flow cytometry to analyse 

stress from daptomycin and vancomycin, Chau et al. (2011) determined that 0.25 xMIC 

(0.5µg/ml) therapy increased bacterial cell size (up to 300% for resistant isolates) 

significantly (p=0.02). Additionally, confocal microscopy revealed that bacterial chain 

dysmorphology was apparent after just 60 minutes of 1 xMIC treatment. Vancomycin sub 

inhibitory concentrations in the resistant MF06036 were providing some irregularities 

when imaging for biofilm experiments (data not shown). Combining these phenomena 

with the observed changes identified under nutrient deprivation, investigations into the 

effects of sub inhibitory concentrations of vancomycin on MF06036 were investigated, 

as seen in figure 5.4.13.  

 

MF06036 under planktonic growth conditions existed in chain form, but when established 

in biofilm, chain form is mostly abolished (figure 5.4.13(a)). The decreased cell density 

associated with cellular starvation are visible (subfigure (b)). Conditioning biofilm 
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growth with sub MIC of vancomycin retains cell density but it appears that cell density is 

altered, and cell size appears increased. Pre-conditioning MF06036 cells during growth 

prior to, and during biofilm growth yielded the most striking changes to cellular 

morphology. The formation of chains was observed in the biofilm state. Babic et al. 

(2011) demonstrated that cells can propagate genes by conjugation down through the 

chain from the lead member. This therefore could be a defence mechanism employed by 

MF06036 in response to bactericidal stress. Gholia et al. (2004) demonstrated reduced 

adhesion to uroepithelial cells in Klebsiella pneumoniae in the presence of ceftazidime 

and ofloxacin. When treated with amikacin, K. pneumoniae demonstrated increased 

adhesion to uroepithelial cells. Although K. pneumoniae and E. faecalis are unrelated 

microorganisms, specific antimicrobial stress can affect bacterial cellular ability to adhere 

to biotic surfaces. It is therefore possible that antimicrobial stress can affect biofilm 

formation ability. 

Regarding MF06036 under vancomycin stress, there appears to be a reduction in biofilm 

forming ability with reduced cell numbers. This could be explained by the increase 

chaining, death rates of subpopulations of cells without vanA gene presence, or an effect 

on adhesion as described by Gholia et al. (2004). With visible increases in cell size as 

observed in figure 5.4.13(d) analysis of cell sizes were carried out by quantifying images 

in Image J.  It was revealed that there was no significant difference (p>0.05) in cell size 

between starvation and normal growth conditions. Hartke et al. (1998) demonstrated that 

E. faecalis cells do not decrease in size with starvation stress. Vancomycin additions 

significantly impacted the cell size of the tested enterococci. Vijaranakul et al. (1995) 

demonstrated increases in S. aureus cells under high levels of ionic stress, and Paulander 

et al. (2014) confirmed that bactericidal antibiotics increase bacterial cell size. These 

reports confirm that it is possible for Gram positive bacteria to increase in cell size under 

certain stress and corroborates what was observed in this study.  
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After biofilm formation visual characterisation experimentation, it became apparent that 

the GBA could be utilised for cytogenetic identification of enterococcal biofilm cells 

without histological processing. Therefore, a fluorescent in situ hybridisation (FISH) 

assay was devised for cytogenetic investigations. 

 

5.5.12. Creation of a fluorescent in situ hybridisation protocol for the examination 

of Enterococcus cells in biofilm states. 

FISH studies into enterococci have been accomplished previously (Waar et al., 2005; Al-

Ahmad et al., 2009). However, there is no simple way to identify E. faecalis and E. 

faecium in biofilms. The GBA was a suitable model to allow for examination of 

enterococcal presence in biofilm using FISH, therefore a method was devised and 

optimised for the identification of enterococci in biofilm state. Probes were sourced from 

a study that used a rapid identification assay to identify Enterococcus species 

(Wellinghausen et al., 2007). Clear cellular localisation of FISH probes for E. Faecalis, 

E faecium and a general bacteria (EUB) probe were all working for enterococcal biofilm: 

optimised for minimal background signal and zero instances of autofluorescence as 

observed in figure 5.4.14. This method could be applied to any in situ investigations of 

multispecies biofilms to examine any interactive roles between species. 

 

5.5.13. Utilisation of FISH to detect vancomycin resistant E. faecalis in the gene 

frame biofilm apparatus (GBA). 

Visualisation of enterococcal genes inside biofilm was demonstrated in figure 5.4.14, 

therefore investigations into the examination of mobile genes was attempted in 

enterococci for the first time. The vanA gene is one of the most prolific and clinically 

relevant genes relating to enterococcal infections and is widely studied, as described in 

Gilmore et al. (2014). Investigations into the presence of this gene in biofilm would be of 
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value to gain a deeper understanding of the conjugal interactions of transferring vanA 

inside bacterial biofilm 

 

Initial investigations were unsuccessful. Success in the laboratory for this investigation 

was accomplished through a multi-probe approach targeting the same gene. The assay is 

specific, as seen with the negative binding control tested with the application of FISH 

probes to the vanA negative E. faecalis MF04010. Probes designed to bind to the vanA 

plasmid bound gene, demonstrate positive staining not observable in previous 

experiments with a single probe approach. The staining patterns observed on MF06036 

are entirely novel. Fratricidal sub populations of MF06036 allowing for ease of access of 

probes to the genes within the cells would be a potential explanation for the observation 

of heterogeneous instances of bright cells found within established biofilm conditioned 

with vancomycin. This explanation coincides with explanations from Thomas et al. 

(2008), whereby they described pockets of eDNA staining spread heterogeneously 

throughout the biofilm. Seneviratne et al. (2017) suggested that the phenomenon of 

consistent enterococcal antibiotic resistance in biofilm state regardless of biomass, could 

be the result of a population of highly resistant cells spread within the biofilm. These 

“persisters” were described by Lewis, (2008). Cook et al. (2011) described the 

phenomenon of heterogenous increases in enterococcal plasmid copy number in biofilm 

state. These cells would then have larger copy number genes with the potential to rapidly 

propagate plasmids to recipient isolates, as well as being resistant to corresponding 

antibiotics. It is believed that bacteria may exist in this form to keep most of the 

metabolically intense conjugation machinery in a small number of individuals until 

conjugation is required. The novel staining patterns in figure 5.4.15(b) are characteristic 

of the descriptions of persister cells on a biofilm exposed to antibiotic stress.  

Hybridisation assays were created with influence from Waar et al. (2005); who were early 
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adopters of examination of enterococcal morphology and spatial localisation in situ with 

embedded biofilm samples. This assay utilised 16S rRNA probes for speciation of 

enterococci, using the modified the Waar et al. (2005) method for rapid identification of 

pheromone genes (iCF10 compliment for the pCF10 tetracycline plasmid) in planktonic 

enterococci. This protocol also used probes with high melting temperatures (77oC and 

79oC) and selection permeabilised cells using propionium iodide staining for flow 

cytometry. Whilst the method described in this PhD investigation involved growing 24-

hour biofilm and application of a 24-hour probe protocol; improvements in speed of the 

assay and application to affixed pre-established biofilms are entirely possible. 

 

Zwirglmaier et al. (2003) were the first group to develop a FISH method for identification 

of low copy number genes, with less than 10 copies per cell, inside plasmids. They were 

able to detect low copy number genes for beta lactamase AMR genes in E. coli and coined 

the assay name ‘recognition of individual genes’ (RING) FISH. Whilst the assay was 

innovative, it required in vitro transcription of polynucleotide probes and in-house 

labelling with fluorochromes interspaced every 10-20 nucleotides. This assay yielded 

probes up to 1200 base pairs long which gave a bright signal when imaged with 

fluorescence. Due to the maximum size of probes and their degree of size variation, the 

staining pattern was that of a halo localised around the periphery of cells. This assay has 

never been applied to enterococci and whilst it is novel, its adoption has not become 

widespread as a microbiological FISH assay. The multiprobe oligonucleotide FISH 

developed in this research project improves upon some of the limitations imposed by 

RING FISH. Probes were created using a commercial supplier, were all the same length 

and had the same annealing temperatures. These improvements were crucial in the 

identification of vanA within E. faecalis MF06036 without the need for extensive 

molecular approaches.  
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Using oligonucleotide FISH in this fashion has never been used for identification of 

mobile element bound AMR genes in planktonic enterococci, let alone in biofilm cells, 

and reflects the ability of this assay to identify low copy number genes. 

The goal of this research study was to visually assess, true, repeatable conjugation events 

inside the biofilm of enterococci. The GBA was utilised successfully to analyse biofilm 

in situ. The created biofilms were of adequate size to afford sufficient precision between 

experiments. Therefore, the GBA was further modified to be able to recover scrapings for 

biofilm conjugation investigations. The GBA had an additional advantage, in that prior 

to scraping; biofilms could also be processed for microscopic visualisation of conjugation 

using all the assays developed in this research project thus far. 

 

5.5.14.  Recovery of transconjugants from inside enterococcal biofilm. 

The GBA allowed for fully contained, sterile enterococcal biofilms to form. These 

reactions could be opened and resealed under sterile conditions to allow for multi-stage 

conjugation assays to be performed in biofilm, whilst eliminating planktonic enterococci 

from any results. As T1 was the first isolated transconjugant and had the most relevant 

vancomycin resistance phenotype, it was used, along with its parental isolates to assess if 

the GBA had an ability to capture biofilm conjugation. The first assay followed the 

protocol illustrated in figure 5.4.14, whereby several biofilms were created with either 

MW01105Rif or MF06036, washing the biofilms and introducing the conjugation partner. 

As seen in figure 5.4.17, successful isolation of transconjugants from enterococcal 

conjugal biofilm was possible. The nature of the protocol (Figure 5.4.16) ensures that 

planktonic conjugation is eliminated, due to the removal of all non-adherent cells prior to 

the addition of the conjugation partner. This is the first observation of true enterococcal 

conjugation on or within biofilm in enterococci.  
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Biofilm containing both parents introduced at the same time was also created (mixed 

biofilm). This practice of having biofilms with both conjugation partners has been 

reported previously using circular aclar membranes in six-well plates to grow biofilm 

using BHI broth (Cook et al., 2011). However, their data cannot account for the role of 

planktonic conjugation reactions occurring prior to, and during the early formation of 

biofilm. The potential role of planktonic conjugation can be observed in figure 5.4.17 

where the mixed biofilm produced significantly more transconjugants (p 0.002) than the 

MF06036 biofilm. As the isolates were selected from agrarian ecosystem where nutrient 

conditions can be poor (compared to laboratory conditions) and biofilm formation can be 

altered based on these conditions, repeat biofilm conjugation experiments were 

performed under nutrient deprivation (cell starvation) using the same depleted media that 

was used in figure 5.4.1. The result of this experiment (figure 5.4.17) yielded conjugation 

recoveries roughly 50% lower than the experiment performed under standard 

experimental nutrient conditions. Marcinek et al. (1998) reported that enterococcal 

conjugation under the natural conditions present within municipal sewage treatment (and 

animal GI tract) such as low temperature, oxygen saturation and various toxic chemical 

compositions decreased significantly. Transfer of the sex pheromone plasmids pAD1 and 

pIP1017 had a 105 lower conjugation rate under these “natural conditions” compared to 

laboratory conditions. Transfer frequency was ten-fold lower for Tn916. Temperature and 

nutrient availability were the only factors altered in our laboratory experimentation and 

the observed reduction in conjugation frequency follows the trends observed by Marcinek 

et al. (1998). The reduction in efficiency is secondary to the significance of conjugation 

in any form in our system. The novelty of this experiment lies in the fact that even under 

nutrient deprivation, these enterococci form biofilm, and they successfully conjugate 

AMR phenotypes under some of the stress observed in the agrarian environment. These 
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findings corroborate the statements from Marcinek et al. (1998), where they conclude that 

conjugation should take place under “natural conditions”. 

 

Cook et al. (2011) grew a mixed biofilm where mating most likely occurred in the liquid 

phase, as sex pheromone signalling, especially pCF10 has been shown to occur 

planktonically. Elimination of the variables had not been carried out therefore conclusions 

can be made that the majority of the observed effect could have occurred during the first 

four hours of growth that the authors allowed for mixed conjugal partner biofilm 

formation during experimentation. The GBA method used in this research study grew 

single partner biofilms, and then added the conjugation partner after removal of non-

adherent biofilm cells. Secondarily Cook et al. (2011) grew mixed biofilms in growth 

media for 24 hours, where transconjugants can replicate freely increasing pre-biofilm 

transconjugant CFU; whereas in this study conjugation was carried out without addition 

of growth media after addition of the second partner and even a total starvation 

experiment; which yielded biofilm transconjugants analogous to what may be conceived 

to happen in the extra enteric environment. 

 

To date this is only the second report of enterococcal conjugation recovery from a biofilm 

state after Cook et al. (2011) however, it is the first report to demonstrate definitive in 

vitro biofilm conjugation. The experiments were performed on environmentally isolated 

E. faecalis strains with a spontaneous rifampicin mutant recipient. The experimental 

conditions employed in this study are closer to the conditions present in the environment 

from which these enterococci were isolated, than the laboratory conditions found in the 

literature. A continuation of this research would aim to further simulate the environmental 

conditions at the isolation sites of the enterococci used here. 
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5.5.15. Using double selection with rifampicin and vancomycin to eliminate 

conjugative partners but not their transconjugant in a biofilm state. 

After confirming biofilm conjugation through the recovery of transconjugants by means 

of destruction and homogenisation of biofilm, attempts to observe the transconjugants 

without removing them from solid phase were carried out. After significant optimisation 

and testing various approaches to experimental design, the final protocol of eliminating 

parental isolates in situ and visualising transconjugants with fluorescent stains was 

employed. The first step in the process of successfully visualising T1 was applying 

selection conditions to the parental isolates MF06036 and MW01105Rif and analysing the 

cellular effects. Therefore, rifampicin and vancomycin were applied to single species 

reactions for 24 hours, and enumerated with live dead fluorescent staining as shown in 

figure 5.4.18. The results of this experiment yielded information on the survivability of 

T1 over its parents under selection conditions. The concentration of double selection used 

prevents the growth of the parental isolates on TSA plates.  

 

5.5.16. Application of triple selection (lysozyme in tandem with double antibiotic 

selection) to destroy conjugative partners but not their transconjugant.  

The double selection proved effective at killing and inhibiting parental isolates. However, 

the cells were still present in the system and for this assay to be effective, parental isolates 

needed to be eliminated. Further investigation into the removal of those isolates whilst 

leaving the transconjugant wholly intact was initiated. An additional biocidal agent was 

required to remove all traces of live staining to improve the assay. Lysozyme was chosen 

as it hydrolyses the N-acetyl glucosamine, N-acetyl muramic acid bond in peptidoglycan, 

therefore weakening the bacterial cell wall leading to cell lysis (Pellegrini et al., 1992). 

Lysozyme is effective against Gram positive bacteria and used in combination with 

vancomycin, the effect of bactericidal activity and (cellular destruction) should be 
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multiplied (Nash et al., 2006). As seen in figure 5.4.19 (a) lysozyme alone had MIC 

values greater than 8 and less than 16 mg/ml; these values fall within the previously 

observed ranges for enterococci (Varahan et al., 2013). MW01105Rif and T1 had similar 

MIC’s which was expected. Interestingly when lysozyme was added in tandem with 

antibiotic double selection the MIC’s for lysozyme were reduced. The synergistic effect 

of both double selection and lysozyme was apparent, and revealed the same trend of 

inhibition observed in figure 5.4.17. Using lysozyme in combination with antibiotic 

selection has not been reported for enterococci before. T1 had a combined MIC four times 

higher than MW01105Rif and eight times higher than MF06036. Therefore, validity of the 

assay was confirmed.  

The experiment shown in figure 5.4.19 (a) was repeated for 5.4.19 (b) with an additional 

data bar type, representing compromised cells. These were bacteria which had cellular 

dysmorphia or were destroyed. Using fluorescence to measure the effects of selection was 

adapted from Chau et al. (2011) where they microscopically visualised the action of 

vancomycin and daptomycin sub-MICs on vancomycin resistant (vanA, and vanB) and 

susceptible E. faecalis and E. faecium. Their VRE isolates had similar MIC’s to the VRE 

isolates used in this thesis (256 and 512µg/ml). The examples of the variation in positive 

(green) staining are shown in figure 5.4.19 (c-e).  MW01105Rif had a total kill count with 

zero positive staining, and MF06036 had 3% positive staining, however when factoring 

in compromised cells a total kill count was revealed. T1 easily survived these extreme 

selection conditions. This method has proven to effectively eliminate the parental isolates 

whilst leaving the majority of transconjugant cells unharmed. The work outlined with this 

protocol highlights the limitations of Live/dead imaging, and that it is possible to visualise 

transconjugants using a simple, cell permeable/impermeable stains. Thus, FISH assays 

were being created to aid in the detection of enterococcal transconjugants in this system. 
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5.5.17.  Microscopic visualisation of in situ conjugation in biofilm using selection, 

Live/dead imaging and fluorescent in situ hybridisation. 

It is well known that enterococci have high level resistance to lysozyme (>62mg/ml) (Le 

Jeune et al., 2010). The enterococci used in the triple selection assay were at the lower 

end of the lysozyme resistance spectrum with a maximum MIC of 16mg/ml. The effect 

of lysozyme was compounded when added as a third agent for the killing and destruction 

of cells. Lysozyme can elicit bactericidal degradation of the cell wall of enterococci 

(Varahan et al., 2013). The action of lysozyme functions to digest glyosidic bonds within 

peptidoglycan on Gram positive bacteria regardless of cell metabolic activity (Davis and 

Weiser, 2011). The effects of all three antimicrobial selection agents used in this 

experimentation with sufficient time, would be able to degrade susceptible enterococci to 

such an extent that cellular morphology would be rendered unrecognisable compared to 

resistant cells. 

This triple selection assay has revealed for the first time transconjugants existing in situ 

biofilm that were created in the system. Whilst the assay has limitations (potential human 

error in the perception of normal/abnormal cellular morphology), it remains a cost 

effective, low technology, viable method, to investigate the novel HGT interactions that 

are now known to naturally occur in biofilms with little external interference.  

 

Live dead imaging is a useful tool for determining cell permeabilization, especially with 

vancomycin (Chau et al., 2011). Increases in red staining does correspond to cell death 

(Berney et al., 2007). However, it is still possible to visualise dead cells as false positive 

(live) cells, therefore a comprehensive FISH protocol was devised to stain 

transconjugants in situ. As one of the transconjugants was the result of an interspecies 

reaction, FISH probes to select for the recipient E. faecium would immediately exclude 

all donor isolates. Applying selection conditions to eliminate the remaining recipients 
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would leave only the transconjugant inside the biofilm. The reasoning for this selection 

comes from the work by Malic et al. (2009), where they used FISH probes in combination 

with a general DNA stain (DAPI) to differentiate E. coli (DAPI staining minus probe 

fluorescence) from S. enterica (red probes) and L. monocytogenes (green probes) in multi-

species biofilms.  

Applying the ENU 1470 E. faecium FISH probe to a conjugal biofilm of ST01109Rif and 

MF06036 after double selection with tetracycline and lysozyme yielded a positive result 

(figure 5.4.18 (e + f). Sub-figure (e) showing total cellular staining of surviving 

enterococci (MF06036 and transconjugant T3) and in sub-figure (f) transconjugant T3 is 

highlighted with the E. faecium FISH probe. The blue Hoechst staining shows all cells 

organised in clusters, clumped together and with the overlay of red FISH staining, the 

transconjugants can be identified and appear to be in contact with the donor cells.  

Utilising FISH, in tandem with the selective killing of parents, freshly created 

enterococcal transconjugants were visualised inside biofilm for the first time. This FISH 

assay is wholly adaptable, and if specific sequences are known to exclusively lie within 

an isolate of interest, then fluorescent visual selection filters can be applied to this system 

in a similar fashion more specific and cost effective than immunofluorescence.  
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From the mid-20th century bacterial infection of humans had been well controlled with 

the development and use of antibiotics (Aminov, 2010). Resistance would emerge, but so 

too would new antibiotics. Synthetic antimicrobial compounds were created as an 

effective replacement therapy for the ‘older’ antibiotic resistant infections that were 

becoming more prevalent (Walsh, 2003). As time passed the healthcare and 

pharmaceutical sector evolved their strategies to keep up with bacterial antibiotic 

resistance evolution (Davies and Davies, 2010). Mortality associated with bacterial 

infection in the developed world practically disappeared as infection control was highly 

successful (Dowling, 1977). Examples such as the mass fear of death from tuberculosis 

(“consumption”) that plagued western society in the late 19th and early 20th century 

vanished (Bloom and Murray, 1992). Generations of people were raised in the golden age 

of antibiotics with little to no first-hand experience of serious bacterial infection (Levy 

and Marshall, 2004).  

The significance of the evolution of antibiotic treatments went mostly unnoticed to the 

public. Antibiotics became synonymous with mild afflictions such as head colds and other 

minor self-clearing infections (Hawker et al., 2014). These generations of people had 

limited understanding of the lifesaving origins of antibiotics. As western society 

modernised throughout the golden age of antibiotics, these drugs were essentially 

repurposed, overused prophylactically, and their use spread into various non-therapeutic 

functions such as growth supplementation in livestock farming (Dibner and Richards, 

2005, English and Gaur, 2010). This format of introduction, control of disease and then 

misuse of antibiotics has followed every society during proliferating prosperity (Levy and 

Marshall, 2004). Efforts to create new antibiotics by pharmaceutical companies were 

practically abandoned and now the cycle of new antibiotics to combat old antibiotic 

resistance has been essentially broken (Bassetti et al., 2013; Livermore, 2004; Fernandes, 

2015). Whilst efforts are being undertaken in the developed nations of the world to curtail 
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the antibiotic crisis and prevent further development of totally drug resistant bacteria; 

developing nations are decades behind this rationale as they continue to facilitate the 

emergence of these completely untreatable bacterial infections (Carlet et al., 2014; Gough 

et al., 2014). 

Antibiotics and bacterial antibiotic resistance co-evolved as a means of competition for 

space and nutrients between prokaryotic organisms, and as such they existed for a long 

time before the exploitation of antibiotics by humans (Wright, 2014). Humans are 

responsible for creating selective pressures conducive for the evolution and survival of 

antibiotic resistance as a ubiquitous phenotype of bacteria (Laxminarayan et al., 2013). 

Horizontal gene transfer of genetic information including antibiotic resistance genes is 

the primary way that bacteria pass on antibiotic resistance traits (Cabezón et al., 2015; 

Polz et al., 2013). The evidence for this process is overwhelming as bacteria can easily 

and repeatedly conjugate DNA under in vitro laboratory conditions (Ravenhall et al., 

2015; Soucy et al., 2015). In the natural environment, empirical identification of 

horizontal gene transfer events has been difficult to obtain (Woolhouse et al., 2015). In 

the majority of cases these events are assumed based on identifiers such as the existence 

of specific genes and organisms associated with HGT such as E. faecalis and E. faecium 

(Woolhouse et al., 2015; Rizzo et al., 2013, Gillings, 2017).  

 

The aim of this thesis was to assess conjugation of antibiotic resistance genes amongst E. 

faecalis and E. faecium to establish if these bacteria can propagate antibiotic resistance in 

the natural environment. Research has mostly focused on the prevention of enterococcal 

biofilm rather than to focus on the processes which go on within (Gilmore et al., 2014). 

There are some reports which discuss the fundamentals of enterococcal biofilm (Leuck et 

al., 2014; Dunny et al., 2014; Barnes et al., 2012).  
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All enterococci used in this thesis were isolated from an agrarian waterway ecosystem 

and had the potential to encounter each other in the environment. They also possessed 

representative AMR phenotypes based on initial identifications. The biggest limitation on 

research investigations into HGT processes in the environment is the great number and 

variation of bacteria that exist in these environments (Aminov, 2011; Thomas and 

Nielsen, 2005). As enterococci are listed as an identifier for high potential for conjugation 

to occur (Palmer et al., 2010), selecting for a subgroup of unique individuals based on the 

criteria of AMR profile, biofilm formation ability and clumping phenotype allowed for 

the most efficient screening of the potential for capture of HGT of AMR between 

enterococci.  

 

Where possible this thesis was designed to allow conjugation of antibiotic resistance 

genes to occur as naturally as possible to emulate the typical conditions present to the 

bacteria during HGT processes. There was only one manipulation placed on the 

enterococci in this study: spontaneous generation of rifampicin resistance in three 

potential recipient isolates: MW01105, ST01109 and MF02043 denoted with Rif. This 

kind of spontaneous mutation created in a recipient Enterococcus for the purposes of 

capturing conjugation has been accomplished by Dunny et al. (1978) with a rifampicin 

and fusidic acid mutant E. faecalis OG1RF. Jacob and Hobbs, (1974) identified another 

spontaneous enterococcal rifampicin mutant JH2-2. Kristich et al. (2007) created a 

spectinomycin resistant spontaneous mutant E. faecalis OG1Sp.          

Several conjugation experiments were attempted using isolates with unique AMR 

phenotypes, with varied success (as discussed in chapter four) before creating the 

rifampicin resistant mutants. Arguments can be made that genetic manipulation of 

conjugal plasmids may diminish conjugation efficiency during HGT processes as 
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evidenced by Chen et al. (2008). Whereby, mutations and deletions of the putative 

ATPase related to Gram negative type 4 secretion systems (pcfc) in the pCF10 plasmid, 

reduced conjugation efficiency by at least 24-fold (max: 580,000-fold). However, 

Enterococcal conjugation systems are regulated within plasmids and self-transferable 

mobile genetic elements. Rifampicin mutations occur in the RpoB gene which lies within 

the genomic DNA of enterococci and encodes the beta subunit of RNA polymerase 

(Drancourt et al., 2004). Both OG1RF and JH2-2 are derived from clinical isolates and 

they have served the same function, as a recipient for enterococcal conjugation of 

antibiotic resistance genes for 40 years without issue. These two conjugation strains are 

functionally the same as MW01105Rif, ST01109Rif and MF02043Rif, both being created 

from susceptible isolates from differing sources. Therefore, usage of the three rifampicin 

mutants in this study continued without reservations of reduced or ineffective conjugation 

possibilities.  

The rifampicin mutants displayed no notable reductions in growth as compared to 

previous growth with the original isolates (data not shown). Enne et al. (2004) described 

no disadvantages to the rifampicin mutants beyond the laboratory with minimal affliction 

to fitness. With the minimal effects of spontaneous rifampicin generation described by 

Enne et al. (2004) and the repeated use of rifampicin mutants from Dunny et al. (1978) 

and Jacob and Hobbs, (1974) to carry out conjugation studies, the three rifampicin 

mutants generated in this study were used for conjugation testing. This rendered all 15 

isolates compatible for conjugation testing, as explained in chapter four. 

An interesting finding from gathering gene information from chapter three was that gene 

nomenclature for enterococci varies. The aggregation gene, has several names: agg, prgB 

and asa1 (Daniels, 2011; Vankerckhoven et al., 2004; Chung and Dunny, 1995). 

Research investigations have treated these genes as unique and even attribution of 
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different functions to them has occurred (Choi and Woo, 2015). When assessing the 

primers from Choi and Woo, (2015), it was identified that the primer sets amplify the 

same gene. The conclusion from this finding is that published primer sequences should 

be cross checked from exact specificity to the gene that it will amplify. 

 

There are several investigations whereby enterococcal biofilm studies comprise 

inevitable biofilm destruction to analyse experimental results (Leuck et al., 2014, Cook 

et al., 2011). The identification and enumeration of conjugation inside biofilm carried out 

by Cook et al. (2011) relied on EDTA removal of enterococcal biofilm cells into 

suspension, and plating on selective agar, destroying the biofilm in the process. This is a 

valuable assay for rapidly identifying conjugation inside biofilm and was utilised in 

chapter five to initially identify conjugation inside enterococcal biofilm. However, there 

remains a lot of ambiguity in the method, as to whether conjugation occurred before, 

during or after establishment of biofilm. Whilst this end-point assay has proven to be 

invaluable in the pursuit of knowledge on the inner processes of enterococcal biofilm 

communities in the literature and in this study, the visualisation of such interactions would 

provide definitive results on the transfer of antibiotic resistance from one isolate to 

another. The different results obtained in chapter 5 between the standard bacterial biofilm 

assays and the GBA optimised for the laboratory enterococci highlighted the importance 

of biofilm morphology. Any assay that required manipulation of the biofilm will, by 

definition, destroy the morphology and overlook potentially important aspects of cellular 

interactions. Visualisation in situ would minimise disturbance of biofilm morphology and 

cellular localisation, similarly to fixation of tissues as observed in the investigations of 

extracellular structure production during enterococcal biofilm formation by Barnes, 

(2012). This had never been accomplished before and was therefore investigated in this 
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study. Time was taken to devise the gene frame biofilm apparatus (GBA) (discussed in 

chapter five), to accomplish potential in situ investigations. One of the major advantages 

of the GBA was that the enterococci formed an even biofilm coating over the entire 

surface area of the GBA chamber.  

The GBA was devised primarily as a visualisation aide for microscopic investigations. 

Fluorescence based tools were essential for distinguishing E. faecalis and E. faecium 

species, extracellular polymeric substance, DNA content of individual cells and even the 

vanA vancomycin resistance gene inside biofilm. Fluorescent in situ hybridisation was 

designed for resolving the transconjugants from any conjugation events inside biofilm, 

versus other fluorescence assays. The advantage with FISH was that the probes were 

small (typically 10-15bp) and could be 5’ tagged with a range of fluorophores, making 

colocalization studies possible in a microorganism based protocol. Additionally, probes 

could be targeted to any gene desired. FISH has been well established in detecting specific 

bacteria in infected tissues and biofilms for several years, utilising probes devised from 

primer sequences used in 16S or 23S rRNA PCR identifications of bacteria (Harmsen et 

al., 1999; Bezirtzoglou et al., 2011; Swidsinski et al., 2005). Waar et al. (2005) used 16S 

rRNA target oligonucleotide probes to target specifically, E. faecalis and E. faecium in 

blood cultures, faecal material and biofilm. Fazli et al. (2014) used peptide nucleic acid 

probes to individually target Pseudomonas aeruginosa, Staphylococcus aureus, 

Streptococcus sp. and Micrococcus sp with multiplex probe conditions in multispecies 

biofilms. FISH is therefore a powerful tool for examination of bacteria inside biofilm. 

Evidence from Warr et al. (2005) and Fazli et al. (2014) demonstrate the ability to easily 

identify bacteria in biofilm by species alone, by adoption of primer sequences that target 

genes of interest. Application of this assay to enterococcal conjugation inside biofilm had 

never been published before and could be easily modified to target genes of interest for 

analysis inside enterococcal biofilm. 
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Results from the updated Tremblay and Archambault, (2013) conjugation protocol, 

(where isolates were mixed at a ratio of 1:1 after the donor was induced with pheromone 

supernatant for 20 minutes and plated on selective media for 48 hours), were varied and 

inconsistent with literature. Successful isolation of transconjugants, as defined by the 

selection procedures and controls was achieved after a selection incubation period of 96 

hours. When comparing this data to the literature, maximum conjugation selection 

incubations are 48 hours with higher recovery of transconjugants (CFU’s) using the same 

methodology (Cook et al., 2011; Tremblay and Archambault, 2013). Conjugation was 

only successful with an extended incubation time in selection (96 hours versus their 48 

hours), transconjugant per donor efficiencies were inefficient, x10-10/11 compared to their 

Tremblay and Archambault, (2013) x10-3. The donor strain (E. faecalis strain 543) used 

by Tremblay and Archambault, (2013) had similar resistance phenotypes (erythromycin, 

streptomycin, tetracycline) to the donor used in this study (MF06036) and were both 

isolated from poultry litter. They used the rifampicin resistant mutant JH2-2, whereas in 

this study, recipients were selected based on unique resistance traits of selected partners. 

Whilst experimental controls revealed no contamination, the phenotypic identification 

tests as described in the general materials and methods were carried out on the 

transconjugants identifying them as enterococci. Conclusions could therefore be made 

that these presumptive conjugation selection isolates were likely transconjugants; 

however, the failings of this protocol to match the observations detailed in the literature 

could not be ignored.   

There were variations in the methodology for conjugation between enterococci, usually 

the conjugation substrate. The previous method relied on suspensions of conjugation 

partners to be brought into contact for mating and plated directly on to selection. The 

second conjugation protocol had an additional step which involved the use of a solid 

phase growth plate preceding selection, incubated for 24 hours (Cook et al., 2011). The 
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rifampicin resistant potential recipient mutants were used in this assay as a recipient. We 

hypothesised that the chances of successful conjugation would be greater with reactions 

whereby the potential recipients had antibiotic resistance genes located chromosomally, 

so that potential gene transfer was one directional. This improved protocol eliminated the 

issues discovered whilst using the initial conjugation method.  

Transconjugants were isolated using this approach, one of which was a cross species 

transfer from E. faecalis into E. faecium. Conjugation transconjugant donor efficiencies 

recovered from the four conjugation reactions had maximum efficiencies of  x10-1 , which 

was congruent with the efficiencies of x10-2 and x10-3 carried out by Cook et al. (2011) 

and Tremblay and Archambault, (2013) respectively. Donor isolate MF06036 was 

responsible for the creation of two transconjugants, T1 and T3, with recipients 

MW01105Rif and ST01109Rif. This suggests that MF06036 contains at least two different 

mobile elements that were transferred individually in separate reactions to other 

recipients. Additionally, the interspecies transfer from farm associated E. faecalis 

MF06036 to water catchment-associated E. faecium ST01109Rif has been reported for the 

first time. Enterococci can possess multiple mobile elements with differing sets of AMR 

genes on them, however this is the first incidence where different phenotypes were 

transferred to two different recipients from the same donor (Chung and Dunny, 1995, 

Choi and Woo, 2015, Tremblay and Archambault, 2013). Multiple AMR 

phenotypes/genotypes were transferred stably, which was a rare discovery from 

enterococci of animal origins. T1 received four antibiotic resistance phenotypes 

(vancomycin, erythromycin, trimethoprim and teicoplanin) from MF06036. Vignaroli et 

al. (2011) were one of the few groups to identify the rare co-transfer of multiple 

(vancomycin and erythromycin) resistance in enterococci from pig isolates to human 

isolates. The data obtained from these conjugation investigations was published in BMC 

Microbiology (Conwell et al., 2017). 
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When examining the MIC values for the four transconjugants it was discovered that the 

MIC values for some of the non-transferred AMR had changed. T1 had not received 

tetracycline resistance phenotypes, nor genes from the donor MF06036; however, its base 

MIC increased fourfold. The same was noted with T2 to chloramphenicol, and T4 to 

vancomycin, with doubling of their base MIC to these antibiotics. Alterations to 

multidrug efflux could cause changes in resistance to families of antimicrobials. Several 

of the tetracycline genes (tetL, tetK) code for putative efflux proteins (Molale and 

Bezuidenhout, 2016). Knowledge on Enterococcus drug efflux is limited, however 

Hürlimann et al. (2016) identified two presumptive ABC-type multidrug transporters in 

E. faecalis and postulated that these analogues may be capable of upregulated multidrug 

efflux. At this stage, research investigations are only beginning to investigate multidrug 

efflux mechanisms.                                                   

Rifampicin mutants in other genera of bacteria have been shown to alter the susceptibility 

of tested strains to other antibiotics. Cui et al. (2010) showed increased resistance to 

vancomycin and daptomycin with rifampicin rpoB S. aureus mutants. Louw et al. (2011) 

demonstrated reduced susceptibility to ofloxacin when rifampicin was used on a 

rifampicin resistant rpoB531 M. tuberculosis mutant. These insights share similarities to 

the conditions exposed to the enterococcal transconjugants used in this thesis. Further 

investigation would be required to uncover the mechanism of this phenomenon. 

Novel gene transfers were observed in the enterococci; however, one of the aims of this 

thesis was to test the probability of these observed interactions occurring under conditions 

analogous of the agrarian environment from which the bacteria were isolated. The 

conjugation reaction between MW01105Rif and MF06036 was successfully replicated 

under conditions of significant reductions in nutrient availability (starvation) and 

temperature (4 and 20oC based on unpublished surveillance data acquired from river 
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catchments across the province of Ulster). The reductions in temperature had a 

corresponding reduction in conjugation efficiency; however, the positive identification of 

conjugation at temperature ranges consistent with the typical waterway sites across the 

local province add merit to the feasibility of opportunistic environmental conjugation. 

These results agree with the data published by Marcinek et al. (1998), whereby 

enterococcal conjugation was successful in bioreactors exposed to the natural conditions 

of municipal sewage plants associated with the natural environment. Which include low 

temperatures (8-25oC), variations in nutrient availability, oxygen saturation (1.4-

10mg/ml) and chemical stress (heavy metals). Our conjugation efficiencies at low 

temperature (4oC and 20oC) and nutrient availability (starvation) were 3.3±1x10-12 and 

7.4±1.5x10-7, compared to efficiencies of x10-7 to x10-9 for conjugative elements at 

slightly higher temperatures of 8 to 25oC with limited data on nutrient availability due to 

the setup of the system.  

 

Conjugation under environmental conditions demonstrated that bacterial HGT could 

occur if specific circumstances are met: such as two compatible strains coming into 

contact for long enough; or in sufficient numbers to allow conjugation to occur. 

Attachment assays and conjugation assays under nutrient deprivation and normal water 

conditions were carried out in tandem with S. lacustris and E. fluviatilis. Histological 

analysis identified MF06036 located through the entirety of the mesohyl of the sponges 

using the customised FISH protocol with probes specific for E. faecalis; additionally, 

MF06036 conjugated with MW01105Rif. Collagen is an important component of sponge 

mesohyl and it is known that enterococci can bind to collagen (esp) and produce 

gelatinase (gelE) (Thurlow et al., 2010). The ability of enterococci to bind to biotic 
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substrates composed of collagenous material may facilitate their binding into sponge 

tissue and may even enable them to feed on collagen (Alexander et al., 2015).  

The conjugation reactions that occurred in sponge mesohyl had recovered efficiencies of: 

E. fluviatilis - 1.26x10-6 per sponge, and S. lacustris - 1.05x10-6 per sponge at 20oC in 

water. These efficiencies were 6-7-fold higher compared to solid phase conjugation under 

the same conditions (20oC under nutrient deprivation). The enterococcal conjugation 

efficiencies reported by Marcinek et al. (1998) in activated sludge basins during summer 

(20-25oC) were 3.4x10-1 for plasmid pAD1, 1.1x10-1 for plasmid pIP1017, 1.9x10-7 for 

plasmid pIP501 and 9.3x10-9 for transposon Tn916. They stated that conjugation under 

these natural conditions reduced conjugation efficiency by 4 to 6-fold. Their conjugation 

microcosm that was used in the activated sludge basins varied in length from 15 to 45cm 

making it a much larger surface for conjugation to occur compared to a single sponge 

hatchling (0.5 to 48mm2). Comparing the conjugation of enterococci in sponge to sewage 

basins under similar temperatures, it appears that sponge offers enhanced conjugation 

based on higher conjugation efficiencies versus no sponge and solid phase conjugation at 

a similar temperature. Conjugation results are comparable to those obtained by Marcinek 

et al. (1998) and considering the small size of the sponge hatchlings, enterococcal 

conjugation efficiency is high (water only controls were on average 600-fold less 

efficient).                    

The introduction of enterococci into wastewater treatment by Marcinek et al. (1998) 

provided evidence for the feasibility of conjugation in the natural environment. 

Wastewater treatment plants are still considered hotspots for horizontal gene transfer due 

to the concentrating of bacterial cells under antibiotic and chemical stresses (Rizzo et al., 

2013). Bacteria from wastewater treatment plants have been detected in receiving waters 

previously (Ferreira da Silva et al., 2007; Łuczkiewicz et al., 2010). Tetracycline 
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resistance genes have been previously detected in the groundwater downstream from 

swine farm processes, positively demonstrating transferrable elements in the environment 

(Chee-Sanford et al., 2001). These preliminary assays, when factoring the work of 

Marcinek et al. (1998) and published literature demonstrate for the first time an 

interaction between enterococci and sponges that could occur in the natural environment, 

downstream of wastewater processes or even agrarian processes (Schwartz et al., 2003; 

Baquero et al., 2008). This interaction could facilitate the propagation of antibiotic 

resistance genes in the environment.             

                                                                     

In chapter five the successful conjugation partners were subjected to biofilm formation 

investigations culminating in conjugation assays within biofilm. At the time of this 

investigation, several biofilm formation assays using simple apparatuses were available. 

They were sequentially tested revealing inconsistences in facilitating enterococcal 

biofilm formation, even in control isolates. Quantification and microscopic investigations 

were limited due to the variations of formation and retention during processing for data 

collection. Issues with biofilm assays such as the polystyrene microplate assay were 

reported previously by Leuck et al. (2014) and needed to be resolved in this research 

investigation. Leuck et al. (2014) revealed that the polystyrene microplates produced 

variations in biofilm formation, often weak production, in enterococcal clinical isolates 

which all could form biofilm on porcine heart valves. They suggested that enterococcal 

ex vivo biofilm formation should be performed on relevant tissue substrates. In our 

investigations, glass coated with gelatin yielded significant improvements on biofilm 

formation as compared to polystyrene and glass alone. These results better reflect the 

biofilm capabilities of the tested isolates, both with adherence to the substrate, and 

consistency between experiments. The results obtained with gelatin coated glass align 
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with results from Bukhari, (2013), whereby substrate improvements with tissue 

components (collagen based) improve enterococcal biofilm formation.  

The gene-frame biofilm apparatus (GBA) was a successful resolution to the issues 

discovered during initial biofilm characterisation experiments. There were many devices 

in the literature for improving biofilm formation. However, when examined they did not 

provide the necessary augmentations for analysing biofilm in situ without disturbing the 

macrostructures. The Calgary biofilm device could not be imaged with the microscopes 

in the laboratory and could only be imaged with glass bottomed microplates (Ceri et al., 

1999). Coupon based biofilm apparatuses such as the drip-flow biofilm reactor, rely on 

an insert that must be removed and processed, increasing chances of damage (Xu et al., 

1998). Construction of the GBA was simple, with just three components. It was 

autoclavable and therefore reusable and it was mounted on a glass microscope slide 

allowing for detailed analysis of especially weak biofilm both in terms of biomass and 

attachment strength. This was useful as Leuck et al. (2014) stated that enterococcal ex 

vivo biofilm formation can often be weak as compared to using in vivo substrates or 

explanted tissue. The GBA would therefore account for potential diminished biofilm 

formation in a non-ideal biofilm environment. The GBA excelled in all aspects of biofilm 

formation and visualisation, as compared to all the tested assays in chapter five. Biofilms, 

could be imaged without applying mechanical stress. The mechanical stresses applied to 

biofilm processing such as washing with PBS carried out by Toledo-Arana et al. (2001), 

will apply sheer stress to biofilm cells. This is especially true when biofilm formation 

assays are carried out on abiotic surfaces (polystyrene), known to facilitate weak biofilm 

formation as carried out by Nallapareddy et al. (2006).                                                   

Fixation is known to affect the morphology of bacterial cells as well as surface 

ultrastructures, such as pili (Chao and Zhang., 2011). Alcohol based fixatives detach 

surface filaments known to contribute to biofilm formation in enterococci (Nallapareddy 
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et al., 2006; Chao and Zhang, 2011). Hence a fixative was only used to carry out FISH 

on enterococcal biofilm for five minutes. All analysis of biofilm using conA and 

fluorescence microscopy was used on unfixed biofilm. This approach using the GBA 

revealed novel physical characteristics of examined enterococcal biofilm. These included 

the identification of a unique branched macro-scaffolding using dark field microscopy, 

captured on mature, undisturbed biofilm, never reported before in static Enterococcus 

faecalis biofilm. This macro-scaffolding structure likely forms as mature biofilm releases 

and disperses cells and fragments of biofilm in the static, closed system of the GBA 

(Costerton and Stewart, 2001). The branches out from the mature biofilms have an 

appearance of streamers that protrude from mature biofilm colonies (Kanaparthy and 

Kanaparthy, 2012).  

The GBA’s ability to preserve biofilm characteristics was used to microscopically 

catalogue enterococcal biofilm development. Combined with a limited visualisation data 

in the literature of early set down of enterococcal cells during biofilm formation, data 

obtained here revealed comprehensive microscopy on the spatial localisation of cells and 

EPS production during biofilm development. Due to the plethora of factors at play during 

biofilm formation: such as the aggregation gene, enterococcal surface protein, collagen 

adhesion and various EPS production modalities, it is unlikely that any given species or 

even isolate of Enterococcus will form biofilm in the same fashion. Seneviratne et al. 

(2017) revealed that 18 isolates of non-disease linked oral enterococci could form varied 

biofilms, suggesting that biofilm formation ability is directly linked to pathogenicity. 

However, enterococcal biofilm biomass is unrelated to resistance to antibiotic stress, 

similarly to certain isolates of Lactococcus, Streptococcus and Salmonella (Zhang et al., 

2013b; Ghasemmahdi et al., 2015; Seneviratne et al., 2017). It appears that specific 

combinations of virulence genes (esp, gelE, ace) as well as specific antibiotic resistance 

determinants will result in a large degree of variations in enterococcal biofilm formation. 
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This was observed in the biofilms formed by MF06036 (vanA, ermB) versus MF04010 

(tetL, tetM, efaA, ace). MF06036 biofilms were weaker than MF04010, which contained 

the endocarditis antigen (efaA) and collagen binding (ace) genes. However, MF06036 

had six antibiotic resistance phenotypes and MF04010 had three.  

Biofilm formation studies under nutrient deprivation are beginning to emerge and have 

used Enterococcus species sourced from humans (Gao et al., 2016, Ran et al., 2015). 

Examination of starved biofilms produced by environmentally isolated enterococci was 

carried out to assess how they would perform under conditions encountered naturally. 

The tested isolates retained biofilm formation capabilities. This was regardless of the 

effects of nutrient deprivation, an observation reported by Liu et al. (2010), where E. 

faecalis could form typical biofilms on human dentin under starvation. Starvation models 

on tissue substrates such as those used by Lie et al. (2010) and in this study, exemplify 

the true nature of enterococcal biofilm formation requiring biotic surfaces to form strong 

biofilms. Results such as these highlight the inherent obsolescence of polystyrene as a 

suitable substrate for studying enterococcal biofilm.                            

The strong biofilm producer MW02102 lost biofilm EPS staining intensity when starved. 

However, when starvation conditions were applied to the non-biofilm producer 

MF01028, EPS staining intensity increased. Gao et al. (2016) reported that E. faecalis 

can better resist starvation as compared to other bacteria (Streptococcus gordonii, 

Actinomyces viscosus, or Lactobacillus acidophilus). When E. faecalis formed biofilms 

with these other bacteria, biofilms were stronger and more resistant to starvation. This 

was likely due to the ability of E. faecalis to out survive other bacteria and utilise the 

components of dead cells to continue to resist starvation and form biofilm. It is known 

that within a species of Enterococcus there will be sub populations of cells which do not 

possess resistance to enterocin, cytolysin or gelatin mediated cell death (SprE). These 
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cells can be preyed upon by dominant populations containing resistance to bacteriocins 

and gelatin (Thomas et al., 2009; Gao et al., 2016). In the single species biofilms created 

in our study it could be that starvation increases cell death, providing “ingredients” to 

produce biofilm as a protective response to starvation stress that was readily observed in 

the multispecies biofilms by Gao et al. (2016).  

The novel analysis of biofilm formation and quantification of EPS production was 

accomplished using fluorescently tagged concanavalin A. An emerging biofilm stain, it 

has only recently been adopted to use in enterococcal biofilm, after confirmatory 

investigations by Anastasiadis et al. (2014); Jung et al. (2015); Ridan and Benxiang, 

(2014) provided evidence for the effectiveness of conA as an EPS stain for bacterial 

biofilms. It was also successfully tested in our microbiology laboratory on a Burkholderia 

thailandensis transposon mutant that was deficient in rhamnolipid production (rhlAB) 

that showed reduced EPS production as compared to wild type (Funston, 2016).  

 

Applications of vancomycin stress and nutrient deprivation on MF06036 identified that 

the chain form of cellular organisation, which is lost during biofilm formation, is retained 

during vancomycin stress. In addition, biofilm formation capability is reduced but not 

eliminated. This suggests that the enterococci may utilise chain form as a defence 

mechanism to ensure all clones have partitioned AMR genes. Babic et al. (2011) 

identified the rapid acquisition of the conjugative element ICEBs1 down through the 

entire chain of B. subtilis after successful conjugation to a single cell within the chain 

form. They suggested that that intra-chain spread of a mobile plasmid from a donor or a 

recent transconjugant could be a standard feature of bacterial conjugation. Cells in chain 

form are already close enough to stably pass genetic information. This system could be 

triggered by stress or concentrating of conjugal machinery at the cell pole (Grohmann, 
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2010). FISH investigations using vancomycin stress and vanA probes revealed that chain 

form MF06036 have variations in vanA colocalization, further alluding to the role of chain 

form under stress. It is known that chain form reduces bacteria surface area for biofilm 

formation, which may explain the reduction in biofilm formation under vancomycin stress 

(Qin et al., 1998). Guiton et al. (2009) suggested that increased chaining reduced the 

binding sites of enterococci during initial biofilm formation. Electrostatic charges have 

been shown to influence bacterial adherence to substrate. Increased cell surface charges 

could increase the repulsive forces of the substrate on depositing cells during biofilm 

formation (van Merode et al., 2006). 

Another mechanism behind the increased chaining observed under vancomycin stress 

involves the altered D-Ala-D-lactate mechanism of peptidoglycan cross linking present 

in vanA vancomycin resistant enterococci. Autolysins (AtlA/B) break the glycoside bonds 

in peptidoglycan during cell division allowing partition of two enterococcal cells 

(Mesnage et al., 2008). Paganelli et al. (2013) identified that autolysin mutants of E. 

faecium formed long chains of cells, which could be resolved with the addition of 

autolysin (AtlAEFM). These mutants had an 80% reduction in biofilm formation which 

was attributed to reduced initial adherence due to chaining of the bacterial cells. Impaired 

biofilm growth was also linked to the association of autolysin in the clumping of 

enterococcal cells and lack of autolysin reduces eDNA presence in enterococcal biofilm. 

Vancomycin tolerance and vancomycin stress were associated with inhibition of autolytic 

systems in S. aureus (Sieradzki and Tomasz, 2006). It is possible that glycopeptides such 

as vancomycin applied, in a sub-MIC or to resistant isolates with altered peptidoglycan 

synthesis, interfere with the activity of autolysins responsible for cleavage of the cell 

septum during division. This would increase the frequency of chain form as well as the 

ability of cells to attach to substrate and form biofilm (Guiton et al., 2009).         
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The Success of the GBA allowed for the development of a tandem FISH protocol for easy 

analysis of individual members of multispecies biofilms. It also permitted examinations 

of AMR genes from an unknown perspective with minimal autofluorescence inside 

enterococcal biofilms. FISH assays have been previously used to monitor the presence of 

enterococci in faecal matter and activated sludge from wastewater treatment plants using 

genomic identifiers such as 16S or 23S rRNA (Harmsen et al., 1999, Roller et al., 1994). 

FISH has been a useful tool to identify and monitor specific species of bacteria, as it has 

the sensitivity to target DNA sequences unique to a single species of bacteria amongst a 

community of several species (Moter and Göbel, 2000). Something that could not be 

accomplished as extensively or as cost effectively as using immunofluorescence 

approaches. Additionally, FISH can rapidly identify pathogenic strains of bacteria as 

compared to the gold standard of cultivation on growth plates, where not all bacteria can 

be cultivated (Rhode et al., 2015). The novelty of this protocol is the ability to identify 

low copy number AMR mobile genes without molecular amplification steps. 

Modifications to the protocol have been reported such as introducing reporter genes into 

plasmids and replicating modified plasmid into a strain of Enterococcus (Cook et al., 

2011). This was accomplished by simply designing multiple probes to the same gene, in 

this case the vanA vancomycin resistance gene (Gilmore et al., 2014). This approach was 

effective, with no modifications required after optimisation of the probes as they were 

designed to work at the same annealing temperature, much like multiplex PCR (Oliveira 

and de Lencastre, 2002). Single probe oligonucleotide FISH provided insufficient signal 

to noise ratio to allow observations of genes from the cellular background. Therefore, 

approaches such as RING FISH were designed to maximise emitted fluorescent signal 

with multiple fluorophores conjugated to a large probe (Zwirglmaier et al., 2004). These 

methods are complex, requiring generation of specific probes and conjugation of 

fluorophores in-house. The multi-probe approach used in our study was simple and had 
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the quality control from integrated DNA technologies and Invitrogen to ensure high 

quality probe construction. The application of multi-probe FISH was entirely novel for 

examination of environmentally isolated enterococcal biofilms containing mobile 

resistance (vanA) genes. 

 

The subsequent GBA enterococcal conjugation in biofilm reactions were carried out with 

MW01105Rif and MF06036 and their T1. Since the GBA was a novel device, updated 

conjugation protocols were created to accommodate the changes and confined space of 

the chamber. This took the form of creating a 24-hour single conjugation partner biofilm, 

removing planktonic cells and then adding the conjugation partner for a further 24 hours. 

This modification was an essential step to ensure that any observed conjugation could 

only occur from within biofilm, as one of the partners had created and existed in biofilm. 

This protocol was successful at isolating T1 under normal and starved biofilm growth 

conditions. This is the second instance of biofilm conjugation within the Enterococcus 

genus (Cook et al., 2011); however, this research group utilised plasmids that were 

genetically modified, carrying reporters and incubated both conjugation partners at the 

start of their biofilm conjugation experiments. When comparing the conjugation 

efficiencies of our protocol in the GBA versus the efficiencies of Cook et al. (2011), 

planktonic conjugation within their system could have occurred. Their efficiencies were 

calculated per membrane and ours were calculated per GBA well, and their protocol was 

the basis for our protocol in terms of donor and recipient ratios. In their mixed biofilm, 

they achieved an efficiency of 1:2.2x10-5, our mixed biofilm efficiency was 3.04x10-3 

following their protocol exactly. Comparing our mixed biofilm efficiency to our modified 

protocol accounting for planktonic conjugation from simultaneous co-incubation of donor 

and recipients: MW01105Rif based biofilm was 2.01x10-3 (1.5-fold less efficient) and 
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MF06036 based biofilm was 1.01x10-3 (3-fold less efficient). The reduction in efficiency 

can be explained by thorough removal of planktonic cells as well as allowing a single 

partner biofilm to form prior to attempting conjugation. 

This thesis collates data of natural conjugation of unmodified MGE’s containing AMR 

inside the biofilm of either conjugation partner upon the addition of the other partner. 

Success was also gained when biofilms were grown under starvation. The significance of 

this finding was that the lack of nutrients limited the ability of any subsequent 

transconjugants to grow post conjugation. Therefore, this report is the first to describe 

enterococcal transconjugant recovery from in vitro biofilm conjugation where the only 

manipulation was selection for spontaneous rifampicin resistance. More complex models 

of studying AMR transfer exist, such as gut models, the previously mentioned activated 

sludge model and aquatic bed models (Hellweger et al., 2011; Hirt et al., 2018). The 

natural progression of experimentation on the enterococcal isolates used in this thesis 

would be to examine their conjugation proficiency in the gut model used by the Dunny 

enterococcal research laboratory. Additionally, to further examine sponge mediated 

enterococcal conjugation in an aquatic bed model system to mimic the source 

environment. 

The GBA was designed for in situ visualisation, therefore the FISH protocols, 

fluorescence microscopy and the GBA conjugation reactions were combined with 

increased selective pressures of antibiotics and lysozyme to visualise newly created T1, 

inside an undisturbed conjugation biofilm. After extensive optimisation to ensure 

‘selective’ killing of the conjugal pairs post conjugation, fluorescent imaging would 

reveal the surviving transconjugants.  

Usage of rifampicin, vancomycin and lysozyme at concentrations only newly created T1 

could survive, combined with live/dead imaging provided for the first-time fluorescent 
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micrographs of T1 inside biofilm. However, the non-specificity of the live/dead 

imagining of T1 could be argued as refutable. Therefore, A second conjugation 

experiment was carried out using the interspecies conjugal pair: E. faecium ST01109Rif 

and E. faecalis MF06036. Post conjugation double selection using tetracycline and 

lysozyme would eliminate any remaining E. faecium ST01109Rif recipients. Fluorescent 

staining using Hoechst to stain all intact cells and FISH imagining with the ENU 1470 E. 

faecium FISH probe was used to select for the E. faecium transconjugants T3, excluding 

any E. faecalis MF06036 donors. This protocol undisputedly demonstrates for the first 

time: enterococcal biofilm conjugation by way of visualisation of transconjugants, 

ensured to be only created inside biofilm. 
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6. 1. Conclusion 

The overarching aim of this thesis was to demonstrate that environmentally isolated E. 

faecalis and E. faecium form natural biofilms, subsequently inducing the transfer of 

antibiotic resistance genes. This thesis collates data showcasing: 

 

1. E. faecalis and E. faecium isolated from an agrarian environment had prolific and 

diverse AMR profiles  

2. A selection of these isolates created four transconjugants transferring 

vancomycin, erythromycin and tetracycline genes, published in BMC 

Microbiology 

3. Multiple gene transfers were observed in single reactions 

4. Gene nomenclature and association to published genes for enterococci can be 

inaccurate 

5. E. faecalis MF06036 could transfer two different AMR phenotypes during 

separate conjugation reactions 

6. MIC values for certain antibiotics that were not involved in conjugation were 

increased in transconjugants T1, T2 and T4, suggesting synergy between the 

resistance mechanisms to certain antibiotics 

7. Reductions to temperature and nutrient availability limit but do not inhibit 

enterococcal conjugation 

8. E. faecalis MF06036 could bind to Spongilla lacustris and conjugation reactions 

were successful using Spongilla lacustris and Ephydatia fluviatilis as a substrate 

9. Gelatin coated glass substrate was essential in the formation of reliable 

enterococcal biofilm. 

10. The gene-frame biofilm apparatus (GBA) was created to successfully image 

fragile enterococcal biofilm where standard published assays could not 
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11. The GBA helped reveal novel macro-scaffolding, development, EPS 

characteristics, spatial density, chain forming characteristics, granularity and size 

of enterococcal biofilm under normal and stressed conditions using florescence 

and the newly adapted conA stain 

12. A newly created FISH protocol allowed for rapid, straightforward visual 

examination of mixed species biofilm in the GBA using species probes 

13. This FISH protocol was adapted to work on whole mounts of entire sponge 

hatchlings so that rapid identification of bacteria could be carried out without 

significant histological interventions 

14. Multiprobe FISH targeted to vanA on mobile elements demonstrated for the first-

time vancomycin staining inside enterococcal biofilm 

15. Enterococci can form biofilm, have a compatible conjugation partner introduced, 

and subsequent intra-biofilm conjugation will occur even under nutrient 

deprivation 

16. This novel conjugation reaction was also visualised using selective killing of the 

conjugation partners and imaging the transconjugants with live/dead staining and 

FISH probes targeted to the surviving transconjugant species 
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6.2. Future directions  

Future work would focus on further elucidation of enterococcal biofilm conjugation 

characteristics. Additionally, investigations to: 

• Identify and characterise the mobile elements transferred during conjugation 

would reveal any additional AMR genes at play as well as the specific 

composition of the elements themselves. Investigations focusing on this would 

uncover how MF06036 could transfer two sets of AMR phenotypes 

• Identify what kind of efflux pumps if any, the transconjugants possessed, and 

compare them and their activity to the conjugal parental isolates to further 

elucidate the observed shifts in non-transferred MIC changes to antibiotics 

• Assess additional environmental factors at play during transfer, up to working in 

the environment itself. Assessing alterations to pH and chemical composition of 

agrarian waterways would be an essential step 

• The mechanism at play during the attachment of MF06036 to sponge mesohyl and 

assess transcriptional activity of specific tissue attachment virulence factors ace, 

esp, asc1 and gelE during sponge adhesion and conjugation in tandem with the 

environmental conditions discussed previously 

• Analyse (using molecular and transcriptional methods) the expression of vanA 

under vancomycin stress to assess why there were significant death rates on the 

VRE MF06036 upon the introduction of a sub inhibitory concentration of 

vancomycin 

• Further develop the FISH protocols and assess other genes of interest in biofilm 

using the GBA 
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• Utilise an rpm sigma factor mutant strain to assess the true proficiency of 

enterococcal biofilm formation versus a non-biofilm producing mutant with conA 

staining. 

• Carry out chemical and transcriptional characterisation studies of the components 

of EPS and how they may change under biofilm starvation experiments 

• Assess transcriptional activity of the conjugation machinery at play during biofilm 

conjugation and evaluate any differences associated with the stress observed in 

the extra enteric environment 

• Identify unique markers that could only exist in a transconjugant without using 

artificial inclusions and apply them to the FISH visualisation protocol for conjugal 

biofilms 
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6.3. Concluding remark  

Environmentally isolated enterococci can form biofilm of their own construction, 

subsequently conjugating antibiotic resistance within. This also occurs under the 

influence of temperature and nutrient conditions akin to the environment from which they 

were isolated. 
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