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Abstract	

Atherosclerosis	is	an	inflammatory	disorder	characterized	by	the	formation	of	plaque	inside	

an	 artery	 wall.	 Despite	 the	 significance	 of	 atherosclerotic	 cardiovascular	 disease	 to	

healthcare,	 the	pathophysiology	of	 atherosclerosis	 is	 not	 fully	 understood.	 To	 allow	us	 to	

examine	the	dynamical	process	of	atherogenesis,	a	 theoretical	approach	has	the	potential	

to	 increase	 knowledge	 of	 the	 interactions	 involved.	 A	 computational	 model	 of	

atherosclerosis	has	been	built	 to	study	the	process	of	atheroma	formation	and	to	suggest	

therapeutic	hypotheses.	Previously,	computational	models	of	disease	pathways	have	aided	

in	combinatorial	drug	discovery,	and	have	led	to	the	generation	of	therapeutic	hypotheses.	

The	model	 has	 been	 developed	 to	 conform	 to	 Systems	 Biology	Markup	 Language	 (SBML)	

and	Systems	Biology	Graphical	Notation	(SBGN)	open	standards.	Collating	parameters	from	

multiple	 sources,	 the	 curated	 model	 displays	 atherosclerosis-like	 behaviour	 such	 as	

lipoprotein	 oxidation,	 cellular	 build-up,	 extra-cellular	 matrix	 formation	 and	 reverse	

cholesterol	transport.		

Publicly	 available	 genomic	 data	 has	 been	 utilised	 to	 evaluate	 the	 changes	 in	 pathway	

dynamics	 across	 population	 subgroups.	 Data	 taken	 from	 the	 1000	 Genome	 Project,	 a	

worldwide	 effort	 to	 create	 an	 expansive	 catalogue	 of	 human	 variation,	 has	 been	 used	 to	

predict	 a	 tertiary	 protein	 structure	 for	 all	 proteins	 contained	 within	 the	 mathematical	

model,	and	the	variation	in	structure	for	a	collection	of	mutations	is	studied.	

A	combination	of	molecular	dynamics	methods	and	electrostatic	potential	analysis	are	then	

used	 to	 estimate	 how	 the	 binding	 rates	 of	 these	 proteins	 are	 affected	 by	 individual	

mutations.	 These	 updated	 binding	 rates	 are	 subsequently	 used	 to	 reparameterise	 the	

mathematical	model.	With	population	data	available	from	the	1000	Genomes	Project,	these	

new	parameters	can	be	used	to	study	population	specific	dynamics	of	atherosclerosis,	and	

subsequently	suggest	new	therapeutic	responses.	
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1.1 Introduction	

 Stratified	Medicine	

Stratified	 medicine	 combines	 therapeutic	 strategies	 with	 a	 coinciding	 diagnosis	 to	

determine	patient	 subgroups	 for	 treatment	 optimisation	 (Trusheim	et	 al.,	 2011).	Dividing	

patients	 into	 subgroups	 using	 indicative	 biomarkers	 can	 allow	 for	 more	 targeted	

therapeutics,	creating	efficiencies	in	drug	response,	medication	cost,	treatment	length	and	

patient	 safety.	 Stratified	 medicine,	 alongside	 personalised	 and	 precision	 medicine,	 could	

lead	 to	 a	 new	 era	 of	 healthcare	 customisation,	 utilising	 pharmacogenomics	 to	maximise	

drug	efficacy	while	minimising	adverse	effects	(Mizzi	et	al.,	2014).	Patient	stratification	can	

be	 seen	 as	 a	 more	 practical	 and	 immediately	 feasible	 healthcare	 methodology	 than	

personalised	 medicine,	 due	 to	 the	 more	 simplistic	 nature	 of	 identifying	 groups	 with	 a	

particular	drug	response,	rather	than	individual	patient	therapeutic	optimisation	(Lonergan	

et	al.,	2017).	Discovery	of	biomarkers	that	 indicate	drug	response	efficacy	and	drug	target	

identification	 are	 two	 of	 the	 main	 goals	 in	 stratified	 medicine.	 Increase	 in	 quantities	 of	

publicly	available	genome	sequence	data	recently,	due	to	cost	reduction	and	technological	

advancements,	 have	 allowed	 for	 developments	 in	 pharmacogenomics	 and	 stratified	

medicine	 leading	 to	 a	 reduction	 in	 adverse	 drug	 reactions,	 increase	 in	 drug	 efficacy	 and	

reduced	therapeutic	cost	(Trusheim	et	al.,	2011).		

 Systems	Biology	

Understanding	 biological	 networks	 at	 the	 molecular	 level	 through	 biochemistry,	

mathematics,	 informatics,	 computer	 science	 and	 statistics	 is	 the	 primary	 goal	 of	 systems	

biology.	 The	 study	 of	 complex	 biological	 systems	 through	mathematical	modelling	 allows	

for	 predictions	 on	 how	 disruptions	 and	 perturbations	 affect	 disease	 pathophysiology.	

Biological	 networks,	 including	 protein-protein	 interaction	 (PPI),	 signalling	 and	 metabolic	

networks	 can	 be	 treated	 as	 mathematical	 graphs,	 allowing	 for	 the	 use	 of	 numerical	

approaches	to	biological	problems.	Disease	typically	leads	to	production	of	macromolecules	

not	created	under	normal	conditions,	and	identification	and	detection	of	these	biomarkers	

could	lead	to	improved	therapeutic	strategies.	Systems	Biology	approaches	can	be	used	as	

part	 of	 a	 stratified	 medicine	 program,	 allowing	 for	 the	 development	 of	 therapeutic	
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hypotheses,	discovery	of	disease	biomarkers	and	 the	 identification	of	drug	 targets	 (Hood,	

2013).	

 Atherosclerosis	

Atherosclerosis	 describes	 the	 build-up	 of	 fatty	material	 embedded	within	 the	 artery	wall	

causing	swelling	and	thickening.	Damage	to	the	endothelium,	the	layer	of	cells	forming	the	

interior	surface	within	the	vessel	wall,	 leads	to	an	 influx	of	 lipoproteins	and	 immune	cells	

(including	 monocytes,	 T	 cells,	 dendritic	 cells	 and	 mast	 cells)	 into	 the	 tunica	 intima,	 the	

innermost	layer	of	the	artery	wall	(Davignon	and	Ganz,	2004;	Libby,	2002).	Smooth	muscle	

cells	 (SMCs)	proliferate	 from	the	tunica	media	 into	the	tunica	 intima	and	produce	several	

matrix	 proteins,	 while	 long-term	 accumulation	 of	 these	 materials	 inside	 the	 vessel	 wall	

leads	 to	 intimal	 thickening	 and	 a	 reduction	 in	 blood	 flow	 through	 the	 artery	 due	 to	 the	

reduced	size	of	the	lumen.		

 Cardiovascular	Disease	

Cardiovascular	 disease	 (CVD)	 is	 responsible	 for	 more	 deaths	 worldwide	 than	 any	 other	

disorder	(World	Health	Organisation,	2011),	and	has	contributed	to	morbidity	and	mortality	

more	 than	 any	 other	 condition	 in	 the	western	world	 (Singh	 et	 al.,	 2002).	 CVD	 is	 an	 age-

related	collection	of	diseases	of	 the	circulatory	system	and	heart	 that	can	 lead	 to	angina,	

stroke	and	heart	failure	(World	Health	Organisation,	2015).	Types	of	CVD	include	coronary	

artery	disease	(CAD)	(Hansson,	2005),	rheumatic	heart	disease	(RHD)	(Sliwa	and	Zilla,	2012)	

and	 cerebrovascular	 diseases	 (Postiglione	 and	 Napoli,	 1995).	 Atherosclerosis	 can	 lead	 to	

different	 types	 of	 CVD	depending	 on	 the	 location	 and	 the	 stability	 of	 the	 atheroma.	 It	 is	

estimated	 that	 73%	of	 cardiovascular	 disease	 cases	 are	due	 to	underlying	 atherosclerosis	

(Nichols	M		Luengo-Fernandez	R,	Leal	J,	Gray	A,	Scarborough	P,	Rayner	M,	2012).	Examples	

of	cardiovascular	diseases	are	shown	in	Figure	1.1.	
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Figure	1.1:	Examples	of	types	of	cardiovascular	disease	
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 Structure	of	the	artery	

The	wall	of	an	artery	consists	of	three	main	layers,	named	tunica	intima,	tunica	media	and	

tunica	adventitia.	The	tunica	intima	(also	referred	to	as	the	intima)	is	the	innermost	layer	of	

an	 artery	 wall.	 The	 intima	 contains	 the	 endothelium,	 the	 layer	 of	 cells	 within	 an	 artery,	

which	are	constantly	 in	contact	with	blood	flowing	through	the	vessel.	The	subendothelial	

section	of	the	tunica	intima	contains	permeable	connective	tissue	to	provide	strength	and	

flexibility	 to	 the	 vessel	wall.	 An	 internal	 elastic	 lamina	 is	 present	 in	 larger	 arteries	which,	

similar	to	other	intimal	components,	provide	structure	while	allowing	the	artery	to	contract	

and	expand	to	alter	the	rate	of	blood	flow	when	required.	Veins	do	not	contain	this	internal	

elastic	lamina	(OpenStax	CNX,	2013).	

The	tunica	media	 is	the	middle	layer	of	the	three	primary	arterial	layers.	The	predominant	

content	of	the	tunica	media	is	smooth	muscle	cells,	supported	by	elastic	fibres	that	function	

as	connective	tissue.	This	smooth	muscle	can	control	the	size	of	the	artery	lumen	through	

vasoconstriction	and	vasodilation.	 In	 atherosclerotic	 vessels,	 SMCs	 from	 the	 tunica	media	

can	 proliferate	 into	 the	 tunica	 intima	 to	 help	 form	 a	 fibrous	 cap	 around	 the	 lipid	 core	

(Wagenseil	and	Mecham,	2009).	

The	outermost	 layer,	the	tunica	adventitia,	 is	mainly	composed	of	collagen	and,	similar	to	

the	 tunica	 intima,	 is	 supported	 by	 an	 external	 elastic	 lamina.	 Fibroblasts	 are	 the	 most	

common	cell	 type	found	within	the	adventitia	 (Stenmark	et	al.,	2013).	The	outer	 layers	of	

the	 adventitia	 merge	 with	 the	 connective	 tissue	 that	 surrounds	 the	 artery,	 holding	 the	

vessel	in	place.	

 Atherosclerosis	Incidence	and	Statistics	

CVD	 is	 responsible	 for	approximately	27%	of	all	deaths	 in	 the	UK,	and	 is	 the	second	most	

prevalent	disease	after	cancer	(29%).	 In	the	UK,	25%	of	premature	deaths	 in	men	(17%	in	

women)	were	due	to	CVD	in	2014.	Coronary	artery	disease	(CAD)	was	responsible	for	45%	

of	these	deaths,	and	25%	were	due	to	stroke,	making	these	two	the	primary	forms	of	CVD	

(Townsend	et	al.,	2015).		
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It	is	estimated	that	92.1	million	adults	in	the	USA	have	at	least	one	type	of	CVD	(Mozaffarian	

et	al.,	2014),	and	this	 is	expected	to	rise	to	approximately	158	million	by	2030	(Colby	and	

Ortman,	2015;	Mozaffarian	et	al.,	2015).	

While	atherosclerosis	 is	an	age-related	disorder,	 initial	signs	of	atherosclerosis	are	present	

in	 most	 children	 who	 are	 older	 than	 three	 years	 old	 (Joseph	 et	 al.,	 1993).	 In	 addition,	

atherosclerotic	 lesions	 have	 been	 found	 in	 foetal	 arteries	 in	 cases	 of	 severe	 maternal	

hypercholesterolemia	(Palinski	and	Napoli,	2002).	

In	addition	 to	 the	human	cost	of	cardiovascular	disease,	 the	economic	costs	of	 treatment	

and	 production	 loss	 are	 significant.	 More	 than	 1.6	 million	 episodes	 of	 CVD	 resulted	 in	

inpatient	episodes	in	NHS	hospitals	in	2014.	Additionally,	twice	as	many	of	these	inpatient	

episodes	were	for	men	than	women.	In	2014,	approximately	369	million	prescriptions	were	

dispensed	 for	CVD	 in	 the	UK,	with	 total	CVD	expenditure	within	 the	NHS	reaching	£4.292	

billion.	 Economic	 costs,	 due	 to	 production	 losses,	 morbidity	 and	 mortality	 of	 those	 in	

working	age	and	their	relatives,	contribute	to	the	financial	burden.	Healthcare	costs	of	CVD	

in	the	UK	were	concluded	to	be	£11.3bn	in	2014,	with	additional	economic	costs	projected	

to	be	£151.6bn	from	reduced	productivity	(Townsend	et	al.,	2015a).	The	economic	costs	of	

CVD	in	the	USA,	direct	and	indirect,	were	an	estimated	$316.1	billion	in	2012/13.	Including	

nursing	 home	 care	 costs	 in	 the	 prediction	 calculation	 gives	 a	 projection	 of	 $918	 billion	

dollars	 of	 healthcare	 costs	 as	 a	 result	 of	 CVD	 between	 2012	 and	 2030	 in	 the	 USA.	

(Mozaffarian	et	al.,	2015)	

Patients	with	CVD	have	an	increased	risk	of	comorbidities	and	complications,	which	can	lead	

to	increases	in	morbidity	and	mortality	and	a	reduction	of	quality	of	life.	More	myocardial	

infarctions	in	the	US	occur	during	a	hospitalisation	for	another	reason	rather	than	being	the	

initial	reason	for	hospitalisation	(Mozaffarian	et	al.,	2015).	

 Risk	Factors	

In	 the	21st	 century,	 assessing	 the	 risk	of	 cardiovascular	disease	 in	 individuals	has	become	

easier	due	 to	 the	 realisation	 that	 the	 combination	of	multiple	 risk	 factors	 can	be	used	 to	

predict	atheroma-related	risk	in	a	patient	more	than	any	single	risk	factor	can.	
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The	Framingham	Risk	Score	is	a	method	used	to	estimate	an	individual’s	risk	of	developing	

cardiovascular	disease	(D’Agostino	et	al.,	2008).	The	Framingham	Risk	Score	combines	the	

age,	blood	pressure,	total	cholesterol	and	high	density	lipoprotein	cholesterol	(HDL-C)	of	an	

individual,	alongside	their	gender,	whether	they	smoke	and	whether	they	have	diabetes	to	

estimate	a	10-year	risk	percentage	to	aid	in	preventative	therapy	decision	making.		

Other	scoring	mechanisms	for	predicting	CVD	risk	have	been	developed,	such	as	Prospective	

Cardiovascular	Munster	 (PROCAM),	 which	 focus	 on	 different	 risk	 factors	 including	 family	

history	 of	 myocardial	 infarction	 and	 triglyceride	 concentrations	 (Assmann	 et	 al.,	 2002).	

Focus	 on	 newly	 discovered	 and	 elucidated	 risk	 factors,	 alongside	 new	 combinations	 of	

previously	known	risk	factors,	could	potentially	allow	for	the	development	of	a	new	method	

for	assessing	cardiovascular	disease	risk.	

Major	 risk	 factors	 for	atherosclerosis	 include	cholesterol	 levels,	 sex,	age,	 family	history	of	

CVD,	blood	pressure,	smoking,	obesity,	diabetes,	triglyceride	levels,	unhealthy	diet,	 lack	of	

physical	activity,	ethnicity	and	alcohol	consumption	(Go	et	al.,	2014;	Gotto,	1998;	Grundy	et	

al.,	1999).	

 Clinical	Outcomes	

Atherosclerosis	 usually	 begins	 in	 childhood,	 and	 can	 remain	 asymptomatic	 for	 decades	

(Hong,	 2010).	 Clinical	 outcomes	 are	 dependent	 on	 the	 location	 and	 the	 stability	 of	 an	

atheroma.	Coronary	artery	disease,	the	most	common	form	of	CVD,	is	caused	by	presence	

of	an	atheroma	within	 the	coronary	arteries,	which	can	 lead	 to	angina,	dizziness,	nausea,	

sweating	and	arrhythmia.	Reduced	blood	flow	in	the	coronary	arteries	can	lead	to	ischemia	

in	 myocardial	 cells,	 leading	 to	 myocardial	 infarction	 (MI,	 or	 heart	 attack).	 Coronary	

thrombosis	can	also	lead	to	MI	(Hansson,	2005).	CAD	is	more	common	in	men	than	women,	

and	symptoms	are	more	likely	to	present	earlier	in	life	in	men	(Townsend	et	al.,	2015b).	

Cerebrovascular	 disease,	 caused	 by	 atherosclerosis	 leading	 to	 reduced	 blood	 flow	 to	 the	

brain,	 can	 cause	 stroke,	 transient	 ischemic	 attack	 (TIA),	 subarachnoid	 haemorrhage	 and	

vascular	 dementia.	 Rupture	 of	 a	 plaque	 within	 the	 cerebral	 arterial	 network	 leads	 to	

thrombosis,	 and	 the	 subsequent	 blockage	 causes	 cerebral	 infarction,	 leading	 to	 stroke.	
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Bleeding	 within	 the	 cerebral	 circulation	 can	 also	 cause	 stroke	 (Postiglione	 and	 Napoli,	

1995).		

Peripheral	artery	disease,	induced	when	atherosclerosis	leads	to	reduced	blood	flow	to	the	

arms	 and	 legs,	 can	 lead	 to	 claudication,	 numbness,	 skin	 discolouration	 and	 muscle	

weakness.	 In	 extreme	 cases	 critical	 limb	 ischemia	 can	 lead	 to	 gangrene,	 requiring	

amputation	(Abdulhannan	et	al.,	2012).	

Additionally,	 atherosclerosis	 can	 lead	 to	 fatigue,	 shortness	 of	 breath,	 muscle	 pain,	

confusion,	 vision	 problems,	 erectile	 dysfunction,	 hair	 loss,	 cold	 hands	 and	 feet,	 loss	 of	

kidney	 function	 and	 flash	 pulmonary	 oedema	 (Abdulhannan	 et	 al.,	 2012;	 Chiurlia	 et	 al.,	

2005;	 Chrysochou	and	Kalra,	 2010;	Muntner	 et	 al.,	 2005;	 Shahar	 et	 al.,	 2008;	Vinkers	DJ,	

Stek	ML,	van	der	Mast	RC,	de	Craen	AJM,	Le	Cessie	S,	Jolles	J,	Westendorp	RGJ,	2005).	

1.2 Progression	of	Atherosclerosis	

Damage	 to	 the	 endothelium	 triggers	 a	 series	 of	 interconnected	 processes	 leading	 to	

atheroma	 formation,	 including	 cell	 signalling	 (Tall	 and	 Yvan-Charvet,	 2015),	 lipoprotein	

transfer	(Kaazempur-Mofrad	and	Ethier,	2001),	haemodynamics	(Glagov	et	al.,	1988),	 lipid	

oxidation	 (Young	 and	 McEneny,	 2001)	 and	 cell	 migration	 (Kraemer,	 2000).	 Lipoproteins,	

including	 proatherogenic	 low	 density	 lipoproteins	 (LDL),	 enter	 the	 artery	 wall	 at	 sites	 of	

endothelial	damage	(Singh	et	al.,	2002).	Free	oxygen	radicals	embedded	within	the	tunica	

intima	react	with	these	lipoproteins,	creating	an	oxidized	form	(Sato	et	al.,	1990).	Damaged	

endothelial	cells	release	cytokines	which	recruit	 immune	cells	 to	the	site	of	 inflammation.	

Recruited	 monocytes	 enter	 the	 tunica	 intima,	 differentiate	 into	 macrophages	 and	

subsequently	phagocytose	 the	oxidized	 form	of	 low	density	 lipoprotein	 (oxLDL)	 (Zhang	et	

al.,	2013).	These	cholesterol	filled	macrophages,	also	known	as	foam	cells,	will	go	through	

apoptosis,	leading	to	fatty	streak	formation	within	the	arterial	wall	(Stoneman	and	Bennett,	

2004).	 Chemotaxis	 factors	 released	 by	 immune	 cells	 within	 the	 lesion	 lead	 to	 smooth	

muscle	cell	proliferation	from	the	tunica	media	into	the	tunica	intima,	leading	to	formation	

of	a	fibrous	cap	around	the	lesion	in	advanced	atheroma	(Bennett	et	al.,	2016).	Depending	

on	 plaque	morphology,	 this	 fibrous	 cap	 can	 thin	 leading	 to	 an	 unstable	 plaque	 prone	 to	

rupture	 (Li	et	al.,	2006).	Plaque	rupture	can	 lead	to	debris	being	released	from	the	vessel	
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wall	 into	 the	 blood	 stream,	 potentially	 leading	 to	 thrombosis,	 or	 other	 downstream	

complications	(Green	et	al.,	2002).	

 Lesion	Categorisation	

Structural	 characteristics	 of	 atherosclerotic	 lesions	 allow	 for	 classification	 based	 on	

histology	 and	 morphological	 description.	 Multiple	 categorisations	 of	 lesions	 have	 been	

developed	over	the	years	(Cai	et	al.,	2002;	Stary	et	al.,	1995;	Virmani	et	al.,	2000),	with	the	

current	 standard	 described	 in	 (Yahagi	 et	 al.,	 2016).	 This	 classification	 is	 an	 update	 of	

previous	efforts	provided	by	the	American	Heart	Association	in	the	1990s	(Stary	et	al.,	1994)	

and	2000s	(Virmani	et	al.,	2000).	Four	types	of	 lesion	have	been	split	 into	ten	subtypes	to	

provide	a	histological	characterisation	of	atherosclerotic	lesions.	

 Nonatherosclerotic	Intimal	Lesions	

1.2.2.1 Intimal	thickening	

Smooth	 muscle	 cells	 can	 accumulate	 naturally	 within	 the	 tunica	 intima	 without	 the	

presence	of	 lipids,	and	this	 is	often	observed	 in	arterial	 locations	prone	to	atherosclerosis	

(Nakashima	et	al.,	2002).	Extra-cellular	lipid	and	foam	cells	are	not	found	within	the	artery	

wall	at	this	point	(Stary	et	al.,	1994).	These	lesions	do	not	necessarily	have	features	that	are	

required	for	advanced	atheroma	development,	and	are	often	known	to	regress,	and	as	such	

are	not	considered	to	be	a	progressive	atherosclerotic	lesion.	

1.2.2.2 Intimal	Xanthoma	

Intimal	xanthomas,	or	 ‘fatty	streaks,’	 contain	 layers	of	 foam	cells	without	a	necrotic	core.	

The	 majority	 of	 the	 lipid	 content	 within	 the	 lesion	 is	 contained	 within	 foam	 cells	 and	

smooth	muscle	 cells.	 T	 lymphocytes	and	mast	 cells	 are	present	 in	 the	 lesion	at	 this	 time.	

Intimal	xanthoma	can	be	seen	by	the	naked	eye	during	autopsy	(Stary	et	al.,	1994).	

 Progressive	Atherosclerotic	Lesions	

1.2.3.1 Pathological	intimal	thickening	

Extracellular	 pools	 of	 lipid	 form	 beneath	 the	 layers	 of	 macrophages	 and	 foam	 cells	

contained	within	 the	 tunica	 intima,	 disrupting	 the	 smooth	muscle	 cells	within	 the	 tunica	

media	 (Guyton	and	Klemp,	1996).	These	 lesions	are	rich	 in	SMCs	and	extra-cellular	matrix	
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(ECM).	As	the	disease	state	progresses,	an	accumulation	of	extracellular	lipid	occurs	leading	

to	a	primary	lipid	core	(Guyton	and	Klemp,	1996).		

1.2.3.2 Fibroatheroma	

Early	and	 late	fibroatheromas	are	characterised	by	the	formation	of	a	necrotic	core	and	a	

significant	 volume	 of	 fibrous	 connective	 tissue,	 causing	 thickening	 of	 the	 tunica	 intima.	

Smooth	muscle	cells	synthesise	collagen	and	other	ECM	elements,	leading	to	a	narrowing	of	

the	lumen	(Moore	and	Tabas,	2011).	In	early	fibroatheroma,	platelet	derived	growth	factor	

(PDGF)	is	secreted	by	macrophages	and	foam	cells,	leading	to	smooth	muscle	cell	migration	

and	the	formation	of	a	thick	fibrous	cap	(Kraemer,	2000).			

1.2.3.3 Intraplaque	haemorrhage	or	plaque	fissure	

Intraplaque	 haemorrhage	 can	 occur	 within	 a	 plaque	 when	 angiogenesis	 has	 occurred	 to	

form	 new	 blood	 vessels	 within	 the	 lesion.	 These	 new	 vessels	 are	 particularly	 prone	 to	

rupture	(Kolodgie	et	al.,	2003).		

A	plaque	fissure	can	occur	when	a	tear	in	the	fibrous	cap	occurs	without	the	formation	of	a	

thrombus.	The	necrotic	core	can	become	exposed	to	the	bloodstream	through	this	fissure	

(Lendon	et	al.,	1992).	

1.2.3.4 Thin-cap	fibroatheroma	

A	 lesion	 with	 a	 fibrous	 cap	 thinner	 than	 65	 μm	 is	 classified	 as	 a	 thin-cap	 fibroatheroma	

(TCFA)	 (Yahagi	 et	 al.,	 2016).	 These	 lesions,	 often	 called	 vulnerable	 plaques,	 have	 a	 high	

probability	of	 rupture.	TCFAs	are	characterised	by	a	 reduction	of	SMCs	within	 the	 fibrous	

cap	and	the	presence	of	a	large	necrotic	core	(Yahagi	et	al.,	2016).	

 Lesions	With	Acute	Thrombi	

1.2.4.1 Plaque	Rupture	

Ruptured	plaques	show	disruptions	on	the	fibrous	cap	of	the	atheroma	(Libby	et	al.,	2013).	

Matrix	 metalloproteinases	 (MMPs)	 degrade	 the	 ECM	 and	 the	 fibrous	 connective	 tissue,	

leading	to	thinning	of	the	fibrous	cap	and	an	increased	risk	of	plaque	rupture	(Moore	and	

Tabas,	2011).	
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1.2.4.2 Plaque	Erosion	

Plaque	 erosion	 can	 occur	 during	 pathological	 intimal	 thickening,	 or	 during	 the	

fibroatheroma	 stage	 of	 lesion	 development.	 Endothelial	 cells	 at	 the	 atheroma	 site	 are	

eroded	 and	 an	 abrasion	 is	 formed.	 Eroded	 plaques	 are	 more	 common	 in	 the	 young,	

smokers,	and	female	patients	(Lafont,	2003).	

1.2.4.3 Calcified	Nodule	

A	 fibrocalcific	 plaque	 can	 lead	 to	 the	 jettison	 of	 a	 calcified	 nodule	 through	 unknown	

mechanisms.	These	nodules	are	more	 commonly	 found	 in	older	 individuals	 (Yahagi	et	 al.,	

2016).	

 Healed	Lesions	

1.2.5.1 Healed	plaque	rupture,	erosion	or	calcified	nodule	

Plaques	 can	 heal	 after	 thrombus	 formation.	 A	 healed	 lesion	 can	 be	 calcified,	 contain	 a	

necrotic	core,	and	cause	significant	stenosis	(Yahagi	et	al.,	2016).	Lesion	repair	is	driven	by	

reverse	cholesterol	transport	(Cuchel	and	Rader,	2006).		

1.2.5.2 Plaque	Rupture	

The	 early	 stages	 of	 atherosclerosis	 are	 usually	 asymptomatic.	 Lesions	 can	 form	 over	

decades	within	an	artery	without	knowledge	and	symptoms	do	not	occur	until	blood	flow	is	

sufficiently	 reduced	 or	 thrombosis	 occurs	 (NHLBI,	 2016).	 While	 knowledge	 of	 how	

atherogenic	lipoproteins	lead	to	plaque	formation	is	significant,	considerably	less	is	known	

about	 the	 mechanisms	 behind	 plaque	 rupture.	 Bentzon	 et	 al.	 have	 written	 an	 excellent	

review	considering	the	reasons	behind	this	(Bentzon	et	al.,	2014).	

Acute	 coronary	 syndromes	 are	 almost	 always	 caused	 by	 the	 presence	 of	 thrombus	 or	

plaque	 haemorrhage	 (Davies,	 2000).	 Plaque	 rupture	 is	 the	 most	 common	 cause	 of	

thrombosis	(Badimon	and	Vilahur,	2014).	Rupture	occurs	on	the	fibrous	cap	at	points	where	

thinning	 has	 occurred,	 potentially	 due	 to	 infiltration	 by	 foam	 cells.	 The	 thinnest	 point	 is	

often	located	in	the	shoulder	region	(Bentzon	et	al.,	2014).		

Two	 known	 mechanisms	 are	 involved	 in	 fibrous	 cap	 thinning	 —	 SMCs	 and	 collagen	 are	

slowly	removed	from	the	fibrous	cap	and	macrophage	infiltration	leads	to	MMP	production,	
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causing	 matrix	 degradation.	 Rupture	 can	 be	 a	 spontaneous	 event;	 however	 increases	 in	

stress	can	be	the	catalyst.	

The	ability	to	predict	which	plaques	are	vulnerable,	and	subsequently	more	likely	to	rupture	

and	lead	to	thrombosis,	would	aid	in	reducing	the	burden	of	cardiovascular	disease.	A	thin	

fibrous	 cap	 is	 often	 a	 sign	 of	 a	 vulnerable	 plaque,	 alongside	 a	 significant	 lipid	 core	 and	

inflammatory	 element	 (Fuster,	 1995).	 Cap	 thickness,	 ECM	 remodelling,	 macrophage	

infiltration	and	wall	shear	stress	are	also	involved	in	evaluating	the	vulnerable	nature	of	an	

atheroma	(Pinto,	2014).	However,	plaque	vulnerability	 is	not	 the	same	as	occurrence	of	a	

coronary	event	–	sometimes	plaques	can	rupture	and	be	asymptomatic	in	the	short	term.	

Features	 of	 plaques	 prone	 to	 rupture	 are:	 large	 necrotic	 core,	 thin	 fibrous	 cap,	 high	

macrophage	 density	 of	 cap,	 low	 SMC	 density,	 significant	 ECM	 remodelling,	 formation	 of	

new	blood	vessels	from	the	vasa	vasorum,	 inflammation	of	the	adventitia,	and	limited	(or	

‘spotty’)	calcification	(Moreno,	2010;	Morrow,	2016).	

1.3 Thesis	Aims	

 Aim	1	–	Develop	a	computational	model	of	atherosclerosis	

A	mathematical	model	will	be	developed	to	study	pathway	dynamics	of	atherosclerosis.	This	

model	will	become	the	basis	of	an	in	silico	learning	platform	later	in	this	thesis.	

 Aim	2	–	Study	the	variation	in	structure	for	proteins	related	to	atherosclerosis	

Amino	acid	sequence	data	taken	from	the	1000	Genome	Project	will	be	used	to	predict	a	

tertiary	structure	for	the	proteins	involved	in	the	aforementioned	model	of	atherosclerosis,	

and	a	collection	of	mutations	for	each	of	these	proteins.		

 Aim	3	–	Predict	how	structural	variance	will	change	atherosclerosis	dynamics	

A	collection	of	bioinformatics	tools	will	be	used	to	establish	association	rates	for	the	protein	

structures	previously	derived	from	1000	Genome	Project	data.	These	association	rates	will	

be	used	to	predict	how	the	structure	of	these	proteins	alter	atherogenesis,	and	how	these	

dynamics	differ	between	population	subgroups.	
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1.4 Thesis	Outcomes	

 The	Case	For	Computational	Modelling	

Modelling	 biological	 systems	 allows	 for	 the	 study	 of	 properties	 of	 complex	 systems.	 A	

system	of	differential	equations	can	be	developed	to	model	biological	processes,	which	can	

allow	for	 the	analysis	and	visualisation	of	 these	systems.	Mathematical	models	have	been	

built	for	biological	systems	such	as	a	whole	Mycoplasma	genitalium	cell	(Karr	et	al.,	2012a),	

cholesterol	biosynthesis	(Watterson	et	al.,	2013)	and	circadian	rhythms	(Akman	et	al.,	2012).	

Computational	modelling	 can	 provide	 a	mechanism	and	 a	 framework	 to	 analyse	 pathway	

dynamics	 of	 a	multi-scale	 system	 such	 as	 atherosclerosis.	 An	 approach	 like	 this	 can	 yield	

many	 benefits	 —	 there	 are	 examples	 of	 computational	 and	 mathematical	 modelling	

approaches	 assisting	 in	 the	 development	 of	 therapeutic	 hypotheses,	 and	 identifying	

potential	 drug	 targets	 (Berg,	 2014).	 Development	 of	 a	 mathematical	 model	 of	

atherosclerosis	 would	 allow	 for	 the	 study	 of	 how	 model	 kinetics	 vary	 across	 multiple	

populations	as	part	of	a	stratified	medicine	program.	Computational	biology	methods	have	

been	 successful	within	 stratified	medicine	 contexts	previously	 (Velikova	et	 al.,	 2014).	 This	

topic	will	be	discussed	further	in	Chapters	2	and	3.	

 Predicting	Tertiary	Structure	

Atherosclerosis	 is	 a	 disorder	 heavily	 dependent	 on	 protein-protein	 binding	 interactions.	

Protein	function	is	directly	related	to	protein	structure.	Calculating	the	tertiary	structure	of	

a	 protein	 from	 its	 amino	 acid	 sequence	 is	 a	 problem	 that	 has	 been	 tackled	 by	

bioinformaticians	and	theoretical	chemists	 for	years	 (Dorn	et	al.,	2014).	Vast	quantities	of	

amino	 acid	 sequence	 data	 have	 been	 generated	 by	 sequencing	 groups,	 such	 as	 1000	

Genome	 Project	 (Abecasis	 et	 al.,	 2012)	 and	 UK10K	 (Muddyman	 et	 al.,	 2013),	 and	 while	

significantly	 more	 sequence	 data	 exists	 than	 experimentally	 derived	 structural	 data,	

refinement	 of	 structural	 prediction	 methods	 would	 be	 of	 great	 benefit	 to	 the	 biological	

community.	 Prediction	 of	 tertiary	 and	 quaternary	 structure	 for	 a	 collection	 of	 proteins	

involved	 in	 atherosclerosis	 would	 allow	 for	 the	 study	 of	 how	 these	 proteins	 vary	 across	

population	subgroups.	This	topic	will	be	discussed	further	in	Chapter	4.		
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 Estimating	Kinetic	Parameters	

Protein-protein	binding	is	a	vital	process	throughout	all	phases	of	immune	response.	While	

surface	 plasmon	 resonance	 (SPR)	 techniques	 have	 allowed	 for	 the	 calculation	 of	 vast	

quantities	 of	 enzyme	 kinetics	 data,	 the	 ability	 to	 predict	 association	 constants	 through	

bioinformatics	 methods	 has	 been	 a	 challenge	 tackled	 by	 multiple	 groups	 with	 varying	

results	 (Pattnaik,	2005).	Estimation	of	protein-protein	association	rate	constants	has	been	

tackled	using	molecular	dynamics	methods	by	multiple	groups	 (Qin	et	al.,	2011;	Yu	et	al.,	

2015b).	 Association	 constants	 can	 be	 used	 to	 establish	 how	 individual	 mutations	 alter	

model	 dynamics,	 and	 can	 subsequently	 be	 used	 to	 predict	 how	 the	 dynamics	 of	

atherosclerosis	 will	 differ	 between	 population	 subgroups.	 This	 topic	 will	 be	 discussed	

further	in	Chapters	5	and	6.	

 Thesis	Summary	

In	Chapter	2,	 the	current	state	of	computational	modelling	 in	atherosclerosis	 is	 reviewed.	

Mathematical	models	of	individual	processes	involved	in	atherosclerosis	currently	exist,	and	

the	work	done	in	this	field	is	reviewed	and	discussed.	In	addition,	current	knowledge	of	the	

pathogenesis	of	atherosclerosis	is	detailed.	

In	 Chapter	 3,	 the	 	 ordinary	 differential	 equation	 (ODE)	 model	 of	 atherosclerosis	 is	

developed.	The	literature	mining	procedure	undertaken	to	construct	the	model	 is	studied,	

and	 the	 differential	 equations	 used	 in	 model	 formation	 are	 discussed.	 Each	 biochemical	

reaction	 contained	 within	 the	 model	 is	 justified	 within	 the	 literature	 and	 sources	 for	

corresponding	 rate	 parameters	 are	 given.	 Experimental	 validity	 and	 multi-drug	

interventions	are	additionally	examined.	

In	 Chapter	 4,	 protein	 structures	 are	 predicted	 for	 the	 proteins	 involved	 in	 the	model	 of	

atherosclerosis.	This	is	completed	by	utilising	relevant	genomic	data	from	the	1000	Genome	

Project.	The	bioinformatics	tools	used	to	isolate	data,	formulate	predictions,	evaluate	error	

and	 display	 data	 are	 discussed.	 The	 big	 data	 challenges,	 and	 the	materials	 and	methods	

used	to	overcome	these	are	also	reviewed.	
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In	 Chapter	 5,	 protein	 structure	 data	 is	 used	 to	 predict	 association	 rates	 for	 the	 protein-

protein	 interactions	 involved	 within	 the	model.	 The	 tools	 used	 to	 isolate	 data,	 generate	

protein	complexes	and	estimate	association	rates	are	examined.	

In	 Chapter	 6,	 calculated	 association	 rates	 are	 used	 to	 reparametrize	 the	 model	 of	

atherosclerosis.	 The	 generation	 of	 a	 series	 of	 models,	 representing	 different	 population	

subgroups,	is	discussed	and	the	implications	of	mutations	on	the	dynamics	of	our	model	are	

evaluated.	A	 series	of	 therapeutic	hypotheses	based	on	our	 in	 silico	 experimental	 system	

are	developed.	

In	Chapter	7,	the	work	undertaken	in	this	thesis	and	PhD	project	as	a	whole	is	summarised	

and	 concluded,	 and	 potential	 avenues	 for	 further	 work	 within	 this	 nascent	 field	 are	

discussed.	
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2.1 Introduction	

Cardiovascular	 disease	 (CVD)	 is	 the	 primary	 cause	 of	 death	 globally	 (World	 Health	

Organisation,	 2011)	 and	 contributes	 to	 morbidity	 and	 mortality	 more	 than	 any	 other	

disorder	in	the	western	world	(Singh	et	al.,	2002).	In	2012,	CVD	was	responsible	for	31%	of	

deaths	 worldwide,	 47%	 of	 all	 deaths	 within	 Europe	 and	 40%	 of	 all	 deaths	 within	 the	

European	Union	(Nichols	M		Luengo-Fernandez	R,	Leal	J,	Gray	A,	Scarborough	P,	Rayner	M,	

2012;	 Organisation,	 2015).	 CVD	 covers	 a	 collection	 of	 disorders	 that	 can	 be	 split	 into	

atherosclerotic	 and	non-atherosclerotic	 categories	 (World	Health	Organisation	 -	Mendis	 S	

Norrving	B	editors,	2011).	Atherosclerotic	CVD	includes	cerebrovascular	disease	(Postiglione	

and	Napoli,	1995),	coronary	artery	disease	(Hansson,	2005)	and	peripheral	vascular	disease	

(Hussein	et	al.,	2011),	and	it	is	responsible	for	the	majority	of	instances	of	CVD	with	a	2012	

estimate	attributing	71%	of	all	CVD	to	atherosclerotic	forms	(Nichols	M		Luengo-Fernandez	

R,	Leal	J,	Gray	A,	Scarborough	P,	Rayner	M,	2012).			

At	 least	 75%	 of	 all	 CVD-related	 deaths	 occur	 in	 low	 and	middle-income	 countries	 (World	

Health	Organisation,	2015).	In	China,	more	than	4%	of	the	gross	national	income	is	directly	

spent	on	the	treatment	of	CVD	(Federation,	2012)	and	 in	 the	EU,	 it	 is	estimated	that	CVD	

costs	 the	 economy	 approximately	 €196	 billion	 per	 year	 (Nichols	M		 Luengo-Fernandez	 R,	

Leal	 J,	Gray	A,	Scarborough	P,	Rayner	M,	2012).	 Improvements	 in	atherosclerosis	and	CVD	

treatment	therefore	have	the	potential	to	make	a	dramatic	impact,	not	only	on	the	quality	

of	care,	but	also	on	the	economics	of	healthcare.		

CVD	 is	predominantly	an	age	related	condition.	Coronary	heart	disease	 in	men	occurs	 five	

times	more	frequently	in	80+	year	old	patients	than	similar	patients	in	the	40-59	age	group	

(Mozaffarian	et	al.,	2014).	It	is	predicted	that	22%	of	the	global	population	will	be	60+	years	

old	in	2050,	doubling	from	11%	in	2000	(Organisation,	2014).	Comorbidities	that	drive	CVD,	

such	 as	 diabetes	 (Grundy	 et	 al.,	 1999),	 are	 set	 to	 grow	with	 a	 global	 increase	 of	 55%	 in	

diabetes	cases	projected	between	2013	and	2035	(International	Diabetes	Federation,	2013).	

The	current	and	growing	global	risk	of	morbidity	and	mortality	from	atherosclerosis	and	the	

economic	burden	of	treatment	make	atherosclerosis	an	important	area	of	future	research.	

Despite	the	growing	importance	of	atherosclerosis	and	its	implications	for	public	health,	its	

pathogenesis	is	not	fully	understood	(Weber	and	Noels,	2011).	Traditionally,	atherosclerosis	
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was	viewed	as	a	build-up	of	 lipids	(including	cholesterol)	within	the	innermost	layer	of	the	

artery	wall	 (Libby	et	al.,	2013)	 (the	 tunica	 intima).	 	However,	our	understanding	has	since	

developed	and	atherosclerotic	CVD	is	now	predominantly	viewed	as	a	chronic	inflammatory	

condition,	advanced	by	lipid	build-up	and	triggered	by	innate	immune	responses	(Joris	and	

Majno,	1978;	Weber	and	Noels,	2011).			

Atherosclerosis	emerges	as	the	results	of	multiple	dynamical	cell	processes.	Damage	to	the	

endothelial	cells	(Viggers	et	al.,	1986)	will	recruit	monocytes	to	the	site	of	inflammation	via	

inter-	 and	 intra-cellular	 signalling	 (Boisvert,	 2004).	 These	monocytes	will	migrate	 into	 the	

artery	wall	 (Kraemer,	2000),	alongside	 lipoproteins,	and	phagocytose	oxidised	 low	density	

lipoproteins	(oxLDL)	(Schrijvers	et	al.,	2007;	Yoshida	and	Kisugi,	2010).	The	migration	rate	of	

these	 cells	 and	 particles	 is	 related	 to	 haemodynamics	 (Glagov	 et	 al.,	 1988)	 and	 vascular	

mechanical	 stress	 (Cunningham	and	Gotlieb,	2005).	Cholesterol-laden	macrophages	within	

the	artery	wall	will	lead	to	plaque	formation	(Blum	and	Miller,	1996).	

Studies	aimed	at	understanding	atherosclerosis	need	to	be	broad	in	scope	and	integrative	in	

nature.		The	appropriate	framework	in	which	to	consider	emergent	dynamical	behaviour	of	

this	 type	 is	 mathematical	 and	 computational	modelling.	 A	 comprehensive	 programme	 of	

mathematical	modelling	and	simulation	can	provide	many	benefits.	 	Principally,	 it	 yields	a	

framework	for	therapeutic	hypothesis	generation	and	for	in	silico	drug	target	identification	

with	 the	 potential	 to	 streamline	 the	 drug	 development	 pipeline.	 	 This	 framework	 can	 be	

applied	across	populations	or	can	be	tuned	to	describe	individual	patients	or	patient	groups	

as	 part	 of	 a	 programme	 of	 stratified,	 personalised	 and	 precision	 medicine	 (Auffray	 and	

Hood,	2012).		

Mathematical	and	computational	models	can	 take	a	 range	of	 forms.	 	Ordinary	differential	

equations	(ODEs)	(Aldridge	et	al.,	2006),	partial	differential	equations	(PDEs)	(Aldridge	et	al.,	

2006)	and	stochastic	ordinary	differential	equations	(SODEs)	(Meng	et	al.,	2004),	alongside	

binary	(Watterson	et	al.,	2008)	and	multivalued	(Watterson	and	Ghazal,	2010)	logic	have	all	

been	used	to	model	pathway	dynamics.	Process	algebras	such	as	pi	(Guerriero	et	al.,	2009)	

and	kappa	(Feret	et	al.,	2009)	calculus	have	been	used	to	capture	the	structure	of	pathway	

systems,	in	particular	addressing	the	exponential	growth	in	possible	network	configurations	

to	be	considered	as	the	number	of	pathway	components	increases	(Kwiatkowska	and	Heath,	
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2009;	 Pedersen	 and	 Plotkin,	 2008).	 	 Statistical	 models	 that	 infer	 pathway	 structure	 have	

been	 used	 to	 generate	 hypotheses	 from	existing	 datasets	 (Grzegorczyk	 et	 al.,	 2008;	 Vert,	

2010).			

Computational	 biology	 approaches	 have	 previously	 been	 applied	 to	 a	 range	 of	 dynamical	

disease	 processes,	 examples	 include	 Alzheimer’s	 disease	 (Lewis	 et	 al.,	 2010),	 diabetes	

(Ajmera	 et	 al.,	 2013)	 and	 breast	 cancer	 (Faratian	 et	 al.,	 2009).	 	 Furthermore,	 these	

computational	 models	 have	 been	 applied	 to	 pathway	 systems	 such	 as	 in	 nuclear	 factor	

kappa	 beta	 (NF-κB)	 signalling	 (Nelson	 et	 al.,	 2004),	 macrophage	 processing	 (Raza	 et	 al.,	

2010),	human	metabolism	(Thiele	et	al.,	2013)	and	iron	metabolism	(Mitchell	and	Mendes,	

2013).	 	 In	 one	 of	 the	 more	 ambitious	 computational	 studies	 of	 recent	 years,	 the	 first	

computational	model	of	whole	cell	activity	has	appeared	describing	Mycoplasma	genitalium	

(Karr	et	al.,	2012a).			

Machine-readable	standards	for	model	representation	have	been	developed	to	assist	model	

development	and	model	reuse.	 	These	standards	have	stimulated	the	creation	of	pathway	

informatics	tools	and	have	made	models	independent	of	the	software	tools	used	to	create	

them.	In	particular,	the	Systems	Biology	Markup	Language	(SBML)	(Finney	and	Hucka,	2003;	

Hucka	 et	 al.,	 2003)	 and	 CellML	 (Cuellar	 et	 al.,	 2003)	 file	 formats	 capture	 ODE	 models	

describing	the	kinetics	of	pathway	interactions	and	the	Systems	Biology	Graphical	Notation	

Markup	 Language	 (SBGN-ML)	 (Van	 Iersel	 et	 al.,	 2012;	 Le	 Novere	 et	 al.,	 2009)	 encodes	

diagrams	 of	 pathway	 function	 in	 a	 biologically	 meaningful	 file	 format.	 	 The	 Minimum	

Information	Requested	in	the	Annotation	of	Biochemical	Models	(MIRIAM)	(Le	Novère	et	al.,	

2005)	and	Minimum	Information	About	a	Simulation	Experiment	(MIASE)	(Waltemath	et	al.,	

2011)	standards	describe	model	annotation	and	use	respectively,	and	online	repositories	of	

SBML	files	have	been	introduced	to	facilitate	model	reuse	(Le	Novere	et	al.,	2006).	

Previously,	cholesterol	biosynthesis	and	the	impact	of	therapeutic	interventions	have	been	

modelled	 in	 a	 series	 of	 computational	 studies	 (Bhattacharya	 et	 al.,	 2014;	 Lu	 et	 al.,	 2015;	

Mazein	 et	 al.,	 2013;	Mc	 Auley	 et	 al.,	 2012;	Watterson	 et	 al.,	 2013)	 and	 the	 role	 of	 lipid	

metabolism	and	CVD	in	aging	has	been	reviewed	(Mc	Auley	and	Mooney,	2015).		However,	

no	 review	 has	 yet	 brought	 together	 the	 significant	 volume	 of	 recent	work	 completed	 on	

computational	modelling	 of	 atherosclerosis.	 	 This	 paper	 reviews	 the	 current	 state	 of	 this	
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important	nascent	field,	describing	the	work	completed	to	date,	discussing	the	approaches	

taken	and	highlighting	the	gaps	in	our	understanding.			

	

Figure	2.1:	The	Pathophysiology	of	Atherosclerosis.	

Low	 density	 lipoproteins	 (LDL)	 will	 transfer	 into	 the	 artery	 wall	 at	 a	 site	 of	 endothelial	

damage.	 The	 role	 of	 arterial	 wall	 shear	 stress	 (WSS)	 and	 its	 relationship	 to	 lipoprotein	

transfer	into	the	artery	wall	has	been	studied	by	Liu	et	al	(Liu	and	Tang,	2010).	Lipoproteins	

pass	 into	 the	 artery	 wall	 at	 a	 rate	 that	 depends	 on	 the	WSS,	 lipoprotein	 diffusivity	 and	

lipoprotein	 concentration,	 as	modeled	 by	 Sun	 et	 al	 (Sun	 et	 al.,	 2006).	 Once	 entering	 the	

intima,	these	lipoproteins	become	oxidized	when	they	come	into	contact	with	free	oxygen	

radicals,	a	process	that	has	been	modeled	 in	more	detail	by	Cobbold	et	al	 (Cobbold	et	al.,	

2002a).	Monocytes	are	recruited	to	the	site	of	inflammation	via	MCP-1	(modeled	by	Cilla	et	

al.	 (Cilla	 et	 al.,	 2014)),	 which	 pass	 into	 the	 intima	 and	 differentiate	 into	 macrophages	

(Bulelzai	et	al.	(Bulelzai	and	Dubbeldam,	2012)),	catalyzed	by	T-Cell	produced	IFN-γ	(Hao	et	

al.	(Hao	and	Friedman,	2014)).	Macrophages	will	then	phagocytose	oxidized	LDL	within	the	

artery	wall,	forming	cholesterol-laden	foam	cells	–	a	process	included	in	Zhang	et	al.’s	model	

of	 atherogenesis	 (Zhang	 et	 al.,	 2013).	 Foam	 cells	 secrete	 MCP-1,	 which	 recruits	 more	

monocytes	to	the	lesion,	and	PDGF,	which	proliferates	smooth	muscle	cells	(SMCs)	into	the	

intima	(Fok	et	al.	(Fok,	2012)).	
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2.2 The	pathophysiology	of	atherosclerosis	

In	 Figure	 2.1,	 we	 can	 see	 a	 representation	 of	 the	 processes	 that	 lead	 to	 atherosclerosis	

(Douglas		 Channon,	 KM.,	 2014;	 Lusis,	 2000;	 Weber	 and	 Noels,	 2011).	 Damage	 to	 the	

endothelial	layer	of	the	artery	wall	triggers	an	inflammatory	response	in	which	monocytes,	T	

lymphocytes	 and	 other	 immune	 cells	 are	 recruited	 to	 the	 region	 of	 damage.	 	 These	 cells	

penetrate	 the	 endothelial	 layer,	 reaching	 the	 tunica	 intima,	 along	 with	 low	 density	

lipoprotein	(LDL)	and	high-density	lipoprotein	(HDL)	particles.	Stimulated	by	the	presence	of	

interferon	 gamma	 (IFN-γ)	 and	macrophage	 colony	 stimulating	 factor	 (M-CSF),	 monocytes	

differentiate	 into	macrophages	 once	 they	 have	 entered	 the	 artery	wall.	While	 embedded	

within	 the	 tunica	 intima,	 both	 LDL	 and	 HDL	 become	 oxidized	 by	 free	 oxygen	 radicals.	

Macrophages	 will	 phagocytose	 oxidized	 LDL	 (oxLDL),	 but	 not	 oxidized	 HDL.	Macrophages	

heavily	loaded	with	oxLDL	transform	into	foam	cells	that	eventually	undergo	apoptosis.		The	

resulting	mass	 of	 debris	 embedded	 in	 the	 tunica	 intima	 is	 known	 as	 an	 atheroma.	 Foam	

cells,	along	with	endothelial	cells,	secrete	monocyte	chemoattractant	protein-1	(MCP-1)	to	

recruit	 more	 monocytes	 to	 the	 site	 of	 inflammation.	 Naïve	 T	 cells	 contained	 within	 the	

artery	wall	differentiate	 into	 individual	T	cell	types	and	secrete	IFN-γ.	Smooth	muscle	cells	

(SMCs)	 are	 also	 recruited	 into	 the	 tunica	 intima	 where	 they	 undergo	 apoptosis	 and	

contribute	 to	 the	 formation	of	a	 fibrous	cap	 in	 the	artery	wall.	 	This	accumulation	of	cells	

and	 debris	 can	 cause	 a	 swelling	 of	 the	 artery	 wall	 that	 restricts	 blood	 flow,	 leading	 to	

stenosis.	 	When	the	fibrous	cap	ruptures,	the	build-up	in	the	tunica	intima	 is	released	into	

the	blood	stream	increasing	the	risk	of	blockages	downstream.	 	Further	complications	can	

occur	 including	 clotting	 at	 the	 site	 of	 the	 atheroma	 where	 a	 thrombus	 forms	 further	

impeding	blood	flow.			

2.3 Computational	modelling	

 Blood	flow	dynamics	

Vascular	 damage	 is	 a	 key	 trigger	 for	 the	 onset	 of	 atherosclerosis	 that	 can	 be	 induced	 by	

factors	such	as	hypertension	(Alexander,	1995),	smoking	(Powell,	1998)	and	oxidative	stress	

(Harrison	et	al.,	2003).		The	elastic	properties	of	arteries	under	hypertensive	pressure	have	

been	 modelled	 previously	 (Goriely	 and	 Vandiver,	 2010).	 Obstructions	 to	 blood	 flow	 are	

known	 to	 be	 atherogenic	 (Nabel	 et	 al.,	 1988)	 and	 it	 has	 been	 shown	 that	 this	 is	 in	 part	
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attributable	to	the	turbulent	blood	flow	likely	to	be	induced	downstream	(Cunningham	and	

Gotlieb,	2005;	Glagov	et	al.,	1988;	Li	et	al.,	2006;	Resnick	et	al.,	2003;	Stroud	et	al.,	2002).		

A	 number	 of	 computational	 studies	 have	 modelled	 the	 dynamics	 of	 blood	 flow	

(haemodynamics)	 and	 its	 relationship	 to	 vascular	 structure.	 Navier-Stokes	 equations	 are	

typically	used	to	describe	blood	flow	through	arterial	structures	(Ai	and	Vafai,	2006;	Calvez	

and	 Ebde,	 2010;	 Cilla	 et	 al.,	 2014;	 Ethier,	 2002;	 Filipovic	 and	 Kojic,	 2004;	 Filipovic	 et	 al.,	

2011a;	Goriely	and	Vandiver,	2010;	Johnston	et	al.,	2006;	Li	et	al.,	2006;	Liu	and	Tang,	2010;	

Nabel	et	al.,	1988;	Olgac	et	al.,	2008;	Quarteroni	et	al.,	2002;	Rappitsch	et	al.,	1997;	Stroud	

et	al.,	2002;	Sun	et	al.,	2006;	Tomaso	et	al.,	2011;	Vincent	Calvez		Nicolas	Meunier,	Annie	

Raoult	and	Gabriela	Rusnakova,	2010;	Wada	et	al.,	2002;	Wang,	2001).	Arterial	wall	 shear	

stress	 (WSS)	 is	widely	used	as	a	model	output	 that	 serves	as	a	marker	 for	atherosclerotic	

prone	 regions	within	an	artery	 (Bosnić	et	al.,	2012;	Bulelzai	and	Dubbeldam,	2012;	Calvez	

and	Ebde,	2010;	Ethier,	2002;	Filipovic	and	Kojic,	2004;	Filipovic	et	al.,	2011a;	Gabriel	et	al.,	

2014;	Glagov	et	al.,	1988;	Johnston	et	al.,	2006;	Liu	and	Tang,	2010;	Quarteroni	et	al.,	2002;	

Silva	 et	 al.,	 2013;	 Stroud	 et	 al.,	 2002;	 Sun	 et	 al.,	 2006;	 Tomaso	 et	 al.,	 2011;	 Vincent	

Calvez		 Nicolas	Meunier,	 Annie	 Raoult	 and	 Gabriela	 Rusnakova,	 2010;	Wada	 et	 al.,	 2002;	

Wang,	2001).	Two-dimensional	and	three	dimensional	models	of	a	Y-shaped	arterial	branch	

(Bosnić	et	al.,	2012;	Calvez	and	Ebde,	2010;	Filipovic	and	Kojic,	2004;	Filipovic	et	al.,	2011a;	

Gabriel	et	al.,	2014;	Gessaghi	et	al.,	2011;	Silva	et	al.,	2013;	Stroud	et	al.,	2002)	have	been	

created	along	with	linear	artery	models	(Cilla	et	al.,	2014;	Deepa	et	al.,	2009;	Filipovic	and	

Kojic,	2004;	Filipovic	et	al.,	2011a;	Green	et	al.,	2002;	Johnston	et	al.,	2006;	Li	et	al.,	2006;	

Liu	and	Tang,	2010;	Olgac	et	al.,	2008;	Rappitsch	et	al.,	1997;	Tomaso	et	al.,	2011;	Vincent	

Calvez		Nicolas	Meunier,	Annie	Raoult	and	Gabriela	Rusnakova,	2010;	Wada	et	al.,	2002).		

Inflammation	is	driven	by	the	penetration	of	the	arterial	wall	by	LDL,	which	in	some	cases	is	

taken	to	be	a	function	of	the	wall	shear	stress,	demonstrating	that	an	arterial	branch	can	be	

a	 focal	point	 for	atheroma	formation	(Bosnić	et	al.,	2012;	Calvez	and	Ebde,	2010;	Filipovic	

and	Kojic,	2004;	Filipovic	et	al.,	2011a;	Gabriel	et	al.,	2014;	Silva	et	al.,	2013;	Stroud	et	al.,	

2002;	Vincent	Calvez		Nicolas	Meunier,	Annie	Raoult	and	Gabriela	Rusnakova,	2010).	As	well	

as	WSS,	it	has	been	shown	that	inflammation	is	related	to	blood	viscosity,	inlet	flow	rate	and	

the	diameter	of	the	artery	(Liu	and	Tang,	2010).	
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Simpler	 models	 of	 this	 process	 have	 been	 developed	 that	 enable	 atherosclerosis	 to	 be	

considered	as	 a	bistable	 system	 (Bulelzai	 and	Dubbeldam,	2012).	 	Haemodynamic	models	

have	 also	 been	 developed	 to	 explore	 the	 turbulence	 downstream	 of	 an	 atherosclerotic	

constriction	 (Green	 et	 al.,	 2002).	 	 Haemodynamics	 and	 plaque	 formation	 have	 also	 been	

considered	as	a	test	case	for	novel	numerical	methods	(Girke	et	al.,	2014).	

 LDL	concentration	in	the	artery	lumen	

The	turnover	of	LDL	in	the	blood	plays	an	important	role	as	a	primary	factor	that	affects	LDL	

penetration	of	the	tunica	intima	in	many	models	of	atherosclerosis.	Plasma	LDL	levels	have	

been	 modelled	 as	 constant	 (Ai	 and	 Vafai,	 2006;	 Calvez	 and	 Ebde,	 2010;	 Filipovic	 et	 al.,	

2011a;	Gessaghi	et	al.,	 2011),	or	as	a	 variable	 (Cilla	et	al.,	 2014;	 Filipovic	and	Kojic,	 2004;	

Filipovic	et	al.,	2011a;	Gabriel	et	al.,	2014;	Girke	et	al.,	2014;	McKay	et	al.,	2005;	Olgac	et	al.,	

2008;	Vincent	Calvez		Nicolas	Meunier,	Annie	Raoult	and	Gabriela	Rusnakova,	2010;	Wada	

et	al.,	2002)	where	 the	system	dynamics	are	 typically	governed	by	a	 series	of	convection-

diffusion	equations,	or	part	of	a	combined	mass	flow	(Quarteroni	et	al.,	2002).		
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 LDL	penetration	of	the	tunica	intima		

The	process	through	which	LDL	passes	into	the	tunica	intima	has	been	modelled	at	a	range	

of	 levels.	 	The	simplest	approaches	consider	this	 to	be	a	mathematical	 function	of	arterial	

WSS	(Vincent	Calvez		Nicolas	Meunier,	Annie	Raoult,	2010)	or	constant	(Ai	and	Vafai,	2006;	

Cobbold	et	al.,	2002b;	Gessaghi	et	al.,	2011;	Girke	et	al.,	2014;	Ibragimov	et	al.,	2005;	McKay	

et	al.,	2005).	Some	simply	ignore	LDL	penetration,	instead	considering	only	LDL	in	the	tunica	

intima	 (Bulelzai	 and	 Dubbeldam,	 2012)	 or	 combining	 cells,	 proteins	 and	 other	

macromolecules	into	one	mixed	quantity	(Prosi	et	al.,	2005).	More	sophisticated	approaches	

have	considered	diffusion	(Cilla	et	al.,	2014;	Friedman	and	Hao,	2014;	Gabriel	et	al.,	2014;	

Hao	and	Friedman,	2014;	Olgac	et	al.,	2008;	Quarteroni	et	al.,	2002;	Wada	et	al.,	2002)	and	

have	 modelled	 the	 artery	 wall	 as	 a	 semi-permeable	 membrane	 by	 utilising	 Kedem-

Katchalsky	 equations	 (Filipovic	 et	 al.,	 2011a,	 2011b,	 2013;	 Tomaso	 et	 al.,	 2011;	 Vincent	

Calvez		 Nicolas	 Meunier,	 Annie	 Raoult	 and	 Gabriela	 Rusnakova,	 2010).	 LDL	 penetration	

appears	to	be	considered	as	a	boundary	to	many	models	and	the	description	of	 its	uptake	

reflects	the	scope	of	the	model	proposed.		

 LDL	oxidation	and	the	role	of	HDL	

A	range	of	approaches	have	been	taken	to	describe	LDL	oxidation	 inside	the	tunica	 intima	

and	 they	 are	 coupled	 to	 LDL	penetration	 to	differing	 extents.	 	Many	 studies	 consider	 the	

synthesis	and	turnover	of	oxLDL	directly	 (Bulelzai	and	Dubbeldam,	2012;	Calvez	and	Ebde,	

2010;	 Cilla	 et	 al.,	 2014;	 Cobbold	 et	 al.,	 2002b;	 Cohen	 et	 al.,	 2014;	 Filipovic	 et	 al.,	 2011a,	

2013;	Friedman	and	Hao,	2014;	Gessaghi	et	al.,	2011;	Girke	et	al.,	2014;	Hao	and	Friedman,	

2014;	 Ibragimov	 et	 al.,	 2005;	McKay	 et	 al.,	 2005;	 Ougrinovskaia	 et	 al.,	 2010;	 Silva	 et	 al.,	

2013;	 Vincent	 Calvez		 Nicolas	 Meunier,	 Annie	 Raoult	 and	 Gabriela	 Rusnakova,	 2010).	 In	

some,	 oxidation	 of	 LDL	 is	 a	modelled	 reaction	 (Calvez	 and	 Ebde,	 2010;	 Cilla	 et	 al.,	 2014;	

Cobbold	et	al.,	2002b;	Filipovic	et	al.,	2011a;	Friedman	and	Hao,	2014;	Gessaghi	et	al.,	2011;	

Girke	et	al.,	2014;	Hao	and	Friedman,	2014;	Ibragimov	et	al.,	2005;	McKay	et	al.,	2005;	Silva	

et	al.,	2013;	Vincent	Calvez		Nicolas	Meunier,	Annie	Raoult	and	Gabriela	Rusnakova,	2010)	

whereas	in	others	it	is	taken	to	be	a	process	that	is	driven	by	other	factors	such	as	monocyte	

recruitment	 (Bulelzai	 and	 Dubbeldam,	 2012)	 or	 a	 constant	 (Cohen	 et	 al.,	 2014;	

Ougrinovskaia	 et	 al.,	 2010).	 Intermediate	 stages	 of	 the	 oxidation	 process	 have	 been	
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considered	by	modelling	the	number	of	unoxidized	antioxidant	molecules	attached	to	each	

LDL	particle	(Cobbold	et	al.,	2002b).	

The	role	of	HDL	has	been	incorporated	into	a	portion	of	these	studies.		In	particular,	it	has	

been	modelled	as	competing	for	free	radicals	and	suppressing	inflammatory	signalling	in	the	

tunica	 intima	 (Cobbold	et	al.,	2002b;	Hao	and	Friedman,	2014;	McKay	et	al.,	2005)	and	as	

having	 an	 atheroprotective	 effect	 on	 foam	 cells	 (Cohen	 et	 al.,	 2014;	 Friedman	 and	 Hao,	

2014).	

Elsewhere,	the	interplay	between	LDL,	HDL,	oxidising	free	radicals	and	antioxidant	vitamins	

C	 and	 E	 have	 been	 studied	 (Cobbold	 et	 al.,	 2002b)	 with	 predictions	 of	 comparable	

atheroprotective	power	between	HDL	and	vitamin	C.	

 Monocyte	recruitment	and	chemoattractants	

Monocyte	 recruitment	 has	 been	modelled	 as	 related	 to	 shear	 stress	 and	 the	 rate	 of	 LDL	

penetration	(Bulelzai	and	Dubbeldam,	2012).		The	existence	of	monocytes	in	the	lumen	has	

rarely	been	considered	(Cilla	et	al.,	2014),	but	several	studies	have	modelled	the	turnover	of	

monocytes	in	the	tunica	intima	(Bulelzai	and	Dubbeldam,	2012;	Cilla	et	al.,	2014;	Little	et	al.,	

2009;	 McKay	 et	 al.,	 2005;	 Zohdi	 et	 al.,	 2004).	 	 Elsewhere,	 the	 process	 of	 monocyte	

recruitment	 and	 differentiation	 has	 also	 been	 simplified	 and	 incorporated	 into	 one	 step	

governing	macrophage	turnover,	where	this	is	linked	to	driving	factors	such	as	shear	stress,	

diffusion	 and	 LDL	penetration	 (Calvez	 and	Ebde,	 2010;	 Cohen	et	 al.,	 2014;	 Filipovic	 et	 al.,	

2011b,	 2013;	 Friedman	 and	 Hao,	 2014;	 Girke	 et	 al.,	 2014;	 Hao	 and	 Friedman,	 2014;	

Ibragimov	 et	 al.,	 2005;	Ougrinovskaia	 et	 al.,	 2010;	 Silva	 et	 al.,	 2013;	 Tomaso	 et	 al.,	 2011;	

Vincent	Calvez		Nicolas	Meunier,	Annie	Raoult	and	Gabriela	Rusnakova,	2010).			

Similarly,	the	turnover	of	MCP-1	as	a	chemoattractant	has	been	described	explicitly	in	some	

studies	 (Friedman	 and	 Hao,	 2014;	 Hao	 and	 Friedman,	 2014)	 and	 grouped	 together	 with	

other	chemoattractants	including	interleukin-1	(IL-1)	and	M-CSF	in	other	studies	(Cilla	et	al.,	

2014;	Filipovic	et	al.,	2011b;	Girke	et	al.,	2014;	Ibragimov	et	al.,	2005;	El	Khatib	et	al.,	2007;	

McKay	et	al.,	2005;	Silva	et	al.,	2013).		One	study	has	shown	that	exposure	to	radiation	leads	

to	enhanced	levels	of	MCP-1	and	is	therefore	atherogenic	(Little	et	al.,	2009).		However,	in	

many	studies	the	role	of	chemoattractants	has	been	ignored.			
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 Monocytes	to	macrophage	differentiation	

The	differentiation	of	monocytes	to	macrophages	has	been	incorporated	into	a	number	of	

studies,	although	many	simplify	this	step	by	considering	both	populations	as	one	group	on	

the	grounds	that	differentiation	occurs	on	a	time	scale	too	short	to	be	significant	(Filipovic	

et	 al.,	 2011a;	Ougrinovskaia	 et	 al.,	 2010;	 Tomaso	 et	 al.,	 2011).	Where	 differentiation	 has	

been	modelled	it	is	presented	with	mass	action	kinetics	(Bulelzai	and	Dubbeldam,	2012;	Cilla	

et	al.,	2014;	Little	et	al.,	2009;	McKay	et	al.,	2005).	

 Foam	cell	formation	and	the	phagocytosis	of	oxidised	LDL	

The	 transformation	 of	 macrophages	 to	 foam	 cells	 due	 to	 the	 phagocytosis	 of	 oxLDL	 is	 a	

critical	 stage	 in	 the	 formation	of	atheroma	that	has	been	 included	 in	many	studies.	These	

are	 typically	 modelled	 as	 a	 combination	 of	 mass	 action	 and	 Michaelis-Menten	 terms	

(Bulelzai	and	Dubbeldam,	2012;	Calvez	and	Ebde,	2010;	Cilla	et	al.,	2014;	Cohen	et	al.,	2014;	

Friedman	and	Hao,	2014;	Hao	and	Friedman,	2014;	Ougrinovskaia	et	al.,	2010;	Silva	et	al.,	

2013;	 Tomaso	 et	 al.,	 2011;	 Vincent	 Calvez		 Nicolas	 Meunier,	 Annie	 Raoult	 and	 Gabriela	

Rusnakova,	 2010),	 and	 in	 some	 cases	 reverse	 cholesterol	 efflux	 is	 included	 in	 the	model	

(Cohen	et	al.,	2014;	Friedman	and	Hao,	2014;	Zhang	et	al.,	2013).	Many	studies,	however,	

omit	foam	cell	formation	as	a	step,	instead	taking	the	volume	of	macrophages	recruited	to	

be	 representative	 of	 atheroma	 formation	 (Filipovic	 et	 al.,	 2013;	 Ibragimov	 et	 al.,	 2005;	 El	

Khatib	et	al.,	2007;	McKay	et	al.,	2005;	Zohdi	et	al.,	2004).		

 T	cell	recruitment	and	the	role	of	interferon-gamma	(IFN-γ)	

The	 role	of	 T	 cells	 in	 coordinating	 the	 inflammatory	 response	has	 rarely	been	 included	 in	

computational	studies.	Where	they	have	been	 included	as	a	 factor,	T	cells	yield	 IFN-γ	that	

modulates	macrophage	differentiation	(Friedman	and	Hao,	2014;	Hao	and	Friedman,	2014;	

Little	et	al.,	2009;	McKay	et	al.,	2005)	and	are	 themselves	modelled	as	being	activated	by	

interleukin	12	 (IL-12)	 (Friedman	and	Hao,	2014;	Hao	and	Friedman,	2014),	although	 it	has	

been	shown	experimentally	that	T	cells	can	also	be	activated	by	IL-1	(Lichtman	et	al.,	1988)	

and	IFN-γ	(McLaren	and	Ramji,	2009).		

 Proliferation	of	smooth	muscle	cells	

Along	with	foam	cells	and	cell	debris,	SMCs	contribute	to	the	formation	of	atheroma	(Weber	

and	Noels,	2011).		However	this	factor	has	rarely	been	incorporated	into	models.		Where	it	
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has	 been	 incorporated,	 SMC	 recruitment	 occurs	 in	 response	 to	 MCP-1,	 platelet	 derived	

growth	 factor	 (PDGF)	 and	 extracellular	matrix	 (ECM)	 either	modelled	 explicitly	 as	 factors	

(Friedman	 and	 Hao,	 2014;	 Hao	 and	 Friedman,	 2014)	 or	 as	 a	 generic	 recruitment	 process	

(Cilla	et	al.,	2014;	Girke	et	al.,	2014;	Ibragimov	et	al.,	2005;	McKay	et	al.,	2005).	One	study	in	

particular	 has	 focused	 on	 the	 interplay	 between	 SMCs	 and	 PDGF	 identifying	 bistability	 in	

SMC-driven	atheroma	formation	(Fok,	2012).		

 Plaque	rupture	and	thrombosis	

The	rupture	of	atheroma	has	been	modelled,	establishing	a	criterion	for	atheroma	instability	

that	 takes	 the	 form	 of	 a	 solution	 to	 a	 third	 order	 non-linear	 ODE	 (Green	 et	 al.,	 2002).	

Separate	 studies	 have	 established	 stability	 by	 evaluating	 the	 eigenvalues	 of	 a	 perturbed	

system	 (Ibragimov	 et	 al.,	 2005)	 and	 by	 calculating	 the	mean	 time-to-rupture	of	 atheroma	

formation	(Zohdi	et	al.,	2004).	The	WSS	upon	an	atheroma	has	been	calculated	as	a	trigger	

for	rupture	and	this	model	has	been	modified	to	incorporate	the	effects	of	abnormal	axial	

G-forces	(Deepa	et	al.,	2009).		Relevant	models	have	been	produced	that	describe	thrombus	

formation	 in	 the	absence	 (Xue	et	al.,	 2009)	and	presence	of	 shear	blood	 flow	 (Guy	et	al.,	

2007;	Li	et	al.,	2006).		

2.4 Discussion	

The	 majority	 of	 the	 work	 presented	 here	 has	 been	 published	 in	 the	 last	 10	 years,	

demonstrating	 that	 computational	modelling	 of	 atherosclerosis	 is	 a	 developing	 field	with	

growing	 support.	 	 These	 studies	 operate	 at	 a	 range	 of	 levels	 of	 abstraction	 and	 have	

variable	scope.		However,	they	have	all	been	produced	as	separate	bespoke	computational	

models	with	little	capacity	for	reuse	by	the	wider	modelling	community.	 	The	introduction	

of	 community	modelling	 standards	 such	as	SBML	 (Frank	T.	Bergmann,	2015;	Hucka	et	al.,	

2003)	 and	 SBGN-ML	 (Van	 Iersel	 et	 al.,	 2012;	 Le	 Novere	 et	 al.,	 2009)	 would	 enable	 the	

community	 to	 progress	 together	 on	 the	 development	 of	 atherosclerosis	modelling	 and	 it	

would	 be	 valuable	 to	 translate	 the	 most	 biologically	 detailed	 models	 (Cilla	 et	 al.,	 2014;	

Vincent	 Calvez		 Nicolas	Meunier,	 Annie	 Raoult	 and	 Gabriela	 Rusnakova,	 2010)	 into	 these	

community	standards.		

Online	databases,	such	as	BioModels	(Chelliah	et	al.,	2015;	Li	et	al.,	2010;	Le	Novere	et	al.,	

2006)	and	the	Physiome	Model	Repository	2	(PMR2)	(Yu	et	al.,	2011),	contain	computational	
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models	 of	 biological	 processes.	 	 Such	 databases	 facilitate	 the	 codification	 of	 our	

understanding	and,	critically,	enable	models	to	be	reused	and	built	upon	as	our	knowledge	

advances.	However,	no	models	of	atherosclerosis	currently	exist	within	these	repositories,	

although	systems	biology	representations	of	 the	cardiovascular	system	(Shaw	et	al.,	2007)	

and	statin	pharmacokinetics	(Bucher	et	al.,	2011)	are	available.	

 Factors	not	yet	modelled	

There	are	many	components	of	atherosclerosis	that	to	date	have	not	been	modelled.	With	

accurate	parameterisation	each	would	increase	the	comprehensiveness	and	accuracy	of	our	

understanding	 of	 atherosclerosis	 as	 a	 dynamical	 process.	 Triglyceride	 rich	 lipoproteins	

contribute	 to	 plaque	 build-up	 with	 some	 studies	 showing	 that	 they	 trigger	 foam	 cell	

formation	 through	 mechanisms	 that	 bypass	 LDL	 oxidation	 (Gotto,	 1998;	 Le	 and	 Walter,	

2007;	 Talayero	 and	 Sacks,	 2011).	 Elsewhere,	 it	 has	been	proposed	 that	 categories	of	HDL	

and	their	relative	proportions	may	be	more	important	than	the	absolute	abundance	of	HDL	

(Douglas		 Channon,	 KM.,	 2014;	 Umaerus	 et	 al.,	 2012),	 suggesting	 that	 models	 could	 be	

adapted	 to	 incorporate	 a	 HDL	 profile	 that	 influences	 oxidation	 and	 reverse	 cholesterol	

efflux.	 	 It	 has	 also	 been	 shown	 that	 HDL	 can	 inhibit	 the	 recruitment	 of	 monocytes	 and	

subsequently	reduce	atherogenesis	(Umemoto	et	al.,	2013)	suggesting	further	 interactions	

to	model.		Clinically,	it	has	been	suggested	that	LDL	particle	number	is	a	stronger	risk	factor	

for	 atherosclerosis	 than	 the	 abundance	 of	 LDL-bound	 cholesterol,	 implying	 that	 future	

models	should	 include	a	description	of	the	cholesterol	 load	of	 lipoproteins	as	well	as	their	

abundance	(Otvos	et	al.,	2011).	 	 In	addition,	 the	role	of	neutrophils	 (Hartwig	et	al.,	2014),	

nitrous	oxide	(Douglas		Channon,	KM.,	2014),	B	cells	(Perry	et	al.,	2012),	heat	shock	proteins	

(Kilic	and	Mandal,	2012;	Xu	et	al.,	2012),	sterol	regulatory	element	binding	protein	(SREBP)	

mediated	regulation	(Lu	et	al.,	2015),	various	cell	signalling	proteins	such	as	NLRP3	(Xiao	et	

al.,	 2013),	 	 and	 miRNAs	 (Nazari-Jahantigh	 et	 al.,	 2014)	 have	 not	 been	 modelled	 in	 this	

context.			

By	 far	 the	majority	of	work	 to	date	has	been	on	 the	buildup	of	 atheroma.	 	 Some	 studies	

have	 addressed	 the	 mechanisms	 through	 which	 atheroma	 rupture,	 but	 they	 are	 in	 a	

significant	minority.		Very	little	work	has	been	done	on	the	consequences	of	rupture,	such	as	

thrombus	formation.		This	presents	a	potential	direction	for	the	field.		It	is	highly	relevant	to	



31	
	

	
	

patient	treatment	as	most	patients	at	risk	of	CVD	are	only	identified	after	a	cardiovascular	

event	has	occurred.		

 Computational	modelling	in	therapy	development	

The	application	of	computational	modelling	to	therapy	development	in	atherosclerosis	has	

been	historically	poor.		It	is	possible	to	predict	both	the	efficacy	of	a	drug	and	its	potential	

side	effects	(Tatonetti	et	al.,	2009;	Wang	et	al.,	2013;	Yang	et	al.,	2011)	and	there	is	growing	

interest	in	areas	of	combinatorial	drug	design	(Sun	et	al.,	2013)	to	optimise	treatment.		Such	

approaches	have	been	demonstrated	for	the	role	of	statins	in	the	reduction	of	LDL	levels	in	

plasma	 along	 with	 dietary	 changes	 [49,	 95].	 	 Computational	 biology	 can	 also	 be	 used	 to	

identify	potential	molecular	targets	for	drugs	and	has	been	used	to	reduce	the	high	attrition	

rate	of	drug	discovery	(Chua	and	Roth,	2011).		However,	these	technologies	have	yet	to	be	

exploited	to	their	full	potential.		Finite	element	and	analytical	methods	have	been	employed	

to	 model	 the	 interaction	 between	 a	 stent	 and	 artery	 wall	 when	 widening	 constricted	

arteries	during	angioplasty	(Eftaxiopoulos	and	Atkinson,	2005;	Holzapfel	et	al.,	2000).	

Creating	more	 comprehensive	models	of	 atherosclerosis	has	 the	potential	 to	 improve	 the	

efficiency	of	 therapy	development	with	benefits	 for	both	 the	patient	 and	 the	 commercial	

vendor.	 	 However,	 obtaining	 accurate	 parameterisations	 for	 the	models	 is	 a	 fundamental	

challenge.	 	 The	 lack	 of	 appropriate	 published	 experimental	 data	 is	 a	 critical	 obstacle	 to	

generating	high	confidence	predictive	models.			

 Difficulties	in	model	generation	

Developing	 a	 comprehensive	 predictive	 model	 of	 atherogenesis	 comes	 with	 many	

challenges.	Our	 knowledge	 of	 the	 processes	 involved	 has	 increased	 significantly	 in	 recent	

years	 with	 the	 development	 of	 genomic	 technologies	 such	 as	 genome	 wide	 association	

studies	(GWAS)	(Schunkert	et	al.,	2011).	As	atherosclerosis	is	a	cardiovascular	condition	that	

affects	 critical	 circulatory	 systems,	 studying	 human	 atheroma	 poses	 logistical	 and	 ethical	

problems	as	access	 to	 live	atherosclerotic	 tissue	 is	 limited	and	disturbances	 risk	 triggering	

plaque	rupture.	Consequently,	data	is	limited.	Animal	studies	of	atherosclerosis	do	exist	for	

mouse,	 rabbit	 and	 pig	 (Getz	 and	 Reardon,	 2012)	 and	 profiling	 has	 been	 conducted	 for	

plaque	material	removed	in	carotid	endarterectomy	(Verhoeven	et	al.,	2005).	
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The	limited	data	available	obstructs	studies	of	atheroma	at	the	macro	scale	and	studies	of	

the	 molecular	 biology	 involved.	 As	 a	 result,	 establishing	 biologically	 relevant	 kinetic	

parameters	 that	 can	 be	 used	 to	 simulate	 pathway	 dynamics	 will	 be	 challenging	 and	

comprehensive	 data	 for	 the	 pathogenesis	 of	 atherosclerosis	 is	 not	 available	 in	 the	 public	

domain.	 Subsequently,	 some	 studies	 have	 resorted	 to	 estimating	 parameters	 for	models,	

based	on	expert	opinion	or	inferred	from	other	cell	processes.	

It	is	likely	that	approximate	values	can	be	obtained	for	a	number	of	the	parameters	required	

by	using	recombinant	proteins	and	in	vitro	studies.		However,	recreating	the	environment	of	

the	 tunica	 intima	 and	 quantifying	 its	 impact	 on	 the	 parameterisation	 in	 order	 to	 obtain	

physiological	values	will	be	challenging(Rollins	et	al.,	1991;	Santoli	et	al.,	1987;	Yang	et	al.,	

1995).	

 Conclusion	

Computational	modelling	 of	 atherosclerosis	 presents	 an	 opportunity	 to	 contribute	 to	 the	

reduction	of	the	global	burden	of	CVD.			By	introducing	accurate	and	quantitative	models	of	

atherosclerosis,	we	can	create	an	 in	silico	experimental	system	with	the	potential	not	only	

to	 displace	 in	 vivo	 experimentation	 but	 also	 to	 enable	 us	 to	 study	 details	 that	 cannot	 be	

measured	in	vivo.	However	this	necessitates	a	physiologically	accurate	parameterisation	and	

such	data	is	not	currently	available	in	a	comprehensive	form.		

Historically,	 little	 work	 has	 been	 completed	 developing	 computational	 modelling	 of	

atherosclerosis,	 although	 recent	 years	 have	 seen	 a	 clear	 growth	 of	 interest	 and	 the	

formation	 of	 a	 nascent	 field.	 	 Here	 we	 have	 gathered	 together	 and	 reviewed	 the	 recent	

results	 with	 a	 view	 to	 identifying	 where	 the	 gaps	 in	 our	 understanding	 lie	 and	 where	

progress	can	be	made.			

Most	of	the	work	completed	in	this	area	to	date	has	focussed	on	the	inflammatory	response	

and	 shear	 stress	 of	 the	 artery	 wall	 and	 has	 involved	 modelling	 at	 a	 range	 of	 levels	 of	

abstraction.			

The	majority	of	work	has	focused	on	describing	atheroma	formation	and	few	studies	have	

addressed	 the	mechanics	 of	 plaque	 rupture	 and	 its	 subsequent	 consequences.	 	 	 In	most	

cases,	models	 follow	 the	 canonical	 understanding	of	 atherosclerosis:	 LDL	penetration	 and	
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oxidation,	 monocyte	 recruitment	 and	 differentiation	 and	 foam	 cell	 formation.	 	 However,	

many	additional	factors	remain	outside	this	canonical	picture	that	are	known	to	contribute	

to	 atherosclerosis	 and	 there	 currently	 exist	 opportunities	 to	 explore	 their	 role	 in	 the	

dynamics	of	this	disease	through	computational	modelling.	
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2.6 List	of	Computational	Models	

In	Table	2.1,	the	mathematical	models	of	atherosclerosis	referenced	within	this	review	are	summarized.	These	models	are	reproducible	as	

their	governing	equations	are	explained	unless	otherwise	stated.	

Table	2.1:	Mathematical	Models	of	Atherosclerosis	

First	Author	 Title	 Year	 Form	 Parameters	 Validation	 Tools	
Goriely	
(Goriely	and	
Vandiver,	
2010)	

On	the	mechanical	
stability	of	growing	
arteries	

2010	 A	coronary	artery	modelled	as	
an	incompressible	2-layer	
cylindrical	structure	was	used	to	
study	the	arterial	response	to	
stress	

Related	to	
experimental	data	

Compared	to	
experimental	data	
obtained	by	
Schulze-Bauer	et	al.	
(Schulze-Bauer	et	
al.,	2003)	

None	mentioned	

Li	(Li	et	al.,	
2006)	

How	critical	is	fibrous	
cap	thickness	to	carotid	
plaque	stability?	A	flow-
plaque	interaction	
model	

2006	 A	model	of	a	stenotic	carotid	
artery	was	used	to	relate	
fibrous	cap	thickness	to	WSS	

Use	a	combination	
of	estimated	and	
experimentally	
validated	
parameters	
	

The	authors	claim	
that	the	model	fits	
well	within	the	
current	literature,	
however	no	
references	are	
given	to	
substantiate	this	
claim	

FEMLAB	was	used	
for	model	
construction,	SPSS	
was	used	to	
analyse	this	model	

Stroud	(Stroud	
et	al.,	2002)	

Numerical	analysis	of	
flow	through	a	severly	
stenotic	carotid	artery	
bifurcation	

2002	 A	model	of	a	carotid	artery	
bifurcation	is	used	to	study	
pulsatile	and	steady	blood	flow	

Related	to	
experimental	data	

Compared	to	
experimental	data	
obtained	by	Ahmed	
and	Giddens	
(Ahmed	and	
Giddens,	1983)	

None	mentioned	

Quarteroni	
(Quarteroni	et	

Mathematical	and	
numerical	modeling	of	

2002	 Proposed	two	models	of	an	
arterial	bifurcation	to	study	

Parameter	source	
unclear	

None	 None	mentioned	
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First	Author	 Title	 Year	 Form	 Parameters	 Validation	 Tools	
al.,	2002)	 solute	dynamics	in	

blood	flow	and	arterial	
walls	

mass	transfer	
	

	
Di	Tomaso	
(Tomaso	et	al.,	
2011)		

A	Multiscale	Model	of	
Atherosclerotic	Plaque	
Formation	at	Its	Early	
Stage	

2011	 Built	a	multi-scale	model	of	
atherosclerosis	to	include	mass	
transfer,	LDL	oxidation	and	
foam	cell	formation	

Use	a	combination	
of	estimated	and	
experimentally	
validated	
parameters	
	

The	model	was	
compared	with	
experimental	data	
taken	from	Meyer	
et	al.	(Meyer	et	al.,	
1996)and	against	
the	model	
produced	by	Olgac	
et	al.	(Olgac	et	al.,	
2008)	

None	mentioned	

Cilla	(Cilla	et	
al.,	2014)	

Mathematical	modelling	
of	atheroma	plaque	
formation	and	
development	in	
coronary	arteries	

2013	 Uses	a	standard	left	descending	
coronary	artery	model	to	study	
plaque	growth	

Taken	from	
experimental	data	
and	other	
mathematical	
models	

Parts	of	the	model	
correspond	with	
experimental	data	
such	as	Meyer	et	
al.	(Meyer	et	al.,	
1996),	however	
appropriate	
experimental	data	
to	cover	the	entire	
model	is	not	
currently	available.	

COMSOL	
Multiphysics	

Filipovic	
(Filipovic	and	
Kojic,	2004)	

Computer	simulations	
of	blood	flow	with	mass	
transport	through	the	
carotid	artery	
bifurcation	

2004	 Proposed	a	simulation	of	mass	
transport	to	allow	physicians	to	
study	individual	patients	

Parameter	source	
unclear	

The	authors	claim	
that	the	model	fits	
well	within	the	
current	literature,	
however	no	
references	are	
given	to	
substantiate	this	

None	mentioned	
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First	Author	 Title	 Year	 Form	 Parameters	 Validation	 Tools	
claim	

Filipovic	
(Filipovic	et	
al.,	2011a)		

ARTreat	Project:	Three-
Dimensional	Numerical	
Simulation	of	Plaque	
Formation	and	
Development	in	the	
Arteries	

2012	 Presented	a	3D	model	of	plaque	
formation	and	development	

Parameters	were	
experimentally	
established	
through	a	rabbit	
animal	model	

Plaque	progression	
within	the	model	
has	been	validated	
against	
experimental	data	
taken	from	Boussel	
et	al.(Boussel	et	al.,	
2009)	

None	mentioned	

Johnston	
(Johnston	et	
al.,	2006)	

Non-Newtonian	blood	
flow	in	human	right	
coronary	arteries:	
Transient	simulations	

2005	 Used	right	coronary	artery	
models	to	study	pulsatile	blood	
flow	

Experimentally	
observed	

Findings	were	
validated	against	
experimental	data	
taken	from	
Kirpalani	(Kirpalani	
et	al.,	1999)	&	
Myers	(Myers	et	
al.,	2001)	

CFD-ACE	

Liu	(Liu	and	
Tang,	2010)	

Computer	Simulations	
of	Atherosclerotic	
Plaque	Growth	in	
Coronary	Arteries	

2010	 Uses	model	of	a	stenosis-free	
curved	human	coronary	artery	
to	study	plaque	growth	

Experimentally	
observed	

None	 COMSOL	
Multiphysics	

Olgac	(Olgac	
et	al.,	2008)	

Computational	
modeling	of	coupled	
blood-wall	mass	
transport	of	LDL:	effects	
of	local	wall	shear	stress	

2008	 Developed	a	model	of	a	
stenosed	coronary	artery	to	
study	the	effects	of	WSS	on	
mass	transport	

Experimentally	
observed	

Related	to	
experimental	data	
(Huang	et	al.,	1997;	
Meyer	et	al.,	1996;	
Yuan	et	al.,	1991)	

COMSOL	
Multiphysics	

Rappitsch	
(Rappitsch	et	
al.,	1997)	

Numerical	Modelling	of	
Shear-Dependent	Mass	
Transfer	in	Large	
Arteries	

1997	 Used	a	curved-tube-artery	
model	to	study	blood	flow	and	
lipoprotein	transport	processes	

Use	a	combination	
of	estimated	and	
experimentally	
validated	
parameters	

Validated	against	
(Friedman	and	
Ehrlich,	1975)	

None	mentioned	
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First	Author	 Title	 Year	 Form	 Parameters	 Validation	 Tools	
Sun	(Sun	et	al.,	
2006)	

Fluid-wall	modelling	of	
mass	transfer	in	an	
axisymmetric	Stenosis:	
Effects	of	shear-
dependent	transport	
properties	

2006	 Studies	the	influence	of	WSS	on	
mass	transport	

Use	a	combination	
of	estimated	and	
experimentally	
validated	
parameters	

Compared	to	
experimental	data	
taken	from	rabbit	
aortic	walls	(Meyer	
et	al.,	1996)	

None	mentioned	

Ai	(Ai	and	
Vafai,	2006)	

A	coupling	model	for	
macromolecule	
transport	in	a	stenosed	
arterial	wall	

2006	 A	model	of	a	stenosed	artery	is	
used	to	study	lipid	transfer	

Experimentally	
validated	

Compared	to	other	
mathematical	
models,	with	
arguments	as	to	
why	their	
parameter	set	is	
more	accurate	

FIDAP	

Wada	(Wada	
et	al.,	2002)	

Theoretical	study	of	the	
effect	of	local	flow	
disturbances	on	the	
concentration	of	low-
density	lipoproteins	at	
the	luminal	surface	of	
end-to-end	
anastomosed	vessels.	

2002	 Femoral	artery	model	is	used	to	
study	the	relationship	between	
intimal	thickness	and	the	
endothelial	surface	level	of	LDL	

Parameters	were	
taken	from	
experimental	data	
or	estimated	

Compared	to	
experimental	data	
taken	from	
Ishibashi	et	al.	
(Ishibashi	et	al.,	
1995)	

Star	LT		

Calvez	(Calvez	
and	Ebde,	
2010)	

Mathematical	modelling	
of	the	atherosclerotic	
plaque	formation.	

2009	 Developed	a	2D	geometry	
modelling	the	carotid	artery	to	
demonstrate	plaque	formation,	
based	on	the	model	of	El	Khatib	
et	al.	(El	Khatib	et	al.,	2007)	

	

Parameters	are	
taken	from	other	
mathematical	
models,	relating	to	
atherosclerosis	(El	
Khatib	et	al.,	2007)	
and	hyperplasia	
(Budu-Grajdeanu	
et	al.,	2008)	

None	 FreeFem++	(Hecht,	
2012)	

Calvez	
(Vincent	

Mathematical	and	
numerical	modelling	of	

2010	 Expanded	on	their	previous	
model	(Calvez	and	Ebde,	2010)	

Parameters	were	
taken	from	

Experiments	
published	by	Cheng	

FreeFem++	(Hecht,	
2012)	



	
	

	
	

38	

First	Author	 Title	 Year	 Form	 Parameters	 Validation	 Tools	
Calvez		Nicolas	
Meunier,	
Annie	Raoult	
and	Gabriela	
Rusnakova,	
2010)	

early	atherosclerotic	
lesions	

to	include	a	model	of	lesion	
growth	

experimental	data	
or	estimated	

et	al.	(Cheng	et	al.,	
2005,	2006)	were	
reproduced	and	
were	used	to	
validate	the	model	

Bosnić	(Bosnić	
et	al.,	2012)	

Mining	data	from	
hemodynamic	
simulations	for	
generating	prediction	
and	explanation	
models.	

2012	 Built	a	prototype	of	a	system	
that	could	predict	locations	of	
increased	WSS	from	artery	
models	

Parameter	source	
unclear	

Presents	a	series	of	
methods	to	
estimate	accuracy	
of	the	model,	and	
relates	these	to	
experimental	data	

None	mentioned	

Bulelzai	
(Bulelzai	and	
Dubbeldam,	
2012)	

Long	time	evolution	of	
atherosclerotic	plaques	

2011	 Present	a	series	of	ODEs	for	the	
concentrations	of	particular	
elements	of	atheromae.		

Taken	from	
experimental	data	
and	other	
mathematical	
models	(McKay	et	
al.,	2005)	

Compared	to	
mathematical	
model	of	Zohdi	et	
al.	(Zohdi	et	al.,	
2004)	

MATCONT	(Dhooge	
et	al.,	2003)	

Gabriel	
(Gabriel	et	al.,	
2014)	

Deposition-driven	
Growth	in	
Atherosclerosis	
Modelling.	

2014	 A	simplified	bifurcating	artery	is	
used	to	model	LDL	flux	into	the	
intima	

Taken	from	
experimental	data	

None	 ANSYS	Fluent	

Silva	(Silva	et	
al.,	2013)	

Mathematical	Modeling	
of	Atherosclerotic	
Plaque	Formation	
Coupled	with	a	Non-
Newtonian	Model	of	
blood	Flow	

2013	 Built	a	2D	carotid	artery	
bifurcation	to	study	plaque	
formation	with	a	non-
Newtonian	model	of	blood	flow	

Taken	from	other	
mathematical	
models	(Chen	and	
Lu,	2004)	

None	 COMSOL	
Multiphysics	

Gessaghi	
(Gessaghi	et	
al.,	2011)	

Growth	model	for	
cholesterol	
accumulation	in	the	wall	
of	a	simplified	3D	

2011	 A	3D	model	of	a	carotid	artery	
bifurcation	is	used	to	study	the	
influx,	efflux,	oxidation	and	
phagocytosis	of	LDL	

Taken	from	
experimental	data	

Compared	with	
data	obtained	from	
Yang	et	al.(Yang	
and	Vafai,	

OpenFOAM	(Weller	
and	Tabor,	1998),	
Netgen		
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First	Author	 Title	 Year	 Form	 Parameters	 Validation	 Tools	
geometry	of	the	carotid	
bifurcation	

2006).However,	
authors	comment	
that	not	enough	
experimental	data	
exists	to	fully	
validate	the	model.	

Green	(Green	
et	al.,	2002)	

Atherosclerotic	plaque	
rupture	

2002	 A	model	of	a	straight,	stenotic	
2D	artery	is	used	to	study	
atherosclerotic	plaque	rupture.	

Parameter	source	
unclear	

None	 AUTO	

Deepa	(Deepa	
et	al.,	2009)	

Modelling	Blood	Flow	
and	Analysis	of	
Atherosclerotic	Plaque	
Rupture	under	G-Force	

2009	 A	1D	arterial	model	was	used	to	
study	the	rupture	of	plaques	
under	g-force	

Sources	have	not	
been	cited	for	
parameter	values	

None	 MATLAB	

Girke	(Girke	et	
al.,	2014)	

Efficient	Parallel	
Simulation	of	
Atherosclerotic	Plaque	
Formation	Using	Higher	
Order	Discontinuous	
Galerkin	Schemes	

2014	 Girke	et	al.	built	a	mathematical	
model	based	on	the	works	of	
Ibragimov	et	al.	(Ibragimov	et	
al.,	2005)	and	Calvez	et	al.	
(Vincent	Calvez		Nicolas	
Meunier,	Annie	Raoult	and	
Gabriela	Rusnakova,	2010)	to	
demonstrate	the	use	of	the	
compact	discontinuous	galerkin	
method	(CDG2)	in	discretizing	
relevant	equations	

Taken	from	
experimental	data	

None	 DUNE-FEM	
(Dedner	et	al.,	
2010)	

McKay	(McKay	
et	al.,	2005)	

Towards	a	Model	of	
Atherosclerosis	

2005	 Proposed	a	mathematical	mode	
to	cover	mass	transfer,	
oxidation,	immune	cell	
activation	and	plaque	growth	

Taken	from	other	
mathematical	
models,	or	
estimated	by	
domain	experts	

None	 None	mentioned	

Ibragimov	
(Ibragimov	et	
al.,	2005)	

A	mathematical	model	
of	atherogenesis	as	an	
inflammatory	response	

2005	 Created	a	series	of	ODEs	to	
study	the	concentrations	of	cell	
groups	over	time	

Primarily	estimated	
due	to	lack	of	
relevant	data	

None	 FEMLAB	
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First	Author	 Title	 Year	 Form	 Parameters	 Validation	 Tools	
Cobbold	
(Cobbold	et	
al.,	2002b)	

Lipoprotein	Oxidation	
and	its	Significance	for	
Atherosclerosis:	a	
Mathematical	Approach	

2002	 Built	a	series	of	ODEs	to	study	
lipoprotein	oxidation	

Taken	from	
experimental	data	

Compared	to	an	
experiment	
performed	by	
Neužil	et	al.	(Neužil	
et	al.,	1996)	

None	mentioned	

Prosi	(Prosi	et	
al.,	2005)	

Mathematical	and	
numerical	models	for	
transfer	of	low	density	
lipoproteins	through	the	
arterial	walls:	a	new	
methodology	for	the	
model	set	up	with	
applications	to	the	
study	of	disturbed	
lumenal	flow	

2004	 Built	multiple	models	of	
lipoprotein	transfer	in	order	to	
maximse	the	accuracy	of	their	
prediction	

Taken	from	
experimental	data	

Experimentally	
validated	against	
Meyer	et	al.	
(Meyer	et	al.,	1996)	

None	mentioned	

Friedman	
(Friedman	and	
Hao,	2014)	

A	Mathematical	Model	
of	Atherosclerosis	with	
Reverse	Cholesterol	
Transport	and	
Associated	Risk	Factors	

2014	 Expands	on	the	previous	model	
by	the	same	group	(Hao	and	
Friedman,	2014)	to	include	
reverse	cholesterol	transport	

Taken	from	
experimental	data	
and	from	other	
mathematical	
models	(Hao	and	
Friedman,	2014)	

Validated	
qualitatively	
against	
experimental	data	
(e.g.	(Feig	et	al.,	
2011;	Lovren	et	al.,	
2012;	Schiopu	et	
al.,	2007))	

None	mentioned	

Hao	(Hao	and	
Friedman,	
2014)	

The	LDL-HDL	profile	
determines	the	risk	of	
atherosclerosis:	a	
mathematical	model	

2014	 Developed	a	series	of	PDEs	to	
model	the	concentration	of	a	
series	of	cells	and	
macromolecules	contained	
within	an	atheroma,	and	related	
this	information	to	plaque	
growth	

Taken	from	
experimental	data	
or	estimated	

None	 MATLAB	

Filipovic	
(Filipovic	et	

Experimental	and	
computer	model	of	

2011	 Built	a	model	of	plaque	
formation	based	on	a	pig	left	

Taken	from	
experimental	data,	

Reproduced	an	
experiment	by	

None	explained	
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First	Author	 Title	 Year	 Form	 Parameters	 Validation	 Tools	
al.,	2011b)	 plaque	formation	in	the	

artery	
anterior	descending	coronary	
artery	

or	estimated	where	
data	was	
unavailable.	

Cheng	et	al.	(Cheng	
et	al.,	2006)	and	
compared	the	
results	to	their	
model	of	plaque	
formation	

Ougrinovskaia	
(Ougrinovskaia	
et	al.,	2010)	

An	ODE	model	of	early	
stages	of	
atherosclerosis:	
mechanisms	of	the	
inflammatory	response	

2010	 Developed	a	series	of	ODEs	to	
model	mass	transfer	and	foam	
cell	formation	

Estimated	 Behaviour	relates	
to	qualitative	data,	
but	model	has	not	
been	compared	to	
quantitative	data	

MATLAB,	XPPAUTO	

Cohen	(Cohen	
et	al.,	2014)	

Athero-protective	
effects	of	High	Density	
Lipoproteins	(HDL):	An	
ODE	model	of	the	early	
stages	of	
atherosclerosis	

2014	 Expanded	on	their	previous	
model	(Ougrinovskaia	et	al.,	
2010)	to	include	HDL	and	
reverse	cholesterol	transport	

Taken	from	
experimental	data	

Noted	that	the	
behaviour	of	their	
model	corresponds	
with	an	experiment	
performed	by	Feig	
et	al.	(Feig	et	al.,	
2011)	

None	mentioned	

Zohdi	(Zohdi	
et	al.,	2004)	

A	phenomenological	
model	for	
atherosclerotic	plaque	
growth	and	rupture	

2004	 Built	a	series	of	equations	to	
study	plaque	growth	and	lesion	
rupture	

Taken	from	
experimental	data,	
or	estimated	where	
data	was	
unavailable.	

None	 None	mentioned	

Little	(Little	et	
al.,	2009)	

A	model	of	
cardiovascular	disease	
giving	a	plausible	
mechanism	for	the	
effect	of	fractionated	
low-dose	ionizing	
radiation	exposure	

2009	 Built	a	series	of	equations	to	
study	the	effect	of	small	
radiation	doses	to	
atherosclerosis	and	CVD	

Taken	from	
experimental	data	

Sections	of	this	
model	are	
validated	by	
matching	with	
experimental	data	
published	by	
Cushing	et	al.	
(Cushing	et	al.,	
1990)	and	Shi	et	al.	

None	mentioned	
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First	Author	 Title	 Year	 Form	 Parameters	 Validation	 Tools	
(Shi	et	al.,	2005)	

El	Khatib	(El	
Khatib	et	al.,	
2007)	

Atherosclerosis	
Initiation	Modeled	as	an	
Inflammatory	Process	

2007	 Built	a	series	of	reaction-
diffusion	equations	by	grouping	
together	all	cytokines	and	
immune	cells	involved	

Estimated	 None	 COMSOL	
Multiphysics	

Zhang	(Zhang	
et	al.,	2013)	

Foam	cell	formation	in	
atherosclerosis:	HDL	
and	macrophage	
reverse	cholesterol	
transport	

2013	 Expanded	on	the	model	of	
Ibragimov	et	al.	(Ibragimov	et	
al.,	2005)	by	focusing	on	the	
role	of	HDL	and	reverse	
cholesterol	transport	

Taken	from	
experimental	data	
and	from	other	
mathematical	
models	(Cobbold	et	
al.,	2002b)	

None	 None	mentioned	

Fok	(Fok,	
2012)	

Mathematical	model	of	
intimal	thickening	in	
atherosclerosis:	vessel	
stenosis	as	a	free	
boundary	problem	

2012	 Focuses	on	SMC	migration	and	
the	role	of	PDGF	

Taken	from	
experimental	data	

Compared	to	
experimental	data	
taken	from	New	
Zealand	white	
rabbits	(Stadius	et	
al.,	1992)	

None	mentioned	

Xue	(Xue	et	
al.,	2009)	

A	mathematical	model	
of	ischemic	cutaneous	
wounds	

2009	 Xue	et	al.	developed	a	series	of	
PDEs	to	model	ischemic	dermal	
wounds	

A	combination	of	
experimentally	
validated	and	
estimated	
parameters	are	
used	

Compared	to	
experimental	data	
established	by	Roy	
et	al.	(Roy	et	al.,	
2009)	

Livermore	Solver	

Guy	(Guy	et	
al.,	2007)	

Fibrin	gel	formation	in	a	
shear	flow	

2007	 Presents	a	model	of	fibrin	
formation	in	a	damaged	blood	
vessel	

A	combination	of	
experimentally	
validated	and	
estimated	
parameters	are	
used	

None	 None	mentioned	
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2.7 Recent	Updates	

Since	 August	 2015,	 the	 date	 of	 submission	 of	 the	 literature	 review	 ‘Computational	

Modelling	 in	 Atherosclerosis’,	modelling	within	 atherosclerosis	 has	 continued	 to	 improve.	

Multiple	 models	 detailing	 the	 effect	 of	 blood	 flow	 dynamics	 on	 atherosclerosis	

development,	arterial	 remodelling,	 lesion	size	and	thrombus	growth	have	been	developed	

(Cuomo	 et	 al.,	 2017;	 Filipovic	 et	 al.,	 2017;	 Mehrabadi	 et	 al.,	 2016).	 Models	 designed	 to	

predict	 lesion	 location	 and	 rate	 of	 thrombus	 growth	 from	 initial	 arterial	 geometry	 and	

arterial	wall	 shear	 stress,	validated	using	 in	vitro	experiments	across	a	variety	of	different	

blood	vessels,	providing	 insight	 into	 the	consequences	of	arterial	occlusion	 (Mehrabadi	et	

al.,	2016).	Filipovic	et	al	have	provided	updates	to	their	earlier	work	utilising	Navier-Stokes	

equations	 and	 Kadem-Katchalsky	 equations	 to	 represent	 fluid	 dynamics	 and	 the	

environmental	changes	between	the	artery	wall	and	lumen,	demonstrating	methods	which	

predict	 atheroma	 location	and	 size	 from	 initial	 arterial	 geometry	 (Filipovic	et	 al.,	 2017).	A	

study	 into	non-Newtonian	oscillating	 flow	 in	biomechanical	analysis	within	a	human	aorta	

has	been	undertaken,	concluding	that	non-Newtonian	methods	of	modelling	blood	flow	can	

be	more	accurate	in	capturing	molecular	viscosity	(Soulis	et	al.,	2016).		

Age-related	 effects	 of	 cardiovascular	 disease	 on	 arterial	 stiffness	 have	 been	 modelled	

through	 a	 collection	 of	 blood-flow	 models	 on	 arterial	 segments	 considered	 as	 an	

incompressible	 elastic	membrane	where	 external	 tissue	 stability	 support	 is	modelled	 as	 a	

boundary	condition,	 limiting	oscillations	within	the	blood	vessel	wall	 (Cuomo	et	al.,	2017).	

The	 influence	of	aging	on	cholesterol	metabolism,	 including	 reverse	cholesterol	 transport,	

has	 been	 modelled	 using	 SBGN-ML	 open	 standards,	 encouraging	 model	 adaptation	 and	

revision	as	knowledge	into	these	processes	improves	(Morgan	et	al.,	2016).	LDL	composition	

and	 lipoprotein	 metabolism	 has	 been	 modelled	 (including	 different	 lipoprotein	 forms,	

apolipoprotein	 concentrations	 and	 cholesteryl	 ester	 transfer	 protein	 (CETP)	mechanisms),	

leading	to	the	prediction	of	lipoprotein	metabolism	rate	constants	(Jansen	et	al.,	2016).		

Lipoprotein	transfer	into	the	tunica	intima	has	been	considered	by	multiple	groups	(Filipovic	

et	 al.,	 2017;	 Iasiello	 et	 al.,	 2016;	 Mel’nyk,	 2017;	 Mpairaktaris	 et	 al.,	 2017).	 The	 role	 of	

adhesion	molecules	within	 LDL	migration	has	been	considered	 (Mel’nyk,	2017),	 improving	

upon	previous	models	which	solely	considered	diffusion	when	modelling	this	process	(Hao	
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and	 Friedman,	 2014).	 Lipoprotein	 transfer	 under	 hyperthermia	 conditions	 has	 been	

considered	(Iasiello	et	al.,	2016).		

Different	 subtypes	of	macrophages,	M1	 and	M2	 (or	 classically	 and	alternatively	 activated),	

have	 been	 considered	within	models	 which	 consider	 LDL	 transfer,	monocyte	 recruitment	

and	 inflammatory	mechanisms	(Mel’nyk,	2017).	Foam	cell	 formation	through	phagocytosis	

has	 been	 considered	 in	 the	 context	 of	 oxLDL	 consumption	 by	 pro-inflammatory	

macrophages	 (Mel’nyk,	2017)	and	a	 function	of	 shear	 forces	within	 the	blood	 (Filipovic	et	

al.,	2017).		

T-Cell	recruitment	and	their	subsequent	secretion	of	cytokines	have	been	considered	in	an	

ODE	 model	 of	 abdominal	 aortic	 aneurysm	 (Hao	 et	 al.,	 2017),	 however	 all	 T-Cells	 are	

assumed	 to	be	Th1	cells	 -	 individual	T-Cell	 subtypes	have	not	been	considered	within	 this	

model.	SMC	density	within	the	tunica	media	 is	also	considered	as	part	of	 this	ODE	model,	

however	 proliferation	 into	 the	 intima	 and	 fibrous	 cap	 formation	 are	 not	 considered	 here	

(Hao	et	al.,	2017).		

 The	future	of	atherosclerosis	modelling	

The	 complexity	 of	 atheroma	 formation	 and	 the	 sheer	 quantity	 of	 proteins,	 cell	 types,	

environments	 and	biological	 processes	 involved	 in	 atherogenesis	 is	 a	 distinct	 challenge	 in	

computational	 modelling.	 As	 such,	 many	 aspects	 of	 atherosclerosis	 have	 not	 yet	 been	

modelled	to	a	sufficient	quality	to	allow	for	a	clear	and	complete	picture	of	atherosclerosis-

related	 cardiovascular	 disease.	 Models	 exist	 to	 represent	 cholesterol	 metabolism,	

lipoprotein	metabolism,	diet,	haemodynamics	and	plaque	formation,	and	a	combination	of	

each	of	these	processes	is	required	to	provide	a	complete	representation	of	the	underlying	

biology.	 HDL	 mechanisms	 are	 enigmatic	 and	 unclear,	 and	 computational	 modelling	 of	

known	processes	involving	HDL	could	lead	to	clarification.	Plaque	calcification	and	its	effects	

on	 stability	 and	 coronary	 events	 have	 not	 yet	 been	modelled.	 Recent	 studies	 have	 been	

undertaken	connecting	both	telomere	length	(Fernández-Alvira	et	al.,	2016)	and	the	ratio	of	

platelets	to	lymphocytes	(Akboga	et	al.,	2015)	to	atherosclerosis.	
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Table	2.2:	Recently	Published	Models	of	Atherosclerosis	

First	Author	 Title	 Year	 Form	 Parameters	 Validation	 Tools	

Cuomo	

(Cuomo	et	al.,	

2017)	

Effects	of	age-

associated	regional	

changes	in	

aortic	stiffness	on	

human	hemodynamics	

revealed	by	

computational	

modeling	

2017	 Fluid-to-solid-

interactions	are	modelled	

through	haemodynamic	

studies	to	predict	spatial	

changes	in	arterial	

structure	

Parameterisation	taken	

from	literature,	initial	

conditions	taken	from	

magnetic	resonance	

images	(MRI)	from	

healthy	volunteers.	

Spatial	distribution	

compared	to	

experimental	data		

CRIMSON	

(Whiting	and	

Jansen,	2001)	

Filipovic	

(Filipovic	et	al.,	

2017)	

Computational	

modeling	of	plaque	

development	in	the	

coronary	arteries		

2017	 Develops	methods	to	

study	plaque	

development	in	both	left	

and	right	coronary	

arteries	

Taken	from	experimental	

data,	or	estimated	where	

data	was	unavailable.	

None	explained	 None	

explained	

Mehrabadi	

(Mehrabadi	et	

al.,	2016)	

A	Predictive	Model	of	

High	Shear	Thrombus	

Growth	

2016	 Predicts	location	and	size	

of	thrombus	deposit	

from	haemodynamic	

conditions	and	arterial	

geometry	

Calculated	form	

correlation	data	between	

thrombus	growth	and	

shear	rate.	

Results	are	

compared	to	

experimental	data	

about	in	(Casa	and	

Ku,	2014)	

Matlab	
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First	Author	 Title	 Year	 Form	 Parameters	 Validation	 Tools	

Soulis	(Soulis	et	

al.,	2016)	

Low	Density	

Lipoprotein	and	Non-

Newtonian	Oscillating	

Flow	Biomechanical	

Parameters	for	Normal	

Human	Aorta	

2016	 Four	non-Newtonian	

models	and	a	Newtonian	

model	were	created	and	

tested	for	a	typical	

human	aorta	exposed	to	

oscillating	blood	flow	

Taken	from	experimental	

data	

LDL	Transfer	and	

spatial	

configurations	

were	compared	to	

experimental	data	

ANSYS	

Workbench	

13	

Morgan	

(Morgan	et	al.,	

2016)	

Mathematically	

modelling	the	dynamics	

of	cholesterol	

metabolism	

and	ageing	

2016	 SBML	model	of	

cholesterol	metabolism	

Taken	from	experimental	

data	

Model	outputs	

were	compared	to	

clinical	data	taken	

from	a	feeding	

study	

Copasi	

Jansen	(Jansen	

et	al.,	2016)	

In	silico	modeling	of	

the	dynamics	of	low	

density	

lipoprotein	

composition	via	a	

single	plasma	sample	

2016	 LDL	composition	and	

lipoprotein	metabolism	

are	modelled		

Some	parameters	are	

calculated	from	human	

plasma	samples,	others	

are	inferred	from	the	data	

Validated	against	a	

second	group	of	

human	plasma	

samples	

SPSS	

Mel’nyk	

(Mel’nyk,	

A	mathematical	model	

of	the	atherosclerosis	

2017	 A	model	of	atherogenesis	

within	small	blood	

Taken	from	experimental	

studies	and	estimated	

Boundary	

conditions	are	

None	

mentioned	
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First	Author	 Title	 Year	 Form	 Parameters	 Validation	 Tools	

2017)	 development	in	thins	

blood	vessels	and	its	

asymptotic	

approximation	

vessels	has	been	

developed,	including	pro	

and	anti-inflammatory	

macrophages		

justified,	however	

model	results	are	

not	

Hao	(Hao	et	al.,	

2017)	

A	mathematical	model	

of	aortic	aneurysm	

formation	

2017	 Hao	et	al.	have	built	on	

their	previous	work	and	

developed	an	ODE	model	

of	abdominal	aortic	

aneurysm	

Taken	from	experimental	

data	and	other	

mathematical	models	

None	 None	

mentioned	

Iasiello	(Iasiello	

et	al.,	2016)	

Low-density	lipoprotein	

transport	through	an	

arterial	wall	under	

hyperthermia	and	

hypertension	

conditions	–	An	

analytical	solution	

2016	 Four	layers	of	artery	wall	

are	considered	and	

transfer	of	LDL	and	

temperature	are	

modelled	under	

hypertension	and	

hyperthermia	conditions	

Taken	from	experimental	

data	where	possible	

Compared	to	

previous	analytical	

studies	

None	

mentioned	

Mpairaktaris	

(Mpairaktaris	

et	al.,	2017)	

Low	density	lipoprotein	

transport	through	

patient-specific	

2017	 Models	patient	specific	

LDL	distribution	within	

the	artery	wall	

A	combination	of	

experimentally	derived,	

mathematically	justified	

Results	are	

compared	to	

experimental	data	

Materialize	

Mimics	
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First	Author	 Title	 Year	 Form	 Parameters	 Validation	 Tools	

thoracic	arterial	wall	 and	estimated	

parameters	are	used	in	

this	system	

from		

(Nematollahi	et	al.,	

2012)	
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Chapter 3: 

A Computational Model of 

Atherosclerosis: 

Development of a 

Community Resource 
3 A	Computational	Model	of	Atherosclerosis:	Development	of	a	Community	Resource	
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3.1 Introduction	

Cardiovascular	disease	(CVD)	 is	 the	primary	cause	of	global	mortality.	CVD	 is	estimated	to	

account	 for	 17m	 deaths	 worldwide	 each	 year	 (Go	 et	 al.,	 2014),	 representing	 31%	 of	 all-

cause	 mortality	 worldwide	 and	 47%	 of	 all-cause	 mortality	 within	 Europe	 (Nichols	

M		Luengo-Fernandez	R,	Leal	J,	Gray	A,	Scarborough	P,	Rayner	M,	2012).	Such	a	prevalent	

condition	 incurs	 a	 significant	 financial	 burden,	 accounting	 for	 17%	 of	 all	 healthcare	

expenditure	 in	 the	 USA	 (Heidenreich	 et	 al.,	 2011).	 Age	 is	 a	 significant	 risk	 factor	 for	

cardiovascular	disease	and	with	an	aging	population,	 the	 cost	of	CVD	 related	 therapies	 is	

predicted	 to	 almost	 triple	 in	 the	 USA	 from	 $273	 billion	 in	 2010	 to	 $818	 billion	 by	 2030	

(Heidenreich	et	al.,	2011).		

	

Atherosclerosis	 is	 estimated	 to	 account	 for	 71%	 of	 CVD	 diagnoses	 (Nichols	 M		 Luengo-

Fernandez	 R,	 Leal	 J,	 Gray	 A,	 Scarborough	 P,	 Rayner	M,	 2012).	 	 It	 is	 characterised	 by	 the	

hardening	of	an	artery	wall,	and	 the	 formation	of	a	 fibrous-fatty	 lesion	within	 the	 intimal	

layer.		As	the	disorder	progresses,	thick	extracellular	cores	of	lipids	occur	within	the	artery	

wall,	occluding	 the	artery	and	subsequently	 reducing	blood	 flow.	 	Thrombosis	can	 further	

occlude	 the	 artery	 either	 as	 a	 result	 of	 plaque	 rupture	 or	 turbulent	 blood	 flow	 induced	

around	the	site	of	the	atheroma.		

	

Atherosclerosis	 is	understood	to	be	a	chronic	 inflammatory	condition	 facilitated	by	a	high	

blood	 lipid	 profile	 that	 involves	 arterial	 damage,	 low-density	 lipoprotein	 (LDL)	 and	 high-

density	 lipoproteins	 (HDL)	 penetration	 and	 oxidation,	 monocyte	 and	 T-cell	 recruitment,	

monocyte	differentiation	and	foam	cell	creation,	smooth	muscle	cell	 (SMC)	migration	and	

fibrous	 cap	 formation	 and	 plaque	 rupture.	 	 Despite	 our	 increasing	 knowledge	 of	 the	

mechanisms	 driving	 this	 disorder,	 the	 pathogenesis	 of	 atherosclerosis	 is	 still	 not	 fully	

understood.	 	 In	 part,	 this	 is	 due	 to	 the	 significant	 challenge	 inherent	 in	 studying	 live,	

dynamic	 plaques.	 	 Accessing	 plaques	 in	 vivo	 is	 logistically	 difficult,	 necessitating	

catheterization,	and	ethically	challenging	as	it	can	increase	the	risk	of	plaque	rupture.		As	a	

result,	 alternative	 approaches	 to	 studying	 atherosclerosis	 dynamics	 are	 needed.		

Computational	 modelling	 has	 the	 potential	 to	 be	 especially	 valuable	 here	 due	 to	 its	

flexibility,	 low	financial	and	ethical	cost,	consistency	and	ease	of	replication.	 	However,	as	
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yet	 there	are	no	computational	or	mathematical	models	of	atherosclerosis	 that	are	easily	

available	to	the	research	community	for	use	in	exploratory	studies.			

	

In	 previous	modelling	 studies	 the	majority	 of	 work	 has	 focused	 on	 plaque	 initiation	 and	

haemodynamics	(Parton	et	al.,	2015),	where	Navier-Stokes	dynamics	have	described	blood	

flow	and	wall	shear	stress	has	been	calculated	as	an	pro-atherogenic	output	(Tomaso	et	al.,	

2011),	 although	 plaque	 rupture	 and	 thrombosis	 have	 not	 gone	 unaddressed	 (Guy	 et	 al.,	

2007).	 We	 are	 interested	 in	 the	 molecular	 and	 cellular	 biology	 that	 mediate	 plaque	

formation	 and	 can	 furnish	 targets	 for	 therapeutic	 interventions.	 	 However,	 in	 previous	

studies	these	details	have	been	routinely	omitted	or	simplified	for	reasons	of	mathematical	

expediency	 (Bulelzai	 and	 Dubbeldam,	 2012;	 Friedman	 and	 Hao,	 2014).	 Furthermore,	 the	

resulting	 models	 have	 not	 been	 made	 publicly	 available.	 	 Reusing	 this	 work	 would	

necessitate	reconstruction	of	the	models	in	their	entirety,	a	complex,	time	consuming	and	

error-prone	 task.	 	 At	 the	 present	 time,	 the	 European	 Bioinformatics	 Institute	 (EBI)	

BioModels	 database	 (Novère,	 2006),	 a	 publically	 available	 repository	 for	 mathematical	

models	of	biological	processes,	contains	only	one	model	pertaining	to	atheroma	formation,	

focussing	on	lipoprotein	action	and	B-cell	signaling	with	 little	detail	on	the	mechanisms	of	

plaque	 formation	 (Gomez-Cabrero	 et	 al.,	 2011).	 KEGG	 (Kanehisa	 et	 al.,	 2017),	 Reactome	

(Fabregat	 et	 al.,	 2016),	 SMPDB	 (Frolkis	 et	 al.,	 2009),	Wikipathways	 (Kutmon	 et	 al.,	 2016)	

contain	no	molecular	biology	maps	of	atherosclerosis.		

	

Here	 we	 develop	 the	 first	 detailed,	 predictive	 dynamical	 computational	 model	 of	

atherogenesis	using	Systems	Biology	standards.	The	model	is	described	as	a	map	using	the	

Systems	Biology	Graphical	Notation	(SBGN)	(Le	Novere	et	al.,	2009)	and	is	made	available	to	

the	 research	 community	 for	 reuse	 and	 refinement	 using	 the	 Systems	 Biology	 Graphical	

Notation	Markup	Language	(SBGN-ML)	(Van	Iersel	et	al.,	2012).	This	map	is	accompanied	by	

a	mathematical	model	describing	the	dynamics	of	the	interactions	in	the	map	as	a	system	of	

ordinary	 differential	 equations	 (ODEs)	 and	 is	 made	 available	 using	 the	 Systems	 Biology	
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Markup	Language	(SBML)	(Hucka	et	al.,	2003).	Currently,	there	are	many	examples	of	SBGNa	

and	SBMLb	compliant	software.	

The	only	clinically	approved	therapy	for	atherosclerosis	is	angioplasty	(Cooper	et	al.,	2014),	

although	there	is	some	evidence	to	suggest	that	intense	statin	treatment	(Lima	et	al.,	2004),	

combined	 statin-PCSK9	 inhibitor	 treatment	 (SJ	 et	 al.,	 2016)	 or	 Cyclodextrin	 treatment	

(Zimmer	et	 al.,	 2016)	may	 yield	 a	modest	plaque	 reduction.	New	drug	 combinations	 that	

yield	a	substantial	reduction	in	plaque	size	could	have	a	dramatic	impact	on	CVD	morbidity	

and	mortality	and	so	 their	 identification	has	high	strategic	 importance.	 	Here,	we	employ	

the	model	to	develop	effective	therapeutic	hypotheses	comprising	multi-drug	combinations	

through	a	process	of	computational	optimisation.			

	

3.2 Methods	

A	 list	 of	 the	 cell	 types	 involved	 in	 atherosclerosis	 was	 compiled	 from	 descriptions	 of	

atherosclerosis	in	the	existing	literature	(see	Appendix	3).	Each	article	was	also	searched	for	

references	 to	 proteins	 and	 small	 molecules	 with	 each	 entity	 found	 considered	 for	 the	

model.		A	protein	or	small	molecule	was	incorporated	into	the	model	if	its	biological	source,	

presence	 within	 a	 relevant	 compartment	 and	 its	 influence	 on	 atherogenesis	 (however	

minor)	were	all	 described.	 The	model	was	assembled	with	CellDesigner	 (Funahashi	 et	 al.,	

2008)	 using	 the	 SBGN	 schema	 and	 with	 mass	 action	 and	 Michaelis-Menten	 equations	

primarily	used	to	describe	the	dynamics.		The	resulting	model	was	exported	to	SBGN-ML	file	

format	 to	 disseminate	 the	 visual	 map	 and	 to	 SBML	 file	 format	 to	 disseminate	 the	

mathematical	model	describing	the	dynamics.		

	

PubMed	 and	 Google	 Scholar	 searches	 were	 undertaken	 to	 find	 studies	 describing	

representative	 concentrations	 of	 the	 cells,	 proteins	 and	 small	 molecules.	 	 The	 BRENDA	

enzyme	database	was	searched	for	relevant	known	rate	parameters	(Placzek	et	al.,	2017).		

Values	 for	 unknown	 parameters	 were	 calculated	 by	 constraining	 the	 model	 to	 show	

dynamics	 in	 agreement	with	 published	 CVD	 studies.	 	 	We	 considered	 dynamics	 for	 three	

lipid	 profiles	 and,	 as	 a	 chronic	 condition,	 we	 considered	 plaque	 formation	 across	 a	

																																																								
a http://sbgn.github.io/sbgn/software_support 
b http://sbml.org/SBML_Software_Guide 
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representative	 time	 scale	 of	 80	 years.	 High	 risk,	 medium-risk	 and	 low-risk	 lipid	 profiles	

comprised	LDL	concentrations	of	190	mg/dlc,	110	mg/dlc	and	50mg/dl	(O'Keefe	et	al.,	2004),	

respectively	 and	 HDL	 concentrations	 of	 40	 mg/dl,	 50	 mg/dl	 and	 50	 mg/dl,	 respectively	

(Boden,	2000).		

There	are	be	between	5	and	800	cells	within	a	plaque	area	per	high	powered	field	(HPF)	at	

400x	magnification	(Brandl	et	al.,	1997),	where	one	HPF	displays	approximately	0.2	mm2	of	

plaque	area	(Bonanno	et	al.,	2000).	 	We	estimate	that	a	plaque	contains	between	25	and	

4000	cells	per	mm2.	Average	plaque	area	has	been	shown	to	be	15.2	mm2	(von	Birgelen	et	

al.,	1998),	giving	 the	number	of	cells	 in	a	plaque	as	being	between	380	and	60800.	 	With	

this,	we	identified	the	following	constraints	from	the	published	literature.		

	

 Model	Constraints	

I)	Smooth	muscle	cells	comprise	35.10%	of	the	cellular	composition	of	plaques	(Bonanno	et	

al.,	2000),	corresponding	to	a	range	of	133	cells	which	we	take	to	be	representative	of	low	

LDL	profiles	to	21341	cells	which	we	take	to	be	representative	of	high	LDL	profiles.		

II)	 Macrophages	 (including	 foam	 cells)	 comprise	 34.07%	 of	 the	 cellular	 composition	 of	

plaques	(Bonanno	et	al.,	2000),	corresponding	to	a	range	of	129	cells	to	20715	cells.		

III)	T	Cells	comprise	30.82%	of	 the	cellular	composition	of	plaques	 (Bonanno	et	al.,	2000),	

corresponding	to	a	range	of	117	cells	to	18739	cells.				

IV)	The	ratio	of	Th1	to	non-Th1	cells	in	a	plaque	is	approximately	0.3	(van	Dijk	et	al.,	2015),	

corresponding	to	a	range	of	88	Th1	cells	to	14031	Th1	cells.	

V)	Blood	 serum	concentrations	of	MCP1/CCL2	were	estimated	 from	myocardial	 infarction	

and	ischemic	stroke	patients,	ranging	from	100	pg/ml	to	775	pg/ml	(Arakelyan	et	al.,	2005).	

VI)	 Blood	 serum	 concentrations	 of	 CXCL9	 were	 estimated	 from	 patients	 assessed	 for	

coronary	artery	calcium	deposits,	ranging	from	17.4	pg/ml	to	271.2	pg/ml	(Yu	et	al.,	2015a).		

VII)	 Blood	 serum	 concentrations	 of	 CXCL10	 were	 estimated	 from	 patients	 assessed	 for	

coronary	artery	disease,	ranging	from	127.6	pg/ml	to	956.5	pg/ml	(Tavakolian	Ferdousie	et	

al.,	2017).	

VIII)	 Blood	 serum	 concentrations	 of	 CXCL11	 were	 estimated	 from	 control	 groups	 in	

transplantation	studies,	ranging	from	420	pg/ml	to	1062	pg/ml	(Kao	et	al.,	2003).	

																																																								
chttps://www.nhlbi.nih.gov/health/resources/heart/heart-cholesterol-hbc-what-html 
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IX)	 Blood	 serum	 concentrations	 of	 triglycerides	 were	 estimated	 from	 control	 and	

hyperlipidemic	patients,	corresponding	to	58	mg/dl	and	1005	mg/dl,	respectively	(Sakai	et	

al.,	2003).	

X)	 Blood	 serum	 concentrations	 of	 chylomicrons	 were	 estimated	 from	 control	 and	

hyperlipidemic	patients,	corresponding	to	1.4	μg/ml	and	52.6	μg/ml,	respectively	(Sakai	et	

al.,	2003).	

XI)	Blood	 serum	concentrations	of	 IL1β	were	estimated	 from	congestive	heart	 failure	and	

control	patients,	ranging	from	0.28	pg/ml	to	2.12	pg/ml	(Di	Iorio	et	al.,	2003).	

XII)	Blood	serum	concentrations	of	CCL5	were	estimated	from	control	and	coronary	event	

patients,	ranging	from	2.7	ng/ml	to	176.0	ng/ml,	respectively	(Herder	et	al.,	2012).	

XIII)	Plaque	concentrations	of	MMP1	were	estimated	from	carotid	endarterectomy	patients,	

ranging	from	18	ng/g	to	104	ng/g	wet	weight	of	plaque	(Molloy	et	al.,	2004).	

XIV)	Plaque	concentrations	of	MMP9	were	estimated	from	carotid	endarterectomy	patients,	

ranging	from	121	ng/g	to	722	ng/g	wet	weight	of	plaque	(Molloy	et	al.,	2004).			

XV)	Plaque	concentrations	of	TIMP1	were	estimated	from	carotid	endarterectomy	patients,	

ranging	from	5.3	μg/g	to	12.4	μg/g	wet	weight	of	plaque	(Molloy	et	al.,	2004).			

XVI)	Plaque	concentrations	of	 IL1β	were	estimated	 from	carotid	endarterectomy	patients,	

ranging	from	12	ng/g	to	24	ng/g	wet	weight	of	plaque	(Molloy	et	al.,	2004).			

XVII)	 Plaque	 concentrations	 of	 IL6	were	 estimated	 from	 carotid	 endarterectomy	patients,	

ranging	from	1.5	μg/g	to	5.1	μg/g	wet	weight	of	plaque	(Molloy	et	al.,	2004).			

XVIII)	Plaque	concentrations	of	TNFα	were	estimated	from	carotid	endarterectomy	patients,	

ranging	from	15	ng/g	to	27	ng/g	wet	weight	of	plaque	(Molloy	et	al.,	2004).		

XIX)	Plaque	concentrations	of	IL2	were	estimated	from	acute	coronary	syndrome	patients,	

giving	24.0	pg/mg	of	protein	(Ragino	et	al.,	2012).		

XX)	Plaque	concentrations	of	IL18	were	estimated	from	acute	coronary	syndrome	patients,	

giving	10.7	pg/mg	of	protein	(Ragino	et	al.,	2012).		

XXI)	Plaque	concentrations	of	IL10	were	estimated	from	arterial	occlusion	patients,	ranging	

from	1.51	pg/mg	to	2.29	pg/mg	wet	weight	of	plaque	(Stein	et	al.,	2008).	

XXII)	Plaque	concentrations	of	IL12	were	estimated	from	arterial	occlusion	patients,	ranging	

from	3.6	pg/mg	to	4.6	pg/mg	wet	weight	of	plaque	(Stein	et	al.,	2008).	

XXIII)	Plaque	concentrations	of	IFNγ	were	estimated	from	carotid	endarterectomy	patients,	

ranging	from	20	pg/g	to	182	pg/g	wet	weight	of	plaque	(Grufman	et	al.,	2014).	
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XXIV)	 Plaque	 concentrations	 of	 TGFβ	 were	 estimated	 from	 control	 and	 coronary	 artery	

disease	patients,	ranging	from	0.33	mg/g	to	0.76	mg/g	of	protein	(Herder	et	al.,	2012).	

XXV)	 Plaque	 density	 ratios	 of	 chymase	 to	 tryptase	 were	 recorded	 to	 be	 107.8:135.1	 in	

plaques	(Ramalho	et	al.,	2013).	

XXVI)	 Plaque	 concentrations	 of	 elastin	 were	 estimated	 from	 acute	 coronary	 syndrome	

patients,	giving	1.58	mg/g	wet	weight	of	plaque	(Gonçalves	et	al.,	2003).	

XXVII)	 Plaque	 concentrations	 of	 collagen	 were	 estimated	 from	 acute	 coronary	 syndrome	

patients,	giving	6.26	mg/g	wet	weight	of	plaque	(Gonçalves	et	al.,	2003).	

XXVIII)	 Plaque	 concentrations	 of	 PDGF	 were	 estimated	 from	 carotid	 endarterectomy	

patients,	ranging	from	279	pg/g	to	1381	pg/g	wet	weight	of	plaque	(Grufman	et	al.,	2014).	

XXIX)	The	ratio	of	Th1	to	Th2	cells	has	been	shown	to	correlate	with	atherogenesis	(Szodoray	

et	al.,	2006).		

XXX)	Animal	models	with	advanced	atherosclerosis	have	shown	plaque	reduction	mediated	

by	reverse	cholesterol	after	a	reduction	in	lipid	profile	(Trogan	et	al.,	2006).	

XXXI)	The	weight	of	oxidized	LDL	per	weight	of	ApoB	has	been	measured	to	be	19.6	ng/μg	in	

macrophage	 rich	plaques	and	1.9	ng/μg	 in	normal	 intimal	 tissue	 (Nishi	 et	 al.,	 2002).	 	 The	

plaque	concentration	of	ApoB	has	been	measured	to	range	from	1.97	μg/mg	to	0.13	μg/mg	

(Hoff	et	al.,	1978),	yielding	upper	and	lower	estimates	for	the	oxidised	LDL	concentrations	

of	38.6	μg/g	and	0.25	μg/g.	

	

Once	 the	model	was	 constructed,	 the	 values	of	 unknown	parameters	were	optimised,	 so	

that	the	model	recreated	these	results	as	far	as	possible.	

	

 Developing	multi-drug	plaque	regression	therapeutic	hypotheses	

In	 order	 to	 demonstrate	 the	 utility	 of	 the	 resulting	 model,	 we	 undertook	 to	 identify	 an	

optimal	 multi-drug	 intervention	 hypothesis	 that	 would	 reprogram	 the	 dynamics	 of	 the	

model	 leading	 to	 regression	 of	 advanced	 plaques.	 	 It	 has	 been	 demonstrated	 that	multi-

drug	 approaches	 have	 the	 potential	 to	 exploit	 compound	 effects	 to	 yield	 effective	

interventions	 at	 lower	 individual	 and	 collective	 dosages	 than	 in	 comparable	 single-drug	

interventions,	reducing	the	risk	from	pleotropic	effects	(Benson	et	al.,	2017).		Critically,	this	



57	
	

	
	

	

is	an	example	of	 the	type	of	 investigation	that	would	be	extremely	complex	to	undertake	

clinically	and	yet	can	be	undertaken	computationally	with	relative	ease.	

	

We	 identified	 the	 following	 7	 drugs	 with	 targets	 in	 the	 model	 (targets	 in	 brackets):	

Ustekinumab	(IL12R),	GSK1070806	(IL18R),	Imatinib	mesylate	(PDGF),	Bindarit	(CCL2),	cFMS	

Receptor	Inhibitor	III	(MCSF),	GW4869	(SMase)	and	SCH546738	(CXCR3).	

	

We	 used	 the	 MATLAB	 software	 system	 (https://www.mathworks.com)	 and	 a	 genetic	

algorithm	 with	 a	 population	 size	 of	 10000	 for	 70	 generations	 to	 identify	 the	 optimal	

combination	 of	 drugs	 that	would	 drive	 atherosclerosis	 regression.	 	 The	 genetic	 algorithm	

started	from	one	instance	of	a	set	of	drug	concentrations	and	from	this	generated	a	further	

19999	 instances	of	 sets	of	drug	concentrations	 from	the	 first	by	adding	Gaussian	noise	 to	

the	 concentration	 of	 each	 drug	 (with	 standard	 deviation	 1).	 These	 20000	 instances	

comprised	the	first	generation	of	candidate	interventions.		All	instances	were	evaluated	for	

their	 efficacy	 at	 plaque	 reduction	 and	 10000	 new	 instances	 were	 created	 as	 a	 second	

generation	 of	 candidate	 interventions	 from	 the	 two	most	 effective	 instances	 of	 the	 first	

generation	 with	 the	 addition	 of	 Gaussian	 noise.	 	 The	 10000	 new	 instances	 were	 then	

themselves	 evaluated	with	 the	 two	most	 effective	 instances	 to	 generate	 a	 further	 10000	

new	instances,	the	third	generation.		This	process	was	iterated	until	we	arrived	at	instances	

from	which	no	improvement	in	efficacy	could	be	found,	at	which	point	we	interpreted	the	

best	 performing	 instance	 as	 optimal.	 	 In	 order	 to	 evaluate	 the	 efficacy	 of	 a	 particular	

instance,	we	 constructed	 a	 scoring	 function	 that	 allowed	 the	model	 to	 develop	 using	 the	

high	 risk	profile	 for	 the	 first	 forty	years	before	 introduction	of	 the	drug	concentrations	of	

the	instance	at	forty	years.		The	model	then	continued	to	run	for	a	further	forty	years,	and	

at	eighty	years,	we	calculated	a	score	for	the	instance	as	S	=	(C/Cmax	+	T/Tmax)/2	+	0.01*(sum	

of	drug	concentrations)	where	C	is	the	sum	of	smooth	muscle	cells,	macrophages,	foam	cells	

and	T-cells	observed	and	Cmax	 is	the	sum	of	smooth	muscle	cells,	macrophages,	 foam	cells	

and	T-cells	 that	would	occur	at	eighty	years	 in	the	absence	of	any	drugs.	T	 is	 the	collegen	

concentration	observed	 and	Tmax	 is	 the	 collagen	 concentration	 that	would	occur	 at	 eighty	

years	in	the	absence	of	any	drugs.		This	score	describes	the	efficacy	of	the	instance	of	a	set	

of	 drugs	 at	 driving	 plaque	 regression	with	 effective	 interventions	 yielding	 lower	 numbers	
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and	ineffective	interventions	yielding	larger	numbers.		The	score	also	included	a	sum	of	the	

concentrations	 of	 the	 drugs	 used.	 	 Low	 scores	 also	 ensure	 that	 the	 dosages	 are	minimal,	

yielding	 therapeutic	 hypotheses	 with	 the	 least	 risks	 of	 off-target	 effects.	 	 At	 each	

generation,	 the	genetic	algorithm	selected	 the	 two	 instances	with	 the	 lowest	 score,	using	

these	to	populate	the	next	generation	of	instances.		In	this	way,	the	algorithm	converged	on	

an	optimal	set	of	drug	concentrations.		Analyses	were	performed	on	an	Intel(R)	Xeon(R)	CPU	

E5-2630	v3	@	2.40GHz	(Octo-core)	CPU	with	64GB	of	RAM	running	CentOS	7.	

	

3.3 Results	

A	visual	map	of	 the	model	obtained	 is	 shown	 in	 Figure	3.1	using	 the	SBGN	schema.	 	 The	

model	covers	five	distinct	organs	and	tissues:	the	liver,	 intestine,	 lumen,	endothelium	and	

tunica	 intima.	 	 It	 covers	 LDL	 retention,	 LDL	 oxidation,	 monocyte	 recruitment,	 monocyte	

differentiation,	 smooth	 muscle	 cell	 proliferation,	 phagocytosis,	 reverse	 cholesterol	

transport	 and	T-cell	 proliferation.	 	 The	 cell	 types	 involved	 include	monocytes,	 endothelial	

cells,	T-cells,	macrophages,	 foam	cells,	B-cells,	 smooth	muscle	 cells,	neutrophils,	dendritic	

cells	and	mast	cells.		A	legend	describing	the	glyphs	of	the	SBGN	schema	is	shown	in	Figure	

3.2.		Each	interaction	represents	a	parameterized	equation	(see	Appendix	3,	Table	1	for	the	

equations	and	Appendix	3,	Table	2	for	the	parameters),	enabling	us	to	dynamically	simulate	

the	changing	concentrations/abundances	of	the	model	as	the	plaque	forms.			
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Figure	3.1:	A	map	of	atherosclerotic	plaque	dynamics	shown	using	the	Systems	Biology	

Graphical	Notation	(SBGN)	
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Figure	3.2:	The	legend	for	the	SBGN	schema	used	in	Figure	3.1.	

	

The	 initial	 conditions	 identified	 are	 described	 in	 Appendix	 3,	 Table	 3	 and	 unknown	

parameters	 were	 optimised	 so	 that	 the	 model	 maximally	 satisfied	 all	 the	 constraints	

described	 above	 simultaneously.	 Key	markers	 for	 plaque	 development	 include	 foam	 cell,	

macrophage	and	smooth	muscle	cell	proliferation	and	their	behaviour	is	shown	in	Figure	3.3	

for	the	three	risk	profiles.		
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Figure	3.3:	Smooth	muscle	cell,	macrophage	and	foam	cell	proliferation	during	plaque	

development	for	three	blood	LDL	profiles	of	50	mg/dl,	120	mg/dl	and	190	mg/dl.	
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The	model	satisfies	the	constraints	as	follows.		Results	are	stated	at	80	years	with	constraint	

values	in	brackets.		

 Model	Constraints	

I)	Figure	3.3A	shows	smooth	muscle	cell	abundance,	yielding	42287	cells	 (21341)	and	230	

cells	(133),	for	high	and	low	LDL	profiles,	respectively.		

II)	Figure	3.3B	shows	combined	macrophage	and	foam	cell	abundance,	yielding	27630	cells	

(20715)	and	3463	cells	(129)	for	high	and	low	LDL	profiles,	respectively.	

III)	 Figure	 3.3C	 shows	 total	 T	 cell	 abundance,	 yielding	 18562	 cells	 (18739)	 and	 8012	 cells	

(117)	for	high	and	low	LDL	profiles,	respectively.	

IV)	Figure	3.4.1	shows	Th1	cell	abundance,	yielding	7186	cells	(4324)	and	223	cells	(27)	for	

high	and	low	LDL	profiles,	respectively.	

V)	 Figure	 3.4.2	 shows	MCP1/CCL2	 blood	 serum	 concentration,	 yielding	 649.8	 pg/ml	 (775	

pg/ml)	and	163.8	pg/ml	(100	pg/ml)	for	high	and	low	LDL	profiles,	respectively.	

VI)	Figure	3.4.3	shows	CXCL9	blood	serum	concentration,	yielding	283.9	pg/ml	(271.2	pg/ml)	

and	23.8	pg/ml	(17.4	pg/ml)	for	high	and	low	LDL	profiles,	respectively.	

VII)	 Figure	 3.4.4	 shows	 CXCL10	 blood	 serum	 concentration,	 yielding	 850.0	 pg/ml	 (956.5	

pg/ml)	and	120.9	pg/ml	(127.6	pg/ml)	for	high	and	low	LDL	profiles,	respectively.	

VIII)	Figure	3.4.5	shows	CXCL11	blood	serum	concentration,	yielding	965	pg/ml	(1062	pg/ml)	

and	355	pg/ml	(420	pg/ml)	for	high	and	low	LDL	profiles,	respectively.		

IX)	 Figure	 3.4.6	 shows	 triglyceride	 blood	 serum	 concentration,	 yielding	 754	 mg/dl	 (1005	

mg/dl)	a	value	that	does	not	change	for	low	LDL	profiles	(58	mg/dl).		

X)	 Figure	 3.4.7	 shows	 chylomicron	 blood	 serum	 concentration,	 yielding	 49.1	 μg/ml	 (52.6	

μg/ml)	a	value	that	does	not	change	for	low	LDL	profiles	(1.4	μg/ml).		

XI)	Figure	3.4.8	shows	IL1β	blood	serum	concentration,	yielding	2.04	pg/ml	(2.12	pg/ml)	and	

0.97	pg/ml	(0.28	pg/ml)	for	high	and	low	LDL	profiles,	respectively.		

XII)	Figure	3.4.9	shows	CCL5	blood	serum	concentration,	yielding	181.1	ng/ml	(176.0	ng/ml)	

and	45.7	ng/ml	(2.7	ng/ml)	for	high	and	low	LDL	profiles,	respectively.		

XIII)	Figure	3.4.10	shows	MMP1	plaque	concentration,	yielding	86.8ng/g	(104	ng/g)	and	0.2	

ng/g	(18	ng/g)	for	high	and	low	LDL	profiles,	respectively.	

XIV)	Figure	3.4.11	shows	MMP9	plaque	concentration,	yielding	609.6	ng/g	 (722	ng/g)	and	

1.6	ng/g	(121	ng/g)	for	high	and	low	LDL	profiles,	respectively.	
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XV)	Figure	3.4.12	shows	TIMP1	plaque	concentration,	yielding	11.5	μg/g	(12.4	μg/g)	and	3.6	

μg/g	(5.3	μg/g)	for	high	and	low	LDL	profiles,	respectively.			

XVI)	 Figure	 3.4.13	 shows	 IL1β	 plaque	 concentration,	 yielding	 23.6	 ng/g	 (24	 ng/g)	 and	 0.1	

ng/g	(12ng/g)	for	high	and	low	LDL	profiles,	respectively.			

XVII)	Figure	3.4.14	shows	 IL6	plaque	concentration,	yielding	5.3	μg/g	 (5.1	μg/g)	and	0.025	

μg/g	(1.5	μg/g)	for	high	and	low	LDL	profiles,	respectively.			

XVIII)	 Figure	3.4.15	 shows	TNFα	plaque	 concentration,	 yielding	24	ng/g	 (27	ng/g)	 and	0.3	

ng/g	(15	ng/g)	for	high	and	low	LDL	profiles,	respectively.	

XIX)	Figure	3.4.16	shows	 IL2	plaque	concentration,	yielding	27	ng/g	 (24	ng/g)	 for	 the	high	

LDL	profile.		

XX)	 Figure	3.4.17	 shows	 IL18	plaque	 concentration,	 yielding	10.9	ng/g	 (10.7	ng/g)	 for	 the	

high	LDL	profile.		

XXI)	Figure	3.4.18	shows	IL10	plaque	concentration,	yielding	2.1	ng/g	(2.3	ng/g)	and	0.6	ng/g	

(3.6	ng/g)	for	high	and	low	LDL	profiles,	respectively.		

XXII)	 Figure	 3.4.19	 shows	 IL12	 plaque	 concentration,	 yielding	 5.2	 ng/g	 (4.6	 ng/g)	 and	 0.7	

ng/g	(3.6	ng/g)	for	high	and	low	LDL	profiles,	respectively.			

XXIII)	 Figure	 3.4.20	 shows	 IFNγ	 plaque	 concentration,	 yielding	 167	 pg/g	 (182	 pg/g)	 and	 5	

pg/g	(20	pg/g)	for	high	and	low	LDL	profiles,	respectively.		

XXIV)	Figure	3.4.21	shows	TGFβ	plaque	concentration,	yielding	0.80	mg/g	(0.76	mg/g)	and	

0.05	mg/g	(0.33	mg/g)	for	high	and	low	LDL	profiles,	respectively.	

XXV)	 Figure	 3.4.22	 shows	 the	 ratio	 of	 plaque	 density	 between	 chymase	 and	 tryptase,	

yielding	106.0:134.3	(107.8:135.1)	for	the	high	LDL	profiles.	

XXVI)	Figure	3.4.23	shows	the	elastin	plaque	concentration,	yielding	1.85	mg/g	(1.58	mg/g)	

for	the	high	LDL	profile.			

XXVII)	 Figure	3.4.24	 shows	 collagen	plaque	 concentration,	 yielding	4.87	mg/g	 (6.26	mg/g)	

for	the	high	LDL	profile.			

XXVIII)	Figure	3.4.25	shows	PDGF	plaque	concentration,	yielding	1048	pg/g	(1381	pg/g)	and	

2	pg/g	(279	pg/g)	for	high	and	low	LDL	profiles,	respectively.			

XXIX)	 Figure	 3.4.26	 shows	 foam	 cell	 aggregation	 after	 the	 parameter	 determining	 rate	 of	

differentiation	to	Th1	cells	has	been	increased	by	10%	and	the	parameter	determining	the	

rate	 of	 differentiation	 to	 Th2	 cells	 has	 been	 decreased	 by	 10%.	 This	 has	 led	 to	 a	modest	

increase	in	foam	cell	concentrations	for	a	high	LDL	profile.			
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XXX)	Figure	3.4.27,	Figure	3.4.28	and	Figure	3.4.29	shows	oxidized	LDL	concentrations	and	

smooth	muscle	cell	and	foam	cell	abundance	when	the	LDL	and	HDL	are	switched	from	190	

mg/dl	 and	 40	 mg/dl,	 respectively,	 to	 50mg/dl	 and	 50mg/dl,	 respectively	 after	 40	 years,	

demonstrating	plaque	reduction.	

XXXI)	 Figure	 Figure	 3.4.30	 shows	 oxidised	 LDL	 plaque	 concentration	 depending	 on	 LDL	

profile.		At	80	years,	the	high	LDL	profile	yields	36.8	μg/g	(38.6	μg/g)	and	the	low	LDL	profile	

yields	2.6	μg/g	(0.25	μg/g).	
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Figure	3.4:	The	performance	of	the	model	for	clinical	requirements	determined	from	the	

literature	



67	
	

	
	

	

 Clinical	Results	

In	 addition	 to	 addressing	 the	 constraints	 outlined	 above,	 the	model	 also	 agrees	with	 the	

following	clinical	results.		

XXXII)	Blockade	of	endogenous	IL-12	has	been	shown	to	reduce	atherogenesis	(Hauer	et	al.,	

2005).		Figure	3.5.1	shows	that	with	a	75%	reduction	to	the	rate	parameters	describing	IL-12	

production,	foam	cell	abundance	is	significantly	reduced	for	high	and	mid	LDL	profiles.		

XXXIII)	Deficiency	 of	 ABCA1	 function	 impairs	 reverse	 cholesterol	 transport	 and	 increases	

atheroma	 size	 (Westerterp	 et	 al.,	 2013).	 Figure	 3.5.2	 shows	 that	with	 a	 reduction	 in	 the	

initial	ABCA1	concentration	by	90%,	foam	cell	concentration	is	increased	across	the	lifetime	

of	the	simulation.	

XXXIV)	Deficiency	of	MCSF	reduces	monocyte/macrophage	circulation	and	plaque	formation	

(Qiao	 et	 al.,	 1997).	 Figure	 3.5.3	 shows	 that	 with	 a	 reduction	 in	 the	 initial	 MCSF	

concentrations	 from	100	μg/mg	of	 tissue	 to	0,	macrophage	abundance	drops	significantly	

within	the	plaque.	

XXXV)	 T-cells	 abundance	 is	 reduced	 as	 a	 result	 of	 IFNGR	 knockout	 (Gupta	 et	 al.,	 1997).		

Figure	3.5.4	 shows	 that	decreasing	 the	kcat	 rate	parameter	describing	 IFNG	production	by	

50%	reduces	cell	abundance	within	the	plaque.	

XXXVI)	IL-18	has	been	shown	to	be	atherogenic	(Whitman,	2002).		Figure	3.5.5		shows	that	

increasing	the	rate	parameter	describing	IL-18	production	by	50%,	increases	smooth	muscle	

cell	recruitment	within	the	plaque.		

XXXVII)	 Reduction	 in	 proteoglycan	 concentration	 reduces	 intimal	 oxLDL	 concentrations	

(Delgado-Roche	et	al.,	2015).		Figure	3.5.7	shows	that	decreasing	the	initial	concentration	of	

proteoglycan	concentration	 from	500	μg/mg	of	 tissue	to	100	pg/mg	of	 tissue	reduces	 the	

concentration	of	oxidized	LDL	within	the	plaque.	

XXXVIII)	 Increasing	 activity	 of	 matrix	 metalloproteinases	 leads	 to	 degraded	 extracellular	

matrix	(Adiguzel	et	al.,	2009).		Figure	3.5.8	shows	that	doubling	the	binding	rate	parameter	

between	extra	cellular	matrix	and	matrix	metalloproteinases	significantly	reduces	collagen	

concentrations.	

XXXIX)	PLA2	concentration	has	been	shown	to	correlate	with	atherogenesis	(Vickers	et	al.,	

2009).	 	 Figure	 3.5.9	 shows	 that	 a	 reduction	 in	 the	 initial	 PLA2	 concentrations	 by	 90%	

reduces	the	foam	cell	concentration	within	the	plaque.	
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XL)	 Increasing	PDGF	activity	 increases	 smooth	muscle	 cell	 abundance	 (Ferns	et	 al.,	 1991).	

Figure	3.5.9	shows	that	increasing	the	rate	parameter	describing	PGDF	production	by	200%	

increases	smooth	muscle	cell	recruitment	in	the	plaque.	

	

	

Figure	3.5:	The	performance	of	the	model	for	further	clinical	observations	

	

 Reusability	of	the	model	

The	 visual	 map	 is	 available	 as	 a	 file	 encoded	 using	 the	 SBGN-ML	 format	 and	 the	

mathematical	model	 is	 available	 as	 a	 file	 encoded	using	 the	 SBML	 format,	both	 from	 the	

supplementary	material.	 	The	mathematical	model	has	been	deposited	 into	 the	European	

Bioinformatics	Institute’s	BioModels	repository	(MODEL1710020000).		

	

The	files	can	be	opened,	edited	and	analysed	in	software	supporting	the	SBGNML	and	SBML	

standards.	 	 SBML	 compliant	 software	 includes	 Copasi	 (Bergmann	 et	 al.,	 2017),	 Cytoscape	

with	 the	 cy3SBML	plugin	 (König	 et	 al.,	 2012)	 and	Dizzy	 (Ramsey	 et	 al.,	 2005).	 	 Figure	 3.6	

1)# 2)# 3)#

4)# 5)# 6)#

7)# 8)# 9)#
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shows	 the	 graphical	 map	 opened	 in	 three	 representative	 SBGN	 compliant	 editors:	 Newt	

(http://web.newteditor.org/),	 PathVisio	 (Kutmon	 et	 al.,	 2015)	 and	VANTED	with	 SBGN-ED	

extension	(Czauderna	et	al.,	2011)	along	with	a	subsection	of	the	plain	text	XML	file.			

	

	

Figure	3.6:	The	model	viewed	in	using	the	A)	Newt	B)	PathVisio	and	C)	VANTED	platforms	

and	D)	viewed	as	plain	text	XML.	

 Therapeutic	hypothesis	generation	

Running	 the	analysis	described	 in	 section	3.2.2,	we	were	able	 to	determine	 the	 following	

drug	 combination	 as	 an	 optimal	 intervention	 that	 drove	 plaque	 regression:	 Ustekinumab	

(IL12R)	 –	 7.6279,	 GSK1070806	 (IL18R)	 -	 7.5937,	 Bindarit	 (CCL2)	 –	 36.9922,	 where	

concentrations	are	described	as	multiples	of	the	corresponding	inhibition	constants,	Ki.		This	

combination	 was	 identified	 relatively	 quickly	 by	 the	 model,	 in	 1080	 minutes,	 with	

approximately	 optimal	 results	 being	 identified	 much	 more	 quickly,	 within	 300	 minutes.		

Figure	 3.7B,	 Figure	 3.7C	 and	 Figure	 3.7D	 show	 the	 dynamics	 of	 the	 model	 after	 this	

intervention	 is	 applied	 at	 forty	 years.	 	 Here	 we	 can	 see	 that	 smooth	 muscle	 cells,	
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macrophages	 and	 foam	 cells	 and	 Th1	 cell	 counts	 are	 all	 driven	 down	 by	 the	 intervention	

across	the	second	period	of	forty	years.		

	

Figure	3.7:	Convergence	on	an	atheroprotective	multi-drug	intervention	hypothesis	

3.4 Discussion	

Atherosclerotic	plaques	are	highly	challenging	to	study	due	to	their	location.		Human	in	vivo	

studies	 present	 logistical	 and	ethical	 challenges	 and	 there	 are	 few	 in	 vitro	 resources	 that	

can	contribute	increasing	our	understanding	of	plaque	development.		Whilst	they	are	not	a	

complete	 replacement	 for	 in	 vitro	 studies,	 computational	 studies	 have	 the	 potential	 to	

contribute	to	research	in	this	area	and	to	yield	non-in	vivo	resources	that	can	improve	our	

understanding	of	the	disease.		

	

Here	we	have	produced	a	predictive	model	of	 the	dynamics	of	 atherosclerosis,	which	we	

hope	will	serve	as	a	resource	for	the	cardiovascular	research	community	that	can	be	reused,	

refined	 and	 expanded	 in	 future.	 	 The	 model	 we	 have	 produced	 has	 the	 potential	 to	

contribute	to	therapy	development	through	multiple	avenues.		Primarily,	the	model	can	be	

used	to	predict	the	consequences	for	the	dynamics	of	atherosclerosis	of	interventions	that	

target	components	of	the	pathways	 involved	 in	the	disease.	 	This	can	be	applied	to	single	

A)## B)##

C)# D)#
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drug	 development,	 by	 identifying	 the	 components	 of	 the	 model	 that	 have	 the	 greatest	

impact	 on	 foam	 cell	 accumulation	 and	 smooth	 muscle	 cell	 recruitment	 or	 to	 multi-drug	

interventions	 that	 achieve	 similar	 goals	 through	 the	 compound	 effect	 of	 suppressing	

multiple	pathway	components,	but	to	smaller	individual	degrees	(Benson	et	al.,	2017).		It	is	

known	 that	 atherosclerosis	 is	 a	 comorbidity	 of	 diseases	 such	 as	 rheumatoid	 arthritis	 and	

depression	(Gibson	et	al.,	2017).	 	By	using	proteomic	data	from	studies	of	other	diseases,	

this	model	can	also	be	used	to	explore	the	role	of	atherosclerosis	as	a	comorbidity	of	other	

conditions.	 Similarly	 it	 can	be	used	 to	 explore	 the	possible	 off-target	 impact	 of	 therapies	

targeting	 a	 separate	 conditions,	 where	 the	 therapeutics	 are	 known	 to	 also	 target	

components	of	the	pathways	associated	with	atherosclerosis.			

	

Although	 we	 often	 consider	 disease	 pathologies	 in	 isolation,	 atherosclerosis	 is	 part	 of	 a	

much	 larger	 network	of	 interactions	 and	we	 can	use	 the	model	 to	 explore	 the	 impact	 of	

interventions	on	the	components	of	pathways	and	networks	that	regulate	atherosclerosis.		

For	 example,	 it	 would	 be	 possible	 to	 extend	 the	model	 to	 include	 PCSK9	metabolism	 in	

order	to	explore	the	impact	of	PCSK9	inhibitors	on	plaque	development	or	to	include	JAK-

STAT	signalling	to	explore	the	role	of	immune	signalling	on	atherosclerosis	progression.		

	

A	 predictive	model	 of	 this	 type	 has	 the	 potential	 to	move	 the	 discussion	 around	 disease	

from	an	understanding	of	 behaviour	 of	 individual	 disease	 components	 (such	 as	 foam	 cell	

accumulation	or	smooth	muscle	cell	 recruitment)	 to	an	understanding	of	 the	dynamics	of	

the	network	and	of	how,	with	the	transition	from	health	to	disease,	the	network	dynamics	

as	a	whole	transition	from	healthy	dynamics	to	disease	dynamics.		

	

The	predictions	of	the	model	show	broad	agreement	with	observed	clinical	results.	Because	

the	model	 describes	 spatial	 effects	 and	 cellular	 function	 at	 extremely	 simple	 levels,	 it	 is	

unlikely	to	be	able	to	recreate	all	clinical	results	exactly.		Doing	so	would	require	a	model	of	

greater	 complexity	 across	 length	 scales.	 	 However,	 the	 model	 demonstrates	 order	 of	

magnitude	agreement	in	almost	all	cases	and	shows	the	correct	qualitative	dose	responses.		

In	many	cases,	we	found	it	particularly	challenging	to	constrain	parameters	so	as	to	ensure	

sufficiently	 large	 responses	 to	changes	 in	 lipoprotein	profile.	 	As	a	 result,	 the	model	does	

systematically	 over-estimate	 components	 of	 the	 model	 for	 lower	 LDL	 profiles	 and	 the	
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difference	 between	 high	 and	 low	 LDL	 profiles,	 although	 large,	 is	 not	 as	 great	 as	 that	

observed	clinically.	

	

As	we	have	demonstrated,	a	model	of	this	form	can	be	used	to	study	disease	dynamics	and	

to	 develop	 therapeutic	 hypothesis.	 	 Such	 a	 model	 can	 be	 adapted	 to	 individuals	 or	 to	

patient	subgroups	by	tuning	the	parameters	of	the	interactions.		Creating	parameterisations	

that	are	tailored	to	 individuals	could	be	achieved	by	optimizing	the	model	to	patient	time	

course	 data	 or	 through	 computational	 inference	 from	 patient	 genome	 data.	 	 However,	

adapting	the	model	in	this	way	to	represent	the	disease	dynamics	of	individuals	or	patient	

subgroups	 would	 yield	 models	 of	 atherosclerosis	 that	 could	 support	 programmes	 of	

personalized	or	stratified	medicine,	facilitating	the	development	of	therapeutic	hypotheses	

that	are	tailored	to	the	patient	or	the	patient	subgroup.		

		

CVD	 is	a	 large	burden	on	healthcare	worldwide.	 	Front	 line	 therapies	 for	 the	primary	and	

secondary	 prevention	 of	 atherosclerotic	 vascular	 disease	 include	 smoking	 cessation,	 lipid	

management,	 blood	 pressure	 control,	 optimal	 control	 of	 diabetes	 and	 the	 use	 of	

antiplatelet	agents.		By	far	the	most	commonly	used	class	of	lipid	lowering	drugs	is	statins,	

which	 inhibit	 HMG-CoA	 reductase.	 Ezetimibe,	 a	 cholesterol	 absorption	 inhibitor,	 may	 be	

used	 in	 patients	 who	 are	 statin	 intolerant	 or	 who	 are	 not	 achieving	 lipid	 targets	 on	 the	

highest	 maximally	 targeted	 dose	 of	 statin.	 A	 new,	 recently	 licenced	 class	 of	 drugs,	

proprotein	convertase	subtilisin/kexin	type	9	(PCSK9)	inhibitors	suppress	LDLR	degradation	

by	PCSK9	are	associated	with	significant	reduction	 in	serum	LDL	cholesterol	concentration	

and	 cardiovascular	 events.	 Emerging	 drugs	 include	Apolipoprotein	 B	 antisense	 drugs	 that	

suppress	translation	of	ApoB,	a	key	component	of	LDL	and	microsomal	triglyceride	transfer	

protein	inhibitors	that	show	significant	LDL-C	reduction.	

	

Amongst	 the	drugs	 identified	as	part	of	 the	multi-drug	 intervention,	numerous	 studies	of	

CCR2	 inhibition	 in	 atherosclerosis	 have	 shown	 a	 reduction	 in	 intima	media	 thickness	 and	

plaque	 area,	 lowered	 monocyte	 infiltration	 and	 increased	 lesion	 stability	 (Zhao,	 2010).	

Propagermanium,	 an	 anti-inflammatory	 drug,	 has	 been	 shown	 to	 affect	 CCR2	 function	

(Yokochi	et	al.,	2001).		Targeting	CCR5	with	the	drug	maraviroc	has	been	shown	to	reduce	

atherogenesis	in	mice	(Cipriani	et	al.,	2013).		
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The	 scale	 of	 global	 CVD	 burden	 means	 that	 there	 is	 a	 pressing	 need	 to	 develop	 new	

pharmaceutical	therapeutics	in	this	area	that	both	address	clinical	need	and	can	sustain	the	

pharmaceutical	 industry	 as	 intellectual	 property	 protection	 expires	 around	 current	

therapeutics.	 	Multi-drug	 interventions	 of	 the	 type	 identified	 here	 have	 a	 vast	 untapped	

potential	to	contribute	to	future	therapeutics	in	this	way.			
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Chapter 4: 

Variations in Protein 

Structure 
4 Variations	in	Protein	Structure	
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4.1 Introduction	

The	study	of	protein-protein	 interactions	 (PPIs)	 is	 vital	 to	 improving	our	understanding	of	

disease	dynamics.	PPIs	are	heavily	 involved	 in	atherosclerosis,	driving	the	subprocesses	of	

lipoprotein	 oxidation	 (Yoshida	 and	 Kisugi,	 2010),	 immune	 cell	 recruitment	 (Bobryshev,	

2006),	monocyte	migration	(Moore	et	al.,	2013a),	macrophage	differentiation	(Qiao	et	al.,	

1997),	 T	 cell	 differentiation	 (Tse	 et	 al.,	 2013a),	 extra	 cellular	 matrix	 (ECM)	 remodelling	

(Newby,	2005),	and	fibrous	cap	formation	(Rudijanto,	2007).	Using	the	model	described	in	

Chapter	 3	 of	 this	 thesis,	 we	 intend	 to	 show	 how	 variation	 in	 protein	 structure	 affects	

atherosclerosis	dynamics	in	silico.	Protein	structure	determines	function,	and	subsequently	

molecular	 processes	 and	 biochemical	 events	 driven	 by	 PPIs	 are	 influenced	 by	 structural	

changes.	 Proteins	 obtain	 their	 3D	 structure	 through	 protein	 folding,	 where	 polypeptides	

spontaneously	form	their	functional	structure	based	on	their	amino	acid	sequence.	Protein	

folds	 have	 been	 greatly	 studied	 by	 the	 scientific	 community	 in	 recent	 years,	 with	 great	

progress	 seen	 in	 protein	 structure	 prediction	 strategies.	 Variants	 caused	 by	 single	

nucleotide	 polymorphisms	 (SNPs),	 insertions	 or	 deletions	 (indels)	 and	 other	 mutations	

which	 lead	 to	 a	 change	 in	 the	 amino	 acid	 sequence	 of	 a	 protein	 can	 cause	 significant	

functional	differences.	Studying	the	variation	 in	proteins	 involved	 in	atherogenesis	can	be	

used	to	hypothesise	whether	a	mutation	would	disturb	the	dynamics	of	atherosclerosis	and	

perform	part	of	a	basis	for	an	in	silico	learning	platform.		

 The	1000	Genome	Project		

The	1000	Genome	Project	was	created	in	2008,	designed	to	curate	a	collection	of	variations	

discovered	within	human	genomes	(Abecasis	et	al.,	2012;	Durbin	et	al.,	2010).	Reductions	in	

cost	of	next	generation	sequencing	 techniques,	 such	as	whole	genome	sequencing	 (WGS)	

and	whole	exome	sequencing	(WES),	led	to	the	creation	of	the	project	devised	to	provide	a	

publicly-available	 database	 of	 human	 genetic	 variation.	 In	 phase	 3	 of	 the	 1000	 Genome	

Project,	whole	genome	sequence	data,	generated	 from	the	 Illumina	 sequencing	platform,	

derived	from	2504	samples	was	integrated	into	the	repository	for	use	by	the	wider	scientific	

community	 (Sudmant	 et	 al.,	 2015).	 These	 2504	 samples	 were	 taken	 from	 unrelated	

individuals	with	 genetic	 lineage	 from	26	 different	 populations.	 84.4	million	 variants	were	

found	 across	 phase	 3	 of	 the	 project.	 	 The	majority	 of	 these	 variants	 (81.3	million)	 were	

found	 on	 the	 autosomes.	 Single	 Nucleotide	 Polymorphisms	 (SNPs)	 consist	 of	 96.1%	 of	
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variant	sites	on	the	autosomes,	and	indels	are	responsible	for	3.8%.	The	average	person	is	

expected	 to	 have	 between	 4.1	million	 and	 5	million	 variations	 that	 differ	 from	 the	 1000	

Genome	 Project	 reference	 genome	 (Auton	 et	 al.,	 2015).	 Most	 variations	 found	 within	

humans	happen	at	low	frequency;	more	than	65%	of	allele	variants	occur	in	less	than	0.2%	

of	the	population.	These	rarer	variants	are	more	likely	to	be	specific	to	particular	population	

subgroups,	whereas	nearly	all	variants	found	in	phase	3	of	the	1000	genome	project	with	a	

variant	allele	frequency	(VAF)	greater	than	2%	were	found	in	all	continents	(Sudmant	et	al.,	

2015).	

 Protein	Folding	

Simulating	 polypeptides	 folding	 into	 unique	 structures	 has	 been	 a	 problem	 tackled	 by	

computational	 chemists	 for	 years	 (Dorn	et	 al.,	 2014).	 Complex	native	protein	 states	 form	

rapidly	(in	the	order	of	nanoseconds),	making	it	challenging	for	experimental	techniques	to	

obtain	an	accurate	picture	of	the	folding	process	at	the	atomic	 level.	Even	 in	cases	where	

proteins	do	not	share	an	evolutionary	origin,	proteins	often	share	structural	qualities	with	

other	 proteins.	 Structural	 Classification	 of	 Proteins	 (SCOP),	 a	manually-curated	 repository	

describing	the	structural	relationships	between	proteins,	contains	1195	different	 ‘folds’	or	

‘motifs’	 found	within	multiple	protein	structures	with	no	common	homologues	(Murzin	et	

al.,	 1995).	 SCOP	 has	 been	 extended	 (SCOPe)	 in	 recent	 years,	 using	 automation	 alongside	

manual	curation	to	provide	classifications	of	protein	superfamilies	(Chandonia	et	al.,	2017).	

Identifying	 the	 amino	 acid	 sequences	 that	 lead	 to	 these	 motifs	 has	 led	 to	 significant	

advances	in	the	prediction	of	three-dimensional	structure	from	amino	acid	sequences.	

 Protein	structure/function	

As	 of	 July	 2017,	 approximately	 88	 million	 protein	 sequences	 exist	 in	 the	 UniProt	

knowledgebase	 (Bateman	 et	 al.,	 2015),	 and	 122,500	 experimentally	 validated	 structures	

exist	 in	 the	Protein	Data	Bank	 (PDB)	 (Rose	et	al.,	2015),	meaning	 that	 there	are	validated	

structures	for	approximately	0.14%	of	proteins	with	a	known	amino	acid	sequence.	

Structures	 can	 be	 divided	 into	 four	 categories,	 or	 levels,	 depending	 on	 their	 complexity.	

Primary	 structure,	 the	 linear	 amino	 acid	 sequence	 held	 together	 by	 covalent	 bonds,	 is	

defined	by	the	gene	associated	with	the	protein.	The	N-terminus,	the	initial	section	of	the	
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protein	created	by	 the	 ribosome	during	protein	 synthesis,	often	contains	a	 signal	peptide	

sequence	that	ensures	that	the	protein	 is	delivered	to	the	 intended	organelle.	During	and	

after	protein	synthesis,	polypeptide	chains	fold	into	their	secondary	and	tertiary	structures.	

Post-translational	modification	(PTM),	which	can	occur	before	or	after	the	folding	process,	

can	lead	to	the	removal	of	this	signal	peptide	as	part	of	assembly	of	the	mature	form	of	the	

protein.	Amino	acid	sequences	are	conventionally	read	from	N-terminus	to	C-terminus.		

	

Secondary	 structure	 involves	 the	 formation	of	motifs,	 or	 individual	 segments	 of	 proteins.	

These	motifs,	 such	as	alpha	helices	or	beta	sheets,	 typically	 form	before	the	 formation	of	

the	 full	 tertiary	 structure.	 Local	 segments	 of	 the	 tertiary	 structure	 form	 as	 part	 of	 a	

transitional	 state,	 where	 a	 pattern	 of	 hydrogen	 bonds	 form	 in	 the	 backbone	 of	 the	

polypeptide	chain	at	the	motif	location,	before	folding	of	the	three-dimensional	structure	is	

complete.	Predicting	the	secondary	structure	of	a	protein	from	its	amino	acid	sequence	is	

an	important	step	in	tertiary	structure	prediction.	

	

The	 three-dimensional	 shape	 of	 a	 protein	 is	 referred	 to	 as	 its	 tertiary	 structure.	 Tertiary	

structures	differ	from	quaternary	structures	as	they	are	composed	of	a	single	polypeptide	

chain.	This	polypeptide	‘backbone’	is	a	result	of	the	linked	collection	of	residues	defined	as	

the	primary	structure.	Side	chains,	which	attach	to	the	main	polypeptide	chain	at	the	alpha-

carbon	 atoms,	 fundamentally	 define	 the	 tertiary	 structure,	 chemical	 properties	 and	

interaction	mechanisms	 of	 a	 protein.	 This	 three-dimensional	 shape	 gives	 the	 protein	 the	

ability	to	achieve	its	biological	function.	

Quaternary	 structure	 refers	 to	 the	 three-dimensional	 complex	 formed	by	arrangement	of	

multiple	 tertiary	 structure	 subunits,	 including	 oligomers	 and	 complexes	 formed	 through	

PPIs.	 Certain	 proteins	 are	 only	 active	 in	 their	 oligomer	 form.	 Most	 protein	 structures	

perform	their	biological	function	when	part	of	a	quaternary	structure,	rather	than	in	their	

monomer	 form.	 Complex	 formation	 can	 lead	 to	 activation	 or	 inhibition	 of	 one	 of	 the	

subunits	of	the	complex.		
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 Protein	Data	Bank	

The	Protein	Data	Bank	(PDB)	is	a	publically	available	repository	of	protein	structures	curated	

through	experimental	methods	(Rose	et	al.,	2015).	Structures	contained	within	the	PDB	are	

stored	 as	 a	 series	 of	 atomic	 coordinates	 in	 a	 .pdb	 file.	 	 The	 PDB	 contains	 tertiary	 and	

quaternary	 structures	 for	 more	 than	 122,000	 proteins	 (12/7/17),	 derived	 using	 X-ray	

crystallography,	 nuclear	 magnetic	 resonance	 (NMR),	 electron	 microscopy,	 microelectron	

diffraction	and	combinations	of	these	methods.	The	PDB	file	format,	 .pdb,	 is	the	standard	

format	 for	collating	 three-dimensional	molecular	structures,	and	allows	 for	 the	storage	of	

information	 pertaining	 to	 atomic	 coordinates,	 secondary	 structure,	 residue	 types,	

temperature	factors,	chain	identifiers,	atom	names	and	occupancy.	The	PDB	is	the	primary	

source	of	structural	biology	data	online,	and	it	is	the	usual	source	for	homologous	data	used	

by	bioinformatics	tools.	

 Predicting	Tertiary	Structure	

The	 tertiary	 structure	of	 a	 protein	 is	 determined	by	 its	 amino	 acid	 sequence.	 The	 almost	

instantaneous	nature	of	protein	 folding	 leads	 to	a	 series	of	questions.	What	 forces	 cause	

the	 protein	 to	 quickly	 conform	 to	 its	 native	 structure?	 How	 is	 the	 protein	 capable	 of	

avoiding	 unwanted	 conformations?	 These	 questions	 are	 beyond	 the	 scope	 of	 this	 thesis;	

however	 they	 are	 questions	 that	 require	 some	 elucidation	 to	 provide	 high	 quality	

predictions	of	tertiary	protein	structure	from	amino	acid	sequences.	

Protein	 structural	 prediction	 methods	 can	 be	 advantageous	 in	 filling	 in	 the	 gaps	 in	 our	

knowledge	due	to	the	significant	quantity	of	known	amino	acid	sequences	with	no	known	

structure.	 As	 these	methods	 develop,	 understanding	 of	 how	 protein	 folding	mechanisms	

operate	will	improve.			

Currently,	 protein	 structure	 prediction	 tools	 can	 be	 inserted	 into	 one	 of	 four	 broad	

categories:	

4.1.5.1 Homology	Modelling	

Homology	 modelling	 relies	 on	 the	 concept	 of	 conservation	 of	 structure	 between	 similar	

proteins	 (Martí-Renom	 et	 al.,	 2000).	 Evolutionarily	 linked	 proteins	 generally	 have	 similar	

sequences	 and	 structure.	 Through	 the	 identification	 of	 proteins	 that	 share	 a	 common	
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ancestry,	or	homologues,	then	we	can	identify	structural	motifs	that	are	likely	to	remain	in	

our	 target	 protein.	 Sequence	 alignment	 and	 structural	 templates	 with	 expected	 shared	

motifs	are	then	combined	to	predict	a	protein	structure.	

4.1.5.2 Threading	

Threading	 is	a	 similar	process	 to	homology	modelling;	however	proteins	of	 the	 same	 fold	

are	identified	and	used	to	infer	a	protein	structure,	rather	than	predicting	structure	through	

comparison	 to	evolutionary	homologues	 (Xu	et	 al.,	 2008).	 The	number	of	 folds	 that	have	

been	 identified	 is	 relatively	 small	 compared	 to	 the	number	of	proteins	 in	 the	PDB,	which	

allows	 for	 the	 statistical	 inference	 of	 protein	 structures	 from	 amino	 acid	 sequences	

(Chandonia	et	al.,	2017;	Rose	et	al.,	2015).	

4.1.5.3 Ab	Initio	

Ab	 Initio,	or	de	 novo,	protein	 structure	 prediction	 relies	 on	 calculating	 protein	 structures	

with	 no	 available	 homologue	 or	 protein	 folding	 data.	 (Hardin	 et	 al.,	 2002).	 The	 most	

efficient	 protein	 structure	prediction	methods	utilise	 structural	 data	 taken	 from	 the	PDB,	

including	 from	non-homologous	proteins.	 This	 is	 a	 computationally	 intensive	 task,	 and	 as	

such	these	methods	are	more	likely	to	be	successful	on	relatively	small	proteins	(fewer	than	

120	amino	acids).	

4.1.5.4 Secondary	Structure	

Secondary	structural	elements	such	as	alpha	helices	or	beta	sheets	can	be	 identified	from	

amino	acid	sequences.	While	these	predictions	will	not	provide	a	tertiary	protein	structure,	

insight	 into	 protein	 structure	 and	 function	 can	 be	 derived	 from	 a	 secondary	 structure	

prediction.	

 Critical	Assessment	of	Protein	Structure	Prediction	(CASP)	

There	 are	multiple	 different	 bioinformatics	 tools	 that	 predict	 a	 protein	 structure	 from	an	

amino	acid	sequence,	using	a	wide	range	of	different	methods	and	algorithms	to	reach	their	

predicted	 result.	 The	 Protein	 Structure	 Prediction	 Centre	 have	 developed	 a	 series	 of	

assessments,	 titled	 ‘The	 Critical	 Assessment	 of	 Protein	 Structure	 Prediction’	 (CASP),	

designed	to	objectively	test	available	methods	for	protein	structure	prediction	(Moult	et	al.,	

2016).	CASP	has	been	organised	every	two	years	since	1994,	and	has	been	described	as	“the	
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world	championship	of	protein	structure	prediction”	due	to	its	competitive	nature	(Moult	et	

al.,	 2014,	 2016).	 This	 provides	 the	 research	 community	 and	 potential	 users	 with	 a	 non-

partisan	review	and	assessment	of	the	predictive	power	of	all	of	the	algorithms	involved	in	

the	study.		

At	 its	 core,	 CASP	 participants	 are	 provided	 with	 an	 amino	 acid	 sequence	 and	 asked	 to	

provide	 a	 tertiary	 structure	 to	 be	 compared	 with	 a	 recently-elucidated	 experimentally-

derived	 structure.	 In	 CASP11,	 performed	 in	 2014,	 207	 modelling	 groups	 entered	 from	

approximately	100	research	laboratories	(Moult	et	al.,	2016).	

Categories	where	modelling	performance	 is	 judged	 include	homology	modelling	methods,	

ab	 initio	 methods,	 model	 refinement,	 model	 accuracy	 prediction	 and	 contact	 point	 and	

binding	 site	 prediction.	 Model	 refinement	 and	 model	 accuracy	 prediction	 have	 seen	

significant	 improvements	 recently	 (Heo	 et	 al.,	 2013;	 Moult	 et	 al.,	 2016).	 Refinement	

methods	can	additionally	help	with	minimising	template	bias.	

Recently	 solved	 protein	 structures	 through	 protein	 crystallography	 or	 NMR	 spectroscopy	

are	held	back	by	the	PDB.	CASP12	entrants	were	subsequently	provided	with	90	models	for	

which	to	predict	tertiary	structure,	with	independent	assessors	ranking	each	entrant	within	

each	category.		

 I-TASSER	

I-TASSER	(Iterative	Threading	ASSEmbly	Refinement)	is	a	tool	developed	by	the	Yang	Zhang	

Lab,	 designed	 to	 heuristically	 predict	 protein	 structure	 and	 function	 from	 amino	 acid	

sequences	 (Roy	 et	 al.,	 2010).	 I-TASSER	 has	 been	 consistently	 successful	 in	 recent	

community-wide	CASP	experiments,	ranked	as	the	top	protein	structure	prediction	method	

four	 times	out	of	 the	 last	 five	experiments.	 In	 summary,	 I-TASSER	will	 initially	 establish	 a	

secondary	structure	for	a	given	amino	acid	sequence	by	matching	the	query	sequence	to	an	

existing	 database	 (to	 select	 homologues)	 and	 performing	multiple	 alignments	with	 these	

evolutionary	relatives	(McGuffin	et	al.,	2000).	Multiple	threading	programs	are	then	used	to	

predict	 templates,	 and	 their	 quality	 is	 ranked	 based	 on	 the	 significance	 of	 the	 threading	

alignment.	 Successfully	 aligned	 continuous	 fragments	 from	 these	 threading-generated	

structures	are	used	to	assemble	conformations,	with	ab	initio	modelling	used	to	build	other	
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unaligned	regions.	A	modified	Monte	Carlo	simulation	technique	is	used	to	assemble	these	

fragments.	 An	 additional	 structural	 assembly	 simulation	 is	 completed,	 with	 additional	

constraints	 implemented	 from	 the	 initial	 threading	 alignments.	 A	 collection	 of	 highly	

detailed	reports	on	the	I-TASSER	methodology	can	be	found	in	(Roy	et	al.,	2010;	Wu	et	al.,	

2007;	Yang	et	al.,	2014;	Zhang,	2008).	

	

Figure	4.1:	Summary	of	I-TASSER	methodology	

4.1.7.1 Evaluating	Quaternary	Structure	

An	oligomeric	 protein	 structure	 is	 a	 complex	 that	 consists	 of	 two	or	more	monomers	 (or	

tertiary	structures),	held	together	by	non-covalent	bonds.	Homo-oligomers	are	complexes	

that	 consist	 of	 identical	 parts,	 whereas	 hetero-oligomers	 are	 composed	 of	 different	

monomers.	For	example,	 interferon	gamma	(a	pro-inflammatory	cytokine	secreted	by	Th1	

cells	that	is	a	potent	driver	of	atherosclerosis	(McLaren	and	Ramji,	2009))	is	a	homodimer	in	

its	functional	form,	whereas	 interferon	gamma	receptor	(the	associated	receptor	required	

for	 cell	 signalling)	 is	 a	heterodimer,	built	 from	 two	 separate	proteins	 coded	by	 the	genes	

IFNGR1	and	IFNGR2	(Tau	and	Rothman,	1999).	 	Oligomeric	structures	can	be	composed	of	

different	numbers	of	subunits.	

Certain	 proteins	 can	 only	 perform	 their	 biological	 function	 when	 they	 become	 part	 of	 a	

complex.	 Environmental	 differences	 can	 alter	 function	 for	 the	 same	 complex	 (Nooren,	

2003).		

Methods	for	predicting	oligomeric	status	and	quaternary	structure	from	primary	structure	

have	 improved	 significantly	within	 the	 last	 few	years	 (Biasini	 et	 al.,	 2014;	Mukherjee	and	
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Zhang,	2011).	Docking	methods	have	been	used	to	predict	dimeric	structure	from	tertiary	

structure	 (Davis	 and	 Baker,	 2009),	 and	methods	 have	 been	 developed	 to	 predict	 homo-

oligomeric	 status	 and	 structure	 from	 tertiary	 structure	 (Baek	 et	 al.,	 2017).	 Continuous	

Automated	 Model	 Evaluation	 (CAMEO)	 is	 a	 community	 effort	 to	 evaluate	 tertiary	 and	

quaternary	structure	prediction	methods	(Haas	et	al.,	2013).	Docking	of	rigid-body	tertiary	

structures	 is	 the	 primary	method	 used	 to	model	 complex	 structures;	 however	 homology	

modelling	methods	 and	methods	 to	model	 complexes	 from	 primary	 structure	 have	 seen	

success	recently.	

 Comparing	Protein	Structures	

Algorithms	 to	 compare	 protein	 structures	 and	 quantify	 differences	 are	 continually	

progressing.	 There	 are	 two	 primary	 categories	 of	 structural	 comparison	 methods,	

depending	 on	 the	 existence	 of	 an	 alignment	 between	 matching	 residues	 within	 the	

structure.	 The	 root-mean-square	 derivation	 (RMSD)	 uses	 an	 optimal	 alignment	 and	

compares	the	pairwise	distance	between	residues.	However,	when	this	optimal	alignment	is	

not	 given	 then	 alignments	 require	 to	 be	 identified,	 or	 alignment-independent	 algorithms	

must	be	used	(Kufareva	and	Abagyan,	2012).		

Predicted	protein	 structures	often	 see	an	 increased	amount	of	 variation	and	noise	at	 the	

terminals	due	to	fewer	constraints	from	other	residues	in	the	system.	RMSD	evaluates	the	

distances	 between	 each	 residue	 pairing	 equally,	 potentially	 misrepresenting	 the	 overall	

accuracy	 if	 there	 is	 significant	variance	at	either	 terminal.	The	TM-Score	 is	a	method	that	

weights	 the	 terminal	 distances	 less	 than	 the	 mid-protein	 distances,	 removing	 instances	

where	significant	terminal	variation	gives	misleading	results	(Zhang	and	Skolnick,	2005).	

4.2 Methods	

 Sequence	Isolation	and	Structure	Prediction	

The	 model	 of	 atherosclerosis	 derived	 in	 Chapter	 3	 is	 used	 as	 a	 basis	 for	 studying	 the	

structures	of	proteins	involved	in	atherosclerosis.	These	proteins	are	shown	in	Table	4.1	as	

they	are	described	in	the	mathematical	model.	
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Table	4.1:	Proteins	described	in	Chapter	3’s	Model	of	Atherosclerosis	

ABCA1	 ABCG1	 CCL2	in	Intima	 CCL2	in	Lumen	 CXCL9	
CXCL10	 CXCL11	 Chymase	 Collagen	 EGF	
Elastin	 Interferon	Gamma	 IL-1B	 IL-10	 IL-12	
IL-17	 IL-18	 IL-2	 IL-21	 IL-33	
IL-4	 IL-5	 IL-6	 MCSF	 MMP1	
MMP2	 MMP3	 MMP9	 MMP13	 PDGF	
PLA2	 Proteoglycans	 SMAse	 TGF-Beta	 TIMP1	
TIMP2	 TIMP3	 TIMP4	 TNF-Alpha	 Tryptase	
TACE	 	 	 	 	
	

A	 literature	 mining	 process	 was	 undertaken	 to	 establish	 the	 genes	 that	 encode	 each	 of	

these	proteins,	and	whether	the	protein	is	an	oligomer	in	its	active	form.	For	each	protein,	a	

Google	Scholar	search	was	undertaken	with	 the	query	 ‘PROTEINNAME	gene’,	and	the	 top	

five	papers	were	searched	for	a	gene	name	to	correspond	with	each	protein.	Four	of	these	

proteins	describe	a	 class	of	proteins	 (collagen,	elastin,	proteoglycans	and	 tryptase)	 rather	

than	 a	 single	 macromolecule,	 and	 are	 not	 included	 within	 this	 dataset.	 Experimentally	

validated	versions	of	these	proteins	within	the	protein	data	bank	were	found	and	their	PDB	

codes,	encoding	genes	and	the	proteins	they	interact	with	in	the	model	is	described	in	Table	

4.2.	 References	 for	 each	 of	 these	 interactions	 can	 be	 found	 in	 Appendix	 3,	 Table	 1.	 The	

oligomeric	status	of	the	non-monomer	proteins	are	described	in	Table	4.3.		

Table	4.2:	Gene	names,	PDB	codes	and	interaction	data	for	proteins	contained	within	

Chapter	3’s	model	of	atherosclerosis	

No.	
Protein	

1	
Protein	1	

Gene	Name	
Protein	

2	
Protein	2	Gene	

Name	
PDB	Code	 Notes	

1	 TACE	 ADAM17	 TIMP3	 TIMP3	 3CKI	 	
2	 MCP1	 CCL2	 CCR2	 CCR2	 3IFD	(1)	5T1A	

(2)	 	

3	 RANTE
S	 CCL5	 CCR5	 CCR5	 1HRJ	(1)	

4MBS(2)	 	

4	 Chyma
se	 CMA1	 MMP1	 MMP1	 1NN6	 	

5	 MCSF	 CSF1	 CSF1R	 CSF1R	 4WRL	 	
6	 CXCL10	 CXCL10	 CXCR3	 CXCR3	 1o80	 	
7	 CXCL11	 CXCL11	 CXCR3	 CXCR3	 1RJT	 	
8	 CXCL9	 CXCL9	 CXCR3	 CXCR3	 	 	
9	 EGF	 EGF	 EGFR	 EGFR	 1IVO	 	
10	 IFNG	 IFNG	 IFNGR	 IFNGR1	 1FG9	 IFNG	is	Homodimeric	
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No.	
Protein	

1	
Protein	1	

Gene	Name	
Protein	

2	
Protein	2	Gene	

Name	
PDB	Code	 Notes	

	 IFNGR2	 	 IFNGR	is	heterodimeric	

11	 IL1B	 IL1B	 IL1R	 IL1R1	 	 	
12	 IL10	 IL10	 IL10R	 IL10RA	 1J7V	 	
13	 IL12	 IL12A	IL12B	 IL12R	 IL12R1,	IL12R2	 1F45	 IL12	and	IL12R	are	

Heterodimeric	
14	 IL17A	 IL17A	 IL17RA	 IL17RA	 4SHA	 	
15	 IL18	 IL18	 IL18R	 IL18RA	IL18RAP	 4R6U	 IL18R	is	Heterodimeric	

16	 IL2	 IL2	 IL2R	 IL2RA	 2B5I	 	
17	 IL21	 IL21	 IL21R	 IL21R	 3TGX	 	
18	 IL33	 IL33	 IL1R	 IL1R1	 4KC3	 	
19	 IL4	 IL4	 IL4R	 IL4R	 3BPL	 	
20	 IL5	 IL5	 IL5R	 IL5RA	 3QT2	 IL5	is	Homodimeric	

21	 IL6	 IL6	 IL6R	 IL6R	 4J4L	 	
22	 PDGFA	 PDGFA	 PDGFR

A	 PDGFRA	 	 	

23	 PDGFB	 PDGFB	 PDGFR
B	 PDGFRB	 3MJG	 PDGFB	is	Homodimeric	

24	 PDGFA	 PDGFA	 PDGFR
B	 PDGFRB	 	 	

25	 PDGFB	 PDGFB	 PDGFR
A	 PDGFRA	 	 	

26	 TGFB	
TGFB1	

TGFBR	
TGFBR1	 3KFD	 TGFB	is	Homodimeric	

	 TGFBR2	 	 TGFBR	is	Heterodimeric	

27	 TIMP1	 TIMP1	 MMP1	 MMP1	 2J0T	 	
28	 TIMP1	 TIMP1	 MMP2	 MMP2	 	 	
29	 TIMP1	 TIMP1	 MMP3	 MMP3	 1OO9	 	
30	 TIMP1	 TIMP1	 MMP9	 MMP9	 1L6J	 	
31	 TIMP1	 TIMP1	 MMP1

3	 MMP13	 2E2D	 	
32	 TIMP2	 TIMP2	 MMP1	 MMP1	 	 	
33	 TIMP2	 TIMP2	 MMP2	 MMP2	 1GXD	 	
34	 TIMP2	 TIMP2	 MMP3	 MMP3	 	 	
35	 TIMP2	 TIMP2	 MMP9	 MMP9	 	 	
36	 TIMP2	 TIMP2	 MMP1

3	 MMP13	 	 	
37	 TIMP3	 TIMP3	 MMP1	 MMP1	 	 	
38	 TIMP3	 TIMP3	 MMP2	 MMP2	 	 	
39	 TIMP3	 TIMP3	 MMP3	 MMP3	 	 	
40	 TIMP3	 TIMP3	 MMP9	 MMP9	 	 	
41	 TIMP3	 TIMP3	 MMP1

3	 MMP13	 	 	
42	 TIMP4	 TIMP4	 MMP1	 MMP1	 	 	
43	 TIMP4	 TIMP4	 MMP2	 MMP2	 	 	
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No.	
Protein	

1	
Protein	1	

Gene	Name	
Protein	

2	
Protein	2	Gene	

Name	
PDB	Code	 Notes	

44	 TIMP4	 TIMP4	 MMP3	 MMP3	 	 	
45	 TIMP4	 TIMP4	 MMP9	 MMP9	 	 	
46	 TNFA	 TNF	 TNFR	 TNFSFR1A	

TNFSFR1B	 3ALQ	 TNFR	is	Heterodimeric	

	

In	 Table	 4.2,	 PDB	 Codes	 are	 provided	 for	 bound	 complexes	 containing	 the	 two	 protein	

structures	 shown.	 Where	 experimental	 data	 can	 only	 be	 found	 for	 either	 Protein	 1	 or	

Protein	2	within	the	interaction,	the	PDB	code	is	appended	with	(1)	or	(2).		

Table	4.3:	Oligomers	involved	in	atherosclerosis	model	

Protein	Name	 Oligomeric	Status	 Gene	Names	

Interferon-Gamma	Receptor	 Heterodimer	 IFNGR1	
IFNGR2	

Interferon-Gamma	 Homodimer	 IFNG	

Interleukin	12	 Heterodimer	 IL12A	
IL12B	

Interleukin	12	Receptor	 Heterodimer	 IL12RA	
IL12RB	

Interleukin	17	 Homodimer	 IL17A	

Interleukin	18	Receptor	 Heterodimer	 IL18R1	
IL18RAP	

Transforming	Growth	Factor	Beta	 Homodimer	 TGFB1	

Transforming	Growth	Factor	Beta	Receptor	 Heterodimer	 TGFBR1	
TGFBR2	

Tumor	Necrosis	Factor	Alpha	Receptor	 Heterodimer	 TNFRSF1A	
TNFRSF1B	

	

Amino	acid	sequences	were	identified	for	all	relevant	genes	within	the	phase	3	study	of	the	

1000	 Genomes	 Project.	 Due	 to	 a	 lack	 of	 information	 defining	 which	 splice	 variants	 are	

involved	in	atherogenesis,	all	protein	forming	splice	variants	were	included	in	the	data	set.		

Data	from	the	1000	Genome	Project	can	be	accessed	through	Ensembl,	a	genome	database	

and	browser	 that	contains,	displays,	annotates	and	analyses	data	such	as	gene	sequence,	

variation	and	homology	(Yates	et	al.,	2016).	The	Ensembl	API	can	be	used	to	obtain	direct	

access	 to	 an	 underlying	 MySQL	 database,	 allowing	 for	 the	 development	 of	 a	 software	

pipeline	 to	 generate	 protein	 structures	 for	 a	 collection	 of	 mutations	 from	 a	 gene	 name	

(Yates	et	al.,	2014).		
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Due	 to	 concerns	 about	 computational	 intensity	 for	 work	 done	 within	 chapters	 4	 and	 5	

within	this	thesis,	we	restricted	the	dataset	to	variants	that	exist	in	more	than	the	following	

percentage	of	the	population:		

! =
# + 200
1200

∗ 0.02	

Where:	p	 =	 probability	 of	mutation	 existing	within	 population;	 L	 =	 Amino	 Acid	 sequence	

length	

This	equation	was	generated	to	allow	for	a	sufficient	spread	of	mutations	across	each	of	the	

relevant	proteins	while	limiting	our	total	computational	time	to	under	300,000	core	hours.	

A	list	of	all	sequences	isolated	can	be	found	in	Appendix	4.	

Tertiary	protein	structures	were	predicted	using	I-TASSER	4.4	on	the	Irish	Centre	for	High-

End	Computing	(ICHEC)	Fionn	cluster	–	across	240	2.4GHz	Intel	Cores	with	64GB	of	RAM.	I-

TASSER	was	run	with	the	following	parameters	set:		

Table	4.4:	I-TASSER	Parameters	

-runstyle	 ‘parallel’	 Allows	for	multithreading	

-nmodel	 5	 Returns	5	different	models	
for	assessment	

-hours	 30	

Limits	each	internal	
modelling	simulation	to	30	

hours.	
N.B.	This	does	not	limit	total	
simulation	time	to	30	hours.	

	

I-TASSER	will	provide	multiple	structures	(in	the	form	of	.pdb	files)	and	other	predictions	at	

the	end	of	a	simulation,	e.g.	secondary	structure,	solvent	accessibility,	gene	ontology	terms.	

For	 each	 I-TASSER	 run,	 multiple	 structural	 confirmations	 are	 created	 and	 subsequently	

clustered	together	to	then	create	a	final	prediction.	Multiple	clusters	are	then	created,	and	

the	most	 accurate	 prediction	 is	 then	 isolated	 through	 the	 use	 of	 a	 scoring	 function.	 For	

more	 information	 on	 how	 the	 global	 quality	 assessment	 (known	 as	 the	 C-Score)	 is	

calculated,	see	(Zhang,	2008).	
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The	prediction	with	the	highest	C-Score	was	isolated,	and	treated	as	our	predicted	tertiary	

structure.	 Proteins	 isolated	 in	 this	 manner	 were	 named	 in	 the	 format:	 {Gene	 Name}	 –	

{Splice	 Variant}	 –	 {Mutation	 Location}.	 For	 example,	 CCL2-001-64	 is	 a	 protein	 structure	

representing	the	splice	variant	CCL2-001	found	within	the	1000	Genome	Project	database	

with	a	mutation	causing	a	change	in	the	64th	amino	acid.	

 Alignment	

TM-Align	 is	 used	 to	 compare	 monomeric	 protein	 structures	 (Zhang	 and	 Skolnick,	 2005).	

Experimentally	 validated	 structures	 as	 detailed	 in	 Table	 4.2	 have	 been	 isolated	 from	 the	

protein	 data	 bank,	 and	 I-TASSER	 structures	 as	 predicted	 from	 the	 wildtype	 have	 been	

aligned	 to	 these	 experimentally	 validated	 structures.	 An	 observed	 accuracy	 value	 is	

calculated	by	utilising	root-mean-square-deviations	(RMSDs)	and	TM-Scores,	obtained	while	

performing	 this	 alignment	 using	 TM-Align.	 I-TASSER	will	 predicted	 values	 for	 both	 RMSD	

and	 TM-Score	 to	 assess	 model	 quality,	 and	 these	 values	 are	 compared	 to	 our	 observed	

accuracy.	An	 initial	alignment	 is	chosen	by	aligning	secondary	structure	elements	 (helices,	

sheets	or	coils)	to	maximise	the	TM-Score,	an	evaluation	of	similarity	between	two	tertiary	

structures	 that	 prioritises	 alignment	 in	 the	 centre	 of	 the	 protein	 due	 to	 the	 increased	

likelihood	of	 error	 and	 variance	 in	 the	 protein	 terminals.	 A	 TM-Score	 of	 greater	 than	 0.5	

suggests	correct	topology	when	comparing	structure,	while	a	TM-Score	 lower	than	0.17	 is	

almost	ensured	to	be	a	random	correlation	(Xu	and	Zhang,	2010).	

RMSDs	and	TM-Scores	calculated	in	this	way	are	used	to	evaluate	the	error	in	the	predicted	

protein	 structures,	 and	 to	 give	 confidence	 in	 the	 quality	 assessments	 of	 I-TASSER	where	

native	structures	are	unavailable.	

 Accuracy	

I-TASSER	 provides	 a	 local	 per	 residue	 ‘L-score’	 as	 well	 as	 a	 global	 C-score	 to	 quantify	

prediction	accuracy.	An	L-score	has	been	calculated	for	each	protein	model	using	secondary	

structure	information	and	predictions	of	solvent	accessibility	to	give	a	per-residue	maximal	

RMSD	 (in	 Angstrom)	 from	 the	 native	 structure.	 For	 more	 information	 on	 the	 ResQ	

algorithms	used	to	calculate	the	residue	specific	accuracy,	see	(Yang	et	al.,	2016).	To	study	

the	 accuracy	 of	 these	 local	 scoring	 mechanisms,	 each	 model	 with	 an	 experimentally	
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validated	structure	within	 the	PDB	as	described	 in	Table	4.2	has	been	aligned	to	 this	PDB	

structure,	 and	 a	 per-residue	 RMSD	 has	 been	 calculated	 to	 study	 the	 quality	 of	 these	 L-

scores.	

A	collection	of	graphs	have	been	generated	to	compare	this	L-Score	value	to	an	observed	

accuracy,	 shown	 in	 Figure	 4.6.	 For	 each	wildtype	 structure	with	 a	 known	experimentally-

derived	structure	in	the	PDB	defined	in	Table	4.2,	TM-Align	was	used	to	align	the	predicted	

and	the	experimental	structure	and	a	per-residue	pairwise	RMSD	was	calculated	to	evaluate	

the	predicted	L-score.	For	structures	where	the	alignment	was	non-continuous,	the	largest	

continuous	sequence	was	graphed.	

Once	 the	 level	 of	 accuracy	 of	 the	 L-scores	 has	 been	 ascertained,	 a	 heatmap	 has	 been	

created	to	display	prediction	accuracy.	Selected	heatmaps	can	be	found	in	Figure	4.5,	and	

heatmaps	for	each	protein	structure	calculated	can	be	found	in	Appendix	4.	Heatmaps	were	

generated	in	Jmol	(The	Jmol	Team,	2007)	using	the	commands:	

background	 white;	 ribbon;	 cartoons	 only;	 color	 property	 temperature	 “low”	 range	 0	 25;	

write	image	filename.png	

These	commands	provide	a	white	background,	remove	individual	atoms,	show	the	protein	

secondary	structure	in	cartoon	form,	colour	the	proteins	from	red	to	yellow	over	a	range	of	

0	Angstrom	to	25	Angstrom,	and	write	the	image	to	a	file	respectively.		

 Variance	Heatmap	

Once	a	collection	of	PDB	files	had	been	generated	for	all	included	mutations,	we	wanted	to	

compare	 our	 structures.	 TM-Align	 was	 used	 for	 each	 mutation	 to	 provide	 an	 optimal	

superposition	with	 its	corresponding	wildtype.	TM-Align	will	align	 two	proteins	by	using	a	

variation	 of	 the	 Levitt-Gerstein	 weight	 factor,	 weighting	 closer	 residue	 pairs	 more	 than	

further	 distant	 pairs.	 This	 prevents	 large	 variation	 at	 terminals,	 a	 common	 occurrence	 in	

protein	 prediction,	 from	 suggesting	 that	 a	 protein	 is	 a	 less	 accurate	 prediction	 that	 it	

actually	is	(Zhang	and	Skolnick,	2005).	

A	per-residue	root-mean-square-deviation	(RMSD)	is	calculated	for	each	alignment	with	the	

wildtype.	For	each	residue,	the	standard	error	of	the	mean	(SEM)	is	calculated	for	all	of	the	
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mutations	 associated	 with	 a	 particular	 splice	 variant	 of	 a	 protein.	 These	 SEM	 values	 are	

then	 heatmapped	 onto	 the	wildtype	 of	 the	 protein,	 giving	 a	 coloured	 description	 of	 the	

protein	areas	most	likely	to	be	highly	varied.	

The	 primary	 aim	 of	 this	 chapter	 is	 to	 study	 how	 protein	 structures	 involved	 in	

atherosclerosis	vary	between	population	subgroups.	A	heatmap	image	has	been	generated	

for	each	splice	variant	defined	 in	Table	4.6.	For	each	of	 the	protein	structures	 isolated	as	

described	in	section	4.2.1,	an	alignment	was	performed	with	the	wildtype	using	TM-Align.	

Using	the	optimal	alignment	as	calculated	with	this	method,	an	RMSD	value	was	calculated	

for	each	pair	of	residues.	The	SEM	for	each	of	these	per-residue	RMSDs	was	taken.		

A	 heatmap	 was	 generated	 by	 manually	 replacing	 column	 10	 (b-factor	 or	 temperature	

factor)	 in	 the	 pdb	 file	 for	 the	 wildtype	 with	 this	 SEM	 value,	 and	 utilising	 Jmol	 with	 the	

commands:	

background	white;	 ribbon;	 cartoons	only;	 color	property	 temperature	 “bgyor”	 range	0	50;	

write	image	filename.png	

These	commands	provide	a	white	background,	remove	individual	atoms,	show	the	protein	

secondary	structure	in	cartoon	form,	colour	the	proteins	from	blue	to	green	to	red	over	a	

range	of	0	Angstrom	to	50	Angstrom,	and	write	the	image	to	a	file	respectively.	The	precise	

colour	scheme	used	can	be	found	in	Figure	4.6.	

This	has	allowed	us	to	generate	a	heatmap	showing	the	residues	and	 locations	within	the	

protein	with	the	highest	variance.		

 Computational	Intensity	

Using	 I-TASSER	 to	 predict	 a	 tertiary	 structure	 from	 an	 amino	 acid	 sequence	 is	 a	

computationally	 intensive	task.	Due	to	resource	constraints,	total	computational	time	was	

estimated	by	relating	amino	acid	sequence	length	to	computational	time.	Before	the	entire	

data	set	of	amino	acids	was	processed	to	produce	tertiary	structures,	thirty-three	structures	

were	predicted	using	 I-TASSER	to	allow	us	to	estimate	the	total	 time	required.	Sequences	

were	included	in	this	alpha	test	if	their	sequence	length	was:	
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AALength	=	k	*	25	where	k	=	1,2,3,4…	and	AALength	between	50	–	500	

AALength	=	k	*	50	+	500	where	k	=	1,2,3,4…	and	AALength	between	500	–	1200	

Tertiary	protein	structures	were	predicted	using	I-TASSER	4.4	on	the	Irish	Centre	for	High-

End	Computing	(ICHEC)	Fionn	cluster	–	across	240	2.4GHz	Intel	Cores	with	64GB	of	RAM.		

Sequences	of	the	exact	length	required	were	not	available	with	our	preliminary	dataset,	so	

in	 those	 cases	 the	 closest	 available	 sequence	 length	was	 taken.	 The	 sequences	predicted	

during	this	benchmarking	test	are	detailed	in	Table	4.5:	

Table	4.5:	Protein	Structures	used	in	I-TASSER	benchmarking	test	

Sequence	Name	 Sequence	Length	 Computational	Time	(Core	Hours)	
PDGFC-002-14	 50	 12.9	
OLR1-005-45	 77	 17.8	
CCL2-001-69	 99	 16.8	
CXCL9-001-1	 125	 23.5	
CD40-201-124	 151	 31.6	
IFNG-001-162	 166	 42.1	
CD40-002-8	 203	 59.1	
TIMP4-001-19	 224	 63.5	
CMA1-001-1	 247	 78.6	
TPSB2-001-18	 275	 96.3	
GLG1-007-139	 305	 226.2	
TPSG1-001-24	 321	 166.9	
CXCR1-001-1	 350	 188.2	
CCR2-201-233	 374	 216.2	
EGFR-005-13	 405	 110.1	

TGFBR1-003-232	 426	 180.1	
LPL-001-20	 475	 150.5	

TGFBR1-001-17	 503	 345.9	
ICAM1-001-39	 532	 281.4	
TGFBR2-002-522	 592	 424.4	
LCP1-006-319	 627	 466.6	
VCAM1-002-11	 647	 492.7	
ABCG1-005-28	 677	 706.6	
EGFR-002-703	 705	 380.7	
VCAM1-001-11	 739	 590.1	
PLA2G6-002-258	 752	 727.0	
SELP-006-19	 768	 757.4	

PLA2G6-001-53	 806	 764.2	
IL4R-001-82	 825	 746.6	
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Sequence	Name	 Sequence	Length	 Computational	Time	(Core	Hours)	
PDGFRA-001-1000	 1089	 817.1	

EGF-003-892	 1166	 771.8	
GLG1-003-80	 1192	 771.2	
EGFR-001-458	 1210	 861.8	

N.B.	Some	of	the	sequences	involved	in	this	alpha	test	were	not	included	in	the	final	version	

of	 the	 model,	 due	 to	 the	 preliminary	 status	 of	 the	 model	 at	 the	 time	 this	 work	 was	

completed.	

	

Figure	4.2:	Comparing	I-TASSER	runtime	to	sequence	length	

	

4.3 Results	

830	 amino	 acid	 sequences	were	 isolated	 from	 the	 1000	Genome	Project	 Phase	 3	MySQL	

database,	 over	 a	 total	 of	 65	 genes	 and	 146	 splice	 variants,	 based	 on	 the	 gene	 names	

described	in	Table	4.2	and	formula	described	in	section	4.2.1.	I-TASSER	was	used	to	predict	

a	 tertiary	protein	structure	 for	each	of	 these	protein	structures	 in	 the	 form	of	a	 .pdb	file.	
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Sequence	lengths	range	from	37	to	1210	amino	acids	long	with	a	mean	of	388.29	(median	

247).		

	

Figure	 4.3:	 Distribution	 of	 Sequence	 Lengths	 isolated	 from	 Phase	 3	 of	 the	 1000	 Genome	

Project	

	

Table	4.6:	All	isolated	splice	variants	and	corresponding	number	of	structures,	including	

mutations	

Splice	
Variant	
Name	

Number	of	
Structures	

Splice	
Variant	
Name	

Number	of	
Structures	

Splice	
Variant	
Name	

Number	of	
Structures	

ABCA1-001	 5	 IL12A-001	 5	 IL5RA-003	 4	
ABCA1-004	 3	 IL12A-005	 14	 IL5RA-004	 4	
ABCG1-001	 1	 IL12A-006	 13	 IL5RA-005	 4	
ABCG1-002	 1	 IL12B-001	 9	 IL5RA-006	 4	
ABCG1-004	 1	 IL12RB1-001	 9	 IL5RA-007	 4	
ABCG1-006	 1	 IL12RB1-002	 9	 IL5RA-201	 5	
ADAM17-

001	 5	 IL12RB1-003	 8	 IL6-001	 12	

CCL2-001	 3	 IL12RB2-001	 6	 IL6-003	 8	
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Splice	
Variant	
Name	

Number	of	
Structures	

Splice	
Variant	
Name	

Number	of	
Structures	

Splice	
Variant	
Name	

Number	of	
Structures	

CCL2-004	 1	 IL12RB2-004	 8	 IL6-004	 6	
CCL5-001	 6	 IL12RB2-201	 7	 IL6-005	 11	
CCL5-002	 6	 IL12RB2-202	 8	 IL6-006	 14	
CCR2-001	 3	 IL17A-001	 8	 IL6-201	 12	
CCR2-002	 2	 IL17RA-001	 5	 IL6R-001	 4	
CCR2-201	 3	 IL17RA-201	 4	 IL6R-003	 2	
CCR5-001	 4	 IL18-001	 6	 IL6R-201	 2	
CD36-001	 4	 IL18-003	 6	 MMP1-001	 3	
CD36-006	 4	 IL18-006	 6	 MMP13-001	 2	
CD36-019	 1	 IL18R1-001	 4	 MMP13-002	 2	
CMA1-001	 14	 IL18R1-201	 4	 MMP13-201	 2	
CMA1-002	 16	 IL18R1-202	 7	 MMP2-001	 2	
CSF1-001	 7	 IL18RAP-001	 1	 MMP2-008	 4	
CSF1-002	 7	 IL18RAP-002	 2	 MMP3-001	 3	
CSF1-003	 4	 IL1B-001	 1	 MMP9-001	 7	
CSF1-004	 5	 IL1R1-001	 4	 PDGFA-001	 12	
CSF1R-001	 4	 IL1R1-006	 4	 PDGFA-002	 14	
CSF1R-201	 10	 IL1R1-013	 3	 PDGFB-001	 11	
CXCL10-001	 9	 IL2-001	 5	 PDGFB-002	 17	
CXCL11-001	 4	 IL21-001	 3	 PDGFRA-001	 8	
CXCL11-003	 4	 IL21-201	 3	 PDGFRA-002	 1	
CXCL9-001	 6	 IL21R-001	 3	 PDGFRB-001	 5	
CXCR3-001	 1	 IL21R-003	 3	 PLA2G6-001	 3	
CXCR3-002	 1	 IL21R-006	 3	 PLA2G6-002	 1	
EGF-001	 9	 IL2RA-001	 2	 TGFB1-001	 4	
EGF-002	 9	 IL2RA-002	 13	 TGFBR1-001	 3	
EGF-003	 7	 IL2RA-004	 5	 TGFBR1-003	 1	
EGFR-001	 3	 IL33-001	 6	 TGFBR2-001	 2	
EGFR-002	 4	 IL33-201	 6	 TGFBR2-002	 2	
EGFR-003	 2	 IL33-202	 12	 TIMP1-001	 14	
EGFR-004	 3	 IL33-203	 12	 TIMP1-002	 11	
EGFR-005	 1	 IL4-001	 11	 TIMP1-003	 10	
EGFR-201	 2	 IL4-002	 10	 TIMP2-001	 4	
EGFR-202	 1	 IL4-201	 8	 TIMP2-003	 3	
IFNG-001	 4	 IL4R-001	 13	 TIMP2-008	 6	

IFNGR1-001	 5	 IL4R-004	 13	 TIMP3-001	 8	
IFNGR1-201	 5	 IL4R-201	 14	 TIMP4-001	 11	
IFNGR2-001	 4	 IL4R-202	 1	 TNF-001	 2	

IL10-001	 8	 IL5-001	 8	 TNFSFR1A-
001	 3	

IL10RA-001	 7	 IL5RA-001	 4	 TNFSFR1B-
001	 5	
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Splice	
Variant	
Name	

Number	of	
Structures	

Splice	
Variant	
Name	

Number	of	
Structures	

Splice	
Variant	
Name	

Number	of	
Structures	

IL10RB-001	 5	 IL5RA-002	 4	 	 	
	

 Global	Accuracy	

Each	 I-TASSER	 run	 provides	 up	 to	 five	 models	 of	 each	 structure	 based	 on	 the	 sequence	

given.	The	C-Score	is	calculated	for	each	of	these	models	as	described	in	section	4.2.1.	

Of	 these	 830	 sequences,	 the	 mean	 C-score	 is	 -1.4134,	 the	 maximum	 is	 1.55	 and	 the	

minimum	 is	 -5.	These	 structures	have	a	mean	TM-score	and	RMSD	of	0.552	+-	0.127	and	

9.71	+-3.75	Angstrom	respectively.	The	model	returned	with	the	highest	C-score	is	chosen	

as	the	final	prediction.		

	

Figure	4.4:	Images	of	CCL2-001	(left)	and	CCR2-001	(right)	generated	by	I-TASSER,	displayed	

in	ribbon	format	using	JMol	
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Figure	4.5:	Accuracy	heatmap	of	PDGFA-001	on	a	mosaic	of	accuracy	heatmaps	from	all	

structures	within	our	dataset	

	

Heatmaps	to	demonstrate	the	residue	specific	quality	 (or	L-score)	of	 the	predictions	were	

generated	 as	 described	 in	 section	 4.2.3	 and	 are	 shown	 in	 collectively	 in	 Figure	 4.5	 and	

individually	in	Appendix	4.	

 Error	

A	 subset	of	 the	generated	wildtype	models	 can	be	 compared	 to	experimentally	observed	

structures.	 For	each	of	 the	proteins	with	a	PDB	code	 included	 in	Table	4.2,	TM-Align	was	

used	to	calculate	an	optimal	alignment	between	the	model	and	the	experimental	structure,	

and	the	distance	was	calculated	for	each	pairwise	residue	to	provide	an	observed	accuracy	

value.	Of	the	65	different	genes	that	we	have	predicted	protein	structures	for,	53	contain	

experimentally	derived	complexes	within	the	PDB.	53	pair-wise	alignments	were	performed	

with	the	experimentally	validated	structures	and	the	predicted	ones,	with	a	mean	TM-Score	

of	 0.558.	 Twenty-six	 structures	 have	 a	 TM-score	 higher	 than	 0.5	 (suggesting	 correct	

topology),	and	none	have	a	TM-score	lower	than	0.17	(suggesting	a	random	correlation)	(Xu	

and	Zhang,	2010).	
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The	graphs	in	Figure	4.6	show	the	pairwise	accuracy	between	residues	as	defined	in	section	

4.2.3.	
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Figure	4.6:	53	graphs	comparing	observed	accuracy	(red)	to	predicted	accuracy	(blue)	

	

TM-Scores	for	each	of	these	alignments	are	shown	in	Table	4.7.	

Table	4.7:	TM-Scores	for	alignments	between	predicted	and	experimentally	derived	

wildtypes	

Protein	Name	 TM-Score	 Protein	Name	 TM-Score	
ADAM17-001	 0.74	 IL21R-001	 0.54	
CCL2-001	 0.87	 IL2RA-001	 0.37	
CCL5-001	 0.80	 IL33-001	 0.89	
CCR2-001	 0.73	 IL4-001	 0.83	
CCR5-001	 0.85	 IL4R-001	 0.33	
CMA1-001	 0.91	 IL5-001	 0.30	
CSF1-001	 0.40	 IL5RA-001	 0.34	
CSF1R-001	 0.63	 IL6-001	 0.23	
CXCL10-001	 0.79	 IL6R-001	 0.45	
CXCL11-001	 0.49	 MMP1-001	 0.98	
EGF-001	 0.22	 MMP13-001	 0.95	
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Protein	Name	 TM-Score	 Protein	Name	 TM-Score	
EGFR-001	 0.36	 MMP2-001	 0.96	
IFNG-001	 0.60	 MMP3-001	 0.92	

IFNGR1-001	 0.33	 MMP9-001	 0.79	
IL10-001	 0.55	 PDGFA-001	 0.86	

IL10RA-001	 0.33	 PDGFB-001	 0.87	
IL12A-001	 0.22	 PDGFRB-001	 0.35	
IL12B-001	 0.94	 TGFB1-001	 0.68	
IL17A-001	 0.82	 TGFBR1-001	 0.34	
IL17RA-001	 0.33	 TGFBR2-001	 0.31	
IL18-001	 0.21	 TIMP1-001	 0.30	

IL18R1-001	 0.31	 TIMP2-001	 0.34	
IL18RAP-001	 0.26	 TIMP3-001	 0.28	
IL1B-001	 0.93	 TNF-001	 0.97	
IL1R1-001	 0.23	 TNFSFR1A-001	 0.27	
IL2-001	 0.82	 TNFSFR1B-001	 0.25	
IL21-001	 0.26	 	 	

	

 Heatmaps	

Of	 the	 sequences	 isolated	 as	 described	 in	 section	 4.2.1,	 mutations	 are	 available	 for	 61	

proteins.	A	heatmap	was	generated	for	each	of	these	proteins	as	described	in	section	4.2.4.		
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Table	4.8:	Corresponding	gene	names	for	the	heatmaps	shown	in	Figure	4.7	

Heatmap	No	 Gene	Name	 Heatmap	No	 Gene	Name	
1	 ABCA1	 32	 IL12RB1	
2	 ADAM17	 33	 IL12RB2	
3	 CCL2	 34	 IL17A	
4	 CCL5	 35	 IL17RA	
5	 CCR2	 36	 IL18	
6	 CCR5	 37	 IL18R1	
7	 CMA1	 38	 IL18RAP	
8	 CSF1	 39	 IL21	
9	 CSF1R	 40	 IL21R	
10	 CXCL9	 41	 IL33	
11	 CXCL10	 42	 MMP1	
12	 CXCL11	 43	 MMP2	
13	 EGF	 44	 MMP3	
14	 EGFR	 45	 MMP9	
15	 IFNG	 46	 MMP13	
16	 IFNGR1	 47	 PDGFA	
17	 IFNGR2	 48	 PDGFB	
18	 IL1R1	 49	 PDGFRA	
19	 IL2	 50	 PDGFRB	
20	 IL2RA	 51	 PLA2G6	
21	 IL4	 52	 TGFB1	
22	 IL4R	 53	 TGFBR1	
23	 IL5	 54	 TGFBR2	
24	 IL5RA	 55	 TIMP1	
25	 IL6	 56	 TIMP2	
26	 IL6R	 57	 TIMP3	
27	 IL10	 58	 TIMP4	
28	 IL10RA	 59	 TNF	
29	 IL10RB	 60	 TNFSFR1A	

Figure	4.7:	61	heatmaps	displaying	the	variance	within	protein	structures	across	a	
population.	
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30	 IL12A	 61	 TNFSFR1B	
31	 IL12B	 	 	

	

With	this	gradient	colour	scheme,	blue	areas	of	the	protein	show	the	least	variance,	while	

green/red	 sections	 correspond	 to	 increased	 variance	 across	 the	 population	 within	 these	

areas.	For	each	protein	heatmap,	the	range	and	SEM	of	temperature	values	were	calculated	

to	 study	which	proteins	have	particular	areas	where	 structural	 variation	has	an	 increased	

effect.	Of	the	61	proteins	available,	12	have	a	mean	SEM	greater	than	15	Angstrom,	due	to	

certain	areas	of	the	protein	with	higher	structural	variance	than	others.	Five	proteins	have	a	

maximum	variance	greater	than	50	Angstrom,	leading	to	the	general	red	colour.	The	protein	

showing	the	most	variance	with	this	methodology	is	CCR2	(heatmap	number	5,	mean	SEM	

89.66),	showing	significant	structural	variation	across	isolated	mutations.		

4.4 Discussion	

 Mutations	linked	to	disease		

DbSNP,	a	database	connecting	variations	to	clinical	data	and	other	sequence	resources,	and	

ClinVar,	 a	 repository	 linking	 variations	 to	 phenotype,	 were	 searched	 for	 each	 mutation	

isolated	from	the	1000	Genome	Project	to	isolate	variants	with	known	clinical	significance	

to	disease	(Landrum	et	al.,	2014;	Sherry	et	al.,	2001).		

IL4R-001-75	(rs1805010)	has	multiple	known	clinical	outcomes.	This	polymorphism	can	lead	

to	a	slow	progression	to	acquired	immunodeficiency	syndrome	(AIDS)	(Soriano	et	al.,	2005),	

and	additionally	 cause	 resistance	 to	atopy	 (Franjkovic	et	al.,	2005).	 Interleukin	4	 receptor	

has	been	shown	to	promote	differentiation	of	Th0	cells	into	Th2	cells	through	IL-4	signalling	

and	to	regulate	production	of	the	IgE	antibody	(Katona	et	al.,	1991;	Lee	and	Hirani,	2006).	
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Figure	4.8:	(Left)	-	IL4R-001	(Blue)	aligned	with	IL4R-001-75	(Red)	

(Right)	-	IL4R-001	(Blue)	aligned	with	IL4R-001-503	(Red)	

The	I-TASSER	generated	model	of	IL4R-001	has	a	C-score	of	-1.63	and	an	estimated	RMSD	of	

12.4	+-	4.3	A,	so	while	the	model	may	have	altered	backbone	structure	and	imperfect	side	

chain	conformations	when	compared	to	the	native	structure,	we	can	be	confident	that	the	

model	has	the	correct	topology.	For	the	variant	IL4R-001-75,	we	see	a	C-Score	of	-2.14	with	

an	 estimated	 RMSD	 of	 13.8	 +-	 3.9.	 As	 shown	 in	 Figure	 4.6	 (Graph	 32),	 the	 predicted	

accuracy	of	our	wildtype	is	reliable.	

The	mutation	has	caused	a	significant	structural	difference	between	models.	A	TM-Score	of	

0.32569	 has	 been	 calculated	 between	 the	 two	models,	 which	 is	 a	 score	 suggesting	 that	

similarity	 between	 the	 two	 structures	 is	 only	 slightly	 better	 than	 random	 (Zhang	 and	

Skolnick,	2005).	

IL4R-001-503	(rs1805015)	 is	another	mutation	 in	 interleukin	4	receptor	which	 is	known	to	

be	protective	against	atopy	(Franjkovic	et	al.,	2005).	For	the	variant	IL4R-001-503,	we	see	a	

C-Score	of	-2.12	with	an	estimated	RMSD	of	13.7	+-	4.0,	which	is	remarkably	similar	to	the	

accuracy	scores	of	IL4R-001-75.	We	see	similar	structural	significance	with	the	wildtype	as	

IL4R-001-75,	with	a	TM-Score	of	0.33986.	
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However,	 our	 models	 of	 IL4R-001-75	 and	 IL4R-001-503	 show	 strong	 structural	 similarity.	

With	a	TM-Score	of	0.84648	and	an	RMSD	of	4.16A,	we	can	see	that	the	tertiary	structure	of	

IL4R	with	these	mutations	is	remarkably	similar.		

	

Figure	4.9:	Alignment	between	IL4R-001-75	and	IL4R-001-503	

We	know	that	existence	of	either	of	these	mutations	within	an	individual	gives	a	protection	

against	 atopy,	 and	 that	 IL4R-001-75	 gives	 a	 susceptibility	 to	 AIDS.	 With	 the	 known	 link	

between	 protein	 structure	 and	 protein	 function,	 the	 structural	 similarity	 between	 these	

proteins	warrants	investigation	into	the	function	of	IL4R-001-503.	

ABCA1-001-219	(rs2230806)	 is	a	mutation	 in	ATP-binding	cassette	transporter	A1	that	has	

been	shown	to	reduce	CHD	risk	 in	 individuals	with	familial	hypercholesterolemia	(Cenarro	

et	al.,	2003).	ABCA1	is	a	transporter	of	various	biological	entities	across	cellular	membranes	

which	is	involved	in	cholesterol	efflux	from	atheromae.	We	see	similar	alignment	between	

our	models	of	ABCA1-001-219	and	its	wildtype,	with	a	TM-score	of	0.83924	and	an	RMSD	of	

3.12,	 indicating	that	the	structural	effect	of	the	mutation	 is	minor.	However,	our	C-Scores	

for	 the	 wildtype	 and	 mutation	 are	 -3.31	 and	 -3.40	 respectively,	 so	 the	 quality	 of	 the	

structural	prediction	may	be	a	factor	when	comparing	these	proteins.		
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Figure	4.10:	ABCA1-001	aligned	with	the	protective	mutation	ABCA1-001-219	

 General	Discussion	

I-TASSER	 is	 the	 current	 industry	 standard	 in	protein-structure	prediction	 from	amino	acid	

sequences,	having	been	the	leader	in	the	community	wide	CASP	experiments	4	times	in	the	

last	5	contests,	and	as	such	we	can	have	confidence	in	our	results	and	the	ability	of	I-TASSER	

to	assess	the	quality	of	its	work.	Our	alignments	to	the	wildtype	show	that	a	strong	C-score	

gives	an	accurate	assessment	of	model	quality	and	that	L-scores	are	a	strong	assessment	of	

the	per-residue	accuracy	of	a	structure.	Although	there	are	structures	where	the	I-TASSER	

assessment	of	quality	is	reduced,	overall	confidence	in	structural	accuracy	is	justified.	

The	 graphs	 in	 Figure	 4.6	which	 relate	 predicted	 structural	 accuracy	 to	 observed	 accuracy	

show	that	the	L-Score	is	a	strong	indicator	of	quality;	however	it	is	not	perfect.	Of	all	of	the	

graphs,	 10	 show	 a	 global	 disparity	 between	 observed	 and	 predicted	 accuracy:	 CXCL11,	

EGFR,	 IFNGR1,	 IL18,	 IL5,	 IL6,	 TGFBR1,	 TIMP1,	 TIMP2	 and	 TIMP3.	 However,	 each	 of	 these	

structures	show	a	weak	alignment	to	the	predicted	structure,	as	only	1	structure	 (CXCL11	

with	 0.49)	with	 a	 TM-Score	when	 aligned	 to	 its	wildtype	 of	 greater	 than	 0.37	 shows	 this	

disparity.	 In	summary,	when	we	are	confident	 in	our	global	result,	we	can	be	confident	 in	

our	local	results.	
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Similar	structure	between	proteins	implies	to	similar	function.	By	assessing	which	individual	

mutations	cause	the	greatest	variations	in	protein	structures,	we	can	isolate	a	collection	of	

structures	 that	 are	 more	 likely	 to	 have	 different	 function	 than	 the	 wildtypes.	 If	 we	 can	

identify	which	mutations	are	more	 likely	to	cause	variation	 in	active	sites	of	proteins,	 this	

procedure	could	be	refined	further.	

Relating	 sequence	 length	 to	model	 quality	 can	 be	 done	 in	multiple	ways.	 By	 relating	 the	

sequence	length	to	the	C-Score	of	the	structure,	we	see	no	correlation:	

	

Figure	4.11:	Comparison	of	C-Score	and	Sequence	Length	

However,	 by	 comparing	 the	 predicted	 RMSD	 to	 the	 sequence	 length,	 we	 do	 see	 a	

correlation:	
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Figure	4.12:	Comparison	of	RMSD	and	Sequence	Length	

	

The	 line	of	best	 fit	drawn	 in	Figure	4.11	and	Figure	4.12	was	drawn	using	Matlab’s	polyfit	

function.	 This	 is	 due	 to	 the	 inclusion	 of	 scoring	 functions	 from	 I-TASSER’s	 subprocess	

threading	algorithms	which	 incorporate	sequence	 length.	However,	 I-TASSER	studies	have	

shown	a	 correlation	between	C-Score	and	RMSD	of	0.75	 (Yang	et	 al.,	 2014).	 In	 summary,	

structural	quality	 can	be	assessed	 in	multiple	different	ways	and	 care	 should	be	 taken	 to	

ensure	awareness	of	the	limitations	of	solely	using	one	metric	to	study	quality.	

What	qualities	 in	 a	 protein	 lead	 to	 a	 stronger	more	 accurate	prediction?	With	 I-TASSER’s	

reliance	 on	 homologue	 discovery	 to	 improve	 the	 results	 from	 threading	 algorithms,	 it	 is	

assumed	 that	 the	 number	 of	 homologues	 identified	 is	 related	 to	 prediction	 quality.	

However,	 only	 approximately	 50%	of	 known	 sequences	 can	 be	 shown	 to	 be	 related	 to	 a	

known	 experimentally	 derived	 protein	 structure	 (Fiser,	 2017).	 Ab	 initio	 algorithms	 have	
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been	 shown	 to	 be	 more	 reliable	 with	 smaller	 proteins	 in	 cases	 where	 homologues	 are	

unavailable.	Identification	of	known	folds	within	the	primary	structure	also	provides	a	high	

quality	prediction	through	threading	methods.	However,	 threading	of	 individual	segments	

has	been	shown	to	introduce	significant	noise	into	resulting	models.	

Variance	heatmaps	were	generated	using	the	standard	error	of	the	mean	(SEM)	rather	than	

standard	deviation,	as	this	allowed	us	to	account	for	small	numbers	of	mutations	for	certain	

structures.	 Five	 heatmap	 models	 show	 a	 red	 section	 (an	 area	 where	 the	 pairwise	 SEM	

between	 residues	 is	 greater	 than	 50A),	 showing	 a	 significant	 amount	 of	 variance.	 These	

severe	mutations	 exist	 on	 regions	 of	 CCR2,	 IL21,	 IL21R,	 IL6R	 and	 TNFSFR1A;	 a	 subset	 of	

proteins	with	a	wide	range	of	C-Score	values	(-1.11,	-0.64,	-3.39,	-2.47	and	-1.39),	suggesting	

a	low	likelihood	of	this	variance	being	due	to	weaknesses	in	the	prediction	algorithms.			

Identification	 of	 binding	 site	 location	 within	 a	 tertiary	 structure	 is	 an	 important	 part	 of	

elucidating	 function	 and	 drug	 design.	 However,	 experimentally-derived	 binding	 site	

information	is	limited.	With	accurate	binding	site	data,	the	local	variance	could	be	used	to	

assess	the	likelihood	that	a	variation	will	be	less	severe,	and	subsequently	more	likely	to	be	

benign.	 Utilising	 a	 relative	 scale	 for	 the	 heatmap	 by	 colouring	 the	 protein	 based	 on	 the	

maximum	variance	seen	within	the	structure	itself	rather	than	a	fixed	global	value	across	all	

proteins	would	 allow	 for	 the	 isolation	of	 areas	 showing	most	 variance	 and	potentially	 be	

useful	 in	 identifying	 severe	 mutations.	 Particular	 heatmaps,	 such	 as	 IL12BR2,	 show	

increased	 variance	 in	 localised	 regions,	 which	 could	 be	 good	 or	 bad	 depending	 on	 the	

binding	site	location.	

Future	work	 in	 this	area	 can	 focus	on	many	different	 topics.	 Improving	 the	quality	of	 the	

predictions	 utilised	 through	 computational	 methods	 would	 benefit	 every	 computational	

pipeline	where	modelling	 is	 required.	 These	methods	 are	developing	quickly	 and	 as	 each	

new	structure	 is	 included	in	the	Protein	Data	Bank,	the	average	quality	of	each	prediction	

increases	 for	 structures	 calculated	 through	 homology	 modelling	 methods.	 Increases	 in	

quality	 of	 binding	 site	 identification,	 intramolecular	 contact	 elucidation	 and	 unstructured	

region	 identification	 are	 qualities	 that	 the	 protein	 structure	 prediction	 community	 are	

striving	for.	
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Identification	of	binding	site	areas	is	a	crucial	step	that	would	be	key	in	the	study	of	protein	

function	 and	 drug	 development.	 Multiple	 bioinformatics	 tools	 have	 been	 developed	 to	

tackle	 this	problem,	 focusing	on	sequence	data	or	 structural	data	 (Xie	and	Hwang,	2015).	

CAMEO	experiments	have	been	set	up,	as	a	continuous	evaluation	alongside	the	bi-annual	

CASP	tests,	which	evaluates	the	quality	of	ligand-binding	sites	as	part	of	its	analysis.	Current	

results	 suggest	 that	 a	 combination	 of	 structural	 and	 sequence	 based	 methods	 are	 the	

current	industry	standards.	

Gene	Ontology	 (GO)	 is	 an	 attempt	 to	 create	 a	 standardised	 vocabulary	 to	 discuss	 genes,	

their	 attributes	 and	 their	 products.	 Through	 the	 identification	 of	 homologues	 during	 the	

model	formation	process,	predictions	can	be	made	into	the	biological	processes	in	which	a	

protein	 is	 involved,	 their	 explicit	 function	 and	 the	 cellular	 component(s)	 involved	 in	

construction.	

Due	 to	 computational	 intensity	 requirements,	 limitations	 were	 added	 to	 the	 number	 of	

structures	 that	were	 predicted	 and	 analysed	 in	 this	 chapter.	 The	 heatmaps	 generated	 in	

section	Figure	4.7	would	be	a	more	useful	descriptor	of	the	variation	across	the	protein	if	all	

known	 mutations	 were	 included	 in	 the	 analysis.	 Where	 population	 data	 is	 available,	

weighting	the	mutations	by	rate	of	occurrence	could	give	a	clearer	picture	into	which	parts	

of	a	protein	structure	are	more	likely	to	be	affected	by	mutation.	

Even	without	doing	all	of	these	things,	further	analysis	can	be	completed	with	the	PDB	file	

output.	PDBs	can	be	used	for	protein-protein	docking,	electrostatic	potential	analysis,	drug	

discovery,	 motif	 identification	 and	 discovery,	 complex	 formation,	 function	 prediction,	

homologue	 identification,	 fold	 recognition	 and	 many	 more.	 PDB	 files	 can	 be	 used	 to	

estimate	 binding	 kinetics	 of	 protein-protein	 interactions,	 allowing	 for	 this	 dataset	 to	 be	

used	as	part	of	a	programme	to	study	how	the	dynamics	of	atherosclerosis	differ	between	

population	subgroups.	
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Chapter 5: 

Calculating Binding 

Kinetics 
5 Calculating	Binding	Kinetics		 	
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5.1 Introduction	

Determining	 the	 rate	of	 association	 and	dissociation	 for	 a	 PPI	 is	 an	 important	 step	 in	 the	

study	of	binding	kinetics,	theoretical	drug	design	and	the	general	study	of	the	biochemical	

interaction.	 These	molecular	 interactions	 drive	 almost	 all	 cellular	 processes	 (Phizicky	 and	

Fields,	1995).	Modification	of	proteins	 requires	 such	an	 interaction	 to	 take	place,	and	 the	

rate	 of	 protein-protein	 association	 and	 dissociation	 influences	 the	 consequences	 of	 the	

interaction	and	 subsequent	downstream	effects.	Additionally,	 variation	 in	binding	 kinetics	

can	have	significant	effect	on	drug	efficacy	(Pan	et	al.,	2013).	Quantifying	binding	kinetics	of	

PPIs	can	be	completed	experimentally	or	predicted	computationally.	Our	intention	is	to	use	

the	 mathematical	 model	 described	 in	 Chapter	 3,	 and	 the	 protein	 structures	 derived	 in	

Chapter	 4,	 to	 calculate	 binding	 kinetics	 for	 each	 interaction	 included	 within	 the	 model,	

ultimately	leading	to	population	subgroup	specific	model	reparameterisation.	

	

 Kinetic	rates	-	kon,	koff	and	kd	

A	simple	 interaction	between	an	enzyme	E	and	a	substrate	S	 to	 form	a	complex	P	can	be	

described	as	follows:	

	

E	+	S	⇄	ES	⇄	EP	⇄	E	+	P	

	

This	 outlines	 the	 processes	 of	 enzyme-substrate	 binding,	 substrate	modification,	 product	

formation	 and	 enzyme	 unbinding.	 This	 interaction	 can	 be	 simplified	 if	 we	 remove	 the	

intermediate	 step,	 leading	 to	 the	 Michaelis-Menten	 Model	 (Johnson	 and	 Goody,	 2012;	

Michaelis	and	Menten,	1913):	

	

E	+	S	⇄	ES	→	E	+	P	

	

The	rate	of	association,	kon,	 is	defined	as	the	rate	of	binding	between	E	and	S	to	form	the	

complex	ES.	The	rate	of	dissociation,	koff,	represents	the	rate	of	transient	complex	unbinding	

to	return	to	their	original	separate	parts.	This	simplified	interaction	represents	the	binding	

and	 unbinding	 of	 a	 ligand	 without	 an	 intermediate	 stage	 (a	 common	 phase	 of	 the	

interaction	process);	however	it	is	sufficient	to	illustrate	important	concepts	of	PPIs.	Binding	
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can	change	the	physical	properties	of	both	E	and	S,	 including	tertiary	structure	(Ahmad	et	

al.,	2013).	

	

The	 binding	 affinity,	 or	 dissociation	 constant	 (kd),	 can	 be	 described	 using	 a	 ratio	 of	

concentrations	at	equilibrium:	

		

,- =
. [0]
[.0]

	

	

The	dissociation	constant	kd	is	a	measure	of	the	tendency	of	a	protein	complex	to	separate	

into	its	original	parts.	This	is	not	to	be	confused	with	the	dissociation	rate	constant	koff,	the	

speed	of	complex	separation	into	its	constituent	parts.	The	binding	constant	(ka)	is	defined	

as	 the	 inverse	 of	 the	 dissociation	 constant.	 At	 the	 point	 of	 equilibrium,	 the	 enzyme	

concentration	at	which	half	of	the	substrate	is	bound	to	enzyme	is	equal	to	the	dissociation	

constant	kd.	In	other	words,	equilibrium	is	reached	when	the	following	equation	is	true:	

	

. 0 ,23 = .0 ,244	

	

leading	to:	

,- =
,244
,23

	

	

	

 Determination	of	binding	kinetics	

Enzyme	kinetic	parameters	are	determined	by	the	structure	and	molecular	properties	of	the	

molecules	 involved	within	a	PPI.	The	 ‘lock	and	key’	 theory	of	protein	docking,	considering	

the	dilemma	of	protein-protein	docking	as	a	problem	where	proteins	are	 treated	as	 rigid-

body	structures,	is	a	simplification	that	reduces	the	quality	of	any	knowledge	gleaned	from	

an	interaction	(Jorgensen,	1991).	The	solvent	accessible	surface	area	(SASA),	alongside	the	

accessibility	of	 the	binding	site	areas	provide	a	hard-limit	 to	 the	speed	of	 the	biochemical	

reaction	due	to	the	greater	 impositions	added	when	binding	to	an	obstructed	site	over	an	

open	 reaction	 site.	Molecular	 flexibility	 similarly	 affects	 the	 rate	 of	 binding,	 particularly	 if	
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the	binding	site	is	occluded.	The	upper	limit	of	the	association	rate	kon	is	approximately	1010	

M-1	s-1;	however	this	requires	optimal	electrostatic	navigation	(Schreiber	et	al.,	2009).	Amino	

acid	hydrophobicity,	vital	in	the	protein	folding	process,	is	also	a	key	player	in	the	protein-

protein	binding	process	(Young	et	al.,	1994).	Ascertaining	binding	kinetics	to	allow	for	future	

quantitative	 study	 can	 be	 completed	 using	 Surface	 Plasmon	 Resonance	 (SPR),	 ultraviolet-

visible	spectroscopy	or	NMR	through	titration	experiments	(Hahnefeld	et	al.,	2004;	Katoh	et	

al.,	2003).	

	

 Electrostatics	

Electrostatic	 properties	 within	 protein-protein	 interactions	 are	 a	 vital	 component	 in	 the	

determination	of	binding	kinetics	and	complex	stability.	The	electrostatic	strength	involved	

in	an	interaction	between	proteins	varies	depending	on	the	pH	and	the	ionic	strength	of	the	

surrounding	 environment.	 An	 increase	 in	 ionic	 strength	will	 decrease	 kon	while	 having	 an	

insignificant	effect	on	koff	(Pan	et	al.,	2013;	Wendt	et	al.,	1997).	The	electrostatic	component	

of	the	total	binding	free	energy	involved	in	a	PPI	can	be	studied	using	continuum	solvation	

methods,	 a	modelling	 approach	 where	 the	 solvent	 is	 represented	 as	 a	 single	 continuous	

element	 rather	 than	 a	 collection	 of	 individual	 molecules.	 Electrostatic	 potentials	 can	 be	

calculated	 using	 the	 Poisson-Boltzmann	 equation	 when	 temperature,	 ionic	 strength,	

molecular	 structure,	 atomic	 radii	 and	 atomic	 charges	 are	 known	 (Baker	 et	 al.,	 2001).	

Alterations	to	electrostatic	potentials	of	proteins	to	improve	steering	within	PPIs	have	been	

shown	to	lead	to	increases	in	the	association	rate	(Phillip	et	al.,	2009).	The	arrangement	of	

charged	and	polar	 atoms	within	 the	 three	dimensional	 structure	of	 the	polypeptides,	 and	

subsequent	 electrostatic	 interaction	 formation	 within	 the	 complex,	 are	 involved	 in	 the	

determination	of	specificity	and	binding	affinity	of	a	PPI	(Erijman	et	al.,	2014).	

	

 Estimating	binding	rates	and	computational	methods	

The	 study	 and	 development	 of	 computational	 methods	 leading	 to	 calculation	 of	 PPI	

association	rates	has	seen	significant	progress	recently.	Reducing	a	collection	of	microscopic	

interactions	 into	 solely	 a	 pair	 of	 proteins	 to	 allow	 for	 the	 study	 of	 a	 particular	 PPI	 is	 a	

cornerstone	of	calculating	and	estimating	binding	kinetics.	This	simplification	does	not	take	

into	account	changes	in	rate	parameters	due	to	conformational	changes,	transitional	states	



120	
	

	
	

	

and	the	effect	of	alternate	molecules	in	the	system,	although	by	definition	a	rate	constant	

ignores	these	also.	Molecular	Dynamics	(MD)	and	Brownian	Dynamics	(BD)	based	algorithms	

have	 allowed	 for	 characterization	of	 binding	 kinetics	 by	 estimating	 the	 effects	 on	binding	

caused	 by	 electrostatics,	 hydrodynamic	 forces	 and	 structural	 flexibility	 (Pang	 and	 Zhou,	

2017;	Qin	 et	 al.,	 2011;	 Yu	 et	 al.,	 2015b).	Methods	 predicting	 binding	 kinetics	 solely	 from	

protein	primary	structure	have	been	developed	which	look	at	the	attributes	of	amino	acids	

(Yugandhar	and	Gromiha,	2014).	The	dissociation	rate	(the	ratio	of	kon	to	koff)	is	significantly	

easier	to	predict	than	the	individual	kinetic	parameters	kon	and	koff	(Xue	et	al.,	2016).	

	

Providing	a	qualitative	measurement	of	kon	and	koff	using	molecular	and	Brownian	dynamics	

solutions	has	many	potential	benefits	within	an	 in	silico	platform	of	PPI	analysis.	However,	

MD	 simulations	 that	 include	 all	 atoms	 within	 the	 structures,	 backbone	 and	 side-chain	

flexibility	and	a	sufficiently	 fine	time-step	to	study	the	 interaction	will	quickly	become	too	

computationally	intensive	to	be	feasible.	BD,	a	simplified	system	where	protein	components	

of	 lower	priority	are	removed	from	the	simulation	yet	are	 included	as	a	collective	random	

force,	 has	 been	 used	 by	multiple	 groups	 as	 part	 of	 a	 package	 to	 computationally	 assess	

association	rates	(Qin	et	al.,	2011;	Yu	et	al.,	2015b).	Treating	proteins	to	be	docked	as	rigid	

bodies	gives	a	significant	reduction	of	degrees	of	freedom	within	the	system,	and	permits	a	

longer	time-step	to	be	used.		

	

 Bioinformatics	tools	for	estimation	of	binding	kinetics	

Bioinformatics	 approaches	 to	protein	 ligand	binding	have	been	developed	with	 increasing	

complexity	 over	 the	 recent	 years.	Molecular	 dynamics	methods	 have	 been	 used	 to	 solve	

docking	and	association	rate	problems;	however	this	can	be	a	particularly	computationally	

intensive	task.	Calculating	binding	kinetics	for	interactions	is	a	highly	complex	problem	with	

multiple	degrees	of	freedom,	requiring	reduction	of	complexity	before	a	practical	method	of	

solution	is	available.	

	

TransComp	is	a	web	server	designed	to	predict	the	association	rate	between	two	proteins	

through	 the	 “transient	 complex	 theory”,	 which	 can	 be	 found	 at	
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http://pipe.sc.fsu.edu/transcomp/	(as	of	31/09/17).	Interaction	between	two	proteins	R	and	

L,	forming	a	native	complex	C,	is	defined	as:		

	

R	+	L	⇄	R*L	→	C	

	

where	R*L	is	a	transient	complex,	a	structure	where	distance	between	subunits	is	similar	to	

the	 native	 complex	 although	 short	 range	 interactions	 have	 not	 commenced	 leading	 to	

complex	formation.	If	the	rate	of	the	transient	complex	forming	the	native	complex	through	

conformational	rearrangement,	or	R*L	→	C,	is	significantly	faster	than	the	rate	of	unbinding,	

or	 R*L	 →	 R	 +	 L,	 then	 the	 transient	 complex	 theory	 used	 in	 TransComp	 states	 that	 the	

association	rate	is	approximately	equal	to	the	rate	of	transient	complex	formation,	or	R	+	L	

→	R*L	(Qin	et	al.,	2011).	In	short,	the	theory	holds	when	kon	>>	kcat.	This	situation	describes	

a	 diffusion	 controlled	 reaction,	 a	 rapid	 reaction	 type	 where	 TransComp	 has	 improved	

accuracy	in	predicting	kon	values.	

	

The	“transient	complex	theory”	estimates	kon	using	the	equation:	

,23 = 	,567
(9
:;<=

∗

>?@
)	

	

where	ka0	 is	the	rate	of	random	diffusion	 led	transient	complex	formation.	The	Boltzmann	

factor	e-E/kT	represents	the	electrostatic	potential	impact	on	the	binding	mechanisms	(where	

E	=	ΔG*
el,	the	electrostatic	interaction	energy	for	formation	of	R*L)	(Alsallaq	and	Zhou,	2008;	

Qin	et	al.,	2011).	

	

SDA7	 is	 a	 tool	 developed	 to	 estimate	 protein-protein	 association	 rate	 constants	 using	 a	

Brownian	 Dynamics	 approach	 to	 bind	 rigid	 solutes.	 SDA	 has	 been	 used	 in	 studies	 of	

association	of	soluble	proteins	to	membrane	bound	proteins	(Spaar	et	al.,	2009)	and	drug-

receptor	 complexes	 (Elsawy	 et	 al.,	 2012).	 SDA7	 uses	 the	 Northrup-Allison-McCammon	

method	to	calculate	the	association	constant	kon	(Northrup	et	al.,	1984),	using	ready-made	

interaction	 grids	 to	 calculate	 forces	 acting	 on	 individual	 atoms,	 reducing	 computational	

time.	 SDA7	will	 produce	 a	 range	 of	 results,	 requiring	 the	 definition	 of	 reaction	 criteria	 to	

isolate	a	specific	result.	
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Predicting	 how	 tightly	 a	 protein-ligand	 complex	 is	 bound	 is	 a	 vital	 step	 in	 estimating	 the	

dissociation	 rate	 of	 a	 ligand-protein	 complex.	 PRODIGY	 is	 a	 bioinformatics	 tool	 that	

estimates	 the	 dissociation	 constant	 kd	 by	 looking	 at	 the	 number	 of	 connections	 between	

each	protein	and	individual	surface	features,	utilizing	the	identified	correlation	between	the	

number	of	contact	points	between	two	proteins	in	a	complex	and	its	binding	affinity	while	

considering	 structural	 properties	 away	 from	 the	 interface	 (Kastritis	 et	 al.,	 2011,	 2014).	

PRODIGY	has	been	shown	to	be	a	more	accurate	predictor	of	kinetic	parameters	than	similar	

models.	By	using	the	binding	affinity	benchmarking	algorithm	established	 in	Kastritis	et	al.	

(Kastritis	 et	 al.,	 2014),	 PRODIGY	 has	 become	 one	 of	 the	 best	 performing	 protein-protein	

binding	affinity	predictors	that	are	publically	available	(Xue	et	al.,	2016).	The	chemical	and	

physical	 properties	 that	 are	 significant	 to	 dissociation	 are	 not	 as	 well	 understood	 as	

association.	

	

 Other	binding	kinetics	prediction	methods	

The	 problem	 of	 modelling	 and	 combining	 the	 variety	 of	 factors	 that	 determine	 protein-

protein	 kinetic	 rates,	 including	 structural	 diffusion,	 electrostatics,	 short-range	 interaction	

properties	and	solvent	properties,	has	seen	significant	effort	applied	 to	 it	by	 the	scientific	

community	in	recent	years.	Methods	have	been	developed	to	consider	the	involvement	of	

macromolecular	crowding	(Martinez	et	al.,	2015;	Mereghetti	et	al.,	2010).	Two-dimensional	

models	 considering	 the	 role	 of	 hydrodynamic	 forces	 are	 available,	 however	 standalone	

results	 from	 these	 algorithms	 are	 not	 sufficiently	 accurate	 (Cheung	 and	 Konstantopoulos,	

2011).	 Machine	 learning	 strategies	 have	 been	 developed	 to	 significantly	 reduce	

computational	time	while	predicting	association	rates	(Xie	et	al.,	2017).		

	

 The	quest	for	native	quaternary	structure	

Most	 proteins	 within	 a	 cell	 become	 functional	 when	 part	 of	 a	 complex	 or	 a	 quaternary	

structure,	 including	 simple	 dimers	 or	 more	 advanced	 oligomers	 and	 complexes.	 PPIs	 are	

vital	in	biological	processes	such	as	cell	signaling,	proteolysis	and	protein	transport	(Aldridge	

et	al.,	2006;	Saunders	et	al.,	2005;	Yvan-Charvet	et	al.,	2010).	Proteins	which	remain	in	their	

monomer	 form	and	do	not	 form	higher	order	complexes	are	 in	 the	minority	 (Poupon	and	
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Janin,	2010).	Treating	a	structure	as	a	monomer	during	proteomic	study	rather	 than	 in	 its	

complex	form	can	lead	to	missing	physiological	elements,	 including	binding	site	alterations	

and	changes	in	long-range	electrostatic	forces.		

	

Quaternary	 structures	 include	 oligomers	 and	 complexes	 with	 different	 quantities	 of	

subunits.	Complex	formation	often	serves	to	activate	or	inhibit	one	of	the	protein	subunits	

(e.g.	 in	 atherogenesis	MMP-1	 is	 inhibited	when	 binding	with	 TIMP-1	 to	 form	 a	 complex).	

Ascertaining	the	quaternary	structure,	either	experimentally	or	computationally,	encounters	

similar	problems	to	identifying	protein	tertiary	structure	(see	section	4.2.1).	Experimentally	

derived	complexes	are	stored	within	the	PDB	and	are	available	for	use	by	the	wider	research	

community	(Rose	et	al.,	2015).	Transitory	complexes,	often	involved	in	enzyme	catalysis	as	

described	 in	 section	 5.1.5,	 are	 short	 lived,	 while	 oligomers	 remain	 in	 their	 quaternary	

structure	long-term.	Lack	of	knowledge	of	the	forces	in	use	to	determine	complex	formation	

can	lead	to	difficulty	in	identifying	the	oligomeric	status	of	a	protein,	the	type	of	protein	that	

it	would	bind	to	and	the	kinetics	involved	in	the	binding	process.		

	

CASP	started	a	study	of	quaternary	structure	accuracy	analysis	in	2010;	however	complexes	

predicted	using	the	CASP9	targets	were	described	as	‘very	poor’	(Mariani	et	al.,	2011).	CAPRI	

(Critical	 Assessment	 of	 PRediction	 of	 Interactions),	 a	 community	 study	 into	 modelling	

quaternary	 structure	 from	 tertiary	 structure	 and	 evaluating	 docking	 procedures,	 have	

recently	collaborated	with	CASP	in	order	to	assess	oligomeric	model	quality	and	to	evaluate	

docking	procedures.	Recent	results	have	shown	that	 the	oligomeric	state	of	a	protein	 (i.e.	

the	 number	 of	 monomer	 subunits)	 can	 be	 predicted	 from	 its	 tertiary	 structure,	 that	

tetrameric	structure	 is	particularly	challenging	 to	predict	and	that	analysis	of	PPIs	can	still	

provide	useful	insight	even	if	input	models	are	not	highly	accurate	(Lensink	et	al.,	2016).	

	

Experimental	 elucidation	 of	 quaternary	 structure	 can	 be	 performed	 with	 multiple	

experimental	 techniques.	 Electron	 microscopy	 can	 be	 used	 to	 ascertain	 large	

macromolecular	 complex	 structures	 due	 to	 the	 high	 resolution	 provided	 (Nayeem	 et	 al.,	

1994).	 X-ray	 crystallography	 can	 also	 be	 used;	 however	 crystallization	 can	 be	 particularly	

challenging	 for	 quaternary	 structures	 (Ilari	 and	 Savino,	 2008).	 NMR	 has	 also	 been	 used,	
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however,	with	a	lower	resolution	which	can	lead	to	some	ambiguity	in	the	smaller	details	of	

the	structures	and	the	interactions	(Lukin	et	al.,	2003).	

	

Homology	 modelling	 methods	 are	 generally	 considered	 to	 provide	 the	 most	 accurate	

structural	models	of	tertiary	structures	from	amino	acid	sequences.	However,	this	can	often	

lead	to	template	bias,	where	structures	are	more	likely	to	take	physiological	properties	from	

the	 homologue	 templates	 used	 in	 model	 formation.	 Refinement	 methods	 to	 improve	

predicted	 structure	 quality	 and	 alleviate	 template	 bias	 have	 seen	 significant	 progress	 in	

recent	years	 in	both	global	whole-structure	accuracy	and	in	 local	regions.	Potential	Energy	

Minimization	 (PEM)	 through	alterations	 to	 the	backbone,	 side	 chain	 rebuilding	 to	 remove	

steric	 clashes	 and	 structural	 relaxation	 can	 lead	 to	 refined	 structural	 targets	 (Heo	 et	 al.,	

2013,	 2016).	 Other	 approaches	 including	 molecular	 dynamics	 based	 refinements,	 elastic	

network	models,	knowledge	and	fragment	based	approaches,	and	optimization	of	hydrogen	

bond	networks	have	been	successfully	utilized	in	CASP	experiments	(Nugent	et	al.,	2014).	

	

 MM-Align	

Comparing	 oligomeric	 and	 complex	 structures	 can	 be	 performed	 with	 MM-Align,	 which	

provides	an	alignment	for	two	proteins	that	is	independent	of	primary	sequence	(Mukherjee	

and	 Zhang,	 2009).	 TM-Align	 will	 perform	 a	 similar	 function	 for	 comparing	 monomers,	

however	multimer	functionality	is	not	provided	(Zhang	and	Skolnick,	2005).	Chains	for	input	

proteins	 could	 be	 merged	 into	 a	 single	 contrived	 monomer	 and	 used	 with	 TM-Align,	

although	MM-Align	provides	additional	 functionality	 that	prevents	cross-chain	alignments.	

MM-Align	 will	 provide	 an	 RMSD	 and	 a	 TM-Score	 as	 a	 similarity	 score	 between	 proteins,	

although	unlike	TM-Align	the	TM-Score	also	assesses	alignment	coverage.		

	

 Docking	

Protein	docking	is	the	process	of	converting	protein	subparts	into	a	single	protein	complex.	

Evaluating	how	proteins	interact	with	each	other	through	computational	docking	methods	is	

an	important	step	in	computational	drug	design	due	to	the	ability	of	certain	therapeutics	to	

modulate	or	block	PPIs.	The	most	common	types	of	docking	algorithms,	including	geometric	

hashing,	 Monte-Carlo	 simulations	 or	 fast	 generalized	 Fourier	 transformation,	 involve	
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searching	 spatial	 arrangements	 of	 the	 proteins	 involved	 and	 using	 an	 energy-minimizing	

scoring	 function	 to	 isolate	 a	 particular	 configuration	 (Ritchie,	 2008).	 These	 methods	 will	

produce	 a	 list	 of	 potential	 structures,	 including	 the	 correct	 near-native	 solution;	 however	

isolating	this	structure	from	many	is	a	prevalent	challenge	to	bioinformaticians	interested	in	

this	 field.	 Knowledge	 of	 solvent	 accessibility,	 binding	 site	 details	 and	 local	 docking	

approaches	 can	 all	 be	 used	 to	 limit	 the	 number	 of	 potential	models	 available	 and	 obtain	

near-native	 structure.	 Methods	 for	 predicting	 homo-oligomeric	 structure	 have	 shown	

success	in	recent	CASP/CAPRI	experiments	(Baek	et	al.,	2017).	

	

 Hex	and	Rosetta	

There	 are	 currently	more	 than	 60	 different	 docking	 tools	 available	 to	 predict	 quaternary	

structure	from	protein	subparts	(Pagadala	et	al.,	2017).	Each	of	these	tools	are	designed	to	

combine	 protein	 subunits	 together	 to	 form	 a	 complex	 or	 oligomer,	 however	 multiple	

different	 methods	 are	 used	 for	 docking,	 providing	 varying	 accuracy	 depending	 on	 the	

methods	and	inputs	used.	HexDock	is	a	fast	Fourier	transform	(FFT)	based	protein	docking	

algorithm	(Ritchie	and	Venkatraman,	2010).	Hex	utilizes	a	‘spherical	polar	Fourier	technique’	

(SPF),	 where	 rotational	 correlations	 have	 been	 used	 as	 a	 replacement	 for	 a	 standard	

Cartesian	grid.	FRODOCK,	a	fast-rotational-docking	approach	has	performed	benchmarking	

tests	 showing	 a	 significant	 performance	 improvement	 using	 this	 method	 (Garzon	 et	 al.,	

2009).	 Multiple	 potential	 configurations	 are	 produced	 by	 Hex,	 which	 are	 ordered	 by	 an	

energy	based	scoring	function	to	provide	an	optimal	docking	solution.		

	

RosettaDock	 is	 a	 tool	which	 can	be	used	 to	perform	 local	docking.	 Local	docking	 requires	

knowledge	of	 the	binding	 locations	of	each	protein.	 Local	docking	 searches	a	 subspace	of	

the	total	possible	spatial	configurations,	requiring	the	user	to	provide	an	approximation	of	

the	 output	 structure	 by	 ensuring	 that	 binding	 sites	 are	 facing	 towards	 each	 other.	 Local	

docking	provides	a	structure	closer	to	the	native,	as	computational	time	spent	searching	for	

the	correct	spatial	conformation	is	significantly	reduced,	allowing	for	a	focus	on	short-range	

binding-site	 interactions	 and	 the	 removal	 of	 ambiguity	 between	 possible	 near-native	

combinations.	
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 Free	energy	difference	

The	 binding	 of	 two	molecules	 in	 a	 solvent	 can	 be	 described	 by	 the	 Gibbs	 Free	 Energy,	 a	

description	 of	 the	 total	 energy	 that	 can	 be	 used	 in	 an	 interaction	 plus	 entropic	 factors,	

where:	

	

ΔG	=	−RT	*	ln(1/Kd)),	

ΔG	=	ΔH	-	T	ΔS	

	

where	ΔG	is	the	change	in	free	energy,	ΔH	and	ΔS	are	the	sum	of	the	relevant	enthalpy	and	

entropy	 respectively,	 T	 is	 the	 temperature	 in	 Kelvin	 and	 R	 is	 the	 ideal	 gas	 constant.	 A	 kd	

value	 of	 1	 x	 10-12	 M	 has	 a	 Gibbs	 free	 energy	 of	 approximately		

-7x104	J/mol,	and	an	reduction	of	3x104	J/mol	in	energy	corresponds	to	a	kd	reduction	in	the	

region	of	five	orders	of	magnitude	(György	M.	Keserü	and	David	C.	Swinney,	2015).		

	

Studying	 the	 difference	 in	 Gibbs	 free	 energy	 between	 a	 mutation	 and	 its	 wildtype	 can	

provide	 insights	 into	 binding	 kinetics,	 structural	 changes	 and	 protein	 stability.	 Changes	 in	

binding	affinity	caused	by	mutations	can	be	combined	with	population	genetics	 to	predict	

disease-causing	mutations	and	become	part	of	a	stratified	medicine	program.	

	

 PDB2PQR	

The	 study	 of	 electrostatics	 and	 its	 role	 in	 PPI	 has	 been	made	 simpler	 through	 the	 use	 of	

continuum	 solvation	 models.	 To	 perform	 electrostatic	 potential	 calculations,	 commonly	

performed	with	MD	 and	 BD	 simulations,	 full	 all-atom	 structural	 data	 and	 atomic	 charges	

and	 radii	 are	 required.	 PDB2PQR	 is	 a	 tool	 designed	 to	 automate	 preprocessing	 tasks	 for	

molecular	electrostatics	calculations,	including	adding		missing	heavy	atoms,	assigning	force	

field	values	including	atomic	charges	and	radii,	and	generating	a	PQR	file	(similar	to	a	PDB	

file	where	 the	B-factor	and	occupancy	values	have	been	 replaced	with	atomic	charge	and	

radius	values).		

	

Brownian	dynamics	and	molecular	dynamics	simulations	of	PPIs	require	an	empirical	 force	

field	to	allow	for	energy-based	calculations.	MD	and	BD	simulations	relate	local	and	global	
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structural	energy	to	forces	at	the	atomic-level	 leading	to	structural	coordinates	over	time,	

representing	the	docking	process.	Force	fields,	such	as	AMBER	(Assisted	Model	Building	with	

Energy	 Refinement)	 or	 CHARMM	 (Chemistry	 at	 Harvard	 Macromolecular	 Mechanics)	

contain	 a	 set	 of	 potential	 energy	 functions,	 which	 are	 used	 to	 calculate	 the	 forces	

undertaken	by	each	individual	atom	(Brooks	et	al.,	1983;	Weiner	et	al.,	1986).	

	

5.2 Methods	

 Establish	Atherosclerosis	Interactions	

Using	the	model	of	atherosclerosis	described	in	Chapter	3	and	the	protein	structure	models	

generated	in	Chapter	4,	association	rates	were	predicted	for	a	series	of	interactions	involved	

in	atherogenesis	as	detailed	below.	Using	the	proteins	detailed	in	Table	4.2	,	the	following	

interactions	will	be	studied	as	part	of	this	procedure:	

	

Table	5.1:	Interactions	related	to	Chapter	3’s	Model	of	Atherosclerosis	

Interaction	
Number	

Ligand	 Receptor	 Notes	

1	 ADAM17	 TIMP3	 	
2	 CCL2	 CCR2	 	
3	 CCL5	 CCR5	 	
4	 CMA1	 MMP1	 	
5	 CSF1	 CSF1R	 	
6	 CXCL10	 CXCR3	 	
7	 CXCL11	 CXCR3	 	
8	 CXCL9	 CXCR3	 	
9	 EGF	 EGFR	 	

10	 IFNG	 IFNGR	

IFNG	is	
Homodimeric	

IFNGR	is	
Heterodimeric	

11	 IL1B	 IL1R1	 	
12	 IL10	 IL10RA	 	
13	 IL12	 IL12R	 IL12	and	IL12R	are	

Heterodimeric	
14	 IL17A	 IL17RA	 	
15	 IL18	 IL18R	 IL18R	is	

Heterodimeric	
16	 IL2	 IL2R	 	
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Interaction	
Number	

Ligand	 Receptor	 Notes	

17	 IL21	 IL21R	 	
18	 IL33	 IL1RL1	 	
19	 IL4	 IL4R	 	
20	 IL5	 IL5R	 IL5	is	Homodimeric	
21	 IL6	 IL6R	 	
22	 PDGFA	 PDGFRA	 	
23	 PDGFB	 PDGFRB	 PDGFB	is	

Homodimeric	
24	 PDGFA	 PDGFRB	 	
25	 PDGFB	 PDGFRA	 	

26	 TGFB	 TGFBR	

TGFB	is	
Homodimeric	
TGFBR	is	

Heterodimeric	
27	 TIMP1	 MMP1	 	
28	 TIMP1	 MMP2	 	
29	 TIMP1	 MMP3	 	
30	 TIMP1	 MMP9	 	
31	 TIMP1	 MMP13	 	
32	 TIMP2	 MMP1	 	
33	 TIMP2	 MMP2	 	
34	 TIMP2	 MMP3	 	
35	 TIMP2	 MMP9	 	
36	 TIMP2	 MMP13	 	
37	 TIMP3	 MMP1	 	
38	 TIMP3	 MMP2	 	
39	 TIMP3	 MMP3	 	
40	 TIMP3	 MMP9	 	
41	 TIMP3	 MMP13	 	
42	 TIMP4	 MMP1	 	
43	 TIMP4	 MMP2	 	
44	 TIMP4	 MMP3	 	
45	 TIMP4	 MMP9	 	
46	 TNFA	 TNFR	 TNFR	is	

Heterodimeric	
	

 Establishing	oligomeric	status	

A	 literature	 mining	 process	 was	 undertaken	 to	 establish	 the	 oligomeric	 status	 of	 each	

protein	structure	predicted.	These	oligomers	are	detailed	in	Table	5.2.	
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Table	5.2:	Oligomers	involved	in	atherosclerosis	model	

Protein	Name	 Oligomeric	Status	 Gene	Names	

Interferon-Gamma	 Homodimer	(Farrar	and	

Schreiber,	1993)	

IFNG		

Interferon-Gamma	Receptor	 Heterodimer	(Farrar	and	

Schreiber,	1993)	

IFNGR1	

IFNGR2	

Interleukin	2	Receptor	 Heteroligomer	(Malek	and	

Castro,	2010)	

IL2RA	

IL2RB	

IL2RG	

Interleukin	5	 Homodimer	(Takatsu,	2011)	 IL5	

Interleukin	10	 Homodimer	(Syto	et	al.,	

1998)	

IL10	

Interleukin	10	Receptor	 Tetrameric	(Verma	et	al.,	

2016)	

IL10RA	

IL10RB	

Interleukin	12	 Heterodimer	(Mazzeo	et	al.,	

2002)	

IL12A	

IL12B	

Interleukin	12	Receptor	 Heterodimer	(Gately	et	al.,	

1998)	

IL12RA	

IL12RB	

Interleukin	17	 Homodimer	(Liu	et	al.,	2013)	 IL17A	

Interleukin	18	Receptor	 Heterodimer	(Kato	et	al.,	

2003)	

IL18R1	

IL18RAP	

Platelet	Derived	Growth	

Factor	Beta	

Homodimer	(Bhandari	et	al.,	

1994)	

PDGFA	

PDGFB	

Transforming	Growth	Factor	

Beta	

Homodimer	(Esebanmen	and	

Langridge,	2017)	

TGFB1	

Transforming	Growth	Factor	

Beta	Receptor	

Heterodimer	(Cheifetz	et	al.,	

1988)	

TGFBR1	

TGFBR2	

Tumor	Necrosis	Factor	Alpha	

Receptor	

Heterodimer	(Wang	and	Al-

lamki,	2013)	

TNFRSF1A	

TNFRSF1B	
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 Obtaining	structures	from	PDB	

Sequences	 isolated	 from	 the	 1000	 Genome	 Project	 for	 the	 65	 wildtype	 proteins	 were	

aligned	with	each	sequence	in	the	PDB.	If	a	sequence	showed	>95%	sequence	identity	with	

an	experimentally	derived	structure	within	the	PDB	for	both	proteins	within	an	interaction	

as	described	in	Table	5.1,	it	was	considered	to	be	a	representative	model	for	use	in	docking	

simulations.	 In	the	absence	of	suitable	knowledge	of	the	native	complex,	Hex	was	used	to	

predict	quaternary	structure	of	our	protein	structures.	Hex	procedures	used	are	detailed	in	

section	5.2.8.	
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Figure	5.1:	Flowchart	describing	procedure	undertaken	for	each	predicted	structure	
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 Local	Docking	Preparation	

To	 provide	 a	 complex	 as	 close	 to	 the	 native	 as	 possible,	 a	 local	 docking	 procedure	 was	

undertaken.	A	local	docking	procedure	requires	knowledge	of	the	native	binding	sites,	and	

binding	 simulations	 are	 performed	 on	 a	 subset	 of	 the	 total	 number	 of	 possible	

configurations	 rather	 than	 performing	 a	 computationally	 intensive	 global	 search.	 Limiting	

the	conformational	space	to	areas	near	to	the	provided	input	where	possible	allows	for	the	

removal	of	wildly	incorrect	arrangements	and	significantly	reduces	computational	time.	

	

For	each	of	our	interactions	as	detailed	in	Table	5.1,	predicted	protein	structures	derived	as	

detailed	in	Chapter	4	were	used.	For	these	interactions,	if	a	native	structure	exists	within	the	

PDB,	 residues	 involved	 in	 the	binding	 site	were	 isolated	 from	 the	 experimental	 structure.	

Complexes	were	opened	in	JMol	(The	Jmol	Team,	2007)	and	all	atoms	within	3	angstrom	of	

the	opposing	structure	were	found	with	the	command:	

'select	within(3.0,	:'	AChain	')	and	within(3.0,	:'	BChain	')'	

	

All	residues	containing	atoms	isolated	in	this	way	were	considered	to	be	near-binding-site.	

Sequences	 isolated	 from	 the	 1000	 Genome	 Project	 were	 aligned	 to	 sequences	 for	 the	

experimentally	derived	protein	to	find	the	associated	near-binding-site	residues	within	the	

structural	models.	

	

To	 allow	 for	 the	 local	 docking	 procedure	 to	 take	 place	 effectively,	 near-binding-sites	 for	

each	model	 isolated	as	previously	described	are	positioned	 to	 face	 the	other	before	 local	

docking	 begins.	 For	 each	 protein	 structure	 within	 the	 dataset	 generated	 in	 Chapter	 4,	 a	

near-binding-site	 configuration	 is	 created	 for	 each	 structure	 with	 the	 wildtype	 of	 the	

opposing	structure	within	the	interaction.	A	six-dimensional	rotational	space	search	for	each	

protein	is	undertaken	using	Matlab,	in	order	to	minimize	the	mean	distance	between	each	

atom	in	the	near-binding-site	for	each	protein,	generating	rotation	and	translation	matrices	

to	ensure	that	pairwise	near-binding-site	residue	distance	is	rotationally	minimized.	Proteins	

are	rotated	by	pi/6	radians	on	each	axis	around	their	center,	and	the	distance	to	the	near-

binding-site	 residues	 on	 the	 opposing	 protein	 is	 calculated,	 and	 the	minimum	distance	 is	
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selected	as	the	correct	rotation	to	be	applied.	Proteins	are	moved	so	that	their	centers	are	

100Å	apart	before	 the	 rotational	matrices	are	calculated,	and	 returned	 to	10Å	apart	after	

rotation	has	been	calculated.	Rotational	and	translational	matrices	are	applied	to	our	PDB	

files	 using	Chimera,	 due	 to	 its	 conservation	of	 secondary	 structure	under	 rotation	 and	 its	

automation	capability	(Pettersen	et	al.,	2004).	

	

 Rosetta	Relax	

Where	suitable	knowledge	of	 the	native	complex	was	available,	RosettaCommons	docking	

was	used	to	predict	complex	structure	 for	each	 interaction	defined	 in	Table	5.1,	using	the	

mutation	data	isolated	in	Chapter	4.		

	

Once	 a	 structure	 was	 obtained	 with	 rotational	 near-binding-site-distance	 minimization,	

these	structures	are	relaxed	using	the	Rosetta	‘Relax’	protocol.	Relax	performs	a	simple	all-

atom	refinement	 that	acts	as	a	pre-processing	step	 for	 future	docking,	 through	continued	

side-chain	 repackaging	and	energy	minimization	 (Conway	et	 al.,	 2014;	Khatib	et	 al.,	 2011;	

Tyka	et	al.,	2011).		

	

Rosetta	Relax	Protocol	was	run	with	the	following	parameters:	

Table	5.3:	Rosetta	Relax	Parameters	

Parameter	Name	 Value	 Notes	

-nstruct	 50	 Number	of	runs	to	perform	

-ex1	 	
Adds	additional	side-chain	rotamers,	highly	recommended	

by	the	developers	

-ex2	 	
Adds	additional	side-chain	rotamers,	highly	recommended	

by	the	developers	

-use_input_sc	 	
Uses	current	rotamers	within	current	Monte-Carlo	

simulations	–	recommended	by	developers	

-no_optH	 False	 Performs	hydrogen	atom	position	optimization	

-flip_HNQ	 	
Permits	alterations	of	HIS,	ASN,	and	GLN	during	optimization	

of	hydrogen	placements	–	recommended	by	developers	
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-overwrite	 	
Allows	results	to	be	overwritten	when	performing	multiple	

runs,	added	for	algorithmic	simplicity	

	

The	Chimera	derived	 structures	 are	detailed	 in	 the	previous	 step	were	provided	as	 input,	

with	an	output	location	for	the	PDB	file	and	the	score	file	specified	using	the	commands	–

in:file:s,	 -out:path:pdb	 and	 –out:path:scorefile	 respectively.	 RosettaRelax	 returns	multiple	

relaxed	 protein	 structures,	 ordered	 by	 the	 energy	 based	 scoring	 function	 talaris2014	

(O’Meara	et	al.,	2015).		

	

Relax	analysis	was	performed	on	Google	Cloud,	on	a	virtual	machine	of	type	n1-standard-1	

(1	vCPU,	3.75	GB	memory)	with	an	Intel	Sandy	Bridge	CPU	platform,	running	Ubuntu	16.04.	

	

 Local	Docking	

RosettaDock	was	used	to	form	quaternary	protein	structures	due	to	its	highly	customizable	

local	 docking	 procedures,	 providing	 complexes	 closer	 to	 the	 native	 than	 global	 docking	

procedures	at	a	reduced	computational	cost.	The	relaxed	structures,	derived	using	the	near-

binding-site	 information	 as	 described	 in	 section	 5.2.4	 and	 the	 Rosetta	 Relax	 protocol	 are	

used	as	 an	 input	 for	 a	Rosetta	 local	 dock.	 Structures	with	binding	pockets	 facing	 towards	

each	other	are	provided	as	an	input	with	the	following	parameters:	

Table	5.4:	Rosetta	Docking	Parameters	

Parameter	Name	 Value	 Notes	

-nstruct	 500	 Number	of	runs	to	perform	

-unboundrot	 ~Input	File~	 	

-partners	 ~ReceptorChain_LigandChain~	 e.g.	A_B	to	dock	proteins	A	and	B	

-dock_pert	 3	8	 	

-ex1	 	 	

-ex2aro	 	 	

-out:suffix	 _local_dock	 	
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Docking	analysis	was	performed	on	Google	Cloud,	on	a	virtual	machine	of	type	n1-standard-

1	 (1	 vCPU,	 3.75	 GB	 memory)	 with	 an	 Intel	 Sandy	 Bridge	 CPU	 platform,	 running	 Ubuntu	

16.04.	

	

RosettaDock	returns	a	collection	of	potential	structures,	each	characterized	by	two	energy-

based	scoring	 functions,	 the	total	score	and	 interface	score,	as	defined	 in	 (O’Meara	et	al.,	

2015).	The	interface	score	is	calculated	as	the	total	complex	score	minus	the	score	for	each	

monomer	 subunit.	 As	 recommended	 by	 the	 developers,	 500	 complex	 structural	 models	

were	generated	through	this	method,	and	the	model	with	the	lowest	total	score	was	chosen	

to	be	our	model	of	quaternary	structure,	with	interface	score	being	used	when	total	scores	

were	identical.		

	

 Homodimers	

Homodimeric	structures	were	calculated	using	GalaxyHomomer,	a	methodology	designed	to	

predict	homo-oligomer	structure	from	tertiary	structure	or	amino	acid	sequences.	Tertiary	

structures	 for	 the	homodimeric	proteins	described	 in	Table	5.2	were	used	as	an	 input	 for	

GalaxyHomomer.	Input	parameters	for	oligomeric	state	and	regions	to	be	refined	were	not	

given	as	an	input.	Up	to	five	homo-oligomer	results	are	returned	at	the	end	of	the	predictive	

process,	where	priority	was	given	to	the	sequence-based	modelling	result	with	the	highest	

sequence	identity.	In	the	absence	of	available	templates	in	the	PDB	with	similar	sequence	to	

our	 input	protein,	 structure-based	 templates	were	utilized	 if	 they	have	a	TM-Score	higher	

than	0.5	when	aligned	 to	 the	 input	protein.	 Failing	 this,	 if	no	appropriate	 templates	were	

found	 then	ab	 initio	methods	were	used.	All	outputs	 isolated	 from	GalaxyHomomer	were	

given	additional	refinement	using	GalaxyRefineComplex,	an	algorithm	designed	to	improve	

model	structures	through	side	chain	rebuilding	(Heo	et	al.,	2016).	Due	to	the	small	amount	

of	homodimers	involved	in	our	dataset	(48),	analyses	were	performed	on	the	corresponding	

web	 servers	 –	 http://galaxy.seoklab.org/refine	 and	 http://galaxy.seoklab.org/homomer.	

Both	web	servers	are	running	on	Linux	clusters	of	2.33GHz	Intel	Xeon	8-core	processors	(4	

servers	 for	 GalaxyRefine,	 12	 for	 GalaxyHomomer).	 The	 source	 code	 can	 be	 downloaded	

from	the	aforementioned	websites	(August	2017).		
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 Hex	Docking	

In	 the	absence	of	a	 representative	 template	 in	 the	PDB	 to	provide	near-binding-site	data,	

Hex	(a	fast	Fourier	transform	(FFT)	based	protein	docking	algorithm)	was	used	to	predict	a	

complex	structure	(Ritchie	and	Venkatraman,	2010).		

Hex	simulations	are	run	using	the	parameters:	

Table	5.5:	Hex	Docking	Parameters	

Parameter	Name	 Value	 Notes	

Correlation	Type	 Shape	+	Electro	 	

Compute	Device	 CPU	 Hex	 has	 functionality	 to	 perform	 quick	

docking	 simulations	 on	 a	 GPU	 unit,	

however	 this	 functionality	 was	

unavailable	on	our	chosen	hardware	

Sampling	Method	 Range	Angles	 	

Solutions	 2000	 Up	to	a	maximum	of	2000	solutions	were	

provided	 –	 however	 Hex	 will	 provide	

fewer	if	conformations	are	not	found	

Grid	Dimension	 0.5	 	

	

Hex	docking	was	performed	on	a	Windows	7	machine,	with	an	Intel	Core	i7-4770	@	3.4GHz	

processor	and	an	Nvidia	Quadro	K600	graphics	card.	

	

Heteroligomeric	structures	were	predicted	using	RosettaCommons	Docking,	a	collection	of	

steps	designed	to	predict	binding	dynamics	from	unbound	protein	subunits.	

	

 Selecting	a	tool	to	calculate	kon	

SDA7	 and	 TransComp	 were	 both	 considered	 to	 calculate	 association	 rate	 using	 our	

predicted	 protein	 structures.	 To	 compare	 SDA	 and	 TransComp	 results,	 a	 collection	 of	 13	

structures	with	known	kon	were	found	and	used	as	inputs	for	both	methods.	Outputs	were	

then	 compared	 to	 the	experimental	 values	 to	ascertain	which	method	 to	be	used	 for	 the	

larger	dataset.	A	list	of	the	structures	with	association	rates	predicted	and	their	results	can	

be	found	in	section	5.3.4	(Table	5.9).	
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 PDB2PQR	

Hex	and	Rosetta	outputs	were	converted	 into	PQR	files	using	PDB2PQR,	using	the	AMBER	

forcefield.	This	PQR	file	of	a	protein-protein	complex	was	then	split	 into	 its	 two	 individual	

subunits,	subA.pqr	and	subB.pqr	as	part	of	preprocessing	for	upcoming	TransComp	use.	

	

 TransComp	alterations	

While	 TransComp	 is	 an	 excellent	 tool	 providing	 strong	 predictions	 of	 association	 kinetics	

from	 tertiary	 structure,	 some	 minor	 alterations	 were	 required	 to	 be	 made	 from	 the	

downloadable	 version	 of	 TransComp.	 Due	 to	 a	 compatibility	 issue	 with	 version	 16.04	 of	

Ubuntu,	 line	 13	 of	 Sample.sh	 required	 to	 be	 changed	 to	 'nconfOne=100000’	 to	 prevent	

excessive	 rotational	 and	 translational	 space	 sampling.	 In	 addition,	 due	 to	 the	 size	 of	 the	

macromolecules	 returned	by	 RosettaCommons	Docking	 and	Hex,	 coordinates	 in	 PQR	 files	

required	8	digits	to	be	scored,	removing	necessary	whitespace	from	the	input	file.	To	correct	

this,	 additional	 whitespace	 was	 added	 into	 all	 PQR	 files	 where	 necessary.	 Both	 of	 these	

changes	were	made	in	consultation	with	the	developers.		

	

 TransComp	

TransComp	 was	 used	 to	 generate	 association	 rates	 for	 each	 interaction	 subunit.	

Prerequisites	 include	 APBS	 (Adaptive	 Poisson-Boltzmann	 Solver)	 (Baker	 et	 al.,	 2001)	 for	

performing	 electrostatics	 calculations,	 and	 Gnuplot	 (a	 command	 line	 graphing	 tool)	

(Williams	et	al.,	2013).	APBS	1.5	and	GnuPlot	4.6.0	were	 installed	on	a	virtual	machine	on	

Google	Cloud	of	type	n1-standard-1	(1	vCPU,	3.75	GB	memory)	with	an	Intel	Sandy	Bridge	

CPU	platform,	running	Ubuntu	16.04.	

	

The	solvent	ionic	strength	selected	was	0.15M	for	all	interactions	as	a	standardized,	realistic	

value.		

	

Occasionally,	 TransComp	would	 be	 unable	 to	 generate	 a	 transient	 complex	 from	 the	 hex	

output	 due	 to	 difficulty	 in	 forming	 a	 single	 transient	 complex,	 believing	 that	 multiple	

transitory	structures	were	involved	in	the	interaction.	In	these	situations,	the	next	strongest	
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prediction	from	Hex	or	Rosetta	was	chosen,	step	5.2.10	was	repeated	on	the	new	complex	

and	another	TransComp	run	was	launched.	

	

However,	when	performing	docking	and	subsequent	association	rate	calculation	then	not	all	

of	these	proteins	are	considered	in	these	oligomeric	states.		

	

 PRODIGY	

PRODIGY	was	used	to	predict	a	dissociation	constant	kd	as	described	in	section	5.1.5.	Using	

the	relation:		

,- =
,244
,23

	

PRODIGY	 results	were	combined	with	TransComp	results	 to	predict	a	koff	 value.	 	PRODIGY	

analysis	 was	 performed	 on	 a	 virtual	 machine	 on	 Google	 Cloud	 of	 type	 n1-standard-1	 (1	

vCPU,	3.75	GB	memory)	with	an	Intel	Sandy	Bridge	CPU	platform,	running	Ubuntu	16.04.	

5.3 Results	

 Homodimers	

Within	the	collection	of	protein	structures	calculated	as	described	in	Chapter	4,	5	different	

proteins	 are	 considered	 homodimers,	 with	 27	 mutations	 giving	 a	 total	 of	 32	 different	

homodimeric	 structures	 to	 study.	 	 The	breakdown	of	 these	proteins	 can	be	 seen	 in	Table	

5.6.	

	

Table	5.6:	Homodimeric	structures	involved	in	atherosclerosis	model	

Protein	Name	
Number	of	

Structures	
PDB	Code	 Gene	Names	

Interferon-Gamma	 4	 1EKU	 IFNG	

Interleukin	5	 8	 3QT2	 IL5	

Interleukin	17	 8	 4HR9	 IL17A	

Platelet	Derived	Growth	

Factor	Beta	
28	 1PDG	 PDGFB	
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For	each	of	the	homodimeric	structures	detailed	in	Table	5.6,	structural	alignment	between	

the	predicted	structure	and	the	experimentally	derived	structure	(PDB	codes	can	be	found	

in	 Table	4.2)	 using	MM-Align	 (as	described	 in	 section	5.1.8)	 has	 given	an	RMSD	of	 3.78Å,	

3.31Å,	2.66Å	and	2.31Å	for	IFNG,	IL5,	IL17A	and	PDGFB	respectively.	TM-Scores	given	were	

more	unreliable	at	0.18443,	0.10971,	0.80273	and	0.57694	respectively,	however	this	is	due	

to	additional	protein	chains	contained	within	the	experimentally	derived	PDB	file.	

	

The	 following	 figures	 show	 a	 boxplot	 representing	 the	 collection	 of	mutations	 associated	

with	each	interaction	detailed	in	Table	5.1.	Outliers	are	shown	if	the	RMSD	is	less	than	q1	–	

1.5	×	(q3	–	q1)	or	greater	than	q3	+	1.5	×	(q3	–	q1),	where	q1	and	q3	are	the	25th	percentile	

and	75th	percentiles	of	the	sample	data	for	each	complex.	

	

	

Figure	5.2:	Box	plots	showing	RMSD	for	each	homodimeric	structure	related	to	the	native	

structure	
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 Heterodimers	

Table	5.7:	Heterodimeric	structures	involved	in	atherosclerosis	model	

Protein	Name	 Oligomeric	Status	 PDB	Code	 Gene	Names	

Interferon-Gamma	

Receptor	
Heterodimer	 N/A	

IFNGR1	

IFNGR2	

Interleukin	12	 Heterodimer	 1F45	
IL12A	

IL12B	

Interleukin	12	Receptor	 Heterodimer	 N/A	
IL12RA	

IL12RB	

Interleukin	18	Receptor	 Heterodimer	 3WO4	
IL18R1	

IL18RAP	

Transforming	Growth	

Factor	Beta	Receptor	
Heterodimer	 3KFD	

TGFBR1	

TGFBR2	

Tumor	Necrosis	Factor	

Alpha	Receptor	
Heterodimer	 N/A	

TNFRSF1A	

TNFRSF1B	

	

Of	the	6	heterodimeric	structures	included	in	our	dataset	as	detailed	in	Table	5.7,	structural	

alignment	was	performed	between	the	predicted	structure	and	the	experimentally	derived	

structure	for	the	3	proteins	where	appropriate	PDB	codes	were	found.	RMSD	scores	for	the	

wildtypes	of	IL12,	IL18R	and	TGFBR	were	2.91Å,	1.32Å	and	8.83Å	respectively.		
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Figure	5.3:	Box	plots	showing	RMSD	for	each	heterodimeric	structure	related	to	the	native	

structure	

	

 Rosetta	Docked	Structures	

The	following	structures	have	been	docked	together	to	make	a	complex	using	Rosetta,	using	

the	procedures	detailed	in	section	5.2.6:	

Table	5.8:	Proteins	using	Rosetta	Local	Docking	

Protein	1	 Protein	2	 PDB	Code	

EGF	 EGFR	 1IVO	

IL10	 IL10R1	 1J7V	

TIMP1	 MMP3	 1OO9	

IL2	 IL2RA	 2B5I	

TIMP2	 MMP13	 2E2D	

TIMP1	 MMP1	 2J0T	

IL4	 IL4R	 3BPL	
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ADAM17	 TIMP3	 3CKI	

PDGFB	 PDGFRB	 3MJG	

IL1B	 IL1R	 1ITB	

IL5	 IL5R	 3QT2	

IL17A	 IL17RA	 4HSA	

IL6	 IL6R	 4J4L	

IL33	 IL1R	 4KC3	

IL18	 IL18R	 4R6U	

CSF1	 CSF1R	 4WRL	

	

Each	mutation	was	aligned	using	MM-Align	to	the	experimentally	derived	wildtype	

associated	with	the	interaction	as	detailed	in	Table	5.8.		
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Figure	5.4:	Box	Plots	for	docked	proteins	

	

 Testing	TransComp	and	SDA	

To	 evaluate	 the	 accuracy	 of	 TransComp	 and	 SDA,	 a	 collection	 of	 experimentally	 derived	

structures	with	 known	 association	 rates	were	 used	 as	 inputs	 as	 detailed	 in	 section	 5.2.9.	

Results	are	shown	in	Table	5.9.	

	

	

Table	5.9:		Benchmarking	for	TransComp	and	webSDA	for	known	kon	values	

PDB	 C	 Description	 IS	 Ex	Kon	 TC	 T	Acc	 SDA	 Range	 SDARC	 SDA	Acc	

2J0T	 A:D	

MMP1-TIMP1	

(Troeberg	et	

al.,	2002)	

230	 5.2E+04	 8.9E+04	 1.7E+00	 7.10E+6	 2.30E+8	 3/8.5	 1.37E+2	

1UEA	 A:B	

MMP3-TIMP1	

(Troeberg	et	

al.,	2002)	

230	 2.0E+05	 5.6E+04	 2.8E-01	 6.60E+6	 4.00E+8	 3/7.0	 3.30E+1	

1GXD	 A:C	

MMP2/TIMP2	

(Olson	et	al.,	

1997)	

166	 1.4E+04	 1.9E+05	 1.4E+01	 5.20E+6	 2.00E+9	 4/5.5	 3.71E+2	

1KTZ	 A:B	

TGFB/TGFBR	

(Baardsnes	et	

al.,	2009)	

160	 7.4E+05	 5.6E+06	 7.6E+00	 4.21E+7	 1.90E+9	 3/6.0	 5.69E+1	

1P9M	 A:B	 IL6/IL6R	 150	 2.7E+07	 6.5e+05	 4.1E+01	 6.14E+6	 6.26E+8	 3/6.0	 1.36E+1	
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(Hammacher,	

1996)	

1IAR	 A:B	

IL4/IL4R	

(Shen	et	al.,	

1996)	

150	 1.9E+07	 5.3E+07	 2.8E+00	 5.40E+7	 1.40E+9	 4/5.0	 2.84E+0	

2ERJ	 A:C	

IL2A/IL2R	

(Myszka	et	

al.,	1996)	

150	 7.8E+06	 3.6E+07	 4.6E+00	 3.60E+7	 1.70E+9	 4/4.0	 4.62E+0	

2ERJ	 B:D	

IL2B/IL2R	

(Myszka	et	

al.,	1996)	

150	 1.3E+06	 9.8E+05	 7.5E-01	 2.60E+6	 5.00E+8	 4/6.0	 2.00E+0	

1FYH	 A:B	

IFNG/IFNGR	

(Sadir	et	al.,	

1998)	

150	 7.3E+06	 8.5E+04	 1.2E-02	 6.10E+6	 9.10E+9	 4/6.0	 8.36E-1	

1EQY	 A:S	

Actin/Gelsolin	

(SELVE	and	

WEGNER,	

1987)	

110	 2.5E+04	 2.4E+05	 9.6E+00	 6.20E+6	 3.50E+8	 2/7.5	 2.48E+2	

2PCC	 A:B	

cytochrome	c	

peroxidase	/	

cytochrome	

(Mei	et	al.,	

1996)	

150	 1.3E+09	 4.3E+09	 3.3E+00	 5.70E+9	 9.80E+8	 4/6.0	 4.38E+0	

1UDI	 E:L	

uracil-DNA	

glycosylase	/	

inhibitor	

(Bennett	et	

al.,	1993)	

100	 1.5E+08	 5.8E+08	 3.9E+00	 9.00E+8	 7.20E+6	 4/6.0	 6.00E+0	

PDB	 –	 PDB	 Code	 for	 experimentally	 derived	 structure;	 C	 –	 Chain	 IDs	 in	 PDB;	 Desc	 –	

Description	of	the	interaction;	IS	–	Ionic	Strength	(in	mM);	Ex	kon	–	Experimentally	derived	kon	

value;	TC	–	TransComp	prediction;	T	Acc	–	TC/(Ex	kon);	 SDA	–	webSDA	prediction;	Range	–	

Upper	 limit	of	SDA	prediction;	SDARC	–	Reaction	criteria	used	 in	SDA	 to	 isolate	best	 result	

(No	of	Contact	Points/Distance	Apart);	SDA	Acc	–	(SDA/(Ex	kon)	

	

Within	 this	 proof-of-concept	 test,	 10	 of	 our	 TransComp	 results	 were	 within	 an	 order	 of	

magnitude	 from	 the	 reported	 results,	 while	 only	 6	 SDA7	 results	 were	 within	 the	 same	

window.	Additionally,	 SDA7	 returns	a	 range	of	 results,	 requiring	 the	definition	of	 reaction	

criteria	which	would	return	a	range	of	results	that	would	need	to	be	arbitrarily	reduced	into	

a	 singular	 value.	 As	 such,	 TransComp	 was	 selected	 as	 the	 tool	 of	 choice	 for	 calculating	

association	rates	within	this	project.	
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 TransComp	and	PRODIGY	Results	

TransComp	 was	 used	 to	 calculate	 association	 rates	 were	 calculated	 for	 1119	 complexes	

involved	in	atherosclerosis.	Of	these	complexes,	835	returned	an	association	rate.	Failure	in	

calculating	an	association	rate	was	due	to	the	interaction	requiring	an	intermediary	step,	or	

computational	 intensity	 restrictions.	 Association	 rates	 were	 not	 calculated	 when	 an	

individual	 interaction	would	 take	 longer	 than	3	months	 to	process	on	a	single	core	virtual	

machine.	 An	 exhaustive	 list	 of	 association	 rate	 values	 can	 be	 found	 in	 Appendix	 5.	 The	

median	of	the	association	rates	is	1.5	x	105,	with	an	interquartile	range	of	2.142	x	106.	

	

Some	 results	obtained	were	evidently	 erroneous.	 For	example,	 the	binding	of	CSF1R-001-

245	to	CSF1-001	returned	a	kon	value	of	3.81	x	10-188.	Such	issues	however	do	not	seem	to	

be	 an	 issue	 for	 the	 fast-binding	 proteins;	 TransComp	 estimation	 of	 the	 association	 rate	

between	MMP3-001-45	and	TIMP3-001	 is	5.61	x1010,	which	 is	a	value	within	 the	 range	of	

expected	protein	association	rates	 (Schreiber	et	al.,	2009).	To	 filter	out	 these	results,	only	

results	with	a	kon	value	between	100	and	1010	were	used.	

	



146	
	

	
	

	

	

Figure	5.5:	Comparing	TM-Score	for	each	mutation	to	its	wildtype	to	the	difference	between	

their	association	rates	

	

MATLAB’s	 polyfit	 function	 was	 used	 to	 generate	 the	 line	 of	 best	 fit.	 Figure	 5.5	 shows	 a	

comparison	between	the	variance	in	kon	between	a	mutation	and	its	wildtype	alongside	the	

TM-Score	for	an	alignment	between	the	mutated	protein	and	its	wildtype.	The	line	of	best	

fit	 was	 generated	 in	 Matlab	 using	 the	 polyfit	 method.	 Figure	 5.5	 suggests	 a	 correlation,	

albeit	minor,	 between	 increased	 variation	within	 a	 protein	 structure	 leading	 to	 increased	

variation	 in	association	rate.	This	 is	expected	behavior	 in	direction	and	magnitude,	with	 it	

being	intuitive	that	a	decrease	in	protein	similarity	would	lead	to	an	increase	in	variation	of	

association	within	binding.		

	

PRODIGY	was	used	to	estimate	a	dissociation	rate	kd	to	allow	for	the	generation	of	binding	

kinetic	parameter	koff	as	defined	in	section	5.2.13.	The	collection	of	kd	results	compared	to	

TM-Score	 is	 shown	 in	 Figure	 5.6.	 The	 mean	 of	 the	 kd	 values	 is		

1.517	 x10-5,	 with	 an	 interquartile	 range	 of	 7.3677	 x10-6.	 Figure	 5.6	 shows	 a	 similar	

correlation	to	Figure	5.5.	
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Figure	5.6:	Comparing	TM-Score	for	each	mutation	to	its	wildtype	to	the	difference	between	

their	dissociation	constants	

	

5.4 Discussion	

 How	accurate	are	our	results?	

A	collection	of	association	rates	have	been	estimated	for	each	of	the	interactions	detailed	in	

Table	 5.1.	 The	 accuracy	 of	 our	 oligomeric	 and	 complex	 structures	 has	 been	 assessed	 in	

sections	5.3.1,	5.3.2	and	5.3.3.	RMSD	is	a	useful	tool	 for	evaluating	the	similarity	between	

our	computationally	established	structures	and	the	experimentally	derived	native.	While	we	

used	the	TM-Score	as	an	assessment	method	of	protein	similarity	for	our	tertiary	structures	

in	Chapter	4,	the	RMSD	is	a	more	useful	algorithm	with	our	generated	complexes	due	to	the	

nature	of	the	TM-score	to	assess	superposition	coverage	as	well	as	structural	accuracy.	Due	

to	the	sparse	nature	of	experimentally	derived	proteins	relevant	to	this	study	found	in	the	

PDB,	structures	with	sequence	identity	>95%	were	chosen,	while	disregarding	coverage.	For	

example,	 the	 extracellular	 domain	 of	 epidermal	 growth	 factor	 receptor	 (EGFR)	 was	 used	
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while	 assessing	 interaction	 9	 (Appendix	 3,	 Table	 1)	 in	 the	 absence	 of	whole	 protein	 data	

(Ogiso	et	al.,	2002).	

	

Homodimeric	wildtype	 structures	 derived	 from	 amino	 acid	 sequences	 during	 this	 chapter	

have	 a	mean	RMSD	of	 3.015A,	while	our	heterodimeric	 structures	have	 a	mean	RMSD	of	

4.35A.	 The	 sample	 size	 is	 too	 small	 to	make	 sweeping	 conclusions,	 however	 strong	 near-

native	 structures	 have	 been	 established	 for	 our	 wildtype	 data,	 giving	 confidence	 in	 the	

structures	generated	using	mutation	data.		

	

Six	of	 the	seven	oligomeric	 structures	predicted	 returned	with	an	RMSD	of	 less	 than	3.8A	

from	the	native.	TGFBR	shows	a	distinct	difference	from	the	native	with	an	RMSD	of	8.83A.	

This	could	be	due	to	the	low	quality	prediction	of	its	constituent	parts,	with	the	C-score	for	

TGFBR1-001	and	TGFBR2-001	being	-3.52	and	-3.9	respectively.	

	

 Compound	error	

When	 pipelining	 quantitative	 prediction	 methods	 together,	 compound	 error	 can	 quickly	

become	a	problem.	To	get	to	the	stage	where	we	can	predict	association	rates	from	amino	

acid	sequences	 in	 this	 thesis,	we	have	converted	primary	structure	 into	 tertiary	 structure,	

into	 quaternary	 structure	 (potentially	 involving	 oligomers),	 into	 an	 association	 and	

dissociation	 rate	 prediction.	 Each	 of	 these	 stages	 introduces	 a	 degree	 of	 uncertainty,	

decreasing	 confidence	 in	 our	 results.	 In	 addition,	 it	 is	 distinctly	 possible	 that	 a	 minor	

discrepancy	 early	 within	 the	 algorithmic	 pipeline	 can	 propagate	 into	 a	 major	 divergence	

from	the	expected	result	by	the	time	all	aspects	of	the	methodology	have	been	applied.	

	

While	 we	 can	 assess	 accuracy	 for	 individual	 components	 of	 our	 methodology	 such	 as	

aligning	 predicted	 structures	 or	 association	 rates	 to	 experimentally	 validated	 ones,	

calculating	how	a	variation	in	an	uncertain	area	of	a	protein	structure	prediction	will	affect	

our	kon	prediction	is	a	significantly	more	challenging	task.	However,	as	confidence	grows	in	

the	 predictive	 power	 of	 each	 of	 the	 subsections	 of	 our	 pipeline,	 confidence	 grows	 in	 the	

complete	 methodology.	 Protein	 structure	 prediction	 methods	 and	 docking	 methods	 are	

improving	 year-on-year	 (Lensink	 et	 al.,	 2016),	 new	 structures	 are	 experimentally	 derived	
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and	 force-fields	 and	 continuum	 solvation	methods	used	 in	 association	 rate	prediction	 are	

updated	 regularly	 (Baker	 et	 al.,	 2001;	 Dolinsky	 et	 al.,	 2007),	 leading	 to	 a	 continued	

refinement	of	the	algorithm	as	a	whole.	

	

 Why	choose	TransComp?	

Comparison	tests	between	SDA7	and	TransComp	showed	comparable	results	between	the	

two,	with	a	slight	quality	improvement	with	TransComp	results.	In	addition,	SDA7	had	larger	

computational	times	and	a	range	of	possible	results	were	returned,	only	providing	a	scalar	

result	with	 the	addition	of	 reaction	criteria	 (i.e.	 the	distance	between	proteins	where	 the	

short-range	 interactions	begin	 to	occur	 and	 the	number	of	 contact	 points	 involved	 in	 the	

interaction).	 These	 reasons	 pushed	 us	 towards	 using	 TransComp	 to	 calculate	 association	

rates	for	our	collection	of	interactions.	

	

 What	can	we	do	with	this	information?	

Association	and	dissociation	rate	parameters	are	vital	in	drug	development.	Kinetics	can	be	

used	 to	 calculate	 equilibrium	 states	 and	 to	 estimate	 how	quickly	 the	 system	 responds	 to	

external	 stimuli,	 such	 as	 a	 drug	 or	 another	 competitor.	 Within	 the	 context	 of	 systems	

biology,	binding	kinetics	can	be	used	to	parameterize	a	mathematical	model	to	provide	an	

increased	 level	 of	 biological	 relevance.	 Currently,	 having	 ascertained	 a	 collection	 of	

association	 rates	 for	 a	 variety	 of	 mutations,	 existing	 pathways	 can	 be	 reparametrized	

referring	to	each	mutation.	

	

 How	can	we	make	this	better?	

While	 sections	 of	 the	 described	 pipeline	 are	 state-of-the-art	 and	 utilize	 the	 strongest	

publically	 available	 algorithms	 developed	 by	 the	 computational	 biology	 community,	

improvements	could	be	made	to	the	procedure	if	computational	intensity	constraints	were	

removed.	Increasing	the	amount	of	time	I-TASSER	spends	on	refinement	on	structural	areas	

with	 insufficient	 homologous	 data	 could	 lead	 to	 an	 increase	 in	 the	 quality	 of	 the	 input	

structures,	 and	 subsequently	 the	 output	 binding	 kinetics.	 Not	 all	 of	 the	 computationally-

calculated	 docked	 structures	 were	 used	 as	 TransComp	 inputs.	 Due	 to	 computational	

intensity	 issues,	 IL12	 binding	 to	 IL12R	 (interaction	 13	 in	 Table	 5.1)	 was	 unable	 to	 be	
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completed	 in	 its	 full	 form.	As	both	 IL12	and	 IL12R	are	heterodimeric,	 the	 total	number	of	

atoms	within	the	system	became	so	large	that	each	mutation	would	have	taken	more	than	a	

year	to	process	on	a	single	core	system.	PDGF	suffered	a	similar	fate,	with	both	PDGFRA	and	

PDGFRB	being	large	receptors	with	1090	and	1107	amino	acids	 long	respectively.	Removal	

of	 computational	 constraints	would	 have	 allowed	 for	 the	 calculation	of	 these	 values.	 The	

quality	 of	 our	 quaternary	 structure	 is	 highly	 dependent	 on	 the	 availability	 of	 structural	

information	 leading	 to	 an	 informed	 docking	 simulation.	 Increasing	 the	 number	 of	 docks	

produced	 by	 both	 Rosetta	 and	 Hex	 to	 be	 slimmed	 down	 using	 their	 respective	 scoring	

functions	would	 increase	 the	 possibility	 of	 a	 near-native	 structure	 being	 isolated.	 Rosetta	

global	 docking	 algorithms	 could	 also	 have	 been	 used	 instead	 of	 Hex	 if	 not	 for	 the	 great	

computational	 expense	 required	 in	 doing	 so.	 However,	 one	 of	 the	 biggest	 improvements	

that	could	be	made	would	be	through	using	flexible	docking	strategies	instead	of	the	rigid-

body	hybrid	used	in	Rosetta	local	docking.		

	

 Diffusion	limited	interactions	

While	the	TransComp-derived	kon	values	that	we	have	ascertained	range	between	10-188	and	

1011,	the	TransComp	methodology	is	more	robust	with	association	rates	greater	than	1x	105.	

As	defined	in	section	5.1.5,	regimes	where	the	transient	complex	is	converted	into	the	final	

complex	 significantly	 faster	 and	more	 often	 than	 it	 unbinds	 into	 its	 constituent	 parts	 (or	

‘diffusion-limited’)	 can	 be	 estimated	 more	 accurately	 with	 the	 TransComp	 methodology.	

This	 conformation	 happens	when	 105	 <	 kon	 <	 1010	 (Qin	 et	 al.,	 2011).	 For	 slower	 proteins,	

where	the	short-range	interactions	required	to	finalize	complex	formation	are	less	reliable,	

estimations	used	in	TransComp	become	less	biologically	accurate.	While	we	can	have	more	

confidence	in	our	results	as	kon	 is	greater,	values	in	the	lower	half	of	the	spectrum	are	still	

useful	for	us	later	in	this	thesis.	The	estimation	utilized	in	TransComp	methodology	of	kon	≈	

kD	(the	rate	of	transient	complex	formation)	is	no	longer	accurate,	with	kon	≈	kr	*	kD	,	where	

kr	is	equal	to	the	speed	of	complex	formation	from	the	transient	complex	divided	by	the	rate	

of	unbinding	from	the	transient	complex	into	constituent	parts.	
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 Future	Work	

The	development	of	a	pipeline	to	calculate	association	and	dissociation	rates	from	two	input	

amino	 acid	 sequence	 has	 the	 potential	 to	 benefit	 mathematical	 modelling	 and	

computational	 drug	 design	 communities.	 Kinetic	 parameter	 availability	 is	 sparse	 for	most	

known	 PPIs,	 and	 the	 ability	 to	 initially	 parameterize	 a	 pathway	 in	 the	 absence	 of	

experimentally	 derived	 values	 will	 be	 beneficial	 in	 initial	 development	 of	 mathematical	

models.	Additionally,	calculating	binding	kinetics	for	mutated	structures	can	be	used	as	part	

of	a	stratified	medicine	program	when	used	to	reparametrize	disease	pathways.	
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Chapter 6: 

Population Subgroup 

Specific Atherosclerosis 

Dynamics 
6 Population	Subgroup	Specific	Atherosclerosis	Dynamics	
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6.1 Introduction	

Computational	 models	 are	 a	 means	 of	 solving	 a	 problem,	 not	 the	 end	 result.	 Without	

relating	 model	 results	 back	 to	 pathway	 dynamics	 to	 study	 the	 underlying	 biology	 and	

biochemistry	 then	 computational	 models,	 while	 interesting,	 serve	 little	 practical	 use.	

Computational	models	can	be	described	as	a	tool	to	provide	insight	into	disease	dynamics.	

Ordinary	differential	equation	(ODE)	models	of	disease,	such	as	the	model	of	atherosclerosis	

defined	in	Chapter	3,	relate	variation	in	the	quantity	of	one	biological	entity	to	variation	in	

all	 others	 included	 within	 the	 model.	 Networks	 of	 biological	 processes	 which	 utilize	

experimentally	 derived	 data	 to	 maximize	 biological	 relevance	 have	 led	 to	 remarkable	

insights	 into	 disease	 pathogenesis	 (Akman	 et	 al.,	 2012;	 Fujita	 et	 al.,	 2014;	Mazein	 et	 al.,	

2013;	Mizuno	et	al.,	2012;	Morgan	et	al.,	2016).		

	

Development	of	technologies	relating	to	‘-omics’	data	has	led	to	vast	quantities	of	genomic,	

proteomic,	 metabolomic	 and	 transcriptomic	 data	 being	 generated	 within	 the	 last	 two	

decades.	 Placing	 this	 data	 in	 the	 public	 domain	 or	 facilitating	 methods	 for	 data	 sharing	

allows	for	the	wider	scientific	community	to	benefit	and	utilize	these	data	as	part	of	a	wide	

range	 of	 experiments	 (Chervitz	 et	 al.,	 2011).	 Similar	 to	 mathematical	 modelling,	 the	

challenge	 for	 computational	 biologists	 is	 to	 convert	 this	massive	 dataset	 into	 information	

that	can	provide	a	beneficial	research	output.	Combining	mathematical	models	with	‘-omics’	

data,	through	adjustments	such	as	reparameterisation	or	network	optimization,	can	lead	to	

new	insights	into	biological	processes.	Adjusting	quantitative	mathematical	models	to	align	

with	 variations	 noted	 in	 ‘-omics’	 data	 has	 the	 potential	 to	 enable	 systems	 pharmacology	

approaches	based	on	stratified	patient	groups.	

	

 Using	mathematical	models	to	stratify	patient	groups	

Reparameterising	mathematical	models	 as	 part	 of	 a	 program	of	 personalized	or	 stratified	

medicine	is	a	fledgling	field,	however	important	work	has	been	undertaken	to	demonstrate	

the	 possibilities.	 The	 core	 concept	 relies	 upon	 calculating	 a	 set	 of	 quantitative	

measurements	of	biological	activity	to	stratify	patient	groups	that	can	be	applied	to	a	stable	

and	 robust	 mathematical	 model	 allowing	 for	 the	 assessment	 of	 how	 pathway	 dynamics	

differ	due	to	this	stratification.	Using	a	scoring	system	based	on	CD34	levels,	mathematical	
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models	 have	 been	 developed	 which	 suggest	 a	 stratification	 method	 for	 patients	 with	

chronic	 myeloid	 leukemia	 (Brehme	 et	 al.,	 2016).	 Models	 for	 dopamine	 metabolism	 and	

folate-mediated	one	carbon	metabolism	have	been	developed	and	reparametrized	based	on	

experimentally-derived	 enzyme	 activity	 data,	 which	 has	 been	 connected	 to	 population	

genetics	 to	 provide	 a	 potential	 stratification	 methodology	 (Nijhout	 et	 al.,	 2015).	 Patient	

stratification	 has	 previously	 been	 achieved	 through	 reparameterisation	 of	 mathematical	

models,	however	gene	expression	levels	were	used	rather	than	binding	kinetics	(Björnson	et	

al.,	 2015).	 Combining	 enzyme	 kinetics	 and	 population	 genetics	 as	 part	 of	 a	mathematical	

model	 reparameterisation	 program	 could	 lead	 to	 the	 discovery	 of	 different	 disease	

dynamics	 within	 subgroups,	 alongside	 the	 identification	 of	 biomarkers	 or	 optimal	

therapeutic	responses.	

	

 Potential	future	uses	of	mathematical	models	

Computational	 models	 can	 provide	 a	 series	 of	 benefits	 regarding	 the	 elucidation	 of	

biological	 processes.	 Two-state	 discrete	 Boolean	 models	 have	 been	 used	 to	 represent	

biological	processes	such	as	apoptosis	(Schlatter	et	al.,	2009)	and	circadian	rhythms	(Akman	

et	 al.,	 2012).	 Fully	 quantitative	 models,	 such	 as	 ODE	 models,	 can	 generate	 therapeutic	

hypotheses	 such	 as	 the	 identification	 of	 predictive	 biomarkers	 and	 the	 generation	 of	

potential	 multi-drug	 therapies.	 Stratifying	 patient	 groups	 based	 on	 biomarker	 data	 and	

subsequent	 therapeutic	 selection	 have	 seen	 an	 increase	 in	 the	 success	 of	 breast	 cancer	

treatment	 (Yeo	 et	 al.,	 2014).	 Through	 the	 development	 of	mathematical	models	 of	 small	

sections	of	biological	systems,	and	combining	them	once	the	underlying	dynamics	are	well	

understood,	 larger	 models	 are	 being	 created	 by	 the	 systems	 biology	 community	 to	

represent	whole	biological	systems.	A	whole	cell	model	of	Mycoplasma	genitalium	has	been	

produced	 (Karr	 et	 al.,	 2012a).	 Ideally,	 if	 computational	 models	 can	 be	 developed	 to	

accurately	represent	the	underlying	physiology	while	representing	whole	biological	systems,	

an	 in	 silico	 clinical	 trial	 could	 be	 developed	 before	 patient	 trials,	 giving	 insight	 into	 drug	

efficacy,	 potential	 side	 effects	 and	 allowing	 for	 study	 into	 the	 particular	 subtype	 or	

manifestation	of	the	disorder.	
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 Systems	Pharmacology	

Mathematical	 modelling	 has	 led	 to	 optimization	 of	 multi-drug	 therapeutics	 in	 multiple	

diseases.	 Models	 have	 been	 developed	 of	 breast	 cancer	 signaling	 networks	 where	 an	

optimal	 therapeutic	blockade	was	hypothesized	 to	bypass	compensatory	circuits	and	 limit	

tumor	 growth,	 a	 hypothesis	 which	 was	 subsequently	 validated	 on	 mice	 (Kirouac	 et	 al.,	

2013).	 Systems	 pharmacology	 methods	 have	 been	 used	 to	 suggest	 drug	 targets	 for	 the	

treatment	 of	 Alzheimer’s	 disease	 (Nicholas	 et	 al.,	 2013).	 Using	 systems	 pharmacology	

methods	 to	 study	 the	 effects	 of	 common	 drugs	 on	 atherosclerosis	 progression	 has	 been	

done	 before	 using	 a	 simplified	model	 considering	 foam	 cells,	macrophages,	 oxidized	 LDL,	

endothelial	cell	disruption	and	haemodynamics	(Pichardo-Almarza	et	al.,	2015).	

	

 Binding	Kinetics	

The	atherosclerosis	model	as	described	in	Chapter	3	contains	a	series	of	equations	following	

the	 law	of	mass	action	and	Michaelis-Menten	kinetics.	The	 law	of	mass	action	considers	a	

simple	interaction	between	two	reactants	A	and	R	(Voit	et	al.,	2015):	

	

A	+	R	⇄	AR	

	

where	the	reaction	velocity	is	modelled	as	proportional	to	the	reactant	quantities:	

Equation	6-1	

BCD
BE

= 	,F5G ∗ C ∗ D	

	

Whereas	Michaelis-Menten	equations	take	this	a	little	further	and	include	an	intermediary	

step	and	a	final	product	P	(Johnson	and	Goody,	2012;	Michaelis	and	Menten,	1913):	

	

A	+	R	⇄	AR	→	A	+	P	

	

Connecting	 the	 relationship	 between	 the	 quantities	 of	 reactants	 and	 products	 in	 this	

manner	 allows	 for	 the	 development	 of	 models	 of	 whole	 biological	 systems;	 however	 a	

collection	 of	 assumptions	 are	 required	 in	 the	 development	 of	 a	model	 of	 this	 type.	 This	

system	 considers	 an	 interaction	 with	 only	 one	 transitional	 state	 AR,	 and	 binding	 kinetics	
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would	differ	 in	 a	 system	with	an	 increased	number	of	 transitory	 structures.	 It	 is	 assumed	

that	protein	A	is	not	altered	by	binding	and	is	freely	available	to	bind	to	other	entities	once	

this	interaction	is	complete,	and	that	the	transitory	state	binding	can	be	reversed.	Finally,	it	

is	 presumed	 that	 all	 proteins	 in	 this	 interaction	 are	 uniformly	 accessible	 to	 each	 other.	

Within	a	system	where	these	assumptions	are	true,	the	reaction	velocity	is	modelled	as:	

	

BCD
BE

= 	,H ∗ C6	

Where	A0	is	the	total	concentration	of	protein	A,	and	ke	is	defined	as:	

	

,H = 	
,F5G ∗ D
,I + D

	

	

where	the	Michaelis	Constant	kM	is	defined	as:	

Equation	6-2	

,I = 	
,244 +	,F5G

,23
	

	

A	derivation	for	these	equations	can	be	found	in	(Briggs	and	Haldane,	1925;	Michaelis	and	

Menten,	1913).	

	

 Computational	Inhibition	

For	an	interaction	in	a	system	described	in	section	6.1.4,	an	inhibitor	can	be	introduced	that	

can	 lead	 to	 a	 reduction	 in	 reaction	 velocity.	 These	 substances	 can	 be	 a	 natural	 part	 of	 a	

homeostatic	 biological	 system,	 such	 as	 epidermal	 growth	 factor	 (EGF)	 inhibiting	 SMC	

production	 of	 elastin	 (Ichiro	 et	 al.,	 1990),	 or	 as	 an	 external	 source	 like	 a	 targeted	 drug.	

Modelling	 the	 introduction	 of	 a	 drug	 into	 a	 biological	 system	 designed	 to	 compete	 with	

other	 reactants	 for	 a	 particular	 receptor	 can	 be	 completed	 with	 an	 extension	 to	 the	

Michaelis-Menten	methodology:		

C + D	 ⇄ AR	 ⇄ 	A + P	

		⇅														⇅	

	DN												CDN	
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Where	A	and	R	are	two	reactants	and	I	is	an	inhibitor.		

	

Competitive	 inhibition	 such	 as	 this	 is	 caused	 by	 A	 and	 I	 competing	 to	 bind	 to	 the	 same	

protein	R.	Reaction	velocity	in	this	scenario	is	modelled	as:	

	

	

BO
BE

= 	
,F5G[C][D]

,I 1 +	 N,P
+ [D]

	

	

Where	I	=	Concentration	of	the	inhibitor;	kI	=	inhibition	constant.	The	inhibition	constant	is	

defined	the	concentration	where	half	of	the	maximum	inhibition	is	produced.	

	

 Scoring	Function	and	Multi-Drug	Therapeutic	Hypotheses	

Due	to	the	complex	nature	of	atherosclerosis	and	the	quantity	of	biological	entities	included	

within	the	model	of	atherosclerosis	as	defined	in	Chapter	3,	a	scoring	function	is	required	to	

represent	 atheroma	 severity.	 Creating	 such	 a	 function	 and	 value	 allows	 for	 the	 direct	

comparison	of	atheromata	simulated	using	the	model	and	allows	for	the	development	of	a	

system	to	minimize	atheroma	size	based	on	theoretical	drugs	added	to	the	system.	

	

A	scoring	function	is	a	mathematical	method	of	simplifying	a	multi-dimensional	system	to	a	

scalar	 value,	 vital	 when	 assessing	 the	 impact	 of	 perturbations	 to	 the	 system.	 When	

searching	a	large	parameter	space,	such	as	finding	an	optimal	multi-drug	therapy,	finding	an	

accurate	global	minimum	can	be	a	challenging	process.	The	solution	space	within	our	multi-

drug	system	is	‘bumpy’,	that	is	to	say	that	many	local	minima	exist,	and	as	such	finding	the	

true	 global	 minimum	 of	 the	 problem	 requires	 some	 nuance.	 Simulated	 annealing	 is	 an	

optimization	 technique	 relying	 on	 probabilistic	methods	 to	 find	 a	 global	minimum	where	

multiple	local	minima	exist.	Genetic	algorithms	are	a	technique	which	imitates	the	biological	

process	 of	 natural	 selection,	 where	 a	 parameter	 space	 is	 searched	 to	 find	 an	 optimized	

solution	to	a	similar	problem.	A	'population'	of	individual	solutions	are	generated	according	

to	a	scoring	function.	At	each	generation,	 individual	solutions	are	chosen	at	random	to	be	
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produce	 a	 solution	 for	 the	 next	 generation.	 As	 the	 number	 of	 generations	 increases,	

solutions	 evolve	 towards	 an	 optimal	 solution.	 Genetic	 algorithms	 have	 been	 shown	 to	

return	a	more	accurate	evaluation	at	an	increased	computational	cost	for	circuit	partitioning	

problems	(Manikas	and	Cain,	1996)	and	a	similar	result	with	a	reduced	computational	cost	

for	regression	problems	concerning	neural	network	ensembles	(Soares	et	al.,	2013).	

	

 Population	genetics	

Ascertaining	 genetic	 differences	 between	 population	 subgroups	 can	 be	 beneficial	 during	

computational	 analyses	 relating	 to	 stratified	 medicine.	 Quantification	 of	 changes	 in	

molecular	interactions	due	to	genetic	variance	can	be	used	to	reparameterize	mathematical	

models,	 potentially	 leading	 to	 population	 specific	 insights	 into	 disease	 pathogenesis.	

Changes	 in	 binding	 kinetics	 in	 one	 specific	 interaction	 can	 cause	 unforeseen	 downstream	

effects,	seemingly	unrelated	to	the	initial	interaction.	Through	systems	biology	methods	and	

mathematical	modelling,	downstream	effects	can	be	predicted	and	therapeutic	hypotheses	

developed	 for	 particular	 interactions.	 Population	 genetics	 can	 provide	 insight	 into	 which	

interactions	are	likely	to	differ	in	separate	population	subgroups.	

	

Within	phase	3	of	the	1000	Genomes	Project,	sequence	and	variant	data	exists	for	5	super-

populations	consisting	of	a	total	of	26	different	population	subgroups	(Auton	et	al.,	2015).	

These	populations	are	shown	in	Table	6.1.	

Table	6.1:	Five	super-populations	and	twenty-six	population	subgroups	considered	within	

Phase	3	of	the	1000	Genome	Project	

African	 Yoruba	–	Nigeria	

Luhya	–	Kenya	

Gambian	

Mende	–	Sierra	Leone	

Esan	–	Nigeria	

African-Americans	 in	 the	 south-west	 of	

the	USA	

African-Caribbeans	-	Barbados	
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American	–	Mixed	 Mexican-Americans	 in	 the	 south-west	 of	

the	USA	

Puerto	Rican	

Colombian	

Peruvian	
	

East	Asian	 Han	Chinese	–	China	

Japanese	

Southern	Han	Chinese	–	China	

Chinese	Dai	–	Xishuangbanna,	China	

Kinh	-	Vietnam	
	

European	 European	Americans	–	Utah,	USA	

Toscani	-	Italy	

Finnish	

British	

Iberian	-	Spain	
	

South	Asian	 Gujarati	Indian	–	Texas	

Punjabi	–	Pakistan	

Bengali	–	Bangladesh	

Sri	Lankan	Tamil	–	UK	

Indian	Telugu	-	UK	
	

	

 Relating	plaque	morphology	to	severity		

While	the	scoring	function	introduced	in	section	6.2.2	is	an	appropriate	method	of	giving	a	

snapshot	of	atheroma	severity	due	to	each	of	our	mutations,	this	simplification	 is	 likely	to	

avoid	 reporting	on	subtleties	hidden	within	 the	model.	Atheroma	size	could	be	 related	 to	

the	 lesion	 content	 of	macrophages,	 foam	 cells	 and	 smooth	muscle	 cells.	 Collagen,	 elastin	

and	 other	 ECM	 elements	 are	 vital	 when	 considering	 plaque	 volume	 and	 lesion	 stability.	

Concentrations	 of	MMPs	 and	 their	 inhibitors	 are	 key	when	 considering	 chance	 of	 plaque	

rupture.	 Plasma	 concentrations	 of	 biological	 entities	 have	 the	 potential	 to	 be	 useful	

biomarkers.	 When	 searching	 the	 vast	 quantities	 of	 data	 isolated	 from	 our	 collection	 of	
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mathematical	 models	 developed	 within	 this	 chapter,	 mutations	 leading	 to	 variations	 in	

these	quantities	are	more	likely	to	be	beneficial	and	clinically	relevant.	

	

6.2 Methods	

The	model	of	atherosclerosis	as	defined	in	Chapter	3	has	been	used	as	a	basis	for	this	study.	

A	 detailed	 list	 of	 interactions	 studied	 can	 be	 seen	 in	 Chapter	 5	 (Table	 5.1).	 Parameters	

altered	to	simulate	the	effect	of	mutations	can	be	found	in	Appendix	6.	

	

 Calculating	kM	and	kcat	

Kinetic	 parameters	 kM	 and	 kcat	will	 be	 altered	 by	 the	 changes	 in	 kon	 and	 koff	 calculated	 in	

Chapter	5.	Equation	6-2	(section	6.1.4)	has	been	used	to	calculate	how	this	mutation	data	

will	 alter	 kcat	 and	 kM,	 to	 allow	 for	 per-mutation	 reparameterisation	 of	 the	 mathematical	

model.	 However,	 due	 to	 compound	 error	 in	 the	 derivation	 of	 binding	 kinetics	 from	

predicted	structure	and	the	estimation	of	certain	kinetic	parameters	used	in	the	model,	the	

equality	 requires	 a	 correction	 factor	 in	 order	 to	 be	 valid.	 This	 correction	 factor,	 kcorr,	 is	

added	as	follows:	

	

Equation	6-3	

,I = 	

,F5G
,F2QQ

+	,244

,23
	

	

The	correction	factor	kcorr	was	applied	specifically	to	kcat	to	prevent	cases	of	a	negative	kcat	

value	being	generated	within	our	dataset.	

	

For	each	interaction,	kcorr	has	been	calculated	for	the	interaction	between	wildtypes,	where	

kon	 and	 koff	 have	 been	 calculated	 as	 described	 in	 Chapter	 5,	 and	 kcat	 and	 kM	 have	 been	

isolated	 from	 the	mathematical	 model.	 Kinetic	 parameters	 kcat	 and	 kM	 are	 calculated	 for	

each	mutation	by	combining	the	wildtype-derived	kcorr	with	mutation-specific	koff	and	kon.	
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Within	 the	model	 of	 atherosclerosis	 defined	 in	 Chapter	 3,	 interactions	 involving	 protein-

protein	interactions	are	formulated	in	one	of	three	ways:		

	

6.2.1.1 Law	of	Mass	Action	

Interactions	involving	mass	action	kinetics	are	modelled	in	the	form:	

	

R = 	, ∗ C ∗ D	

	

Where	 k	 =	 kcat	 /	 kM;	 v	 =	 reaction	 velocity;	 A	 and	 R	 are	 reactants	 within	 the	 interaction.	

Through	rearrangement	of	Equation	6-3,	kcat	is	calculated	by:	

Equation	6-4	

,F5G = (,23 ∗ 	,I −	,244) ∗ 	,F2QQ 	

	

Where	kM	is	set	to	be	1.	

6.2.1.2 Michaelis-Menten	Kinetics	

Interactions	involving	Michaelis-Menten	kinetics	are	modelled	in	the	form:	

	

R = 	
TU5V ∗ 	D
,I + D

	

	

Where	 Vmax	 =	 kcat	 *	 E0;	 E0	 =	 Initial	 enzyme	 concentration	 (Johnson	 and	 Goody,	 2012;	

Michaelis	and	Menten,	1913).		

	

For	each	interaction	that	is	modelled	using	Michaelis-Menten	kinetics,	kcat	is	calculated	by:	

Equation	6-5	

,F5G = (,23 ∗ 	,I −	,244) ∗ 	,F2QQ 	
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6.2.1.3 Michaelis-Menten	Kinetics	Involving	Multiple	Entities	

Interactions	 involving	 Michaelis-Menten	 kinetics	 with	 multiple	 biological	 entities	 are	

modelled	in	the	form:	

	

R = 	
, ∗ . ∗ 	0W ∗ 	0X …

,IW +	0W ,IX +	0X …
	

	

When	focusing	on	a	mutation	within	the	interaction	involving	S1,	kcat	is	calculated	using:		

Equation	6-6	

,F5G = (,23 ∗ 	,IW −	,244) ∗ 	,F2QQ 	

	

	

 Scoring	function	

To	 provide	 a	 quick	 insight	 into	 the	 disease	 altering	 dynamics	 of	 a	 mutation,	 a	 scoring	

function	 has	 been	 developed	 to	 provide	 a	 scalar	 value	 representing	 a	 combination	 of	

atheroma	size,	cell	density,	protein	content	and	collagen	content.	To	assess	the	quality	of	a	

simulation,	a	cell	count	and	the	collagen	content	of	total	 intimal	protein	(as	a	percentage)	

are	 calculated.	 The	 cell	 count	 includes	 total	 abundances	 of	 smooth	 muscle	 cells,	

macrophages,	 foam	 cells	 and	 T	 cells.	 The	 atheroma	 severity	 score,	 or	 AScore,	 can	 be	

calculated	as	follows:	

Equation	6-7	

CZF2QH = 	

[
[U5V

+	
\]2^^
_U5V

	

2
	

	

Where	C	=	Total	Cell	Count;	Cmax	=	88479;	TColl	=	Total	Collagen	Percentage;	Mmax	=	0.7248;	

	

Cmax	and	Mmax	are	the	total	cell	abundance	and	percentage	of	total	protein	as	collagen	for	a	

simulation	over	80	years	with	an	LDL	concentration	of	190mg/dl	and	an	HDL	concentration	

of	45mg/dl.	
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 Generation	of	mutation-specific	models	

For	 each	 kon-koff	 pair	 representing	 a	 mutation	 as	 described	 in	 Chapter	 5	 and	 detailed	 in	

Appendix	5,	 the	corresponding	model	equation	has	been	altered	and	the	model	dynamics	

simulated	(a	full	list	of	model	equations	can	be	found	in	Appendix	3).	Of	the	835	kon	values	

calculated,	kcat	values	were	calculated	where	an	appropriate	koff	value	exists.	Each	of	these	

mutation	 kcat	 values	 were	 paired	 with	 the	 interaction	 kcorr	 as	 defined	 in	 section	 6.2.1.	

Wildtype	values	were	 successfully	 calculated	 for	all	 interactions	excluding	MMP1→TIMP3,	

MMP1→TIMP4	 and	 PDGF→	 PDGFR,	 and	 as	 such	 mutations	 involving	 these	 interactions	

were	 not	 included	 in	 our	 dataset.	 Wildtype	 values	 were	 unobtainable	 for	 these	 three	

interactions	after	TransComp	failure	due	to	an	expected	intermediary	stage	when	binding.	

Additionally,	 interactions	were	not	considered	where	TransComp	returned	a	results	where	

kon	<	1.	Observed	association	rate	values	range	from	in	the	order	of	102	to	1010,	so	removing	

all	 values	 lower	 than	 100	 was	 considered	 reasonable.	 After	 this	 trimming	 down	 of	 the	

dataset,	746	kon-koff	pairs	remained	for	reparameterisation.	The	Ascore	as	defined	in	section	

6.2.2	was	calculated	for	each	mutation	as	a	quantification	of	atheroma	severity.	

	

 Genetic	Profiles	

For	each	of	the	31	populations	described	in	Table	6.1,	a	genetic	profile	has	been	created	to	

represent	common	mutations	found	within	the	collection	of	proteins	considered	within	the	

model	(as	detailed	in	Table	4.2).	Each	population	starts	with	a	genetic	profile	consisting	of	

wildtypes	 for	 each	 model	 protein.	 Population	 genetics	 data	 was	 isolated	 from	 the	 1000	

Genome	Project	using	the	EnsEMBL	API	as	described	in	Section	4.2.1.	For	each	population,	a	

search	was	 undertaken	 to	 isolate	mutations	within	 phase	 3	 of	 the	 1000	 Genome	 Project	

with	 a	 >	 50%	 variant	 allele	 frequency	 (VAF).	 If	 such	 an	 allele	 exists	 for	 a	 population	

subgroup,	 their	 genetic	 profile	 is	 updated	 to	 include	 this	 mutation.	 Once	 complete,	

atherosclerosis	dynamics	were	simulated	for	each	genetic	profile	to	allow	for	the	study	of	

population-specific	pathogenesis	differences.	

	

 Multi-Drug	Therapies	

For	 each	 of	 our	 genetic	 profiles	 generated	 as	 described	 in	 section	 6.2.4,	 a	 multi-drug	

therapeutic	optimization	process	is	undertaken.	A	collection	of	15	drugs	shown	in	Table	6.2	
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are	 applied	 to	 each	 of	 our	 population	 specific	 models	 through	 inhibition	 equations	 as	

described	in	section	3.2.2.		

	

Table	6.2:	Collection	of	15	drugs	included	in	multi-drug	therapy	in	silico	minimization	

experiment	

Interaction	blocked	 Drug	 Citation	
IL12	->	IL12R	 Ustekinumab	 (Sandborn	et	al.,	2008)	
IL18	->	IL18R	 	 (Krumm	et	al.,	2017)	
IL4	->	IL4R	 	 (Steinke,	2004)	

IL10	->	IL10R	 Rituximab	 (Alas	et	al.,	2001)	
TGFB	->	TGFBR	 Galunisertib	 (Herbertz	et	al.,	2015)	
IL6	->	IL6R	 Tocilizumab	 (Sebba,	2008)	

IL21	->	IL21R	 	 (Young	et	al.,	2007)	
MMP1	->	TIMP1	
MMP1	->	TIMP2	
MMP1	->	TIMP3	
MMP1	->	TIMP4	

	 (De	Andrade	Leite,	2009)	

MMP2	->	TIMP1	
MMP2	->	TIMP2	
MMP2	->	TIMP3	
MMP2	->	TIMP4	

BiPS	 (Lauzier	et	al.,	2008)	

MMP3	->	TIMP1	
MMP3	->	TIMP2	
MMP3	->	TIMP3	
MMP3	->	TIMP4	

NNGH	 (Whitlock	et	al.,	2007)	

MMP9	->	TIMP1	
MMP9	->	TIMP2	
MMP9	->	TIMP3	
MMP9	->	TIMP4	

BiPS	 (Lauzier	et	al.,	2008)	

MMP13	->	TIMP1	
MMP13->	TIMP2	
MMP13->	TIMP3	
MMP13	->	TIMP4	

CL	82198	hydrochloride	 (Engel	et	al.,	2005)	

EGF	->	EGFR	 Tyrphostin	47	 (Levitzki	and	Gazit,	1995)	
oxLDL	->	Foam	Cells	
*Target	is	CD36*	 	 (Geloen	et	al.,	2012)	

CXCL9	->	CXCR3	
CXCL10	->	CXCR3	
CXCL11	->	CXCR3	

	 (Heise	et	al.,	2005)	

	

A	 genetic	 algorithm	 is	 applied	 to	 optimize	 the	 reduction	 of	 atheroma	 size	 and	 severity	

(represented	using	the	AScore	as	defined	in	section	6.2.2),	while	attempting	to	minimize	the	
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number	of	drugs	required	to	perform	this	task	within	this	system.	The	drugs	considered	are	

the	detailed	in	Table	6.2.	The	scoring	function	minimized	by	the	genetic	algorithm	is:	

	

_ àF2QH = 	CZF2QH + 0.045` + 	0.001 ∗ 	 [(d)

e

3fW

	

	

Where	 the	 AScore	 is	 as	 defined	 in	 section	 6.2.2,	 D	 is	 the	 number	 of	 drugs	 applied	 to	 the	

system,	 and	 C(n)	 is	 the	 concentration	 of	 drug	 n.	 Drug	 concentrations	 were	 set	 to	 be	

between	0	 and	1000	mM,	 and	 all	 ki	 values	were	 assumed	 to	be	1	mM.	 Simulations	were	

performed	 in	Matlab	using	 the	ga()	method,	 and	 the	 following	parameters	were	 included	

within	the	simulation.	

Table	6.3:	Genetic	Algorithm	Parameters	

Generations	 500	

Population	Size	 2500	

TimeLimit	 18000	(in	seconds)	

InitialPopulation	 0	for	each	drug	

	

Simulations	were	performed	on	an	Intel(R)	Xeon(R)	CPU	E5-2630	v3	@	2.40GHz	(Octo-core)	

CPU	with	64GB	of	RAM	running	CentOS	7.	

	

6.3 Results	

 Genetic	Profiles	for	Population	Subgroups	

In	 order	 to	 develop	 a	 description	 of	 mutations	 that	 are	 representative	 of	 a	 population,	

genetic	profiles	were	developed	as	described	in	section	6.2.4.	 In	situations	where	multiple	

mutations	 exist	 for	 the	 same	 gene,	 and	 ultimately	 the	 same	 protein,	 the	 most	 common	

mutation	 was	 selected	 as	 part	 of	 the	 genetic	 profile.	 The	 31	 genetic	 profiles	 are	 shown	

below.		
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Table	6.4:	Mutations	included	in	genetic	profiles	created	for	model	reparameterisation	

Population	Subgroup	 Mutations	

Han	Chinese	–	China	 EGFR-001-521	(rs2227983)	

MMP9-001-279	(rs17576)	

Japanese	–	Japan	 CCR2-001-64	(rs1799864)	

EGFR-001-521	(rs2227983)	

Southern	Han	Chinese	–	China	 CSF1R-001-362	(rs10079250)	

MMP9-001-279	(rs17576)	

Chinese	Dai	–	China	 EGFR-001-521	(rs2227983)	

MMP9-001-279	(rs17576)	

Kinh	–	Vietnam	 EGFR-001-521	(rs2227983)	

MMP9-001-279	(rs17576)	

European	Americans	–	Utah,	USA	 IL10RA-001-351	(rs2229113)	

Toscani	–	Italy	 IL12RB1-001-214	(rs11575934)	

Finnish	–	Finland	 CSF1-001-408	(rs1058885)	

IL12RB1-001-214	(rs11575934)	

British	–	UK	 None	

Iberian	–	Spain	 None	

Yorubi	–	Nigeria	 IL4R-001-576	(rs1801275)	

Luhya	–	Kenya	 IL4R-001-576	(rs1801275)	

Gambian	–	Gambia	 IL4R-001-576	(rs1801275)	

Mende	–	Sierra	Leone	 IL4R-001-576	(rs1801275)	

Esan	–	Nigeria	 IL4R-001-576	(rs1801275)	

African	Americans	–	USA	 None	

African	Caribbeans	-	Barbados	 IL4R-001-576	(rs1801275)	

Mexican	Ancestry	–	USA	 None	

Puerto	Ricans	–	Puerto	Rico	 None	

Colombian	–	Colombia	 None	

Peruvian	–	Peru	 None	

Gujarati	Indian	–	Texas,	USA	 EGFR-001-521	(rs2227983)	
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Population	Subgroup	 Mutations	

Punjabi	-	Pakistan	 None	

Bengali	–	Bangladesh	 None	

Sri	Lankan	Tamil	–	UK	 None	

Indian	Telugu	–	UK	 None	

East	Asian	 EGFR-001-521	(rs2227983)	

MMP9-001-279	(rs17576)	

European	 None	

African	 IL4R-001-576	(rs1801275)	

American	 None	

South	Asian	 None	

	

 New	kcat	values	

For	each	mutation	that	yields	a	change	in	model	kinetics	an	updated	kcat	value	was	created,	

calculated	as	described	in	section	6.2.1.	An	exhaustive	list	of	these	updated	kcat	values	can	

be	 found	 in	 Appendix	 6.	 For	 the	 individual	 proteins	 contained	within	 the	 genetic	 profiles	

derived	in	section	6.3.1,	reparameterisation	details	can	be	found	in	Table	6.5.	

	

Table	6.5:	Reparameterisation	details	for	mutations	contained	within	genetic	profiles	

Name	 Predicted	

kon	

Predicted	

koff	

Model	

kcat	

Model	

kM	

Updated	

kcat	

Equation	

No	

EGFR-001-521	 2.07E+5	 2.0358	 1938	 100000	 31341	 58	

MMP9-001-279	 5.95E+5	

3.98E+1	

8.88E+7	

8.55E+2	

109.6585	

0	

7.722	

4.22E-06	

1.0E-7	

1.0E-7	

1.0E-7	

1.0E-7	

MA	

MA	

MA	

MA	

8.26E-4	

1.06E-7	

8.07E-2	

2.23E-11	

50	

51	

52	

53	

CCR2-001-64	 2.87E+5	 3.34E-06	 0.0011	

9000	

MA	

500	

0.000162	

1388	

16	

65	

CSF1R-001-362	 7.32E+4	 0.32838	 0.0994	 MA	 5.31E-6	 22	

IL10RA-001-351	 9.10E+04	 3.10E-16	 8.1882	 100000	 7.53	 40	
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0.644	

0.0063	

100000	

100000	

0.5926	

0.0058	

41	

44	

IL12RB1-001-214	 4.15E+03	 1.43E-18	 8.0970	 100000	 21.4029	 39	

CSF1-001-408	 5.13E+04	 0.063048	 0.0994	 MA	 0.1567	 22	

IL4R-001-576	 4.12E+05	 52.3652	 8.1882	 100000	 288.3366	 40	

	

 A	collection	of	atherosclerosis	models	

The	majority	of	mutations	studied	as	defined	in	section	6.2.3	show	a	minor	change	in	model	

dynamics.	86%	of	mutations	(644	out	of	746)	studied	are	within	an	Ascore	range	of	0.5-1.5.	

	

The	median	Ascore	is	1,	the	mean	score	is	1.2223	and	values	range	from	0.0147-90.0286.	The	

top	10	most	atheroprotective	and	atherogenic	mutations	are	shown	in	Table	6.6.	

Table	6.6:	Top	atheroprotective	and	atherogenic	mutations	within	dataset	

Top	 10	 Atheroprotective	

Variants	

Ascore	 Top	 10	 Atherogenic	

Variants	

Ascore	

CCR2-001-355	 0.0147	 CXCR3-002	 90.0790	

CCR2-002-64	 0.0171	 CXCL11-003-29	 46.2952	

CCL2-001-69	 0.0207	 CXCL11-001-73	 18.5207	

CSF1-002-461	 0.0228	 CXCL11-003	 12.4330	

CXCL10-001-58	 0.0592	 CXCL9-001-101	 6.1296	

CCL5-001-68	 0.0625	 CCL5-002-5	 4.3096	

CCL5-002-68	 0.0625	 CCL5-001-5	 4.3096	

IL4-201-134	 0.0675	 MMP9-001-279	 1.7972	

CCL5-001-40	 0.0679	 TIMP2-008-92	 1.7972	

CCL5-002-40	 0.0679	 TIMP1-002-10	 1.7971	

	

 Population	subgroup	specific	results	

Utilising	 the	 subgroup	 specific	 genetic	profiles,	 the	model	of	atherogenesis	was	 simulated	

over	a	period	of	80	years,	with	genetic	profile	changes	made	as	described	in	section	6.3.1.	
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Of	 the	 31	 populations	 included	 within	 phase	 3	 of	 the	 1000	 Genome	 Project,	 we	 have	

created	8	unique	genetic	profiles:	

	

6.3.4.1 Profile	1	-	Han	Chinese	from	China,	Chinese	Dai	from	China	and	Kinh	from	Vietnam	

Mutations	in	EGFR	and	MMP9	were	found	to	be	prevalent	in	more	than	50%	of	individuals	

from	 these	 populations	within	 the	 1000	Genome	 Project	 dataset.	MMP9	 is	 a	 collagenase	

involved	in	the	degradation	of	collagen	and	elastin.	EGF	is	a	key	player	in	the	regulation	of	

elastin	 synthesis.	 Variation	within	 rates	 of	 extra-cellular	matrix	 synthesis	 and	degradation	

within	 the	 tunica	 intima	 can	 have	 a	 distinct	 effect	 on	 plaque	 stability.	 These	 mutations	

demonstrate	a	distinct	increase	in	concentrations	of	extra-cellular	matrix	within	the	plaque	

while	having	no	effect	on	cellular	contents.	

	

	

Figure	6.1:	Plots	showing	the	evolution	of	collagen	and	elastin	concentrations	over	time	for	

genetic	profile	1	compared	to	the	wildtype	profile	

	

6.3.4.2 Profile	2	-	Japanese	from	Japan	

Mutations	in	CCR2	and	EGFR	were	identified	as	suitable	for	this	genetic	profile.	Of	all	of	the	

genetic	profiles	studied,	this	is	the	sole	profile	which	breaks	the	stability	of	our	model.	The	

reduction	in	the	rate	of	monocyte	recruitment	as	seen	due	to	the	effect	of	mutation	CCR2-

001-64	 has	 caused	 a	 severe	 reduction	 in	 the	 rate	 of	 monocyte	 recruitment,	 and	

subsequently	atheroma	size.	Quantitatively,	it	is	clear	that	this	result	is	not	representative	of	

atherogenesis	 within	 a	 Japanese	 population.	 This	 result	 suggests	 that	 the	 mechanisms	
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included	within	 the	model	 representing	monocyte	 recruitment	are	 incomplete	and	should	

be	expanded	to	prevent	a	single	point	of	failure	within	the	model.	

	

However,	qualitative	results	can	still	be	gleaned	from	this	methodology.	A	reduction	in	the	

rate	of	monocyte	recruitment	within	our	mathematical	model	would	lead	to	a	reduction	in	

atheroma	 size,	 suggesting	 that	 a	mutation	prevalent	within	 Japanese	populations	may	be	

fundamentally	atheroprotective.	

	

	

Figure	6.2:	Plots	showing	the	evolution	of	macrophage	and	elastin	concentrations	over	time	

for	genetic	profile	2	compared	to	the	wildtype	profile	

	

6.3.4.3 Profile	3	-	Southern	Han	Chinese	from	China	

MMP9	 and	 CSF1R	 mutations	 were	 found	 to	 be	 prevalent	 in	 Southern	 Han	 Chinese	

populations.	 Alongside	 the	 lesion	 stability	 consequences	 caused	 by	MMP9,	 a	mutation	 in	

CSF1R	 alters	 the	 rate	 by	 which	 monocytes	 will	 differentiate	 into	 macrophages.	 This	

mutation	has	caused	a	slowing	in	the	rate	of	differentiation,	reducing	the	relevant	kcat	value	

from	9.94	 x10-2	 to	 5.31	 x10-6.	 This	mutation	 seems	 to	 have	 caused	 a	minor	 effect	 on	 the	

cellular	composition	of	the	atheroma	within	the	model.		
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Figure	6.3:	Plots	showing	the	evolution	of	Collagen	and	Elastin	concentrations	over	time	for	

genetic	profile	3	compared	to	the	wildtype	profile	

	

6.3.4.4 Profile	4	-	European	Americans	from	Utah,	USA	

European	Americans	were	found	to	have	a	high	frequency	of	mutation	in	IL10RA	within	our	

dataset.	Experimentally,	the	IL10	Receptor	has	been	shown	to	be	tetrameric	(Verma	et	al.,	

2016),	 however	 to	 reduce	 the	 computational	 difficulty	 of	 calculating	 association	 rates	 for	

this	interaction	we	only	considered	one	alpha	chain	of	the	receptor.	Within	our	model,	this	

mutation	 has	 caused	 a	 minor	 atheroprotective	 effect,	 however	 this	 effect	 is	 almost	

negligible.		

	

Figure	6.4:	Plots	showing	the	evolution	of	Collagen	and	Elastin	concentrations	over	time	for	

genetic	profile	4	compared	to	the	wildtype	profile	

	

6.3.4.5 Profile	5	-	Toscani	from	Italy	

Toscani	individuals	were	shown	to	have	a	known	mutation	in	IL12RB1.	Similarly	to	IL10R	as	

discussed	 in	 the	 European	 American	 dataset	 described	 in	 section	 6.3.4.4,	 this	 receptor	 is	
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known	 to	 be	 experimentally	 heterodimeric,	 however	 to	 reduce	 computational	 costs	 in	

estimating	association	rates	then	the	chain	IL12RB1	was	exclusively	used.	Interleukin	12	is	a	

promotor	 of	 Th1	 differentiation	 in	 humans,	 leading	 to	 increased	 IFNG	 production	 driving	

atherogenesis.		

	

Figure	6.5:	Plots	showing	the	evolution	of	collagen	and	Th1	cells	over	time	for	genetic	profile	

5	compared	to	the	wildtype	profile	

	

	

6.3.4.6 Profile	6	-	Finnish	from	Finland	

Our	 Finnish	 genetic	 profile	 contains	 the	 same	 mutation	 in	 IL12RB1	 as	 our	 Toscani	

population,	 alongside	 a	 mutation	 in	 macrophage	 colony	 stimulating	 factor.	 This	 CSF1	

mutation	causes	a	very	minor	pro-atherogenic	effect,	however	the	effect	is	so	small	that	it	is	

almost	 insignificant.	 This	 effect	 is	 engulfed	 by	 the	mutative	 effect	 of	 IL12RB1	within	 this	

genetic	profile.	

	

Figure	6.6:	Plots	showing	the	evolution	of	collagen	and	foam	cells	over	time	for	genetic	

profile	6	compared	to	the	wildtype	profile	
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6.3.4.7 Profile	7	-	Yorubi	from	Nigeria,	Luhya	from	Kenya,	Gambian	from	Gambia,	Mende	

from	Sierra	Leone,	Esan	from	Nigeria	and	African	Caribbeans	from	Barbados	

IL4R-001-576	 is	a	mutation	that	was	shown	to	be	widespread	within	six	of	 the	population	

subgroups	identified	as	part	of	the	1000	Genome	Project.	IL4	is	a	cytokine	that	encourages	

Th2	differentiation.	The	Th1-Th2	balance	is	 important	within	atherosclerosis,	with	increased	

Th2	 activity	 reducing	 the	 severity	 of	 the	 atheroma.	 This	 mutation	 has	 shown	 an	 anti-

atherogenic	effect	through	the	reduction	of	cell	abundance	throughout	the	atheroma.	

	

Figure	6.7:	Plots	showing	the	evolution	of	collagen	and	smooth	muscle	cells	over	time	for	

genetic	profile	7	compared	to	the	wildtype	profile	

	

6.3.4.8 Profile	8	-	Gujarati	Indian	from	Texas,	USA	

EGFR	 is	 an	 important	 component	of	elastin	 synthesis.	 EGFR-001-521	 is	 the	mutation	 (also	

common	within	Han	Chinese,	Chinese	Dai	and	Kinh	populations)	that	is	the	sole	constituent	

of	 our	 Gujarati	 Indian	 from	 Texas,	 USA	 genetic	 profile.	 This	 mutation	 causes	 a	 minor	

increase	in	elastin	concentration	within	the	tunica	intima,	increasing	plaque	size	while	also	

increasing	plaque	stability.	
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Figure	6.8:	Plot	showing	the	evolution	of	elastin	concentrations	over	time	for	genetic	profile	

8	compared	to	the	wildtype	profile	

	

6.3.4.9 All	Others	

Each	of	 the	other	 population	 subgroups	 included	 in	 this	 study	 showed	no	mutations	 that	

occurred	in	more	than	50%	of	the	subgroup	members.	

	

 Population	subgroup	therapy	optimization.	

For	each	of	our	population	 subgroup	models,	atherosclerosis	dynamics	were	 simulated	as	

described	 in	 section	 6.2.4.	 Using	 each	 of	 our	 population	 subgroup	 models,	 a	 genetic	

algorithm	was	applied	to	calculate	the	multi-drug	combination	designed	to	minimize	plaque	

size	 for	 each	 of	 our	 population	 subgroups	 as	 detailed	 in	 section	 6.3.1.	 Results	 are	 shown	

below.	

	

6.3.5.1 Wildtype	Profile	

The	optimal	multi-drug	combination	ascertained	using	a	genetic	algorithm.	was:	
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Drug	Target	 Concentration	

oxLDL	→	CD36		 20.0704	mM	

IL12	→	IL12R	 33.0863	mM	

	

Returning	 a	 final	 MDscore	 of	 0.3067.	 Applying	 no	 drugs	 to	 the	 system	 would	 provide	 an	

MDscore	of	1,	showing	a	significant	reduction	as	a	result	of	this	multi-drug	combination.	

	

6.3.5.2 Profile	1	-	Han	Chinese	from	China,	Chinese	Dai	from	China	and	Kinh	from	Vietnam	

The	optimal	multi-drug	combination	ascertained	using	a	genetic	algorithm	was:	

	

Drug	Target	 Concentration	

IL18	→	IL18R	 12.1153	mM	

IL12	→	IL12R	 12.2492	mM	

	

Returning	 a	 final	MDscore	 of	 0.2585.	 Applying	 the	 optimal	multi-drug	 combination	 for	 the	

wildtype	profile	returns	an	MDscore	of	0.2860,	suggesting	an	improved	therapeutic	response	

by	switching	to	drugs	with	target	the	Th1/Th2	balance	instead	of	limiting	foam	cell	formation	

for	this	genetic	profile.	

	

6.3.5.3 Profile	2	-	Japanese	from	Japan	

The	optimal	multi-drug	combination	ascertained	using	a	genetic	algorithm	was:	

	

Drug	Target	 Concentration	

IL12	→	IL12R	 14.78	mM	

	

Returning	a	 final	MDscore	of	0.1636.	 .	Applying	 the	optimal	multi-drug	combination	 for	 the	

wildtype	profile	returns	an	MDscore	of	0.1903,	suggesting	that	targeting	oxLDL	phagocytosis	

by	immune	cells	is	less	efficacious	with	this	genetic	profile	due	to	immune	cell	concentration	

being	reduced	due	to	the	mutation	CCR2-001-64.	
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6.3.5.4 Profile	3	-	Southern	Han	Chinese	from	China	

The	optimal	multi-drug	combination	ascertained	using	a	genetic	algorithm	was:	

	

Drug	Target	 Concentration	

IL18	→	IL18R	 13.1614	mM	

IL12	→	IL12R	 13.0325	mM	

	

Returning	a	final	MDscore	of	0.2694.	Wildtype	therapeutics	give	an	MDscore	of	0.2904,	so	our	

optimal	therapies	for	genetic	profile	3	are	similar	to	genetic	profile	1.	

	

6.3.5.5 Profile	4	-	European	Americans	from	Utah,	USA	

The	optimal	multi-drug	combination	ascertained	using	a	genetic	algorithm	was:	

	

Drug	Target	 Concentration	

oxLDL	→	CD36	 20.0704	mM	

IL12	→	IL12R	 33.0863	mM	

	

Returning	a	final	MDscore	of	0.3066.	Alternative	multi-drug	therapeutics	were	not	found	for	

this	population	subgroup.	

	

6.3.5.6 Profile	5	-	Toscani	from	Italy	

The	optimal	multi-drug	combination	ascertained	using	a	genetic	algorithm	was:	

	

Drug	Target	 Concentration	

oxLDL	→	CD36	 11.3650	mM	

IL12	→	IL12R	 15.2277	mM	

IL18	→	IL18R	 15.0994	mM	

	

Returning	 a	 final	 MDscore	 of	 0.3268.	 Wildtype	 therapeutics	 give	 an	 MDscore	 of	 0.3713,	

suggesting	 that	 adding	 an	 additional	 drug	 could	 reduce	 atheroma	 risk	 for	 individuals	 in	

genetic	profile	5,	although	increasing	the	potential	for	side	effects.	
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6.3.5.7 Profile	6	-	Finnish	from	Finland	

The	optimal	multi-drug	combination	ascertained	using	a	genetic	algorithm	was:	

	

Drug	Target	 Concentration	

oxLDL	→	CD36	 11.3638	mM	

IL12	→	IL12R	 15.2290	mM	

IL18	→	IL18R	 15.1005	mM	

	

Returning	a	final	MDscore	of	0.3268.	Wildtype	therapeutics	give	an	MDscore	of	0.3713,	giving	

identical	scores	to	genetic	profile	5.	The	mutation	CSF1-001-408,	being	the	sole	difference	

between	our	Finnish	and	Toscani	genetic	profiles,	 is	proving	 to	be	negligible	 in	multi-drug	

therapeutic	hypotheses	development.	

	

6.3.5.8 Profile	7	-	Yorubi	from	Nigeria,	Luhya	from	Kenya,	Gambian	from	Gambia,	Mende	

from	Sierra	Leone,	Esan	from	Nigeria	and	African	Caribbeans	from	Barbados	

The	optimal	multi-drug	combination	ascertained	using	a	genetic	algorithm	was:	

	

Drug	Target	 Concentration	

oxLDL	→	CD36	 12.1494	mM	

IL12	→	IL12R	 13.2339	mM	

	

Returning	 a	 final	 MDscore	 of	 0.2452.	 Wildtype	 therapeutics	 give	 an	 MDscore	 of	 0.2633,	

suggesting	that	a	reduction	in	drug	concentration	may	be	beneficial	to	individuals	in	genetic	

profile	7.	It	is	likely	that	this	is	simply	a	quirk	of	the	MDscore	function	however.	

	

6.3.5.9 Profile	8	-	Gujarati	Indian	from	Texas,	USA	

The	optimal	multi-drug	combination	ascertained	using	a	genetic	algorithm	was:	

	

Drug	Target	 Concentration	
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IL18	→	IL18R	 21.6088	mM	

IL12	→	IL12R	 21.4817	mM	

	

Returning	 a	 final	 MDscore	 of	 0.2954.	 Wildtype	 therapeutics	 provide	 an	MDscore	 of	 0.2974,	

suggesting	a	very	minor	difference	in	benefit	through	patient	stratification	with	this	genetic	

profile.	

	

Our	 multi-drug	 therapeutic	 experiments	 show	 that	 drug	 combinations	 exist	 to	 provide	 a	

reduced	MDscore	for	seven	out	of	our	eight	genetic	profiles.	Figure	6.9	compares	the	effect	of	

wildtype	drug	combinations	to	patient	subgroups	combinations.	

	

	

Figure	6.9:	MDscore	after	wildtype	and	subgroup-specific	therapies.	Population	subgroup	

specific	therapies	show	a	reduction	in	atheroma	size	

6.4 Discussion	

6.4.1.1 Proatherogenic	Mutations	

Eight	of	the	ten	most	atheroprotective	variants	involve	reducing	the	rate	of	which	immune	

cells	are	brought	to	the	atheroma	site.	Proteins	CCR2-001-355,	CCR2-002-64,	CCL2-001-69,	

CXCL10-001-58,	 CCL5-001-68,	 CCL5-002-68,	 CCL5-001-40	 and	 CCL5-002-40	 all	 cause	 a	

significant	reduction	in	atheroma	size	due	to	the	reduction	of	immune	cells	recruited	to	the	

lesion.	 Another	 mutation	 in	 the	 top	 10	 is	 IL4-201-134,	 causing	 a	 severe	 change	 in	 the	

Th1/Th2	 balance	 within	 the	 atheroma,	 giving	 an	 Ascore	 of	 0.0675.	 Limiting	 immune	 cell	
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recruitment	and	disrupting	 the	Th1/Th2	balance	are	 two	potential	areas	of	 investigation	 in	

the	 treatment	 of	 atherosclerosis.	 Finally,	 CSF1-002-461	 severely	 inhibits	 the	 rate	 of	

monocyte	differentiation	into	macrophages,	preventing	the	frequent	phagocytosis	of	oxLDL	

which	drives	atherogenesis.	

	

6.4.1.2 Genetic	Profiles	

For	each	of	the	8	population	subgroups	studied	 in	this	chapter,	we	have	seen	a	change	 in	

pathway	 dynamics	 when	 reparameterisation	 has	 taken	 place	 to	 consider	 the	 effect	 of	

mutations	commonly	found	within	these	populations.	Within	genetic	profile	1	(Han	Chinese	

from	China,	 Chinese	Dai	 from	China	 and	 Kinh	 from	Vietnam),	 a	 decrease	 in	 extra-cellular	

matrix	 remodelling	 has	 led	 to	 a	 total	 increase	 in	 concentrations	 of	 elastin	 and	 collagen.	

Increased	 collagen	 within	 an	 atheroma	 can	 lead	 to	 an	 increase	 in	 lesion	 size,	 however	

collagen	can	also	be	beneficial	to	plaque	stability,	reducing	the	likelihood	of	a	cardiovascular	

event.	While	studies	exist	providing	statistics	related	to	CVD	for	each	of	these	populations,	

none	 of	 them	provide	 sufficient	 histological	 detail	 to	 use	 as	 validation	 for	 the	 conclusion	

from	 our	 genetic	 profile	 study	 (Chen	 et	 al.,	 2017;	 Lu	 et	 al.,	 2012;	Minh,	 2006).	 Similarly,	

genetic	profile	3	(Southern	Han	Chinese)	shows	elastin	degradation	and	a	minor	alteration	

in	plaque	cellular	composition	due	to	a	mutation	 in	CSF1R,	however	experimental	data	 to	

corroborate	this	result	is	unavailable.	

	

Japanese	 individuals	 within	 Japan	 present	 fewer	 symptoms	 of	 subclinical	 atherosclerosis	

than	 other	 populations.	 Indeed,	 Japan	 has	 a	 significantly	 fewer	 CVD	 related	 deaths	 than	

reported	 in	 other	 countries	 (Nojiri	 and	Daida,	 2017).	 Despite	 the	 stability	 issues	with	 our	

Japanese	genetic	profile,	 the	atheroprotective	nature	of	 the	variation	common	within	 this	

genetic	 profile	 mirrors	 the	 reduction	 in	 subclinical	 atherosclerosis	 manifestation	 and	

subsequent	CVD	risk.	There	are	multiple	potential	reasons	for	the	reduced	CVD	risk	in	Japan,	

including	 a	 low-fat	 diet	 and	 significantly	 reduced	 obesity	 within	 the	 country.	 However,	

Japanese	 individuals	who	 have	 followed	 a	western	 lifestyle	 from	 childhood	 are	 shown	 to	

have	a	lower	mortality	rate	from	CVD	than	Caucasian	individuals	within	the	US,	suggesting	

that	genetics	may	have	a	part	to	play	(Sekikawa	et	al.,	2007,	2003).	
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Genetic	profile	4	(European	Americans	from	Utah,	USA)	has	shown	a	minor	change	in	the	T-

h1-Th2	balance	due	to	a	mutation	in	IL10RA.	Similarly,	genetic	profile	5	(Toscani	from	Italy)	

shows	 a	 minor	 change	 in	 this	 balance	 due	 to	 an	 IL12RB1	 mutation.	 The	 effect	 of	 these	

mutations	 is	 very	 minor	 and	 would	 likely	 have	 an	 almost	 insignificant	 effect	 on	

cardiovascular	risk.	Studies	into	European	American	populations	are	limited	(Johnson	et	al.,	

2011),	 however	 it	 has	 been	 shown	 that	 cardiovascular	 disease	 related	 morbidity	 and	

mortality	 in	 Italy	 is	 reduced	when	compared	to	other	European	countries,	although	this	 is	

likely	to	be	primarily	due	to	dietary	factors	(Palmieri	et	al.,	2010).		

	

Additionally,	 the	 Finnish	 genetic	 profile	 (genetic	 profile	 6)	 shows	 a	 similar	 level	 of	

atherosclerotic	risk	to	genetic	profile	5,	with	the	addition	of	a	mutation	 in	CSF1,	causing	a	

very	minor	change	to	atheroma	cellular	content.	Despite	Finland	having	the	highest	rate	of	

CVD	related	deaths	in	the	late	1960s,	this	number	was	significantly	reduced	in	2012	due	to	

reduction	 in	 numbers	 of	 smokers	 and	 healthier	 diet	 leading	 to	 average	 lower	 serum	

cholesterol	and	blood	pressure	(Jousilahti	et	al.,	2016;	Vartiainen	et	al.,	1999).	

	

Genetic	profile	 7	 (Yorubi	 from	Nigeria,	 Luhya	 from	Kenya,	Gambian	 from	Gambia,	Mende	

from	 Sierra	 Leone,	 Esan	 from	 Nigeria	 and	 African	 Caribbeans	 from	 Barbados)	 show	 an	

alteration	to	the	Th1-	Th2	balance	due	to	a	mutation	in	IL4R.	This	mutation	is	expected	to	be	

atheroprotective.	 Europeans	 have	 a	 higher	 risk	 of	 cardiovascular	 disease	 than	 an	 African	

Caribbean	population	 (Chaturvedi,	2003).	Studies	have	been	performed	to	assess	CVD	risk	

within	Yoruba	Nigerians	and	individuals	in	western	Kenya,	however	these	studies	solely	look	

at	 common	 risk	 factors	 (Chege,	 2016;	 Deeg	 et	 al.,	 2008).	 Hypertension	 across	 Gambian,	

Sierra	Leonean	and	Southern	Nigerian	populations	has	also	been	studied	(Awad	et	al.,	2014;	

Isara	and	Okundia,	2015).	

	

The	profile	representing	Gujarati	 Indians	from	Texas,	USA	(Profile	8)	exclusively	contains	a	

mutation	 in	 EGFR,	 leading	 to	 an	 increase	 in	 elastin	 concentration	 within	 the	 artery	 wall.	

While	studies	exist	 looking	at	the	burden	of	CVD	in	Gujarati	 Indians	 in	Asia,	a	Texas-based	

population	has	not	been	studied	(Sharma	et	al.,	2015).		
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Multiple	studies	have	shown	an	increased	cardiovascular	disease	risk	for	African	Americans	

and	 South	 Asian	 individuals	 (Gupta	 and	 Brister,	 2006;	 Lloyd-Jones	 et	 al.,	 2010).	

Unfortunately,	 no	 mutations	 showed	 a	 greater	 than	 50%	 prevalence	 within	 our	 African	

American	or	South	Asian	datasets.	

	

 Variations	in	Interleukin-18	affect	plaque	stability	

IL18R1-001-232	(rs148457935)	 is	a	mutation	which	 leads	to	an	 increase	 in	kon	to	1.26x106.	

Within	the	mathematical	model,	this	has	given	a	kcat	value	of	2.4525	x105	to	represent	this	

mutation.	Studies	have	shown	that	an	increase	in	IL-18	concentration	and	activity	leads	to	a	

reduction	 in	collagen	within	the	 intima	 in	apolipoprotein	E	deficient	mice,	creating	plaque	

instability	 (De	 Nooijer	 et	 al.,	 2004).	 Increasing	 the	 activity	 of	 IL18	 through	

reparameterisation	 will	 lead	 to	 similar	 behavior	 as	 incorporating	 overexpression	 into	 the	

model,	suggesting	that	this	behavior	will	be	seen	in	an	individual	with	the	mutation	IL18R1-

001-232.	 Collagen	 concentrations	 for	 a	 collection	 of	 IL18	 related	 mutations	 are	 shown	

below:		

	

	

Figure	6.10:	The	effect	of	all	mutations	affecting	the	interaction	between	IL18	→	IL18R1	on	

collagen	concentrations	
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Figure	6.11:	The	effect	of	IL18R1-001-232	(rs148457935)	on	collagen	concentrations	

	

As	seen	in	Figure	6.10,	an	increase	in	IL18	activity	is	expected	to	lead	to	an	increase	in	the	

rate	of	collagen	production	 in	the	beginning,	however	as	time	passes	this	concentration	 is	

expected	 to	 stop	 increasing	 and	 stabilize	 to	 approximately	 5x106	 pg/ml,	 even	 with	 small	

variations	 in	 protein	 activity.	 With	 a	 large	 increase	 in	 IL18	 activity	 represented	 by	 the	

mutation	 IL18R1-001-232,	 our	 initial	 spike	 in	 collagen	 concentration	 quickly	 turns	 into	 a	

reduction	in	total	extra-cellular	matrix	within	the	plaque	as	collagen	remodelling	occurs.	

	

 Statins	and	PCSK9	Inhibitors	

Two	commonly	prescribed	drugs	for	the	treatment	of	atherosclerosis-driven	cardiovascular	

disease	that	are	not	included	in	our	multi-drug	experiment	are	statins	and	PCSK9	inhibitors.	

The	 mechanism	 of	 action	 of	 both	 statins	 and	 PCSK9	 inhibitors	 involve	 the	 reduction	 of	

plasma	LDL	levels	through	the	modification	of	the	cholesterol	metabolism	pathway	and	the	

lipoprotein	 metabolism	 pathway	 respectively.	 Their	 therapeutic	 properties	 could	 be	

indirectly	added	to	the	model	through	a	forced	reduction	of	plasma	LDL	levels,	however	it	

was	 decided	 to	 solely	 focus	 on	 interactions	 included	 in	 the	model	 to	 prevent	 altering	 of	

multi-drug	therapeutic	methodology	for	a	specific	case.	Therapeutic	options	focused	on	the	

disease	pathophysiology	rather	than	the	cause.	
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 Multi-drug	therapeutics	

The	 introduction	of	 fifteen	different	drugs	was	simulated	 for	each	genetic	profile.	Each	of	

the	multi-drug	therapeutics	simulations	described	in	section	6.3.5	suggested	a	combination	

of	three	different	drugs,	while	five	genetic	profiles	suggest	the	introduction	of	a	new	drug	

targeting	 the	 interaction	 IL18	 →	 IL18R	 to	 disrupt	 the	 Th1/Th2	 balance.	 The	 nine	 genetic	

profiles	 outlined	 in	 section	 6.3.1	 suggest	 a	 collection	 of	 different	 drug	 combinations	 and	

concentrations	to	treat	stratified	patient	groups.	

	

 Can	 we	 identify	 biomarkers	 in	 plasma	 from	 high	 concentrations	 within	 the	

atheroma?	

Each	 of	 our	 genetic	 profiles	 can	 be	 studied	 for	 protein	 concentrations	 with	 significant	

variation	from	the	wildtype	profile	for	potential	use	as	biomarkers.	Genetic	Profile	7	shows	

a	significant	increase	in	IL-4	concentration	within	the	plaque,	with	a	large	increase	occurring	

quickly	after	atherogenesis	initiation.	

	

	

Figure	6.12:	Interleukin	4	concentrations	for	genetic	profile	7	

	

Identification	 of	 biomarkers	 within	 population	 subgroups	 is	 a	 cornerstone	 of	 stratified	

medicine	 approaches.	 Within	 our	 mathematical	 model,	 concentrations	 are	 modelled	 for	

proteins	 found	within	 the	 blood,	 the	 plaque,	 or	 both.	 The	 benefit	 of	 a	 biomarker	 within	

atherosclerosis	 is	 in	 the	 ability	 to	 utilize	 measurements	 of	 an	 entity	 as	 an	 indicator	 to	
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disease	 progression.	 Any	 potential	 biomarkers	 identified	 would	 be	 significantly	 less	

beneficial	 in	practice	 if	providing	measurements	proved	challenging	–	 i.e.	 if	 the	biomarker	

was	found	within	the	plaque	rather	than	within	blood.	In	the	case	of	IL-4,	is	it	possible	that	

we	will	see	similar	results	within	the	plasma?	The	answer	depends	on	the	dynamics	of	the	

biomarker,	 tissue	 properties	 and	 the	 cytokine	 half-life;	 however	 further	 investigation	 is	

warranted.		

	

 Outliers	

Particular	 results	 are	obvious	outliers.	 For	 example,	 TransComp	estimated	 the	association	

rate	of	CSF1R-001-245	with	CSF1-001	to	be	3.81x10-188	M-1	s-1.	Additionally,	IL12RB1-001-214	

was	 given	 a	 kd	 value	 of	 3.45x10-22	 M	 by	 PRODIGY,	 leading	 to	 a	 very	 slow	 off-rate	 of	

1.4305x10-18	s-1.	While	these	values	give	us	a	quantification	that	we	can	use,	such	extreme	

variations	in	binding	kinetics	have	led	to	significant	changes	in	kcat	values	which	heavily	alter	

model	dynamics,	breaking	model	stability.	As	such,	any	obvious	outliers	with	a	kon	value	less	

than	1	were	removed	from	the	dataset	and	model	dynamics	were	not	simulated.	Providing	a	

limit	at	the	higher	end	of	our	collection	of	association	rates	was	not	necessary;	the	highest	

association	 rate	 calculated	 that	 altered	 model	 dynamics	 was	 the	 association	 between	

MMP3-001-45	and	TIMP3-001	at	5.61x1010	M-1	s-1,	a	reasonable	value.	High	variations	in	koff	

were	less	likely	to	provide	a	severe	change	to	kcat,	leading	to	unrealistic	disruptions	to	model	

dynamics,	so	koff	values	were	used	whenever	PRODIGY	returned	a	value.	

	

 Other	Diseases	

Mutations	 shown	 to	 be	 atherogenic	 or	 atheroprotective	 could	 have	opposite	 effects	with	

other	diseases.	Asthma	is	an	inflammation	driven	disease	affecting	the	lungs,	which	shares	

inflammatory	mechanisms	with	atherosclerosis	(Lambrecht	and	Hammad,	2015).	Asthma	is	

a	 Th2	 driven	 disorder	 where	 T	 cell	 activation	 leads	 to	 mucus	 production,	 oedema	 and	

inflammation	 of	 the	 airways.	 Tipping	 the	 Th1/Th2	 balance	 towards	 Th2	 cells	 is	 likely	 to	

increase	the	severity	of	the	disorder	(Bosnjak	et	al.,	2011).	Genetic	profile	7	contains	IL4R-

001-576,	a	mutation	which	promotes	Th2	differentiation,	altering	the	Th1/Th2	balance	within	

atherosclerosis.	 African	 Caribbeans,	 a	 population	 subgroup	 included	 as	 part	 of	 genetic	
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profile	7,	have	an	increased	prevalence	of	asthma	when	compared	to	white	UK	individuals	

(Whitrow	and	Harding,	2010).	

	

 Conclusion	

In	this	chapter	we	have	combined	the	results	detailed	in	chapters	3,	4	and	5	to	develop	an	in	

silico	platform	to	study	how	atherosclerosis	dynamics	differ	between	population	subgroups.	

The	 creation	 of	 genetic	 profiles	 to	 represent	 individual	 populations	 allows	 for	 the	

reparameterisation	 of	 the	 model	 for	 these	 genetic	 profiles	 and	 the	 study	 of	 theoretical	

multi-drug	 interventions	 to	optimize	plaque	reduction.	Systems	biology	methods	have	 the	

potential	to	be	a	strong	predictor	of	how	a	perturbation	will	affect	disease	dynamics	when	

the	 mathematical	 model	 of	 the	 disease	 and	 the	 disruption	 are	 both	 well-defined.	 The	

quantity	 and	 quality	 of	 publically	 available	 biological	 data	 relating	 to	 PPIs	 and	 of	

mathematical	 models	 relating	 to	 disease	 processes	 has	 significantly	 increased	 in	 recent	

years.	Combining	powerful	models	with	vast	datasets	has	the	potential	to	lead	to	advances	

in	 stratified	 medicine;	 including	 population	 subgroup	 specific	 therapeutic	 hypotheses,	

biomarker	identification	and	virtual	clinical	trial	functionality.	
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7.1 Overview		

Computational	and	mathematical	modelling	of	disease	processes	has	a	key	part	to	play	 in	

the	future	of	stratified	and	personalized	medicine.	Sequencing	the	genome	of	an	individual	

to	provide	genetic	insight	which	can	be	used	to	provide	optimal	therapeutics	is	an	idea	that	

has	 been	 considered,	 discussed	 and	 debated	 amongst	 healthcare	 professionals	 for	 years	

(Gonzalez-garay,	 2015;	 Kalow,	 2002;	 Nijhout	 et	 al.,	 2015).	 However,	 many	 significant	

advances	in	computational	modelling	are	required	before	this	becomes	a	reality.	Improving	

methods	to	analyse	how	genetic	variation	affects	the	dynamics	of	particular	diseases	is	an	

important	 step	on	 the	 journey	 to	 idealized	personalized	medicine.	 	Within	 this	 thesis,	we	

have	 developed	 a	 computational	 model	 of	 atherosclerosis	 containing	 significantly	 more	

biological	 entities	 than	 any	 other	 available	model	 of	 plaque	 formation.	 Validating	model	

results	 through	 comparison	 with	 experimentally	 derived	 results	 has	 been	 performed	

extensively	 to	 ensure	 biological	 relevance.	Multi-drug	 systems	 pharmacology	 approaches	

have	been	utilized	to	suggest	drug	combinations	to	minimize	plaque	growth,	and	an	overall	

in	silico	platform	for	the	study	of	atherosclerosis	dynamics	has	been	created.	

Utilizing	 sequence	 data	 taken	 from	 phase	 3	 of	 the	 1000	Genome	 Project,	 a	 collection	 of	

mutations	relating	to	atherosclerosis	were	isolated.	A	protein-forming	amino	acid	sequence	

was	constructed	for	each	of	these	sequences,	and	state-of-the-art	protein	folding	methods	

were	 used	 to	 predict	 tertiary	 structures	 for	 each	 of	 these	mutations.	 Comparative	 steps	

were	 taken	 to	 demonstrate	 the	 validity	 and	 accuracy	 of	 each	 of	 these	 predicted	 protein	

structures	through	alignment	to	experimental	proteins	found	in	the	Protein	Data	Bank,	and	

these	mutations	were	 heatmapped	 to	 show	 regions	 of	 proteins	with	 increased	 structural	

variability.	Docking	methods	were	utilized	to	derive	a	quaternary	structure,	and	to	study	the	

complexes	formed	during	atherogenesis.	Binding	kinetics	were	calculated	in	the	form	of	kon	

and	koff	values	 for	each	of	 the	complexes	 formed	with	 these	docking	procedures,	and	the	

effects	of	mutations	on	these	kinetics	were	studied.		

As	part	of	a	stratified	medicine	program	designed	to	study	the	dynamics	of	atherosclerosis	

across	population	subgroups,	variant	allele	frequency	data	isolated	from	the	1000	Genome	

Project	were	used	to	create	a	genetic	profile	for	31	different	population	subgroups.	Binding	

kinetics	 for	mutations	 involved	 in	 these	 genetic	 profiles	 were	 used	 to	 reparametrize	 the	
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mathematical	 model,	 to	 predict	 population	 specific	 changes	 in	 plaque	 development.	

Utilizing	 a	 genetic	 algorithm	 to	 find	 a	 global	 minimum	 to	 a	 scoring	 function	 related	 to	

atheroma	size	and	plaque	stability,	multi-drug	combinations	to	maximize	plaque	reduction	

were	calculated	to	suggest	population-specific	therapeutics	and	progression	biomarkers.		

7.2 Have	we	satisfied	our	aims?	

The	aims	of	this	thesis	as	outlined	in	Section	1.3	have	been	addressed.	These	statements	of	

intent	have	all	been	satisfied	within	our	previous	chapters.	

 Aim	1	–	Develop	a	computational	model	of	atherosclerosis	

After	 careful	 study	 of	 currently	 existing	 computational	 and	 mathematical	 models	 of	

atherosclerosis	and	plaque	development,	a	 literature	review	of	this	 field	was	scripted	and	

published,	included	in	Chapter	2.	These	models	were	considered	during	the	development	of	

the	mathematical	model	detailed	in	Chapter	3.	The	mathematical	model	developed	as	part	

of	 this	 thesis	 includes	 aspects	 of	 atherosclerosis	 that	 have	 not	 been	 modelled	 by	 other	

groups	and	models	the	concentrations	of	more	biological	entities	than	other	models	within	

this	 field	 (Parton	 et	 al.,	 2015).	 Extensive	 validation	 has	 been	 performed	 to	 ensure	 the	

biological	relevance	of	the	model.	

 Aim	2	–	Study	the	variation	in	structure	for	proteins	related	to	atherosclerosis	

A	 collection	 of	 protein	 structures	 detailed	 in	 Chapter	 4	 were	 obtained	 using	 protein	

structure	 prediction	 methods	 that	 CASP	 experiments	 have	 proven	 to	 be	 highly	 reliable.	

Alignments	to	experimentally	derived	wildtypes	were	performed	to	ensure	accuracy	of	our	

models.	Quaternary	 structures	 including	 heterodimers,	 homodimers	 and	 complexes	were	

derived	using	docking	methods,	and	binding	kinetics	were	calculated	using	these	structures,	

as	explained	in	Chapter	5.	

 Aim	3	–	Predict	how	structural	variance	will	change	atherosclerosis	dynamics	

Rate	parameters	kon	and	koff	were	calculated	and	described	in	Chapter	5.	The	mathematical	

model	 detailed	 in	 Chapter	 3	 was	 reparametrized	 according	 to	 this	 binding	 kinetics	 data.	

Genetic	 profiles	 for	 population	 subgroups	 have	 been	 developed	 utilizing	 1000	 Genomes	
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Project	population	genetics	data	 to	allow	 for	 the	prediction	of	how	population	 subgroup-

specific	structural	variance	will	alter	atherosclerosis	progression,	as	shown	in	Chapter	6.	

Each	 of	 these	 aims	 have	 been	 achieved	 and	 comprehensively	 detailed	within	 this	 thesis,	

assisting	 in	 the	 overall	 objective	 of	 studying	 the	 dynamics	 of	 atherosclerosis	 across	

population	subgroups.	

7.3 The	need	for	collaboration	

While	 the	 mathematical	 model	 developed	 shows	 extensive	 depth	 and	 complexity	 in	 the	

study	of	atherosclerosis,	numerous	biological	processes	and	pathways	significant	to	plaque	

formation	are	not	included	as	part	of	this	study.	LDL	concentration	within	the	blood,	one	of	

the	primary	 risk	 factors	 for	 cardiovascular	disease,	 is	 considered	as	a	 constant	within	 the	

mathematical	 model.	 This	 prevents	 the	 consideration	 of	 short-term	 fluctuations	 in	

concentrations,	 dietary	 changes,	 the	 process	 of	 cholesterol	 metabolism,	 the	 process	 of	

lipoprotein	 metabolism	 and	 lipoprotein	 subtypes.	 Mathematical	 models	 have	 been	

developed	to	study	the	role	of	statins	 in	cardiovascular	disease	(Eussen	et	al.,	2011),	with	

statins	being	the	most	commonly	used	drug	in	the	treatment	of	CVD.	Considering	other	risk	

factors	to	atherosclerosis	(such	as	diabetes	mellitus,	smoking	and	old	age)	expands	the	list	

of	biological	processes	to	consider	while	studying	the	process	of	atherogenesis	as	a	whole.	

The	list	of	risk	factors	that	have	been	shown	to	have	a	connection	to	cardiovascular	disease	

is	so	expansive	that	incorporating	each	of	them	into	a	model	would	require	something	akin	

to	a	computational	model	of	an	entire	human	(Grundy	et	al.,	1999;	M.	Mooney	and	T.	Mc	

Auley,	2015;	Muntner	et	al.,	2005;	Powell,	1998;	Shi	et	al.,	2005).	Recently,	the	first	whole	

cell	 model	 was	 developed,	 representing	Mycoplasma	 genitalium	 	 (Karr	 et	 al.,	 2012a),	 in	

what	 is	 still	 one	 of	 the	 largest	 computational	 models	 currently	 available	 to	 represent	

biological	 processes,	 combining	 data	 from	more	 than	 900	 different	 publications.	 Finding	

accurate	biological	parameters	for	all	 interactions	within	this	model	of	M.	genitalium	 is	an	

incredibly	challenging	task,	requiring	manual	searching	of	a	vast	collection	of	published	data	

to	find	potential	parameter	values.	The	volume	of	work	required	to	develop	a	mathematical	

model	covering	a	whole	cell	is	enormous,	even	with	M.	genitalium’s	small	genome	size	(Karr	

et	al.,	2012b).	
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In	 the	 pursuit	 of	 true	 personalized	 medicine,	 interconnected	 models	 representing	 large	

biological	systems	are	more	likely	to	be	able	to	predict	side	effects	of	model	perturbations.	

Of	 course,	 the	 study	 of	 subsections	 and	 pathways	 can	 bring	 key	 insight	 into	 disease	

dynamics;	however,	larger	and	more	comprehensive	models	of	biological	systems	have	the	

potential	to	bring	new,	stronger	results.	Gaps	in	our	knowledge	can	be	bridged	through	the	

introduction	 of	 systems	 biology	 approaches	 to	 biological	 systems,	 yet	 the	 systems	

concerned	are	 so	 complex	 that	 it	 requires	 vast	 resources	 spanning	multiple	disciplines	 to	

bring	 computational	 biology	 results	 into	 clinical	 healthcare	 benefits.	 Developing	 a	 strong	

computational	 model	 of	 a	 disease	 process	 requires	 skills	 in	 areas	 such	 as	 mathematics,	

informatics	and	biochemistry.	To	provide	expertise	in	individual	disease	areas	and	guidance	

on	clinically	beneficial	results,	input	from	domain	experts	and	clinicians	can	be	a	significant	

benefit	 to	 the	 project.	 Development	 of	 a	 multi-scale	 model	 requires	 the	 summation	 of	

proteomics,	genetics,	metabolomics	and	transcriptomics,	while	looking	at	an	assortment	of	

cell	types	and	tissues	where	interactions	can	take	place.	Collaborative	efforts	are	the	future	

of	systems	medicine	to	ensure	that	each	of	these	areas	are	suitably	covered.	

7.4 The	Mathematical	Model	of	Atherosclerosis	

The	mathematical	model	developed	in	Chapter	3	is	a	keystone	of	the	work	outlined	within	

this	 thesis.	 The	 model	 has	 been	 developed	 to	 SBGN	 (Le	 Novere	 et	 al.,	 2009)	 and	 SBML	

(Hucka	et	al.,	2003)	open	standards	and	the	SBML	version	has	been	deposited	in	BioModels,	

a	 public	 domain	 computational	 model	 database,	 to	 encourage	 collaboration	 and	 reuse	

(Novère,	 2006).	 Results	 have	 shown	 the	 biological	 relevance	 of	 the	mathematical	model	

through	 reproduction	 of	 results	 from	 other	 biological	 studies,	 as	 detailed	 in	 section	 3.3.	

Considering	the	concentration	of	each	protein	and	cell	type	within	the	model	using	an	ODE	

allows	 for	 the	 pharmacological	 modelling	 of	 drug	 interventions	 using	 hypothetical	 drugs	

acting	on	specific	targets	as	well	as	known	drugs.		

However,	despite	the	considerable	detail	included	in	the	multi-scale	model,	it	can	in	no	way	

be	 considered	 a	 complete	 representation	 of	 atherosclerosis.	 Some	 cell	 subtypes,	 such	 as	

anti-inflammatory	macrophages,	 have	 not	 been	 included	within	 the	mathematical	model	

(Bobryshev	 et	 al.,	 2016).	 Subtypes	 of	 dendritic	 cells	 and	 mast	 cells	 have	 not	 been	

considered.		Additions	to	the	cytokine	milieu	could	also	be	introduced,	alongside	heat	shock	
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proteins	and	microRNAs	to	represent	regulation	of	gene	expression	(Nazari-Jahantigh	et	al.,	

2014;	Xu	et	al.,	2012).	Due	to	the	restrictions	imposed	by	adhering	to	SBML	open	standards,	

spatial	 factors	are	not	considered	within	 this	model.	This	 removes	 factors	such	as	arterial	

remodelling	 and	 wall	 shear	 stress,	 which	 has	 been	 shown	 to	 be	 linked	 to	 atheroma	

development	 (Cunningham	and	Gotlieb,	2005).	The	 removal	of	 spatial	 considerations	also	

limits	 study	 of	 atheroma	 location,	 and	 any	 considerations	 of	 atheroma	 size	 have	 to	 be	

linked	to	the	morphological	content	of	the	artery	wall.		

Model	outputs	have	been	compared	to	experimental	results	 to	express	the	validity	of	 the	

model.	 Experimental	 data	 have	 been	 found	 describing	 concentrations	 for	 a	 collection	 of	

proteins	and	cell	types	included	within	the	model,	and	model	simulations	are	compared	to	

these	data	to	ensure	biological	relevance.	Perturbations	in	concentrations	and	activity	of	a	

selection	of	 cytokines	 and	 chemokines	within	 the	model	were	 introduced	 to	predict	 how	

these	 changes	 influence	 atherogenesis.	 Variations	 in	 concentrations	 of	 IL-12	 and	 IL-18	 in	

mice	have	been	shown	to	disrupt	the	Th1/Th2	balance	and	alter	the	cellular	composition	of	

the	 plaque	 (Elhage	 et	 al.,	 2003;	 Hauer	 et	 al.,	 2005).	 Reductions	 in	 proteoglycan	

concentrations	and	PLA2	activity	lower	plaque	levels	of	oxidized	LDL,	leading	to	a	reduction	

in	atheroma	size	due	to	fewer	foam	cells	being	created	(Delgado-Roche	et	al.,	2015;	Vickers	

et	 al.,	 2009).	 An	 increase	 in	 PDGF	 concentration	 boosts	 smooth	 muscle	 cell	 abundance,	

affecting	 plaque	 stability	 (Loppnow	 and	 Libby,	 1990).	 Collagen	 concentrations	 are	 more	

challenging	to	predict	when	considering	perturbations	to	the	system.	As	plaque	size	grows	

and	 time	 progresses,	 collagen	 synthesis	 grows	 due	 to	 increased	 abundance	 of	 smooth	

muscle	 cells,	 while	 collagen	 remodelling	 increases	 at	 the	 same	 time	 due	 to	 increased	

production	of	MMPs	 (Newby,	2005;	Rekhter,	1999).	More	severe	 lesions	 left	 long	enough	

will	 have	 decreasing	 levels	 of	 collagen	 due	 to	 higher	 levels	 of	MMPs	within	 the	 system,	

increasing	the	likelihood	of	plaque	rupture	and	a	subsequent	cardiac	event	(Adiguzel	et	al.,	

2009).	Each	of	 these	 studies	have	been	 reproduced	 in	 silico	within	 the	model.	Multi-drug	

systems	 pharmacology	 experiments	 have	 suggested	 a	 benefit	 to	 limiting	 phagocytosis	 of	

oxLDL,	or	disrupting	the	Th1/Th2	balance	by	targeting	IL12R	and	IL18R.	
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 Future	Improvements		

While	 the	 development	 of	 this	 model	 of	 atherosclerosis	 and	 the	 subsequent	

pharmacological	 study	 of	 potential	 multi-drug	 interventions	 provides	 insight	 into	

atherosclerosis	 pathogenesis,	 some	 common	 therapeutics	 used	 to	 treat	 CVD	 and	

atherosclerosis	 are	 not	 represented	 within	 this	 model.	 Statins	 inhibit	 the	 synthesis	 of	

cholesterol	by	 inhibition	of	HMG-CoA	 reductase,	 leading	 to	a	 reduction	of	 LDL	within	 the	

blood	(Stancu	and	Sima,	2001),	and	as	such	the	effects	of	statin	therapy	can	be	considered	

within	 the	model,	 albeit	 indirectly.	 Similarly,	 PCSK9	 inhibitors	 prevent	 the	 degradation	 of	

LDL	 receptors	 in	 the	 liver,	 increasing	 the	 rate	 of	 LDL-C	 removal	 (Page	 and	Watts,	 2016).	

PCSK9	inhibitors	lead	to	significant	reduction	of	LDL	concentrations	within	the	liver,	which	

could	be	indirectly	included	within	the	model	similarly	to	statins.	Creation	of	a	‘supermodel’	

that	 includes	 atherosclerosis,	 cholesterol	 metabolism	 and	 the	 removal	 of	 plasma	 LDL	 by	

hepatocytes	 would	 allow	 for	 the	 study	 of	 multi-drug	 interventions	 that	 includes	 the	

subtleties	 involved	with	 statin	 therapy	 and	 PCSK9	 inhibition.	 Cholesterol	metabolism	 has	

been	 successfully	 modelled	 previously	 using	 the	 SBML	 format	 (Mazein	 et	 al.,	 2013;	 Mc	

Auley	et	al.,	2012)	and	more	recently	the	role	of	aging	in	this	process	has	been	considered	

(Morgan	et	al.,	2016).	The	connection	between	PCSK9	and	LDL	cholesterol	levels	have	been	

modelled	 within	 specific	 mammalian	 systems	 (Hansen	 et	 al.,	 2017),	 and	 the	

pharmacological	 results	of	PCSK9	 inhibition	on	plasma	LDL	has	been	modelled	 (Gadkar	et	

al.,	 2014).	 Each	 of	 these	 models	 represent	 a	 biological	 process	 which	 is	 key	 to	 the	

progression	of	cardiovascular	disease,	and	the	creation	of	a	combined	model	could	lead	to	

new	therapeutic	hypotheses	in	the	treatment	of	this	disease.	

7.5 The	Protein	Structure	Dataset	

Predicting	a	tertiary	structure	for	a	protein	from	its	amino	acid	sequence	is	a	field	that	has	

seen	significant	attention	from	biologists	and	bioinformaticians	in	recent	decades.	Current	

state-of-the-art	tools	allow	for	the	generation	of	a	3D	structure	in	a	timeframe	ranging	from	

hours	to	weeks	depending	on	the	length	of	the	primary	structure	and	the	number	of	known	

homologues	 and	 folds	 for	 use	 in	 structure	 formation.	 Due	 to	 computational	 intensity	

restrictions,	only	a	subset	of	all	mutations	contained	within	phase	3	of	the	1000	Genomes	

Project	were	chosen	for	subsequent	analysis	in	this	study.	The	subset	chosen	was	weighted	

to	 produce	more	mutations	 for	 shorter	 sequences,	 to	 prevent	 the	majority	 of	mutations	
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chosen	 affecting	 larger	 structures	 like	 receptors.	 This	 gave	 a	 broad	 spread	 of	 mutations	

across	 all	 proteins	 selected	 to	 represent	 atherosclerosis,	 allowing	 for	 further	 study	 of	

protein	 structure,	 binding	 kinetics	 and	 function.	 Comparison	 of	 predicted	 structures	 to	

known	 experimentally-derived	 structures	 was	 performed	 to	 evaluate	 accuracy	 of	 overall	

structure	and	I-TASSER	accuracy	estimation	methods.	Generation	of	heatmaps	showing	how	

a	collection	of	mutations	leads	to	variation	in	protein	structure	allows	for	the	visualization	

of	highly	varied	areas	across	populations,	and	when	combined	with	binding	site	data	could	

be	 useful	 in	 the	 recognition	 of	 the	 severity	 of	 a	 group	 of	mutations.	When	 clinical	 data	

exists	 linking	a	mutation	 to	a	particular	disease,	our	dataset	 can	be	 searched	 for	 variants	

with	a	strong	alignment	to	either	 the	wildtype	or	 the	disease-causing	mutation	to	predict	

the	 likelihood	 of	 a	mutation	 being	 disease-causing.	 The	 dataset	 generated	was	 large	 and	

varied,	benefiting	later	stratification	exercises.	

Improvements	could	still	be	made	to	our	predicting	protein	structure	procedures,	however.	

Expanding	 our	 dataset	 beyond	 the	 1000	 Genome	 Project	 to	 similar	 sequencing	 projects	

such	 as	 UK10K	 (Consortium,	 2016)	 would	 have	 increased	 the	 number	 of	 population	

subgroups	with	available	data	and	increased	the	likelihood	of	the	population	genetics	data	

used	being	more	representative	of	 these	subgroups	as	a	whole.	The	process	of	predicting	

tertiary	structure	could	have	been	optimized	by	solely	using	homology	modelling	methods	

on	structures	where	such	relatives	were	available,	significantly	reducing	computational	time	

and	 freeing	 up	 such	 time	 for	 additional	mutations,	 albeit	with	 a	minor	 drop	 in	 accuracy.	

Heatmaps	could	have	been	more	informative	if	weighted	with	population	genetics	data.	In	

general,	 our	 intentions	 to	 produce	 the	 most	 accurate	 predictions	 possible	 within	 our	

computational	 limitations	 to	 minimize	 compound	 error	 were	 successfully	 achieved	 in	

Chapter	4.	

Experimental	results	obtained	within	this	thesis	show	that	C-scores	are	a	good	indicator	of	

global	accuracy	of	protein	structure.	Local	accuracy	predictions,	values	describing	the	per-

residue	 RMSD	 as	 calculated	 by	 ResQ,	 are	 generally	 valuable	 yet	 are	 not	 100%	 accurate	

(Yang	et	al.,	2016).	The	collection	of	graphs	shown	in	Figure	4.6	to	study	local	accuracy	of	

structural	predictions	demonstrate	that	while	limits	provided	to	variation	from	wildtype	are	

beneficial,	 100%	 accuracy	 is	 not	 guaranteed.	 A	 heatmap	 has	 been	 developed	 for	 each	
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protein	 to	 represent	 this	 local	 accuracy	 to	 allow	 for	 quick	 visualization	 of	 protein	 areas	

where	we	are	more	confident	of	accurate	structure.	An	additional	heatmap	was	created	to	

show	 the	 variance	 in	protein	 structure	 across	 the	 collection	of	mutations	 included	 in	our	

dataset.	 Mutations	 linked	 to	 disease	 in	 IL4R	 and	 ABCA1	 were	 identified	 and	 structural	

similarity	with	wildtype	and	other	mutations	was	considered,	suggesting	protein	structures	

that	 are	 structurally	 similar	 to	 disease	 causing	 mutations	 that	 may	 benefit	 from	 further	

investigation.	

 Future	Improvements	

As	protein	 structure	prediction	methods	become	more	accurate	and	 less	 computationally	

intensive,	 large	 structural	 datasets	 can	 be	 developed	 which	 could	 be	 used	 as	 part	 of	 a	

multitude	 of	 studies.	With	 the	 existence	 of	 repositories	 such	 as	 ClinVar	 (Landrum	 et	 al.,	

2014)	 detailing	 links	 between	 mutations	 and	 phenotypes,	 including	 mutations	 linked	 to	

disease,	 structural	 datasets	 could	 be	 compared	 to	 known	 disease-linked	 mutations	 to	

predict	mutation	severity	 (in	 the	context	of	disease).	CASP	and	CAMEO	experiments	have	

excellently	 constructed	 a	 competitive	 and	 rewarding	 atmosphere	 to	 drive	 progress	 with	

protein	 structure	 prediction	methods,	with	 the	 number	 of	 entrants	 growing	 year-on-year	

and	increasing	accuracy	and	speed	being	demonstrated	by	the	winning	entries	consistently	

between	competitions	(Haas	et	al.,	2013;	Moult	et	al.,	2016).	The	Protein	Data	Bank	is	the	

world-leading	 repository	 for	 experimentally	 derived	 protein	 structures,	 with	 9,990	 X-Ray	

structures	and	455	NMR	structures	uploaded	in	2016	(PDB,	2016).	With	the	improvement	of	

structural	 prediction	 methods,	 a	 separate	 repository	 containing	 predicted	 protein	

structures	 has	 the	 potential	 to	 be	 beneficial	 to	 the	 bioinformatics	 community	 at	 large.	

Caution	would	need	to	be	taken	to	ensure	a	minimum	level	of	predicted-structure	quality;	

however,	 it	has	been	demonstrated	that	even	I-TASSER	results	returning	a	relatively	weak	

prediction	 will	 still	 represent	 the	 correct	 model	 topology.	 As	 such,	 a	 predicted-structure	

repository	 could	 benefit	 the	 research	 community,	 particularly	 for	 larger	 proteins	 where	

performing	structural	prediction	methods	is	a	computationally	intensive	task.		

7.6 Calculation	of	Binding	Kinetics	

Alterations	 in	 the	 velocity	 of	 binding	 and	 unbinding	 within	 a	 protein-protein	 interaction	

alter	 the	 thermodynamic	 properties	 of	 the	 interaction	 (Prakash,	 2011).	 Through	 the	
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calculation	of	association	and	dissociation	rates	for	a	wildtype	and	a	collection	of	mutations,	

predictions	into	interaction	activity	can	be	made.	Electrostatic	potentials	between	proteins	

have	a	significant	impact	on	association	rates	(Ritchie,	2008).	The	power	and	the	polarity	of	

the	electrostatic	 interaction	between	two	reactants	can	lead	to	fast	or	slow	binding	rates,	

while	 electrostatics	 can	 also	 influence	 steering	 to	 ensure	 that	 reactants	 interact	 at	 their	

respective	binding	 sites	 (Wade	et	 al.,	 1998).	As	 such,	 focusing	on	electrostatics	 alongside	

protein	 shape	 is	 a	 reasonable	 method	 of	 computationally	 studying	 and	 prediction	

association	rates	for	a	PPI.	TransComp	has	many	benefits	for	use	as	part	of	a	study	of	PPI	

association	 rates,	 including	 access	 to	 a	 publically	 available	web	 server	 for	 testing	 and	 to	

return	 computationally	 intensive	 results	 in	 a	 short	 period	 of	 time,	 and	 internal	

determination	of	reaction	criteria	leading	to	a	single	scalar	result	being	returned;	removing	

an	additional	assumption	or	computational	 step	which	would	have	been	required	 if	SDA7	

results	were	 used	 (Martinez	 et	 al.,	 2015;	Qin	 et	 al.,	 2011).	Using	 TransComp	 to	 calculate	

association	 rates	 for	 1119	 interactions	 required	 significant	 computational	 resources,	 in	

contrast	 to	 PRODIGY	 which	 was	 able	 to	 estimate	 kd	 vales.	 Approximately	 500,000	 core	

hours	were	 required	 to	 predict	 association	 rates	 for	 835	 interactions	 involved	within	 our	

model	of	atherosclerosis,	and	multiple	big	data	challenges	needed	to	be	overcome	in	terms	

of	computational	time	and	storing	data	output.		

Validating	TransComp	results	demonstrated	that	results	were	generally	within	an	order	of	

magnitude	 of	 experimentally	 derived	 association	 rate	 values.	 While	 this	 is	 still	 a	 large	

margin	 of	 error	 to	 work	with,	 it	 does	 provide	 sufficient	 accuracy	 for	 us	 to	 progress	 into	

reparameterisation	 experiments.	 TransComp	 has	 shown	 increased	 accuracy	 for	 proteins	

with	 association	 rates	 in	 the	 range	 of	 105	 -	 1010	 M-1s-1,	 due	 to	 the	 transient	 complex	

approximation	 utilized	 as	 part	 of	 its	methodology	 (Qin	 et	 al.,	 2011).	 As	 such,	 association	

rates	in	the	lower	half	of	the	results	spectrum	with	a	value	of	100	-	104	M-1s-1	are	less	likely	

to	be	accurate.		

A	 collection	of	TransComp	 results	with	 low	kon	 values	were	obvious	outliers.	 For	example	

CSF1R-001-245	 binding	 to	 CSF-001	 returns	 an	 association	 rate	 of	 3.81	 x10-188.	 This	

breakdown	 in	kinetics	prediction	 is	caused	by	a	very	 large	electrostatic	potential	between	

two	 reactants	 being	 calculated,	 giving	 a	 powerful	 repelling	 force.	 Additionally,	 multiple	
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interactions	within	our	dataset	did	not	return	a	result	from	either	TransComp	or	PRODIGY.	

TransComp	was	unable	to	predict	association	rate	values	for	complexes	with	more	than	one	

transitory	 state,	which	was	 common	 for	 some	proteins	within	 our	 dataset.	 PRODIGY	was	

generally	more	 reliable;	however,	 issues	were	had	with	 some	complexes	 (primarily	 IL5	→	

IL5RA	and	 its	mutations)	where	 the	 two	 complex	 subunits	were	 considered	 to	be	 too	 far	

apart	for	kD	estimation.	These	issues	led	to	a	significant	reduction	in	the	size	of	our	binding	

kinetics	dataset,	from	an	initial	1119	to	835.	Fortunately,	binding	kinetics	were	successfully	

obtained	for	each	mutation	and	wildtype	included	in	the	genetic	profiles	defined	in	section	

6.3.1,	 allowing	 for	 successful	 reparameterisation	 experiments	 despite	 our	 reduction	 in	

dataset	size.	

Derivation	 of	 binding	 kinetics	 are	 the	 product	 of	 a	 collection	 of	 bioinformatics	 tools.	

GalaxyHomomer	(Baek	et	al.,	2017),	RosettaDock	(Davis	and	Baker,	2009),	Hex	(Macindoe	

et	 al.,	 2010),	 TransComp	 (Qin	 et	 al.,	 2011),	 PRODIGY	 (Xue	 et	 al.,	 2016)	 and	 PDB2PQR	

(Dolinsky	 et	 al.,	 2007)	 were	 all	 used	 to	 provide	 a	 collection	 of	 association	 rates.	

Homodimeric	structures,	predicted	using	GalaxyHomomer,	gave	dimeric	structures	similarly	

close	 to	 the	 native	 as	 local	 docking	 results	 provided	 by	 local	 docking	 despite	

GalaxyHomomer	 not	 requiring	 contact	 points	 as	 an	 input.	 Benchmarking	 results	 showed	

that	 TransComp	 showed	 increased	 accuracy	 over	 SDA7	 when	 estimating	 kon,	 even	 for	

association	rates	as	low	as	104	M-1	s-1.	Variation	in	association	rate	and	dissociation	constant	

showed	a	minor	correlation	with	association	rate.	

7.7 Future	Improvements	

Improving	 dataset	 coverage	 and	 improving	 association	 and	dissociation	 rate	 accuracy	 are	

two	obvious	improvements	that	could	be	made	to	our	methodology.	Predicting	whether	a	

complex	 is	 likely	 to	 fail	 TransComp	 analysis	 before	 spending	 considerable	 computational	

resources	on	 the	 run	 itself	 could	 allow	 for	 the	 reduction	of	 computational	 time,	 allowing	

resources	to	be	put	to	better	use.	Utilising	similar	methods	to	calculate	kon	and	koff,	rather	

than	 combining	 the	 Brownian	 Dynamics	 simulation	 style	 of	 TransComp	 and	 the	 contact-

based	methods	of	PRODIGY	could	reduce	bias	introduced	by	both	methods.	New	methods	

of	 predicting	 binding	 kinetics	 utilizing	machine	 learning	 techniques	 have	 been	 developed	

recently,	potentially	reducing	computational	time	and	providing	more	accurate	predictions	
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in	 the	 lower	 half	 of	 the	 rate	 spectrum	 (Xie	 et	 al.,	 2017).	 As	 new	 methodologies	 and	

algorithms	become	available	then	increases	in	speed	and	accuracy	could	provide	a	platform	

for	scaling	up	this	methodology	as	part	of	a	disease	pathway	reparameterisation	platform.	

7.8 Atherosclerosis	Dynamics	Across	Population	Subgroups	

Combining	Chapter	3’s	model	of	atherosclerosis	with	Chapter	4’s	protein	structure	data	and	

the	binding	kinetics	data	predicted	in	Chapter	5	allows	for	the	development	of	an	 in	silico	

learning	 platform	 for	 patient	 stratification	 and	 the	 study	 of	 atherogenesis	 dynamics.	

Utilizing	binding	kinetics	data	for	a	collection	of	mutations	to	investigate	disease	dynamics	

and	 predict	 pathogenesis	 differences	 for	 each	 mutation	 has	 provided	 a	 platform	 for	

evaluation	 of	 its	 downstream	 effects.	 Experimental	 data	 has	 shown	 encouraging	

corroborative	 results	when	 compared	 to	 disease	 dynamics	 of	 our	 genetic	 profiles.	Multi-

drug	therapeutics	designed	for	the	minimization	of	plaque	size	when	inhibitors	are	added	to	

the	 system	 suggests	 different	 therapeutics	 were	 optimized	 for	 different	 population	

subgroups.	 The	 generation	 of	 746	 models	 of	 atherosclerosis	 representing	 individual	

mutations	with	effects	on	disease	dynamics	provides	a	demonstration	of	model	robustness	

and	 a	 proof	 of	 concept	 that	 reparameterisation	 can	 provide	 prediction	 on	 therapeutic	

effects	and	‘-omics’	data	driven	disease	dynamics	as	part	of	an	in	silico	testing	system.	

Increased	 accuracy	 in	 binding	 kinetics	 data	 would	 have	 improved	 the	 quality	 of	 our	

reparameterisation	 experiments.	 Experimental	 derivation	 of	 binding	 kinetics	 or	 protein	

structure	would	have	led	to	a	reparameterisation	that	was	closer	to	the	native,	underlying	

biology.	 The	 genetic	 profiles	 developed	 in	 chapter	 6	 are	 designed	 to	 represent	 individual	

population	 subgroups;	 however,	 due	 to	 the	 limited	number	of	mutations	 included	within	

the	dataset	isolated	in	chapter	4,	these	genetic	profiles	contained	a	relatively	small	number	

of	variations.	The	Ascore,	designed	to	provide	a	scalar	value	to	represent	atheroma	size	and	

severity,	 could	 have	 been	 calculated	 in	 a	 multitude	 of	 ways.	 The	 MDscore,	 studying	 the	

efficacy	 of	 the	multi-drug	 interventions,	 could	 similarly	 have	 been	 altered	 by	 varying	 the	

weights	 attached	 to	 introducing	 a	 new	 drug	 into	 the	 system	 or	 increasing	 drug	

concentrations.	
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The	genetic	profiles	created	in	section	6.3.1	were	designed	to	relate	our	mutation	data	to	

particular	 population	 subgroups	 to	 investigate	 the	 potential	 of	 altering	 atherosclerosis	

dynamics	and	therapeutic	optimization	for	each	of	these	subgroups.	Unfortunately,	due	to	

limitations	 placed	 on	 our	 dataset,	 only	 8	 unique	 genetic	 profiles	were	 created.	However,	

interesting	 results	were	 obtained	 for	 each	 of	 these	 genetic	 profiles.	 The	mutation	 CCR2-

001-64	 (rs1799864),	 found	 in	 50.96%	of	 Japanese	 individuals	within	 phase	 3	 of	 the	 1000	

Genome	 Project,	 reduces	 the	 rate	 of	 monocyte	 recruitment	 to	 the	 site	 of	 endothelial	

damage,	a	potential	 influencing	 factor	 for	 the	 reduced	 rate	of	 cardiovascular	disease	 in	a	

Japanese	 population.	 Similarly,	 IL12RB1-001-214	 (rs11575934)	 is	 commonly	 found	 in	

Toscani	and	Finnish	populations	(58.87%	and	55.55%	respectively),	a	mutation	which	alters	

the	T	cell	constituency	of	the	lesion	while	only	making	a	minor	change	to	atheroma	severity,	

giving	 an	 opportunity	 for	 alternative	 therapeutics	 for	 these	 population	 subgroups.	

Alternative	genetic	profiles	were	 found	and	potential	multi-drug	 therapeutics	were	 found	

for	each	of	our	genetic	profiles	through	the	use	of	a	genetic	algorithm,	where	different	drug	

combinations	providing	a	greater	reduction	in	atheroma	size	and	severity	were	found	for	7	

of	our	8	genetic	profiles.	

 Future	Improvements	

Expanding	the	size	of	the	genetic	profiles	to	include	all	mutations	within	the	1000	Genome	

Project	 (Auton	et	al.,	2015),	or	 similar	projects	 like	UK10K	 (Consortium,	2016)	 could	have	

provided	a	reparameterisation	more	representative	of	the	population.	Starting	from	these	

improved	 genetic	 profiles	 and	 utilising	 the	 entire	 computational	 pathway	 outlined	 in	 this	

thesis	 for	 mutations,	 by	 predicting	 a	 tertiary	 structure,	 binding	 kinetics	 and	

reparameterisation,	would	have	given	credence	 to	 the	biological	 relevance	of	each	of	 the	

genetic	 profiles.	 Creation	 of	 a	 ‘supermodel’	 as	 postulated	 in	 section	 7.4.1	 would	 have	

allowed	for	the	introduction	of	other	common	CVD	related	drugs	into	the	system,	such	as	

PCSK9	inhibitors	and	statins.	Additionally,	a	‘supermodel’	could	provide	insights	into	multi-

drug	 therapeutic	dynamics	 and	provide	a	 collection	of	other	mechanisms	which	 could	be	

responsible	for	population	subgroup	specific	differences	in	atherosclerosis	dynamics.	Using	

commonly	known	drugs	with	known	inhibitory	constant	(ki)	values	could	have	allowed	for	

the	 study	 of	 concentrations	 to	 be	more	 accurate	 and	 allowed	 for	 the	 study	 of	 absolute	

values	rather	than	relative	concentrations.	
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7.9 Compound	error	

All	 of	 the	 work	 undertaken	 within	 this	 thesis	 can	 be	 considered	 as	 part	 of	 the	 same	

methodology,	 an	 algorithmic	 road	 with	 the	 final	 goal	 of	 atherosclerosis	 patient	

stratification.	 From	 the	 development	 of	 the	 mathematical	 model,	 to	 tertiary	 structure	

prediction,	to	binding	kinetics	derivation,	and	finally	reparameterisation,	each	chapter	 is	a	

key	part	of	 the	methodology	with	which	 following	 chapters	 require	 to	 correctly	 function.	

Chaining	 together	 algorithmic	 sections	 with	 predictive	 elements	 requires	 awareness	 and	

handling	 of	 compound	 error.	 Minor	 errors	 in	 results	 in	 the	 earlier	 part	 of	 the	 overall	

methodology	 combine	with	minor	errors	 in	other	 subsections	 leading	 to	an	overall	 larger	

error	 in	 the	 end.	 Reduction	 of	 error	 in	 individual	 subsections	where	 possible	 can	 lead	 to	

larger	improvements	in	the	quality	of	our	final	results,	leading	to	general	improvements	as	

technologies	develop	and	knowledge	grows.	Improvements	and	additions	to	the	publically	

available	 model	 of	 atherosclerosis	 through	 parameterization	 updates	 or	 network	

optimization	 can	 reduce	 the	 error	 and	 improve	 the	 quality	 of	 our	 final	 multi-drug	

therapeutics.	 Improvements	 in	 the	 prediction	 algorithms	 for	 obtaining	 tertiary	 structures	

from	 amino	 acid	 sequence	would	 lead	 to	 docking	 improvements	 and	 subsequently	more	

accurate	binding	kinetic	information.	Due	to	the	close-knit	and	intertwined	nature	of	each	

chapter	within	this	thesis,	improvements	to	the	output	data	from	any	chapter	could	lead	to	

a	more	accurate	end	result.	

7.10 Systems	Medicine	

The	question	remains	of	how	our	systems	biology	and	systems	pharmacology	methods	can	

be	beneficial	and	provide	a	clinical	benefit	in	the	future.	With	the	advent	of	big	data	within	

biological	sciences,	access	to	transcriptomic,	genomic,	proteomic	and	metabolomic	data	is	

easier	than	ever.	These	datasets	have	the	potential	to	be	exceptionally	beneficial;	however	

focusing	on	only	one	of	these	‘-omics’	areas	has	the	potential	to	be	isolating	to	a	scientist.	

Our	mathematical	model	of	atherosclerosis	can	be	used	as	a	platform	to	combine	datasets	

from	 each	 of	 these	 technologies	 into	 an	 overlying	 vision	 of	 disease	 dynamics.	 Potential	

molecular	targets	for	drugs	have	been	described	for	an	overall	population	and	additionally	

for	subgroups	of	these	populations	as	part	of	a	program	of	stratified	medicine,	and	overall	

therapeutic	 hypotheses	 have	 been	 postulated.	 Significant	 developments	 are	 required	 to	
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convert	 therapeutic	 hypotheses	 generated	 by	mathematical	models	 into	 clinical	 benefits,	

however	 bridging	 knowledge	 gaps	 through	 network	 development	 and	 mathematical	

modelling	can	provide	illuminating	clinically	significant	analyses.	

	

Figure	7.1:	Systems	Medicine	Methodology	

	

7.11 Future	work	

The	work	 included	 in	 this	 thesis	 utilizes	 state-of-the-art	 technologies	 in	 protein	 structure	

prediction,	docking	and	prediction	of	binding	kinetics	to	develop	therapeutic	hypotheses	of	

atherosclerosis.	The	natural	progression	of	this	work	is	to	expand	the	size	and	scope	of	the	

model	 of	 atherosclerosis	 to	 include	 lipoprotein	 metabolism	 and	 cholesterol	 metabolism.	

Once	a	 successful	model	has	been	developed	 to	 include	 these	biological	processes,	other	

models	could	be	combined	on	the	way	to	the	ultimate	goal	of	developing	a	‘virtual	human.’	

In	 the	more	 immediate	 future,	 it	would	be	beneficial	 to	use	 the	 same	methodology	on	a	

different	 network	 of	 disease	 or	 biological	 function.	 Many	 of	 the	 protein	 structures	 and	

binding	kinetics	data	generated	as	part	of	this	project	are	important	parts	of	inflammatory	

disease,	 allowing	 for	 cross-use	 in	 a	 similar	 study	 looking	 at	 a	 disease	 with	 a	 core	

inflammatory	 element,	 such	 as	 rheumatoid	 arthritis	 or	 asthma.	 An	 interesting	 ‘wet-lab’	

study	 would	 be	 to	 create	 protein	 structures	 with	 the	 mutations	 included	 in	 our	 genetic	
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profiles	using	technologies	such	as	CRISPR	and	experimentally	validate	our	binding	kinetic	

results.	These	more	accurate	results	could	then	be	used	as	an	optimization	of	this	work.	If	

endarterectomy	 samples	 could	 be	 obtained,	 quantification	 of	 concentrations	 of	 proteins	

within	 plaques	 would	 be	 beneficial	 for	 the	 development	 of	 an	 increasingly	 accurate	

mathematical	model.	Any	and	all	of	these	developments	would	lead	to	improvements	in	the	

treatment	of	atherosclerosis	utilizing	stratified	medicine.	
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Appendix	1	

In	addition	to	the	two	manuscripts	detailed	during	Chapter	2	and	Chapter	3	of	this	thesis,	

the	following	manuscript	was	published	during	this	PhD	programme:	

	

Benson,	H.,	Watterson,	S.,	Sharman,	J.,	Mpamhanga,	C.,	Parton,	A.,	Southan,	C.,	Harmar,	A.,	

and	Ghazal,	P.(2017)	Is	systems	pharmacology	ready	to	impact	upon	therapy	development?	

A	 study	 on	 the	 cholesterol	 biosynthesis	 pathway.	British	 Journal	 of	 Pharmacology,	

doi:	10.1111/bph.14037.	

	

The	 following	 publication	 was	 submitted	 during	 this	 PhD	 programme	 and	 is	 currently	

awaiting	peer-review	response:	

	

Alexander	 Mazein,	 Marek	 Ostaszewski,	 Inna	 Kuperstein,	 Steven	 Watterson,	 Nicolas	 Le	

Novère,	Diane	Lefaudeux,	Bertrand	De	Meulder,	Johann	Pellet,	Irina	Balaur,	Mansoor	Saqi,	

Maria	Manuela	 Nogueira,	 Feng	 He,	 Andrew	 Parton,	 Nathanaël	 Lemonnier,	 Piotr	 Gawron,	

Stephan	Gebel,	 Pierre	 Hainaut,	Markus	Ollert,	 Ugur	 Dogrusoz,	 Emmanuel	 Barillot,	 Andrei	

Zinovyev,	Reinhard	Schneider,	Rudi	Balling		and	Charles	Auffray.	Systems	medicine	disease	

maps:	 community-driven	 comprehensive	 representation	 of	 disease	 mechanisms;	 Nature	

Biotechnology	
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Appendix	3	

Model	Construction	

A	list	of	cell	types	involved	in	atherosclerosis	was	assembled	from	KEGG	maps	(Kanehisa	et	

al.,	 2014;	Wixon	and	Kell,	 2000)	and	a	 collection	of	 review	articles	of	 atherosclerosis	 (see	

Supplementary	table	4).	For	each	of	these	cell	types,	PubMed	and	Google	Scholar	searches	

were	 undertaken	 with	 the	 query	 ‘CELLNAME	 atherosclerosis	 review’.	 The	 results	 were	

sorted	by	 ‘Best	Match’/’relevance’,	 and	 the	 top	25	 results	were	selected.	Each	article	was	

searched	for	references	to	extracellular	proteins	and	other	biological	entities	connected	to	

these	cells.	Each	entity	found	in	this	way	was	listed	as	a	provisional	candidate	for	our	model.	

Another	 combined	 PubMed	 and	 Google	 Scholar	 search	 was	 undertaken	 with	 the	 query	

‘ENTITYNAME	atherosclerosis’,	to	identify	experimental	data	to	show	its	source	or	presence	

within	an	atheroma	(or	another	compartment	contained	within	the	model)	and	its	influence	

(however	 minor)	 on	 atherogenesis.	 If	 it	 the	 entity	 met	 this	 criteria,	 it	 was	 included.		

Interactions	 were	 added	 where	 it	 was	 demonstrated	 that	 a	 biological	 entity	 directly	

influences	another	within	the	model.	A	list	of	the	proteins	included	is	shown	in	Appendix	3	-	

Supplementary	Table	5	and	a	list	of	the	lipoproteins	is	shown	in	Appendix	3	-	Supplementary	

Table	6.			

The	 resulting	 model	 contains	 five	 compartments,	 representing	 areas	 of	 the	 body	 where	

disease	subprocesses	take	place:	the	tunica	intima,	endothelium,	lumen,	liver	and	intestine.			

A	search	for	‘atherosclerosis’	on	PubMed	returns	approximately	125,000	results	(2016	figure	

https://www.ncbi.nlm.nih.gov/pubmed/?term=atherosclerosis)	making	 a	 complete	manual	

curation	 unrealistic.	 Once	 our	 initial	 network	 had	 been	 developed	 it	 was	 split	 into	 the	

collection	 of	 sub-processes	 shown	 in	 Appendix	 3	 -	 Supplementary	 Table	 7.	 	 A	 PubMed	

search	 was	 performed	 for	 a	 collection	 of	 keywords	 related	 to	 these	 sub-processes,	

improving	the	completeness	of	the	model.	

The	 model	 was	 assembled	 using	 CellDesigner	 (Funahashi	 et	 al.,	 2003,	 2008)	 to	 facilitate	

exporting	 files	 into	 Systems	 Biology	 Markup	 Language	 (SBML)	 (Hucka	 et	 al.,	 2003)	 and	

Systems	Biology	Graphical	Notation	 (SBGN)	Process	Description	 formats	 (Le	Novere	et	 al.,	
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2009).	 All	 proteins	 were	 given	 their	 unique	 name	 from	 the	 HGNC	 (HUGO	 Gene	

Nomenclature	Committee)	(Gray	et	al.,	2015)	to	prevent	ambiguity.		

	

For	 mathematical	 expediency,	 it	 is	 assumed	 that	 all	 entities	 within	 each	 compartment	

occupy	 the	 same	 space,	 negating	 the	 need	 for	 diffusion	 coefficients.	 Interactions	 were	

described	mathematically	with	either	the	Law	of	Mass	Action	(LOMA)	(Voit	et	al.,	2015)	or	

Michaelis-Menten	 kinetics	 (Johnson	 and	 Goody,	 2012;	 Michaelis	 and	 Menten,	 1913).		

Degradation	and	cell	death	are	modelled	using	LOMA.	Lipoprotein	delipidation,	transfer	and	

formation	 is	modelled	using	LOMA.	 	Cytokine	production,	excluding	TNF-Alpha,	within	 the	

tunica	 intima	 is	 modeled	 using	 LOMA.	 	 Cytokine	 production	 within	 the	 artery	 lumen	 is	

modeled	 using	Michaelis-Menten	 kinetics.	 	 Oxidation	 of	 lipoproteins,	 foam	 cell	 formation	

and	 SMC	migration	 are	modelled	 using	 a	modified	 form	of	Michaelis-Menten	 kinetics.	 All	

other	interactions	are	modelled	using	LOMA.		A	Hill	coefficient	has	been	added	to	equations	

regarding	 lipoprotein	 transfer	 to	 ensure	 accuracy	 in	 downstream	 oxidised	 LDL	

concentrations	 for	 different	 LDL	 concentrations.	 A	 list	 of	 the	 specific	 equations	 for	 each	

species	can	be	found	in	Appendix	3	-	Supplementary	Table	1.		

	

In	 order	 to	 find	 biologically	 relevant	 parameter	 values,	 a	 literature	 mining	 process	 was	

undertaken.	Enzyme	 rate	parameters	were	 included	 in	 the	model	were	either	 taken	 from	

studies	which	calculated	them	directly,	determined	through	fitting	species	concentrations	to	

experimental	 data	 or	made	 an	 estimation	 where	 appropriate	 experimental	 data	 was	 not	

obtainable.	 Due	 to	 the	 lack	 of	 parameterisation	 data	 available,	 kinetic	 parameters	 were	

taken	from	studies	of	any	mammalian	system.	A	list	of	parameter	values	used	can	be	found	

in	Appendix	3	-	Supplementary	Table	2.	A	list	of	concentrations	used	to	estimate	unknown	

parameters	can	be	found	in	Appendix	3	–	Supplementary	Table	3.	

	

Model	Simulation	

The	 model	 was	 replicated	 in	 MATLAB	 and	 was	 simulated	 using	 the	 non-stiff	 differential	

equation	solver	function	‘ode23t’.	To	ensure	that	the	model	had	been	replicated	accurately,	
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the	 SBML	 version	 of	 the	model	was	 also	 simulated	 using	 the	 SBML	ODE	 Solver	 built	 into	

CellDesigner	(Funahashi	et	al.,	2003;	Machné	et	al.,	2006).		Initial	conditions	for	each	entity	

were	 estimated	 using	 control	 group	 data	 from	 cardiovascular	 disease	 studies.	

Concentrations	of	LDL	and	HDL	in	the	blood	were	kept	constant,	to	reflect	a	stable	patient	

context.		

	

The	resulting	model	contains	89	ordinary	differential	equations	(ODEs),	which	are	detailed	

in	Appendix	3	-	Supplementary	Table	1,	which	are	used	to	describe	the	development	over	

time	of	89	different	biological	entities.	
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Supplementary	Table	1.		The	equations	describing	the	model	of	atherosclerosis.	

Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

1	-	LDLL	 LDL	(in	Lumen)	 190000	 (Lusis,	2000)	 µg/dL	
!"#"$
!%

= 0	

2	–	LDLI	 LDL	(in	Intima)	 0	
(Tabas	et	al.,	

2007)	
µg/mg	
tissue	

!"#"(
!%

= )$$ ∗ "#"$
+ −	./01 ∗ "#"( ∗ 23	

3	–	PBLDL	
Proteoglycan	
bound	LDL	

0	

(Young	and	
McEneny,	2001)	

	

(Zalewski	and	
Macphee,	
2005)	

(Lusis,	2000)	

µg/mg	
tissue	

!24"#"
!%

= ./01 ∗ "#"(

−
	.56/ ∗ 24"#" ∗ 789 ∗ 2": ∗ ;<=>? ∗ "@AB89

.C56/ + 24"#"
	

4	–	PGs	 Proteoglycans	 10	
(Tabas	et	al.,	

2007)	
Ng/mg	
tissue	

!23
!%

	= 0	

5	–	Oxy	
Free	Oxygen	
Radicals	

500	

(Young	and	
McEneny,	2001)	

(Steinberg	and	
Witztum,	2010)	

units	
!789
!%

= 0	

6	–	PLA	 PLA2	 10	
(Tellis	and	

Tselepis,	2009)	
Ng/mg	
tissue	

!2":
!%

= 	0	



	
	

	
	

210	

Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

7	–	SMAse	 SMAse	 10	
(Kinnunen	and	
Holopainen,	

2002)	

Ng/mg	
tissue	

!;<:
!%

= 0	

8	–	Lipoxy	 Lipooxygenase	 10	 (Funk,	2006)	
Ng/mg	
tissue	

!"E
!%

= 0	

9	–	OxLDL	
Oxidized	Low	

Density	
Lipoprotein	

1000000	

(Yoshida	and	
Kisugi,	2010)	

	

fg/mg	
tissue	

!789
!%

=
.56/ ∗ 24"#" ∗ 789 ∗ 2": ∗ ;<=>? ∗ "@AB89

.C56/ + 24"#"		

−	
.FGH ∗ <=I ∗ 789 ∗ EJK3

( .CFG + <=I ∗ .CFG5 + B8"#" )
	

10	–	HDL_L	
High	Density	
Lipoprotein	in	

Lumen	
40000	 (Lusis,	2000)	 µg/dl	

!N#""
!%

= 0	

11	–	HDL_I	
High	Density	
Lipoprotein	in	

Intima	
0	

(von	
Eckardstein	et	
al.,	2001)	

µg/mg	
tissue	

!N#"E
!%

= 	 )O/ ∗ N#""P −	.O01 ∗ N#"E ∗ 23>	

12	–	PBHDL	

Proteoglycan	
Bound	High	
Density	

Lipoprotein	

0	

(Tabas	et	al.,	
2007)	

(Cobbold	et	al.,	
2002b)	

µg/mg	
tissue	

!24N#"
!%

= .O01 ∗ N#"(

−
	.56O ∗ 24N#" ∗ 789 ∗ 2": ∗ ;<=>? ∗ "@AB89

.C56O + 24N#"
−	.G/OQ/R∗ST∗UVTUW∗UVTXW∗YVZ[$	
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Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

13	–	OxHDL	 Oxidized	HDL	 0	
(Heinecke,	
2006)	

fg/mg	
tissue	

!B8"#"
!%

= 	
.56O ∗ 24"#" ∗ 789 ∗ 2": ∗ ;<=>? ∗ "@AB89

.C56O + 24N#"
	

14	–	MCP1	in	
Lumen	

Monocyte	
Chemoattractan

t	Protein	1	
150000	

(Valente	et	al.,	
2014)	

(Pirillo	et	al.,	
2013)	

(Harrington,	
2000)	

Fg/ml	

!<\21"
!%

= 	
.CG0^G__ ∗ `\ ∗ B8"#" ∗ E"14"

( .aCG0R/W1 + E"1b" (.aCG0^G + B8"#")
−	!CG0/ ∗ <\21"	

15	–	Endothelial	
Cells	

Endothelial	Cells	 4000	
(Davignon	and	
Ganz,	2004)	

Cells/
mm2	

	

!`\
!%

= 0	

16	–	Monocytes	
Monocytes	in	

Lumen	
20000	

(Bobryshev,	
2006)	

Cells/
ml	

!<BcB"
!%

= 	.C5d5	 ∗ <\21" −	.C5d5$ ∗ 	<BcB"	

17	–	Monocytes	
Monocytes	in	

Intima	
0	

(Bobryshev,	
2006)	

(Qiao	et	al.,	
1997)	

Total	
Cells	

!<BcBE
!%

= 	.C5d5$ ∗ 	<BcB" −	.CQRFF ∗ <BcBE

∗ <\;J	
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Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

18	–	Foam	Cell	 Foam	Cells	 0	

(Yu	et	al.,	2013)	

(McLaren	and	
Ramji,	2009)	

(Ohashi	et	al.,	
2005)	

(Oram	and	
Lawn,	2001)	

(Yvan-Charvet	
et	al.,	2010)	

Total	
Cells	

!J\
!%

= 	
.FG ∗ <=I ∗ 789 ∗ EJK3

( .CFG + <=I ∗ .CFG5 + B8"#" )
− !FG ∗ J\ −	.HGe ∗ 24N#"
∗ :4\:1 ∗ :4\31 ∗ J\	

19	–	IFNG	
Interferon	
Gamma	

10	
(McLaren	and	
Ramji,	2009)	

Fg/mg	
tissue	

!EJK3
!%

= 	
.(SfXW ∗ gℎ1
.CRFdiW + gℎ1

+	
.(SfXWj + gℎ17
.CRFdiWj + gℎ17

−	!(SfX ∗ EJK3	

20	–	MCSF	

Monocyte	
Colony	

Stimulating	
Factor	1	

100	
(Qiao	et	al.,	

1997)	
Fg/mg	
tissue	

!<\;J
!%

= ._TlS ∗ <=I − !_TlS ∗ <\;J	

21	–	MCP-1	 MCP-1	in	Intima	 1	
(Harrington,	

2000)	
Fg/mg	
tissue	

!<\2E
!%

= 	.CG0R ∗ J\ −	!CG0R ∗ <\2E

−	
.CG0R ∗ <\2E
.CCG0R + <\2E
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Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

22	–	Macrophages	 Macrophages	 0	

(McLaren	and	
Ramji,	2009)	

(Qiao	et	al.,	
1997)	

(Schrijvers	et	
al.,	2007)	

Total	
Cells	

!<=I
!%

= 	.CQRFF ∗ <BcBE ∗ <\;J

−
.FG ∗ <=I ∗ 789 ∗ EJK3

.CFG + <=I ∗ .CFG5 + B8"#"
−	!CG

∗ <=I	

23	–	CXCL9	
Chemokine	(C-
X-C	motif)	ligand	

9	
17400	

(Zernecke	et	al.,	
2008)	

Pg/ml	
!\9
!%

= 	
.G6n ∗ `\ ∗ EJK3
.CG6n + EJK3

−	!RFdi ∗ \9	

24	–	CXCL10	
Chemokine	(C-
X-C	motif)	ligand	

10	
110000	

(Zernecke	et	al.,	
2008)	

Pg/ml	
!\10
!%

= 	
.G6Wo ∗ `\ ∗ EJK3
.CG6Wo + EJK3

−	!RFdi ∗ \10	

25	–	CXCL11	
Chemokine	(C-
X-C	motif)	ligand	

11	
400000	

(Zernecke	et	al.,	
2008)	

Pg/ml	
!\11
!%

= 	
.G6WW ∗ `\ ∗ EJK3
.CG6WW + EJK3

−	!RFdi ∗ \11	

26	–	T	Cell	 T	Cells	in	Lumen	 500000	
(Tse	et	al.,	
2013b)	

Cells/
ml	

!g"
!%

= 	
.CCPe/ ∗ \9 ∗ \10 ∗ I11 ∗ \\"5

( .%CG6n + \9 ∗	 .%CG6Wo + \10 ∗	 .%CG6WW +\11∗	(.%CG+\\"5)
−	.ee ∗ g"	
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Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

27	–	T	Cell	 T	Cells	in	Intima	 0	

(Tse	et	al.,	
2013a)	

(Lee	et	al.,	
1999)	

(Badimon,	
2012)	

(Lee	and	Hirani,	
2006)	

(Mallat	et	al.,	
1999)	

(Merhi-Soussi	
et	al.,	2005)	

(Grainger,	
2007)	

(Tse	et	al.,	
2013a)	

Total	
Cells	

!gE
!%
= 	.ee ∗ g"

−	
.eOW ∗ gE ∗ E"12 ∗ E"18

( .aR/WP + E"12 ∗ .a($Ws + E"18 )

−	
.eOP ∗ gE ∗ E"4 ∗ E"10

( .a($u + E"4 ∗ .a($Wo + E"10 )

−	
.eOWj ∗ gE ∗ E"10 ∗ g3J

( .a($Wo + E"10 ∗ .avXS + g3J )

−
.FO ∗ gE ∗ E"6 ∗ E"21

( .a($x + E"6 ∗ .a($PW + E"21 )

−
.H^i ∗ gE ∗ E"10 ∗ g3J

( .a($Wo + E"10 ∗ .avXS + g3J )
−	.edy

∗ gE	

28	–	IL1B	
Interleukin	1	

Beta	
1	

(Moore	et	al.,	
2013b)	

(Bennett	et	al.,	
2016)	

Ng/mg	
tissue	

!E"14
!%

= 	.R/WC ∗ 		J\ +	.R/Wz ∗ ;<\ −	!R/W ∗ E"1	
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Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

29	–	IL2	 Interleukin	2	 1	
(Upadhya	et	al.,	

2004)	
Ng/mg	
tissue	

!E"2
!%

= 	.R/PeW ∗ 	gℎ1 +	.R/PG ∗ #\ −	!R/P ∗ E"2	

30	–	IL4	 Interleukin	4	 1	
(Mallat	et	al.,	

2009)	
Ng/mg	
tissue	

!E"4
!%

= 	.R/ueP ∗ gℎ2 + .R/ueFO ∗ g{ℎ −	!R/u ∗ E"4	

31	–	IL5	 Interleukin	5	 1	
(Mallat	et	al.,	

2009)	
Ng/mg	
tissue	

!E"5
!%

= 	.R/| ∗ 		gℎ2 −	!R/| ∗ E"5	

32	–	IL6	 Interleukin	6	 1	

(Moore	et	al.,	
2013b)	

(Bennett	et	al.,	
2016)	

	

Ng/mg	
tissue	

!E"6
!%

= 	.R/x_ ∗ 		<=I + .R/xl ∗ ;<\ + .R/xT ∗ <\

−	!R/x ∗ E"6	

33	–	IL10	 Interleukin	10	 1	

(Pastrana	et	al.,	
2012)	

(Tsiantoulas	et	
al.,	2014)	

Ng/mg	
tissue	

!E"10
!%

= 	.R/WoH ∗ 		g}?~ + .R/Wo1W ∗ 41 + .R/Wo1P

∗ 42 +	.R/WoeP ∗ gℎ2 +	.R/WoC
∗ <=I −	!R/Wo ∗ E"10	

34	–	IL12	 Interleukin	12	 1	

(Lee	et	al.,	
1999)	

(Sartori	et	al.,	
1997)	

Ng/mg	
tissue	

!E"12
!%

= 	.R/WP1 ∗ 		42 + .R/WPQ ∗ #\ + .R/WPF ∗ J\

+ .R/WPC ∗ <=I −	!R/WP ∗ E"12	
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Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

35	–	IL18	 Interleukin	18	 1	

(Tse	et	al.,	
2013a)	

(Xu	et	al.,	2000)	

Ng/mg	
tissue	

!E"18
!%

= 	.R/Ws ∗ 		<=I −	!R/Ws ∗ E"18	

36	–	IL21	 Interleukin	21	 1	
(Tse	et	al.,	
2013a)	

Ng/mg	
tissue	

!E"21
!%

= 	.R/PW ∗ 		g{ℎ −	!R/PW ∗ E"21	

37	–	IL33	 Interleukin	33	 100	
(Demyanets	et	

al.,	2011)	
Ng/mg	
tissue	

!E"33
!%

= 	0	

38	–	TGFB	
Transforming	
Growth	Factor	

Beta	
250	

(Pastrana	et	al.,	
2012)	

Ng/mg	
tissue	

!g3J
!%

= 	.vXSH ∗ g}?~ +	.vXSz ∗ ;<\ −	!eiF

∗ g3J	

39	–	Th1	 T	helper	1	Cells	 0	

(Tse	et	al.,	
2013a)	

(Mallat	et	al.,	
2009)	

(Gerdes	et	al.,	
2002)	

Total	
Cells	

!gℎ1
!%

= 	
.eOW ∗ 	gE ∗ E"12 ∗ E"18	

( .a($WP + E"12 ∗ .a($Ws + E"18 )
−	!eOW ∗ gℎ1	

40	–	Th2	Cells	 T	helper	2	Cells	 0	
(Tse	et	al.,	
2013a)	

Total	
Cells	

!gℎ2
!%

= 	
.eOP ∗ gE ∗ E"4 ∗ E"10

( .a($u + E"4 ∗ .a($Wo + E"10 )
−	!eOP ∗ gℎ2	
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Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

41	–	Th17	Cells	 T	helper	17	Cells	 0	
(Tse	et	al.,	
2013a)	

Total	
Cells	

!gℎ17
!%

= .eOWj

∗
gE ∗ E"10 ∗ g3J

( .a($Wo + E"10 ∗ .avXS + g3J )
	−	!eOWj

∗ gℎ17	

42	–	TFH	Cells	
T	familial	helper	

cells	
0	

(Tse	et	al.,	
2013a)	

Total	
Cells	

!g{ℎ
!%

= .FO ∗
gE ∗ E"6 ∗ E"21

( .a($x + E"6 ∗ .a($PW + E"21 )
−	!eFO ∗ g{ℎ	

43	–	TNK	Cells	
Natural	Killer	T	

Cells	
0	

(Tse	et	al.,	
2013a)	

Total	
Cells	

!gc.
!%

= .edy ∗ gE −	!edy ∗ gc.	

44	–	Treg	Cells	
Regulatory	T	

Cells	
0	

(Tse	et	al.,	
2013a)	

(Pastrana	et	al.,	
2012)	

Total	
Cells	

!g}?~
!%

= .H^i

∗
gE ∗ E"10 ∗ g3J

( .a($Wo + E"10 ∗ .avXS + g3J )
−	!eH^i

∗ g}?~	
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Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

45	–	TNFA	
Tumor	Necrosis	
Factor	Alpha	

0	

(Moore	et	al.,	
2013b)	

(Theoharides	et	
al.,	2012)	

(Damsker	et	al.,	
2010)	

(Amour	et	al.,	
1998)	

Ng/mg	
tissue	

!gKJ
!%

= 	.vfSST ∗ J\ ∗ g:\`
(1 +	gE<23.ee+R

)

+	.vfS_T ∗ <\

∗ g:\`
(1 +	gE<23.ee+R

)
+		.vfSvW

∗ gℎ1 ∗ g:\`
(1 +	gE<23.ee+R

)

+	.vfSvOWj ∗ gℎ17

∗ g:\`
(1 +	gE<23.ee+R

)
−	!vfS

∗ gKJ	

46	–	MMP1	
Matrix	

Metalloproteina
se	1	

0	

(Newby,	2005)	

(Saunders	et	al.,	
2005)	

Ng/mg	
tissue	

!<<21
!%

= 	.__YW ∗ J\ ∗ \ℎ9 ∗ g}9 −	!__YW

∗ <<21 −	ICC0W ∗ 	<<21
∗ (gE<21 + gE<22 + gE<23
+ gE<24)	

47	–	MMP3	
Matrix	

Metalloproteina
se	3	

0	 (Newby,	2005)	

9 Ng
/
m
g	
tis
su
e	

10 Q__Y+
Qe

= 	.__Y+ ∗ J\ ∗ \ℎ9 ∗ g}9 −	!__Y+ ∗

<<23	 −	ICC0+ ∗ 	<<23 ∗ (gE<21 +
gE<22 + gE<23 + gE<24)	



	
	

	
	

219	

Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

48	–	MMP9	
Matrix	

Metalloproteina
se	9	

0	

(Newby,	2005)	

(Ardi	et	al.,	
2007)	

Ng/mg	
tissue	

!<<29
!%

= 	.__Yn ∗ J\ ∗ K?Ä% −	!__Yn

∗ <<29 −	ICC0n ∗ 	<<29
∗ (gE<21 + gE<22 + gE<23
+ gE<24)	

49	–	MMP13	
Matrix	

Metalloproteina
se	13	

0	 (Newby,	2005)	
Ng/mg	
tissue	

Q__YW+

Qe
= 	.__YW+ ∗ J\ −	!__YW+ ∗ <<213	

−	ICC0W+ ∗ 	<<213 ∗ (gE<21 + gE<22 +
gE<23 + gE<24)	

50	–	TIMP1	
Tissue	Inhibitor	
of	MMPs	1	

0	 (Newby,	2008)	
Ng/mg	
tissue	

!gE<21
!%

= 	.v(_YW ∗ <=I ∗ \ℎ9 −	!v(_YW

∗ gE<21 −	Iv(_YW ∗ gE<21
∗	(<<21 +<<22 +<<23
+<<29 +<<213)	

51	–	TIMP2	
Tissue	Inhibitor	
of	MMPs	2	

0	 (Newby,	2008)	
Ng/mg	
tissue	

!gE<22
!%

= 	.v(_YP ∗ <=I −	!v(_YP ∗ gE<22

−	Iv(_YP ∗ gE<22 ∗	(<<21
+<<22 +<<23 +<<29
+<<213)	

52	–	TIMP3	
Tissue	Inhibitor	
of	MMPs	3	

0	 (Newby,	2008)	
Ng/mg	
tissue	

!gE<23
!%

= 	.v(_Y+ ∗ <=I −	!v(_Y+ ∗ gE<23

−	Iv(_Y+ ∗ gE<23 ∗	(<<21
+<<22 +<<23 +<<29
+<<213)	
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Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

53	–	TIMP4	
Tissue	Inhibitor	
of	MMPs	4	

0	
(Koskivirta	et	
al.,	2006)	

Ng/mg	
tissue	

!gE<24
!%

= 	.v(_Yu ∗ <=I −	!v(_Yu ∗ gE<24

−	Iv(_Yu ∗ gE<24 ∗	(<<21
+<<22 +<<23 +<<29
+<<213)	

54	–	Chymase	 Chymase	 0	
(Bot	et	al.,	
2011)	

Ng/mg	
tissue	

!\ℎ9
!%

= 	.TOÅ ∗ <\ −	!TOÅ ∗ \ℎ9	

55	–	Tryptase	 Tryptase	 0	
(Ramalho	et	al.,	

2013)	
Ng/mg	
tissue	

!g}9
!%

= 	.vHÅ ∗ <\ −	!vHÅ ∗ g}9	

56	–	PDGF	
Platelet	Derived	
Growth	Factor	

0	
(Schwartz,	
1997)	

Ng/mg	
tissue	

!2#3J
!%

= 	.Y[XS ∗ ;<\ −	!Y[XS ∗ 2#3J	

57	–	EGF	
Epidermal	

growth	factor	
1	

(Ichiro	et	al.,	
1990)	

Ng/mg	
tissue	

!`3J
!%

= 0	

58	–	Elastin	 Elastin	 0	

(Rudijanto,	
2007)	

(Yamamoto	et	
al.,	1997)	

Ichiro	

(Mecham	et	al.,	
1997)	

Pg/mg	
tissue	

!`Ç=
!%

= 	.^/É ∗
;<\ ∗ g3J4

(.a^/É ∗ 1 +	 `3J.@^iF
+ ;<\)

															

− 	!^/É ∗ `Ç=
∗ <<21 +<<22 +<<23 +<<29
+<<213 	
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Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

59	–	Collagen	 Collagen	 0	

(Rudijanto,	
2007)	

(Butticè	et	al.,	
2006)	

(Lauer-Fields	et	
al.,	2002)	

Pg/mg	
tissue	

!\BÇÇ
!%

= 	.T5// ∗ ;<\ −	!T5// ∗ \BÇÇ

−	}?G5//(<<21 +<<22
+<<23 +<<29 +<<213)	

60	–	B1	Cells	 B1	Cells	 10	
(Perry	et	al.,	

2012)	
Total	
Cells	

!41
!%

= 0	

61	–	B2	Cells	 B2	Cells	 10	
(Perry	et	al.,	

2012)	
Total	
Cells	

!42
!%

= 0	

62	–	Dendritic	
Cells	

Dendritic	Cells	 10	
(Subramanian	
and	Tabas,	

2014)	

Total	
Cells	

!#\
!%

= 0	

63	–	Neutrophil	 Neutrophil	 10	
(Hartwig	et	al.,	

2014)	
Total	
Cells	

!K?Ä%
!%

= 0	

64	–	Mast	Cells	 Mast	Cells	 10	
(Theoharides	et	

al.,	2012)	
Total	
Cells	

!<\
!%

= 0	
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Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

65	–	SMCs	
Smooth	Muscle	

Cells	
0	

(Viedt	et	al.,	
2002)	

(Schwartz,	
1997)	

Total	
Cells	

!;<\
!%

= 	.l_T

∗
<\21 ∗ 2#3J	

.al_TY + 2#3J ∗ (.al_TT + <\21)
−	!l_T ∗ 	;<\	

66	–	Platelets	 Platelets	 10	

(Lievens	and	
von	

Hundelshausen,	
2011)	

Total	
Cells	

!2Ç
!%

= 0	

67	–	IL1B	 IL1B	Lumen	 1000	
(Dinarello,	
2009)	

Fg/ml	
!E"14"
!%

=
.($WV$ ∗ 2Ç ∗ <BcB"
.a($W1 + <BcB"

−	!($WV/ ∗ E"14"	

68	–	CCL5	 CCL5	 2700	
(Zernecke	and	
Weber,	2010)	

Pg/ml	
!\\"5
!%

=
.TT$| ∗ 2Ç ∗ <BcB"
.aTT$| + <BcB"

−	!TT$| ∗ \\"5	

69	–	ABCA1	

ATP-binding	
cassette	

transporter	
member	1	

10	
(Wang	et	al.,	

2007)	
Ng/mg	
tissue	

!:4\:1
!%

= 0	

70	–	ABCG1	

ATP-binding	
cassette	sub-
family	G	
member	1	

10	
(Wang	et	al.,	

2007)	
Ng/mg	
tissue	

!:4\31
!%

= 0	
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Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

71	–	CLHDL	
Cholesterol	
Laden	HDL	in	

Intima	
0	

(Wang	et	al.,	
2007)	

(Oram	and	
Lawn,	2001)	

(Zhang	et	al.,	
2013)	

fg/mg	
tissue	

!\"N#"E
!%

= .T$Z[$( ∗ J\ ∗ :4\:1 ∗ :4\31

∗ 24N#" −	.TZ$[$$ ∗ \"N#"E	

72	–	CLHDL	
Cholesterol	
Laden	HDL	in	

Liver	
20	

(Zhang	et	al.,	
2013)	

fg/mg	
tissue	

!\"N#""
!%

= .TZ$[$$ ∗ \"N#"E −	.ÑZ[$

∗ \"N#""	

73	–	Empty	HDL	
Liver	

Empty	HDL	Liver	 20	
(Staels	and	

Fonseca,	2009)	
fg/mg	
tissue	

!`N#"
!%

= .ÑZ[$ ∗ \"N#"" −	.Z[$v ∗ `N#"	

74	–	Non	
Activated	

Macrophages	

Non	Activated	
Macrophages	

0	
(Rosenson	et	
al.,	2012)	

Total	
Cells	

!K:<
!%

= .fU_ ∗ J\ ∗ :4\:1 ∗ :4\31 ∗ 24N#"

−	!fU_ ∗ K:<	

75	–	IL17	 Interleukin	17	 0	
(Madhur	et	al.,	

2011)	
ng/mg	
tissue	

!E"17
!%

= 	.R/Wj ∗ 		gℎ17 −	!R/Wj ∗ E"17	

76	–	Bile	Acids	 Bile	Acids	 0	
(Staels	and	

Fonseca,	2009)	
Nmol/

g	
!4@Ç?
!%

= 	.1R/^ ∗ 		\"N#""	

77	–	Cholesterol	
Cholesterol	in	

Intestine	
20	

(Redgrave,	
1970)	

Units	
!\ℎBÇE
!%

= 0	
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Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

78	–	Chylomicron	
Intestine	

Chylomicrons	 0	
(Redgrave,	

1970)	
units	

!\ℎ9E
!%

= 	.TOÅ( ∗ 		\ℎBÇE −	.GOÅ/ ∗ \ℎ9E	

79	–	Chylomicron	
Chylomicron	

Lumen	
1.4	

(Tomkin	and	
Owens,	2012)	

(Goldberg,	
1996)	

Ng/ml	
!\ℎ9"
!%

= 	.GOÅ/ ∗ \ℎ9E −	.GOÅH/ ∗ \ℎ9" ∗ "2"	

80	–	Chylomicron	
Renmants	

Chylomicron	
Renmants	in	

Lumen	
0	

(Sakurai	et	al.,	
2005)	

	

Ng/ml	

!\ℎ9Ö"
!%

= 	.GOÅH/ ∗ \ℎ9" ∗ "2" −	.RGGH ∗ \ℎ9Ö"	

81	–	LPL	
Lipoprotein	

Lipase	
20	

(Goldberg,	
1996)	

Ng/ml	
!"2"
!%

= 0	

82	–	Cholesterol	in	
Liver	

Cholesterol	in	
Liver	

0	

(Cooper,	1997)	

(Hu	et	al.,	2008)	

(Zambon	et	al.,	
2003)	

ng/mg	
tissue	

!\ℎBÇ"
!%

= .RGGH ∗ \ℎ9Ö"	

83	–	VLDL	Liver	

Very	Low	
Density	

Lipoprotein	
Liver	

0	
(Mason,	1998)	

	

ng/mg	
tissue	

!Ü"#""@
!%

= .á$[$$ ∗ \ℎBÇ" −	.á$[$e ∗ Ü"#""@	
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Node	ID	 Entity	Name	
Initial	

Concentration	 Citations	 Units	 Equation	

84	–	VLDL	Lumen	

Very	Low	
Density	

Lipoprotein	
Lumen	

2000	

(Mason,	1998)	

(Alaupovic	et	
al.,	1986)	

µg/ml	
!Ü"#""
!%

= .á$[$e ∗ Ü"#""@ −	.([$ ∗ Ü"#""

∗ "2"	

85	–	IDL	Lumen	

Intermediate	
Density	

Lipoprotein	
Lumen	

0	
(Alaupovic	et	
al.,	1986)	

µg/ml	
!E#"
!%

= .([$ ∗ Ü"#"" ∗ "2" −	.$[$ ∗ E#" ∗ "2"	

86	–	TGs	Lumen	
Triglycerides	

Lumen	
146000	

(Talayero	and	
Sacks,	2011)	

µg/ml	
!g3>
!%

= .vXà ∗ Ü"#"" ∗ "2" +	.vXR ∗ E#" ∗ "2"	

87	–	FFAs	 Free	Fatty	Acids	 10	
(Alaupovic	et	
al.,	1986)	

µg/ml	
!JJ:
!%

= .SSUà ∗ Ü"#"" ∗ "2" +	.SSUR ∗ E#"

∗ "2"	

88	–	TACE	 TACE	 1	
(Canault	et	al.,	

2006)	
fg/mg	
tissue	

!g:\`
!%

= 0	

89	–	MMP2	
Matrix	

Metalloproteina
se	2	

1	
(Dick	et	al.,	

2011)	
Ng/mg	
tissue	

!<<22
!%

= 	.__YP ∗ J\ −	!__YP ∗ <<22	

−	ICC0P ∗ 	<<22 ∗ (gE<21
+ gE<22 + gE<23 + gE<24)	
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Supplementary	Table	2.	The	parameters	used	in	the	model	of	atherosclerosis.			

Parameter	
Name	

Description	 Value	 Notes	

jll	
Rate	of	LDL	
Transfer	into	

intima	
5	x10-13	

Found:	1	x10-3	–	(Cilla	et	al.,	2014)	

3.84	x10-5	μM/s	–	(Cobbold	et	al.,	
2002a)	

1	x10-7mg/s	-	(McKay	et	al.,	2005)	

	

Not	used	due	to	Hill	coefficient	

klpb	
Rate	of	

proteoglycans	
binding	to	LDL	

266	 (Camejo	et	al.,	1993)	

koxl	
Vmax	for	rate	of	
oxidization	of	PB-

LDL	
10625	 (McKay	et	al.,	2005)	

kmoxl	
Km	for	oxLDL	
production	rate	 123	 (McKay	et	al.,	2005)	

kmoxh	
Km	for	oxHDL	
production	rate	 180625	 (McKay	et	al.,	2005)	

koxh	
Vmax	for	rate	of	
oxidization	of	PB-

HDL	
0.10625	 (McKay	et	al.,	2005)	

jhl	
Rate	of	HDL	
Transfer	into	

intima	
4.625	x10-7	

Found:	1.2x10-3	μM/s	–	(Cobbold	et	
al.,	2002a)	

1e-8mg/s	-	(McKay	et	al.,	2005)	

	

Not	used	due	to	Hill	coefficient	

khpb	
Rate	of	

proteoglycans	
binding	to	HDL	

266	 Estimated	–	Compared	to	klpb	

kfcr	

Rate	of	
phagocytosis	of	

oxLDL	by	
macrophages	

16200	 Estimated	–	See	Table	5	
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Parameter	
Name	

Description	 Value	 Notes	

kmcpecMM	
Vmax	MCP1	
Production	 0.1350	 Estimated	–	See	Table	5	

kmmcpec	
MM	Constant	of	
MCP1	Production	

from	ECs	
1.05	x107	 Estimated	–	See	Table	5	

Kmmcpil1b	

MM	Constant	of	
MCP1	Production	

due	to	IL1B	
2	 Estimated	–	See	Table	5	

Kmcpl	
VMax	of	MCP1	
transfer	from	

intima	
1.7886	x10-6	 Estimated	

Kmmcpl	
MM	for	MCP1	
transfer	from	

intima	
62.5	 Estimated	

Kmcpi	
Rate	of	MCP1	

Production	from	
Foam	Cells	

100	 Estimated	–	See	Table	5	

Dmcpl	
Degradation	rate	
of	MCP1	in	lumen	 0.00065	

Found:	1.73	(Friedman	and	Hao,	
2014)	

Not	used	to	maintain	protein	levels	
in	plasma	

Dmcpi	
Degradation	rate	
of	MCP1	in	intima	 1.73	 (Owen	and	Sherratt,	1997)	

Dmcsf	
Degradation	rate	

of	MCSF	 4.1472	 (Chen	et	al.,	2012)	

Kmono	
Recruitment	rate	
of	monocytes	in	

lumen	
0.00105125	 Estimated	–	See	Table	5	

KmonoL	
Transfer	rate	of	
monocytes	to	

intima	
0.0080375	 Estimated	–	See	Table	5	

Kmdiff	
Rate	of	monocyte	
differentiation	into	

macrophages	
0.0994	

(Bulelzai	and	Dubbeldam,	2012;	Mao	
et	al.,	1986)	
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Parameter	
Name	

Description	 Value	 Notes	

kfc	
Vmax	of	oxLDL	
phagocytosis	by	
macropages	

540	

Found:	

1.2x10-18	m3/cell/s	–	(Cilla	et	al.,	
2014)	

1e-6/s	–	(Díaz-zuccarini	et	al.,	2014)	

Not	used	due	to	equation	format	

kmfc	

MM	Constant	for	
Foam	Cell	

consumption	of	
oxLDL	for	

macrophages	

6000000	 Estimated	–	See	Table	5	

kmfco	

MM	Constant	for	
Foam	Cell	

comsumption	of	
oxLDL	for	oxLDL	

6000000	 Estimated	–	See	Table	5	

Dfc	
Death	rate	of	foam	

cells	 0.0075	

Found:	0.3	(Friedman	and	Hao,	
2014)	

	

Not	used	due	to	disruption	to	model	
dynamics	

Dmc	
Death	rate	of	
macrophages	 0.05	 Estimated	–	See	Table	5	

Kmcsf	
VMax	rate	of	MCSF	

production	 50	 (Gruber	and	Gerrard,	1992)	

Kifng1	
VMax	rate	of	IFNG	
from	Th1	Cells	 1.2E6	

(Hao	and	Friedman,	2014;	
Tsukaguchi	et	al.,	2011)	

Kmifng1	

MM	Coefficient	for	
IFNG	Production	
from	Th1	Cells	

7.5	x107	 Estimated	

Kmifng17	
MM	Coefficient	for	
IFNG	Production	
from	Th17	Cells	

1.2	x106	 Estimated	

Kifng17	 Production	rate	of	
IFNG	from	Th17	

7.5	x107	 Estimated	
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Parameter	
Name	

Description	 Value	 Notes	

Cells	

Difng	
Degradation	rate	

of	IFNG	 0.69	 (Hao	and	Friedman,	2014)	

Krct	
Rate	of	reverse	
cholesterol	
transport	

1.5	x10-8	 Estimated	

Kcx9	
VMax	rate	of	

CXCL9	 27360	 Estimated	–	See	Table	5	

Kcx10	
VMax	rate	of	

CXCL10	 10000	 Estimated	–	See	Table	5	

Kcx11	
VMax	rate	of	

CXCL11	 4400	 Estimated	–	See	Table	5	

Kmcx9	
Michaelis	Menten	
coefficient	for	

CXCL9	
950000000	 Estimated	–	See	Table	5	

Kmcx10	
Michaelis	Menten	
coefficient	for	

CXCL10	
125000000	 Estimated	–	See	Table	5	

Kmcx11	
Michaelis	Menten	
coefficient	for	

CXCL11	
65000000	 Estimated	–	See	Table	5	

Kccl5	
Production	rate	of	

CCL5	 11000	 Estimated	–	See	Table	5	

Kmccl5	
MM	coefficient	for	

CCL5	 10000000	 Estimated	–	See	Table	5	

Dcx9	
Degradation	rate	

of	CXCL9	 0.000006	

Found:	2.3148	x10-5	/s	–Cilla	

	

Not	used	to	maintain	protein	levels	
in	plasma	

Dcx10	
Degradation	rate	

of	CXCL10	 0.000005	
Found:	2.3148	x10-5	/s	–Cilla	

	

Not	used	to	maintain	protein	levels	
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Parameter	
Name	

Description	 Value	 Notes	

in	plasma	

Dcx11	
Degradation	rate	

of	CXCL11	 0.00000625	

Found:	2.3148	x10-5	/s	–Cilla	

	

Not	used	to	maintain	protein	levels	
in	plasma	

Dccl5	
Degradation	rate	

of	CCL5	 0.005125	

Found:	2.3148	x10-5	/s	–Cilla	

	

Not	used	to	maintain	protein	levels	
in	plasma	

Ktmcx9	
MM	Constant	for	T	
Cell	Recruitment	
due	to	CXCL9	

25000	 Estimated	–	See	Table	5	

Ktmcx10	
MM	Constant	for	T	
Cell	Recruitment	
due	to	CXCL10	

120000	 Estimated	–	See	Table	5	

Ktmcx11	
MM	Constant	for	T	
Cell	Recruitment	
due	to	CXCL11	

120000	 Estimated	–	See	Table	5	

ktmc	
MM	Constant	for	T	
Cell	Recruitment	
due	to	CCL5	

2000	 Estimated	–	See	Table	5	

Kmm2tl	
Rate	of	T	Cell	

Recruitment	due	
to	CXCL9/10/11	

1000	 Estimated	–	See	Table	5	

Ktt	
Rate	of	T	Cell	

transfer	 0.0004	 Estimated	

Kth1	
Rate	of	T	Cell	

differentiation	into	
Th1	Cells	

8.097	 Estimated	

Kth2	
Rate	of	T	Cell	

differentiation	into	
Th2	Cells	

8.1882	 Estimated	

Kth17	 Rate	of	T	Cell	 0.644	 Estimated	
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Parameter	
Name	

Description	 Value	 Notes	

differentiation	into	
Th17	Cells	

Ktfh	
Rate	of	T	Cell	

differentiation	into	
Tfh	Cells	

66.435	 Estimated	

Ktnk	
Rate	of	T	Cell	

differentiation	into	
TNK	Cells	

0.000014	 Estimated	

Ktreg	
Rate	of	T	Cell	

differentiation	into	
Treg	Cells	

0.00625	 Estimated	

Kil1m	
Rate	of	IL1	

production	from	
macrophages	

0.8	 Estimated	–	See	Table	5	

Kil1s	
Rate	of	IL1	

production	from	
SMCs	

0.8	 Estimated	–	See	Table	5	

Dil1	
Degradation	rate	

for	IL1	 2	 (Cilla	et	al.,	2014;	Zhao	et	al.,	2005)	

Kil2c	
Rate	of	IL2	

Production	from	
Dendritic	Cells	

7.5	 Estimated	-	(Tsukaguchi	et	al.,	2011)	
–	See	Table	5	

Kil2t1	
Rate	of	IL2	

Production	from	
Th1	Cells	

7.5	
Estimated	-	(Tsukaguchi	et	al.,	2011)	

–	See	Table	5	

Dil2	
Degradation	rate	

for	IL2	 2	 (Cilla	et	al.,	2014;	Zhao	et	al.,	2005)	

Kil4t2	
Rate	of	IL4	

Production	by	Th2	
Cells	

1	 (Tsukaguchi	et	al.,	2011)	-	estimated	

Kil4tfh	
Rate	of	IL4	
Production	

by	Tfh	Cells	
1	 (Tsukaguchi	et	al.,	2011)	-	estimated	

Dil4	 Degradation	rate	 2	 (Cilla	et	al.,	2014;	Zhao	et	al.,	2005)	
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Parameter	
Name	

Description	 Value	 Notes	

for	IL4	

Kil5	
Rate	of	IL5	
Production	 0.9	 Estimated	

Dil5	
Degradation	rate	

for	IL5	 2	 (Cilla	et	al.,	2014;	Zhao	et	al.,	2005)	

Kil6m	
Rate	of	IL6	

Production	by	
macrophages	

180	 Estimated	–	See	Table	5	

Kil6s	
Rate	of	IL6	

Production	by	
SMCs	

180	 Estimated	–	See	Table	5	

Kil6c	
Rate	of	IL6	

Production	by	
Mast	Cells	

180	 Estimated	–	See	Table	5	

Dil6	
Degradation	rate	

for	IL6	 2	 (Cilla	et	al.,	2014;	Zhao	et	al.,	2005)	

Kil10r	
Rate	of	IL10	

Production	by	Treg	
Cells	

0.375	 Estimated	

Kil10b1	
Rate	of	IL10	

Production	by	B1	
Cells	

0.375	 Estimated	

Kil10b2	
Rate	of	IL10	

Production	by	B2	
Cells	

0.375	 Estimated	

Kil10t2	
Rate	of	IL10	

Production	by	Th2	
Cells	

0.375	 Estimated	

Kil10m	
Rate	of	IL10	
Production	by	
macrophages	

0.375	 Estimated	

Dil10	
Degradation	rate	

for	IL10	 2	 (Cilla	et	al.,	2014;	Zhao	et	al.,	2005)	

Kil12b	 Rate	of	IL12	 0.375	 Estimated	based	on	(Engele	et	al.,	
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Parameter	
Name	

Description	 Value	 Notes	

Production	by	B2	
Cells	

2002)	

Kil12d	
Rate	of	IL12	
Production	by	
Dendritic	Cells	

0.375	
Estimated	based	on	(Engele	et	al.,	

2002)	

Kil12m	
Rate	of	IL12	
Production	by	
Macrophages	

0.375	
Estimated	based	on	(Engele	et	al.,	

2002)	

Kil12f	
Rate	of	IL12	
Production	by	
Foam	Cells	

0.375	
Estimated	based	on	(Engele	et	al.,	

2002)	

Dil12	
Degradation	rate	

for	IL12	 2	 (Cilla	et	al.,	2014;	Zhao	et	al.,	2005)	

Kil18	
Rate	of	IL18	
Production	 2	 Estimated	

Dil18	
Degradation	rate	

for	IL18	 2	 (Cilla	et	al.,	2014;	Zhao	et	al.,	2005)	

Kil21	
Rate	of	IL21	
Production	 21	 Estimated	–	See	Table	5	

Dil21	
Degradation	rate	

for	IL21	 2	 (Cilla	et	al.,	2014;	Zhao	et	al.,	2005)	

Ktgfr	
Rate	of	TGFB	

Production	by	Treg	
Cells	

0.03	 Estimated	

Ktgfs	
Rate	of	TGFB	
Production	by	

SMCs	
0.03	 Estimated	

Ktgfm	

Rate	of	TGFB	
Production	

by	Macrophages	
0.03	 Estimated	

Kmtgf	
Michaelis	Menten	
constant	for	TGFB	 100000	 Estimated	

Dtgf	 Degradation	rate	 2	 (Cilla	et	al.,	2014;	Zhao	et	al.,	2005)	
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Parameter	
Name	

Description	 Value	 Notes	

for	TGF	

Dth1	
Death	rate	of	Th1	

Cells	 0.06	 (Asquith	et	al.,	2006)	

Dth2	
Death	rate	of	Th2	

Cells	 0.06	 (Asquith	et	al.,	2006)	

Dth17	
Death	rate	of	Th17	

Cells	 0.06	 (Asquith	et	al.,	2006)	

Dtfh	
Death	rate	of	TFH	

Cells	 0.06	 (Asquith	et	al.,	2006)	

Dtnk	
Death	rate	of	TNK	

Cells	 0.06	 (Asquith	et	al.,	2006)	

Dtreg	
Death	rate	of	Treg	

Cells	 0.06	 (Asquith	et	al.,	2006)	

Dt0	
Death	rate	of	naïve	

T	Cells	 0.02	 Estimated	

KtnfFC	
Production	rate	of	
TNFA	from	Foam	

Cells	
2.2	 Estimated	–	See	Table	5	

KtnfMC	
Production	rate	of	
TNFA	from	Mast	

Cells	
2.2	 Estimated	–	See	Table	5	

KtnfT1	
Production	rate	of	
TNFA	from	Th1	

Cells	
2.2	 Estimated	–	See	Table	5	

KtnfT17	
Production	rate	of	
TNFA	from	Th17	

Cells	
2.2	 Estimated	–	See	Table	5	

Dtnf	
Degradation	rate	f	

TNFA	 2	 (Cilla	et	al.,	2014;	Zhao	et	al.,	2005)	

Kmmp1	
Production	rate	of	

MMP1	 0.002	 Estimated	–	See	Table	5	

Dmmp1	
Degradation	rate	

of	MMP1	 4.32	 (Kim	and	Friedman,	2010)	
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Parameter	
Name	

Description	 Value	 Notes	

Kmmp2	
Production	rate	of	

MMP2	 0.4	 (Hao	and	Friedman,	2014)	

Dmmp2	
Degradation	rate	

of	MMP2	 4.32	 (Kim	and	Friedman,	2010)	

kmmp3	
Production	rate	of	

MMP3	 0.0004	 Estimated	

Dmmp3	
Degradation	rate	

of	MMP3	 4.32	 (Kim	and	Friedman,	2010)	

Kmmp9	
Production	rate	of	

MMP9	 20	 Estimated	–	See	Table	5	

Dmmp9	
Degradation	rate	

of	MMP9	 4.32	 (Kim	and	Friedman,	2010)	

Kmmp13	
Production	rate	of	

MMP13	 0.25	 Estimated	–	See	Table	5	

Dmmp13	
Degradation	rate	

of	MMP13	 4.32	 (Kim	and	Friedman,	2010)	

Ktimp1	
Production	rate	of	

TIMP1	 200	 Estimated	–	See	Table	5	

Dtimp1	
Degradation		rate	

of	TIMP1	 20	
Estimated	based	on	(Nunes	et	al.,	

2011)	

Ktimp2	
Production	rate	of	

TIMP2	 200	 (Hao	and	Friedman,	2014)	

Dtimp2	
Degradation	rate	

of	TIMP2	 20	
Estimated	based	on	(Nunes	et	al.,	

2011)	

Ktimp3	
Production	rate	of	

TIMP3	 200	 (Hao	and	Friedman,	2014)	

Dtimp3	
Degradation	rate	

of	TIMP3	 20	
Estimated	based	on	(Nunes	et	al.,	

2011)	

Ktimp4	
Production	rate	of	

TIMP4	 200	 (Hao	and	Friedman,	2014)	

Dtimp4	
Degradation	rate	

of	TIMP4	 20	
Estimated	based	on	(Nunes	et	al.,	

2011)	
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Parameter	
Name	

Description	 Value	 Notes	

Cmmp1	
Rate	of	MMP1	
binding	to	TIMPs	 1x10-7	 Estimated	

Cmmp2	
Rate	of	MMP2	
binding	to	TIMPs	 1x10-7	 Estimated	

Cmmp3	
Rate	of	MMP3	
binding	to	TIMPs	 1x10-7	 Estimated	

Cmmp9	
Rate	of	MMP9	
binding	to	TIMPs	 1x10-7	 Estimated	

Cmmp13	
Rate	of	MMP13	
binding	to	TIMPs	 1x10-7	 Estimated	

Ctimp1	
Rate	of	TIMP1	

binding	to	MMPs	 1x10-7	 Estimated	

Ctimp2	
Rate	of	TIMP2	

binding	to	MMPs	 1x10-7	 Estimated	

Ctimp3	
Rate	of	TIMP3	

binding	to	MMPs	 1x10-7	 Estimated	

Ctimp4	
Rate	of	TIMP4	

binding	to	MMPs	 1x10-7	 Estimated	

Kchy	
Production	rate	of	

Chymase	 0.0033125	 Estimated	–	See	Table	5	

Dchy	
Degradation	rate	

of	Chymase	 0.0003125	 Estimated	–	See	Table	5	

Ktry	
Production	rate	of	

Tryptase	 0.0042	 Estimated	–	See	Table	5	

Dtry	
Degradation	rate	

of	Tryptase	 0.0003125	 Estimated	–	See	Table	5	

Kpdgf	
Production	rate	of	

PDGF	 7500	 Estimated	–	See	Table	5	

Dpdgf	
Degradation	rate	

for	PDGF	 2.4	 (Fok,	2012)	

Kela	
Production	rate	for	

Elastin	 0.01	 Estimated	
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Parameter	
Name	

Description	 Value	 Notes	

Dela	
Degradation	rate	

for	Elastin	 2.57	x10-7	 (Friedman	and	Hao,	2014)	

Kmela	
MM	Constant	for	
Elastin	Production	 100000	 Estimated	

Ktt3i	
Inhibition	constant	
for	TIMP3-TACE	

binding	
1000000	 Estimated	

Kcoll	
Production	rate	for	

Collagen	 25	 Estimated	–	See	Table	5	

Dcoll	
Degradation	rate	
for	Collagen	 0.0333	 Estimated	

Ksmc	
Proliferation	rate	

for	SMCs	 9000	 Estimated	–	See	Table	5	

Kmsmcp	
MM	Constant	for	
proliferation	due	

to	MCP1	
500	 Estimated	–	See	Table	5	

Kmsmcc	
MM	Constant	for	
proliferation	due	

to	PDGF	
500	 Estimated	

Dsmc	 Death	rate	of	SMCs	 0.144	 (Bennett	et	al.,	1995)	

Kil1bl	
Production	rate	of	

IL1B	 10.125	 Estimated	–	See	Table	5	

Kmil1b	
MM	Constant	for	
IL1B	Production	 50000	 Estimated	–	See	Table	5	

Dil1bl	
Degradation	rate	

of	IL1B	 0.0003125	 Estimated	–	See	Table	5	

Kclhdli	

Rate	of	HDL	
consumption	of	
cholesterol	in	RCT	

Process	

0.0000006	 Estimated	

Kclhdll	
Rate	of	transfer	of	

CL-HDL	from	
intima	

0.0003125	 Estimated	
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Parameter	
Name	

Description	 Value	 Notes	

Kehdl	
Rate	of	cholesterol	
removal	from	HDL	 0.0003125	 Estimated	

Khdlt	
Rate	of	HDL	

removal	from	liver	 0.0003125	 Estimated	

Kbile	
Rate	of	bile	acid	
production	 0.000856	 (Mc	Auley	et	al.,	2012)	

Kchyi	

Rate	of	
chylomicron	
formation	in	
intestine	

0.3125	 Estimated	

Kchyl	
Rate	of	

chylomicron	
transfer	to	lumen	

0.0001125	 Estimated	

Kchyrl	

Rate	of	
chylomicron	
remnants	
production	

0.0006125	 Estimated	

Kiccr	
Rate	of	cholesterol	
formation	in	liver	 0.01	 Estimated	

Kvldll	
Rate	of	VLDL	

production	in	liver	 1	 (Eussen	et	al.,	2011)	

K_ldlt	
Rate	of	VLDL	

transfer	to	intima	 0.016	 (Mc	Auley	et	al.,	2012)	

Kidl	
Rate	of	VLDL	
delipidation	 3.125	x10-8	 Estimated	

Kldl	
Rate	of	IDL	
delipidation	 3.125	x10-10	 Estimated	

Ktgv	
Rate	of	TG	

production	in	liver	
from	VLDL	

2.5125	x10-8	 Estimated	

Ktgi	
Rate	of	TG	

production	from	
IDL	

2.5125	x10-8	 Estimated	

Kffav	 Rate	of	Free	Fatty	 3.125	x10-10	 Estimated	
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Parameter	
Name	

Description	 Value	 Notes	

Acid	production	
from	VLDL	

Kffai	
Rate	of	Free	Fatty	
Acid	production	

from	IDL	
3.125	x10-10	 Estimated	

Knam	
Non-activated	
macrophages	
production	

0.	000000015	 Estimated	

Dnam	
Death	rate	of	non-

activated	
macrophages	

0.33	 Estimated	

Kil17	
Production	rate	of	

IL17	 30	 Estimated	

Dil17	
Degradation	rate	

of	IL17	 2	 (Cilla	et	al.,	2014;	Zhao	et	al.,	2005)	

Kmil12	
MM	Constant	for	
IL12	Production	 100000	 Estimated	

Kmil18	
MM	Constant	for	
IL18	Production	 100000	 Estimated	

Kmil4	
MM	Constant	for	
IL4	Production	 100000	 Estimated	

Kmil10	
MM	Constant	for	
IL10	Production	 100000	 Estimated	

Kmtgf	
MM	Constant	for	
TGFB	Production	 100000	 Estimated	

Kmil6	
MM	Constant	for	
IL6	Production	 1000000	 Estimated	

Kmil21	
MM	Constant	for	
IL21	Production	 1000000	 Estimated	
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Supplementary	Table	3.		Boundary	conditions	for	the	model	of	atherosclerosis.	

LDL	 40-190	mg/dL	 (Lemieux	et	al.,	2015)	

oxLDL	 1-40	ng/mg	tissue	
(Nishi	et	al.,	

2002)(Hoff	et	al.,	
1978)	

HDL	 40-70	mg/dL	 (Lemieux	et	al.,	2015)	

MCP1	–	Lumen	 113	-	754	pg/ml	
(Arakelyan	et	al.,	

2005)	

Monocytes	–	
Lumen	 20000-80000	cells/ml	 (Johnsen	et	al.,	2005)	

CXCL9	–	Lumen	 17.4-271.2	pg/ml	 (Yu	et	al.,	2015a)	

CXCL10	–	Lumen	 127-956.5	pg/ml	
(Tavakolian	Ferdousie	

et	al.,	2017)	

CXCL11	–	Lumen	 420-1062	pg/ml	 (Kao	et	al.,	2003)	

T	Cells	–	Lumen	 500000-1500000	cells/ml	
(Backteman	et	al.,	

2012)	

IL1B	–	Lumen	 0.28-2.12pg/ml	 (Di	Iorio	et	al.,	2003)	

CCL5	-		Lumen	 2.7ng/ml	-176ng/ml	 (Kathiresan	et	al.,	
2011)	

TGs	–	Lumen	 58-1005mg/dl	 (Gotto,	1998)	

MMP1	 18-104	ng/g	tissue	 (Molloy	et	al.,	2004)	

MMP9	 121-722	ng/g	tissue	 (Molloy	et	al.,	2004)	

TIMP1	 5340-12380	ng/g	tissue	 (Molloy	et	al.,	2004)	

IL1B	Intima	 12-24	ng/g	tissue	 (Molloy	et	al.,	2004)	

IL6	 1475-5146	ng/g	tissue	 (Molloy	et	al.,	2004)	

TNFA	 15-27	ng/g	tissue	 (Molloy	et	al.,	2004)	

IL2	 15.3-24	pg/mg	protein	 (Ragino	et	al.,	2012)	

MCP1	 150-650	pg/mg	protein	 (Ragino	et	al.,	2012)	

IL18	 2-10.7	pg/mg	protein	 (Ragino	et	al.,	2012)	

IL10	 1.5	–	2.3	pg/mg	tissue	 (Stein	et	al.,	2008)	
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IL12	 3.6	–	4.6	pg/mg	tissue	 (Stein	et	al.,	2008)	

IFNG	 20-182	fg/mg	tissue	 (Grufman	et	al.,	2014)	

TGF-Beta	 0.33-0.76	ng/	μg	tissue	 (Herder	et	al.,	2012)	

Chymase	 107.775	(No	units)	 (Ramalho	et	al.,	2013)	

Tryptase	 135.113	(No	units)	 (Ramalho	et	al.,	2013)	

Elastin	 1.580	ng/g	tissue	 (Gonçalves	et	al.,	
2003)	

Collagen	 6.260	ng/g	tissue	
(Gonçalves	et	al.,	

2003)	

Chylomicrons	 1.4-52.6	μg/ml	 (Sakai	et	al.,	2003)	
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Supplementary	Table	4:	Cell	types	involved	in	our	model	of	atherosclerosis	

Monocytes	in	
Intima	

Monocytes	in	
Lumen	 Platelets	

Naïve	CD4+	T	
Cells	in	Lumen	 Endothelial	Cells	

Naïve	CD4+	T	
Cells	in	Intima	 Th1	Cells	 Th2	Cells	 Th17	Cells	 TNK	Cells	

TReg	Cells	 TFH	Cells	
Macrophages	in	

Intima	 Foam	Cells	 B1	Cells	

B2	Cells	 Dendritic	Cells	 Mast	Cells	 Neutrophils	
Smooth	Muscle	

Cells	

	

Supplementary	Table	5:	Proteins	involved	in	our	model	of	atherosclerosis	

ABCA1	 ABCG1	 CCL2	in	Intima	 CCL2	in	Lumen	 CXCL9	

CXCL10	 CXCL11	 Chymase	 Collagen	 EGF	

Elastin	
Interferon	
Gamma	 IL-1B	in	Intima	 IL-10	 IL-12	

IL-17	 IL-18	 IL-1B	in	Lumen	 IL-2	 IL-21	

IL-33	 IL-4	 IL-5	 IL-6	 MCSF	

MMP1	 MMP2	 MMP3	 MMP9	 MMP13	

PDGF	 PLA2	 Proteoglycans	 SMAse	 TGF-Beta	

TIMP1	 TIMP2	 TIMP3	 TIMP4	 TNF-Alpha	

Tryptase	 	 	 	 	

	

Supplementary	Table	6:	All	Lipoprotein	Types	contained	within	the	SBML	model	of	
atherosclerosis	

Low-density	
Lipoprotein	in	

Lumen	

High	Density	
Lipoprotein	in	

Lumen	

Very	High	
Density	

Lipoprotein	in	
Lumen	

Intermediate-
density	

Lipoprotein	in	
Lumen	

Chylomicrons	in	
Lumen	

Chylomicron	
Remnants	in	

Lumen	

Chylomicron	in	
Intestine	

Empty	HDL	in	
Liver	

Cholesterol-
Laden	HDL	in	

Liver	

Very	Low	Density	
Lipoprotein	in	

Liver	

Low	Density	
Lipoprotein	in	

High	Density	
Lipoprotein	in	

Oxidized	Low	
Density	

Oxidized	High	
Density	

Proteoglycan	
Bound	High	
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Intima	 Intima	 Lipoprotein	in	
Intima	

Lipoprotein	in	
Intima	

Density	
Lipoprotein	in	

Intima	

Proteoglycan	
bound	High	
Density	

Lipoprotein	in	
Intima	

Cholesterol	
Laden	High	
Density	

Lipoprotein	in	
Intima	

	 	 	

	

Supplementary	Table	7:	Subprocesses	of	atherosclerosis	

Lipoprotein	mass	transfer	into	the	intima	

Lipoprotein	retention	within	the	intima	

Lipoprotein	oxidation	

Reverse	Cholesterol	Transport	

Monocyte	recruitment	and	adhesion	

Monocyte	migration	

Monocyte	to	macrophage	differentiation	

Phagocytosis	of	oxidized	LDL	

T	Cell	Differentiation	

Matrix	metalloproteinases	and	their	inhibitors	

Smooth	muscle	cell	proliferation	

VLDL	delipidation	

Extra	Cellular	Matrix	

	

Supplementary	Table	8	–	Additional	boundary	conditions	

Total	Cell	Count	per	plaque	
area	 25-4000	cells/mm2	 (Brandl	et	al.,	1997)	

Average	Plaque	Area	 10.9-15.2mm2	 (von	Birgelen	et	al.,	1998)	

Total	Cell	Count	 217.5	–	62000	cells	
(von	Birgelen	et	al.,	

1998)(Brandl	et	al.,	1997)	

Dry	Weight	of	Aeortic	Wall	 1.08mg/mm2	 (Manley	and	Mullinger,	
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(Atherosclerotic)	 1967)	

Dry	Weight	of	Aeortic	Wall	
(Normal)	 0.44mg/mm2	

(Manley	and	Mullinger,	
1967)	

Estimated	SMC	
Concentration	

23738	cells	in	advanced	
plaque	

(Bonanno	et	al.,	2000)	(von	
Birgelen	et	al.,	1998)(Brandl	

et	al.,	1997)	

Estimated	Macrophage	
Concentration	

21593	cells	in	advanced	
plaque	

(Bonanno	et	al.,	2000)	(von	
Birgelen	et	al.,	1998)(Brandl	

et	al.,	1997)	

Estimated	T	Cell	
Concentration	

17168	cells	in	advanced	
plaque	

(Bonanno	et	al.,	2000)	(von	
Birgelen	et	al.,	1998)(Brandl	

et	al.,	1997)	

	

The	 mathematical	 model	 detailed	 above	 has	 been	 implemented	 in	 MATLAB,	 using	 the	

method	 ‘ode23t’.	Ode23t	 is	 a	MATLAB	 function	 designed	 to	 solve	 systems	 of	moderately	

stiff	ODEs.	 In	order	 to	validate	 the	biological	 relevance	of	 the	model,	we	have	obtained	a	

collection	of	experimentally	derived	data	from	the	publically	available	literature.		
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Appendix	4	

Due	to	the	size	of	the	sequences	and	heatmaps	included	in	this	appendix,	this	data	can	be	
found	at	the	following	link:	

	

https://www.dropbox.com/s/9klm1xkr0cv6w9r/Appendix4Large.docx?dl=0	

	

Or	

	

https://goo.gl/58u8io	
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Appendix	5	

Binding	kinetics	calculated	as	described	in	Chapter	5.	

Receptor	Name	 Ligand	Name	 kon	 kd	 koff	
CCR2-001	 CCL2-001	 1.86E+06	 3.77E-08	 7.01E-02	
CCR2-001	 CCL2-001-69	 5.52E+04	 3.92E-09	 2.16E-04	
CCR2-001	 CCL2-001-71	 2.54E+05	 4.89E-10	 1.24E-04	
CCR2-001	 CCL2-004	 2.02E+05	 1.77E-06	 3.57E-01	

CCR2-001-355	 CCL2-001	 2.73E+04	 4.03E-10	 1.10E-05	
CCR2-001-64	 CCL2-001	 2.87E+05	 1.17E-11	 3.34E-06	
CCR2-002	 CCL2-001	 1.87E+05	 4.52E-08	 8.45E-03	

CCR2-002-64	 CCL2-001	 3.92E+04	 2.97E-09	 1.16E-04	
CCR2-201	 CCL2-001	 8.37E+05	 3.41E-08	 2.85E-02	

CCR2-201-355	 CCL2-001	 7.05E+05	 1.66E-09	 1.17E-03	
CCR2-201-64	 CCL2-001	 3.47E+05	 7.10E-11	 2.46E-05	
CCR5-001	 CCL5-001	 5.94E+03	 9.67E-11	 5.74E-07	
CCR5-001	 CCL5-001-40	 1.07E+01	 3.55E-11	 3.80E-10	
CCR5-001	 CCL5-001-5	 4.25E+05	 4.08E-09	 1.73E-03	
CCR5-001	 CCL5-001-56	 1.98E+03	 8.70E-11	 1.72E-07	
CCR5-001	 CCL5-001-67	 1.08E+04	 1.18E-10	 1.27E-06	
CCR5-001	 CCL5-001-68	 5.64E+00	 4.79E-10	 2.70E-09	
CCR5-001	 CCL5-002	 5.94E+03	 9.67E-11	 5.74E-07	
CCR5-001	 CCL5-002-40	 1.07E+01	 3.55E-11	 3.80E-10	
CCR5-001	 CCL5-002-5	 4.25E+05	 4.08E-09	 1.73E-03	
CCR5-001	 CCL5-002-56	 1.98E+03	 8.70E-11	 1.72E-07	
CCR5-001	 CCL5-002-67	 1.08E+04	 1.18E-10	 1.27E-06	
CCR5-001	 CCL5-002-68	 5.64E+00	 4.79E-10	 2.70E-09	

CCR5-001-223	 CCL5-001	 1.71E+04	 9.76E-10	 1.67E-05	
CCR5-001-335	 CCL5-001	 3.43E+03	 7.37E-08	 2.53E-04	
CCR5-001-55	 CCL5-001	 5.29E+03	 1.19E-10	 6.29E-07	
CSF1R-001	 CSF1-001	 1.37E+09	 4.08E-06	 5.59E+03	
CSF1R-001	 CSF1-001-292	 1.67E+10	 1.73E-05	 2.88E+05	
CSF1R-001	 CSF1-001-408	 2.16E+09	 1.65E-06	 3.55E+03	
CSF1R-001	 CSF1-001-438	 1.34E+04	 1.36E-06	 1.82E-02	
CSF1R-001	 CSF1-001-489	 8.55E+05	 4.66E-05	 3.99E+01	
CSF1R-001	 CSF1-002-292	 3.18E+09	 3.33E-06	 1.06E+04	
CSF1R-001	 CSF1-002-408	 5.13E+04	 1.23E-06	 6.30E-02	
CSF1R-001	 CSF1-002-461	 2.01E+00	 7.81E-05	 1.57E-04	
CSF1R-001	 CSF1-002-489	 7.68E+09	 9.52E-08	 7.31E+02	
CSF1R-001	 CSF1-002-523	 1.35E+02	 1.63E-07	 2.20E-05	
CSF1R-001	 CSF1-003	 1.68E+04	 1.08E-06	 1.82E-02	
CSF1R-001	 CSF1-003-292	 1.63E+09	 5.52E-05	 8.99E+04	
CSF1R-001	 CSF1-003-373	 2.81E-28	 2.48E-28	 6.96E-56	
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CSF1R-001	 CSF1-004	 1.65E+04	 2.81E-07	 4.64E-03	
CSF1R-001-245	 CSF1-001	 3.81E-188	 3.82E-06	 1.45E-193	
CSF1R-001-362	 CSF1-001	 7.32E+04	 4.49E-06	 3.28E-01	
CSF1R-201	 CSF1-001	 1.86E+05	 7.56E-06	 1.41E+00	

CSF1R-201-153	 CSF1-001	 9.29E+09	 2.44E-05	 2.26E+05	
CSF1R-201-241	 CSF1-001	 3.19E+05	 4.41E-06	 1.41E+00	
CSF1R-201-245	 CSF1-001	 4.95E+09	 2.54E-05	 1.26E+05	
CSF1R-201-268	 CSF1-001	 1.85E+07	 2.69E-04	 4.98E+03	
CSF1R-201-279	 CSF1-001	 4.99E-140	 5.20E-06	 2.59E-145	
CSF1R-201-298	 CSF1-001	 1.91E+05	 1.00E-06	 1.92E-01	
CSF1R-201-32	 CSF1-001	 2.57E+04	 5.19E-06	 1.33E-01	
CSF1R-201-60	 CSF1-001	 7.69E+03	 5.51E-05	 4.24E-01	
CXCR3-001	 CXCL10-001	 3.50E+06	 1.97E-07	 6.91E-01	
CXCR3-001	 CXCL10-001-18	 6.91E+06	 6.57E-10	 4.54E-03	
CXCR3-001	 CXCL10-001-29	 1.52E+06	 1.75E-08	 2.66E-02	
CXCR3-001	 CXCL10-001-33	 6.93E+04	 3.63E-09	 2.52E-04	
CXCR3-001	 CXCL10-001-58	 1.29E+02	 2.28E-09	 2.94E-07	
CXCR3-001	 CXCL10-001-66	 6.43E-02	 3.03E-07	 1.95E-08	
CXCR3-001	 CXCL10-001-68	 7.13E+03	 2.95E-05	 2.10E-01	
CXCR3-001	 CXCL10-001-80	 4.92E+06	 1.30E-06	 6.37E+00	
CXCR3-001	 CXCL10-001-96	 1.39E+05	 1.65E-10	 2.29E-05	
CXCR3-001	 CXCL11-001	 3.38E+03	 1.71E-10	 5.77E-07	
CXCR3-001	 CXCL11-001-29	 6.04E+02	 1.38E-07	 8.35E-05	
CXCR3-001	 CXCL11-001-72	 5.50E+04	 7.25E-08	 3.99E-03	
CXCR3-001	 CXCL11-001-73	 1.12E+06	 7.63E-05	 8.54E+01	
CXCR3-001	 CXCL11-003	 7.55E+05	 6.76E-08	 5.10E-02	
CXCR3-001	 CXCL11-003-29	 2.73E+06	 2.61E-05	 7.12E+01	
CXCR3-001	 CXCL11-003-72	 5.27E+04	 1.38E-07	 7.25E-03	
CXCR3-001	 CXCL11-003-73	 4.22E+02	 4.88E-07	 2.06E-04	
CXCR3-001	 CXCL9-001	 1.82E+05	 3.56E-06	 6.48E-01	
CXCR3-001	 CXCL9-001-1	 3.31E+05	 9.08E-08	 3.00E-02	
CXCR3-001	 CXCL9-001-101	 1.95E+07	 6.51E-08	 1.27E+00	
CXCR3-001	 CXCL9-001-125	 4.24E+05	 4.56E-07	 1.93E-01	
CXCR3-001	 CXCL9-001-40	 2.76E+06	 7.99E-07	 2.21E+00	
CXCR3-001	 CXCL9-001-71	 1.69E+05	 3.11E-09	 5.26E-04	
CXCR3-002	 CXCL10-001	 1.02E+06	 6.45E-06	 6.58E+00	
CXCR3-002	 CXCL11-001	 1.81E+04	 3.88E-05	 7.02E-01	
CXCR3-002	 CXCL9-001	 2.81E+08	 6.31E-08	 1.77E+01	
EGFR-001	 EGF-001	 1.28E+04	 1.29E-06	 1.66E-02	
EGFR-001	 EGF-001-151	 2.31E+09	 3.05E-07	 7.03E+02	
EGFR-001	 EGF-002-389	 8.14E+04	 2.43E-05	 1.98E+00	

EGFR-001-521	 EGF-001	 2.07E+05	 9.84E-06	 2.04E+00	
EGFR-002	 EGF-001	 1.36E+05	 1.91E-06	 2.59E-01	

EGFR-002-521	 EGF-001	 2.13E-74	 2.22E-07	 4.72E-81	
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EGFR-002-640	 EGF-001	 3.11E+04	 4.39E-08	 1.37E-03	
EGFR-002-703	 EGF-001	 5.12E+04	 1.91E-07	 9.76E-03	
EGFR-003	 EGF-001	 7.60E+04	 3.36E-07	 2.56E-02	

EGFR-003-521	 EGF-001	 1.28E+04	 6.60E-08	 8.45E-04	
EGFR-004-476	 EGF-001	 3.43E+08	 6.70E-07	 2.30E+02	
EGFR-005	 EGF-001	 7.45E-144	 4.60E-08	 3.43E-151	
EGFR-201	 EGF-001	 9.34E+04	 5.30E-05	 4.95E+00	

EGFR-201-521	 EGF-001	 2.21E+03	 6.29E-08	 1.39E-04	
EGFR-202	 EGF-001	 5.16E+04	 1.03E-05	 5.33E-01	
IFNGR1-001	 IFNG-001	 7.34E+06	 4.10E-08	 3.01E-01	
IFNGR1-001	 IFNG-001-160	 3.31E+09	 6.39E-08	 2.12E+02	
IFNGR1-001	 IFNG-001-162	 1.09E+09	 1.00E-08	 1.09E+01	
IFNGR1-001	 IFNG-001-72	 4.60E+07	 2.44E-09	 1.12E-01	

IFNGR1-001-14	 IFNG-001	 1.08E+07	 7.12E-09	 7.69E-02	
IFNGR1-001-180	 IFNG-001	 7.55E+03	 2.36E-11	 1.78E-07	
IFNGR1-001-335	 IFNG-001	 3.68E+08	 7.16E-10	 2.64E-01	
IFNGR1-001-467	 IFNG-001	 1.01E+07	 2.77E-08	 2.80E-01	
IFNGR1-201	 IFNG-001	 3.60E+08	 1.05E-08	 3.77E+00	

IFNGR1-201-14	 IFNG-001	 3.65E+08	 1.47E-06	 5.37E+02	
IFNGR1-201-180	 IFNG-001	 3.34E+07	 1.17E-09	 3.91E-02	
IFNGR1-201-46	 IFNG-001	 8.43E+02	 3.78E-11	 3.18E-08	
IFNGR1-201-61	 IFNG-001	 1.47E+02	 3.70E-12	 5.44E-10	
IFNGR2-001	 IFNG-001	 3.29E+01	 6.33E-09	 2.08E-07	
IFNGR2-001	 IFNG-001-160	 2.44E+03	 3.89E-10	 9.48E-07	
IFNGR2-001	 IFNG-001-162	 5.83E+06	 1.80E-09	 1.05E-02	
IFNGR2-001	 IFNG-001-72	 3.68E+02	 8.74E-12	 3.21E-09	

IFNGR2-001-64	 IFNG-001	 4.69E+03	 9.63E-12	 4.52E-08	
IL10RA-001	 IL10-001	 9.89E+04	 4.07E-04	 4.02E+01	
IL10RA-001	 IL10-001-15	 1.07E+06	 2.16E-06	 2.31E+00	
IL10RA-001	 IL10-001-169	 8.11E+04	 4.72E-09	 3.82E-04	
IL10RA-001	 IL10-001-19	 2.09E+05	 1.43E-10	 2.99E-05	
IL10RA-001	 IL10-001-20	 5.75E+05	 6.08E-08	 3.49E-02	
IL10RA-001	 IL10-001-45	 8.12E+03	 8.67E-06	 7.04E-02	
IL10RA-001	 IL10-001-71	 1.05E+05	 2.38E-05	 2.50E+00	
IL10RA-001	 IL10-001-72	 1.50E+05	 3.71E-05	 5.56E+00	

IL10RA-001-159	 IL10-001	 3.88E+05	 4.56E-05	 1.77E+01	
IL10RA-001-224	 IL10-001	 4.60E+04	 8.04E-05	 3.70E+00	
IL10RA-001-233	 IL10-001	 1.75E-01	 1.21E-13	 2.12E-14	
IL10RA-001-351	 IL10-001	 9.10E+04	 3.41E-21	 3.10E-16	
IL10RA-001-420	 IL10-001	 1.45E-16	 6.79E-26	 9.84E-42	
IL12RB1-001	 IL12A-001	 1.57E+03	 1.18E-29	 1.85E-26	
IL12RB1-001	 IL12A-001-211	 5.24E+05	 7.36E-07	 3.86E-01	
IL12RB1-001	 IL12A-001-82	 2.36E+04	 4.92E-10	 1.16E-05	
IL12RB1-001	 IL12A-005	 8.10E+04	 6.69E-08	 5.42E-03	
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IL12RB1-001	 IL12A-005-115	 3.74E+04	 4.69E-11	 1.75E-06	
IL12RB1-001	 IL12A-005-153	 1.56E+06	 8.55E-11	 1.33E-04	
IL12RB1-001	 IL12A-005-164	 4.57E+04	 1.48E-09	 6.77E-05	
IL12RB1-001	 IL12A-005-200	 4.49E+07	 1.14E-09	 5.14E-02	
IL12RB1-001	 IL12A-005-3	 6.81E+05	 1.45E-18	 9.87E-13	
IL12RB1-001	 IL12A-005-81	 5.39E+07	 1.06E-05	 5.71E+02	
IL12RB1-001	 IL12A-006	 9.19E+02	 9.06E-11	 8.33E-08	
IL12RB1-001	 IL12A-006-139	 8.94E+06	 3.62E-12	 3.23E-05	
IL12RB1-001	 IL12A-006-157	 1.50E+06	 2.32E-06	 3.48E+00	
IL12RB1-001	 IL12A-006-177	 1.42E+05	 8.60E-07	 1.22E-01	
IL12RB1-001	 IL12A-006-224	 4.11E+04	 1.17E-09	 4.82E-05	
IL12RB1-001	 IL12A-006-28	 3.49E-05	 2.17E-14	 7.58E-19	
IL12RB1-001	 IL12A-006-3	 7.19E+04	 6.78E-07	 4.88E-02	
IL12RB1-001	 IL12A-006-81	 1.44E+05	 2.88E-07	 4.14E-02	

IL12RB1-001-156	 IL12A-001	 5.08E+01	 3.63E-07	 1.85E-05	
IL12RB1-001-214	 IL12A-001	 4.15E+03	 3.45E-22	 1.43E-18	
IL12RB1-001-352	 IL12A-001	 8.56E-35	 1.08E-21	 9.24E-56	
IL12RB1-001-365	 IL12A-001	 7.64E-09	 1.09E-18	 8.33E-27	
IL12RB1-001-378	 IL12A-001	 3.08E+03	 1.45E-06	 4.47E-03	
IL12RB1-001-91	 IL12A-001	 8.55E-15	 8.17E-27	 6.98E-41	
IL12RB1-002-156	 IL12A-001	 5.08E+01	 3.63E-07	 1.85E-05	
IL12RB1-002-214	 IL12A-001	 1.14E-15	 3.45E-22	 3.93E-37	
IL12RB1-002-378	 IL12A-001	 3.08E+03	 1.45E-06	 4.47E-03	
IL12RB1-002-47	 IL12A-001	 3.53E-22	 2.62E-19	 9.24E-41	
IL12RB1-002-91	 IL12A-001	 8.55E-15	 8.17E-27	 6.98E-41	
IL12RB1-003-201	 IL12A-001	 9.05E+06	 7.78E-06	 7.04E+01	

IL17RA-001	 IL17A-001	 4.45E-02	 4.61E-13	 2.05E-14	
IL17RA-001	 IL17A-001-134	 7.48E+00	 2.60E-05	 1.94E-04	
IL17RA-001	 IL17A-001-43	 1.47E-13	 4.60E-06	 6.77E-19	
IL17RA-001	 IL17A-001-69	 2.43E+03	 9.95E-05	 2.42E-01	
IL17RA-001	 IL17A-001-71	 5.42E+08	 3.29E-06	 1.78E+03	
IL17RA-001	 IL17A-001-74	 3.18E-03	 5.07E-06	 1.61E-08	
IL17RA-001	 IL17A-001-95	 1.79E-84	 5.83E-07	 1.04E-90	

IL17RA-001-367	 IL17A-001	 1.80E-03	 1.73E-11	 3.11E-14	
IL17RA-001-607	 IL17A-001	 4.46E+03	 5.29E-07	 2.36E-03	
IL17RA-001-691	 IL17A-001	 6.96E+00	 4.40E-07	 3.06E-06	
IL18R1-001	 IL18-001	 4.16E+01	 6.93E-11	 2.88E-09	
IL18R1-001	 IL18-001-127	 1.37E-04	 7.21E-11	 9.88E-15	
IL18R1-001	 IL18-001-164	 1.49E-01	 9.41E-13	 1.40E-13	
IL18R1-001	 IL18-001-22	 3.26E+03	 1.96E-10	 6.40E-07	
IL18R1-001	 IL18-001-47	 4.57E+01	 1.16E-09	 5.29E-08	
IL18R1-001	 IL18-001-63	 2.89E+03	 1.03E-07	 2.98E-04	
IL18R1-001	 IL18-003	 5.86E+03	 7.81E-10	 4.58E-06	
IL18R1-001	 IL18-003-123	 1.06E+04	 6.05E-11	 6.41E-07	
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IL18R1-001	 IL18-003-160	 8.74E+01	 2.26E-10	 1.97E-08	
IL18R1-001	 IL18-003-22	 2.06E+00	 2.05E-11	 4.21E-11	
IL18R1-001	 IL18-003-43	 5.12E+01	 3.60E-11	 1.84E-09	
IL18R1-001	 IL18-003-59	 1.50E+04	 2.79E-10	 4.19E-06	
IL18R1-001	 IL18-006	 4.16E+01	 6.93E-11	 2.88E-09	
IL18R1-001	 IL18-006-127	 1.37E-04	 7.21E-11	 9.88E-15	
IL18R1-001	 IL18-006-164	 1.49E-01	 9.41E-13	 1.40E-13	
IL18R1-001	 IL18-006-22	 3.26E+03	 1.96E-10	 6.40E-07	
IL18R1-001	 IL18-006-47	 4.57E+01	 1.16E-09	 5.29E-08	
IL18R1-001	 IL18-006-63	 2.89E+03	 1.03E-07	 2.98E-04	

IL18R1-001-170	 IL18-001	 3.81E+03	 7.25E-09	 2.76E-05	
IL18R1-001-232	 IL18-001	 1.26E+06	 2.27E-08	 2.86E-02	
IL18R1-001-423	 IL18-001	 1.05E+03	 9.98E-11	 1.05E-07	
IL18R1-201	 IL18-001	 4.16E+01	 6.93E-11	 2.88E-09	

IL18R1-201-170	 IL18-001	 3.81E+03	 7.25E-09	 2.76E-05	
IL18R1-201-232	 IL18-001	 1.26E+06	 2.27E-08	 2.86E-02	
IL18R1-201-423	 IL18-001	 1.05E+03	 9.98E-11	 1.05E-07	
IL18R1-202	 IL18-001	 5.78E+04	 2.11E-11	 1.22E-06	

IL18R1-202-100	 IL18-001	 3.05E-02	 2.52E-10	 7.67E-12	
IL18R1-202-117	 IL18-001	 5.63E+05	 4.04E-09	 2.27E-03	
IL18R1-202-139	 IL18-001	 3.42E+04	 2.47E-09	 8.46E-05	
IL18R1-202-162	 IL18-001	 1.45E+05	 3.95E-10	 5.72E-05	
IL18R1-202-53	 IL18-001	 4.32E+04	 1.76E-10	 7.59E-06	
IL18R1-202-84	 IL18-001	 2.00E+04	 3.11E-10	 6.21E-06	
IL1R1-001	 IL1B-001	 4.41E-29	 2.41E-20	 1.06E-48	
IL1R1-001	 IL33-001-124	 1.56E+07	 4.11E-05	 6.40E+02	
IL1R1-001	 IL33-001-153	 5.44E-01	 4.23E-06	 2.30E-06	
IL1R1-001	 IL33-001-201	 1.48E+04	 1.08E-05	 1.60E-01	
IL1R1-001	 IL33-001-263	 1.05E+07	 1.84E-06	 1.93E+01	
IL1R1-001	 IL33-001-83	 5.05E+06	 2.96E-07	 1.50E+00	
IL1R1-001	 IL33-201-31	 2.11E+05	 2.08E-06	 4.40E-01	
IL1R1-001	 IL33-201-4	 2.43E+10	 6.68E-06	 1.62E+05	
IL1R1-001	 IL33-201-75	 4.26E+04	 7.48E-07	 3.19E-02	
IL1R1-001	 IL33-201-96	 3.19E+07	 1.18E-04	 3.76E+03	
IL1R1-001	 IL33-202-108	 2.46E+00	 1.24E-05	 3.05E-05	
IL1R1-001	 IL33-202-180	 6.98E+10	 4.26E-05	 2.97E+06	
IL1R1-001	 IL33-202-39	 2.06E+11	 1.08E-04	 2.22E+07	
IL1R1-001	 IL33-202-55	 4.28E+10	 6.31E-05	 2.70E+06	
IL1R1-001	 IL33-202-57	 1.57E-22	 9.83E-21	 1.54E-42	
IL1R1-001	 IL33-203	 8.31E+06	 2.48E-05	 2.06E+02	
IL1R1-001	 IL33-203-31	 1.13E+09	 5.75E-07	 6.50E+02	
IL1R1-001	 IL33-203-39	 2.56E+09	 1.86E-04	 4.77E+05	
IL1R1-001	 IL33-203-4	 3.80E+04	 1.05E-05	 3.99E-01	
IL1R1-001	 IL33-203-95	 2.84E+08	 7.89E-05	 2.24E+04	
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IL1R1-001-510	 IL33-001	 2.74E-01	 7.30E-07	 2.00E-07	
IL1R1-006-344	 IL33-001	 6.87E+08	 2.97E-06	 2.04E+03	
IL1R1-006-425	 IL33-001	 2.00E+09	 4.42E-08	 8.85E+01	
IL1R1-013	 IL33-001	 2.18E+05	 1.91E-11	 4.16E-06	

IL1R1-013-124	 IL33-001	 4.09E+07	 2.99E-11	 1.22E-03	
IL1R1-013-344	 IL33-001	 1.91E+09	 2.74E-11	 5.23E-02	
IL1RL1-001	 IL33-201-96	 9.25E+06	 3.41E-06	 3.16E+01	
IL1RL1-001	 IL33-202-108	 2.32E-37	 9.75E-29	 2.26E-65	

IL1RL1-001-176	 IL33-001	 4.22E+04	 9.91E-12	 4.18E-07	
IL1RL1-002-216	 IL33-001	 4.10E+02	 1.23E-14	 5.04E-12	
IL1RL1-008-180	 IL33-001	 7.79E+00	 1.30E-13	 1.01E-12	
IL1RL1-201-127	 IL33-001	 2.62E+09	 2.01E-05	 5.26E+04	

IL21R-001	 IL21-001	 2.46E+05	 3.53E-09	 8.69E-04	
IL21R-001	 IL21-001-135	 3.18E+08	 4.69E-08	 1.49E+01	
IL21R-001	 IL21-001-40	 1.25E+10	 4.26E-08	 5.33E+02	
IL21R-001	 IL21-201	 1.22E+05	 3.55E-10	 4.33E-05	
IL21R-001	 IL21-201-135	 1.34E+09	 3.79E-07	 5.08E+02	
IL21R-001	 IL21-201-40	 2.19E+05	 1.82E-09	 3.97E-04	

IL21R-001-318	 IL21-001	 1.31E+05	 2.67E-05	 3.50E+00	
IL21R-001-484	 IL21-001	 1.77E+00	 4.50E-11	 7.96E-11	
IL21R-003	 IL21-001	 2.46E+05	 3.53E-09	 8.69E-04	

IL21R-003-318	 IL21-001	 1.31E+05	 2.67E-05	 3.50E+00	
IL21R-003-484	 IL21-001	 1.54E+06	 2.03E-07	 3.13E-01	
IL21R-006	 IL21-001	 2.46E+05	 3.53E-09	 8.69E-04	

IL21R-006-318	 IL21-001	 2.28E+05	 1.26E-05	 2.87E+00	
IL21R-006-484	 IL21-001	 1.54E+06	 2.03E-07	 3.13E-01	
IL2RA-001	 IL2-001	 7.02E+01	 3.27E-12	 2.29E-10	
IL2RA-001	 IL2-001-140	 3.07E+02	 3.46E-12	 1.06E-09	
IL2RA-001	 IL2-001-21	 4.84E-01	 1.75E-12	 8.48E-13	
IL2RA-001	 IL2-001-43	 1.64E+04	 4.35E-11	 7.14E-07	
IL2RA-001	 IL2-001-54	 4.15E-04	 1.26E-12	 5.21E-16	

IL2RA-001-153	 IL2-001	 1.52E+03	 2.75E-10	 4.18E-07	
IL2RA-002	 IL2-001	 1.10E+02	 3.64E-12	 4.01E-10	

IL2RA-002-111	 IL2-001	 2.30E+05	 6.95E-12	 1.60E-06	
IL2RA-002-148	 IL2-001	 3.77E+03	 1.57E-09	 5.91E-06	
IL2RA-002-159	 IL2-001	 2.14E+03	 1.14E-11	 2.44E-08	
IL2RA-002-161	 IL2-001	 3.73E+05	 1.74E-10	 6.50E-05	
IL2RA-002-181	 IL2-001	 3.02E+00	 1.32E-09	 4.00E-09	
IL2RA-002-191	 IL2-001	 3.54E+05	 3.82E-09	 1.35E-03	
IL2RA-002-200	 IL2-001	 8.43E+02	 2.33E-12	 1.96E-09	
IL2RA-002-25	 IL2-001	 9.34E+06	 1.29E-06	 1.21E+01	
IL2RA-002-39	 IL2-001	 1.62E+08	 2.00E-07	 3.25E+01	
IL2RA-002-42	 IL2-001	 3.53E+06	 9.38E-08	 3.31E-01	
IL2RA-002-61	 IL2-001	 1.04E+04	 1.28E-08	 1.33E-04	
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IL2RA-002-91	 IL2-001	 1.53E+00	 8.57E-09	 1.31E-08	
IL2RA-004	 IL2-001	 8.24E+04	 4.31E-12	 3.55E-07	

IL2RA-004-111	 IL2-001	 1.24E+05	 2.46E-07	 3.05E-02	
IL2RA-004-153	 IL2-001	 4.44E+05	 1.06E-05	 4.69E+00	
IL2RA-004-244	 IL2-001	 5.21E+05	 9.32E-08	 4.85E-02	
IL2RA-004-91	 IL2-001	 1.05E-04	 4.94E-12	 5.19E-16	
IL4R-001	 IL4-001	 1.17E+04	 4.37E-05	 5.12E-01	
IL4R-001	 IL4-001-100	 3.49E-37	 6.22E-26	 2.17E-62	
IL4R-001	 IL4-001-105	 2.33E+09	 1.56E-05	 3.64E+04	
IL4R-001	 IL4-001-109	 3.35E+03	 1.21E-09	 4.05E-06	
IL4R-001	 IL4-001-152	 1.30E+05	 9.35E-06	 1.21E+00	
IL4R-001	 IL4-001-22	 4.25E-21	 3.16E-35	 1.34E-55	
IL4R-001	 IL4-001-26	 2.49E+06	 1.74E-06	 4.34E+00	
IL4R-001	 IL4-001-30	 1.84E+09	 2.76E-06	 5.08E+03	
IL4R-001	 IL4-001-53	 1.34E+07	 2.73E-06	 3.66E+01	
IL4R-001	 IL4-001-98	 3.01E+07	 9.04E-07	 2.72E+01	
IL4R-001	 IL4-002	 5.40E+03	 1.03E-06	 5.54E-03	
IL4R-001	 IL4-002-102	 1.18E-16	 9.57E-14	 1.13E-29	
IL4R-001	 IL4-002-136	 2.66E+06	 6.21E-07	 1.65E+00	
IL4R-001	 IL4-002-22	 2.10E+06	 6.57E-05	 1.38E+02	
IL4R-001	 IL4-002-26	 1.20E+07	 3.55E-07	 4.26E+00	
IL4R-001	 IL4-002-30	 1.49E+03	 1.14E-11	 1.70E-08	
IL4R-001	 IL4-002-82	 1.71E+06	 1.54E-06	 2.62E+00	
IL4R-001	 IL4-002-84	 5.39E+04	 6.01E-06	 3.24E-01	
IL4R-001	 IL4-002-89	 1.60E+05	 3.59E-09	 5.75E-04	
IL4R-001	 IL4-002-93	 7.67E+07	 5.26E-08	 4.04E+00	
IL4R-001	 IL4-201	 6.87E-08	 7.57E-06	 5.20E-13	
IL4R-001	 IL4-201-134	 2.46E+10	 1.09E-04	 2.68E+06	
IL4R-001	 IL4-201-22	 2.45E+08	 2.43E-06	 5.96E+02	
IL4R-001	 IL4-201-26	 1.77E+04	 1.72E-06	 3.04E-02	
IL4R-001	 IL4-201-30	 6.18E-03	 6.09E-06	 3.76E-08	
IL4R-001	 IL4-201-67	 7.50E+08	 1.41E-06	 1.06E+03	
IL4R-001	 IL4-201-82	 1.07E+06	 4.96E-06	 5.30E+00	

IL4R-001-185	 IL4-001	 1.67E+08	 5.75E-06	 9.61E+02	
IL4R-001-400	 IL4-001	 5.41E+03	 3.30E-05	 1.78E-01	
IL4R-001-436	 IL4-001	 1.29E+07	 1.54E-06	 1.99E+01	
IL4R-001-503	 IL4-001	 1.56E+03	 1.76E-05	 2.75E-02	
IL4R-001-576	 IL4-001	 4.12E+05	 1.27E-04	 5.24E+01	
IL4R-001-579	 IL4-001	 8.56E+05	 1.42E-06	 1.22E+00	
IL4R-001-75	 IL4-001	 5.93E+02	 3.23E-05	 1.92E-02	
IL4R-001-752	 IL4-001	 1.85E+05	 2.13E-06	 3.94E-01	
IL4R-001-82	 IL4-001	 3.08E+09	 6.24E-06	 1.92E+04	
IL4R-001-97	 IL4-001	 2.15E-09	 1.29E-05	 2.77E-14	
IL4R-004	 IL4-001	 5.82E+01	 7.99E-08	 4.65E-06	
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IL4R-004-185	 IL4-001	 2.15E+06	 5.01E-07	 1.08E+00	
IL4R-004-400	 IL4-001	 5.58E+04	 2.14E-07	 1.19E-02	
IL4R-004-431	 IL4-001	 1.30E+06	 3.68E-07	 4.78E-01	
IL4R-004-436	 IL4-001	 2.86E-33	 5.20E-06	 1.49E-38	
IL4R-004-503	 IL4-001	 1.74E+04	 7.41E-06	 1.29E-01	
IL4R-004-576	 IL4-001	 1.82E+02	 8.95E-11	 1.63E-08	
IL4R-004-579	 IL4-001	 1.59E+04	 7.38E-06	 1.17E-01	
IL4R-004-75	 IL4-001	 1.95E+05	 4.45E-05	 8.67E+00	
IL4R-004-752	 IL4-001	 2.67E+04	 8.03E-07	 2.14E-02	
IL4R-004-786	 IL4-001	 1.88E+04	 8.69E-06	 1.63E-01	
IL4R-004-82	 IL4-001	 8.68E+07	 8.04E-06	 6.98E+02	
IL4R-004-97	 IL4-001	 4.89E+05	 8.34E-06	 4.08E+00	
IL4R-201	 IL4-001	 2.97E-08	 1.90E-14	 5.64E-22	

IL4R-201-170	 IL4-001	 4.99E+00	 6.00E-06	 2.99E-05	
IL4R-201-385	 IL4-001	 1.05E+06	 2.05E-05	 2.15E+01	
IL4R-201-416	 IL4-001	 6.07E+07	 1.28E-05	 7.76E+02	
IL4R-201-421	 IL4-001	 2.95E+05	 1.33E-04	 3.91E+01	
IL4R-201-488	 IL4-001	 8.17E+07	 7.70E-07	 6.29E+01	
IL4R-201-561	 IL4-001	 5.62E+05	 5.79E-07	 3.25E-01	
IL4R-201-564	 IL4-001	 3.34E-06	 7.13E-12	 2.38E-17	
IL4R-201-60	 IL4-001	 1.26E+05	 2.15E-06	 2.71E-01	
IL4R-201-660	 IL4-001	 2.16E+06	 1.51E-05	 3.26E+01	
IL4R-201-67	 IL4-001	 1.63E+04	 1.37E-06	 2.24E-02	
IL4R-201-737	 IL4-001	 9.11E+05	 1.11E-05	 1.01E+01	
IL4R-201-771	 IL4-001	 4.36E-178	 3.84E-06	 1.67E-183	
IL4R-201-82	 IL4-001	 7.78E+06	 8.21E-07	 6.38E+00	
IL5RA-001	 IL5-001	 8.21E+04	 2.88E-05	 2.36E+00	
IL5RA-001	 IL5-001-104	 3.30E+05	 0.00E+00	 0.00E+00	
IL5RA-001	 IL5-001-17	 5.88E+04	 1.15E-05	 6.76E-01	
IL5RA-001	 IL5-001-40	 1.91E+07	 1.07E-05	 2.03E+02	
IL5RA-001	 IL5-001-45	 2.26E+04	 1.32E-05	 2.98E-01	
IL5RA-001	 IL5-001-49	 8.75E+05	 3.56E-05	 3.12E+01	
IL5RA-001	 IL5-001-6	 4.51E+05	 1.30E-05	 5.85E+00	
IL5RA-001	 IL5-001-93	 4.41E+04	 1.21E-05	 5.35E-01	

IL5RA-001-129	 IL5-001	 3.95E+06	 1.01E-04	 3.99E+02	
IL5RA-001-359	 IL5-001	 5.71E+05	 7.39E-05	 4.22E+01	
IL5RA-001-59	 IL5-001	 6.35E+05	 4.87E-05	 3.09E+01	
IL5RA-002	 IL5-001	 4.01E+05	 2.89E-05	 1.16E+01	

IL5RA-002-129	 IL5-001	 3.00E+05	 0.00E+00	 0.00E+00	
IL5RA-002-262	 IL5-001	 6.36E+04	 0.00E+00	 0.00E+00	
IL5RA-002-59	 IL5-001	 1.88E+06	 0.00E+00	 0.00E+00	
IL5RA-003	 IL5-001	 8.18E+05	 0.00E+00	 0.00E+00	

IL5RA-003-129	 IL5-001	 1.94E+05	 0.00E+00	 0.00E+00	
IL5RA-003-262	 IL5-001	 5.15E+05	 0.00E+00	 0.00E+00	
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IL5RA-003-59	 IL5-001	 1.95E+05	 5.06E-05	 9.86E+00	
IL5RA-004	 IL5-001	 3.32E+04	 3.06E-05	 1.02E+00	

IL5RA-004-129	 IL5-001	 8.37E+06	 1.99E-04	 1.66E+03	
IL5RA-004-359	 IL5-001	 4.30E+05	 1.61E-07	 6.91E-02	
IL5RA-004-59	 IL5-001	 1.75E+05	 5.98E-05	 1.05E+01	
IL5RA-005	 IL5-001	 1.61E+05	 8.21E-05	 1.32E+01	

IL5RA-005-129	 IL5-001	 4.63E+03	 3.75E-06	 1.74E-02	
IL5RA-005-262	 IL5-001	 1.18E+06	 3.35E-04	 3.96E+02	
IL5RA-005-59	 IL5-001	 8.29E+05	 7.75E-05	 6.42E+01	
IL5RA-006	 IL5-001	 2.47E+05	 2.15E-05	 5.30E+00	

IL5RA-006-129	 IL5-001	 1.90E+05	 1.08E-04	 2.05E+01	
IL5RA-006-262	 IL5-001	 8.65E+05	 0.00E+00	 0.00E+00	
IL5RA-006-59	 IL5-001	 2.64E+05	 3.57E-06	 9.42E-01	
IL5RA-007	 IL5-001	 6.87E+04	 0.00E+00	 0.00E+00	

IL5RA-007-129	 IL5-001	 5.85E+05	 0.00E+00	 0.00E+00	
IL5RA-007-359	 IL5-001	 1.25E+05	 1.64E-05	 2.05E+00	
IL5RA-007-59	 IL5-001	 2.17E+05	 0.00E+00	 0.00E+00	
IL5RA-201	 IL5-001	 7.17E+04	 1.53E-06	 1.10E-01	

IL5RA-201-129	 IL5-001	 6.12E+05	 0.00E+00	 0.00E+00	
IL5RA-201-264	 IL5-001	 2.75E+03	 1.52E-07	 4.17E-04	
IL5RA-201-287	 IL5-001	 4.95E+05	 0.00E+00	 0.00E+00	
IL5RA-201-59	 IL5-001	 7.49E+04	 1.14E-07	 8.51E-03	
IL6R-001	 IL6-001	 1.30E+05	 3.79E-05	 4.93E+00	
IL6R-001	 IL6-001-104	 2.76E+06	 1.03E-06	 2.85E+00	
IL6R-001	 IL6-001-116	 2.31E+04	 4.53E-08	 1.05E-03	
IL6R-001	 IL6-001-152	 7.44E+04	 1.40E-07	 1.04E-02	
IL6R-001	 IL6-001-162	 2.68E+04	 1.59E-06	 4.26E-02	
IL6R-001	 IL6-001-2	 5.50E+05	 1.41E-06	 7.73E-01	
IL6R-001	 IL6-001-31	 6.57E+03	 4.11E-07	 2.70E-03	
IL6R-001	 IL6-001-32	 3.32E+05	 4.87E-06	 1.62E+00	
IL6R-001	 IL6-001-55	 2.35E+05	 2.71E-06	 6.37E-01	
IL6R-001	 IL6-001-6	 6.27E+05	 2.34E-07	 1.46E-01	
IL6R-001	 IL6-001-7	 1.73E+05	 2.19E-06	 3.78E-01	
IL6R-001	 IL6-001-79	 1.48E+06	 9.33E-07	 1.38E+00	
IL6R-001	 IL6-003	 7.14E+05	 9.62E-06	 6.87E+00	
IL6R-001	 IL6-003-110	 3.78E+05	 3.26E-08	 1.23E-02	
IL6R-001	 IL6-003-28	 4.97E+04	 2.58E-08	 1.28E-03	
IL6R-001	 IL6-003-3	 2.11E+05	 4.87E-06	 1.03E+00	
IL6R-001	 IL6-003-40	 6.21E+06	 5.72E-06	 3.55E+01	
IL6R-001	 IL6-003-76	 2.60E+04	 3.53E-06	 9.17E-02	
IL6R-001	 IL6-003-89	 1.60E+05	 3.31E-05	 5.30E+00	
IL6R-001	 IL6-003-92	 9.60E+05	 1.26E-05	 1.20E+01	
IL6R-001	 IL6-004	 1.96E+05	 3.59E-06	 7.03E-01	
IL6R-001	 IL6-004-28	 9.33E+05	 2.53E-07	 2.36E-01	
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IL6R-001	 IL6-004-3	 9.90E+05	 3.92E-06	 3.88E+00	
IL6R-001	 IL6-004-40	 2.42E+05	 1.77E-04	 4.28E+01	
IL6R-001	 IL6-004-76	 4.13E+03	 7.67E-09	 3.17E-05	
IL6R-001	 IL6-004-86	 2.78E+03	 3.06E-09	 8.51E-06	
IL6R-001	 IL6-005	 1.63E+04	 1.18E-06	 1.93E-02	
IL6R-001	 IL6-005-129	 7.10E+04	 7.14E-06	 5.07E-01	
IL6R-001	 IL6-005-139	 7.26E+04	 1.49E-07	 1.08E-02	
IL6R-001	 IL6-005-2	 7.70E+04	 8.62E-07	 6.64E-02	
IL6R-001	 IL6-005-32	 9.82E+04	 6.00E-07	 5.89E-02	
IL6R-001	 IL6-005-56	 2.12E+05	 2.92E-06	 6.19E-01	
IL6R-001	 IL6-005-6	 4.91E+04	 1.82E-08	 8.92E-04	
IL6R-001	 IL6-005-8	 3.26E+05	 8.33E-07	 2.72E-01	
IL6R-001	 IL6-005-81	 6.95E+04	 4.49E-06	 3.12E-01	
IL6R-001	 IL6-005-9	 1.56E+05	 6.48E-08	 1.01E-02	
IL6R-001	 IL6-005-93	 2.61E+02	 2.31E-07	 6.02E-05	
IL6R-001	 IL6-006	 1.13E+04	 4.68E-06	 5.29E-02	
IL6R-001	 IL6-006-104	 1.68E+05	 2.36E-06	 3.96E-01	
IL6R-001	 IL6-006-116	 2.29E+05	 3.57E-06	 8.17E-01	
IL6R-001	 IL6-006-152	 2.12E+04	 8.65E-07	 1.83E-02	
IL6R-001	 IL6-006-165	 1.38E+03	 7.30E-08	 1.01E-04	
IL6R-001	 IL6-006-168	 1.34E+04	 1.23E-05	 1.65E-01	
IL6R-001	 IL6-006-186	 2.28E+04	 2.47E-06	 5.63E-02	
IL6R-001	 IL6-006-2	 3.55E+03	 1.93E-07	 6.84E-04	
IL6R-001	 IL6-006-31	 4.69E+06	 9.42E-06	 4.42E+01	
IL6R-001	 IL6-006-32	 1.10E+06	 1.59E-05	 1.74E+01	
IL6R-001	 IL6-006-55	 2.24E+06	 1.50E-05	 3.36E+01	
IL6R-001	 IL6-006-6	 6.54E+05	 2.14E-05	 1.40E+01	
IL6R-001	 IL6-006-7	 1.99E+06	 6.36E-08	 1.27E-01	
IL6R-001	 IL6-006-79	 3.72E+05	 3.68E-07	 1.37E-01	
IL6R-001	 IL6-201	 1.12E+05	 6.15E-07	 6.89E-02	
IL6R-001	 IL6-201-104	 1.81E+04	 6.09E-09	 1.10E-04	
IL6R-001	 IL6-201-116	 7.90E+04	 2.99E-06	 2.36E-01	
IL6R-001	 IL6-201-152	 6.06E+03	 4.42E-09	 2.68E-05	
IL6R-001	 IL6-201-162	 9.62E+04	 2.27E-08	 2.18E-03	
IL6R-001	 IL6-201-2	 5.76E+05	 4.87E-06	 2.80E+00	
IL6R-001	 IL6-201-31	 1.46E+03	 8.87E-08	 1.29E-04	
IL6R-001	 IL6-201-32	 1.19E+06	 5.09E-06	 6.06E+00	
IL6R-001	 IL6-201-55	 9.18E-03	 6.02E-10	 5.52E-12	
IL6R-001	 IL6-201-6	 1.43E+07	 2.85E-05	 4.08E+02	
IL6R-001	 IL6-201-7	 6.29E+03	 1.68E-08	 1.06E-04	
IL6R-001	 IL6-201-79	 5.67E+05	 6.72E-07	 3.81E-01	

IL6R-001-358	 IL6-001	 1.99E+04	 6.38E-08	 1.27E-03	
IL6R-001-385	 IL6-001	 1.85E+05	 1.19E-05	 2.20E+00	
IL6R-001-65	 IL6-001	 9.34E+04	 1.81E-07	 1.69E-02	
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IL6R-003	 IL6-001	 2.10E+05	 4.98E-05	 1.05E+01	
IL6R-003-65	 IL6-001	 1.85E+05	 5.16E-07	 9.55E-02	
IL6R-201	 IL6-001	 1.38E+05	 2.87E-05	 3.97E+00	

IL6R-201-65	 IL6-001	 8.88E+04	 4.89E-08	 4.34E-03	
MMP1-001	 CMA1-001	 5.05E+06	 4.19E-10	 2.12E-03	
MMP1-001	 CMA1-001-151	 3.02E+06	 4.06E-09	 1.23E-02	
MMP1-001	 CMA1-001-157	 2.58E+07	 2.26E-07	 5.84E+00	
MMP1-001	 CMA1-001-183	 1.00E+04	 7.32E-10	 7.32E-06	
MMP1-001	 CMA1-001-221	 1.82E+07	 1.51E-07	 2.74E+00	
MMP1-001	 CMA1-001-226	 1.96E+05	 1.04E-08	 2.05E-03	
MMP1-001	 CMA1-001-33	 7.91E+05	 8.43E-10	 6.67E-04	
MMP1-001	 CMA1-001-38	 1.19E-01	 1.46E-09	 1.74E-10	
MMP1-001	 CMA1-001-46	 7.19E+05	 6.88E-07	 4.95E-01	
MMP1-001	 CMA1-001-48	 6.72E+04	 9.26E-07	 6.23E-02	
MMP1-001	 CMA1-001-63	 1.21E+06	 7.55E-08	 9.14E-02	
MMP1-001	 CMA1-001-66	 3.64E+06	 2.16E-08	 7.85E-02	
MMP1-001	 CMA1-001-69	 4.79E+08	 2.74E-08	 1.31E+01	
MMP1-001	 CMA1-001-98	 3.26E+02	 4.52E-11	 1.47E-08	
MMP1-001	 CMA1-002	 2.47E+05	 8.35E-09	 2.06E-03	
MMP1-001	 CMA1-002-1	 3.93E+01	 8.47E-12	 3.33E-10	
MMP1-001	 CMA1-002-106	 4.74E+03	 6.82E-09	 3.23E-05	
MMP1-001	 CMA1-002-110	 7.73E-01	 4.97E-14	 3.84E-14	
MMP1-001	 CMA1-002-115	 1.28E+08	 4.10E-05	 5.25E+03	
MMP1-001	 CMA1-002-124	 5.75E+07	 4.65E-07	 2.68E+01	
MMP1-001	 CMA1-002-126	 3.90E+07	 4.72E-05	 1.84E+03	
MMP1-001	 CMA1-002-40	 1.82E+07	 1.40E-07	 2.55E+00	
MMP1-001	 CMA1-002-46	 1.67E+06	 1.14E-07	 1.90E-01	
MMP1-001	 CMA1-002-48	 3.22E+03	 6.47E-09	 2.08E-05	
MMP1-001	 CMA1-002-59	 2.21E+04	 6.16E-06	 1.36E-01	
MMP1-001	 CMA1-002-72	 1.57E+07	 2.07E-08	 3.25E-01	
MMP1-001	 CMA1-002-75	 5.09E+06	 1.60E-09	 8.12E-03	
MMP1-001	 CMA1-002-77	 3.92E+07	 2.07E-06	 8.12E+01	
MMP1-001	 CMA1-002-93	 1.25E+07	 5.15E-10	 6.43E-03	
MMP1-001	 CMA1-002-95	 5.53E+07	 1.20E-08	 6.61E-01	
MMP1-001	 TIMP1-001	 1.40E+06	 5.02E-06	 7.02E+00	
MMP1-001	 TIMP1-001-10	 8.70E+04	 2.00E-07	 1.74E-02	
MMP1-001	 TIMP1-001-102	 5.75E+05	 4.01E-07	 2.31E-01	
MMP1-001	 TIMP1-001-105	 4.84E+04	 2.04E-06	 9.89E-02	
MMP1-001	 TIMP1-001-136	 4.38E+05	 5.98E-07	 2.62E-01	
MMP1-001	 TIMP1-001-171	 1.53E+00	 1.93E-11	 2.95E-11	
MMP1-001	 TIMP1-001-185	 1.69E+06	 9.80E-06	 1.66E+01	
MMP1-001	 TIMP1-001-192	 1.97E+05	 5.62E-07	 1.11E-01	
MMP1-001	 TIMP1-001-203	 3.85E-02	 3.73E-11	 1.43E-12	
MMP1-001	 TIMP1-001-33	 1.88E+05	 3.46E-08	 6.50E-03	
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MMP1-001	 TIMP1-001-50	 1.74E+03	 1.27E-11	 2.20E-08	
MMP1-001	 TIMP1-001-51	 1.92E+05	 4.95E-09	 9.49E-04	
MMP1-001	 TIMP1-001-76	 1.40E+01	 2.34E-10	 3.27E-09	
MMP1-001	 TIMP1-001-77	 2.71E+02	 1.61E-06	 4.37E-04	
MMP1-001	 TIMP1-002	 2.19E+05	 1.57E-05	 3.44E+00	
MMP1-001	 TIMP1-002-10	 9.59E+03	 2.70E-06	 2.59E-02	
MMP1-001	 TIMP1-002-102	 1.59E+05	 1.52E-05	 2.41E+00	
MMP1-001	 TIMP1-002-105	 3.73E+04	 4.45E-06	 1.66E-01	
MMP1-001	 TIMP1-002-115	 7.68E+04	 1.12E-05	 8.62E-01	
MMP1-001	 TIMP1-002-116	 5.66E+05	 1.80E-06	 1.02E+00	
MMP1-001	 TIMP1-002-33	 4.09E+00	 2.22E-12	 9.08E-12	
MMP1-001	 TIMP1-002-50	 6.70E-07	 1.16E-12	 7.76E-19	
MMP1-001	 TIMP1-002-51	 2.59E+02	 5.46E-12	 1.42E-09	
MMP1-001	 TIMP1-002-76	 4.52E+06	 1.42E-05	 6.40E+01	
MMP1-001	 TIMP1-002-77	 5.65E+03	 5.74E-06	 3.24E-02	
MMP1-001	 TIMP1-003	 6.87E+01	 4.02E-12	 2.76E-10	
MMP1-001	 TIMP1-003-107	 1.68E+05	 7.50E-05	 1.26E+01	
MMP1-001	 TIMP1-003-12	 3.36E+05	 2.46E-06	 8.27E-01	
MMP1-001	 TIMP1-003-121	 2.02E+04	 6.49E-09	 1.31E-04	
MMP1-001	 TIMP1-003-128	 2.48E+04	 6.30E-07	 1.56E-02	
MMP1-001	 TIMP1-003-13	 7.56E+05	 1.58E-05	 1.19E+01	
MMP1-001	 TIMP1-003-139	 5.11E+02	 1.87E-11	 9.56E-09	
MMP1-001	 TIMP1-003-38	 1.92E+05	 1.57E-05	 3.00E+00	
MMP1-001	 TIMP1-003-41	 3.02E+06	 5.96E-07	 1.80E+00	
MMP1-001	 TIMP1-003-72	 4.09E+01	 1.78E-12	 7.29E-11	
MMP1-001	 TIMP2-001	 8.87E+01	 1.55E-13	 1.37E-11	
MMP1-001	 TIMP2-003	 1.75E+00	 3.72E-15	 6.51E-15	
MMP1-001	 TIMP2-003-130	 2.50E+01	 6.91E-08	 1.73E-06	
MMP1-001	 TIMP2-003-139	 4.36E+06	 2.68E-11	 1.17E-04	
MMP1-001	 TIMP2-008	 1.75E+00	 3.72E-15	 6.51E-15	
MMP1-001	 TIMP2-008-130	 8.49E+06	 6.37E-11	 5.41E-04	
MMP1-001	 TIMP2-008-139	 3.00E+05	 1.39E-11	 4.16E-06	
MMP1-001	 TIMP2-008-42	 1.07E+04	 7.70E-07	 8.24E-03	
MMP1-001	 TIMP2-008-54	 7.49E+00	 5.96E-11	 4.46E-10	
MMP1-001	 TIMP2-008-69	 3.91E+03	 4.71E-10	 1.84E-06	
MMP1-001	 TIMP3-001-142	 7.42E+07	 5.36E-05	 3.98E+03	
MMP1-001	 TIMP3-001-186	 4.17E+06	 8.76E-05	 3.65E+02	
MMP1-001	 TIMP3-001-22	 1.21E+08	 5.46E-05	 6.60E+03	
MMP1-001	 TIMP4-001-109	 1.65E+05	 1.41E-06	 2.33E-01	
MMP1-001	 TIMP4-001-141	 4.89E+03	 8.14E-07	 3.98E-03	
MMP1-001	 TIMP4-001-19	 1.68E+07	 4.20E-05	 7.05E+02	
MMP1-001	 TIMP4-001-206	 3.57E+07	 1.43E-04	 5.09E+03	
MMP1-001	 TIMP4-001-214	 2.28E+05	 5.58E-12	 1.27E-06	

MMP1-001-374	 CMA1-001	 2.00E+06	 1.28E-09	 2.55E-03	
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MMP1-001-374	 TIMP1-001	 4.78E+05	 5.32E-07	 2.54E-01	
MMP1-001-374	 TIMP4-001	 8.72E+04	 1.02E-04	 8.93E+00	
MMP1-001-406	 CMA1-001	 9.47E+06	 8.30E-09	 7.86E-02	
MMP1-001-406	 TIMP1-001	 8.68E+01	 6.05E-15	 5.25E-13	
MMP1-001-406	 TIMP3-001	 1.73E+07	 4.87E-06	 8.42E+01	
MMP13-001	 TIMP1-001	 2.56E+08	 1.23E-08	 3.14E+00	
MMP13-001	 TIMP1-001-10	 3.47E+09	 4.64E-07	 1.61E+03	
MMP13-001	 TIMP1-001-102	 1.87E+07	 1.63E-06	 3.04E+01	
MMP13-001	 TIMP1-001-105	 5.05E+08	 1.43E-07	 7.21E+01	
MMP13-001	 TIMP1-001-136	 4.42E+05	 2.20E-08	 9.74E-03	
MMP13-001	 TIMP1-001-171	 1.35E+08	 5.54E-12	 7.48E-04	
MMP13-001	 TIMP1-001-185	 1.55E+08	 4.29E-07	 6.65E+01	
MMP13-001	 TIMP1-001-192	 6.14E+08	 1.51E-05	 9.30E+03	
MMP13-001	 TIMP1-001-203	 5.64E+07	 2.21E-04	 1.25E+04	
MMP13-001	 TIMP1-001-33	 3.29E+08	 1.33E-06	 4.36E+02	
MMP13-001	 TIMP1-001-50	 1.18E+08	 5.50E-07	 6.49E+01	
MMP13-001	 TIMP1-001-51	 7.48E+05	 1.03E-06	 7.73E-01	
MMP13-001	 TIMP1-001-76	 6.02E+02	 4.69E-13	 2.83E-10	
MMP13-001	 TIMP1-001-77	 6.97E+08	 5.18E-08	 3.61E+01	
MMP13-001	 TIMP1-002	 7.65E+04	 6.59E-08	 5.04E-03	
MMP13-001	 TIMP1-002-10	 1.23E+04	 4.32E-10	 5.31E-06	
MMP13-001	 TIMP1-002-102	 6.71E+06	 6.00E-09	 4.03E-02	
MMP13-001	 TIMP1-002-105	 1.08E+05	 1.32E-09	 1.42E-04	
MMP13-001	 TIMP1-002-115	 1.50E+06	 9.39E-10	 1.41E-03	
MMP13-001	 TIMP1-002-116	 6.17E+04	 3.02E-08	 1.86E-03	
MMP13-001	 TIMP1-002-33	 4.10E+04	 6.23E-08	 2.55E-03	
MMP13-001	 TIMP1-002-50	 4.14E+01	 2.10E-08	 8.71E-07	
MMP13-001	 TIMP1-002-51	 3.22E+01	 1.10E-11	 3.55E-10	
MMP13-001	 TIMP1-002-76	 2.17E+05	 5.81E-08	 1.26E-02	
MMP13-001	 TIMP1-002-77	 6.25E+05	 6.00E-08	 3.75E-02	
MMP13-001	 TIMP1-003	 1.41E+06	 5.46E-09	 7.70E-03	
MMP13-001	 TIMP1-003-107	 5.40E+05	 7.24E-08	 3.91E-02	
MMP13-001	 TIMP1-003-12	 4.92E+06	 4.78E-05	 2.35E+02	
MMP13-001	 TIMP1-003-121	 2.13E+06	 2.92E-06	 6.22E+00	
MMP13-001	 TIMP1-003-128	 1.45E+07	 1.23E-08	 1.79E-01	
MMP13-001	 TIMP1-003-13	 2.95E+06	 2.62E-08	 7.73E-02	
MMP13-001	 TIMP1-003-139	 3.26E+05	 3.29E-05	 1.07E+01	
MMP13-001	 TIMP1-003-38	 1.52E+06	 4.29E-05	 6.52E+01	
MMP13-001	 TIMP1-003-41	 3.06E+00	 5.95E-13	 1.82E-12	
MMP13-001	 TIMP1-003-72	 1.84E+03	 1.69E-11	 3.11E-08	
MMP13-001	 TIMP2-001	 1.29E+06	 7.49E-09	 9.66E-03	
MMP13-001	 TIMP2-001-119	 3.72E+07	 1.17E-09	 4.35E-02	
MMP13-001	 TIMP2-003	 2.53E+05	 3.27E-07	 8.27E-02	
MMP13-001	 TIMP2-003-130	 2.41E+06	 4.20E-05	 1.01E+02	
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MMP13-001	 TIMP2-003-139	 4.33E-06	 2.71E-11	 1.17E-16	
MMP13-001	 TIMP2-008	 1.19E+05	 4.37E-06	 5.20E-01	
MMP13-001	 TIMP2-008-130	 7.51E+05	 2.24E-05	 1.68E+01	
MMP13-001	 TIMP2-008-139	 4.33E-06	 2.71E-11	 1.17E-16	
MMP13-001	 TIMP2-008-42	 4.41E+06	 2.24E-05	 9.86E+01	
MMP13-001	 TIMP2-008-54	 1.13E+05	 2.87E-07	 3.24E-02	
MMP13-001	 TIMP2-008-69	 9.28E+03	 2.49E-06	 2.31E-02	
MMP13-001	 TIMP3-001	 5.51E+06	 1.79E-04	 9.86E+02	
MMP13-001	 TIMP3-001-142	 1.63E+05	 1.16E-05	 1.89E+00	
MMP13-001	 TIMP3-001-201	 3.02E+04	 1.21E-05	 3.66E-01	
MMP13-001	 TIMP3-001-22	 1.27E+07	 8.85E-05	 1.12E+03	
MMP13-001	 TIMP3-001-37	 3.09E+07	 1.67E-04	 5.17E+03	

MMP13-001-158	 TIMP1-001	 3.99E+08	 3.00E-06	 1.20E+03	
MMP13-001-158	 TIMP2-001	 1.93E+05	 1.99E-05	 3.85E+00	
MMP13-001-158	 TIMP3-001	 1.52E+07	 3.41E-05	 5.18E+02	
MMP13-002	 TIMP1-001	 1.43E+05	 1.96E-09	 2.80E-04	
MMP13-002	 TIMP2-001	 2.85E+06	 1.36E-05	 3.88E+01	
MMP13-002	 TIMP3-001	 1.06E+06	 4.53E-05	 4.80E+01	

MMP13-002-158	 TIMP1-001	 1.09E+08	 2.02E-07	 2.20E+01	
MMP13-002-158	 TIMP2-001	 2.16E+05	 5.08E-06	 1.10E+00	
MMP13-201	 TIMP1-001	 1.30E+08	 1.18E-11	 1.54E-03	
MMP13-201	 TIMP2-001	 8.82E+04	 5.50E-06	 4.85E-01	
MMP13-201	 TIMP3-001	 1.32E+09	 1.04E-07	 1.38E+02	

MMP13-201-158	 TIMP1-001	 1.42E+06	 1.92E-08	 2.73E-02	
MMP13-201-158	 TIMP2-001	 1.12E+05	 2.76E-05	 3.09E+00	
MMP13-201-158	 TIMP3-001	 4.42E+09	 3.31E-09	 1.46E+01	

MMP2-001	 TIMP1-001	 1.38E+07	 1.20E-08	 1.65E-01	
MMP2-001	 TIMP1-001-10	 5.72E+07	 9.86E-11	 5.64E-03	
MMP2-001	 TIMP1-001-102	 7.20E+06	 1.17E-12	 8.39E-06	
MMP2-001	 TIMP1-001-105	 1.17E+06	 1.36E-09	 1.59E-03	
MMP2-001	 TIMP1-001-136	 4.18E+03	 2.95E-13	 1.23E-09	
MMP2-001	 TIMP1-001-171	 1.92E+00	 3.11E-17	 5.98E-17	
MMP2-001	 TIMP1-001-185	 6.82E+05	 4.86E-14	 3.32E-08	
MMP2-001	 TIMP1-001-192	 5.02E+07	 1.74E-09	 8.74E-02	
MMP2-001	 TIMP1-001-203	 1.64E+05	 5.21E-14	 8.55E-09	
MMP2-001	 TIMP1-001-33	 1.49E+07	 6.19E-10	 9.22E-03	
MMP2-001	 TIMP1-001-50	 1.92E+05	 1.38E-14	 2.65E-09	
MMP2-001	 TIMP1-001-51	 9.59E+06	 4.38E-12	 4.20E-05	
MMP2-001	 TIMP1-001-76	 1.99E+05	 3.01E-12	 5.99E-07	
MMP2-001	 TIMP1-001-77	 2.55E+07	 4.20E-08	 1.07E+00	
MMP2-001	 TIMP1-002	 2.39E+05	 5.93E-06	 1.42E+00	
MMP2-001	 TIMP1-002-10	 3.00E+03	 7.34E-11	 2.20E-07	
MMP2-001	 TIMP1-002-102	 9.45E+05	 3.79E-07	 3.58E-01	
MMP2-001	 TIMP1-002-105	 2.39E+00	 3.86E-13	 9.22E-13	
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MMP2-001	 TIMP1-002-115	 1.94E+00	 2.33E-11	 4.51E-11	
MMP2-001	 TIMP1-002-116	 1.93E+03	 1.58E-10	 3.04E-07	
MMP2-001	 TIMP1-002-33	 4.96E+05	 9.64E-07	 4.78E-01	
MMP2-001	 TIMP1-002-50	 5.45E+06	 7.73E-09	 4.21E-02	
MMP2-001	 TIMP1-002-51	 5.20E+05	 3.68E-10	 1.91E-04	
MMP2-001	 TIMP1-002-76	 2.48E+04	 4.88E-09	 1.21E-04	
MMP2-001	 TIMP1-002-77	 1.96E+05	 9.69E-08	 1.90E-02	
MMP2-001	 TIMP1-003	 1.47E+00	 5.12E-11	 7.53E-11	
MMP2-001	 TIMP1-003-107	 7.17E+05	 6.64E-09	 4.76E-03	
MMP2-001	 TIMP1-003-12	 3.84E+05	 1.40E-08	 5.36E-03	
MMP2-001	 TIMP1-003-121	 9.91E+05	 4.07E-10	 4.03E-04	
MMP2-001	 TIMP1-003-128	 2.41E+04	 1.67E-09	 4.02E-05	
MMP2-001	 TIMP1-003-13	 2.91E-01	 1.86E-11	 5.42E-12	
MMP2-001	 TIMP1-003-139	 5.82E+04	 8.31E-11	 4.84E-06	
MMP2-001	 TIMP1-003-38	 3.81E+04	 8.01E-09	 3.05E-04	
MMP2-001	 TIMP1-003-41	 6.71E+05	 2.99E-09	 2.01E-03	
MMP2-001	 TIMP1-003-72	 6.10E+00	 1.34E-12	 8.19E-12	
MMP2-001	 TIMP2-001	 5.45E+00	 8.20E-15	 4.47E-14	
MMP2-001	 TIMP2-001-119	 3.77E+05	 1.20E-05	 4.53E+00	
MMP2-001	 TIMP2-001-146	 4.75E+05	 4.96E-06	 2.36E+00	
MMP2-001	 TIMP2-003	 2.42E+06	 3.94E-05	 9.54E+01	
MMP2-001	 TIMP2-003-130	 6.14E+06	 3.93E-06	 2.41E+01	
MMP2-001	 TIMP2-003-139	 9.41E+04	 7.78E-05	 7.32E+00	
MMP2-001	 TIMP2-008	 2.09E+04	 6.51E-05	 1.36E+00	
MMP2-001	 TIMP2-008-130	 7.27E+04	 8.58E-06	 6.24E-01	
MMP2-001	 TIMP2-008-42	 5.92E+04	 1.22E-04	 7.24E+00	
MMP2-001	 TIMP2-008-54	 2.55E+06	 4.85E-05	 1.24E+02	
MMP2-001	 TIMP2-008-69	 1.41E+04	 5.90E-06	 8.32E-02	
MMP2-001	 TIMP3-001	 8.47E-01	 3.31E-07	 2.81E-07	
MMP2-001	 TIMP3-001-121	 8.33E+07	 4.61E-06	 3.84E+02	
MMP2-001	 TIMP3-001-186	 3.11E+00	 3.46E-06	 1.07E-05	
MMP2-001	 TIMP4-001	 4.28E+06	 9.00E-05	 3.85E+02	
MMP2-001	 TIMP4-001-103	 1.78E+04	 4.20E-06	 7.47E-02	
MMP2-001	 TIMP4-001-109	 4.55E+05	 2.52E-07	 1.15E-01	
MMP2-001	 TIMP4-001-141	 5.81E+05	 2.44E-09	 1.42E-03	
MMP2-001	 TIMP4-001-143	 1.23E+05	 4.95E-07	 6.08E-02	
MMP2-001	 TIMP4-001-19	 7.12E+04	 7.06E-06	 5.03E-01	
MMP2-001	 TIMP4-001-206	 5.15E+04	 7.77E-06	 4.00E-01	
MMP2-001	 TIMP4-001-214	 7.34E+05	 9.06E-09	 6.65E-03	
MMP2-001	 TIMP4-001-24	 6.64E+05	 1.06E-04	 7.01E+01	

MMP2-001-447	 TIMP1-001	 9.50E+07	 7.92E-08	 7.52E+00	
MMP2-001-447	 TIMP2-001	 4.01E+03	 7.67E-06	 3.08E-02	
MMP2-001-447	 TIMP3-001	 1.40E+05	 7.34E-06	 1.03E+00	
MMP2-008	 TIMP1-001	 1.06E+07	 7.18E-11	 7.61E-04	
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MMP2-008	 TIMP2-001	 1.96E+06	 7.11E-06	 1.39E+01	
MMP2-008-333	 TIMP1-001	 7.59E+08	 1.43E-08	 1.08E+01	
MMP2-008-333	 TIMP2-001	 1.11E+05	 8.76E-07	 9.72E-02	
MMP2-008-333	 TIMP3-001	 2.20E+02	 3.14E-06	 6.91E-04	
MMP2-008-371	 TIMP1-001	 2.25E+07	 1.67E-09	 3.76E-02	
MMP2-008-371	 TIMP2-001	 1.20E+05	 1.06E-06	 1.28E-01	
MMP2-008-371	 TIMP3-001	 8.31E+01	 1.90E-06	 1.58E-04	
MMP2-008-545	 TIMP1-001	 1.79E+06	 1.15E-10	 2.06E-04	
MMP2-008-545	 TIMP2-001	 1.11E+07	 1.74E-06	 1.93E+01	
MMP3-001	 TIMP1-001	 7.79E+04	 2.82E-06	 2.20E-01	
MMP3-001	 TIMP1-001-10	 9.99E+03	 4.62E-08	 4.62E-04	
MMP3-001	 TIMP1-001-102	 7.00E-04	 1.00E-09	 7.02E-13	
MMP3-001	 TIMP1-001-105	 5.61E+01	 2.60E-12	 1.46E-10	
MMP3-001	 TIMP1-001-136	 2.82E+05	 7.60E-05	 2.14E+01	
MMP3-001	 TIMP1-001-171	 2.37E+06	 5.39E-06	 1.28E+01	
MMP3-001	 TIMP1-001-185	 5.41E+05	 3.49E-06	 1.89E+00	
MMP3-001	 TIMP1-001-192	 6.66E+04	 3.08E-06	 2.05E-01	
MMP3-001	 TIMP1-001-203	 4.33E-03	 6.37E-14	 2.76E-16	
MMP3-001	 TIMP1-001-33	 5.51E+05	 5.11E-06	 2.82E+00	
MMP3-001	 TIMP1-001-50	 3.06E+04	 2.12E-06	 6.50E-02	
MMP3-001	 TIMP1-001-51	 3.67E+02	 1.96E-14	 7.19E-12	
MMP3-001	 TIMP1-001-76	 3.36E+05	 2.32E-05	 7.80E+00	
MMP3-001	 TIMP1-001-77	 2.51E+04	 4.19E-06	 1.05E-01	
MMP3-001	 TIMP1-002	 3.58E+06	 3.37E-05	 1.20E+02	
MMP3-001	 TIMP1-002-10	 2.79E+05	 4.05E-06	 1.13E+00	
MMP3-001	 TIMP1-002-102	 8.70E+04	 1.35E-07	 1.18E-02	
MMP3-001	 TIMP1-002-105	 2.95E+05	 2.17E-05	 6.40E+00	
MMP3-001	 TIMP1-002-115	 1.40E+06	 4.00E-05	 5.60E+01	
MMP3-001	 TIMP1-002-116	 7.70E+03	 8.32E-12	 6.41E-08	
MMP3-001	 TIMP1-002-33	 1.61E+05	 2.17E-05	 3.49E+00	
MMP3-001	 TIMP1-002-50	 1.46E+05	 2.56E-06	 3.74E-01	
MMP3-001	 TIMP1-002-51	 5.20E+05	 7.33E-05	 3.81E+01	
MMP3-001	 TIMP1-002-76	 4.13E+04	 2.49E-05	 1.03E+00	
MMP3-001	 TIMP1-002-77	 1.78E+05	 1.11E-05	 1.97E+00	
MMP3-001	 TIMP1-003	 2.43E+07	 1.95E-06	 4.74E+01	
MMP3-001	 TIMP1-003-107	 8.66E+05	 7.66E-06	 6.64E+00	
MMP3-001	 TIMP1-003-12	 1.18E+05	 1.40E-05	 1.65E+00	
MMP3-001	 TIMP1-003-121	 1.47E+05	 4.55E-05	 6.69E+00	
MMP3-001	 TIMP1-003-128	 7.65E+05	 2.27E-07	 1.74E-01	
MMP3-001	 TIMP1-003-13	 1.93E+07	 1.43E-05	 2.75E+02	
MMP3-001	 TIMP1-003-139	 8.99E+04	 5.47E-07	 4.92E-02	
MMP3-001	 TIMP1-003-38	 8.45E+06	 2.94E-07	 2.49E+00	
MMP3-001	 TIMP1-003-41	 3.20E+05	 3.02E-05	 9.65E+00	
MMP3-001	 TIMP1-003-72	 9.46E+03	 1.62E-07	 1.53E-03	
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MMP3-001	 TIMP2-001	 2.00E+04	 1.36E-10	 2.72E-06	
MMP3-001	 TIMP2-003	 1.49E+04	 3.52E-06	 5.25E-02	
MMP3-001	 TIMP2-003-130	 5.11E+05	 9.96E-07	 5.09E-01	
MMP3-001	 TIMP2-003-139	 4.82E+06	 2.69E-07	 1.29E+00	
MMP3-001	 TIMP2-008	 7.70E+06	 1.30E-05	 1.00E+02	
MMP3-001	 TIMP2-008-130	 2.10E+05	 1.05E-06	 2.20E-01	
MMP3-001	 TIMP2-008-139	 1.07E+06	 6.13E-08	 6.56E-02	
MMP3-001	 TIMP2-008-42	 2.33E+06	 8.33E-09	 1.94E-02	
MMP3-001	 TIMP2-008-54	 1.51E+06	 3.30E-10	 4.99E-04	
MMP3-001	 TIMP2-008-69	 3.18E+05	 4.56E-08	 1.45E-02	
MMP3-001	 TIMP3-001	 8.89E+05	 2.11E-04	 1.87E+02	
MMP3-001	 TIMP3-001-121	 1.28E+07	 4.82E-05	 6.17E+02	
MMP3-001	 TIMP3-001-142	 1.24E+05	 1.50E-04	 1.86E+01	
MMP3-001	 TIMP3-001-186	 3.05E+05	 1.03E-04	 3.14E+01	
MMP3-001	 TIMP3-001-196	 8.54E+09	 1.90E-04	 1.62E+06	
MMP3-001	 TIMP3-001-22	 7.21E+06	 3.03E-05	 2.18E+02	
MMP3-001	 TIMP3-001-37	 9.50E+06	 2.02E-05	 1.91E+02	
MMP3-001	 TIMP4-001	 4.97E+04	 2.02E-05	 1.00E+00	
MMP3-001	 TIMP4-001-141	 1.19E+03	 1.43E-11	 1.70E-08	
MMP3-001	 TIMP4-001-214	 2.15E-08	 1.99E-15	 4.27E-23	
MMP3-001	 TIMP4-001-24	 1.07E+07	 3.01E-04	 3.22E+03	
MMP3-001	 TIMP4-001-28	 7.71E+08	 1.21E-04	 9.33E+04	

MMP3-001-45	 TIMP1-001	 6.05E+07	 3.58E-08	 2.16E+00	
MMP3-001-45	 TIMP3-001	 5.61E+10	 3.41E-04	 1.91E+07	
MMP3-001-45	 TIMP4-001	 2.20E+07	 2.19E-04	 4.82E+03	
MMP3-001-96	 TIMP1-001	 2.41E+05	 1.91E-06	 4.61E-01	
MMP9-001	 TIMP1-001	 7.20E+01	 6.14E-12	 4.42E-10	
MMP9-001	 TIMP1-001-10	 7.49E+02	 7.56E-11	 5.66E-08	
MMP9-001	 TIMP1-001-102	 8.52E+05	 1.77E-04	 1.50E+02	
MMP9-001	 TIMP1-001-105	 2.81E+06	 4.72E-06	 1.33E+01	
MMP9-001	 TIMP1-001-136	 1.25E+06	 1.16E-06	 1.45E+00	
MMP9-001	 TIMP1-001-171	 4.17E+00	 8.05E-12	 3.36E-11	
MMP9-001	 TIMP1-001-185	 1.45E+05	 2.41E-09	 3.49E-04	
MMP9-001	 TIMP1-001-192	 5.34E+05	 1.82E-05	 9.74E+00	
MMP9-001	 TIMP1-001-203	 1.89E+00	 1.92E-14	 3.62E-14	
MMP9-001	 TIMP1-001-33	 2.72E+00	 9.20E-12	 2.50E-11	
MMP9-001	 TIMP1-001-50	 1.26E+04	 8.38E-12	 1.06E-07	
MMP9-001	 TIMP1-001-51	 2.07E+03	 5.37E-11	 1.11E-07	
MMP9-001	 TIMP1-001-76	 1.84E+05	 1.24E-07	 2.28E-02	
MMP9-001	 TIMP1-001-77	 2.27E+05	 3.87E-05	 8.78E+00	
MMP9-001	 TIMP1-002	 6.56E+05	 7.85E-08	 5.15E-02	
MMP9-001	 TIMP1-002-10	 5.25E+06	 1.07E-07	 5.63E-01	
MMP9-001	 TIMP1-002-102	 3.00E+04	 3.54E-05	 1.06E+00	
MMP9-001	 TIMP1-002-105	 4.12E+06	 2.59E-05	 1.07E+02	
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MMP9-001	 TIMP1-002-115	 1.21E+04	 6.00E-05	 7.26E-01	
MMP9-001	 TIMP1-002-116	 1.14E+06	 1.30E-04	 1.48E+02	
MMP9-001	 TIMP1-002-33	 3.41E+03	 2.59E-09	 8.83E-06	
MMP9-001	 TIMP1-002-50	 1.08E+06	 1.21E-04	 1.30E+02	
MMP9-001	 TIMP1-002-51	 2.37E+01	 5.28E-11	 1.25E-09	
MMP9-001	 TIMP1-002-76	 2.35E+03	 1.07E-07	 2.50E-04	
MMP9-001	 TIMP1-002-77	 4.51E+03	 5.13E-09	 2.31E-05	
MMP9-001	 TIMP1-003	 1.16E+06	 2.18E-05	 2.52E+01	
MMP9-001	 TIMP1-003-107	 5.63E+03	 4.54E-12	 2.55E-08	
MMP9-001	 TIMP1-003-12	 3.88E+04	 4.87E-08	 1.89E-03	
MMP9-001	 TIMP1-003-121	 1.08E+03	 4.68E-12	 5.06E-09	
MMP9-001	 TIMP1-003-128	 7.04E+03	 8.05E-09	 5.66E-05	
MMP9-001	 TIMP1-003-13	 3.88E+01	 1.80E-09	 6.97E-08	
MMP9-001	 TIMP1-003-139	 1.46E+03	 1.68E-09	 2.45E-06	
MMP9-001	 TIMP1-003-38	 1.64E+05	 9.73E-10	 1.60E-04	
MMP9-001	 TIMP1-003-41	 2.69E+04	 1.77E-07	 4.77E-03	
MMP9-001	 TIMP1-003-72	 1.97E+02	 1.09E-08	 2.15E-06	
MMP9-001	 TIMP2-001	 3.74E+01	 0.00E+00	 0.00E+00	
MMP9-001	 TIMP2-003	 4.45E+03	 3.35E-10	 1.49E-06	
MMP9-001	 TIMP2-003-130	 6.09E+04	 1.40E-08	 8.55E-04	
MMP9-001	 TIMP2-003-139	 8.54E+04	 2.97E-10	 2.54E-05	
MMP9-001	 TIMP2-008	 4.45E+03	 3.35E-10	 1.49E-06	
MMP9-001	 TIMP2-008-130	 1.78E-04	 2.97E-15	 5.28E-19	
MMP9-001	 TIMP2-008-139	 8.54E+04	 2.97E-10	 2.54E-05	
MMP9-001	 TIMP2-008-42	 1.59E+07	 1.32E-05	 2.10E+02	
MMP9-001	 TIMP2-008-54	 1.81E+05	 1.27E-06	 2.30E-01	
MMP9-001	 TIMP2-008-69	 4.20E+04	 1.30E-09	 5.45E-05	
MMP9-001	 TIMP3-001	 1.10E+02	 5.35E-11	 5.89E-09	
MMP9-001	 TIMP3-001-121	 3.02E+05	 1.44E-09	 4.33E-04	
MMP9-001	 TIMP3-001-142	 5.30E+01	 1.32E-07	 7.01E-06	
MMP9-001	 TIMP3-001-186	 3.49E+05	 8.31E-09	 2.90E-03	
MMP9-001	 TIMP3-001-196	 4.91E+05	 1.45E-08	 7.11E-03	
MMP9-001	 TIMP3-001-201	 1.66E+05	 2.19E-12	 3.63E-07	
MMP9-001	 TIMP3-001-22	 3.18E+04	 3.06E-09	 9.72E-05	
MMP9-001	 TIMP3-001-37	 1.95E+04	 3.35E-09	 6.52E-05	
MMP9-001	 TIMP4-001	 3.84E+06	 4.62E-04	 1.77E+03	
MMP9-001	 TIMP4-001-103	 2.20E+05	 8.19E-12	 1.80E-06	
MMP9-001	 TIMP4-001-109	 2.30E+05	 2.46E-07	 5.67E-02	
MMP9-001	 TIMP4-001-112	 2.32E+03	 1.35E-08	 3.13E-05	
MMP9-001	 TIMP4-001-141	 2.37E+03	 2.71E-13	 6.43E-10	
MMP9-001	 TIMP4-001-143	 1.54E+04	 1.32E-09	 2.03E-05	
MMP9-001	 TIMP4-001-19	 1.07E+06	 2.92E-05	 3.12E+01	
MMP9-001	 TIMP4-001-206	 3.74E+03	 1.11E-07	 4.14E-04	
MMP9-001	 TIMP4-001-214	 6.31E+02	 9.38E-09	 5.92E-06	
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MMP9-001	 TIMP4-001-24	 3.02E+03	 3.98E-08	 1.20E-04	
MMP9-001	 TIMP4-001-28	 8.71E+03	 1.91E-08	 1.67E-04	

MMP9-001-20	 TIMP1-001	 2.34E+01	 6.67E-12	 1.56E-10	
MMP9-001-20	 TIMP3-001	 2.74E+01	 2.68E-10	 7.35E-09	
MMP9-001-20	 TIMP4-001	 7.86E+02	 2.08E-09	 1.64E-06	
MMP9-001-239	 TIMP1-001	 2.42E+03	 2.71E-13	 6.55E-10	
MMP9-001-239	 TIMP3-001	 9.20E+03	 3.40E-09	 3.13E-05	
MMP9-001-239	 TIMP4-001	 8.42E+01	 6.09E-10	 5.12E-08	
MMP9-001-279	 TIMP1-001	 5.95E+05	 1.84E-04	 1.10E+02	
MMP9-001-279	 TIMP2-001	 3.98E+01	 0.00E+00	 0.00E+00	
MMP9-001-279	 TIMP3-001	 8.88E+07	 8.70E-08	 7.72E+00	
MMP9-001-279	 TIMP4-001	 8.55E+02	 4.94E-09	 4.22E-06	
MMP9-001-38	 TIMP1-001	 1.92E+06	 1.32E-05	 2.53E+01	
MMP9-001-38	 TIMP3-001	 1.80E+06	 6.26E-07	 1.13E+00	
MMP9-001-38	 TIMP4-001	 3.62E+02	 3.70E-09	 1.34E-06	
MMP9-001-574	 TIMP1-001	 5.32E+02	 1.19E-08	 6.30E-06	
MMP9-001-574	 TIMP3-001	 2.25E+03	 2.15E-08	 4.83E-05	
MMP9-001-574	 TIMP4-001	 2.25E-03	 1.12E-10	 2.52E-13	
MMP9-001-668	 TIMP1-001	 1.05E+06	 5.86E-05	 6.15E+01	
MMP9-001-668	 TIMP3-001	 5.16E-05	 3.34E-10	 1.72E-14	
MMP9-001-668	 TIMP4-001	 2.68E-04	 2.95E-12	 7.91E-16	
PDGFRA-001-761	 PDGFA-001	 3.99E+04	 1.23E-14	 4.91E-10	
PDGFRA-002	 PDGFA-001	 1.83E+07	 7.28E-07	 1.33E+01	
PDGFRB-001	 PDGFB-002-204	 7.23E+08	 6.75E-07	 4.88E+02	
TGFBR1-001	 TGFB1-001	 5.89E+04	 1.62E-10	 9.51E-06	
TGFBR1-001	 TGFB1-001-10	 1.81E+04	 1.13E-08	 2.05E-04	
TGFBR1-001	 TGFB1-001-25	 8.20E-02	 8.51E-12	 6.98E-13	
TGFBR1-001	 TGFB1-001-263	 2.14E+03	 2.90E-10	 6.20E-07	

TGFBR1-001-17	 TGFB1-001	 5.01E+04	 1.62E-10	 8.09E-06	
TGFBR1-001-19	 TGFB1-001	 9.31E+04	 1.62E-10	 1.50E-05	
TGFBR1-003	 TGFB1-001	 1.81E+05	 8.27E-10	 1.50E-04	
TGFBR2-001	 TGFB1-001	 2.21E+03	 2.20E-08	 4.87E-05	
TGFBR2-001	 TGFB1-001-10	 2.17E+05	 7.39E-08	 1.60E-02	
TIMP3-001	 ADAM17-001	 5.97E+05	 2.59E-06	 1.54E+00	
TIMP3-001	 ADAM17-001-202	 5.85E-105	 3.47E-06	 2.03E-110	

TIMP3-001-121	 ADAM17-001	 2.53E+03	 5.07E-06	 1.28E-02	
TIMP3-001-142	 ADAM17-001	 8.63E+03	 1.17E-07	 1.01E-03	
TIMP3-001-186	 ADAM17-001	 4.82E+06	 3.02E-07	 1.46E+00	
TIMP3-001-196	 ADAM17-001	 1.51E+05	 1.47E-07	 2.21E-02	
TIMP3-001-201	 ADAM17-001	 3.15E+05	 5.18E-09	 1.63E-03	
TIMP3-001-22	 ADAM17-001	 1.96E+08	 6.92E-07	 1.36E+02	
TIMP3-001-37	 ADAM17-001	 2.47E+05	 5.78E-07	 1.43E-01	
TNFSFR1B-001	 TNF-001	 8.94E+04	 2.76E-08	 2.46E-03	
TNFSFR1B-001	 TNF-001-84	 1.13E+04	 8.96E-11	 1.01E-06	



265	
	

	
	

	

TNFSFR1B-001-187	 TNF-001	 5.19E+02	 6.97E-09	 3.62E-06	
TNFSFR1B-001-203	 TNF-001	 4.44E+06	 2.92E-05	 1.30E+02	
TNFSFR1B-001-232	 TNF-001	 1.47E+06	 3.21E-05	 4.72E+01	
TNFSFR1B-001-264	 TNF-001	 1.04E+05	 9.82E-08	 1.02E-02	
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Appendix	6	

Model	reparameterisations	as	described	in	Chapter	6	

ReceptorName	 LigandName	 kcatWT	 kcatMut	 AScore	

CCR2-001	 CCL2-001	 0.0010513	
9000	

0.0010513	
9000	 	

CCR2-001	 CCL2-001-69	 0.0010513	
9000	

3.1198e-05	
267.0968	 0.03	

CCR2-001	 CCL2-001-71	 0.0010513	
9000	

0.00014356	
1229.0323	 0.33	

CCR2-001	 CCL2-004	 0.0010513	
9000	

0.00011417	
977.4177	 0.26	

CCR2-001-355	 CCL2-001	 0.0010513	
9000	

1.543e-05	
132.0968	 0.02	

CCR2-001-64	 CCL2-001	 0.0010513	
9000	

0.00016221	
1388.7097	 0.38	

CCR2-002	 CCL2-001	 0.0010513	
9000	

0.00010569	
904.8387	 0.24	

CCR2-002-64	 CCL2-001	 0.0010513	
9000	

2.2155e-05	
189.6774	 0.03	

CCR2-201	 CCL2-001	 0.0010513	
9000	

0.00047306	
4050	 0.73	

CCR2-201-355	 CCL2-001	 0.0010513	
9000	

0.00039846	
3411.2904	 0.69	

CCR2-201-64	 CCL2-001	 0.0010513	
9000	

0.00019612	
1679.0323	 0.45	

CCR5-001	 CCL5-001	 1000	 1000	 1.00	
CCR5-001	 CCL5-001-40	 1000	 1.8013	 0.10	
CCR5-001	 CCL5-001-5	 1000	 71548.8215	 5.93	
CCR5-001	 CCL5-001-56	 1000	 333.3333	 0.72	
CCR5-001	 CCL5-001-67	 1000	 1818.1818	 1.11	
CCR5-001	 CCL5-001-68	 1000	 0.94949	 0.09	
CCR5-001	 CCL5-002	 1000	 1000	 1.00	
CCR5-001	 CCL5-002-40	 1000	 1.8013	 0.10	
CCR5-001	 CCL5-002-5	 1000	 71548.8215	 5.93	
CCR5-001	 CCL5-002-56	 1000	 333.3333	 0.72	
CCR5-001	 CCL5-002-67	 1000	 1818.1818	 1.11	
CCR5-001	 CCL5-002-68	 1000	 0.94949	 0.09	

CCR5-001-223	 CCL5-001	 1000	 2878.7879	 1.20	
CCR5-001-335	 CCL5-001	 1000	 577.4411	 0.86	
CCR5-001-55	 CCL5-001	 1000	 890.5724	 0.97	
CSF1R-001	 CSF1-001	 9.94E-02	 9.94E-02	 	
CSF1R-001	 CSF1-001-292	 9.94E-02	 1.21E+00	 1.00	
CSF1R-001	 CSF1-001-408	 9.94E-02	 1.57E-01	 1.00	
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CSF1R-001	 CSF1-001-438	 9.94E-02	 9.72E-07	 1.00	
CSF1R-001	 CSF1-001-489	 9.94E-02	 6.20E-05	 1.00	
CSF1R-001	 CSF1-002-292	 9.94E-02	 2.31E-01	 1.00	
CSF1R-001	 CSF1-002-408	 9.94E-02	 3.72E-06	 1.00	
CSF1R-001	 CSF1-002-461	 9.94E-02	 1.46E-10	 0.03	
CSF1R-001	 CSF1-002-489	 9.94E-02	 5.57E-01	 1.00	
CSF1R-001	 CSF1-002-523	 9.94E-02	 9.79E-09	 1.00	
CSF1R-001	 CSF1-003	 9.94E-02	 1.22E-06	 1.00	
CSF1R-001	 CSF1-003-292	 9.94E-02	 1.18E-01	 1.00	
CSF1R-001	 CSF1-003-373	 9.94E-02	 2.04E-38	 0.03	
CSF1R-001	 CSF1-004	 9.94E-02	 1.20E-06	 1.00	

CSF1R-001-245	 CSF1-001	 9.94E-02	 2.76E-198	 0.03	
CSF1R-001-362	 CSF1-001	 9.94E-02	 5.31E-06	 1.00	
CSF1R-201	 CSF1-001	 9.94E-02	 1.35E-05	 1.00	

CSF1R-201-153	 CSF1-001	 9.94E-02	 6.74E-01	 1.00	
CSF1R-201-241	 CSF1-001	 9.94E-02	 2.31E-05	 1.00	
CSF1R-201-245	 CSF1-001	 9.94E-02	 3.59E-01	 1.00	
CSF1R-201-268	 CSF1-001	 9.94E-02	 1.34E-03	 1.00	
CSF1R-201-279	 CSF1-001	 9.94E-02	 3.62E-150	 0.03	
CSF1R-201-298	 CSF1-001	 9.94E-02	 1.39E-05	 1.00	
CSF1R-201-32	 CSF1-001	 9.94E-02	 1.86E-06	 1.00	
CSF1R-201-60	 CSF1-001	 9.94E-02	 5.58E-07	 1.00	
CXCR3-001	 CXCL10-001	 1000	 1000	 	
CXCR3-001	 CXCL10-001-18	 1000	 1974.2857	 1.13	
CXCR3-001	 CXCL10-001-29	 1000	 434.2857	 0.78	
CXCR3-001	 CXCL10-001-33	 1000	 19.8	 0.21	
CXCR3-001	 CXCL10-001-58	 1000	 0.036857	 0.09	
CXCR3-001	 CXCL10-001-66	 1000	 1.84E-05	 0.09	
CXCR3-001	 CXCL10-001-68	 1000	 2.0371	 0.10	
CXCR3-001	 CXCL10-001-80	 1000	 1405.7143	 1.06	
CXCR3-001	 CXCL10-001-96	 1000	 39.7143	 0.30	
CXCR3-002	 CXCL10-001	 1000	 291.4286	 0.68	
CXCR3-001	 CXCL11-001	 1000	 1000	 	
CXCR3-001	 CXCL11-001-29	 1000	 178.6982	 0.58	
CXCR3-001	 CXCL11-001-72	 1000	 16272.1893	 2.03	
CXCR3-001	 CXCL11-001-73	 1000	 331360.9465	 27.27	
CXCR3-001	 CXCL11-003	 1000	 223372.7811	 18.13	
CXCR3-001	 CXCL11-003-29	 1000	 807692.3075	 68.95	
CXCR3-001	 CXCL11-003-72	 1000	 15591.716	 1.99	
CXCR3-001	 CXCL11-003-73	 1000	 124.8521	 0.51	
CXCR3-002	 CXCL11-001	 1000	 5355.0296	 1.32	
CXCR3-001	 CXCL9-001	 1000	 1000	 1.00	
CXCR3-001	 CXCL9-001-1	 1000	 1818.6813	 1.11	
CXCR3-001	 CXCL9-001-101	 1000	 107142.8572	 8.67	
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CXCR3-001	 CXCL9-001-125	 1000	 2329.6703	 1.18	
CXCR3-001	 CXCL9-001-40	 1000	 15164.8352	 1.96	
CXCR3-001	 CXCL9-001-71	 1000	 928.5714	 0.98	
CXCR3-002	 CXCL9-001	 1000	 1543956.044	 134.63	
EGFR-001	 EGF-001	 1938	 1938	 	
EGFR-001	 EGF-001-151	 1938	 349748437.5	 0.50	
EGFR-001	 EGF-002-389	 1938	 12324.4687	 0.70	

EGFR-001-521	 EGF-001	 1938	 31341.0937	 0.60	
EGFR-002	 EGF-001	 1938	 20591.25	 0.64	

EGFR-002-521	 EGF-001	 1938	 3.23E-75	 1.19	
EGFR-002-640	 EGF-001	 1938	 4708.7344	 0.86	
EGFR-002-703	 EGF-001	 1938	 7752	 0.77	
EGFR-003	 EGF-001	 1938	 11506.875	 0.71	

EGFR-003-521	 EGF-001	 1938	 1938	 1.00	
EGFR-004-476	 EGF-001	 1938	 51932343.75	 0.50	
EGFR-005	 EGF-001	 1938	 1.13E-144	 1.19	
EGFR-201	 EGF-001	 1938	 14141.3437	 0.68	

EGFR-201-521	 EGF-001	 1938	 334.6078	 1.15	
EGFR-202	 EGF-001	 1938	 7812.5625	 0.77	

IFNGR1-001	 IFNG-001	

16200	
27360	
10000	
4400	

16200	
27360	
10000	
4400	

1.00	

IFNGR1-001	 IFNG-001-160	

16200	
27360	
10000	
4400	

7305449.423	
12338092.6431	
4509536.7847	
1984196.1853	

1.06	

IFNGR1-001	 IFNG-001-162	

16200	
27360	
10000	
4400	

2405722.1454	
4062997.2752	
1485013.624	
653405.9946	

1.06	

IFNGR1-001	 IFNG-001-72	

16200	
27360	
10000	
4400	

101525.8895	
171465.9401	
62670.2997	
27574.9319	

1.03	

IFNGR1-001-14	 IFNG-001	

16200	
27360	
10000	
4400	

23836.5131	
40257.2207	
14713.8965	
6474.1144	

1.01	

IFNGR1-001-180	 IFNG-001	

16200	
27360	
10000	
4400	

16.6635	
28.1428	
10.2861	
4.5259	

0.12	

IFNGR1-001-335	 IFNG-001	

16200	
27360	
10000	
4400	

812207.1172	
1371727.5204	
501362.3978	
220599.455	

1.05	
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IFNGR1-001-467	 IFNG-001	

16200	
27360	
10000	
4400	

22291.5534	
37647.9564	
13760.218	
6054.4959	

1.01	

IFNGR1-201	 IFNG-001	

16200	
27360	
10000	
4400	

794550.433	
1341907.3569	
490463.2153	
215803.8147	

1.05	

IFNGR1-201-14	 IFNG-001	

16200	
27360	
10000	
4400	

805584.6789	
1360544.9591	
497275.2044	
218801.0899	

1.05	

IFNGR1-201-180	 IFNG-001	

16200	
27360	
10000	
4400	

73716.6242	
124499.1826	
45504.0872	
20021.7984	

1.02	

IFNGR1-201-46	 IFNG-001	

16200	
27360	
10000	
4400	

1.8606	
3.1423	
1.1485	
0.50534	

0.12	

IFNGR1-201-61	 IFNG-001	

16200	
27360	
10000	
4400	

0.32444	
0.54795	
0.20027	
0.08812	

0.11	

IFNGR2-001	 IFNG-001	

16200	
27360	
10000	
4400	

16200	
27360	
10000	
4400	

	

IFNGR2-001	 IFNG-001-160	

16200	
27360	
10000	
4400	

1201458.9737	
2029130.6991	
741641.3374	
326322.1884	

1.05	

IFNGR2-001	 IFNG-001-162	

16200	
27360	
10000	
4400	

2870699101.1248	
4848291793.3131	
1772036474.1641	
779696048.6322	

1.06	

IFNGR2-001	 IFNG-001-72	

16200	
27360	
10000	
4400	

181203.6486	
306032.8267	
111854.1033	
49215.8055	

1.04	

IFNGR2-001-64	 IFNG-001	

16200	
27360	
10000	
4400	

2309361.7167	
3900255.3191	
1425531.9149	
627234.0426	

1.06	

IL10RA-001	 IL10-001	
8.1882	
0.644	

0.00625	

8.1882	
0.644	

0.00625	 	

IL10RA-001	 IL10-001-15	
8.1882	
0.644	

0.00625	

88.5882	
6.9674	

0.067619	
0.84	
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IL10RA-001	 IL10-001-169	
8.1882	
0.644	

0.00625	

6.7145	
0.52809	

0.0051251	
1.00	

IL10RA-001	 IL10-001-19	
8.1882	
0.644	

0.00625	

17.3037	
1.3609	

0.013208	
1.00	

IL10RA-001	 IL10-001-20	
8.1882	
0.644	

0.00625	

47.6058	
3.7442	

0.036337	
0.98	

IL10RA-001	 IL10-001-45	
8.1882	
0.644	

0.00625	

0.67228	
0.052874	

0.00051314	
1.00	

IL10RA-001	 IL10-001-71	
8.1882	
0.644	

0.00625	

8.6932	
0.68372	

0.0066355	
1.00	

IL10RA-001	 IL10-001-72	
8.1882	
0.644	

0.00625	

12.4189	
0.97674	

0.0094793	
1.00	

IL10RA-001-159	 IL10-001	
8.1882	
0.644	

0.00625	

32.1236	
2.5265	
0.02452	

1.00	

IL10RA-001-224	 IL10-001	
8.1882	
0.644	

0.00625	

3.8085	
0.29953	
0.002907	

1.00	

IL10RA-001-233	 IL10-001	
8.1882	
0.644	

0.00625	

1.4489e-05	
1.1395e-06	
1.1059e-08	

1.00	

IL10RA-001-351	 IL10-001	
8.1882	
0.644	

0.00625	

7.5341	
0.59256	

0.0057508	
1.00	

IL10RA-001-420	 IL10-001	
8.1882	
0.644	

0.00625	

1.2005e-20	
9.4419e-22	
9.1633e-24	

1.00	

IL12RB1-001	 IL12A-001	 8.10E+00	 8.10E+00	 	
IL12RB1-001	 IL12A-001-211	 8.10E+00	 2.70E+03	 0.94	
IL12RB1-001	 IL12A-001-82	 8.10E+00	 1.22E+02	 0.95	
IL12RB1-001	 IL12A-005	 8.10E+00	 4.18E+02	 0.94	
IL12RB1-001	 IL12A-005-115	 8.10E+00	 1.93E+02	 0.94	
IL12RB1-001	 IL12A-005-153	 8.10E+00	 8.05E+03	 0.93	
IL12RB1-001	 IL12A-005-164	 8.10E+00	 2.36E+02	 0.94	
IL12RB1-001	 IL12A-005-200	 8.10E+00	 2.32E+05	 0.93	
IL12RB1-001	 IL12A-005-3	 8.10E+00	 3.51E+03	 0.94	
IL12RB1-001	 IL12A-005-81	 8.10E+00	 2.78E+05	 0.93	
IL12RB1-001	 IL12A-006	 8.10E+00	 4.74E+00	 0.97	
IL12RB1-001	 IL12A-006-139	 8.10E+00	 4.61E+04	 0.93	
IL12RB1-001	 IL12A-006-157	 8.10E+00	 7.74E+03	 0.93	
IL12RB1-001	 IL12A-006-177	 8.10E+00	 7.32E+02	 0.94	
IL12RB1-001	 IL12A-006-224	 8.10E+00	 2.12E+02	 0.94	
IL12RB1-001	 IL12A-006-28	 8.10E+00	 1.80E-07	 0.15	
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IL12RB1-001	 IL12A-006-3	 8.10E+00	 3.71E+02	 0.94	
IL12RB1-001	 IL12A-006-81	 8.10E+00	 7.43E+02	 0.94	

IL12RB1-001-156	 IL12A-001	 8.10E+00	 2.62E-01	 0.44	
IL12RB1-001-214	 IL12A-001	 8.10E+00	 2.14E+01	 0.99	
IL12RB1-001-352	 IL12A-001	 8.10E+00	 4.41E-37	 0.15	
IL12RB1-001-365	 IL12A-001	 8.10E+00	 3.94E-11	 0.15	
IL12RB1-001-378	 IL12A-001	 8.10E+00	 1.59E+01	 1.00	
IL12RB1-001-91	 IL12A-001	 8.10E+00	 4.41E-17	 0.15	
IL12RB1-002-156	 IL12A-001	 8.10E+00	 2.62E-01	 0.44	
IL12RB1-002-214	 IL12A-001	 8.10E+00	 5.88E-18	 0.15	
IL12RB1-002-378	 IL12A-001	 8.10E+00	 1.59E+01	 1.00	
IL12RB1-002-47	 IL12A-001	 8.10E+00	 1.82E-24	 0.15	
IL12RB1-002-91	 IL12A-001	 8.10E+00	 4.41E-17	 0.15	
IL12RB1-003-201	 IL12A-001	 8.10E+00	 4.67E+04	 0.93	

IL18R1-001	 IL18-001	 8.10E+00	 8.10E+00	 	
IL18R1-001	 IL18-001-127	 8.10E+00	 2.67E-05	 0.15	
IL18R1-001	 IL18-001-164	 8.10E+00	 2.90E-02	 0.19	
IL18R1-001	 IL18-001-22	 8.10E+00	 6.35E+02	 0.94	
IL18R1-001	 IL18-001-47	 8.10E+00	 8.90E+00	 1.00	
IL18R1-001	 IL18-001-63	 8.10E+00	 5.63E+02	 0.94	
IL18R1-001	 IL18-003	 8.10E+00	 1.14E+03	 0.94	
IL18R1-001	 IL18-003-123	 8.10E+00	 2.06E+03	 0.94	
IL18R1-001	 IL18-003-160	 8.10E+00	 1.70E+01	 0.99	
IL18R1-001	 IL18-003-22	 8.10E+00	 4.01E-01	 0.52	
IL18R1-001	 IL18-003-43	 8.10E+00	 9.97E+00	 1.00	
IL18R1-001	 IL18-003-59	 8.10E+00	 2.92E+03	 0.94	
IL18R1-001	 IL18-006	 8.10E+00	 8.10E+00	 	
IL18R1-001	 IL18-006-127	 8.10E+00	 2.67E-05	 0.15	
IL18R1-001	 IL18-006-164	 8.10E+00	 2.90E-02	 0.19	
IL18R1-001	 IL18-006-22	 8.10E+00	 6.35E+02	 0.94	
IL18R1-001	 IL18-006-47	 8.10E+00	 8.90E+00	 1.00	
IL18R1-001	 IL18-006-63	 8.10E+00	 5.63E+02	 0.94	

IL18R1-001-170	 IL18-001	 8.10E+00	 7.42E+02	 0.94	
IL18R1-001-232	 IL18-001	 8.10E+00	 2.45E+05	 0.93	
IL18R1-001-423	 IL18-001	 8.10E+00	 2.04E+02	 0.94	
IL18R1-201	 IL18-001	 8.10E+00	 8.10E+00	 	

IL18R1-201-170	 IL18-001	 8.10E+00	 7.42E+02	 0.94	
IL18R1-201-232	 IL18-001	 8.10E+00	 2.45E+05	 0.93	
IL18R1-201-423	 IL18-001	 8.10E+00	 2.04E+02	 0.94	
IL18R1-202	 IL18-001	 8.10E+00	 1.13E+04	 0.93	

IL18R1-202-100	 IL18-001	 8.10E+00	 5.94E-03	 0.16	
IL18R1-202-117	 IL18-001	 8.10E+00	 1.10E+05	 0.93	
IL18R1-202-139	 IL18-001	 8.10E+00	 6.66E+03	 0.93	
IL18R1-202-162	 IL18-001	 8.10E+00	 2.82E+04	 0.93	
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IL18R1-202-53	 IL18-001	 8.10E+00	 8.41E+03	 0.93	
IL18R1-202-84	 IL18-001	 8.10E+00	 3.89E+03	 0.94	
IL1R1-001	 IL1B-001	 1.35E-01	 1.35E-01	 	
IL21R-001	 IL21-001	 6.64E+01	 6.64E+01	 	
IL21R-001	 IL21-001-135	 6.64E+01	 8.59E+04	 0.67	
IL21R-001	 IL21-001-40	 6.64E+01	 3.38E+06	 0.43	
IL21R-001	 IL21-201	 6.64E+01	 3.29E+01	 1.00	
IL21R-001	 IL21-201-135	 6.64E+01	 3.62E+05	 0.57	
IL21R-001	 IL21-201-40	 6.64E+01	 5.91E+01	 1.00	

IL21R-001-318	 IL21-001	 6.64E+01	 3.54E+01	 1.00	
IL21R-001-484	 IL21-001	 6.64E+01	 4.78E-04	 1.01	
IL21R-003	 IL21-001	 6.64E+01	 6.64E+01	 	

IL21R-003-318	 IL21-001	 6.64E+01	 3.54E+01	 1.00	
IL21R-003-484	 IL21-001	 6.64E+01	 4.16E+02	 0.98	
IL21R-006	 IL21-001	 6.64E+01	 6.64E+01	 	

IL21R-006-318	 IL21-001	 6.64E+01	 6.16E+01	 1.00	
IL21R-006-484	 IL21-001	 6.64E+01	 4.16E+02	 0.98	

IL4R-001	 IL4-001	 8.19E+00	 8.19E+00	 	
IL4R-001	 IL4-001-100	 8.19E+00	 2.44E-40	 1.00	
IL4R-001	 IL4-001-105	 8.19E+00	 1.63E+06	 0.11	
IL4R-001	 IL4-001-109	 8.19E+00	 2.34E+00	 1.00	
IL4R-001	 IL4-001-152	 8.19E+00	 9.10E+01	 0.83	
IL4R-001	 IL4-001-22	 8.19E+00	 2.97E-24	 1.00	
IL4R-001	 IL4-001-26	 8.19E+00	 1.74E+03	 0.38	
IL4R-001	 IL4-001-30	 8.19E+00	 1.29E+06	 0.11	
IL4R-001	 IL4-001-53	 8.19E+00	 9.38E+03	 0.19	
IL4R-001	 IL4-001-98	 8.19E+00	 2.11E+04	 0.14	
IL4R-001	 IL4-002	 8.19E+00	 3.78E+00	 1.00	
IL4R-001	 IL4-002-102	 8.19E+00	 8.26E-20	 1.00	
IL4R-001	 IL4-002-136	 8.19E+00	 1.86E+03	 0.37	
IL4R-001	 IL4-002-22	 8.19E+00	 1.47E+03	 0.41	
IL4R-001	 IL4-002-26	 8.19E+00	 8.40E+03	 0.20	
IL4R-001	 IL4-002-30	 8.19E+00	 1.04E+00	 1.00	
IL4R-001	 IL4-002-82	 8.19E+00	 1.20E+03	 0.44	
IL4R-001	 IL4-002-84	 8.19E+00	 3.77E+01	 0.99	
IL4R-001	 IL4-002-89	 8.19E+00	 1.12E+02	 0.79	
IL4R-001	 IL4-002-93	 8.19E+00	 5.37E+04	 0.12	
IL4R-001	 IL4-201	 8.19E+00	 4.81E-11	 1.00	
IL4R-001	 IL4-201-134	 8.19E+00	 1.72E+07	 0.10	
IL4R-001	 IL4-201-22	 8.19E+00	 1.71E+05	 0.11	
IL4R-001	 IL4-201-26	 8.19E+00	 1.24E+01	 1.00	
IL4R-001	 IL4-201-30	 8.19E+00	 4.33E-06	 1.00	
IL4R-001	 IL4-201-67	 8.19E+00	 5.25E+05	 0.11	
IL4R-001	 IL4-201-82	 8.19E+00	 7.49E+02	 0.51	
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IL4R-001-185	 IL4-001	 8.19E+00	 1.17E+05	 0.12	
IL4R-001-400	 IL4-001	 8.19E+00	 3.79E+00	 1.00	
IL4R-001-436	 IL4-001	 8.19E+00	 9.03E+03	 0.19	
IL4R-001-503	 IL4-001	 8.19E+00	 1.09E+00	 1.00	
IL4R-001-576	 IL4-001	 8.19E+00	 2.88E+02	 0.65	
IL4R-001-579	 IL4-001	 8.19E+00	 5.99E+02	 0.55	
IL4R-001-75	 IL4-001	 8.19E+00	 4.15E-01	 1.00	
IL4R-001-752	 IL4-001	 8.19E+00	 1.29E+02	 0.77	
IL4R-001-82	 IL4-001	 8.19E+00	 2.16E+06	 0.11	
IL4R-001-97	 IL4-001	 8.19E+00	 1.50E-12	 1.00	
IL4R-004	 IL4-001	 8.19E+00	 4.07E-02	 1.00	

IL4R-004-185	 IL4-001	 8.19E+00	 1.50E+03	 0.41	
IL4R-004-400	 IL4-001	 8.19E+00	 3.91E+01	 0.99	
IL4R-004-431	 IL4-001	 8.19E+00	 9.10E+02	 0.48	
IL4R-004-436	 IL4-001	 8.19E+00	 2.00E-36	 1.00	
IL4R-004-503	 IL4-001	 8.19E+00	 1.22E+01	 1.00	
IL4R-004-576	 IL4-001	 8.19E+00	 1.27E-01	 1.00	
IL4R-004-579	 IL4-001	 8.19E+00	 1.11E+01	 1.00	
IL4R-004-75	 IL4-001	 8.19E+00	 1.36E+02	 0.76	
IL4R-004-752	 IL4-001	 8.19E+00	 1.87E+01	 1.00	
IL4R-004-786	 IL4-001	 8.19E+00	 1.32E+01	 1.00	
IL4R-004-82	 IL4-001	 8.19E+00	 6.07E+04	 0.12	
IL4R-004-97	 IL4-001	 8.19E+00	 3.42E+02	 0.63	
IL4R-201	 IL4-001	 8.19E+00	 2.08E-11	 1.00	

IL4R-201-170	 IL4-001	 8.19E+00	 3.49E-03	 1.00	
IL4R-201-385	 IL4-001	 8.19E+00	 7.35E+02	 0.52	
IL4R-201-416	 IL4-001	 8.19E+00	 4.25E+04	 0.13	
IL4R-201-421	 IL4-001	 8.19E+00	 2.06E+02	 0.70	
IL4R-201-488	 IL4-001	 8.19E+00	 5.72E+04	 0.12	
IL4R-201-561	 IL4-001	 8.19E+00	 3.93E+02	 0.61	
IL4R-201-564	 IL4-001	 8.19E+00	 2.34E-09	 1.00	
IL4R-201-60	 IL4-001	 8.19E+00	 8.82E+01	 0.84	
IL4R-201-660	 IL4-001	 8.19E+00	 1.51E+03	 0.41	
IL4R-201-67	 IL4-001	 8.19E+00	 1.14E+01	 1.00	
IL4R-201-737	 IL4-001	 8.19E+00	 6.38E+02	 0.54	
IL4R-201-771	 IL4-001	 8.19E+00	 3.05E-181	 1.00	
IL4R-201-82	 IL4-001	 8.19E+00	 5.44E+03	 0.24	
IL6R-001	 IL6-001	 6.64E+01	 6.64E+01	 	
IL6R-001	 IL6-001-104	 6.64E+01	 1.41E+03	 0.94	
IL6R-001	 IL6-001-116	 6.64E+01	 1.18E+01	 1.00	
IL6R-001	 IL6-001-152	 6.64E+01	 3.80E+01	 1.00	
IL6R-001	 IL6-001-162	 6.64E+01	 1.37E+01	 1.00	
IL6R-001	 IL6-001-2	 6.64E+01	 2.81E+02	 0.99	
IL6R-001	 IL6-001-31	 6.64E+01	 3.36E+00	 1.00	
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IL6R-001	 IL6-001-32	 6.64E+01	 1.70E+02	 0.99	
IL6R-001	 IL6-001-55	 6.64E+01	 1.20E+02	 1.00	
IL6R-001	 IL6-001-6	 6.64E+01	 3.20E+02	 0.98	
IL6R-001	 IL6-001-7	 6.64E+01	 8.84E+01	 1.00	
IL6R-001	 IL6-001-79	 6.64E+01	 7.56E+02	 0.96	
IL6R-001	 IL6-003	 6.64E+01	 3.65E+02	 0.98	
IL6R-001	 IL6-003-110	 6.64E+01	 1.93E+02	 0.99	
IL6R-001	 IL6-003-28	 6.64E+01	 2.54E+01	 1.00	
IL6R-001	 IL6-003-3	 6.64E+01	 1.08E+02	 1.00	
IL6R-001	 IL6-003-40	 6.64E+01	 3.17E+03	 0.90	
IL6R-001	 IL6-003-76	 6.64E+01	 1.33E+01	 1.00	
IL6R-001	 IL6-003-89	 6.64E+01	 8.18E+01	 1.00	
IL6R-001	 IL6-003-92	 6.64E+01	 4.91E+02	 0.98	
IL6R-001	 IL6-004	 6.64E+01	 1.00E+02	 1.00	
IL6R-001	 IL6-004-28	 6.64E+01	 4.77E+02	 0.98	
IL6R-001	 IL6-004-3	 6.64E+01	 5.06E+02	 0.98	
IL6R-001	 IL6-004-40	 6.64E+01	 1.24E+02	 1.00	
IL6R-001	 IL6-004-76	 6.64E+01	 2.11E+00	 1.00	
IL6R-001	 IL6-004-86	 6.64E+01	 1.42E+00	 1.00	
IL6R-001	 IL6-005	 6.64E+01	 8.33E+00	 1.00	
IL6R-001	 IL6-005-129	 6.64E+01	 3.63E+01	 1.00	
IL6R-001	 IL6-005-139	 6.64E+01	 3.71E+01	 1.00	
IL6R-001	 IL6-005-2	 6.64E+01	 3.93E+01	 1.00	
IL6R-001	 IL6-005-32	 6.64E+01	 5.02E+01	 1.00	
IL6R-001	 IL6-005-56	 6.64E+01	 1.08E+02	 1.00	
IL6R-001	 IL6-005-6	 6.64E+01	 2.51E+01	 1.00	
IL6R-001	 IL6-005-8	 6.64E+01	 1.67E+02	 0.99	
IL6R-001	 IL6-005-81	 6.64E+01	 3.55E+01	 1.00	
IL6R-001	 IL6-005-9	 6.64E+01	 7.97E+01	 1.00	
IL6R-001	 IL6-005-93	 6.64E+01	 1.33E-01	 1.01	
IL6R-001	 IL6-006	 6.64E+01	 5.77E+00	 1.00	
IL6R-001	 IL6-006-104	 6.64E+01	 8.59E+01	 1.00	
IL6R-001	 IL6-006-116	 6.64E+01	 1.17E+02	 1.00	
IL6R-001	 IL6-006-152	 6.64E+01	 1.08E+01	 1.00	
IL6R-001	 IL6-006-165	 6.64E+01	 7.05E-01	 1.00	
IL6R-001	 IL6-006-168	 6.64E+01	 6.85E+00	 1.00	
IL6R-001	 IL6-006-186	 6.64E+01	 1.17E+01	 1.00	
IL6R-001	 IL6-006-2	 6.64E+01	 1.81E+00	 1.00	
IL6R-001	 IL6-006-31	 6.64E+01	 2.40E+03	 0.92	
IL6R-001	 IL6-006-32	 6.64E+01	 5.62E+02	 0.97	
IL6R-001	 IL6-006-55	 6.64E+01	 1.14E+03	 0.95	
IL6R-001	 IL6-006-6	 6.64E+01	 3.34E+02	 0.98	
IL6R-001	 IL6-006-7	 6.64E+01	 1.02E+03	 0.95	
IL6R-001	 IL6-006-79	 6.64E+01	 1.90E+02	 0.99	
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IL6R-001	 IL6-201	 6.64E+01	 5.72E+01	 1.00	
IL6R-001	 IL6-201-104	 6.64E+01	 9.25E+00	 1.00	
IL6R-001	 IL6-201-116	 6.64E+01	 4.04E+01	 1.00	
IL6R-001	 IL6-201-152	 6.64E+01	 3.10E+00	 1.00	
IL6R-001	 IL6-201-162	 6.64E+01	 4.92E+01	 1.00	
IL6R-001	 IL6-201-2	 6.64E+01	 2.94E+02	 0.99	
IL6R-001	 IL6-201-31	 6.64E+01	 7.46E-01	 1.00	
IL6R-001	 IL6-201-32	 6.64E+01	 6.08E+02	 0.97	
IL6R-001	 IL6-201-55	 6.64E+01	 4.69E-06	 1.01	
IL6R-001	 IL6-201-6	 6.64E+01	 7.31E+03	 0.84	
IL6R-001	 IL6-201-7	 6.64E+01	 3.21E+00	 1.00	
IL6R-001	 IL6-201-79	 6.64E+01	 2.90E+02	 0.99	

IL6R-001-358	 IL6-001	 6.64E+01	 1.02E+01	 1.00	
IL6R-001-385	 IL6-001	 6.64E+01	 9.45E+01	 1.00	
IL6R-001-65	 IL6-001	 6.64E+01	 4.77E+01	 1.00	
IL6R-003	 IL6-001	 6.64E+01	 1.07E+02	 1.00	

IL6R-003-65	 IL6-001	 6.64E+01	 9.45E+01	 1.00	
IL6R-201	 IL6-001	 6.64E+01	 7.05E+01	 1.00	

IL6R-201-65	 IL6-001	 6.64E+01	 4.54E+01	 1.00	
MMP1-001	 CMA1-001	 2.00E-03	 2.00E-03	 	
MMP1-001	 CMA1-001-151	 2.00E-03	 1.20E-03	 1.00	
MMP1-001	 CMA1-001-157	 2.00E-03	 1.02E-02	 1.01	
MMP1-001	 CMA1-001-183	 2.00E-03	 3.96E-06	 1.00	
MMP1-001	 CMA1-001-221	 2.00E-03	 7.21E-03	 1.01	
MMP1-001	 CMA1-001-226	 2.00E-03	 7.76E-05	 1.00	
MMP1-001	 CMA1-001-33	 2.00E-03	 3.13E-04	 1.00	
MMP1-001	 CMA1-001-38	 2.00E-03	 4.71E-11	 1.00	
MMP1-001	 CMA1-001-46	 2.00E-03	 2.85E-04	 1.00	
MMP1-001	 CMA1-001-48	 2.00E-03	 2.66E-05	 1.00	
MMP1-001	 CMA1-001-63	 2.00E-03	 4.79E-04	 1.00	
MMP1-001	 CMA1-001-66	 2.00E-03	 1.44E-03	 1.00	
MMP1-001	 CMA1-001-69	 2.00E-03	 1.90E-01	 1.02	
MMP1-001	 CMA1-001-98	 2.00E-03	 1.29E-07	 1.00	
MMP1-001	 CMA1-002	 2.00E-03	 9.78E-05	 1.00	
MMP1-001	 CMA1-002-1	 2.00E-03	 1.56E-08	 1.00	
MMP1-001	 CMA1-002-106	 2.00E-03	 1.88E-06	 1.00	
MMP1-001	 CMA1-002-110	 2.00E-03	 3.06E-10	 1.00	
MMP1-001	 CMA1-002-115	 2.00E-03	 5.07E-02	 1.02	
MMP1-001	 CMA1-002-124	 2.00E-03	 2.28E-02	 1.01	
MMP1-001	 CMA1-002-126	 2.00E-03	 1.54E-02	 1.01	
MMP1-001	 CMA1-002-40	 2.00E-03	 7.21E-03	 1.01	
MMP1-001	 CMA1-002-46	 2.00E-03	 6.61E-04	 1.00	
MMP1-001	 CMA1-002-48	 2.00E-03	 1.28E-06	 1.00	
MMP1-001	 CMA1-002-59	 2.00E-03	 8.75E-06	 1.00	
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MMP1-001	 CMA1-002-72	 2.00E-03	 6.22E-03	 1.00	
MMP1-001	 CMA1-002-75	 2.00E-03	 2.02E-03	 1.00	
MMP1-001	 CMA1-002-77	 2.00E-03	 1.55E-02	 1.01	
MMP1-001	 CMA1-002-93	 2.00E-03	 4.95E-03	 1.00	
MMP1-001	 CMA1-002-95	 2.00E-03	 2.19E-02	 1.01	

MMP1-001-374	 CMA1-001	 2.00E-03	 7.92E-04	 1.00	
MMP1-001-406	 CMA1-001	 2.00E-03	 3.75E-03	 1.00	
MMP1-001	 TIMP1-001	 1.00E-07	 1.00E-07	 	
MMP1-001	 TIMP1-001-10	 1.00E-07	 6.21E-09	 1.00	
MMP1-001	 TIMP1-001-102	 1.00E-07	 4.11E-08	 1.00	
MMP1-001	 TIMP1-001-105	 1.00E-07	 3.46E-09	 1.00	
MMP1-001	 TIMP1-001-136	 1.00E-07	 3.13E-08	 1.00	
MMP1-001	 TIMP1-001-171	 1.00E-07	 1.09E-13	 1.00	
MMP1-001	 TIMP1-001-185	 1.00E-07	 1.21E-07	 1.00	
MMP1-001	 TIMP1-001-192	 1.00E-07	 1.41E-08	 1.00	
MMP1-001	 TIMP1-001-203	 1.00E-07	 2.75E-15	 1.00	
MMP1-001	 TIMP1-001-33	 1.00E-07	 1.34E-08	 1.00	
MMP1-001	 TIMP1-001-50	 1.00E-07	 1.24E-10	 1.00	
MMP1-001	 TIMP1-001-51	 1.00E-07	 1.37E-08	 1.00	
MMP1-001	 TIMP1-001-76	 1.00E-07	 1.00E-12	 1.00	
MMP1-001	 TIMP1-001-77	 1.00E-07	 1.94E-11	 1.00	
MMP1-001	 TIMP1-002	 1.00E-07	 1.56E-08	 1.00	
MMP1-001	 TIMP1-002-10	 1.00E-07	 6.85E-10	 1.00	
MMP1-001	 TIMP1-002-102	 1.00E-07	 1.14E-08	 1.00	
MMP1-001	 TIMP1-002-105	 1.00E-07	 2.66E-09	 1.00	
MMP1-001	 TIMP1-002-115	 1.00E-07	 5.49E-09	 1.00	
MMP1-001	 TIMP1-002-116	 1.00E-07	 4.04E-08	 1.00	
MMP1-001	 TIMP1-002-33	 1.00E-07	 2.92E-13	 1.00	
MMP1-001	 TIMP1-002-50	 1.00E-07	 4.79E-20	 1.00	
MMP1-001	 TIMP1-002-51	 1.00E-07	 1.85E-11	 1.00	
MMP1-001	 TIMP1-002-76	 1.00E-07	 3.23E-07	 1.00	
MMP1-001	 TIMP1-002-77	 1.00E-07	 4.04E-10	 1.00	
MMP1-001	 TIMP1-003	 1.00E-07	 4.91E-12	 1.00	
MMP1-001	 TIMP1-003-107	 1.00E-07	 1.20E-08	 1.00	
MMP1-001	 TIMP1-003-12	 1.00E-07	 2.40E-08	 1.00	
MMP1-001	 TIMP1-003-121	 1.00E-07	 1.44E-09	 1.00	
MMP1-001	 TIMP1-003-128	 1.00E-07	 1.77E-09	 1.00	
MMP1-001	 TIMP1-003-13	 1.00E-07	 5.40E-08	 1.00	
MMP1-001	 TIMP1-003-139	 1.00E-07	 3.65E-11	 1.00	
MMP1-001	 TIMP1-003-38	 1.00E-07	 1.37E-08	 1.00	
MMP1-001	 TIMP1-003-41	 1.00E-07	 2.16E-07	 1.00	
MMP1-001	 TIMP1-003-72	 1.00E-07	 2.92E-12	 1.00	

MMP1-001-374	 TIMP1-001	 1.00E-07	 3.41E-08	 1.00	
MMP1-001-406	 TIMP1-001	 1.00E-07	 6.20E-12	 1.00	
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MMP1-001	 TIMP2-001	 1.00E-07	 1.00E-07	 	
MMP1-001	 TIMP2-003	 1.00E-07	 1.97E-09	 1.00	
MMP1-001	 TIMP2-003-130	 1.00E-07	 2.82E-08	 1.00	
MMP1-001	 TIMP2-003-139	 1.00E-07	 4.92E-03	 1.00	
MMP1-001	 TIMP2-008	 1.00E-07	 1.97E-09	 1.00	
MMP1-001	 TIMP2-008-130	 1.00E-07	 9.57E-03	 1.00	
MMP1-001	 TIMP2-008-139	 1.00E-07	 3.38E-04	 1.00	
MMP1-001	 TIMP2-008-42	 1.00E-07	 1.21E-05	 1.00	
MMP1-001	 TIMP2-008-54	 1.00E-07	 8.44E-09	 1.00	
MMP1-001	 TIMP2-008-69	 1.00E-07	 4.41E-06	 1.00	
MMP13-001	 TIMP1-001	 1.00E-07	 1.00E-07	 	
MMP13-001	 TIMP1-001-10	 1.00E-07	 1.36E-06	 1.00	
MMP13-001	 TIMP1-001-102	 1.00E-07	 7.30E-09	 1.00	
MMP13-001	 TIMP1-001-105	 1.00E-07	 1.97E-07	 1.00	
MMP13-001	 TIMP1-001-136	 1.00E-07	 1.73E-10	 1.00	
MMP13-001	 TIMP1-001-171	 1.00E-07	 5.27E-08	 1.00	
MMP13-001	 TIMP1-001-185	 1.00E-07	 6.05E-08	 1.00	
MMP13-001	 TIMP1-001-192	 1.00E-07	 2.40E-07	 1.00	
MMP13-001	 TIMP1-001-203	 1.00E-07	 2.20E-08	 1.00	
MMP13-001	 TIMP1-001-33	 1.00E-07	 1.29E-07	 1.00	
MMP13-001	 TIMP1-001-50	 1.00E-07	 4.61E-08	 1.00	
MMP13-001	 TIMP1-001-51	 1.00E-07	 2.92E-10	 1.00	
MMP13-001	 TIMP1-001-76	 1.00E-07	 2.35E-13	 1.00	
MMP13-001	 TIMP1-001-77	 1.00E-07	 2.72E-07	 1.00	
MMP13-001	 TIMP1-002	 1.00E-07	 2.99E-11	 1.00	
MMP13-001	 TIMP1-002-10	 1.00E-07	 4.80E-12	 1.00	
MMP13-001	 TIMP1-002-102	 1.00E-07	 2.62E-09	 1.00	
MMP13-001	 TIMP1-002-105	 1.00E-07	 4.22E-11	 1.00	
MMP13-001	 TIMP1-002-115	 1.00E-07	 5.86E-10	 1.00	
MMP13-001	 TIMP1-002-116	 1.00E-07	 2.41E-11	 1.00	
MMP13-001	 TIMP1-002-33	 1.00E-07	 1.60E-11	 1.00	
MMP13-001	 TIMP1-002-50	 1.00E-07	 1.62E-14	 1.00	
MMP13-001	 TIMP1-002-51	 1.00E-07	 1.26E-14	 1.00	
MMP13-001	 TIMP1-002-76	 1.00E-07	 8.48E-11	 1.00	
MMP13-001	 TIMP1-002-77	 1.00E-07	 2.44E-10	 1.00	
MMP13-001	 TIMP1-003	 1.00E-07	 5.51E-10	 1.00	
MMP13-001	 TIMP1-003-107	 1.00E-07	 2.11E-10	 1.00	
MMP13-001	 TIMP1-003-12	 1.00E-07	 1.92E-09	 1.00	
MMP13-001	 TIMP1-003-121	 1.00E-07	 8.32E-10	 1.00	
MMP13-001	 TIMP1-003-128	 1.00E-07	 5.66E-09	 1.00	
MMP13-001	 TIMP1-003-13	 1.00E-07	 1.15E-09	 1.00	
MMP13-001	 TIMP1-003-139	 1.00E-07	 1.27E-10	 1.00	
MMP13-001	 TIMP1-003-38	 1.00E-07	 5.94E-10	 1.00	
MMP13-001	 TIMP1-003-41	 1.00E-07	 1.20E-15	 1.00	
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MMP13-001	 TIMP1-003-72	 1.00E-07	 7.19E-13	 1.00	
MMP13-001-158	 TIMP1-001	 1.00E-07	 1.56E-07	 1.00	
MMP13-002	 TIMP1-001	 1.00E-07	 5.59E-11	 1.00	

MMP13-002-158	 TIMP1-001	 1.00E-07	 4.26E-08	 1.00	
MMP13-201	 TIMP1-001	 1.00E-07	 5.08E-08	 1.00	

MMP13-201-158	 TIMP1-001	 1.00E-07	 5.55E-10	 1.00	
MMP13-001	 TIMP2-001	 1.00E-07	 1.00E-07	 	
MMP13-001	 TIMP2-001-119	 1.00E-07	 2.88E-06	 1.00	
MMP13-001	 TIMP2-003	 1.00E-07	 1.96E-08	 1.00	
MMP13-001	 TIMP2-003-130	 1.00E-07	 1.87E-07	 1.00	
MMP13-001	 TIMP2-003-139	 1.00E-07	 3.36E-19	 1.00	
MMP13-001	 TIMP2-008	 1.00E-07	 9.22E-09	 1.00	
MMP13-001	 TIMP2-008-130	 1.00E-07	 5.82E-08	 1.00	
MMP13-001	 TIMP2-008-139	 1.00E-07	 3.36E-19	 1.00	
MMP13-001	 TIMP2-008-42	 1.00E-07	 3.42E-07	 1.00	
MMP13-001	 TIMP2-008-54	 1.00E-07	 8.76E-09	 1.00	
MMP13-001	 TIMP2-008-69	 1.00E-07	 7.19E-10	 1.00	

MMP13-001-158	 TIMP2-001	 1.00E-07	 1.50E-08	 1.00	
MMP13-002	 TIMP2-001	 1.00E-07	 2.21E-07	 1.00	

MMP13-002-158	 TIMP2-001	 1.00E-07	 1.67E-08	 1.00	
MMP13-201	 TIMP2-001	 1.00E-07	 6.84E-09	 1.00	

MMP13-201-158	 TIMP2-001	 1.00E-07	 8.68E-09	 1.00	
MMP13-001	 TIMP3-001	 1.00E-07	 1.00E-07	 	
MMP13-001	 TIMP3-001-142	 1.00E-07	 2.96E-09	 1.00	
MMP13-001	 TIMP3-001-201	 1.00E-07	 5.48E-10	 1.00	
MMP13-001	 TIMP3-001-22	 1.00E-07	 2.31E-07	 1.00	
MMP13-001	 TIMP3-001-37	 1.00E-07	 5.61E-07	 1.00	

MMP13-001-158	 TIMP3-001	 1.00E-07	 2.76E-07	 1.00	
MMP13-002	 TIMP3-001	 1.00E-07	 1.92E-08	 1.00	
MMP13-201	 TIMP3-001	 1.00E-07	 2.40E-05	 1.00	

MMP13-201-158	 TIMP3-001	 1.00E-07	 8.02E-05	 1.00	
MMP2-001	 TIMP1-001	 1.00E-07	 1.00E-07	 	
MMP2-001	 TIMP1-001-10	 1.00E-07	 4.14E-07	 1.00	
MMP2-001	 TIMP1-001-102	 1.00E-07	 5.22E-08	 1.00	
MMP2-001	 TIMP1-001-105	 1.00E-07	 8.48E-09	 1.00	
MMP2-001	 TIMP1-001-136	 1.00E-07	 3.03E-11	 1.00	
MMP2-001	 TIMP1-001-171	 1.00E-07	 1.39E-14	 1.00	
MMP2-001	 TIMP1-001-185	 1.00E-07	 4.94E-09	 1.00	
MMP2-001	 TIMP1-001-192	 1.00E-07	 3.64E-07	 1.00	
MMP2-001	 TIMP1-001-203	 1.00E-07	 1.19E-09	 1.00	
MMP2-001	 TIMP1-001-33	 1.00E-07	 1.08E-07	 1.00	
MMP2-001	 TIMP1-001-50	 1.00E-07	 1.39E-09	 1.00	
MMP2-001	 TIMP1-001-51	 1.00E-07	 6.95E-08	 1.00	
MMP2-001	 TIMP1-001-76	 1.00E-07	 1.44E-09	 1.00	
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MMP2-001	 TIMP1-001-77	 1.00E-07	 1.85E-07	 1.00	
MMP2-001	 TIMP1-002	 1.00E-07	 1.73E-09	 1.00	
MMP2-001	 TIMP1-002-10	 1.00E-07	 2.17E-11	 1.00	
MMP2-001	 TIMP1-002-102	 1.00E-07	 6.85E-09	 1.00	
MMP2-001	 TIMP1-002-105	 1.00E-07	 1.73E-14	 1.00	
MMP2-001	 TIMP1-002-115	 1.00E-07	 1.41E-14	 1.00	
MMP2-001	 TIMP1-002-116	 1.00E-07	 1.40E-11	 1.00	
MMP2-001	 TIMP1-002-33	 1.00E-07	 3.59E-09	 1.00	
MMP2-001	 TIMP1-002-50	 1.00E-07	 3.95E-08	 1.00	
MMP2-001	 TIMP1-002-51	 1.00E-07	 3.77E-09	 1.00	
MMP2-001	 TIMP1-002-76	 1.00E-07	 1.80E-10	 1.00	
MMP2-001	 TIMP1-002-77	 1.00E-07	 1.42E-09	 1.00	
MMP2-001	 TIMP1-003	 1.00E-07	 1.07E-14	 1.00	
MMP2-001	 TIMP1-003-107	 1.00E-07	 5.20E-09	 1.00	
MMP2-001	 TIMP1-003-12	 1.00E-07	 2.78E-09	 1.00	
MMP2-001	 TIMP1-003-121	 1.00E-07	 7.18E-09	 1.00	
MMP2-001	 TIMP1-003-128	 1.00E-07	 1.75E-10	 1.00	
MMP2-001	 TIMP1-003-13	 1.00E-07	 2.11E-15	 1.00	
MMP2-001	 TIMP1-003-139	 1.00E-07	 4.22E-10	 1.00	
MMP2-001	 TIMP1-003-38	 1.00E-07	 2.76E-10	 1.00	
MMP2-001	 TIMP1-003-41	 1.00E-07	 4.86E-09	 1.00	
MMP2-001	 TIMP1-003-72	 1.00E-07	 4.42E-14	 1.00	

MMP2-001-447	 TIMP1-001	 1.00E-07	 6.88E-07	 1.00	
MMP2-008	 TIMP1-001	 1.00E-07	 7.68E-08	 1.00	

MMP2-008-333	 TIMP1-001	 1.00E-07	 5.50E-06	 1.00	
MMP2-008-371	 TIMP1-001	 1.00E-07	 1.63E-07	 1.00	
MMP2-008-545	 TIMP1-001	 1.00E-07	 1.30E-08	 1.00	
MMP2-001	 TIMP2-001	 1.00E-07	 1.00E-07	 1.00	
MMP2-001	 TIMP2-001-119	 1.00E-07	 6.92E-03	 1.00	
MMP2-001	 TIMP2-001-146	 1.00E-07	 8.72E-03	 1.00	
MMP2-001	 TIMP2-003	 1.00E-07	 4.44E-02	 1.00	
MMP2-001	 TIMP2-003-130	 1.00E-07	 1.13E-01	 1.00	
MMP2-001	 TIMP2-003-139	 1.00E-07	 1.73E-03	 1.00	
MMP2-001	 TIMP2-008	 1.00E-07	 3.83E-04	 1.00	
MMP2-001	 TIMP2-008-130	 1.00E-07	 1.33E-03	 1.00	
MMP2-001	 TIMP2-008-42	 1.00E-07	 1.09E-03	 1.00	
MMP2-001	 TIMP2-008-54	 1.00E-07	 4.68E-02	 1.00	
MMP2-001	 TIMP2-008-69	 1.00E-07	 2.59E-04	 1.00	

MMP2-001-447	 TIMP2-001	 1.00E-07	 7.36E-05	 1.00	
MMP2-008	 TIMP2-001	 1.00E-07	 3.60E-02	 1.00	

MMP2-008-333	 TIMP2-001	 1.00E-07	 2.04E-03	 1.00	
MMP2-008-371	 TIMP2-001	 1.00E-07	 2.20E-03	 1.00	
MMP2-008-545	 TIMP2-001	 1.00E-07	 2.04E-01	 1.00	
MMP2-001	 TIMP3-001	 1.00E-07	 1.00E-07	 	
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MMP2-001	 TIMP3-001-121	 1.00E-07	 9.83E+00	 1.00	
MMP2-001	 TIMP3-001-186	 1.00E-07	 3.67E-07	 1.00	

MMP2-001-447	 TIMP3-001	 1.00E-07	 1.65E-02	 1.00	
MMP2-008-333	 TIMP3-001	 1.00E-07	 2.60E-05	 1.00	
MMP2-008-371	 TIMP3-001	 1.00E-07	 9.81E-06	 1.00	
MMP2-001	 TIMP4-001	 1.00E-07	 1.00E-07	 	
MMP2-001	 TIMP4-001-103	 1.00E-07	 4.16E-10	 1.00	
MMP2-001	 TIMP4-001-109	 1.00E-07	 1.06E-08	 1.00	
MMP2-001	 TIMP4-001-141	 1.00E-07	 1.36E-08	 1.00	
MMP2-001	 TIMP4-001-143	 1.00E-07	 2.87E-09	 1.00	
MMP2-001	 TIMP4-001-19	 1.00E-07	 1.66E-09	 1.00	
MMP2-001	 TIMP4-001-206	 1.00E-07	 1.20E-09	 1.00	
MMP2-001	 TIMP4-001-214	 1.00E-07	 1.72E-08	 1.00	
MMP2-001	 TIMP4-001-24	 1.00E-07	 1.55E-08	 1.00	
MMP3-001	 TIMP1-001	 1.00E-07	 1.82E-09	 1.00	
MMP3-001	 TIMP1-001-10	 1.00E-07	 2.33E-10	 1.00	
MMP3-001	 TIMP1-001-102	 1.00E-07	 1.64E-17	 1.00	
MMP3-001	 TIMP1-001-105	 1.00E-07	 1.31E-12	 1.00	
MMP3-001	 TIMP1-001-136	 1.00E-07	 6.59E-09	 1.00	
MMP3-001	 TIMP1-001-171	 1.00E-07	 5.54E-08	 1.00	
MMP3-001	 TIMP1-001-185	 1.00E-07	 1.26E-08	 1.00	
MMP3-001	 TIMP1-001-192	 1.00E-07	 1.56E-09	 1.00	
MMP3-001	 TIMP1-001-203	 1.00E-07	 1.01E-16	 1.00	
MMP3-001	 TIMP1-001-33	 1.00E-07	 1.29E-08	 1.00	
MMP3-001	 TIMP1-001-50	 1.00E-07	 7.15E-10	 1.00	
MMP3-001	 TIMP1-001-51	 1.00E-07	 8.58E-12	 1.00	
MMP3-001	 TIMP1-001-76	 1.00E-07	 7.85E-09	 1.00	
MMP3-001	 TIMP1-001-77	 1.00E-07	 5.86E-10	 1.00	
MMP3-001	 TIMP1-002	 1.00E-07	 8.36E-08	 1.00	
MMP3-001	 TIMP1-002-10	 1.00E-07	 6.52E-09	 1.00	
MMP3-001	 TIMP1-002-102	 1.00E-07	 2.03E-09	 1.00	
MMP3-001	 TIMP1-002-105	 1.00E-07	 6.89E-09	 1.00	
MMP3-001	 TIMP1-002-115	 1.00E-07	 3.27E-08	 1.00	
MMP3-001	 TIMP1-002-116	 1.00E-07	 1.80E-10	 1.00	
MMP3-001	 TIMP1-002-33	 1.00E-07	 3.76E-09	 1.00	
MMP3-001	 TIMP1-002-50	 1.00E-07	 3.41E-09	 1.00	
MMP3-001	 TIMP1-002-51	 1.00E-07	 1.21E-08	 1.00	
MMP3-001	 TIMP1-002-76	 1.00E-07	 9.65E-10	 1.00	
MMP3-001	 TIMP1-002-77	 1.00E-07	 4.16E-09	 1.00	
MMP3-001	 TIMP1-003	 1.00E-07	 5.68E-07	 1.00	
MMP3-001	 TIMP1-003-107	 1.00E-07	 2.02E-08	 1.00	
MMP3-001	 TIMP1-003-12	 1.00E-07	 2.76E-09	 1.00	
MMP3-001	 TIMP1-003-121	 1.00E-07	 3.43E-09	 1.00	
MMP3-001	 TIMP1-003-128	 1.00E-07	 1.79E-08	 1.00	
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MMP3-001	 TIMP1-003-13	 1.00E-07	 4.51E-07	 1.00	
MMP3-001	 TIMP1-003-139	 1.00E-07	 2.10E-09	 1.00	
MMP3-001	 TIMP1-003-38	 1.00E-07	 1.97E-07	 1.00	
MMP3-001	 TIMP1-003-41	 1.00E-07	 7.48E-09	 1.00	
MMP3-001	 TIMP1-003-72	 1.00E-07	 2.21E-10	 1.00	

MMP3-001-45	 TIMP1-001	 1.00E-07	 1.41E-06	 1.00	
MMP3-001-96	 TIMP1-001	 1.00E-07	 5.63E-09	 1.00	
MMP3-001	 TIMP2-001	 1.00E-07	 4.67E-10	 1.00	
MMP3-001	 TIMP2-003	 1.00E-07	 3.48E-10	 1.00	
MMP3-001	 TIMP2-003-130	 1.00E-07	 1.19E-08	 1.00	
MMP3-001	 TIMP2-003-139	 1.00E-07	 1.13E-07	 1.00	
MMP3-001	 TIMP2-008	 1.00E-07	 1.80E-07	 1.00	
MMP3-001	 TIMP2-008-130	 1.00E-07	 4.91E-09	 1.00	
MMP3-001	 TIMP2-008-139	 1.00E-07	 2.50E-08	 1.00	
MMP3-001	 TIMP2-008-42	 1.00E-07	 5.44E-08	 1.00	
MMP3-001	 TIMP2-008-54	 1.00E-07	 3.53E-08	 1.00	
MMP3-001	 TIMP2-008-69	 1.00E-07	 7.43E-09	 1.00	
MMP3-001	 TIMP3-001	 1.00E-07	 2.08E-08	 1.00	
MMP3-001	 TIMP3-001-121	 1.00E-07	 2.99E-07	 1.00	
MMP3-001	 TIMP3-001-142	 1.00E-07	 2.90E-09	 1.00	
MMP3-001	 TIMP3-001-186	 1.00E-07	 7.13E-09	 1.00	
MMP3-001	 TIMP3-001-196	 1.00E-07	 2.00E-04	 1.00	
MMP3-001	 TIMP3-001-22	 1.00E-07	 1.68E-07	 1.00	
MMP3-001	 TIMP3-001-37	 1.00E-07	 2.22E-07	 1.00	

MMP3-001-45	 TIMP3-001	 1.00E-07	 1.31E-03	 1.00	
MMP3-001	 TIMP4-001	 1.00E-07	 1.16E-09	 1.00	
MMP3-001	 TIMP4-001-141	 1.00E-07	 2.78E-11	 1.00	
MMP3-001	 TIMP4-001-214	 1.00E-07	 5.02E-22	 1.00	
MMP3-001	 TIMP4-001-24	 1.00E-07	 2.50E-07	 1.00	
MMP3-001	 TIMP4-001-28	 1.00E-07	 1.80E-05	 1.00	

MMP3-001-45	 TIMP4-001	 1.00E-07	 5.14E-07	 1.00	
MMP9-001	 TIMP1-001	 1.00E-07	 1.00E-07	 	
MMP9-001	 TIMP1-001-10	 1.00E-07	 1.04E-06	 0.97	
MMP9-001	 TIMP1-001-102	 1.00E-07	 1.18E-03	 0.90	
MMP9-001	 TIMP1-001-105	 1.00E-07	 3.90E-03	 0.90	
MMP9-001	 TIMP1-001-136	 1.00E-07	 1.74E-03	 0.90	
MMP9-001	 TIMP1-001-171	 1.00E-07	 5.79E-09	 1.00	
MMP9-001	 TIMP1-001-185	 1.00E-07	 2.01E-04	 0.90	
MMP9-001	 TIMP1-001-192	 1.00E-07	 7.42E-04	 0.90	
MMP9-001	 TIMP1-001-203	 1.00E-07	 2.63E-09	 1.00	
MMP9-001	 TIMP1-001-33	 1.00E-07	 3.78E-09	 1.00	
MMP9-001	 TIMP1-001-50	 1.00E-07	 1.75E-05	 0.91	
MMP9-001	 TIMP1-001-51	 1.00E-07	 2.88E-06	 0.95	
MMP9-001	 TIMP1-001-76	 1.00E-07	 2.56E-04	 0.90	
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MMP9-001	 TIMP1-001-77	 1.00E-07	 3.15E-04	 0.90	
MMP9-001	 TIMP1-002	 1.00E-07	 9.11E-04	 0.90	
MMP9-001	 TIMP1-002-10	 1.00E-07	 7.29E-03	 0.90	
MMP9-001	 TIMP1-002-102	 1.00E-07	 4.17E-05	 0.91	
MMP9-001	 TIMP1-002-105	 1.00E-07	 5.72E-03	 0.90	
MMP9-001	 TIMP1-002-115	 1.00E-07	 1.68E-05	 0.92	
MMP9-001	 TIMP1-002-116	 1.00E-07	 1.58E-03	 0.90	
MMP9-001	 TIMP1-002-33	 1.00E-07	 4.74E-06	 0.94	
MMP9-001	 TIMP1-002-50	 1.00E-07	 1.50E-03	 0.90	
MMP9-001	 TIMP1-002-51	 1.00E-07	 3.29E-08	 1.00	
MMP9-001	 TIMP1-002-76	 1.00E-07	 3.26E-06	 0.95	
MMP9-001	 TIMP1-002-77	 1.00E-07	 6.26E-06	 0.93	
MMP9-001	 TIMP1-003	 1.00E-07	 1.61E-03	 0.90	
MMP9-001	 TIMP1-003-107	 1.00E-07	 7.82E-06	 0.93	
MMP9-001	 TIMP1-003-12	 1.00E-07	 5.39E-05	 0.91	
MMP9-001	 TIMP1-003-121	 1.00E-07	 1.50E-06	 0.97	
MMP9-001	 TIMP1-003-128	 1.00E-07	 9.78E-06	 0.92	
MMP9-001	 TIMP1-003-13	 1.00E-07	 5.39E-08	 1.00	
MMP9-001	 TIMP1-003-139	 1.00E-07	 2.03E-06	 0.96	
MMP9-001	 TIMP1-003-38	 1.00E-07	 2.28E-04	 0.90	
MMP9-001	 TIMP1-003-41	 1.00E-07	 3.74E-05	 0.91	
MMP9-001	 TIMP1-003-72	 1.00E-07	 2.74E-07	 0.99	

MMP9-001-20	 TIMP1-001	 1.00E-07	 3.25E-08	 1.00	
MMP9-001-239	 TIMP1-001	 1.00E-07	 3.36E-06	 0.95	
MMP9-001-279	 TIMP1-001	 1.00E-07	 8.26E-04	 0.90	
MMP9-001-38	 TIMP1-001	 1.00E-07	 2.67E-03	 0.90	
MMP9-001-574	 TIMP1-001	 1.00E-07	 7.39E-07	 0.98	
MMP9-001-668	 TIMP1-001	 1.00E-07	 1.46E-03	 0.90	
MMP9-001	 TIMP2-001	 1.00E-07	 1.00E-07	 	
MMP9-001	 TIMP2-003	 1.00E-07	 1.19E-05	 0.92	
MMP9-001	 TIMP2-003-130	 1.00E-07	 1.63E-04	 0.90	
MMP9-001	 TIMP2-003-139	 1.00E-07	 2.28E-04	 0.90	
MMP9-001	 TIMP2-008	 1.00E-07	 1.19E-05	 0.92	
MMP9-001	 TIMP2-008-130	 1.00E-07	 4.76E-13	 1.00	
MMP9-001	 TIMP2-008-139	 1.00E-07	 2.28E-04	 0.90	
MMP9-001	 TIMP2-008-42	 1.00E-07	 4.25E-02	 0.90	
MMP9-001	 TIMP2-008-54	 1.00E-07	 4.84E-04	 0.90	
MMP9-001	 TIMP2-008-69	 1.00E-07	 1.12E-04	 0.90	

MMP9-001-279	 TIMP2-001	 1.00E-07	 1.06E-07	 1.00	
MMP9-001	 TIMP3-001	 1.00E-07	 1.00E-07	 	
MMP9-001	 TIMP3-001-121	 1.00E-07	 2.75E-04	 0.90	
MMP9-001	 TIMP3-001-142	 1.00E-07	 4.82E-08	 1.00	
MMP9-001	 TIMP3-001-186	 1.00E-07	 3.17E-04	 0.90	
MMP9-001	 TIMP3-001-196	 1.00E-07	 4.46E-04	 0.90	



283	
	

	
	

	

MMP9-001	 TIMP3-001-201	 1.00E-07	 1.51E-04	 0.90	
MMP9-001	 TIMP3-001-22	 1.00E-07	 2.89E-05	 0.91	
MMP9-001	 TIMP3-001-37	 1.00E-07	 1.77E-05	 0.91	

MMP9-001-20	 TIMP3-001	 1.00E-07	 2.49E-08	 1.00	
MMP9-001-239	 TIMP3-001	 1.00E-07	 8.36E-06	 0.93	
MMP9-001-279	 TIMP3-001	 1.00E-07	 8.07E-02	 0.90	
MMP9-001-38	 TIMP3-001	 1.00E-07	 1.64E-03	 0.90	
MMP9-001-574	 TIMP3-001	 1.00E-07	 2.05E-06	 0.96	
MMP9-001-668	 TIMP3-001	 1.00E-07	 4.69E-14	 1.00	
MMP9-001	 TIMP4-001	 1.00E-07	 1.00E-07	 	
MMP9-001	 TIMP4-001-103	 1.00E-07	 5.73E-09	 1.00	
MMP9-001	 TIMP4-001-109	 1.00E-07	 5.99E-09	 1.00	
MMP9-001	 TIMP4-001-112	 1.00E-07	 6.04E-11	 1.00	
MMP9-001	 TIMP4-001-141	 1.00E-07	 6.17E-11	 1.00	
MMP9-001	 TIMP4-001-143	 1.00E-07	 4.01E-10	 1.00	
MMP9-001	 TIMP4-001-19	 1.00E-07	 2.79E-08	 1.00	
MMP9-001	 TIMP4-001-206	 1.00E-07	 9.74E-11	 1.00	
MMP9-001	 TIMP4-001-214	 1.00E-07	 1.64E-11	 1.00	
MMP9-001	 TIMP4-001-24	 1.00E-07	 7.87E-11	 1.00	
MMP9-001	 TIMP4-001-28	 1.00E-07	 2.27E-10	 1.00	

MMP9-001-20	 TIMP4-001	 1.00E-07	 2.05E-11	 1.00	
MMP9-001-239	 TIMP4-001	 1.00E-07	 2.19E-12	 1.00	
MMP9-001-279	 TIMP4-001	 1.00E-07	 2.23E-11	 1.00	
MMP9-001-38	 TIMP4-001	 1.00E-07	 9.43E-12	 1.00	
MMP9-001-574	 TIMP4-001	 1.00E-07	 5.86E-17	 1.00	
MMP9-001-668	 TIMP4-001	 1.00E-07	 6.98E-18	 1.00	

TGFBR1-001	 TGFB1-001	
0.644	

0.00625	
8.1882	

0.644	
0.00625	
8.1882	 	

TGFBR1-001	 TGFB1-001-10	
0.644	

0.00625	
8.1882	

0.1979	
0.0019206	
2.5162	

1.00	

TGFBR1-001	 TGFB1-001-25	
0.644	

0.00625	
8.1882	

8.9657e-07	
8.7012e-09	
1.14e-05	

1.00	

TGFBR1-001	 TGFB1-001-263	
0.644	

0.00625	
8.1882	

0.023398	
0.00022708	

0.2975	
1.00	

TGFBR1-001-17	 TGFB1-001	
0.644	

0.00625	
8.1882	

0.54778	
0.0053162	
6.9648	

1.00	

TGFBR1-001-19	 TGFB1-001	
0.644	

0.00625	
8.1882	

1.0179	
0.009879	
12.9426	

1.00	

TGFBR1-003	 TGFB1-001	
0.644	

0.00625	
8.1882	

1.979	
0.019206	
25.1624	

1.00	
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TGFBR2-001	 TGFB1-001	
0.644	

0.00625	
8.1882	

0.644	
0.00625	
8.1882	 	

TGFBR2-001	 TGFB1-001-10	
0.644	

0.00625	
8.1882	

63.2344	
0.61369	
803.9997	

0.53	

TIMP3-001	 ADAM17-001	

2.2	
2.2	
2.2	
2.2	

2.2	
2.2	
2.2	
2.2	

	

TIMP3-001	 ADAM17-001-202	

2.2	
2.2	
2.2	
2.2	

2.1558e-110	
2.1558e-110	
2.1558e-110	
2.1558e-110	

1.00	

TIMP3-001-121	 ADAM17-001	

2.2	
2.2	
2.2	
2.2	

0.0093233	
0.0093233	
0.0093233	
0.0093233	

1.00	

TIMP3-001-142	 ADAM17-001	

2.2	
2.2	
2.2	
2.2	

0.031802	
0.031802	
0.031802	
0.031802	

1.00	

TIMP3-001-186	 ADAM17-001	

2.2	
2.2	
2.2	
2.2	

17.7622	
17.7622	
17.7622	
17.7622	

1.00	

TIMP3-001-196	 ADAM17-001	

2.2	
2.2	
2.2	
2.2	

0.55645	
0.55645	
0.55645	
0.55645	

1.00	

TIMP3-001-201	 ADAM17-001	

2.2	
2.2	
2.2	
2.2	

1.1608	
1.1608	
1.1608	
1.1608	

1.00	

TIMP3-001-22	 ADAM17-001	

2.2	
2.2	
2.2	
2.2	

722.2794	
722.2794	
722.2794	
722.2794	

1.00	

TIMP3-001-37	 ADAM17-001	

2.2	
2.2	
2.2	
2.2	

0.91022	
0.91022	
0.91022	
0.91022	

1.00	
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