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Abstract 

BACKGROUND: Exposure to the environmental toxicant mercury (Hg) has been associated 

with immune dysregulation, including autoimmune disease, but few human studies have 

examined methylmercury (MeHg) exposure from fish consumption.  

OBJECTIVES: We examined associations between MeHg exposure and biological markers 

of autoimmunity and inflammation while adjusting for long chain polyunsaturated fatty acids 

(LCPUFA). 

METHOD: At age 19 years, hair total Hg (Y19Hg), LCPUFA status, a panel of 13 antinuclear 

antibodies (ANA), total serum immunoglobulins (Ig) IgG, IgA, and IgM and serum markers of 

inflammation (IL-1, IL-2, IL-6, IL-10, C-reactive protein (CRP), IFN-γ, TNF-α) were measured 

in the Seychelles Child Development Study (SCDS) Main Cohort (n=497). Multivariable 

regression models investigated the association between Y19Hg and biomarkers, adjusting 

for prenatal total hair Hg (MatHg) and other relevant covariates, and with and without 

adjustment for LCPUFA.  

RESULTS:  With each 1 ppm increase in Y19Hg (mean 10.23 (SD 6.02) ppm) we observed 

a 4% increased odds in a positive Combined ANA following adjustment for the n6:n3 

LCPUFA ratio (β = 0.036, 95%; CI: 0.001, 0.073). IgM was negatively associated with 

Y19Hg (β = -0.016, 95%CI: -0.016, -0.002) in models adjusted for n-3, n-6 LCPUFA and 

when separately adjusted for the n-6:n-3 LCPUFA ratio. No associations were observed with 

MatHg. Total n-3 LCPUFA status was associated with reduced odds of a positive anti-

ribonuclear protein (RNP) A. The n-3 LCPUFA were negatively associated with IL-6, IL-10, 

CRP, IFN-γ, TNF-α and positively with TNF-α:IL-10. There were positive associations 

between the n-6:n-3 ratio and IL-6, IL-10, CRP, IFN-γ, TNF-α and a negative association 

with TNF-α:IL-10.  

DISCUSSION:  

The Y19Hg exposure was associated with higher ANA and lower IgM albeit only following 

adjustment for the n-3 LCPUFA or the n-6:n-3 LCPUFA ratio. The clinical significance of 

these findings is unclear, but warrant follow up at an older age to determine any relationship 

to the onset of autoimmune disease.  

KEY WORDS: autoimmunity; methylmercury; autoantibody; cytokine; immunoglobulin 



Introduction 

Exposure to the ubiquitous environmental toxicant mercury (Hg) has been associated with 

immune dysregulation including autoimmune disease (Blossom & Gilbert, 2018). It is 

proposed that Hg exposure, in combination with genetic predisposition, may result in 

autoimmune disease development or exacerbation (Silbergeld et al., 2005), albeit nearly all 

this evidence is derived from experimental animal studies with inorganic Hg exposure and 

evidence from human studies is lacking (Crowe et al., 2017; Bjorklund et al., 2017). Humans 

are primarily exposed to organic Hg following consumption of fish, which bio-accumulate 

organic methylmercury (MeHg) from their environment. If Hg is associated with autoimmune 

disease in people, it would be a major public health concern as fish are an important source 

of protein in many populations globally. 

Immunotoxic effects of Hg have been observed in murine models where exposure to Hg 

(either organic or inorganic) results in the expression of autoimmune markers including anti-

nuclear antibodies (ANA), anti-nucleolar antibodies (ANoA) and anti-chromatin (ACA); 

(Crowe et al., 2017; Pollard et al., 2019). In humans, several studies investigating 

occupational Hg exposure in artisanal gold mining communities have reported elevated titres 

of ANA and ANoA along with elevated concentrations of inflammatory markers (Il-1β, TNF-α 

and IFN-γ) (Silva et al., 2004; Alves et al., 2006; Nyland et al., 2011; Motts et al., 2014). 

Others, however, have observed no association between Hg and biomarkers of immune 

dysfunction (Barregard et al., 1997; Ellingsen et al., 2000; Alves et al., 2006; Sánchez 

Rodríguez et al., 2015). Analysis of the U.S. National Health and Nutrition Examination 

Survey (NHANES) data has identified associations, in women, between higher blood Hg 

concentrations and ANA positivity (Somers et al., 2015) as well as between Hg and higher 

concentrations of thyroid autoantibodies (Gallagher and Meliker, 2018). In a high fish 

consuming cohort from the Amazonian region, MeHg exposure was associated with higher 

IL-6, IFN-γ, IL-4 and IL-17 cytokine concentrations (Nyland et al., 2011), but other studies 

have observed no association (Monastero et al., 2017). The majority of research to-date has 

investigated concurrent Hg exposure with one study reporting an inverse association 

between prenatal MeHg exposure at 28 weeks gestation and immune markers (McSorley et 

al., 2018). 

Associations between markers of autoimmunity and MeHg exposure in populations with high 

fish consumption have not been widely investigated.  An examination of prenatal and 

postnatal MeHg exposure and total serum IgG and IgM concentrations in a fish-eating cohort 

from the Faroe Islands reported significant associations with postnatal MeHg exposure at 

age 7 years and both IgG and IgM concentrations (Osuna et al., 2014). Conflicting with this 



finding, no association was observed between concurrent MeHg and markers of 

autoimmunity within a seafood consuming population from Long Island, New York 

(Monastero et al., 2017). Overall, the interpretation of existing research is hampered by 

differences in sources of MeHg exposure, varying sample size and the presence in some 

studies of malaria which affects immunity (Sánchez Rodríguez et al., 2015). Thus, large 

population based studies are required to fully elucidate any potential impact of Hg exposure, 

particularly that of MeHg from fish consumption, in the development of autoimmune disease 

(Pollard et al., 2010). Adding to the complexity, fish are a rich source of the long chain 

polyunsaturated fatty acids (LCPUFA), predominately n-3 LCPUFA, which have anti-

inflammatory properties and are associated with a reduction of circulating inflammatory 

markers (Calder, 2015). Therefore, when investigating immunotoxic effects of MeHg, 

research should also consider the potential beneficial effects of LCPUFA on immune 

function.  

The fish-eating cohort of 19 year olds from the Seychelles Child Development Study (SCDS) 

have an average consumption of 7 fish meals per week and a MeHg exposure 

approximately 10 times the levels in the United States (van Wijngaarden et al., 2017). Using 

this cohort, we investigated whether MeHg exposure from fish consumption (prenatal and 

concurrent exposure) was associated with markers of autoimmunity and inflammation. It was 

hypothesised that both prenatal and concurrent MeHg exposure would be associated with 

markers of autoimmunity and inflammation and that n-3 LCPUFA would mitigate these 

associations.  

 

Methods 

Study design 

The SCDS enrolled 779 pregnant women during 1989-1990 as the ‘Main cohort’ to 

investigate associations between prenatal MeHg exposure and child neurodevelopment. At 

the 6-month time point, data for 39 mother-child pairs were excluded owing to mother’s 

illness during pregnancy, insufficient maternal hair to recapitulate prenatal MeHg exposure, 

twin births or children born with conditions known to affect neurodevelopment (e.g. 

prematurity, severe perinatal illness, closed head trauma with loss of consciousness, 

encephalitis or meningitis). Subsequent exclusions through age 19 years for epilepsy, head 

trauma or meningitis resulted in the removal of 56 additional participants leaving a total of 

684 participants at 19 years of age for analysis. 



A total of 530 serum samples from the participants at 19 years were collected and stored at -

80°. Data for 497 participants’ immune markers were  used in the present study owing to 

inadequate serum volume for analysis in 29 samples and 4 specimens of immune markers 

could not be matched with study ID numbers. The study protocol was reviewed and 

approved by the Seychelles Ethics Board and the Research Subjects Review Board at the 

University of Rochester.  

 

Immunology testing 

Stored serum samples were thawed and analysed at Ulster University. Inflammatory 

cytokines were measured using the electrochemiluminescence based Meso Scale Discovery 

(MSD) multiplex assay (Meso Scale Diagnostics, LLC.) and included interleukin (IL)-1β, IL-2, 

IL-6, IL-10, interferon-gamma (IFN-γ) and tumour necrosis factor-alpha (TNF-α). All 

cytokines are reported in pg/ml. Inter and intra assay cytokine CVs were IL-1β (28.61%; 

<28%), IL-2 (30.67%; <24%), IL-6 (25.81%; <23%) , IL-10 (23.1%; <33%), IFN-γ 

(21.87%;<32%) and TNF-α (12.11%; <20%). CRP (mg/L), a marker of acute inflammation, 

was measured by an ultra‐sensitive diagnostic kit (Werfen Ltd. England) using the iLab 650 

Clinical Chemistry Analyzer and had an inter-assay CV of 16.37% and an intra assay CV of 

<12%. Cytokine measurements below the lower limited of detection (LLOD), as determined 

by the standard curve for each cytokine individually, was assigned a value of LOD/√2 for 

statistical analysis. Serum immunoglobulin-A (IgA), IgG and IgM (g/L) were measured by 

ELISA (Thermo Fisher, UK) at the Immunology Laboratory, Royal Victoria Hospital Belfast.  

ANA status was screened for using the BioPlex ANA fully automated multiplex system 

(BioRad, UK) which has good concordance with comparative methods (Sohn & Khan, 2014). 

Screening of the samples by indirect immunofluorescence characterized the presence or 

absence of specific antinuclear antibodies (ANA). All samples were analysed for the 

quantitative detection of anti-dsDNA and the semi-quantification in antibody of anti-ribosomal 

P, anti-chromatin, anti-Ro52, anti-Ro60, anti-La, anti-Sm, anti Sm/RNP, anti-RNP A, anti-

RNP 68, anti-Scl-70, anti-Jo-1 and anti-centromere B. The ANA screen is reported as 

negative if the results for all 13 autoantibodies are negative. Conversely, if any of the 13 

autoantibodies is positive, we report a positive ANA screen and the Antibody Index (AI) of 

individual antibodies. The AI is an arbitrary unit defined by the manufacturer when no official 

standards are available. Anti-dsDNA antibody is calibrated against World Health 

Organization Wo/80 standard and expressed in terms of IU/mL with values ≥4 IU/mL 

reported as positive. All other antibody results are semi-quantitative, expressed in terms of 

AI, and values ≥1.0 AI are taken as positive.  



Methylmercury exposure 

Prenatal MeHg exposure was determined using maternal hair samples collected either 

during pregnancy, at delivery, or at the 6-month enrolment (Myers et al., 1995). MatHg was 

measured as total Hg from these hair samples by cold vapour atomic absorption 

spectroscopy where the closest centimetre to the scalp represents the most recent exposure 

of one month. Concurrent postnatal exposure at 19 years of age (Y19Hg) was measured 

using the same approach in a 1 cm length of each participant's hair taken at time of testing. 

All Hg results are presented as MeHg are total Hg (THg) based on the assumption that 

~80% of THg in hair is MeHg within the Seychelles population (Cernichiaria et al., 1995).  

Fatty acid analysis 

Plasma phospholipids were measured at 19 years as outlined previously (van Wijngaarden 

et al., 2013). In brief, total lipids were extracted from plasma samples, using a modified 

method of Folch et al., (1957). A solid phase extraction using an NH2 cartridge system 

conditioned with chloroform and followed by a series of solvent elution’s was used to isolate 

phospholipids. Absolute amounts of LCPUFA were determined using gas chromatography 

mass spectrometry (GCMS) as described previously (Bonham et al., 2008) and included 

linoleic acid (LA, C18:2 n-6), α-linolenic acid (ALA, C18:3 n-3), arachidonic acid (AA, C20:4 

n-6), eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3). 

Results were presented as mg/mL to indicate physiologic quantities. Total n-6 (mg/ml) was 

calculated by the addition of LA and AA concentrations, and ALA, EPA and DHA were 

summed to calculate total n-3 (mg/ml). The n-6:n-3 ratio was calculated.  

Statistical analysis 

Descriptive statistics summarised the distributions of MeHg, serum cytokines, 

immunoglobulins, autoantibodies and covariates. Cytokine and immunoglobulin 

measurements were log transformed for the linear regression models as these measures 

were extremely right skewed. Clinically elevated concentrations of individual ANA markers 

were uncommon, perhaps because of the relatively young age of the 19-year study 

participants. For 11 of the 13 ANA markers, >95% of the ANA values were below the LLOD. 

Therefore, these ANA variables were not analyzed as individual markers.  Instead, we 

designed a combined dichotomous ANA variable called ‘Combined ANA’ that was calculated 

based on being within or above reference range for one of more of the 13 measured ANA 

markers. Some 56% of the subjects met this criterion. In addition, because of their larger 

number of measurable values, Anti-dsDNA and Anti-RNP A were analyzed as both 

dichotomous (<LOD or LOD+) and categorical (<LOD, LOD-ref, >ref) individual markers.   



Associations between serum cytokines, immunoglobulins, autoantibodies and pre- and 

postnatal MeHg exposure were examined through linear (cytokines and immunoglobulins) 

and logistic (autoantibodies) regression models. Covariates, known or suspected to be 

associated with (subclinical) autoimmunity or inflammation, included in the analysis were 

maternal age, child sex, socioeconomic status (SES) and obesity. Maternal socioeconomic 

status was measured using the Hollingshead Social Status Index modified for the use of 

employment codes relevant to the Republic of Seychelles (Davidson et al., 1998; Kobrosly et 

al., 2011). Models that included MatHg adjusted for maternal age at birth, maternal 

socioeconomic status (SES) and child sex. Models that included postnatal Y19Hg adjusted 

for child sex and waist circumference (WC) at 19 years as a proxy for abdominal obesity. 

Consistent with previous cross-sectional analyses of postnatal exposure in the SCDS (van 

Wijngaarden et al., 2013), postnatal Hg models also adjusted for prenatal MeHg exposure 

measured in maternal hair. We additionally controlled for 19-year LCPUFA status in 

separate models to evaluate the possibility that adverse associations may be missed or 

underestimated due to uncontrolled confounding by the immunomodulatory effect of 

LCPUFA. In separate models we also included interactions of child sex with both MatHg and 

Y19Hg to assess whether males or females are more susceptible to the effects of MeHg 

exposure. Following analysis, we found no evidence for interactions; therefore, we report 

results from the corresponding models without this interaction.  

All statistical analyses were performed using R, Version 3.5.1. Statistical significance in all 

analyses was determined using a two-sided approach α=0.05. Regression model 

assumptions were checked using standard methods (Weisberg 2005). If violated, we 

consider transforming the outcome or fitting nonlinear additive models (Hastie and Tibshirani 

1990). Results were evaluated for extreme outliers and unduly influential points. All values 

presented in tables are log transformed.  

 

Results  

Year 19 demographic characteristics for participants are displayed in Table 1. Immune 

markers for a total of 497 mother-child pairs were analysed, consisting of 268 females and 

229 males. Mean (SD) MatHg and Y19Hg was 6.84 (4.55) and 10.23 (6.02) ppm, 

respectively. An average (SD) of 7.22 (3.66) fish meals per week were consumed by 

participants who had a mean (SD) n-6:n-3 LCPUFA ratio of 3.81 (1.97). 

 

MeHg, LCPUFA, and anti-nuclear antibodies 



Regression analyses for covariate adjusted associations between MeHg exposure and 

immunologic markers are presented in Table 2. The Y19Hg was significantly associated with 

a higher Combined ANA (β = 0.036, 95%; CI: 0.001, 0.073) where for each 1 ppm increase 

in Y19Hg we observed a 4% increased odds for a positive Combined ANA following 

adjustment for the n-6:n-3 LCPUFA ratio. MatHg was not significantly associated with a 

change in odds for a positive Combined ANA. Separately, a significant association was 

observed between the anti-RNP A and n-3 LCPUFA (Table 3). No significant association 

was found between n-6 LCPUFA and ANA or any immune marker. 

 

MeHg, LCPUFA, and immunoglobulins (Ig) 

Y19Hg was negatively associated with IgM in the models adjusted for n-3 LCPUFA (β = -

0.009, 95%CI: -0.016, -0.002) and when separately adjusted for the n6:n3 LCPUFA ratio (β 

= -0.009, 95%CI: -0.016, -0.001) (Table 2). MatHg was not associated with any Ig. None of 

the MeHg metrics were associated with IgA. No significant associations were found with n-3 

LCPUFA, n-6 LCPUFA and the n6:n3 LCPUFA ratio and IgG.  

 

MeHg, LCPUFA, and cytokines and CRP 

Significant positive associations were observed between Y19Hg and CRP in the models that 

adjusted for n-3 and n-6 LCPUFA (β = 0.031, 95%CI:0.007, 0.054) and the n-3:n-6 ratio (β = 

0.031, 95%CI:0.007, 0.054) (Table 2). Y19Hg was significantly associated with IL-10 in the 

model that adjusted for n-3 and n-6 LCPUFA (β = 0.016, 95%CI:0.002, 0.030) and in the 

model which adjusted for the n-3:n-6 ratio (β = 0.016, 95%CI:0.002, 0.031). A statistically 

significant association was observed between Y19Hg and the TNFα:IL-10 ratio in the model 

adjusted for n-3 and n-6 LCPUFA (β = -0.016, 95%CI: -0.027, -0.005) and in the model 

which adjusted for the n-3:n-6 LCPUFA ratio (β = -0.016, 95%CI: -0.027, -0.005). MatHg was 

not associated with any of the measured cytokines or CRP. 

There were significant negative associations between n-3 LCPUFA and CRP, IFN-γ, TNF-α, 

IL-6 and IL-10 (Table 3). A positive association was observed between n-3 LCPUFA and the 

TNFα:IL-10 ratio. Statistically significant positive associations were found between the n-6:n-

3 ratio and CRP, IFN-γ, TNF-α, IL-6 and IL-10 and a significant negative association with the 

TNFα:IL-10 ratio. No significant associations were found between n-6 PUFA and any of the 

cytokines.  

 



Covariates  

Females had significantly greater levels of Combined ANA, anti-dsDNA, CRP and IgM in all 

models. Female had significantly lower levels of TNF-α in all models. Higher levels of 

maternal SES was significantly associated with increased IgA concentrations without 

adjustment for LCPUFA (β = 0.003, p = 0.006). Larger values of Year 19 WC was 

significantly associated with positive IL-6 concentrations (β = 0.022, p < 0.0001) and positive 

CRP concentrations (β = 0.047, p < 0.0001) in all models.   

 

Discussion 

Evidence from animal models suggests a potential link between Hg exposure and the 

pathogenesis of autoimmune disease. Less, however, is known in human populations 

especially with respect to MeHg exposure through fish consumption. In this high fish-eating 

population from the SCDS, we found that current MeHg exposure at 19-year of age was 

associated with a novel measure of ANA (Combined ANA) but only following adjustment for 

the n-6:n-3 LCPUFA ratio. Furthermore, Y19Hg was associated with lower IgM, higher CRP, 

higher IL10 and a lower TNFα:IL10 ratio. Prenatal Hg exposure was not associated with any 

specific marker of ANA, cytokines or Ig. Although current MeHg exposure at 19 years was 

associated with higher odds of having a higher ANA combined score the clinical significance 

of these findings is unclear and further research is warranted to determine if these 

associations precede autoimmune disease development. Total n-3 LCPUFA was associated 

with lower anti-RNP A, ANA and overall a more anti-inflammatory profile supporting the well-

known benefits of n-3 LCPUFA in regulating the immune system (Calder et al., 2015).  

In this cohort, hair Hg concentrations were on average 10 times those reported from the 

USA (Davidson et al., 1998; Myers et al., 2003; van Wijngaarden et al., 2017). At 19 years, 

this cohort reported an average consumption of 7 fish meals per week which correlated with 

Hg supporting the evidence that fish consumption is a significant predictor of MeHg 

exposure in humans (Schober et al., 2003; Clark et al., 2007; Bjermo et al., 2013; Somers et 

al., 2015). The higher exposure of Hg in the 19 year olds may, in part, explain why the 

associations between MeHg and ANA were only evident at this time point following 

adjustment for the n6:n3 LCPUFA ratio. It is also plausible that the measure of MeHg 

exposure at 19 years reflects better than MatHg exposure what is happening systemically in 

the blood sample taken at the same timepoint.  

Previous research by our group has emphasised the importance of n-3 LCPUFA, obtained 

primarily in the diet through fish consumption, in mitigating any potential effects of MeHg 



(Strain et al., 2015; Strain et al., 2008). The National Health and Nutrition Examination 

Survey (NHANES) investigated young females with hair Hg of 0.22ppm and blood Hg of 

0.944 ug/L and, similar to our results, reported associations between ANA positivity and a 

high titre of ANA positively in models which also adjusted for n-3 LCPUFA (Somers et al., 

2015). Associations between Hg exposure and ANA have been reported in gold mining 

communities (Aves et al., 2006, Gardner et al., 2010) and to a lesser extent in a high fish-

eating riverine community in Amazonian Brazil (Silva et al., 2004, Nyland et al., 2011). 

Within these studies, malaria infections are suggested to add to the strength of the 

association between Hg exposure and ANA. Furthermore, exposure to Hg is associated with 

dysregulation of inflammatory cytokines and cellular oxidative stress proteins which authors 

suggest contributes to the immunotoxicity of Hg (Motts et al., 2014).  Contrary to these 

findings, analysis in an American Sioux Tribe, who regularly consume fish from a river 

known to be ubiquitously contaminated with Hg showed that some 30% of individuals were 

positive for ANA, however there was no overall association between blood Hg values and 

ANA (Ong et al., 2014). Within their analysis these workers did not adjust for n-3 LCPUFA 

which may have negatively confounded any associations with Hg (Budtz-Jorgensen et al., 

2007). Similarity, in a gold mining population in the Andes, Columbia, no difference in ANA 

status was observed between those exposed to Hg compared to those not exposed 

(Sanchez-Rodriguez et al., 2015). Whilst they did adjust for estimated Hg intake from fish 

consumption it would have been interesting to see if adjustment for biological status of n-3 

LCPUFA would have revealed an association given that there was a higher consumption of 

fish in those exposed to Hg compared to the non-exposed group. A pilot study of a fish-

eating cohort from Long Island, USA also found no association between Hg and the 

expression of genes known to be involved in autoimmunity; however, they reported, owing to 

small sample size, that they did not control for n-3 LCPUFA in the analysis. Taken together, 

those studies that have investigated MeHg exposure from fish consumption, and have not 

adjusted for n-3 LCPUFA in the statistical models, have found no associations with markers 

of autoimmunity whereas those that have controlled for n-3 LCPUFA have reported 

associations, albeit the magnitude of effect appears to be related to the source of Hg (gold 

mining or from fish consumption) as well as other confounders including infections. The 

Seychelles population is not affected by malaria and has a primary route of MeHg exposure 

through fish consumption; therefore, the findings reported here support the existing literature 

that the benefits of LCPUFA from fish consumption outweigh any adverse effect of MeHg on 

health outcomes including autoimmunity.  

The focus of this paper is MeHg exposure through fish consumption. Nevertheless, it is 

important to recognise that research to date, in murine models, has shown a stronger 



association between inorganic Hg exposure and the development of autoimmune type 

responses (Crowe et al., 2018).  Differences in intracellular diffusion and biodistribution of 

the two forms of Hg may explain why inorganic Hg is more strongly associated with the 

development of autoimmunity (Bjorklund et al., 2017; Pollard et al., 2019). MeHg is proposed 

to have a delayed and less inflammatory response without the development of immune 

complexes whereas inorganic Hg is associated with renal damage (Crowe et al., 2017).  

The exact mechanisms involved in Hg-associated autoimmunity remains elusive with some 

suggestions that Hg may contribute to the stimulation and survival of autoreactive immune 

cells due to its ability to disrupt self-antigen presentation, functional B-cell signalling, 

effective class switching and the deletion of autoreactive immune cell clones (Crowe et al., 

2017; Khan & Wang,  2018; Pollard et al, 2018). Hg may also contribute to the stimulation of 

an autoimmune response due to its ability to simulate the innate and adaptive response 

(Pollard et al, 2018). One potential mechanism by which Hg exposure could lead to 

autoimmunity is through Hg induced tissue damage resulting in the release of damage 

associated molecular patterns (DAMPs) and/or modified DAMPs with the subsequent 

activation of a local innate immune response alongside the activation of autoreactive B & T 

cells in the lymph node to illicit an autoimmune adaptive response (Pollard et al., 2018). Hg 

may also contribute to autoreactive B cell clone survival as it has been shown to disrupt B 

cell receptor signalling in immature B cells by targeting the tyrosine kinase protein, Lyn (Gill 

et al., 2017). Furthermore, disruption of BCR signalling mechanisms in immature B cells may 

disrupt negative selection of self-reactive clones and Ig class switching resulting in the loss 

of self-tolerance and the production of autoreactive B cells (Gill et al., 2017). 

 
In the current study, higher Y19Hg was significantly associated with lower IgM which may 

suggest an alteration in class switching. IgM is the first antibody to respond to an antigen or 

self-antigen and is involved in enhanced antibody response and activation of the 

complement cascade resulting in the inflammatory response. IgM plays a regulatory role in 

subsequent immune response development, thereby accelerating the production of high-

affinity IgG. Lower IgM has been associated with decreased T helper activity, increased 

isotype-specific suppressor T cell activity, and intrinsic B cell defects (Louis & Gupta, 2014). 

The association between lower IgM and higher Hg in this study could be indicative of a 

dysfunctional B cell activity frequently reported with exposure to Hg. Reduced concentrations 

of IgM have been associated with clinical disorders, including autoimmune diseases such as 

celiac disease and systemic lupus erythematosus (Manson et al., 2005; Yel et al., 2009). 

Class switching can be influenced by the cytokines available in the inflammatory milieu of 

the B-cell and the noted increased IL-10 in the Y19Hg cohort could potentially contribute to 



increased class switching from IgM to other Ig subtypes (Tangye et al. 2002). Y19Hg was 

found to be significantly associated with higher CRP, IL-10 and a lower TNFα:IL-10. In 

normal healthy adults, such as this cohort, liver production of the acute phase protein CRP 

forms part of the innate immune response, for example Hg induced DAMPs (Pollard et al, 

2018), which would be accompanied by a regulatory anti-inflammatory response via IL-10 

induction and thereby suppressing TNF-α. IL-10 is associated with non-cell mediated 

immunity where IL-10 functions as a potent B cell stimulator that enhances activation, 

proliferation, and differentiation of B cells and may have a role in autoimmune disease 

through opposing the cellular mediated inflammatory Th17 response (Jorg et al., 2016). 

There is some evidence indicating that the anti-inflammatory actions of IL-10 are defective in 

autoimmune conditions with a noted increased IL-10 concentrations alongside reduced IL-10 

receptor expression (Tournoy et al., 2000; Wang et al., 2017). In autoimmunity, elevated IL-

10 has the potential to result in the persistent activation of autoreactive B cells and therefore 

exacerbate autoimmune disease where the normal immunoregulatory function of IL-10 is 

defective (Peng et al., 2013).  

A recent examination of the Nutrition Cohort 2 (NC2) from the SCDS found that increasing 

MeHg was associated with decreasing Th1:Th2 (McSorley et al., 2018). Hg modulation of 

cytokine and antibody responses may affect an individual’s susceptibility to autoimmune type 

disease and also significantly alter host-pathogen interactions increasing susceptibility to 

infectious disease (Gardner et al., 2010). Interestingly, at 19 years the n-3 LCPUFA were 

found to be associated with decreased CRP, INF-γ, TNFα, IL6, IL10 and with a higher 

TNFα:IL-10 ratio suggesting a regulatory effect on the immune system. Therefore, it is 

speculated where individuals are exposed to MeHg from fish consumption, the co-

consumption of n-3 LCPUFA will prevent chronic inflammation and associated disease.  A 

large observation study in Italy also reported that lower n-3 PUFA was associated with 

higher CRP and that higher n-3 PUFA was associated with lower IL-6, TNF-α and CRP 

(Ferrucci et al., 2006). These results are supported by previous studies that have shown n-3 

LCPUFA to have anti-inflammatory properties associated with reduced biomarkers of 

inflammation (Rangel-Huerta et al., 2012, Pischon et al., 2003; Ferrucci et al., 2006; Calder 

2015). Furthermore, interventions with n-3 LCPUFA have been shown to reduce disease 

activity and disease progression in a number of inflammatory conditions including 

autoimmune disease (Miles & Calder, 2012, Calder, 2013).  

A strength of this research is the sizeable cohort who are high consumers of fish, have a 

wide range of hair MeHg (0.54 to 52.08 ppm) and a good status of n-3 LCPUFA as indicated 

by the low n6:n3 ratio. This longitudinal cohort has a low dropout rate and is well 

characterised across numerous timepoints including prenatally. The methods used in this 



study to analyse MeHg exposure, PUFA status and markers of autoimmunity are considered 

to be highly sensitive in order to give the most precise results. Limitations of this study 

include its cross-sectional analysis and like all observational epidemiological studies no 

cause and effect can be determined. The analyses of this study focused on MeHg exposure 

and within the Seychelles it is believed that some 80% of hair THg is MeHg (Davidson et al., 

2004); however, this may vary among other populations (Ou et al., 2014). Future studies 

should consider speciation of hair Hg or the use of Hg isotope ratios in hair in addition to 

total Hg concentrations to better assess exposure from fish derived MeHg (Sherman et al., 

2015). Genetic differences within individuals with respect to susceptibility to mercury-induced 

immune dysfunction (Gardner et al., 2010) may explain differences in ANA concentrations 

within this and other cohorts. It is also important to remember that although ANA are used in 

the diagnosis and management of autoimmune disease their identification is not always 

associated with clinical disease and interpretation must be cautious. It would be important to 

also consider additional ANAs which have been previously linked with Hg exposure such as 

anti-fibrillarin autoantibodies and anti-glomerular basement membrane (Yang et al., 2001). 

Furthermore, blood samples were stored for circa 10 years before analyses which could 

affect cytokine measurements (Zhou et al., 2010) and in part may explain the large number 

below the LOD and thereby reducing the percentage of positivity.  

In summary, MeHg exposure at 19 years was associated with higher ANA and lower IgM but 

only following adjustment for LCPUFA which may suggest immune dysregulation. Total n-3 

LCPUFA was associated with lower markers of inflammation. This study has global 

relevance given the importance of fish consumption as a source of protein and nutrition and 

that the global consumption of fish has reached an all-time high (FAO, 2018). Nevertheless, 

the clinical significance of these findings is unclear and further research is warranted to 

determine if these associations precede autoimmune disease development.  
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Table 1: Participant characteristics (n=497) 

  n Mean SD Range  

Male:female 229:268 
   

Waist circumference (cm) 490 75.86 10.48 52-118.20 

Maternal hair MeHg (ppm) 497 6.84 4.55    0.54-26.73 

Y19 hair MeHg (ppm) 448 10.23 6.02 0.42-52.08 
Weighted average hair MeHg 
(ppm) 

368 7.46 2.82 2.28-20.32 

AntiCombined ANA (% >LOD) 473 56 
  

IgA (g/L) 471 1.84 0.61 0.37-3.88 

IgG (g/L) 471 13.19 2.46 7.52-23.08 

IgM (g/L) 471 1.23 0.62 0.26-4.48 

Fish consumption (meals/week) 217 7.22 3.66 0-29 

n-3 LCPUFA (mg/ml) 491 0.04 0.02 0.01-0.11 

n-6 LCPUFA (mg/ml) 491 0.15 0.04 0.02-0.55 

n-6:n-3 LCPUFA 491 3.81 1.97 0.96-17.73 

MeHg, methylmercury; Y19, year 19; ppm, parts per million; ANA, antinuclear antibody; 
LCPUFA, long chain polyunsaturated fatty acids 
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Table 2. Main effect models reporting covariate-adjusted associations between methylmercury (MeHg) exposure and 
antinuclear antibodies (ANA) and immunoglubulins (Ig) and inflammatory markers with and without adjustment for long 
chain polyunsaturated fatty acids (LCPUFA) 

  
  

MatHg Y19Hg 

ANA 
combined1 

Unadjusted  0.010 (�0.031,  0.051) p=0.637 
 

  Adjusted for n-3 LCPUFA, n-6 
LCPUFA 

 0.017 (�0.028,  0.062) p=0.472 0.036 ( 0.001,  0.073) p=0.051  

  Adjusted for n-3:n-6 LCPUFA  0.019 (�0.025,  0.064) p=0.395 0.036 ( 0.001,  0.073) p=0.049 

Anti-dsDNA Unadjusted �0.002 (�0.045,  0.039) p=0.909  

  
Adjusted for n-3 LCPUFA, n-6 
LCPUFA 

 0.007 (�0.039,  0.053) p=0.750 0.010 (�0.026,  0.046) p=0.565  

  Adjusted for n-3:n-6 LCPUFA  0.005 (�0.041,  0.050) p=0.826 0.010 (�0.026,  0.046) p=0.570  

Anti-dsDNA2 Unadjusted 0.002 (‐0.030, 0.034) p=0.908 
 

  
Adjusted for n-3 LCPUFA, n-6 
LCPUFA ‐0.004 (‐0.040, 0.031) p=0.810 ‐0.010 (‐0.037, 0.017) p=0.467 

  Adjusted for n-3:n-6 LCPUFA ‐0.002 (‐0.037, 0.033) p=0.905 ‐0.010 (‐0.037, 0.017) p=0.472 

Anti-RNP A Unadjusted  0.001 (�0.045,  0.046) p=0.950  

  
Adjusted for n-3 LCPUFA, n-6 
LCPUFA 

�0.001 (�0.052,  0.048) p=0.969 
�0.002 (�0.043,  0.036) p=0.921 

  Adjusted for n-3:n-6 LCPUFA  0.009 (�0.041,  0.057) p=0.733 �0.001 (�0.041,  0.037) p=0.960  

Anti-RNP A2 Unadjusted ‐0.054 (‐0.806, 0.699) p=0.888 
 

  
Adjusted for n-3 LCPUFA, n-6 
LCPUFA ‐0.015 (‐0.827, 0.797) p=0.971 ‐0.003 (‐0.625, 0.619) p=0.993 

  Adjusted for n-3:n-6 LCPUFA ‐0.154 (‐0.960, 0.652) p=0.708 ‐0.014 (‐0.639, 0.611) p=0.964 

IgG Unadjusted �0.001 (�0.005,  0.002) p=0.435 
 

  
Adjusted for n-3 LCPUFA, n-6 
LCPUFA 

�0.003 (�0.007,  0.001) p=0.162 �0.001 (�0.004,  0.002) p=0.609  
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  Adjusted for n-3:n-6 LCPUFA �0.002 (�0.006,  0.002) p=0.261 �0.001 (�0.004,  0.002) p=0.639  

IgM Unadjusted  0.003 (�0.006,  0.012) p=0.459 
 

  Adjusted for n-3 LCPUFA, n-6 
LCPUFA 

 0.002 (�0.008,  0.011) p=0.714 �0.009 (�0.016, �0.002) 
p=0.016 

  Adjusted for n-3:n-6 LCPUFA  0.003 (�0.007,  0.012) p=0.557 �0.009 (�0.016, �0.001) 
p=0.018 

IgA Unadjusted  0.004 (�0.003,  0.011) p=0.274  
  Adjusted for n-3 LCPUFA, n-6 

LCPUFA 
 0.004 (�0.004,  0.011) p=0.356 �0.002 (�0.008,  0.004) p=0.569  

  Adjusted for n-3:n-6 LCPUFA  0.004 (�0.004,  0.011) p=0.342 �0.002 (�0.008,  0.004) p=0.562  
Il-1 beta Unadjusted ‐0.002 (‐0.007,  0.002) p=0.321 

 
  Adjusted for n‐3 LCPUFA, n‐6 LCPUFA ‐0.003 (‐0.008,  0.002) p=0.241 0.002 (‐0.002,  0.006) p=0.307  

  Adjusted for n‐3:n‐6 LCPUFA ‐0.003 (‐0.008,  0.002) p=0.283 0.002 (‐0.002,  0.006) p=0.303  

IL-2 Unadjusted ‐0.000 (‐0.003,  0.003) p=0.951  

  Adjusted for n‐3 LCPUFA, n‐6 LCPUFA ‐0.000 (‐0.004,  0.003) p=0.865 ‐0.000 (‐0.003,  0.003) p=0.994  

  Adjusted for n‐3:n‐6 LCPUFA ‐0.000 (‐0.004,  0.003) p=0.938 0.000 (‐0.003,  0.003) p=0.985  

IL-6 Unadjusted  0.014 (‐0.007,  0.036) p=0.199  

  Adjusted for n‐3 LCPUFA, n‐6 LCPUFA ‐0.000 (‐0.023,  0.022) p=0.970 0.007 (‐0.010,  0.025) p=0.411  

  Adjusted for n‐3:n‐6 LCPUFA  0.008 (‐0.015,  0.031) p=0.485 0.007 (‐0.010,  0.025) p=0.412  

IL-10 Unadjusted  0.011 (‐0.006,  0.028) p=0.200 
 

  Adjusted for n‐3 LCPUFA, n‐6 LCPUFA  0.001 (‐0.018,  0.019) p=0.937 0.016 ( 0.002,  0.030) p=0.027 

  Adjusted for n‐3:n‐6 LCPUFA  0.006 (‐0.012,  0.025) p=0.514 0.016 ( 0.002,  0.031) p=0.028  

INF-γ Unadjusted  0.001 (‐0.018,  0.020) p=0.902 
 

  Adjusted for n‐3 LCPUFA, n‐6 LCPUFA ‐0.008 (‐0.029,  0.013) p=0.443 0.013 (‐0.004,  0.029) p=0.125 

  Adjusted for n‐3:n‐6 LCPUFA ‐0.002 (‐0.023,  0.020) p=0.888 0.013 (‐0.003,  0.030) p=0.118 

TNF-α Unadjusted ‐0.000 (‐0.008,  0.008) p=0.995  

  Adjusted for n‐3 LCPUFA, n‐6 LCPUFA ‐0.005 (‐0.014,  0.004) p=0.279 0.000 (‐0.007,  0.007) p=0.958  

  Adjusted for n‐3:n‐6 LCPUFA ‐0.003 (‐0.012,  0.006) p=0.555 0.000 (‐0.007,  0.007) p=0.947  

CRP Unadjusted ‐0.009 (‐0.038,  0.021) p=0.564  

  Adjusted for n‐3 LCPUFA, n‐6 LCPUFA ‐0.014 (‐0.044,  0.017) p=0.377 0.031 ( 0.007,  0.054) p=0.011 
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  Adjusted for n‐3:n‐6 LCPUFA ‐0.010 (‐0.040,  0.020) p=0.517 0.031 ( 0.007,  0.054) p=0.011 

TNH-α: IL10 
ratio 

Unadjusted 
‐0.011 (‐0.024,  0.002) p=0.091 

 

  Adjusted for n‐3 LCPUFA, n‐6 LCPUFA ‐0.006 (‐0.020,  0.009) p=0.436 ‐0.016 (‐0.027, ‐0.005) p=0.005 

  Adjusted for n‐3:n‐6 LCPUFA ‐0.009 (‐0.023,  0.005) p=0.223 ‐0.016 (‐0.027, ‐0.005) p=0.005 

Data presented as odds ration (95% confidence interval) p value. All values are log transformed.  

MatHg, prenatal methylmercury exposure; Y19Hg, year 19 concurrent MeHg exposure 

Unadjusted: controlled for sex of child, maternal SES, maternal age and MatHg.   
Adjusted for n-3 LCPUFA, n-6 LCPUFA: controlled for sex of child, waist circumference (WC),  MatHg and Y19Hg.  

Adjusted for n-6:n-3 LCPUFA: controlled for sex of child, WC, MatHg and Y19Hg.   
1ANA combined: within or above reference range for any of the 13 measured ANA 2 Anti-dsDNA and anti-RNP A were analyzed as dichotomous 
(<LOD or LOD+)  

ANA; antinuclear antibody, dsDNA; double stranded DNA, RNP A; ribonuclear protein A,  Ig; immuoglubulin, IL; interleukin, CRP; C reactive 
protein, INF-γ; interferon gamma,  TNF-α; tumour necrosis factor alpha 
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Table 3. Associations between n-3  long chain polyunsaturated fatty acids (LCPUFA), n-6 LCPUFA and the n-6:n-3 
LCPUFA ratio with immune markers controlling for maternal methylmercury (MatHg). 

  n-3 PUFA n-6 PUFA n6:n3 ratio 

ANA combined1 �1.148 (�15.030, 12.714) p=0.871 �2.380 (�7.166, 2.128) p=0.311 �0.021 (�0.125, 0.083) p=0.690 

Anti dsDNA 9.343 (�4.888, 23.685) p=0.198 �1.019 (�5.966, 3.637) p=0.676 �0.059 (�0.175, 0.049) p=0.299 

Anti RNP A �20.355 (�36.893, �4.336) p=0.014 �1.442 (�6.652, 3.393) p=0.571 0.075 (�0.035, 0.185) p=0.173 

CRP �13.805 (�23.155, �4.456) p=0.004 0.451 (�2.627, 3.529) p=0.774 0.091 ( 0.022, 0.161) p=0.010 
INF-γ �14.654 (�21.098, �8.211) p=0.000 �1.559 (�3.680, 0.563) p=0.149 0.054 ( 0.005, 0.103) p=0.030 
IgA �0.221 (�2.586, 2.145) p=0.855 �0.058 (�0.824, 0.708) p=0.882 0.003 (�0.015, 0.020) p=0.753 

IgG �0.805 (�2.031, 0.420) p=0.197 �0.299 (�0.696, 0.097) p=0.139 0.000 (�0.009, 0.009) p=0.963 

IgM �1.215 (�4.156, 1.726) p=0.417 �0.423 (�1.376, 0.529) p=0.383 �0.007 (�0.029, 0.015) p=0.533 
IL-1 0.236 (�1.387, 1.859) p=0.775 �0.377 (�0.912, 0.157) p=0.166 �0.005 (�0.017, 0.007) p=0.419 

IL-10 �18.461 (�24.125, �12.797) 
p<0.001 0.560 (�1.305, 2.425) p=0.556 0.110 ( 0.067, 0.153) p<0.001 

IL-2 0.007 (�1.125, 1.138) p=0.991 �0.133 (�0.506, 0.239) p=0.482 �0.003 (�0.011, 0.006) p=0.509 

IL-6 
�23.841 (�30.760, �16.921) 

p<0.001 �1.026 (�3.304, 1.252) p=0.377 0.130 ( 0.077, 0.183) p<0.001 
TNF-α �7.541 (�10.275, �4.808) p<0.001 0.196 (�0.704, 1.096) p=0.668 0.045 ( 0.024, 0.065) p<0.001 
TNF-α:IL-10 10.920 ( 6.549, 15.291) p<0.001 �0.363 (�1.802, 1.076) p=0.620 �0.065 (�0.098, �0.032) p<0.001 

Anti dsDNA2 �7.354 (�18.227, 3.518) p=0.184 0.523 (�2.990, 4.035) p=0.770 0.041 (�0.040, 0.122) p=0.322 

Anti RNA2 295.607 (44.831, 546.383) p=0.021 28.539 (�52.488, 109.565) p=0.489 �1.085 (�2.963, 0.793) p=0.257 

Models controlled for sex of child, maternal SES, maternal age and MatHg.   

ANA; antinuclear antibody, dsDNA; double stranded DNA, RNP A; ribonuclear protein A, CRP; C reactive protein, INF-γ; interferon 
gamma, Ig; immuoglubulin, IL; interleukin, TNF-α; tumour necrosis factor-alpha, 

1, ANA combined: within or above reference range for any of the 13 measured ANA 

2, Anti-dsDNA and anti-RNP A were analyzed as dichotomous (<LOD or LOD+)  
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All values are log transformed.  
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Methylmercury and long chain polyunsaturated fatty acids are associated with immune 

dysregulation in young adults from the Seychelles Child Development Study.  

 

Highlights 

 

1. Concurrent methylmercury (MeHg) exposure is associated with a higher odds 

ratio of being positive for the presence of an antinuclear antibody (ANA) and a 

lower IgM but only following adjustment of n-3 long chain polyunsaturated 

fatty acids (LCPUFA) or the n-6:n-3 LCPUFA ratio.  

2. Prenatal methylmercury exposure was not associated with ANA or any 

biomarker of inflammation at age 19 years. 

3. N-3 LCPUFA were associated with lower markers of inflammation whereas a 

higher n-6:n-3 LCPUFA ratio was associated with higher biomarkers of 

inflammation. 

4. Further research is required to determine if MeHg exposure at an older age is 

associated with the onset of autoimmune disease.  
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