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Abstract—Two key indicators of human health are pulse and
respiratory rate. Being able to measure pulse (rate and rhythm)
and respiratory rate (RR) in an emergency or search and rescue
situation could be the difference between life and death. This
paper presents novel algorithms that will equip a robot with the
necessary skills to assess a human’s pulse and RR. Algorithms
that calculate heart beats per minute (bpm), Pulse to Pulse
Interval (PPI), RR and Breath to Breath Interval (BBI) are
presented. The bpm is used to classify if a heart rate is normal,
bradycardic, or tachycardic. PPI is used to determine if the pulse
rate is regular or in a form of arrhythmia. The RR and BBI are
used to determine if the humans breathing is normal and regular.
The results in this paper show that pulse and breathing were
successfully measured and a subject’s bpm and RR calculated
using a trough detection method following a two stage noise
reduction filter. Furthermore the robotic system proved to be
capable of classifying the pulse as being regular or arrhythmic
and the RR as being regular or irregular.

I. INTRODUCTION

When assessing a person’s condition in an emergency or
rescue situation, responsiveness, respiratory rate (RR) and
blood circulation are all critical measures of the subject’s
health. Reading a person’s pulse is one common method of
assessing their blood circulation. The pulse can be measured
from numerous points around the human body, for example;
from the posterior tibial at the ankle, the carotid artery at
the neck or the radial artery at the wrist. However to read
and analyse the pulse can require high levels of skill and
experience from medical personnel. Measuring RR requires
counting how many times the chest rises in one minute. This
is a very tricky procedure as it is often completed visually and
if the person is breathing weakly or visibility is poor, it may
be difficult to distinguish movement in the chest particularly
through clothing.

The heart pulse rate is the speed of the heart measured
by how many beats it completes in one minute (bpm) and
is normally measured on the wrist or neck. It is considered
that a normal pulse (heart rate) for a resting adult ranges
from 60-100bpm. However, heart rate can vary depending on
age, physical size and needs, amongst other factors. There-
fore any algorithms developed to measure bpm needs to be
accurate in terms of the measurement and also intelligent such
that it can understand varying heart rates. There are various
commercially available machines and equipment available to
monitor pulse rate, wrist bands and fingertip pulse oximeters
for example. However, these methods require the subjects to be

wearing a sensor or numerous in order to retrieve an accurate
measurement of their pulse. Therefore, it can be difficult to
measure one’s pulse in an emergency situation when they are
not wearing the aforementioned sensors.

RR is normally measured by watching the persons chest
and counting how many times it raises in a given time,
typically 60secs. However it can prove very difficult to see
every breath. It is common to use a stethoscope or make
contact with the chest wall when measuring one’s RR [1].
However, in an emergency or rescue scenario it may not be
possible for a medical professional to safely get close enough
to place their hand on the individuals chest. It is estimated
that a healthy adult should breath 12-20 times per minute
when at rest [2]. Having a robot equipped with the necessary
intelligence and skills to read RR using tactile sensors will
prove to be extremely beneficial.

The purpose of this work is to ascertain if a robot hand
equipped with sophisticated tactile sensors (biomimetic finger-
tips) is capable of accurately detecting and measuring pulse
and breathing in a similar manner to how a human would.
Building on previous work [3], the retrieval and calculation of
pulse and respiratory rate, the PPI (i.e. time between detected
pulses) and the BBI (i.e. time between detected breaths) are
investigated in a preliminary experiment. Similar to a human
fingertip, the biomimetic fingertips on the robot hand are
capable of measuring vibration, thermal conductivity, static
temperature and force. As in [3], the data source used for the
pulse reading is vibration (as is used by a human when reading
another’s pulse) rather than light or electrical data. Building
on the algorithm used in [3], experiments for measuring
respiratory rate together with pulse rate are conducted. The
data sources used for measuring breaths are vibration and
thermal conductivity, used concurrently to ensure algorithm
robustness. This work also work extends [3] by adding a
second stage of filtering utilising wavelet algorithms, thus
improving the overall noise reduction in the collected pulse
and respiratory rate waveforms. The remainder of this paper
is organised as follows: Section II presents a brief overview
of related research in vital signs measuring instruments and
methods. Section III describes the data collection and the
algorithms developed in this work for pulse and breathing
analysis. Section IV presents results for pulse rate, respiratory
rate, PPI and BBI calculations. Conclusions and plans for
future work are in presented Section V.



II. BACKGROUND AND RELATED RESEARCH

Noise reduction is vital for pulse detection and analysis
process as pulse signals can be weak, non-stationary, low
frequency signals which can be easily contaminated by back-
ground noise, such as respiratory or muscle movement [4].
Wang [5] presents a two stage noise reduction scheme for
human pulse signal. Initially a wavelet packet transform (WPT)
is employed to decompose the pulse signal and obtain the
wavelet coefficients. Median filtering (MF) is then adopted
for these coefficients to remove noise and the pulse signal is
reconstructed based on low frequency coefficients. Following
tests on several pulse signals collected in a clinic the algorithm
was shown to filter noise effectively. Baseline wander of the
pulse waveform can be caused by respiration or artefact motion
during pulse data. Xu et al., [6] use a wavelet-based cascaded
adaptive filter (CAF) to remove baseline wander. To evaluate
the level of baseline wander, a new criterion was introduced:
energy ratio (ER) of pulse waveform to baseline wander [6].
The baseline wander in pulse data can be significant or in-
significant. When there is very little baseline wander, a wavelet
filter may introduce some distortion [6]. The ER was used to
determine the strategy required to remove the baseline wander.
If the ER was greater than a given threshold, the baseline
wander could only be removed by cubic spline estimation.
Otherwise it had to be filtered by, in sequence, a discrete Meyer
wavelet filter and the cubic spline estimation. The system was
found to be efficient and robust in filtering various baseline
wanders of pulse waveforms.

In contrast to focusing on noise reduction of the pulse
waveform, other methods have focused on fast pulse wave
detection and pulse wave analysis [7], [8], [9], [10]. Directed at
establishing the presence of cardiac activity in an emergency
Nenova and Iliev presented an automated algorithm for fast
pulse wave detection [7], [8]. The algorithm was tested on
a set of arterial pressure pulse waves from the internationally
recognised MGH/MF waveform database from PhysioNet [11].
The algorithm demonstrated that it was capable of identifying
cardiac pulsations even with manufactured artefacts (noise),
however it was not tested on a human in a real life scenario.
Furthermore, the machine required to take the pulse from the
neck is a customised machine which must be correctly fitted to
the individual in order to identify the cardiac pulsation. Suzuki
et al. developed an arrhythmic pulse detection algorithm from
PPG data measured in daily life using a wearable PPG sensor.
Although the PPG sensors are a simpler device compared with
an ECG device, PPG is very sensitive to artefacts, e.g. body
movement [9]. Suzuki et al. focus their sensor on identifying
signs of arrhythmia and although it was confirmed that the
algorithm could detect irregular pulse without misdetection of
body movement, the method requires the constant use of a
wearable sensor which will not always be practical for a user
in everyday life or in a rescue scenario.

Measuring Respiratory Rate (RR) in humans has proven to
be a difficult task and prone to error [1]. Morley et al. [1]
measure respiratory rate in babies under six months old and
report that it is much more accurate to use a stethoscope or
to physically place a hand on the child’s chest to count the
movements that represent breathing. Most recently, numerous
techniques aimed at contactless respiration monitoring have
been investigated. Many of these attempts are based on acous-

tics, radar detection or time-of-flight cameras for example [12]
to estimate the frequency of the chest movements during
respiration. Some attempts at visual detection make use of
an infra-red camera to detect motion in the scene [13]. Other
methods focus on processing images obtained from regular
cameras [14]. Furthermore vision or acoustic only based sys-
tems may prove unreliable in noisy emergency environments.

In summary the literature presents methods that are capable
of recognising and analysing pulse wave signals and respira-
tory rate, but there is still a need for a system which can
analyse vital signs in an emergency and mobile scenario. The
aim of this work is to utilise a more general mobile robot’s
tactile sensor to be able to identify two human vital signs in
the event of an emergency. This will in turn provide a “first
response” service to a user or could be used to determine a
human’s health status in an emergency rescue scenario before
risking further human life.

III. METHODOLOGY

A. Robot used for Pulse and Respiratory Measurement

The Shadow robot hand [15], equipped with three
BioTACTM sensors from Syntouch R© was used to collect pulse
and respiratory data from a human. The Shadow robot hand has
similar dexterity to a human hand allowing it to mimic, to some
extent, the actions required to collect pulse and respiratory data
from a human. The BioTAC is a tactile sensor which is shaped
like a human fingertip and is liquid filled, giving it similar
compliance to a human fingertip [16], [17]. Like a human
finger, it is capable of detecting a full range of cutaneous
sensory information: forces, micro vibrations and temperature.
Figure 1 shows a cross section view of the BioTAC fingertip.

Figure 1. Cross Section View of BioTAC Fingertip Tactile Sensor [18]

As outlined in [17], [3], the BioTAC fingertip measures
force applied across an array of 19 electrodes. It measures
absolute temperature (TDC) and thermal flow (TAC); the rate
at which heat is leaving the fingertip and transferring to what is
in contact with. Finally it measures vibration and outputs two
different values, one is a DC pressure signal (PDC) which is
the reading obtained after passing through a low pass filter
and the other is an AC pressure signal (PAC) which has been
passed through a band pass filter.

B. Data Collection

For collecting both pulse and respiratory data, the BioTAC
fingertip is allowed 15-20 mins to reach its steady state
temperature (approximately 31◦C, 10◦C above ambient) after
being first powered on, similar to the experiments carried out
in [17] and [19]. Through Ethercat on the Shadow Hand, the
PAC, PDC, TAC and TDC values from the BioTAC fingertip



are recorded at 100Hz. These values are recorded using ROS
and a dataset for PAC, PDC and TAC data was formed using
Python.

1) Pulse Measurement: The PAC values can be used to
determine the vibration (of the internal conductive fluid)
caused by the pulse when the fingertip is pressed against the
radial artery. To press the finger against the radial artery the
Shadow hand positions the thumb below the wrist and moves
the first finger (FF) and middle finger (MF) in small increments
towards the radial artery on the ventral aspect of the wrist on
the side of the thumb of a human subject. Using the electrodes
in the BioTAC fingertip the force applied to the finger is
constantly measured and once sufficient contact is made with
the wrist by the FF and MF, the fingers stop moving and
the system begins recording the PAC data. The subject was
a healthy male aged 32 years old. As seen in Figure 2(a), this
action replicates the action of a human when attempting to
measure a subject’s pulse by using the fingers to contact the
wrist and count how many beats are felt in 30 secs. Three
datasets of 30 secs each were collected when the individual
was at rest and one dataset was collected immediately after
the individual completed 5 minutes of exercise.

2) Respiratory Measurement: In order to determine the
RR of the same human subject, contact with the chest was
made using the Shadow Hand. The hand started in an open
position and both the FF and MF moved towards the upper
left side of the subject’s chest in small increments, as shown
in Figure 2(b). The electrodes on the BioTAC were constantly
monitored until sufficient contact was made with the chest.
In this case static vibration data (PDC) was used to identify
the movements of the chest wall more effectively than PAC.
Furthermore, as breathing can cause a lot of added artefacts
and noise, it hypothesised that it would be more robust to
measure a second modality together with vibration data. As
the skin of the subject pushes against the inside clothing
during breathing the fingertip senses the change in temperature
causing the thermal conductivity value to fluctuate as a result
of the concentrated indirect contact with the skin via the
clothing. Therefore TAC data and PDC data were recorded to
assess respiratory rate to add robustness to the algorithm. Two
datasets of 60 secs each were collected when the individual
was at rest and breathing normally and two datasets were
collected when the individual was breathing heavily.

(a) (b)

Figure 2. (a) Image showing the Shadow Hand taking the subjects pulse (b)
Image showing the Shadow Hand resting on the subjects chest to measure RR

C. Waveform Pre-processing

In order to reduce noise and smooth the waveform of both
the pulse and respiratory data, two stages of filtering was
applied to the data. As human heart beat is a low frequency
sound, various low pass filters were evaluated for the first
stage of filtering. The filtered signal was visually inspected
to determine if all of the troughs representing heart beats and
breaths taken in the waveform were preserved and as many
incorrect troughs (i.e. noise), as possible, were removed. To
thoroughly evaluate each filter, various cut off frequencies and
filter orders were applied. Empirically, it was found that a
Butterworth infinite impulse response (IIR) filter with a cut
off frequency of 10Hz and a filter order of 10 performed
best by demonstrating a preferred smoothing without loss
of data. Therefore, this filter was used throughout the pulse
and respiratory experiments presented. The second stage of
filtering was completed by using a Discrete wavelet transform
(DWT) wavelet algorithm. SPL wavelet filtering algorithm
with a scaling function of 5 was empirically found to be the
most effective configuration and therefore was applied to all
waveforms collected.

D. Trough Detection, BPM and RR calculation

From visual inspection of the filtered pulse and respiratory
data waveforms, it is clear that there is a prominent trough
representing each pulse (heart beat) and breath taken. There-
fore, by identifying and calculating the number of troughs in a
30 second window of the pulse waveform a calculation of the
subject’s bpm can be completed by multiplying the number of
troughs by two. As breathing is less frequent than heart beats
it is recommended that RR is calculated over a 60 second
interval, therefore by identifying the number of troughs within
a 60 second period of the respiratory data the subjects RR can
be calculated. This calculation is completed for both the TAC
and PDC waveforms collected for the RR in order to compare
and ensure both data sets produce the same calculated RR.

The troughs for pulse and respiratory rate are visually
evident in the graphs showing the DWT filtered waveform of
the PAC data used for pulse detection in Figure 3(b) and the
TAC data used for breath detection in Figure 3(d). Although
the troughs are clearly visual when inspecting the graphs, it
is required that they are detected automatically in order to
calculate the bpm and RR of a subject. In order to detect
prominent troughs in the waveform a modified version of a
publicly available function called “peakdet” in MATLAB is
utilised. This function detects the local maxima and minima in
a wave signal. The function uses a threshold (default 0.5) of the
difference between the suspected trough and its surrounding
values in order to declare it as a trough.

However, due to the range of variance within the datasets for
each modality, a dynamic threshold was developed for use with
this function as the troughs in the graphs are quite prominent.
This also helps to avoid any outstanding residual noise from
being incorrectly detected as a trough. As the trough is
required to be detected with respect to the resting waveform
the dynamic threshold is calculated for each modality using
the standard deviation and is given by.

dtm = x × σ (1)



where dtm is the dynamic threshold for each modality, x is the
factor determined by which modality is being analysed and σ is
the standard deviation. Various multiples of σ were empirically
applied and tested for each modality until an optimal value for
the threshold was determined enabling accurate detection of
troughs in each case. For m = PAC, x = 7

4 , for m = TAC,
x = 2

5 and for m = PDC, x = 1. The algorithm automatically
assigns the correct threshold depending on which modality the
dataset has been collected from.

E. Pulse to Pulse (PPI) and Breath to Breath Interval (BBI)
Calculation

In order to determine if a pulse is regular, the time
difference between each detected pulse, the pulse to pulse
interval (PPI), is calculated across the waveform. An individual
may have a normal heart rate (i.e. between 60-100bpm) but
their pulse may not be beating at regular time intervals or
may be following an irregular pattern. Therefore, they should
be classed as having an arrhythmic heart beat or a sinus
arrhythmia. Likewise, in order to determine if the subject’s
breathing is regular the breath to breath interval (BBI) is
calculated across the waveform. As the next series of equations
have been adapted from previous work [3] so that they can be
used to calculate both the PPI and BBI from their respective
datasets, the PPI and BBI shall be referred to as the interval
I in the remaining equations.

The expected PPI (time difference between each detected
pulse) and BBI (time difference between each detected breath)
in the given time of the data collected (i.e. 30 secs and 60 secs
respectively) are calculated in order for the heart rate and RR
to be classified as regular and healthy. This expected interval,
I is defined as:

Ireg =
twf

Ntd
(2)

where Ireg is the expected I (s) for the heart rate or RR to be
regular, twf is the complete length of time (s) of the waveform
and Ntd is the number of troughs detected in the waveform.

The I between each individual pulse or breath detected in
the waveform is calculated by:

Iindiv = tct − tpt (3)

where Iindiv is the I between each individual trough detected
(s), tct is the time stamp of the current trough detection (s)
and tpt is the time stamp of the previous trough detected. In
order to reduce outliers or any residual noise in the waveform
affecting the I classification, along with the I being calculated
at every point, a sliding window was used and an average for
I within the window at each step is calculated. The sliding
window is designed to move in time steps of 0.5 seconds and
have a length of 5 seconds. Equation 4 determines how many
sample windows will be analysed across the entire datasets.

Nsw =
Ntds − (lsw ×Ndps)

(TSsw ×Ndps)
(4)

where Nsw is the number of sample windows analysed across
the complete dataset, Ntds is the number of data points in
the complete dataset, lsw is the length of the sliding window
(s), Ndps is the number of data points recorded per second,
and TSsw is the time step of the sliding window (s). For

the collected pulse data, this resulted in 50 samples of data
across the entire wavelength and 108 samples for the collected
respiratory data. The average I for each window of data was
calculated as:

Iwin =

Ntdw∑
Itdw=1

Itdw

Ntdw
(5)

where Iwin is the average I (s) between the troughs detected
within the window, Itdw is the individual I between the troughs
detected within the window (s) and Ntdw is the number of
troughs detected within the window.

Iindiv and Iwin are then analysed against the expected I
required for a regular and healthy pulse rate (equation 2)
in order to determine if the pulse is regular or arrhythmic.
Due to the nature of the data, it is not realistic to expect
every individual I reading or the average I reading of a
5 second window of data to be exactly the same as the
rhythmic average. Therefore, in this preliminary study we have
empirically selected a tolerance of ±15% of the rhythmic
average PPI at each pulse detected to classify between regular
(healthy) and arrhythmic pulse rates. If the individuals PPI
is within this tolerance then the heart rate is classified as
being regular. Likewise the Iindiv and Iwin are analysed to
determine if the subjects breathing is regular or irregular. A
similar tolerance is suggested for the BBI to be within for the
breathing to remain classified as regular.

IV. RESULTS

A. BPM calculation and Analysis

Application of the two stage filtering process, a low band-
pass Butterworth IIR filter followed by DWT noise reduction,
to the raw data successfully removed noise and smoothed the
waveform to a level that would allow for successful trough
and therefore pulse and breath detection; the data contained
significantly less noise than that presented in previous work [3]
using a one stage filter process. Figure 3(a) and 3(b) show the
PAC waveforms of dataset 1 recorded from the individual’s
wrist whilst at rest before and after the application of the two
stage filter respectively. Figure 3(b) also shows the troughs
(pulse in this case) detected by the trough detection algorithm
which are highlighted by blue stars. Figure 3(c) and 3(d) show
the TAC waveforms of dataset 1 recorded from the individuals
chest before and after filtering respectively. Figure 3(d) also
shows the troughs detected (breaths in this case) by the
trough detection algorithm which are highlighted by blue stars.
The trough detection algorithm has proven to work well in
the majority of cases. The pulse detection algorithm worked
especially well in the waveforms collected when the individual
was at rest enabling accurate bpm calculations.

Calculation of the average heart rate (bpm) for each dataset
(three for the individual at rest and one immediately after
exercise) and the heart rate classification of either normal heart
rate, bradycardic or tachycardic can be seen in Table I. The
actual bpm (measured manually from the individual’s wrist),
at the time of rest before exercising was 62bpm. It can be
seen that set 1 and set 3 results in accurate calculation of the
bpm and set 2 has calculated a value quite close to 62bpm
and therefore has still correctly determined the heart rate as
being a normal heart rate. This table is similar to that presented



(a)

(b)

(c)

(d)

Figure 3. Graphs showing the raw PAC vibration data collected from the
individual’s wrist whilst at rest and from the raw TAC thermal conductivity
data collected individuals chest respectively (a+c); Graphs showing the PAC
vibration data after the two filter was applied and showing the detected troughs
from the pulse data on the wrist and the respiratory data on the chest whilst
at rest respectively (b+d).

in [3], however this work demonstrates an improvement in
accuracy for set 3 from 60bpm in [3] to 62bpm which is
without error. This is mainly due to the increase in performance
of the preprocessing by implementing the two stage filter.

Table I. TABLE COMPARING THE BPM EXPERIMENTAL RESULTS.

Individuals State BPM Heart Rate
Classification

At rest - set 1 62 Normal
At rest - set 2 64 Normal
At rest - set 3 62 Normal

After 5mins of exercise 96 Normal

Calculation of the respiratory rate (RR) for each dataset
(two for the individual at rest, breathing normally and two for
the individual at rest, breathing heavily) and the respiratory
rate classification of either slow, normal or fast breathing rate
can be seen in Table II.

The actual manually counted RR from the individual’s
breathing at the time of rest is 12 breaths per minute when
breathing normally and 13 breaths per min when breathing
heavily. It can be seen from the results in Table II that the
algorithm was one breath short in one occasion when using
the TAC data and one breath short on both occasions when
using the PDC data. Unfortunately, this meant that for set 1
the user was classified as having a slow RR when this was not
the case. Furthermore, it can be seen that when the subject was
breathing heavily the system detected more breaths (perfectly
correct in two cases). Future work will address the sensitivity
of the breath detection and attempt to improve it for lighter
breathing.

Table II. TABLE COMPARING THE RR EXPERIMENTAL RESULTS.

Individuals State RR - TAC
Reading

RR - PDC
Reading

Respiratory
Classification

At rest (breathing
normally)- set 1 11 11 Slow

At rest (breathing
normally)- set 2 12 11 Normal

At rest (breathing
heavily)- set 1 13 15 Normal

At rest (breathing
heavily)- set 2 12 13 Normal

To validate the algorithm used for bpm calculation, we
used a benchmark dataset available from PhysioNet [11]. The
peaks defining pulse across all the waveforms were correctly
identified and used to calculate the correct bpm in the majority
of test sets. Validation of the algorithm using the ECG signals
in this dataset also demonstrates robustness and adaptability
of the proposed approach.

B. PPI and BBI Calculation and analysis

The pulse to pulse (PPIs) and breath to breath (BBIs)
intervals were successfully calculated both between individual
troughs detected and the average of troughs detected within a
sliding window for each dataset. A graph showing an example
of the calculated PPI between the individual pulses and the
average within each sliding window for the dataset collected
when the subject was at rest is shown in Figure 4. Also
plotted on the graph are the upper and lower limits of the
15% tolerance of the overall average PPI required for regular
pulse rate [3].



Figure 4. The calculated PPI between the individual pulses, the average
PPI within each sliding window and the tolerance of the overall average PPI
required for regular pulse rate for the dataset collected when the subject was
at rest

Figure 4 shows that the average PPI calculated between
each individual pulse detected can dip and peak outside of the
average PPI tolerance and is a much sharper curve. This would
indicate that the individual has an arrhythmic heart rate. At all
times the PPI is within the average PPI tolerance and therefore
this pulse would be classified as being a regular pulse pattern
which indeed is the case. The BBI calculations also proved that
the subjects breathing was regular, as indeed was the case.

V. CONCLUSION AND FUTURE WORK

Algorithms to equip a first responder robot with the skills
necessary to assess two of a human’s vital signs in an emer-
gency situation is presented. A method for detecting a human’s
pulse, by making contact with the radial artery, and respiratory
rate, by making contact with the chest, using a BioTAC robotic
fingertip is presented. The calculation of the subject’s bpm and
RR is also completed. The robotic system is able to determine
whether a person has a regular heart rate or is bradycardic
or tachycardic and whether the person has a slow, normal or
fast RR. A robust noise reduction algorithm was presented
by introducing a second stage of filtering in the form of a
DWT wavelet algorithm to reduce noise before completing
trough detection. Determining the time between pulses (PPI)
and breaths (BBI) is also important as this will evidently show
if the individuals pulse is regular or in a form of arrhythmia and
if the persons breathing is regular or irregular. Arrhythmic beat
rates can represent signs of disease. The methods presented
performed well for pulses recorded from the subject and for
breaths recorded when the subject was breathing heavy and
was slightly less accurate when the subject was breathing
normally.

The methods presented have been evaluated on data col-
lected from one subject and future work will include further
testing on a wider range of subjects with various heart rates,
pulse rhythms and respiratory rates in order to test their
accuracy thoroughly. Ethical approval has now been granted
for data collection from a large. Additionally we will include
investigating how to make the algorithm more sensitive to light
breathing, less chest movement and the case of movement of
the subject for both pulse and respiratory rate data collection.
Furthermore, future work will include assessing another one of
a human’s vital sign using a robot platform, namely Capillary
Refill Time (CRT).
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