
978-1-7281-5341-4/19/$31.00 ©2019 IEEE

Adaptive Gesture Recognition System for Robotic
Control using Surface EMG Sensors

Benjamin Marcheix

Sciences Fondamentales et Appliquées
Université de Poitiers

Poitiers France
benjamin.marcheix@etu.univ-poitiers.fr

Bryan Gardiner
School of Computing, Engineering &

Intelligent Systems
Ulster University

L’Derry, Northern Ireland
b.gardiner@ulster.ac.uk

Sonya Coleman
School of Computing, Engineering &

Intelligent Systems
Ulster University

L’Derry, Northern Ireland
sa.coleman@ulster.ac.uk

Abstract—Traditionally, Electromyography (EMG)

technology was used primarily in the medical domain for the
investigation of neuromuscular normalities. However, the
development of cheap surface EMG armbands have made this
high-end technology commonly accessible to a much wider
community. For example, providing gesture interfaces for
gaming or controlling peripheral hardware devices. So far,
research within this field has typically used complex machine
learning classifiers, substantially large databases and long
learning/training phases to develop applications-based
approaches.

In this paper, a novel algorithm is presented based on one
shot learning, i.e. requiring only one example per gesture,
therefore substantially reducing the training time and database
size. To assess the reliability and the usefulness of the
developed system, the accuracy of the algorithm has been
compared with classic machine learning approaches providing
comparable accuracy. Additionally, the algorithm is
successfully demonstrated via a robotic control experiment
using various gestures for mobile platform and manipulator
control.

Keywords—electromyography, adaptative gesture recognition,
robotic control

I. INTRODUCTION
In recent years, the field of gesture recognition using

surface EMG sensors has attracted a growing amount of interest
due to the devices particularly low cost and the numerous
applications in different kinds of fields such as robotic, sign
language recognition and medical applications. In order to
minimize crosstalk, it has been demonstrated in [1] that it is
possible to use classic machine learning classifiers to accurately
recognize gestures using data produced by EMG sensor
armbands, using a SVM algorithm to classify gestures for
controlling home devices. Additionally, in [2] an accuracy of
93% was obtained for basic gestures classification using a back-
propagation neural network with supervised learning. The work
that describes the most gesture recognition using surface EMG
state of the art is in [8], which reaches an overall accuracy of
95% for user independent gesture classification using a SVM
algorithm. They also describe their algorithm performances
according to gesture groups sizes.

Moreover, Morais et al. [5] describe a way to use the Myotm

armband from Thalamiclabstm in robotic applications using both
the armband’s EMG and accelerometer sensors to control the
PeopleBot robot. However, their algorithm was only able to
recognise a basic gesture set provided by Thalamiclabstm to
control this robot. More generally, current systems still lack a
high level of versatility and often require a lot of time for
gesture control set up.

Fortunately, some one-shot learning classifier systems
have been created such as the one developed by Li et al. [12].
This algorithm is a classifier that uses a Bayesian
implementation of a probabilistic approach to recognise object
categories patterns in images. Another one-shot learning
approach is proposed by Vinyals et al. [13], which consists of a
neural network adapted and trained to perform one-shot
learning for classification. They found encouraging results
using the Omniglot [16] and ImageNet [17] networks compared
with the state of the art. Although these articles concern one-
shot learning approaches, they are not related to robotic
applications. Gardiner et al. [14] describes a minimalistic
learning approach where they have implemented a novel
approach to control code generation using a NARMAX
modelling methodology. Although their application is specific
to robot motor control, their system’s training phase does not
use one-shot learning.

To address this shortfall, this paper describes a new one-
shot learning approach, similar to those described above, for
surface EMG sensory data and hand and wrist gesture
recognition. We provide a solution that is easily configurable,
highly accurate and can readily interface with multiple robotic
platforms. The remainder of this paper is organized as follows.
The technical aspects of the developed algorithm are explained
in Section II. The system has been tested and evaluated
compared to existing similar algorithms in Section III, where
the developed algorithm has been adapted for different robot
control scenarios. Conclusion and future work are presented in
Section IV.

II. METHODOLOGY

A. Environment
To develop the system, it was chosen to use the Robot

Operating System (ROS) to make the project easily adaptable
to any robot that utilises ROS. The algorithm has been
developed using Python because it suits for system prototyping
and it is supported by ROS.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287024581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The following research has been realised on an Ubuntu 18.04,
64 bit, running on a virtual machine. The Melodic Morenia
version of ROS has been used. The virtual machine used a 4
core CPU (1.8GHz) and 11Gb of RAM memory (DDR3) with
a Nvidia MX150 GPU.

The Myotm armband provided by Thalamiclabstm was used
in these experiments to record EMG signals produced by
forearm muscles. The armband is composed of 8 EMG sensors,
evenly distributed around the interior of the armband, a
gyroscope and an accelerometer. As shown in Fig. 1, the Myotm
is positioned on the upper portion of the forearm to record both
forearm and finger muscle contractions. For further details about
the relationship between finger gestures and forearm muscles
activity, please see [15].

Fig. 1. Forearm muscle organisation and Myotm position.

For a more in-depth description of the capabilities of the Myotm
armband, please see the work of Seema Rawat et al., [11].

B. System Technical Description
Fig. 2 depicts the overall ROS network architecture of the
proposed system. Firstly, to use the Myo armband for custom
gesture recognition, it is necessary to access the raw sensory
data from the eight EMG sensors present around the interior of
the Myo armband. The raw sensory data should be accessed in
real time and should be accessible via a node within the ROS
network. To achieve this, we use the ROS package [7] which
manages the Bluetooth protocol between the host PC and the
armband. This is represented as the “/myo_raw” ROS node in
Fig. 2.

Fig. 2. Developed ROS package RQT graph.

Next, it is necessary to use the captured raw data to identify
combinations of finger, hand and wrist movements to
successfully identify both basic and complex gestures. The
proposed algorithm to achieve this encompasses two phases;
the learning phase (represented as the /emg2avg node in Fig. 2)
and the real-time gesture recognition phase (represented as the
/gesture_recognition_node in Fig. 2). The learning phase is
where a one-shot learning approach will be developed to
associate sensory outputs to custom gestures. This is conducted
as follows. For each gesture, 100 samples are captured for each
of the 8 EMG sensors at intervals of 20ms, across a 2 second

window (Step 1 of Fig. 3). Each set of samples for each EMG
sensor is then smoothed to eradicate any outlier sensor readings,
using:

𝑠! =
1
𝑛
%𝑥"								𝑖 = 1, … ,8
$

"%&

 (1)

where s depicts each EMG sensor, n is the number of samples
and x is each sensor value. The 8 averaged values are then added
to the database associated to that specific gesture (Step 2 of Fig.
3). Finally, the system enters a pause state where it waits for
another gesture to be added (Step 3 of Fig. 3.)

Fig. 3. Learning process for one gesture scheme.

This process is repeated for each gesture that is to be added to
the gesture database, automatically linked to a gesture index
between 0 and the maximum number of gestures, so when
recalled, can be readily associated to a robot command. The
storage of these values in the gesture database is shown in the
top left section of Fig. 4, where each gesture (5 gestures in this
example) is labelled as A1, A2, A3, A4 and A5.
 The second phase describes the real time gesture
classification process. During this phase, the algorithm will
compare the incoming raw data flow with existing gestures
stored in the database during the learning phase. Here, the best
matched gesture is determined and selected as the result of the
classification. This is represented in Fig. 4. The incoming raw
data (A6) incorporates 8 EMG sensor values, which can be
successively compared with all the existing gestures available
in the database, calculating a matching score (Mscore) for each.
The matching score is calculated using the following equation:

𝑀'()*+ =%|𝐼$×& −𝐷$×&|
-

$%&

 (2)

where I is the incoming data and D is the existing data. The
lower the matching score, the closer the incoming data are to
the database values. The gesture corresponding to the lowest
matching score is then selected and published in the ROS topic
“/rt_cmd” at a rate of 50Hz.

C. Accuracy Tests
In order to determine the system performance, a set of

experiments was conducted using a number of participants
completing a number of gestures. The gestures varied in
complexity and are grouped into six gesture sets, as presented

in Fig. 5. To ensure the system is tested to its full capability,
gesture set E was introduced, which is suspected to be more
difficult for the system to classify than the other gesture sets as
the gestures included in set E consist of minimal muscle
movement differences between gestures, making it very
difficult to decipher between the sensory values.

Initially, five participants were selected to perform a set of
gestures to determine the algorithm’s accuracy. Each
participant first completed the one-shot learning phase by
making each of the gestures, which is subsequently stored in the
gesture database. Next, each participant was asked to randomly
reproduce each previously trained gesture 10 times and the
algorithm’s predictions were recorded. Each prediction has
been categorized as true positive if the classifier recognized the
gesture correctly and as true negative if the system recognized
another gesture from the true one. These operations were then
repeated for each of the six different gesture sets. To avoid
muscle fatigue, ample rest periods were taken during testing for
all participants involved.

Fig. 4. Developed algorithm for real time classification phase.

Fig. 5. Gesture sets used in algorithm accuracy testing. Basic gestures and sets A-D were also used for tests conducted in [8]

D. Robotic Experiment

To demonstrate the versatility and the wide range of
different robots the system can adapt to, the proposed algorithm
is utilized to simulate the control of two different robot

platforms using Gazebo. The Turtlebot3 was used to
demonstrate the systems capability for controlling mobile
robotic platforms and the Tiago robot was used to demonstrate

the capability of the system for controlling manipulator arm
platforms.

As depicted in Fig. 6, a link node (“/rt2turtle”) has been
created to convert the classifier predictions to twist1 messages
published into the “/cmd_vel” topic which is subscribed by the
robot simulation to trigger movements. This conversion node is
important as it allows the input mapping between gesture
groups and robot’s movements. For example, when the first
gesture is recognized by the classifier, it will send the value 0
to the “/rt2turtle” node which will convert it to a specific
command that depends on the mapping.

Fig. 6. Integration of the developed ROS package (green nodes) for control of

the Turtlebot3 robot platform (grey nodes).

For the Turtlebot3, three different gesture sets have been
mapped to control the robot’s movements. First, gestures from
the set of basic gestures (Fig. 8) were mapped to control the
Turtlebot3 robot. Next, gestures from the gesture set A in Fig.
5 were used to control the robot. Finally, the last control
mapping used different finger contractions when the
participant’s hand was lightly resting on an anti-stress ball (Fig.
7); this provided a more controlled finger movement when
conducting each gesture.

Fig. 7. Gesture mapping to control the Turtlebot3 movements with anti-
stress ball.

To adequately evaluate the gesture recognition system, a

path navigation experiment was set up to test each of the
three gesture mappings described above and compare these
with the use of keyboard controls to manoeuvre the robot.

1 Very common ROS message type

Fig. 8. Gesture mapping to control the Turtlebot3 movements with basic

gestures group.

The aim of this experiment was to control the Turtlebot3
robot to traverse a specific path as shown in Fig. 9, and to do
this in the most efficient time possible. It will then be
possible to compare the developed system efficiency using
different gesture sets with the classic keyboard teleoperation.
The tests were conducted using five different participants
where each had five minutes to get familiar with each of the
four different command groups before beginning the
experiment.

Fig. 9. Path the subjects were asked to follow.

Fig. 10. Tiago robot articulated arm movements.

III. RESULTS

A. Accuracy Tests
Fig. 11 shows the accuracy results of the proposed gesture

recognition system and the associated standard deviation for
each gesture group. The result average is 98.8% (Sd: 1.69%)

for successful prediction of the basic gesture set and 88.3% (Sd:
3.42%) for the gesture sets A to D in Fig. 5. For gesture set E,
which is much more complex, the successful prediction average
is 61.6% (Sd: 16.21%).

As a comparison, in the study in [8], a maximum accuracy
of 95.64% (sd: 5.45%) was found with a gesture set very similar
to the basic gesture set in Fig. 5. With this kind of gesture set,
the proposed algorithm produces a more accurate result,
obtaining 98.8% (Sd: 1.69%) accuracy.

The gesture set E recognition accuracy average is 61.6%
(Sd: 16.21%) which is acceptable for this kind of gesture series
due to the particularly high similarity of all the group E
gestures. If the accuracy of a completely random classifier with
a group size of 5 was considered, the rate of correct prediction
would be 20%. Therefore, even with the demonstrated
reduction of accuracy for the particularly complex gestures in
set E, the proposed approach is still producing an accuracy that
is 41.6% higher than if a random prediction would have been
made. Also, it should be noted, as shown in Fig. 11, gesture set
E has a very high standard deviation (16.21%) due to significant
differences between all subjects.

The deviation of accuracy between the set of basic gestures,
gesture sets A to D and gesture set E is likely to be associated
with the difference in difficulty between these gesture sets and
the variance of muscle movement required between each of the
gestures within any particular gesture set. For example, the
basic gesture set is considered easiest for the system to classify
because of the very wide differences between the gestures in
this set. When comparing this to gesture set E, the minimal
muscle movement between each gesture within this set makes
it much more difficult for the classifier to correctly make the
correct gesture classification.

Fig. 11. True positive rate in function of the gesture group.

B. Robotic Experiments
Fig. 12 shows the results of the path navigation experiment

with the Turtlebot3 robot. The average time participants took to
finish the path (expressed in seconds) for each of the four
gesture sets is provided.

It can be seen from Fig. 12 that some gesture sets such as
the anti-stress ball (Fig. 7) and the basic gesture set (Fig. 8)
seem to suit the control of the Turtlebot3 better than gesture set
A. This could be due to the participants finding these gesture
sets to be more intuitive for robotic control. It is easier to
remember that a side finger gesture is associated with a turning
robot movement with the anti-stress ball than a several fingers
gestures as used in gesture set A.

Fig. 12. Path traversal time utilising different mapped gesture sets.

It is also interesting to compare the keyboard control group
with the gesture sets. There is on average a gain of 23.70s (Sd:
16.44%) when using the two most suitable gesture groups
(basic gestures and anti-stress ball) when compared with using
the keyboard, which is a very significant difference.

IV. CONCLUSION
A new versatile one-shot learning approach to classify both

finger and wrist gestures is discussed. The main objective of the
proposed strategy is to create a gesture recognition system that
is easy to train (one-shot learning), does not require large
database storage, is computationally efficient, yet still accurate
when compared with alternative classic machine learning
classifiers (e.g. SVM). It has been demonstrated that the
developed algorithm is versatile in both the variety of gestures
the system can detect and the capability to control various
robotic platforms. Although some physical limitations were
found as shown in the accuracy results, the one-shot learning
approach offers a wide range of gestures that can be used to
control many robotic platforms, using computationally
inexpensive training and real-time classification. This enables
the proposed gesture recognition system to run on a
minimalistic computing platform such as the credit card sized
Raspberry-Pitm, further enhancing the usability of this system
for embedded robotic platforms.

REFERENCES

[1] ImageNet – Stanford Vision Lab, Stanford
University, Princeton University, May 2019. Available:
http://www.image-net.org.

[2] B. Gardiner, S. Coleman, T.M. Mcginnity and H. He,
"Robot control code generation by task demonstration in a
dynamic environment,” Robotics and Autonomous
Systems, 2012, vol. 60, no 12, p. 1508-1519.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Basic
gestures

avg: 98,8%
sd: 1,69%

Group A
avg: 91,6%
sd: 10,0%

Group B
avg: 90,4%

sd: 9,5%

Group C
avg: 84,0%

sd: 9,5%

Group D
avg: 87,2%

sd: 9,4%

Group E
avg: 61,6%
sd: 16,21%

Tr
ue

 p
os

iti
ve

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

[3] B. Marcheix, “Complete ros code,” June 2019. Available :
github.com/BenjaminMar/myo_code.

[4] F. Kerber, M. Puhl, and A. Krüger, “User-independent
real-time hand gesture recognition based on surface
electromyography,” 19th International Conference on
Human-Computer Interaction with Mobile Devices and
Services. ACM, 2017. p. 36.

[5] G. Morais, L. Neves and A. Masiero, “Application of myo
armband system to control a robot interface,”
BIOSIGNALS. 2016. p. 227-231.

[6] G. Pomboza-Junez and J. Terriza, “Hand gesture
recognition based on sEMG signals using Support Vector
Machines,” IEEE 6th International Conference on
Consumer Electronics-Berlin (ICCE-Berlin). IEEE, 2016.
p. 174-178.

[7] He, H., McGinnity, T. M., Coleman, S., & Gardiner, B.
Linguistic decision making for robot route learning. IEEE
transactions on neural networks and learning
systems, 2014, vol 25(1), p. 203-21.

[8] Abreu, J. G., Teixeira, J. M., Figueiredo, L. S., &
Teichrieb, V. (2016, June). Evaluating sign language
recognition using the myo armband. In 2016 IEEE XVIII
Symposium on Virtual and Augmented Reality (SVR), pp.
64-70.

[9] L. Fei-fei, R. Fergus, and P. Perona, “One-shot learning of
object categories,” IEEE transactions on pattern analysis
and machine intelligence, 2006, vol. 28, no 4, p. 594-611.

[10] L. Meier, “Ros tutorials,” May 2019. Available:
wiki.ros.org/ROS/Tutorials.

[11] O. Jones, “Ros tutorials,” December 2018.
teachmeanatomy.info/upper-limb/muscles/anterior-
forearm.

[12] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu
and D. Wierstra, “Matching networks for one shot
learning,” Advances in neural information processing
systems. 2016. p. 3630-3638.

[13] S. Ager. “Omniglot website,” November 2019.
Available : www.omniglot.com.

[14] S. He, C. Yang, M. Wang, L. Cheng and Z. Hu, “Hand
gesture recognition using MYO armband,” Chinese
Automation Congress (CAC). IEEE, 2017. p. 4850-
4855.

[15] S. Rawat, S. Vats, and P. Kumar, “Evaluating and
exploring the MYO ARMBAND,” 2016 International
Conference System Modeling & Advancement in
Research Trends (SMART). IEEE, 2016. p. 115-120.

[16] S. Spasojević, T. Ilić, I. Stojković, V. Potkonjak, A.
Rodić and J. Santos-Victor, “Quantitative assessment of
the arm/hand movements in Parkinson’s disease using a
wireless armband device,” Frontiers in neurology, 2017,
vol. 8, p. 388.

[17] TJ Watson, “Running ros_myo and examples,” May
2019. Available : github.com/roboTJ101.

[18] U. Demirel, “Creating a generic hand and finger gesture
recognizer by using forearm muscle activity signals,”
PhD thesis, Middle east technical university, 2017.

