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Abstract—Traditionally, Electromyography (EMG) 

technology was used primarily in the medical domain for the 
investigation of neuromuscular normalities. However, the 
development of cheap surface EMG armbands have made this 
high-end technology commonly accessible to a much wider 
community. For example, providing gesture interfaces for 
gaming or controlling peripheral hardware devices. So far, 
research within this field has typically used complex machine 
learning classifiers, substantially large databases and long 
learning/training phases to develop applications-based 
approaches. 

In this paper, a novel algorithm is presented based on one 
shot learning, i.e. requiring only one example per gesture, 
therefore substantially reducing the training time and database 
size. To assess the reliability and the usefulness of the 
developed system, the accuracy of the algorithm has been 
compared with classic machine learning approaches providing 
comparable accuracy. Additionally, the algorithm is 
successfully demonstrated via a robotic control experiment 
using various gestures for mobile platform and manipulator 
control. 

Keywords—electromyography, adaptative gesture recognition, 
robotic control 

I. INTRODUCTION 
In recent years, the field of gesture recognition using 

surface EMG sensors has attracted a growing amount of interest 
due to the devices particularly low cost and the numerous 
applications in different kinds of fields such as robotic, sign 
language recognition and medical applications. In order to 
minimize crosstalk, it has been demonstrated in [1] that it is 
possible to use classic machine learning classifiers to accurately 
recognize gestures using data produced by EMG sensor 
armbands, using a SVM algorithm to classify gestures for 
controlling home devices. Additionally, in [2] an accuracy of 
93% was obtained for basic gestures classification using a back-
propagation neural network with supervised learning. The work 
that describes the most gesture recognition using surface EMG 
state of the art is in [8], which reaches an overall accuracy of 
95% for user independent gesture classification using a SVM 
algorithm. They also describe their algorithm performances 
according to gesture groups sizes.  

Moreover, Morais et al. [5] describe a way to use the Myotm  

armband from Thalamiclabstm in robotic applications using both 
the armband’s EMG and accelerometer sensors to control the 
PeopleBot robot. However, their algorithm was only able to 
recognise a basic gesture set provided by Thalamiclabstm to 
control this robot. More generally, current systems still lack a 
high level of versatility and often require a lot of time for 
gesture control set up.  

Fortunately, some one-shot learning classifier systems 
have been created such as the one developed by Li et al. [12]. 
This algorithm is a classifier that uses a Bayesian 
implementation of a probabilistic approach to recognise object 
categories patterns in images. Another one-shot learning 
approach is proposed by Vinyals et al. [13], which consists of a 
neural network adapted and trained to perform one-shot 
learning for classification. They found encouraging results 
using the Omniglot [16] and ImageNet [17] networks compared 
with the state of the art. Although these articles concern one-
shot learning approaches, they are not related to robotic 
applications. Gardiner et al. [14] describes a minimalistic 
learning approach where they have implemented a novel 
approach to control code generation using a NARMAX 
modelling methodology. Although their application is specific 
to robot motor control, their system’s training phase does not 
use one-shot learning. 

To address this shortfall, this paper describes a new one-
shot learning approach, similar to those described above, for 
surface EMG sensory data and hand and wrist gesture 
recognition. We provide a solution that is easily configurable, 
highly accurate and can readily interface with multiple robotic 
platforms. The remainder of this paper is organized as follows. 
The technical aspects of the developed algorithm are explained 
in Section II. The system has been tested and evaluated 
compared to existing similar algorithms in Section III, where 
the developed algorithm has been adapted for different robot 
control scenarios. Conclusion and future work are presented in 
Section IV. 

II. METHODOLOGY 

A. Environment 
To develop the system, it was chosen to use the Robot 

Operating System (ROS) to make the project easily adaptable 
to any robot that utilises ROS. The algorithm has been 
developed using Python because it suits for system prototyping 
and it is supported by ROS. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287024581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The following research has been realised on an Ubuntu 18.04, 
64 bit, running on a virtual machine. The Melodic Morenia 
version of ROS has been used. The virtual machine used a 4 
core CPU (1.8GHz) and 11Gb of RAM memory (DDR3) with 
a Nvidia MX150 GPU. 

The Myotm armband provided by Thalamiclabstm was used 
in these experiments to record EMG signals produced by 
forearm muscles. The armband is composed of 8 EMG sensors, 
evenly distributed around the interior of the armband, a 
gyroscope and an accelerometer. As shown in Fig. 1, the Myotm 
is positioned on the upper portion of the forearm to record both 
forearm and finger muscle contractions. For further details about 
the relationship between finger gestures and forearm muscles 
activity, please see [15]. 

 

 
Fig. 1.  Forearm muscle organisation and Myotm position. 

For a more in-depth description of the capabilities of the Myotm 
armband, please see the work of Seema Rawat et al., [11]. 

B. System Technical Description 
Fig. 2 depicts the overall ROS network architecture of the 
proposed system. Firstly, to use the Myo armband for custom 
gesture recognition, it is necessary to access the raw sensory 
data from the eight EMG sensors present around the interior of 
the Myo armband. The raw sensory data should be accessed in 
real time and should be accessible via a node within the ROS 
network. To achieve this, we use the ROS package [7] which 
manages the Bluetooth protocol between the host PC and the 
armband. This is represented as the “/myo_raw” ROS node in 
Fig. 2. 
 

  
Fig. 2.  Developed ROS package RQT graph. 

Next, it is necessary to use the captured raw data to identify 
combinations of finger, hand and wrist movements to 
successfully identify both basic and complex gestures. The 
proposed algorithm to achieve this encompasses two phases; 
the learning phase (represented as the /emg2avg node in Fig. 2) 
and the real-time gesture recognition phase (represented as the 
/gesture_recognition_node in Fig. 2). The learning phase is 
where a one-shot learning approach will be developed to 
associate sensory outputs to custom gestures. This is conducted 
as follows. For each gesture, 100 samples are captured for each 
of the 8 EMG sensors at intervals of 20ms, across a 2 second 

window (Step 1 of Fig. 3). Each set of samples for each EMG 
sensor is then smoothed to eradicate any outlier sensor readings, 
using: 
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where s depicts each EMG sensor, n is the number of samples 
and x is each sensor value. The 8 averaged values are then added 
to the database associated to that specific gesture (Step 2 of Fig. 
3). Finally, the system enters a pause state where it waits for 
another gesture to be added (Step 3 of Fig. 3.)  
 

 
 

Fig. 3.  Learning process for one gesture scheme. 

This process is repeated for each gesture that is to be added to 
the gesture database, automatically linked to a gesture index 
between 0 and the maximum number of gestures, so when 
recalled, can be readily associated to a robot command. The 
storage of these values in the gesture database is shown in the 
top left section of Fig. 4, where each gesture (5 gestures in this 
example) is labelled as A1, A2, A3, A4 and A5.  
 The second phase describes the real time gesture 
classification process. During this phase, the algorithm will 
compare the incoming raw data flow with existing gestures 
stored in the database during the learning phase. Here, the best 
matched gesture is determined and selected as the result of the 
classification.  This is represented in Fig. 4. The incoming raw 
data (A6) incorporates 8 EMG sensor values, which can be 
successively compared with all the existing gestures available 
in the database, calculating a matching score (Mscore) for each. 
The matching score is calculated using the following equation: 
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where I is the incoming data and D is the existing data. The 
lower the matching score, the closer the incoming data are to 
the database values. The gesture corresponding to the lowest 
matching score is then selected and published in the ROS topic 
“/rt_cmd” at a rate of 50Hz. 

C. Accuracy Tests 
In order to determine the system performance, a set of 

experiments was conducted using a number of participants 
completing a number of gestures. The gestures varied in 
complexity and are grouped into six gesture sets, as presented 



in Fig. 5. To ensure the system is tested to its full capability, 
gesture set E was introduced, which is suspected to be more 
difficult for the system to classify than the other gesture sets as 
the gestures included in set E consist of minimal muscle 
movement differences between gestures, making it very 
difficult to decipher between the sensory values. 

Initially, five participants were selected to perform a set of 
gestures to determine the algorithm’s accuracy. Each 
participant first completed the one-shot learning phase by 
making each of the gestures, which is subsequently stored in the 
gesture database. Next, each participant was asked to randomly 
reproduce each previously trained gesture 10 times and the 
algorithm’s predictions were recorded. Each prediction has 
been categorized as true positive if the classifier recognized the 
gesture correctly and as true negative if the system recognized 
another gesture from the true one. These operations were then 
repeated for each of the six different gesture sets. To avoid 
muscle fatigue, ample rest periods were taken during testing for 
all participants involved. 

 
 

Fig. 4.  Developed algorithm for real time classification phase. 

 
 

Fig. 5.  Gesture sets used in algorithm accuracy testing. Basic gestures and sets A-D were also used for tests conducted in [8] 
 

  
D. Robotic Experiment 

To demonstrate the versatility and the wide range of 
different robots the system can adapt to, the proposed algorithm 
is  utilized  to  simulate   the   control   of   two   different   robot  

 

platforms using Gazebo. The Turtlebot3 was used to 
demonstrate the systems capability for controlling mobile 
robotic platforms and the Tiago robot was used to demonstrate 



the capability of the system for controlling manipulator arm 
platforms.  

As depicted in Fig. 6, a link node (“/rt2turtle”) has been 
created to convert the classifier predictions to twist1 messages 
published into the “/cmd_vel” topic which is subscribed by the 
robot simulation to trigger movements. This conversion node is 
important as it allows the input mapping between gesture 
groups and robot’s movements. For example, when the first 
gesture is recognized by the classifier, it will send the value 0 
to the “/rt2turtle” node which will convert it to a specific 
command that depends on the mapping. 

 

 
Fig. 6.  Integration of the developed ROS package (green nodes) for control of 

the Turtlebot3 robot platform (grey nodes). 

For the Turtlebot3, three different gesture sets have been 
mapped to control the robot’s movements. First, gestures from 
the set of basic gestures (Fig. 8) were mapped to control the 
Turtlebot3 robot. Next, gestures from the gesture set A in Fig. 
5 were used to control the robot. Finally, the last control 
mapping used different finger contractions when the 
participant’s hand was lightly resting on an anti-stress ball (Fig. 
7); this provided a more controlled finger movement when 
conducting each gesture.  

 
 

Fig. 7.  Gesture mapping to control the Turtlebot3 movements with anti-
stress ball. 

 
To adequately evaluate the gesture recognition system, a 

path navigation experiment was set up to test each of the 
three gesture mappings described above and compare these 
with the use of keyboard controls to manoeuvre the robot. 

                                                        
1 Very common ROS message type 

 
Fig. 8.  Gesture mapping to control the Turtlebot3 movements with basic 

gestures group. 
 
The aim of this experiment was to control the Turtlebot3 
robot to traverse a specific path as shown in Fig. 9, and to do 
this in the most efficient time possible. It will then be 
possible to compare the developed system efficiency using 
different gesture sets with the classic keyboard teleoperation. 
The tests were conducted using five different participants 
where each had five minutes to get familiar with each of the 
four different command groups before beginning the 
experiment. 
 

 
Fig. 9.  Path the subjects were asked to follow. 

 
Fig. 10.  Tiago robot articulated arm movements. 

III. RESULTS 

A. Accuracy Tests 
Fig. 11 shows the accuracy results of the proposed gesture 

recognition system and the associated standard deviation for 
each gesture group. The result average is 98.8% (Sd: 1.69%) 



for successful prediction of the basic gesture set and 88.3% (Sd: 
3.42%) for the gesture sets A to D in Fig. 5. For gesture set E, 
which is much more complex, the successful prediction average 
is 61.6% (Sd: 16.21%). 

As a comparison, in the study in [8], a maximum accuracy 
of 95.64% (sd: 5.45%) was found with a gesture set very similar 
to the basic gesture set in Fig. 5. With this kind of gesture set, 
the proposed algorithm produces a more accurate result, 
obtaining 98.8% (Sd: 1.69%) accuracy. 

The gesture set E recognition accuracy average is 61.6% 
(Sd: 16.21%) which is acceptable for this kind of gesture series 
due to the particularly high similarity of all the group E 
gestures. If the accuracy of a completely random classifier with 
a group size of 5 was considered, the rate of correct prediction 
would be 20%. Therefore, even with the demonstrated 
reduction of accuracy for the particularly complex gestures in 
set E, the proposed approach is still producing an accuracy that 
is 41.6% higher than if a random prediction would have been 
made. Also, it should be noted, as shown in Fig. 11, gesture set 
E has a very high standard deviation (16.21%) due to significant 
differences between all subjects. 

The deviation of accuracy between the set of basic gestures, 
gesture sets A to D and gesture set E is likely to be associated 
with the difference in difficulty between these gesture sets and 
the variance of muscle movement required between each of the 
gestures within any particular gesture set. For example, the 
basic gesture set is considered easiest for the system to classify 
because of the very wide differences between the gestures in 
this set. When comparing this to gesture set E, the minimal 
muscle movement between each gesture within this set makes 
it much more difficult for the classifier to correctly make the 
correct gesture classification. 

 
Fig. 11.  True positive rate in function of the gesture group. 

 

B. Robotic Experiments 
Fig. 12 shows the results of the path navigation experiment 

with the Turtlebot3 robot. The average time participants took to 
finish the path (expressed in seconds) for each of the four 
gesture sets is provided. 

It can be seen from Fig. 12 that some gesture sets such as 
the anti-stress ball (Fig. 7) and the basic gesture set (Fig. 8) 
seem to suit the control of the Turtlebot3 better than gesture set 
A. This could be due to the participants finding these gesture 
sets to be more intuitive for robotic control. It is easier to 
remember that a side finger gesture is associated with a turning 
robot movement with the anti-stress ball than a several fingers 
gestures as used in gesture set A. 
 

 
 

Fig. 12.  Path traversal time utilising different mapped gesture sets. 

It is also interesting to compare the keyboard control group 
with the gesture sets. There is on average a gain of 23.70s (Sd: 
16.44%) when using the two most suitable gesture groups 
(basic gestures and anti-stress ball) when compared with using 
the keyboard, which is a very significant difference.  

IV. CONCLUSION 
A new versatile one-shot learning approach to classify both 

finger and wrist gestures is discussed. The main objective of the 
proposed strategy is to create a gesture recognition system that 
is easy to train (one-shot learning), does not require large 
database storage, is computationally efficient, yet still accurate 
when compared with alternative classic machine learning 
classifiers (e.g. SVM). It has been demonstrated that the 
developed algorithm is versatile in both the variety of gestures 
the system can detect and the capability to control various 
robotic platforms. Although some physical limitations were 
found as shown in the accuracy results, the one-shot learning 
approach offers a wide range of gestures that can be used to 
control many robotic platforms, using computationally 
inexpensive training and real-time classification. This enables 
the proposed gesture recognition system to run on a 
minimalistic computing platform such as the credit card sized 
Raspberry-Pitm, further enhancing the usability of this system 
for embedded robotic platforms. 
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