
Adoption of the activation function fusion approach
to identify human activity recognition in a
semi-supervised neural network
Netzahualcoyotl Hernandez1, Chris Nugent1, Ian McChesney1, Shuai Zhang1, Jesus Favela2

1Ulster University, Newtownabbey, Belfast, Northern Ireland, UK
2Ensenada Center for Scientific Research and Higher Education (CICESE), Baja California, Ensenada, Mexico

Abstract

INTRODUCTION: Neural networks are a popular type of algorithm for human activity monitoring which can 
build intelligent systems from labelled data in an automated fashion. Obtaining accurately labelled data is 
costly; it requires time and effort, which can be cumbersome because it interrupts the user activity stream. 
In conjunction with the ubiquitous presence of embedded technology, neural networks present new research 
opportunities for human activity monitoring in smart home environments.

OBJECTIVES: We propose a human activity classification method that requires a limited amount of 
labelled data, which consists of a concatenation method for classifying human activities built upon the fusion 
of neural network activation functions.

METHODS: Our methodology builds a neural network model that receives the sensor data through the input 
layer to then distribute it among the different vertical hidden layers, which implement different activation 
functions simultaneously. Next a hidden layer combines activation functions by utilising a concatenation 
method. Finally, the neural network provides classes to the unlabelled sensing data. We conducted an 
evaluation utilising an open-access dataset. We compared the activity recognition accuracy of our approach 
utilising 25%, 50%, and 75% of labelled data against a conventional shallow neural network trained with the 
100% of labelled data available.

RESULTS: Results show an improvement in the accuracy of the activity classification regardless of the portion 
of labelled data available. It was observed that the highest achieved accuracy when using 25% of activation 
function fusion data outperformed results compared to when using 100% of labelled data in a conventional 
shallow network (i.e., increase in accuracy of 2.7%, 3.7%, 4.8%, and 0.9% across the activity recognition of 
four subjects).

CONCLUSION: The approach proposed showed an improvement in the accuracy of classifying human 
activity when a limited amount of labelled data is available.
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1. Introduction

In recent years we have experienced the widespread
use of mobile devices such as smartphones and smart-
watches. Similarly, the interest in research on embedded
sensors in daily life objects (e.g., kitchen appliances)
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is growing, which enables opportunities in the field
of computer engineering that makes user’s interactions
richer through applications which can build on this
variety of sensing data. This ubiquitous presence of
sensing technology opens the opportunity to assist
users in areas such as smart homes [27], rehabilitation
[25], health monitoring [33], and activity recognition
[23].

Activity recognition is the problem of identifying
human actions given a collection of sensed data. It
takes advantage of off-the-shelf technologies available
within the user’s environment (e.g., smartphones,
smart-watches) to enable the collection of data from
daily living scenarios. In this context, machine learning,
can help in the automatic recognition of daily living
tasks due to its capacity to handle differences between
sensor readings and features in the domain, for what
neural networks have been shown to be an effective
machine learning approach in such scenarios [23].

1.1. Neural networks
A neural network (NN) is an interconnected assembly
of simple processing elements, whose functionality is
inspired by the human neuron. The processing ability of
the network rely in the inter-unit connection strengths
obtained by process of adaptation by learning from a set
of training patterns, modelled after the human brain to
recognise patterns in a given set of data [24, 26].

In order to recognise patterns, a NN learns to
approximate a relationship between inputs and outputs
(assuming they relate by correlation of causation)
[26]. In the process of learning and classification,
a NN can rely on two alternatives: i) experience,
in which case, a successful outcome depends upon
labelled dataset. Alternatively, ii) characterising data
and finding similarities among them, in which case
there is no labelled data available; therefore, the
NN is meant to learn from clustering segregation or
association rules. These approaches are also known as
supervised learning [29] and unsupervised learning [8]
respectively.

Supervised learning is an approach that requires a
large amount of labelled data available for training
purposes [3, 4], the generation of which is expensive
and time-consuming. Unlike supervised learning,
however, semi-supervised learning methods, maximize
the potential of the portion of labelled data available.
They aim at leveraging the amount of labelled
data to provide a higher generalisability within the
classification classes.

The problem with activity recognition methods
requiring a large amount of labelled data is the limited
annotation available in day-to-day scenarios where
human activities are unexpected and the impact that
the lack of unlabelled data can have on those activity

recognition models. Unlike supervised learning, the
unsupervised approach does not depend on labelled
data to cope with its task. However, considering that
there is no knowledge known apriori, unsupervised
approaches can lead to lower accuracy.

Overall, achieving high-performance in activity
recognition with limited labelled data is a challenging
topic that has attracted researchers’ attention in recent
years [16]. The problem of human activity recognition
motivates different approaches, such as feature learning
adjustments and weight extrapolation for which NN has
proven to be effective. For example, Ding et al. proposed
a method to efficient NN using weight extrapolation
under the same feature space, demonstrating the
effectiveness of feature treatment to achieve correct
class classification [6]. Other approaches, include
handcrafted annotation under the concept of active
learning, where a trained model can iteratively be re-
trained upon user’s feedback annotation as new data
emerge [2]. Stikic et al. proposed utilising a graph-based
approach, which connects labelled and unlabelled
data and builds multiple graphs to propagate the
labels based on the similarity between features [31].
Although feasible, these approaches present the issue
of interrupting the user’s day-to-day activities or rely
on a single sensory modality. In the context of human
activity recognition, disrupting the user’s activities can
affect the correlation between labelled and unlabelled
data, whereas a single sensor modality limits the
acquisition of rich data available nowadays from the
ubiquitous technology available in activities of daily
living.

1.2. Data fusion
In this context, data fusion exploits the natural
synergy brought about by use of multiple data
sources. It consists of the integration of multi-sensor
data that exploits the natural synergy brought by
multiple sources to achieve inferences that could not
be feasible from a single sensor [20]. Some recent
research has successfully adopted data fusion as a
technique to recognise human activities, for example
G. Abebe and A. Cavallaro described a study in which
they concatenated feature information from different
technology domains (i.e., inertial sensing and first
person video images) by implementing a classification
model over a NN [1]. Similarly, under the concept
of transfer learning, N. Hernandez et al. showed the
benefit of data fusion by selecting and fusing features
from across two different classifier models, with activity
recognition higher compared to the accuracy achieved
by the models individually [11]. Z. Wang et al. approach
used kernel fusion upon extreme learning machine
techniques in which they utilised Gaussian kernels [32].
Other research in sensor fusion has shown positive
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results when analysing mobile and ambient sensing
technology for activity recognition. These studies
achieved high classification accuracy by fusing different
data features, sensor types, or algorithm kernels which
enable them to maximise the information contained
across these multi-modal sensor streams.

In this paper, therefore, we focus on the benefits
of fusion data as an elegant approach to design a
form of feature derived from activation function fusion
when small portions of labelled data are available. We
elaborate on fusion data being a technique that has
been explored to improve the recognition of activities
in machine learning. Our interest in NN relies on
the computational benefit of Deep Learning in NN
from implementing multiple layers to progressively
extract higher-level features. In this paper, therefore, we
elaborate and present the results of our methodology
that proves to be effective when utilising two hidden
layers; one of which consists of three vertical layers,
which shows the benefit of fusing activation functions
and opens the opportunity for developing more
complex NN.

Although to the best of our knowledge, activation
function fusion in NN is a topic that has not been
explored before, in Section 2, we discuss the closely
related work. Section 3 presents our approach and
methodology, in which we give a detailed description of
the dataset and experimental setting. We conclude the
paper with results, future work, and a brief discussion
along Section 4 and 5; respectively.

2. State of the art
In general, a NN consist of three layers, Input-, Hidden-
, and Output -layer. In contrast to a traditional NN,
which builds upon a single hidden layer, modern NN
structures consist of recurrent feedforward networks
that are organised having two or more hidden
layers. This approach benefits from the computational
power derived from implementing multiple layers to
extract higher-level features progressively [9]. Layers
are constructed out of nodes, which is where the
computation happens. Nodes connect in such a way that
each layer’s output represents the subsequent layer’s
input. A node combines input from the data with a set
of coefficients calculated based on a given activation
fusion, which fires or is activated when it encounters
sufficient stimuli.

2.1. Activation function
Activation functions are a biological inspiration from
activity in the human brain, where different stimuli
activate different neurons. In this context, an activation
function is an algorithm that shapes the behaviour of
a NN by assigning significance to inputs concerning
what the algorithm is trying to learn; hence, it will

either amplify or dampen input data aiming to uncover
patterns within the given data [10].

To illustrate the activation function functionality, in
Figure 1 we show a neuron, which receives data as
a set of numerical inputs x1, x2, ..., xn which is then
combined with a set of weights w1, w2, ..., wn and a
bias element in order to produce a single numerical
value y, computed by the activation function α as y =
α((w1x1, w2x2, ...wnxn) + b). In general, the activation
function determines the type of function that the
NN represents. Some of the most common activation
functions are the linear, hyperbolic tangent, logistic,
and rectified linear [21].

Figure 1. Graphical representation depicting a basic unit of a
neuron. Where x = numerical inputs, w = weight, b = bias, α =
activation function, and y = outcome.

Given that each activation function processes their
input based on particular mathematical properties,
some of them will activate a neuron when their value
overtakes a certain threshold, while other activation
function would remain inactive. Hence, performing an
arithmetical calculation (e.g., adding or subtracting) on
the outcome from different activation functions can
lead to the cancellation of their properties. In this
regards, data fusion offers the opportunity to associate
data without altering their properties.

2.2. Multimodal fusion
Data fusion can be defined as a multiple level or
multifaceted process to detect, associate, correlate,
estimate, and combine data and information from
several sources [19]. The integration of multi-sensor
data exploits the natural synergy brought by multiple
sources allowing for useful information gain and
achieving inferences that could not be feasible from a
single sensor. In this context, therefore, a large volume
of heterogeneous sources (e.g., technology capacity
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or device position) might leverage data analysis and
enhance decision-making [20].

There are different architectures to data fusion, which
fall into three general categories: direct fusion (i.e.,
competitive type), representation via feature vectors
(i.e., complementary type), and processing of each
sensor to achieve high-level inference (i.e., cooperative
type). Depending on the data conditions, a particular
mechanism should drive the data towards one or
another approach. For instance, redundant data can be
treated at the raw level involving classic estimation
methods, while complimentary data can operate at
the feature level [13]. Due to the intrinsic nature of
the methodology proposed in this paper, we focus
on data fusion using two architecture categories. We
utilise cooperative fusion in which the sensing data
provided by the input sources represents different parts
of the scene (i.e., wearable and kitchen appliances) to
achieve a piece of complete global information. Also,
we utilise complementary fusion by adopting different
NN’s activation functions, in which the information
provided represents different perspectives from the
same scene and is combined to achieve an outcome
with properties wich are more global than the scene
achieved by a single view. Building the appropriate
models for multimodal fusion (i.e., models where
information consists of various sensing technology),
is not trivial. The complexity relies on the technical
differences between sensor data.

In recent years, data fusion techniques have been
shown to be effective in problems aligned to activity
recognition. For example, in previous work, the authors
explored the feasibility of recognising walking and
standing activities from acceleration and thermal
image sensing by fusing the features from both
sensing technologies. Results showed an improvement
in the classification of about 10% compared to
conventional ensembles [11]. Song et al., investigated
and conclusively demonstrated an alternative method
to create dense embedding for data using kernel
similarities and adopting NN architectures [30].
Oswaldo Ludwig et al. proposed a classifier-fusion
schema using learning algorithms, in which they
utilised feature extractors and classifier combinations
to achieve a higher activity recognition accuracy [12]. In
related work, Friday et al. compared the performance
of single and multi-sensor fusion for human activity
recognition using accelerometer and gyroscope sensors.
They considered seven classification algorithms. The
evaluation results show the significant impact of
multi-sensor fusion for recognising human activities
demonstrating the feasibility of data fusion [22].

Another related data fusion approach proposes to
combine different kernels to enhance the discrimination
power of performance in convolutional NN classifiers
[14]. In this context, the idea behind kernel fusion relies

on utilising multiple kernels instead of feature selection
in order to create a discriminative matrix of the
kernel. Kernel fusion has attracted significant attention
in the research community, many approaches have
been studied [17] and been verified effective in areas
such as Extreme Machine Learning [5], and Multiple
Kernel Learning [15]. For example, Liu et al. studied
Optimal Neighbourhood Kernel Learning which treats
a pre-specified kernel as a "noisy" observation of an
optimal kernel and learns the optimal kernel within
the neighbourhood by building a constraint within
a parametrised model [18]. Wang et al. investigated
the benefit of kernel fusion for NN; they presented
a practical method consisting of building a particular
form of feature-level fusion derived from combining
two or more kernels [32].

In this regards, different fusion techniques have been
explored in different abstraction levels such as data,
features, and kernels in convolutional NN; however,
activation function fusion remains unexplored. Given
the relevance of activation function in NN, in this
paper, we focus on investigating the benefit of fusing
activation functions as an elegant approach to exploit
inferences that could not be feasible from a single
activation fusion.

3. Overview of methodology
As illustrated in Figure 2, the proposed method focuses
on scenarios in which only a portion of labelled data
is available. Collected sensor data is first prepared
by synthesising motion-sensing data and adopting an
imputation method to address missed data (Figure 2-a).
The NN receives the sensor data through the input layer
to then distribute it among the different hidden layers
(Figure 2-b), which are meant to implement different
activation functions (Figure 2-c). A next hidden layer
fusion previous activation functions by utilising a
concatenation method (Figure 2-d). Finally, the NN
provides respective classes to the unlabelled sensing
data (Figure 2-e).

Unlike conventional NN, our proposed methodology
suggests implementing a collection of hidden layers
growing vertically (Figure 2-c). The motivation for this
approach is that we can extract the pattern signature
from different activation functions. As shown in Figure
2-c and detailed in line 6 of Algorithm 1, the flexibility
of this approach is the ability to use an unlimited
number of functions. As presented in the pseudo-
code of Algorithm 1, we first define the collection of
activation functions to fusion (i.e., α) and feed the
inputLayer with the semi labelled dataset (i.e., XL). We
then create a sequence of hiddenLayers (i.e., line 4-6)
utilising the previously defined activation function (i.e.,
α[]); note that the characteristic of the hiddenLayer is
flexible, hence each collection of activation functions
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Figure 2. Flow diagram that illustrate the activation function fusion flow process. It begins by retrieving data from the different sensing
technology (left side), fusing data collection of steps as it is the core structure of our methodology (centre), and output achieved (left
side).

will outcome different results. Finally, we make
use of a concatenation function commonly provided
by machine learning libraries1 (i.e., NN.concatenate)
to fusion the NN’s layers and build our activity
recognition model (i.e., NN.buildModel).

Algorithm 1 Model building algorithm utilising fusion
activation functions for activity recognition.

INPUT: XL
OUTPUT: y⊕

1: Library neural network as NN
2: α[] = {’relu’, ’sigmoid’, ’tant’, ’elu’, ...}
3: inputLayer = NN.inputData(XL)
4: hiddenLayer1 = NN.setLayer(α[1])
5: hiddenLayer2 = NN.setLayer(α[2])
6: hiddenLayerN = NN.setLayer(α[n]) . This represent

the flexibility of the approach by illustrating how
other activation functions can be adopted.

7: outputLayer = NN.classify()
8: fusionLayers = NN.concatenate(hiddenLayer1, hid-

denLayer2, hiddenLayer...)
9: model = NN.buildModel(inputLayer, fusionLayers,

outputLayer)
10: y⊕ = NN.classify(model)

Given that each activation function consists of a
particular mathematical property that then models
the received data, our methodology is designed under

1www.tensorflow.org

the architectural schema of cooperative and comple-
mentary data fusion. The cooperative approach com-
bines the sensing data from two different technology
domains, such as wearable devices and kitchen appli-
ances with the benefit of producing a more compre-
hensive view. On the other hand, the complementary
approach enables the representation of different parts
of a scene by adopting different activation functions
as part of the NN structure and thus obtain global
information to achieve high-level inference. Overall,
our methodology’s contribution relies upon the ben-
efit from the NN’s activation function level, where it
receives a set of inputs which then are processed in
parallel by a defined set of activation functions.

In Figure 3, we observe how a single entry
provided thought the Input layer is replicated and
simultaneously distributed in n number of Hidden
vertical layers; each one implementing a different
activation function. The activation function fusion
process happens at the second hidden layer, combining
the outputs of the n individual activation functions. The
Output layer will then analyse the new set of values.

To properly define our methodology, with reference
to Figure 3, let α1 and α2 be two valid activation
functions and XL the semi-labelled dataset, then α3
expressed as following is also a valid activation
function:

α3 = α1(XL)||α2(XL) (1)

The activation function fusion consists of the
concatenation of all outputs of the form yα1yα2 where
yα1 is an outcome from α1 and yα2 is an outcome from
α2. For example:
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Figure 3. Graphic representation of the activation function fusion proposed in this method. Where XL represents the semi-labelled
data retrieved, α stands for the activation functions, y depicts the activation functions’ outcome and y⊕ its concatenation.

yα1 = α1(XL)

yα2 = α2(XL)

yαn = αn(XL)

(2)

Where yα are outcomes from the classification for the
activity labels provided in XL. Hence:

y⊕ = {yα1yα2 : yα1 ∈ XL, yα2 ∈ XL} (3)

Assuming that there is no restriction between
activation functions, this method can assemble a large
number of paired activation functions (e.g., tanh &
softmax, elu & softplus, relu & linear). In this paper, we
have empirically explored the impact of tuple activation
function by permuting nine different functions (i.e.,
tanh, softmax, elu, softplus, softsign, relu, sigmoid,
hard_sigmoid, and linear).

Next, we present the evaluation of our approach on
one publicly available human behaviour dataset, where
we explore the research questions: To what extent does
the activation function fusion benefit transfer learning
activity recognition models?

3.1. Dataset description
OPPORTUNITY is an open-access collection of sensing
data gathered in a realistic environment (i.e., kitchen).
It’s built upon ubiquitous sensing technologies (i.e.,
motion data) available in wearable and mobile devices
to showcase the capabilities of sensing motion in
activity recognition tasks. In this context, we addressed
this study to utilise motion technology, given its widely
available in daily use technology such as watches and
mobile phones; which is of interest to the research
community.

We utilised the OPPORTUNITY activity recognition
dataset [28], in which data was collected from four
subjects performing scripted ADL (Activities of Daily
Living) in an adapted home environment that simulates
a kitchen. Our particular interest with this dataset
is because of the rich overlap of sensing data from
heterogeneous sensing devices (i.e., wearable, kitchen
appliances, and environmental devices) in which
acceleration, inertial measurement unit (IMU), and
binary sensors were considered. In this context, each
participant completed five repetitions of 17 different
activities, such as grooming, relaxing, making/drinking
coffee from a cup, preparing/eating a sandwich, and
executing a simple-movement drill. The average length
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of each activity lasted from 2 to 5 seconds (i.e.,
107±44 data points) with a sampling frequency of
30Hz. Overall, the dataset consisted of approximately
6 hours of data recorded. We included data from
ambient sensors (e.g., dishwasher doors), kitchen
appliances (e.g., cutlery), and on-body sensors which
captured the subject’s performance from different views
simultaneously.

3.2. Data preparation
Given the interest of this study, we have focused on
motion sensing from tri-axial sensors as we study the
benefits of ADL’s recognition in a wearable system [28].

The acceleration signal is synthesised by extracting
the output voltage, which is mapped from the ax, ay,
and az axes as they are orthogonal to the decomposition
of the actions performed. Due to the magnitude of
the acceleration with no directional information, the
acceleration is orientation independent [5].

Imputation methodology based on the previous
sample was implemented for handling missing data in
the dataset. Feature data was segmented in window of
500ms with 50% overlap. The selection of features was
based on previous studies that have proven them to
be effective modelling a NN to classify ADL. Features
such as location aren’t included since the activities
performed were conducted in a single environment (i.e.,
kitchen).

3.3. Experiment setup
We first evaluated the performance of our NN using
the wearable sensing data points from the previously
described dataset. We explored the benefit of activation
function fusion by permuting the eight activation
functions available in the Keras API.

Since NN’s activation function computes in a par-
ticular manner (i.e., implementing respective neuron
algorithms) by finding patterns in a given dataset (i.e.,
y = α((w1x1, w2x2, ...wnxn) + b)). In this paper, we lever-
age the NN by treating the different activation function
outcomes (i.e., yαn) as new inputs, therefore, we can
compute a set of outcomes from each of the activation
functions (i.e., y⊕ = yα1||yα2||...||yαn). In order to show-
case our methodology, we conducted our experiments
by permuting the different activation function in tuples
consisting of two activation functions.

The dataset was pre-processed using Matlab 2018b
(as detailed in Section 3.2). The NN is implemented in
TensorFlow using Keras to build our models. We have
empirically settled our NN with a Rectified linear unit
(ReLU) as the activation function of the input layer, and
Sigmoid activation function of the output layer. Our NN
is trained for 500 epochs under a fully connected stack
which implements two hidden layers; one of which

consists of three vertical levels and implements our
activation function fusion approach.

In this experiment, we used the leave-one-out-cross-
validation method for each user, in which ADL1, ADL2,
ADL3, and Drill sessions defined our source dataset,
and ADL4, and ADL5 session define our target dataset
as advised by the OPPORTUNITY’s authors [28]. The
process is conducted for each of the four subjects.

4. Results
To establish the feasibility of activation function fusion,
we considered the scenario in which the kitchen
appliances and wearable sensing devices are available
simultaneously and data has been labelled.

To answer our research question (i.e., To what extent
does activation function fusion benefit transfer learning
activity recognition models?), we randomly trained our
activity recognition model with 100, 75, 50, and 25%
of labelled data from each view in order to simulate
four scenarios in which different levels of fusion data
are available (subsequently referred to as fusion data).
If the activation function fusion concept proposed as
part of our methodology is feasible, we would expect an
improvement in the activity recognition model as more
fusion data is provided.

To validate the improvement of our methodology, we
built a conventional NN implementing a single hidden
layer over the ReLU as the activation function, so we can
compare the performance of our approach. Results are
presented in Table 1.

Subject Accuracy
S1 0.59455
S2 0.60114
S3 0.31173
S4 0.60025

Table 1. Benchmark results for the activity recognition model
utilising a single hidden layer NN and 100% of labelled data.

Given the motivation of this paper which relies on
maximizing the potential of the labelled data, next, we
highlight results based on the 25% of fusion data.

Tables 2 to 5, show the 10 highest activity recognition
model’s achieved when using 25% of the fusion data.
For example, in Table 2 results show that fusion
of "hard sigmoid" and "linear" activation functions
have an improvement of 15.17% compared to the
subject benchmark accuracy (i.e., 59.45%). Moreover, an
increase in the activity recognition of 2.74% is observed
when coping with the activity recognition model with
25% (i.e., 71.88% accurate) compared to 100% (i.e.,
74.62% accurate) of fusion data.

Similarly, in Table 3, we can observe that the highest
achievement concurs with the activation function
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Amount of fusioned data

Activation functions 100% 75% 50% 25%
(α1 + α2)

tanh elu 0.70184 0.71972 0.71021 0.73012
tanh softplus 0.70919 0.73304 0.71896 0.72416
softmax relu 0.74128 0.72403 0.75143 0.73557
elu softplus 0.70450 0.74952 0.73824 0.73278
softplus relu 0.74344 0.72809 0.73431 0.74635
softplus linear 0.72086 0.74952 0.73976 0.74115
softsign relu 0.71579 0.71465 0.72898 0.72822
relu linear 0.72568 0.74838 0.73989 0.73494
sigmoid linear 0.71528 0.73811 0.74115 0.73976
hard_sigmoid linear 0.71883 0.73735 0.75105 0.74623

Table 2. Tuples of the ten highest activity recognition model results for Subject 1, which benchmark accuracy is 0.59455.

tuple of Subject 1. For Subject 2 the benchmark
is 60.14%, results for "hard sigmoid" and "linear"
activation functions is 74.94%, representing a 14.83%
of improvement. Moreover, a positive increase in
accuracy of 3.72% is also observed when using 25% of
data compared to 100% of fusion data.

As presented in Table 4, for Subject 3 the improve-
ment achieved by our approach rises the activity recog-
nition model by 24.13% when adopting "sigmoid" and
"hard_sigmoid" as a activation function tuple. This
result represents an improvement of 24.14% when com-
paring agains the subject benchmark (i.e., 31.27%) and
using only the 25% of fusion data.

As presented in Table 5, for Subject 4 the improve-
ment achieved is 0.9% when comparing the benchmark
(i.e., 60%) against the model’s outcome of fusing the
"softsign" and "sigmoid" activation function tuple.

As it can be observed across all tables, a similar
accuracy level is achieved regardless of the dataset
used, which represents a positive benefit for recognising
activities in scenarios with constrained access to data.
Full results are presented in Appendix A.

5. Discussion and Conclusion
In view of the ubiquitous technology available when
undertaking activities of daily living, the underlying
activity recognition techniques need to leverage the
variability of these technology resources to achieve
the highest accuracy of activity recognition, especially
when data is partially available. In this paper, we have
proposed a novel approach to maximise the accuracy
of activity recognition given access to partially labelled,
heterogeneous sensor data.

The objective of our methodology was to maximise
the accuracy of human activity classification where
limited labelled data are available. Unlike other similar
studies that explore the feasibility of fusing sensor
data, we proposed an elegant approach in which a NN

processes data implementing a collection of different
activation functions as part of its hidden layers. The
hidden layer is built dynamically, which makes this
approach flexible to adopt as many activation functions
as wanted. To showcase the feasibility of this study,
however, we limited the number to two activation
functions.

Since a NN’s activation function computes in a
particular manner by finding patterns in a given
dataset, in this paper, we leverage the NN by treating
the different activation function outcomes (i.e., yαn) as
new inputs. In this way, we can compute a concatenated
set of outcomes from each of the activation functions
(i.e., y⊕ = yα1||yα2||...||yαn).

Our results have demonstrated that the fusion of
activation functions can perform well and is feasible
for human activity recognition utilising inertial sensor
devices worn by a user or embedded in kitchen
appliances.

We evaluated our methodology using OPPORTU-
NITY, which is an open-access dataset in which subjects
perform ADL while wearing sensor devices and inter-
acting with smart kitchen appliances. The empirical
study shows an improvement in activity recognition
accuracy, compared to traditional approach across four
different subjects. Note that there is notable variability
in the results of Subjects 3, which as reported by other
authors [7] is due to missing data.

As part of our analysis, in Tables 2 to 5, it was
observed that the highest achieved accuracy when
using only 25% of activation function fusion data
outperformed results compared to when using 100%
of labelled data in a conventional shallow network
(i.e., increase in accuracy of 2.7%, 3.7%, 4.8%, and
0.9% across the activity recognition of four subjects).
We hypothesise that, given the benefit of extracting
the pattern from a different perspective (i.e., activation
functions) tuples of data becomes more specific as more
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Adoption of the activation function fusion approach to identify human activity recognition in a semi-supervised neural network

Amount of fusioned data

Activation functions 100% 75% 50% 25%
(α1 + α2)

tanh relu 0.72048 0.71592 0.72632 0.73811
tanh linear 0.71592 0.72036 0.74115 0.74699
softmax softplus 0.70501 0.73900 0.71845 0.73177
softmax relu 0.74052 0.71211 0.74509 0.74572
elu softplus 0.72251 0.72340 0.71807 0.73697
elu linear 0.72936 0.74077 0.72682 0.73989
softplus linear 0.73748 0.75117 0.72099 0.73367
relu hard_sigmoid 0.71224 0.71490 0.71148 0.73202
sigmoid linear 0.72162 0.74153 0.73101 0.74217
hard_sigmoid linear 0.71224 0.72809 0.74750 0.74940

Table 3. Tuple of the ten highest activity recognition model results for Subject 2, which benchmark is 0.60114.

Amount of fusioned data

Activation functions 100% 75% 50% 25%
(α1 + α2)

tanh softmax 0.48548 0.53393 0.50438 0.49753
tanh softsign 0.11731 0.52454 0.49829 0.52074
tanh sigmoid 0.50907 0.44236 0.54217 0.51541
elu softsign 0.30273 0.31198 0.55764 0.52632
elu linear 0.43120 0.45529 0.43348 0.48332
softplus sigmoid 0.50881 0.47229 0.29030 0.54179
softplus linear 0.42498 0.36271 0.47736 0.50032
softsign hard_sigmoid 0.48104 0.47102 0.48434 0.48434
relu sigmoid 0.48129 0.44857 0.41978 0.48878
sigmoid hard_sigmoid 0.50425 0.52403 0.51427 0.55308

Table 4. Tuple of the ten highest activity recognition model results for Subject 3, which benchmark is 0.31173.

Amount of fusioned data

Activation functions 100% 75% 50% 25%
(α1 + α2)

tanh elu 0.60355 0.60317 0.60266 0.60736
tanh softplus 0.59632 0.61205 0.60355 0.60583
tanh softsign 0.59975 0.60583 0.60342 0.60685
tanh relu 0.59797 0.59962 0.60774 0.60723
tanh sigmoid 0.60634 0.59949 0.60089 0.60913
tanh linear 0.59987 0.60393 0.59391 0.60621
softmax hard_sigmoid 0.59797 0.60926 0.59290 0.60495
elu linear 0.59252 0.59924 0.60355 0.60786
softplus softsign 0.60254 0.60533 0.59759 0.60609
softsign sigmoid 0.60634 0.60659 0.60114 0.60380

Table 5. Tuple of the ten highest activity recognition model results for Subject 4, which benchmark is 0.60025.

data is adopted. Thus, 25% of data benefits the models
by building a more general model.

Given the positive results and the rich opportunities
that this approach opens, in the future, we will

investigate the extent to which activation function
fusion can be extended to three, four or more functions
in the tuple, as well as the characteristics of the
data which can affect performance of the model.
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Similarly, we will extend our investigation to consider
data collected in naturalistic conditions, in which
unpredictable human behaviour presents a paramount
challenge in the field.
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Amount of fusioned data

Activation functions 100% 75% 50% 25% Difference between 100 and 25%
(α1 + α2)

tanh softmax 0.71756 0.72302 0.70843 0.71122 -0.00634
tanh elu 0.70184 0.71972 0.71021 0.73012 0.02828
tanh softplus 0.70919 0.73304 0.71896 0.72416 0.01497
tanh softsign 0.74978 0.2941 0.71528 0.70666 -0.04312
tanh relu 0.70146 0.71921 0.72340 0.71389 0.01243
tanh sigmoid 0.71059 0.71668 0.72378 0.70082 -0.00977
tanh hard_sigmoid 0.70095 0.71744 0.70564 0.71046 0.00951
tanh linear 0.72226 0.71668 0.73633 0.71642 -0.00584
softmax elu 0.72822 0.70818 0.71401 0.70260 -0.02562
softmax softplus 0.70247 0.71414 0.71046 0.72086 0.01839
softmax softsign 0.73114 0.72099 0.72479 0.70843 -0.02271
softmax relu 0.74128 0.72403 0.75143 0.73557 -0.00571
softmax sigmoid 0.71655 0.73583 0.71224 0.72074 0.00419
softmax hard_sigmoid 0.69816 0.2941 0.72175 0.71351 0.01535
softmax linear 0.72353 0.72403 0.72226 0.72251 -0.00102
elu softplus 0.70450 0.74952 0.73824 0.73278 0.02828
elu softsign 0.71439 0.72682 0.71604 0.72403 0.00964
elu relu 0.69271 0.71769 0.73443 0.70970 0.01699
elu sigmoid 0.71224 0.72416 0.71477 0.70742 -0.00482
elu hard_sigmoid 0.71211 0.73938 0.71883 0.71097 -0.00114
elu linear 0.73228 0.71528 0.72416 0.72086 -0.01142
softplus softsign 0.71186 0.72758 0.74027 0.71173 -0.00013
softplus relu 0.74344 0.72809 0.73431 0.74635 0.00291
softplus sigmoid 0.70564 0.71541 0.70805 0.70438 -0.00126
softplus hard_sigmoid 0.71148 0.73025 0.7215 0.71769 0.00621
softplus linear 0.72086 0.74952 0.73976 0.74115 0.02029
softsign relu 0.71579 0.71465 0.72898 0.72822 0.01243
softsign sigmoid 0.70526 0.72226 0.72619 0.71084 0.00558
softsign hard_sigmoid 0.70336 0.71566 0.71680 0.71592 0.01256
softsign linear 0.71972 0.73152 0.74572 0.72086 0.00114
relu sigmoid 0.71706 0.73088 0.71376 0.70526 -0.0118
relu hard_sigmoid 0.70628 0.71389 0.72479 0.70399 -0.00229
relu linear 0.72568 0.74838 0.73989 0.73494 0.00926
sigmoid hard_sigmoid 0.70729 0.70793 0.71414 0.70120 -0.00609
sigmoid linear 0.71528 0.73811 0.74115 0.73976 0.02448
hard_sigmoid linear 0.71883 0.73735 0.75105 0.74623 0.02740

Table 1. Full results of the tuples for the activity recognition models for Subject 1. Complementary information of Table 2.
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Adoption of the activation function fusion approach to identify human activity recognition in a semi-supervised neural network

Amount of fusioned data

Activation functions 100% 75% 50% 25% Difference between 100 and 25%
(α1 + α2)

tanh softmax 0.71845 0.71325 0.71275 0.70919 -0.00926
tanh elu 0.70717 0.71617 0.72010 0.70679 -0.00038
tanh softplus 0.73418 0.72796 0.75460 0.70615 -0.02803
tanh softsign 0.71211 0.71668 0.71947 0.69803 -0.01408
tanh relu 0.72048 0.71592 0.72632 0.73811 0.01763
tanh sigmoid 0.72784 0.71414 0.71490 0.70577 -0.02207
tanh hard_sigmoid 0.69081 0.71668 0.71059 0.70958 0.01877
tanh linear 0.71592 0.72036 0.74115 0.74699 0.03107
softmax elu 0.72416 0.73989 0.70640 0.71034 -0.01382
softmax softplus 0.70501 0.73900 0.71845 0.73177 0.02676
softmax softsign 0.73570 0.72023 0.70159 0.70729 -0.02841
softmax relu 0.74052 0.71211 0.74509 0.74572 0.0052
softmax sigmoid 0.73240 0.71744 0.71858 0.71389 -0.01851
softmax hard_sigmoid 0.70120 0.29410 0.29410 0.70197 0.00077
softmax linear 0.71782 0.73469 0.72327 0.71909 0.00127
elu softplus 0.72251 0.72340 0.71807 0.73697 0.01446
elu softsign 0.71262 0.72175 0.71465 0.73215 0.01953
elu relu 0.71528 0.71160 0.72454 0.70514 -0.01014
elu sigmoid 0.72936 0.74724 0.72048 0.73075 0.00139
elu hard_sigmoid 0.70564 0.72238 0.72150 0.70070 -0.00494
elu linear 0.72936 0.74077 0.72682 0.73989 0.01053
softplus softsign 0.71262 0.71110 0.7116 0.71021 -0.00241
softplus relu 0.72365 0.71896 0.71579 0.72746 0.00381
softplus sigmoid 0.59074 0.72315 0.73253 0.71110 0.12036
softplus hard_sigmoid 0.71934 0.72200 0.72264 0.71198 -0.00736
softplus linear 0.73748 0.75117 0.72099 0.73367 -0.00381
softsign relu 0.71097 0.74192 0.73088 0.70552 -0.00545
softsign sigmoid 0.70501 0.71338 0.72911 0.71756 0.01255
softsign hard_sigmoid 0.72061 0.71934 0.70983 0.71477 -0.00584
softsign linear 0.73519 0.74914 0.71756 0.72961 -0.00558
relu sigmoid 0.71237 0.72809 0.71237 0.70120 -0.01117
relu hard_sigmoid 0.71224 0.71490 0.71148 0.73202 0.01978
relu linear 0.72150 0.73240 0.72048 0.71642 -0.00508
sigmoid hard_sigmoid 0.59696 0.72074 0.72327 0.71148 0.11452
sigmoid linear 0.72162 0.74153 0.73101 0.74217 0.02055
hard_sigmoid linear 0.71224 0.72809 0.74750 0.74940 0.03716

Table 2. Full results of the tuples for the activity recognition models for Subject 2. Complementary information of Table 3.
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Amount of fusioned data

Activation functions 100% 75% 50% 25% Difference between 100 and 25%
(α1 + α2)

tanh softmax 0.48548 0.53393 0.50438 0.49753 0.01205
tanh elu 0.46151 0.55041 0.48244 0.45086 -0.01065
tanh softplus 0.41509 0.44883 0.45694 0.40964 -0.00545
tanh softsign 0.11731 0.52454 0.49829 0.52074 0.40343
tanh relu 0.43855 0.50526 0.39556 0.42663 -0.01192
tanh sigmoid 0.50907 0.44236 0.54217 0.51541 0.00634
tanh hard_sigmoid 0.54052 0.47876 0.53304 0.44857 -0.09195
tanh linear 0.40089 0.45732 0.47432 0.40520 0.00431
softmax elu 0.39417 0.34103 0.47800 0.42549 0.03132
softmax softplus 0.39062 0.47914 0.39226 0.41332 0.0227
softmax softsign 0.50717 0.42942 0.44084 0.43957 -0.0676
softmax relu 0.38732 0.41002 0.40025 0.47204 0.08472
softmax sigmoid 0.41382 0.41484 0.45441 0.45986 0.04604
softmax hard_sigmoid 0.44223 0.41218 0.38288 0.32796 -0.11427
softmax linear 0.54990 0.36880 0.46265 0.42727 -0.12263
elu softplus 0.57299 0.40736 0.50146 0.42777 -0.14522
elu softsign 0.30273 0.31198 0.55764 0.52632 0.22359
elu relu 0.42980 0.50704 0.48205 0.38503 -0.04477
elu sigmoid 0.40977 0.53114 0.47381 0.30932 -0.10045
elu hard_sigmoid 0.52188 0.45529 0.45694 0.34547 -0.17641
elu linear 0.43120 0.45529 0.43348 0.48332 0.05212
softplus softsign 0.39429 0.49918 0.47242 0.46252 0.06823
softplus relu 0.40190 0.42105 0.42346 0.35549 -0.04641
softplus sigmoid 0.50881 0.47229 0.2903 0.54179 0.03298
softplus hard_sigmoid 0.39632 0.49017 0.52619 0.46963 0.07331
softplus linear 0.42498 0.36271 0.47736 0.50032 0.07534
softsign relu 0.52505 0.48903 0.41281 0.40406 -0.12099
softsign sigmoid 0.51592 0.46049 0.46367 0.46100 -0.05492
softsign hard_sigmoid 0.48104 0.47102 0.48434 0.48434 0.0033
softsign linear 0.47229 0.49461 0.42676 0.46569 -0.0066
relu sigmoid 0.48129 0.44857 0.41978 0.48878 0.00749
relu hard_sigmoid 0.49093 0.46075 0.44249 0.47229 -0.01864
relu linear 0.45580 0.48725 0.46164 0.43640 -0.0194
sigmoid hard_sigmoid 0.50425 0.52403 0.51427 0.55308 0.04883
sigmoid linear 0.48561 0.45225 0.36576 0.36766 -0.11795
hard_sigmoid linear 0.49245 0.35675 0.44667 0.42207 -0.07038

Table 3. Full results of the tuples for the activity recognition models for Subject 3. Complementary information of Table 4.
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Amount of fusioned data

Activation functions 100% 75% 50% 25% Difference between 100 and 25%
(α1 + α2)

tanh softmax 0.60013 0.60812 0.60545 0.60355 0.00342
tanh elu 0.60355 0.60317 0.60266 0.60736 0.00381
tanh softplus 0.59632 0.61205 0.60355 0.60583 0.00951
tanh softsign 0.59975 0.60583 0.60342 0.60685 0.0071
tanh relu 0.59797 0.59962 0.60774 0.60723 0.00926
tanh sigmoid 0.60634 0.59949 0.60089 0.60913 0.00279
tanh hard_sigmoid 0.60254 0.61002 0.61129 0.58998 -0.01256
tanh linear 0.59987 0.60393 0.59391 0.60621 0.00634
softmax elu 0.60545 0.59746 0.60444 0.60165 -0.0038
softmax softplus 0.60647 0.60342 0.60241 0.60254 -0.00393
softmax softsign 0.60380 0.60292 0.60241 0.60152 -0.00228
softmax relu 0.60025 0.60025 0.59493 0.59772 -0.00253
softmax sigmoid 0.60672 0.60571 0.59569 0.60292 -0.0038
softmax hard_sigmoid 0.59797 0.60926 0.59290 0.60495 0.00698
softmax linear 0.60051 0.59899 0.59797 0.60216 0.00165
elu softplus 0.60013 0.60254 0.5986 0.60203 0.0019
elu softsign 0.60837 0.60393 0.60634 0.60279 -0.00558
elu relu 0.60203 0.60482 0.60355 0.60063 -0.0014
elu sigmoid 0.60621 0.59899 0.59949 0.60368 -0.00253
elu hard_sigmoid 0.60495 0.61091 0.60583 0.60266 -0.00229
elu linear 0.59252 0.59924 0.60355 0.60786 0.01534
softplus softsign 0.60254 0.60533 0.59759 0.60609 0.00355
softplus relu 0.59949 0.60241 0.60089 0.60127 0.00178
softplus sigmoid 0.60190 0.60317 0.60406 0.60304 0.00114
softplus hard_sigmoid 0.60254 0.60101 0.60431 0.60216 -0.00038
softplus linear 0.59569 0.60406 0.59290 0.59696 0.00127
softsign relu 0.60659 0.60431 0.60888 0.60355 -0.00304
softsign sigmoid 0.60634 0.60659 0.60114 0.60380 -0.00254
softsign hard_sigmoid 0.60520 0.59784 0.60330 0.59467 -0.01053
softsign linear 0.60038 0.6038 0.59962 0.59759 -0.00279
relu sigmoid 0.60419 0.60837 0.60558 0.60038 -0.00381
relu hard_sigmoid 0.60254 0.60457 0.60127 0.60076 -0.00178
relu linear 0.59759 0.59391 0.60038 0.60025 0.00266
sigmoid hard_sigmoid 0.60507 0.60710 0.60216 0.59911 -0.00596
sigmoid linear 0.60076 0.60178 0.60596 0.59341 -0.00735
hard_sigmoid linear 0.60368 0.60507 0.59822 0.60317 -0.00051

Table 4. Full results of the tuples for the activity recognition models for Subject 4. Complementary information of Table 5.
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