

Irish Machine Vision and Image Processing Conference 2018

A Minkowski Distance-based Generalisation Method for Improving Centre Loss for Deep Face Recognition

Xin Wei, Hui Wang, Huan Wan and Bryan Scotney

ulster.ac.uk

IMVIP 2018

August 29-31, 2018

- 1. Introduction
- 2. The proposed method
- 3. Conclusion and future works

1. Introduction

1. Introduction

Facial recognition system:

a technology capable of identifying or verifying a person from a digital image or a video frame [1].

 Wikipedia contributors. (2018, August 27). Facial recognition system. In Wikipedia, The Free Encyclopedia. Retrieved 09:49, August 28, 2018, from https://en.wikipedia.org/w/index.php?title=Facial_recognition_sys tem&oldid=856753855

1. Introduction

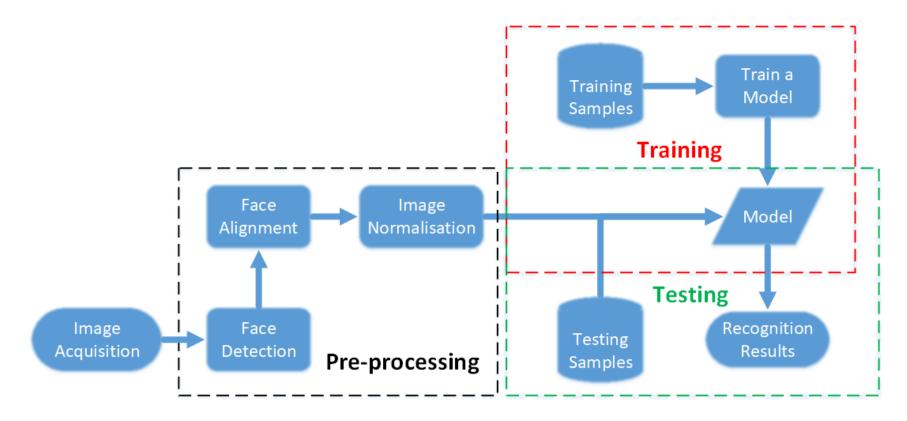


Fig. 1. The basic framework of a face recognition system.

1 Introduction

Traditional methods

Face recognition methods

Deep learning-based methods

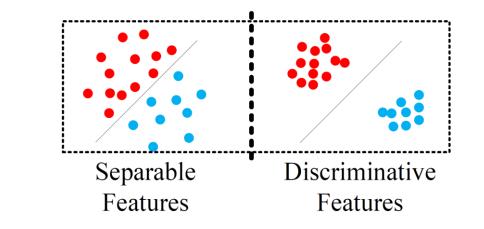
2. The proposed method
-- Minkowski Distance-based
Centre loss (MC loss)

2.1 Softmax Loss and Centre Loss

Ulster

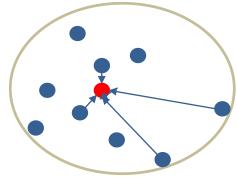
Softmax Loss:
$$L_S = -\frac{1}{N} \sum_{i=1}^{N} log \frac{e^{W_{y_i}^T f_i + b_{y_i}}}{\sum_{j=1}^{K} e^{W_j^T f_i + b_j}}$$
 (1)

where *N* is the batch size, *K* is the class number of a batch, $f_i \in R_d$ denotes the feature of the *i* th sample belonging to the y_i th class, $W_j \in R_d$ denotes the *j* th column of the weight matrix *W* in the final fully connected layer and b_i is the bias term of the *j* th class.



2.1 Softmax Loss and Centre Loss

Centre Loss:
$$L_C = \frac{1}{2} \sum_{i=1}^{N} ||f_i - c_{y_i}||_2^2$$
 (2)



where C_{y_i} denotes the class centre of the y_i th class

Total Loss:
$$L = L_S + \lambda L_C$$

= $-\frac{1}{N} \sum_{i=1}^N log \frac{e^{W_{y_i}^T f_i + b_{y_i}}}{\sum_{j=1}^K e^{W_j^T f_i + b_j}} + \frac{\lambda}{2} \sum_{i=1}^N ||f_i - c_{y_i}||_2^2$ (3)

where λ is the hyper-parameter for balancing the two loss functions.

The Minkowski distance of order *n* between two points X and Y:

$$D(X,Y) = \left(\sum_{i=1}^{k} |x_i - y_i|^n\right)^{1/n}$$
(4)

where $X = (x_1, x_2, ..., x_k)$ and $Y = (y_1, y_2, ..., y_k) \in R_k$. Therefore the *n*th power of the Minkowski distance of order *n* is:

$$D(X,Y) = \sum_{i=1}^{k} |x_i - y_i|^n$$
 (5)

MC Loss:
$$L_M = \frac{1}{n} \sum_{i=1}^N ||f_i - c_{y_i}||_n^n$$
 (6)

where $n \in R > 0$. Typically, *n* is set to be 2, 3, 4, ...

Ulster

Total Loss:
$$L = L_S + \lambda L_M$$
 (7)
= $-\frac{1}{N} \sum_{i=1}^N log \frac{e^{W_{y_i}^T f_i + b_{y_i}}}{\sum_{j=1}^K e^{W_j^T f_i + b_j}} + \frac{\lambda}{n} \sum_{i=1}^N ||f_i - c_{y_i}||_n^n$

where λ is the hyper-parameters for adjusting the impact of MC loss.

11/19

Indicator:
$$\left(\frac{|f_{ik}-c_k|}{|f_{jk}-c_k|}\right)^n$$
,

where c_k is the *k*th feature of a class centre, f_{ik} is the *k*th feature of sample *i*, f_{jk} is the *k*th feature of sample *j*. Sample *i* is on the edge of the class while sample j is near the class centre, and $\frac{|f_{ik}-c_k|}{|f_{jk}-c_k|} > 1$.

When n = 2, MC loss deteriorates to Centre loss. When n > 2, $\left(\frac{|f_{ik}-c_k|}{|f_{jk}-c_k|}\right)^n$ is greater than it was in the Centre loss.

Algorithm 1 shows the basic learning steps in the CNNs with the proposed Softmax + MC loss.

Algorithm 1 Learning algorithm in the CNNs with the proposed Softmax + MC loss.

Input: Training samples $\{f_i\}$, initialised parameters θ_C in convolution layers, parameters W in the final fully connected layer, and initialised class centres $\{c_j | j = 1, 2, ..., n\}$. Learning rate μ^t , hyperparameter λ , learning rate of the class centres α and the number of iteration $t \leftarrow 1$.

Output: The parameters θ_C .

- 1: while not converge do
- 2: Calculate the total loss by $L^t = L_S^t + L_M^t$.
- 3: Calculate the backpropagation error $\frac{\partial L^{t}}{\partial f_{i}^{t}}$ for each sample *i* by $\frac{\partial L^{t}}{\partial f_{i}^{t}} = \frac{\partial L_{s}^{t}}{\partial f_{i}^{t}} + \lambda \frac{\partial L_{M}^{t}}{\partial f_{i}^{t}}$.
- 4: Update W by $W^{t+1} = W^t \mu^t \frac{\partial L_S^t}{\partial W^t}$.
- 5: Update c_j for each centre j by $c_j^{t+1} = c_j^t \alpha \Delta c_j^t$.
- 6: Update θ_C by $\theta_C^{t+1} = \theta_C^t \mu^t \sum_i^N \frac{\partial L^t}{\partial f_i^t} \frac{\partial f_i^t}{\partial \theta_C^t}$.
- 7: $t \leftarrow t + 1$.
- 8: end while

Table 1: Verification performance of state-of-the-art methods on LFW and YTF datasets.

Methods	Source	Images	LFW(%)	YTF(%)
Deep Face [Taigman et al., 2014]	CVPR	4M	97.35	91.4
DeepID2+ [Sun et al., 2015]	CVPR	N/A	99.47	93.2
Fusion [Taigman et al., 2015]	CVPR	500M	98.37	N/A
FaceNet [Schroff et al., 2015]	CVPR	200M	99.63	95.1
Baidu [Liu et al., 2015]	arXiv	1.3M	99.13	N/A
Centre Loss [Wen et al., 2016]	ECCV	0.7M	99.28	94.9
Multibatch [Tadmor et al., 2016]	NIPS	2.6M	98.20	N/A
Aug [Masi et al., 2016]	ECCV	0.5M	98.06	N/A
SphereFace [Liu et al., 2017]	CVPR	0.5M	99.42	95.0
Range Loss [Zhang et al., 2017]	ICCV	1.5M	99.52	93.7
Softmax loss	N/A	3M	99.43	94.9
Softmax loss + Centre loss	N/A	3M	99.50	95.1
Softmax loss + MC loss (Proposed)	N/A	3M	99.57	95.3

3. Conclusion and future works

Conclusion

- We proposed a Minkowski distance-based generalisation method for improving Centre loss for deep face recognition.
- Experimental results on the LFW image dataset and the YTF video dataset show that the proposed method is highly competitive even compared with the state-of-the-art methods.

Future works

- Design better loss functions to further enhance the discriminative ability of features.
- Explore the relationship between the network structures and the loss functions, and find a stronger network structure.

Question and Answer

