
Understanding the relationships between rumen microbiome genes 

and metabolites to be used for prediction of cattle phenotypes 
 
Mengyuan Wang1, Huiru Zheng1*, Haiying Wang1, Richard J. Dewhurst2, Rainer Roehe2 
1School of Computing, Ulster University, United Kingdom 
2Future Farming Systems, Scotland’s Rural College, Edinburgh, United Kingdom 

*Email: h.zheng@ulster.ac.uk 

Abstract  

The growing world population is facing increased future nutritional needs for meat and milk which need to be produced 

with minimal environmental impact, e.g. reduced methane emissions from ruminants. The combination of metagenomics 

and metabolomics can be effectively applied to understand rumen microbial gene expression, metabolic mechanisms that 

affect methane emissions and to address the challenges of ruminant production. Using 36 rumen samples derived from 

two omics studies, we conducted an in-depth analysis of the differences in diets and methane emissions from rumen 

metabolites and microbial genes. The top five integrals with significant (P<0.0001) differences in terms of their intensity 

measured across sample groups were found to be the same when samples were divided based on diet treatments and 

methane emissions. Based on the combination of statistical analysis and network approaches, this paper investigates the 

relationships between rumen microbial genes and integrals associated with metabolites which could be used for prediction 

of cattle phenotypes. Up to 98% of microbial genes and metabolites have no significant (P>0.05) linear correlation. The 

sample correlation network constructed using both integrals associated with metabolites and relative abundances of 20 

microbial genes associated with methane emission exhibited a highly modular structure, which forms well-separated 

clusters according to different diet treatments. The evidence from this research confirmed the response of rumen microbes 

to different basal diets, and these activities subsequently affect methane emissions. 

 

1 Introduction 

Since 2006, atmospheric methane concentrations have in-

creased at a rate of 0.4% per year [1]. Therefore, reduction 

of methane emissions in agriculture is of great interest for 

research. Rumen microbes interact closely to digest fibre 

structure, whilst providing metabolic energy to the host and 

producing methane under the action of archaea. This is a 

natural process responsible for one-third of methane from 

agriculture [2], [3]. Understanding multi-omics interac-

tions is key to controlling rumen methane emission while 

meeting the growing demand for ruminant proteins.  

Metagenomics is a genomic strategy to understand genetic 

composition and community function of all microorgan-

isms contained in environmental samples [4]. However, the 

research found that the genome and proteome are still dif-

ficult to explain the interaction and activities involved in 

the metabolism pathway [5]. Metabolites are the final prod-

uct of the entire cellular biological process [6], and the 

quantitative levels of metabolites could reflect the change 

of microbiological systems. Compared with genomics and 

proteomics, metabolomics can provide more information 

relating to the response of organisms to environmental 

stimulus and the metabolic pathways [7]. 

Bioinformatics techniques are widely used for analyzing 

large-scale multi-omics datasets [8]. The network-based 

approaches have shown great potential in integrating 

different omics information while  being capable of 

capturing the fundamental properties of the microbial 

ecosystem including functional similarity and metabolic 

processes [9-10]. They have proven successful in bringing 

clarity to the complex relationship of microbes. For 

example, Wang et al. identified traits mircobial genes by 

constructed a co-abundance network and determined the 

threshold of the co-abundance network through a random 

forest algorithm, which improved the accuracy of the 

model [11-12].  

Based on the combination of statistical analysis and 

network approaches for the study of  36 rumen samples 

derived from two omics studies, this paper investigated the 

relationships between rumen microbial genes and 

metabolites which could be used for prediction of cattle 

phenotypes (such as methane emission). The rest of the pa-

per was organized as follows. Section II described the da-

tasets and the methodology of this study. Experimental re-

sults were presented in Section III, followed by discussion 

and conclusions. 

2 Data and Methodology 

 Dataset Description 

The experiment conducted by the Beef and Sheep Research 

Centre of Scotland’s Rural College (SRUC, Edinburgh, 

UK). This is a 2 × 2 factorial rotational experiment of gen-

otypes and diets which was designed by Roehe et al. [9]. 

The cattles in the experiment were offered two complete 

diets which consisting (g/kg Dry Matter Intake) of 500 

forage to 500 concentrate (FOR) or 80 forage to 920 

concentrate (CONC). 
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Data used in this study included methane emissions, rumen 

microbial gene abundance, and integrals associated with 

rumen metabolite. 1) Methane emissions: During the 

experiment, methane emissions (g/kg Dry Matter Intake) 

from cattle were measured individually for 48h in 

respiration chambers as described in Rooke et al.[12]. 

Rumen fluid was extracted for next generation sequencing 

analysis and NMR analysis. The corresponding data of ru-

men microbial gene and rumen metabolite were provided 

by SRUC [13-16]. 2)Metagenomics data: the 1461 micro-

bial gene with the relative abundance greater than 0.001 

were selected. 3)Metabolomics data which were derived 

based on the peak of 1H NMR (Nuclear Magnetic 

Resonance spectroscopy), which is in correspondence with 

the hydrogen atom of each signal in the sample. The 

relative intensity of the signals in the NMR analysis map 

reflects the relative content of each component in the 

sample. In this paper, 128 integrals obtained by NMR anal-

ysis were used to represent different metabolite concentra-

tions. Among them, 10 integrals were identified for the 

corresponding metabolites. After removing the samples 

with missing metabolite data, a total of 36 samples were 

included in the study [12].  

 Data Analysis 

The framework used in this study was illustrated in Figure 

1. The study is divided into three parts. Firstly, the t-test 

was used to verify whether there are significant differences 

in methane emissions and metabolites when cattle were fed 

different diets. After that, the correlation between micro-

bial genes and integrals were investigated. The signifi-

cance of correlation coefficient was corrected by using 

Bonferroni method [17]. The network approach was ap-

plied to construct a sample correlation network based on 

integrals and relative abundance of microbial genes asso-

ciated with methane emission, where nodes represent sam-

ples and the length of the edges indicates the strength of 

their correlation. The thresholds of correlation to construct 

the network were manually determined via correlation kur-

tosis distribution.  

In this research, the t-test was implemented by using R 

3.5.1 and the correlation between microbial genes and me-

tabolites was calculated using the Expression Correlation 

plugins of Cytoscape [18]. The venny plot was created us-

ing the Venny2.1 platform [19]. The network visualization 

is through Cytoscape 3.7.1 [18].   

3 Results 

 Factors Influencing the Abundance of 

Rumen Metabolites 

Based on methane emission levels, the samples were di-

vided into high and low groups when the difference be-

tween the average of the two groups reached the maximum. 

As expected, the two groups had significant (P<0.05) dif-

ferences (Figure 2). When t test was carried out on samples 

of different diets, the average methane emission of FOR 

group was significantly (P<0.05) higher than the CONC 

group (Figure 2). 

The t-test was carried out on all 128 integrals associated 

with metabolites. Interestingly, the top five integrals with 

significant differences (P<0.0001) in terms of their inten-

sity measured across sample groups (diet treatments and 

methane emission groups) were found to be the same (Ta-

ble 1); however, their association with metabolites are still 

unknown. Between FOR and CONC groups, there are 83 

integrals exhibiting significant (P<0.05) difference, while 

only 62 found to be significantly (P<0.05) different in 

terms of methane emission. There were 58 integrals found 

to be significantly (P<0.05) different in both diets and me-

thane emission groups (Figure 3). In addition, one integral 

associated with propionate was significantly (P<0.05) dif-

ferent between both diet treatments and methane emission 

groups. One butyrate signal and two propionate signals 

were significantly (P<0.05) different between two diet 

groups. In terms of the correlation between integrals and 

methane emission, only 10 integrals were found to be pos-

itive correlation with methane emission, and 92% of inte-

grals were negatively correlated with methane emission. 

 

 
Figure 1 A workflow to illustrate the key steps of this 

research 

 

 

Figure 2 Factors Affecting Methane Emissions  

 



 
Figure 3 Venny Plot of Metabolites from Different Groups 

 
Table 1 The Top 5 Significantly Different Integrals of 

Diets Group and Methane Emission Group 

 

Diet treatment Methane emission level 

Metabolites P value Metabolites P value 

Integral127 0.00000  Integral127 0.00000  

Integral21 0.00000  Integral21 0.00000  

Integral61 0.00000  Integral61 0.00000  

Integral66 0.00000  Integral51 0.00000  

Integral51 0.00000  Integral66 0.00000  

 Correlation between Rumen Micro-

bial Genes and Integrals Associated with Me-

tabolites 

The linear correlation coefficients between 1461 microbial 

genes and 128 integrals were all lower than 0.5 in which 

98% exhibited no significant (P>0.05) difference. About 

80% correlation were between -0.3 and 0.3. The top pairs 

in terms of absolute correlation between metabolites and 

microbial genes were listed in Table 2, in which only cor-

relation between K03415 and Integral59 was found to be 

significant (P<0.05). 

 

Table 2 Correlation coefficient between microbial genes 

and integrals of the top 5 

 

Microbial 

Gene 
Metabolites 

Correlation  

coefficient 
P Value 

K03415 Integral59 0.5019261 0.006 

K01493 Integral73 0.5007088 0.09 

K01813 Integral85 0.5005219 0.091 

K01783 Integral11 0.4997033 0.669 

K06987 Integral18 0.4975293 0.894 

 Correlation network analysis 

Sample correlation networks were constructed based on the 

integrals and abundance of microbial methane emission 

functional genes. As shown in Figures 4 (A) and (B), the 

correlation networks derived from the abundance of micro-

bial methane emission functional genes and integrals alone 

failed to differentiate between samples with different diet 

treatments. However, when combining the abundance of 

microbial methane emission functional genes and integrals 

associated with metabolites, samples with FOR are clearly 

separated from the rest of samples Figure 4 (C). Interest-

ingly the FOR sample (RR0003) is grouped with 8 CONC 

samples which deserves further investigation. Samples 

with similar methane emission levels does not show a 

closer correlation.  

 

 

 

 
Figure 4 Different colors for different diets: (A) Sample 

correlation network based on methane emission functional 

microbial genes; nodes:36, edges:369, thesrhold:0.91, blue 

nodes: FOR, yellow nodes: CONC. (B) Sample correlation 

network based on all metabolites; nodes:36, edges:210, 

thesrhold:0.995, red nodes: FOR, purple nodes: CONC. (C) 

Sample correlation network based on the combination of 

metabolites and methane emission functional microbial 

genes; nodes:36,  edges:225, thesrhold:0.98, red nodes: 

FOR, green nodes: CONC 

4 Conclusions and Discussion  

It has been shown that integration of different omics infor-

mation has potential to provide important insights into re-

sponse mechanisms of rumen microbes ranging from dif-

ferent genotype cattle to the environmental stimuli such as 

different diet formulation [1]. In order to explore how ef-

fectively combine the information of microbial genes and 

metabolite for future bovine phenotypic prediction, this 

study studies the relationships between integrals which as-

sociated with metabolites and microbial genes using 36 bo-

vine samples with two diet treatments and different me-

thane emission levels.  

1) As expected, we confirmed that the different basal diets 

strongly and significantly influenced the methane emis-

sions, and the methane emission level were significantly 



(P<0.05) higher in the FOR group than in the CONC group. 

Significant (P<0.05) differences of metabolites between 

the high and low methane emission groups were observed. 

Similarly, significant (P<0.05) differences between metab-

olites were also found in different diet groups. It is most 

likely that the basal diet changed the environmental condi-

tions in the rumen (such as pH) to affect microbial activity, 

which ultimately affected the methane emissions. When 

analysed the significant difference of the metabolite inte-

grals respectively in the methane emission groups and the 

diets groups, it was found the top five of each group are the 

same. And only 8% of all the integrals had positive corre-

lations with methane emissions. This provides clues to find 

key metabolites for the prediction of rumen methane emis-

sions.  

2) There were weak correlations between metabolites and 

microbial genes. The absence of strong correlations may be 

due to the absorption, degradation or utilization of metab-

olites by a series of metabolisms in the rumen. The current 

study is based on the analysis of linear correlation relation-

ship between metabolites and microbial genes. In the future, 

the correlation based on nonlinear parameters such as dis-

tance or mutual information will be investigated.  Using 

different nonlinear calculation methods (e.g. mutual infor-

mation) or methods designed for microbiome correlation 

analysis (e.g. CCLasso or SparCC) [20-21] is another di-

rection for future research.  

3) Most FOR samples were clearly separated from the 

CONC samples when the correlations were calculated 

based on both metabolites and microbial methane emission 

functional genes. It implies that the combination of metab-

olites and microbial methane emission functional genes 

magnified the differences caused by diets. Further in-depth 

investigation is required to improve the rule. 
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