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Abstract— Brain connectivity measurements can provide key
information about ongoing brain processes. In this paper, we
propose to investigate the performance of the binary classifica-
tion of Propofol-induced sedation states using partial granger
causality analysis. Based on the brain connectivity measure-
ments obtained from EEG signals in a database that contains
four sedation states: baseline, mild, moderate, and recovery,
we consider eight sensors and evaluate the area under the
ROC curve with five classifiers: the k-nearest neighbor (density
method), support vector machine, linear discriminant analysis,
Bayesian discriminant analysis, and a model based on extreme
learning machine. The results support the conclusion that the
different Propofol-induced sedation states can be identified with
an AUC of around 0.75, by considering signal segments of only 4
second. These results highlight the discriminant power that can
be obtained from scalp level connectivity measures for online
brain monitoring.

I. INTRODUCTION

Sedation is a common practice during majority of non-
invasive or minimally invasive medical interventions per-
formed in intensive care units (ICUs). However, current
available methods for the evaluation of sedation level in
ICU environment are majorly of subjective nature i.e., using
sedation scales such as Richmond agitation-sedation scale
(RASS) and Sedation-Agitation Scale (SAS) [1]. Further-
more, these methods are highly dependent on the clinicians’
expertise and thus, may lead to unreliable assessments. A
strong association between excessive and/or inadequate se-
dation and adverse healthcare outcomes have been confirmed
by several recent scientific studies and clinical surveys [2].
Moreover, accurate evaluation of patients’ sedation level
during their ICU stay may lead to substantial reduction
in mortality, mechanical ventilation, duration of stay, and
improved healthcare resource employment which may collec-
tively result in substantial decrease in the overall healthcare
cost [3].

The process of altering the consciousness of patients for
clinical purpose using anaesthetic drugs like Propofol is com-
monplace in medicinal science. The association of Propofol-
induced sedation and functional brain networks has been
proved by several previous studies [4], [5], [6], [7]. However,
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the main focus of these studies was to establish a rela-
tionship between varying levels (or states) of consciousness
and reorganisation of brain networks, thus, the majority of
them utilized functional magnetic resonance imaging (fMRI)
signals rather than EEG signals as the former provides better
spatial resolution. However, its application for assessment
of sedation in clinical settings possess resilient confounds
such as claustrophobic working environment, high suscepti-
bility to head movement related artifacts, and incompatibility
for real-time implementation in ICU settings. Nevertheless,
fewer attempts have been reported in the literature for the
classification of different sedation levels based on brain
functional networks.

Estimating connectivity between different brain regions
using electroencephalography (EEG) is a popular alternative
to study the causal communication mechanisms between
distinct neuronal systems at scalp level. However, the process
is a non-trivial task, with several potential problems caused
by inherent characteristics of the EEG signals and the limi-
tations of the connectivity methods employed. In this study,
in line with our previous work [7], we implemented time-
domain partial granger causality (PGC) analysis to estimate
the directed EEG connectivity networks during four different
levels of sedation. These levels were determined based on
the collective assessment of Propofol blood concentration
and the behavioral responses of healthy participants. Further,
several state-of-the-art classifiers have been implemented for
distinguishing the different sedation levels using connectivity
features from frontal, parietal, and occipital scalp regions of
the brain.

The remainder of the paper is organized as follows: the
EEG database, the formal description of PGC, and the
methodology are presented in section II. Then, the results
are detailed in section III and finally discussed in section IV.

II. MATERIAL AND METHODS

A. Database

In this study related to the classification of Propofol-
induced sedation states, we considered an EEG database
acquired with 20 healthy adult participants who got injected
a target-controlled infusion of Propofol. The database and the
experimental protocol are fully described in [8]. Based on the
behavioral responses, the complete database is divided into
two groups: responsive group (13 participants) and drowsy
group (7 participants). For further analysis, we considered
only the drowsy group so as to have confirmed ground truth
of different states of sedation i.e., baseline (Ba), mild seda-
tion (Mi), moderate sedation (Mo), and recovery (Re). The
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database consists of approximately 7 minutes of 128-channel
high-density EEG data acquired in eyes-closed resting state
condition, sampled at 250 Hz, and referenced to the vertex.

B. Time-domain Partial Granger Causality Analysis

Time-domain PGC is a variation of Granger causality
wherein causal relationships between the different signals
can be analyzed through multivariate autoregressive (MVAR)
analysis. PGC gives better estimation of the true interactions
between signals by reducing the effect of confounding vari-
ables contrary to bivariate GC and conditional GC [9]. We
consider three time series signals: S1(t), S2(t) and S3(t). To
analyze the effective connectivity between S1(t) and S2(t),
conditioned on S3(t), based on PGC rules, the reduced model
is defined by:

S1(t) =
k∑

p=1
(a(1,p)X(t− p)) +

k∑
p=1

(c(1,p)Z(t− p)) + (1)

ε1(t) + εE1 (t) + β1(L)ε
L
1 (t)

S2(t) =
k∑

p=1
(b(1,p)Y (t− p)) +

k∑
p=1

(d(1,p)Z(t− p)) + (2)

ε2(t) + εE2 (t) + β2(L)ε
L
2 (t)

where p is the model order, εi(t) is the prediction error, εEi (t)
and β(L)εLi (t) are the residual errors. εEi (t) and β(L)εLi (t)
correspond to the exogenous (E) and the latent (L) inputs,
respectively. The full model that includes past values of the
sink variable, and past values of source variable conditioned
on rest of variables, is expressed by:

S1(t) =
k∑

p=1
(a(2,p)S1(t− p)) +

k∑
p=1

(b2,pS2(t− p)) + (3)

k∑
p=1

(c(2,p)S3(t− p)) + ε3(t) + εE3 (t) + β3(L)ε
L
3 (t)

S2(t) =
k∑

p=1
(d(2,p)S1(t− p)) +

k∑
p=1

(e2,pS2(t− p)) + (4)

k∑
p=1

(f(2,p)S3(t− p)) + ε4(t) + εE4 (t) + β4(L)ε
L
4 (t)

The overall prediction errors are expressed as:

µi = εi(t) + εEi (t) + βi(L)ε
L
i (t) (5)

with 1 ≤ i ≤ 4. The prediction error covariance matrix for
the reduced model can be obtained by:

R =

[
var(µ1(t)) cov(µ1(t), µ2(t))

cov(µ2(t), µ1(t)) var(µ2(t))

]
(6)

and the covariance matrix for the full model can be generated
can be:

L =

[
var(µ3(t)) cov(µ3(t), µ4(t))

cov(µ4(t), µ3(t)) var(µ4(t))

]
(7)

Finally, the PGC indices are estimated by taking the log ratio
of the partial variance of prediction error from the reduced
model and the partial variance of prediction error from the

full model. The two following expressions give the PGC
indices for S2(t) causing S1(t), and S1(t) causing S2(t):

GS2→S1|S3
= ln(

R1,1 −R1,2R
−1
2,2R2,1

L1,1 − L1,2L
−1
2,2L2,1

) (8)

GS1→S1|S3
= ln(

R2,2 −R2,1R
−1
1,1R1,2

L2,2 − L2,1L
−1
1,1L1,2

) (9)

C. Signal processing pipeline

To remove the movement related noise, EEG channels
placed on neck and face were excluded and the remaining
data was visually inspected and cleaned for noisy seg-
ments. EEG data from remaining channels were converted
to their scalp current source density representations by using
spherical spline interpolation [10], [11]. Our recent work
showed significant improvement in classification of motor-
imagery related brain responses with CSD estimation [12],
[13]. The data was bandpassed in the frequency range of 8-
12 Hz using a 4th order, zero-phase forward and backward
bandpass Butterworth filter. Previous studies reported better
discrimination of sedation states within alpha (8-12 Hz)
frequency band [8].

Furthermore, the data were decomposed into independent
components using Infomax ICA algorithm and components
related to eye-blink and ECG were rejected using an in-
house pre-processing method. The clean components were
back-projected to the sensor space and the artefact-cleaned
data were segmented having a sliding window of 4 s with 1 s
overlap. The process generated approximately 414, 410, 410,
and 419 overlapping segments (averaged over participants)
for Ba, Mi, Mo, and Re, respectively. For further analysis,
we selected a subset of 8 EEG channels related to the
frontal (FP1, FP2, F3, F4), parietal (P3, P4), and occipi-
tal (O1, O2) scalp brain regions. Next, for each segment,
time-domain PGC method was implemented to estimate the
causal interactions between the eight scalp channel data. The
coefficients of the MVAR model were estimated using the
LWR algorithm [14]. Schwarz bayesian information criterion
(SBIC) [15] was used for the estimation of the optimal
value of the model order p. The complete analysis has been
previously described in [16].

As the number of selected sensors is Ns = 8, the
total number of obtained connectivity features for each
segment (Nf ) is 56 = Ns ∗ Ns − Ns as there is no self-
connectivities. Before the classification, the input features
obtained from PGC are normalized to obtain their z-value,
i.e., by removing the mean and dividing by the standard
deviation across the 56 features. A classifier was trained
for each participant by considering a 5-fold cross validation
procedure. As the four experimental conditions happen over
different time, we addressed the problem of the detection
of the segments for 6 binary classification tasks, from one
condition to one of the next conditions. We evaluated the
performance of six possible pairwise comparisons: baseline
vs mild (Ba↔Mi), baseline vs moderate (Ba↔Mo), baseline
vs recovery (Ba↔Re), mild vs moderate (Mi↔Mo), mild
vs recovery (Mi↔Re), and moderate vs recovery (Mo↔Re).
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The performance of the binary classifiers is assessed with the
area under the receiver-operator characteristic (ROC) curve
(AUC) [17]. The computational analyses were implemented
with custom MATLAB (V8.6) scripts using functions from
GCCA (V2.9) [18] and EEGLAB (V14.0.0b) toolboxes [19]
on an Intel Core i7-4790 processor with 16 GB of memory.

In this study, we compare the performance of the k-
nearest neighbor (kNN) classifier (with k=10), support vector
machine (SVM) (linear kernel), extreme learning machine
(ELM), linear discriminant analysis (LDA), Bayesian linear
discriminant analysis (BLDA), and stepwise LDA. The k-
nearest neighbors algorithm is a non-parametric density
estimation method which considers the k closest training
examples in the feature space. The examples are classified
by a majority vote of their neighbors: the test example is
assigned to the class most common among its k nearest
neighbors. SVM is a supervised technique that performs the
classification by constructing a multidimensional hyperplane,
which optimally discriminates between two classes by max-
imizing the margin between two data clusters [20]. LDA
and BLDA classifiers are widely used linear classifiers [21].
Stepwise LDA adds and removes terms from a multi-linear
model based on their statistical significance in a regression.
ELM networks are a special type of artificial feedforward
neural networks that embeds a single hidden layer [22].
Moreover, ELM can be applied for both classification and
regression [23]. It is based on a linear combination of non-
linear representations of the input data by using non-linear
activation functions such as the sigmoid function. A key
advantage of ELM models is the speed for training.

III. RESULTS

The AUC values for the 6 binary classification problems
and the 6 classifiers are presented in Tables I to VI. Each cell
in the table represents the mean of the performance obtained
for a participant. The LDA based techniques provide the
same type of results (about 0.776), followed by kNN, ELM,
and SVM. Figure 1 depicts the simulation of the performance
(AUC and accuracy) that can be obtained by the combination
of several decisions, i.e. through the sum of the decisions of
several examples. The simulated results were obtained by
considering two standard normal distributions separated by
a d-prime equivalent to an AUC=0.750, i.e., d-prime being
defined by

√
2 ∗ icdf(pd,AUC) where icdf represents the

inverse cumulative distribution function and pd represents a
standard normal distribution (mean=0, standard deviation=1).
The results indicate that an accuracy of 90% could be reached
after 30 second of continuous examples from the same state,
i.e., after accumulated decisions of 7 examples.

IV. DISCUSSION AND CONCLUSION

In this paper we have compared the performance of binary
classification between multiple Propofol-induced sedation
states using brain connectivity analysis with PGC method.
Whereas the typical analysis is achieved across subjects to
find the relative effect of Propofol, we have anlayzed the
extent to which it is possible to obtain a reliable decision

TABLE I
CLASSIFICATION PERFORMANCE FOR kNN.

Ba↔Mi Ba↔Mo Ba↔Re Mi↔Mo Mi↔Re Mo↔Re
S01 0.816 0.879 0.721 0.717 0.798 0.792
S02 0.785 0.818 0.783 0.861 0.700 0.879
S03 0.755 0.786 0.744 0.710 0.799 0.752
S04 0.670 0.635 0.738 0.663 0.759 0.802
S05 0.785 0.737 0.849 0.691 0.732 0.821
S06 0.736 0.807 0.735 0.747 0.679 0.763
S07 0.755 0.836 0.802 0.658 0.679 0.615
Mean 0.757 0.785 0.767 0.721 0.735 0.775

TABLE II
CLASSIFICATION PERFORMANCE FOR SVM.

Ba↔Mi Ba↔Mo Ba↔Re Mi↔Mo Mi↔Re Mo↔Re
S01 0.670 0.853 0.589 0.736 0.754 0.744
S02 0.652 0.737 0.480 0.856 0.606 0.834
S03 0.795 0.702 0.643 0.543 0.677 0.593
S04 0.545 0.553 0.664 0.584 0.655 0.667
S05 0.646 0.531 0.603 0.569 0.675 0.755
S06 0.663 0.701 0.661 0.639 0.515 0.683
S07 0.577 0.823 0.558 0.703 0.597 0.505
Mean 0.650 0.700 0.600 0.661 0.640 0.683

TABLE III
CLASSIFICATION PERFORMANCE FOR ELM.

Ba↔Mi Ba↔Mo Ba↔Re Mi↔Mo Mi↔Re Mo↔Re
S01 0.763 0.790 0.678 0.711 0.748 0.728
S02 0.715 0.737 0.641 0.783 0.651 0.783
S03 0.741 0.739 0.699 0.675 0.729 0.682
S04 0.637 0.601 0.704 0.632 0.714 0.742
S05 0.703 0.656 0.733 0.692 0.668 0.786
S06 0.720 0.766 0.741 0.703 0.665 0.731
S07 0.684 0.777 0.702 0.703 0.701 0.624
Mean 0.709 0.724 0.700 0.700 0.697 0.725

TABLE IV
CLASSIFICATION PERFORMANCE FOR LDA.

Ba↔Mi Ba↔Mo Ba↔Re Mi↔Mo Mi↔Re Mo↔Re
S01 0.820 0.862 0.749 0.797 0.814 0.817
S02 0.779 0.807 0.695 0.861 0.730 0.836
S03 0.805 0.813 0.751 0.751 0.806 0.752
S04 0.692 0.692 0.785 0.689 0.799 0.804
S05 0.776 0.740 0.800 0.763 0.792 0.840
S06 0.787 0.808 0.771 0.780 0.741 0.799
S07 0.737 0.832 0.780 0.755 0.753 0.672
Mean 0.771 0.793 0.762 0.771 0.776 0.789

TABLE V
CLASSIFICATION PERFORMANCE FOR BLDA.

Ba↔Mi Ba↔Mo Ba↔Re Mi↔Mo Mi↔Re Mo↔Re
S01 0.826 0.867 0.756 0.800 0.814 0.810
S02 0.778 0.804 0.689 0.860 0.732 0.835
S03 0.807 0.817 0.749 0.739 0.804 0.748
S04 0.694 0.684 0.785 0.680 0.799 0.814
S05 0.782 0.739 0.804 0.762 0.791 0.835
S06 0.786 0.808 0.772 0.779 0.741 0.798
S07 0.731 0.833 0.781 0.766 0.758 0.672
Mean 0.772 0.793 0.762 0.769 0.777 0.787

(AUC>0.75) regarding the current state of the participant
based on only 4 s of EEG signals. The results suggest that the
detection of a Propofol-induced sedation state is possible by
considering only a short segment of EEG data from frontal,
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TABLE VI
CLASSIFICATION PERFORMANCE FOR STEPWISE LDA.

Ba↔Mi Ba↔Mo Ba↔Re Mi↔Mo Mi↔Re Mo↔Re
S01 0.802 0.850 0.715 0.789 0.786 0.811
S02 0.775 0.798 0.698 0.849 0.725 0.831
S03 0.794 0.807 0.742 0.713 0.786 0.737
S04 0.707 0.644 0.774 0.702 0.795 0.790
S05 0.786 0.744 0.778 0.741 0.777 0.837
S06 0.787 0.793 0.760 0.790 0.716 0.782
S07 0.721 0.820 0.766 0.748 0.740 0.647
Mean 0.767 0.779 0.748 0.762 0.761 0.776

(a)

(b)

Fig. 1. Simulation results of the performance analysis with accumulated
decision of multiple data segments. (a) Accuracy and (b) AUC

parietal and occipital scalp regions. Moreover, it is shown
that PGC provides discriminant features for the classification.
The results highlight that state-of-the-art methods such as
kNN, LDA with its variants, provide the best performance
in relation to other more advanced classifiers.

A typical classification problem, the training phase re-
quires data and corresponding labels for all the available
classes to train the machine learning model, however, for
monitoring sedation states in ICU settings, the training data
may not be possibly available for the classifier. Although the
possible solutions to this problem involves using the data
recorded in previous sedation sessions of the patient itself
or from other patients. Nevertheless, these results confirm
that brain connectivity analysis provides features that can
be exploited at a relatively short time scale for assessment
of sedation level. Further work will include the evaluation
of other brain connectivity techniques that can be more
computationally efficient for online analysis. Finally, a key
challenge for exploiting these results in clinical settings is
to efficiently separate the Propofol-induced sedation states

from their effect on the level of consciousness.
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