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Abstract 

Achieving a quantitative tool for the characterization of dispersion in composites is a 

challenge. Effective dielectric constant of composites varies with changes in inter-particle 

interactions which originate from changes in inter-particle spacing. In this respect, a novel 

methodology has been introduced to relate the dispersion state of composites to their effective 

dielectric constant. Total filler volume fraction, volume fraction of particles inside 

agglomerates and size of agglomerates are considered as dispersion factors which affect the 

effective dielectric constant. Inter-particle interactions are calculated based on the introduced 

dispersion factors. It is shown that the effective dielectric constant of composites increases 

with filler concentration and agglomeration due to increased inter-particle interactions. 

Growth of agglomerates size and volume fraction of particles inside the agglomerates result 

in further enhancement of effective dielectric constant. This increment is abrupt at 

percolation where the particles or agglomerates approach each other and the inter-particle 

interactions are pronounced. It is possible to characterize the dispersion state of a composite 

with given effective dielectric constant and filler volume fraction using the developed 

effective dielectric constant. 
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1. Introduction 

The properties of composites depend not only on the properties of the individual constituents 

but also on the extent of filler dispersion. In most cases dispersion is not ideal and 

agglomeration of particles is anticipated especially at higher volume fractions [1-3]. 

Agglomerates with different sizes and particle packing densities are formed in 

nanocomposites which affect the final macroscopic properties. Hence, it is a challenge to 

identify the degree of dispersion and to correlate a relationship between microstructure and 

final macroscopic properties [4, 5]. 

Various visual techniques such as XRD, TEM and AFM have been utilized to identify the 

dispersion degree. However, they are restricted to a small area of the specimen which does 

not necessarily represent the whole sample. Additionally, it is often difficult to interpret their 

results and to reach useful quantitative data [6]. Measurement of macroscopic properties such 

as mechanical, rheological, electrical and dielectric properties has also been used for 

evaluating the microstructure. However, they cannot generate a quantitative prediction of 

filler dispersion state. Often these methods have been used in combination with image 

microscopy, but still they have their limitations. Hence, there is a necessity to modify and 

upgrade quantitative characterization techniques for dispersion [7-9]. 

There has been a tremendous amount of research on the relationship between microstructure 

and dielectric properties of composites and nanocomposites [10, 11]. One of the major 

advantages of dielectric analysis is that it can be applied as a non-destructive testing method 
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for dispersion analysis [12]. In addition, it is possible to detect filler-filler interactions directly 

as dipole-dipole interactions between polarized particles [13, 14]. In composites comprised 

of dielectric particles inside a non-polar polymers (with low dielectric constant), the effective 

dielectric constant at relatively high frequencies is only affected by the concentration and 

dispersion state of dipoles [15-17]. This means that, at the same filler content, changes in 

filler dispersion has an impact on the amount of inter-particle interactions and consequently 

the value of the effective dielectric constant. In fact, several studies have shown that 

agglomeration of dielectric particles in a non-dielectric polymer results in enhancement of 

effective dielectric constant due to increased inter-particle interactions [18, 19].  

Based on the above statements, it seems possible to track filler dispersion state by relating 

the changes in inter-particle interaction in respect to filler dispersion state to the effective 

dielectric constant. The local field method can be applied to relate the microstructure to the 

effective dielectric constant. However, the term associated with inter-particle interactions is 

often neglected from the calculations of the local field by assuming regular (symmetrical) 

arrangement of particles [20-22]. So, the resultant effective dielectric constant is usually an 

underestimate of its experimental value especially at higher filler volume fractions or in case 

of filler agglomeration where the magnitude of inter-particle interactions is noticeable [23]. 

Although there have been some attempts for including the effect of inter-particle interactions 

[24-26], none have developed a useful relation between filler dispersion state and the 

effective dielectric constant of composites.  

Hence, it seems possible that the impact of inter-particle interactions on the effective 

dielectric constant can be acknowledged by calculating the local field with respect to filler 
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dispersion state. Here we have used this approach to foresee the impact of filler dispersion 

state on the effective dielectric constant of composites for the first time and to use this relation 

as a novel tool for characterization of filler dispersion state. Various possible dispersion states 

can be considered based on; total volume fraction of particles, volume fraction of particles 

inside the agglomerates (agglomerate packing density) and agglomerate size. This is 

demonstrated in Fig. 1. To relate composite microstructure to the effective dielectric constant, 

inter-particle interactions are calculated in respect to various possible dispersion states based 

on the discussed factors. 

   

                   a                            b                            c                           d                                e  

In an extension to this research, an experimental design is established in order to create 

different dispersion states based on the introduced dispersion factors and dielectric analysis 

is performed to measure their effective dielectric constant. The achieved results are 

interpreted and tested against the developed model. Due to the printing limitations, the results 

of this part will be presented in the future as the second part of this research. 

2. Relationship between filler dispersion and effective dielectric constant  

The effective dielectric constant is related to the local electric field (Eloc) through 

macroscopic polarization [21]. The local field acting on a dipole is influenced by the 

surrounding medium and therefore can deviate from the external field. The local field is in 

fact due to the external field as well as all other dipoles in the system [22]. As demonstrated 

by Lorentz, the dipole at which the local field acts on is imagined to be surrounded by a 



5 
 

spherical cavity whose radius is sufficiently large that the outside medium can be treated as 

a continuous medium. The interaction of the probe dipole with other dipoles inside the cavity 

is however treated microscopically [20]. Therefore, the arrangement of neighboring dipoles 

in respect to the probe dipole should to be taken into account. This is where the effect of 

dispersion can be reflected in the value of the local field and ultimately the effective dielectric 

constant. The local field, acting on the central dipole, is thus given by the sum [22]: 

Eloc = Eext + Edp + Es + Enear (1) 

As demonstrated in Fig. 2, Eext is the external field, E1 is the depolarization field, i.e. the field 

due to the polarization of charges lying at the external surfaces of the sample, Es is the field 

due to the polarization of charges lying on the surface of the Lorentz sphere. Enear is the field 

due to other dipoles lying within the sphere and it is known as the near field [21, 22].  

 

As shown in the literature, Eext+Edp=P/3εm where P is the macroscopic polarization and εm is 

the dielectric constant of the matrix [20]. The magnitude and direction of the near field (Enear) 

depends on the arrangement of dipoles within the cavity and it is the sum of the electric field 

at the center of the cavity due to nearby dipoles (pi) at various distances (ri) from the origin. 

So; 𝐸𝑛𝑒𝑎𝑟 = ∑ E(pi, ri)
𝑛
1 . E(pi,ri) is expressed by: 

E(p, r) = [3(p. nr)nr − p] 4πεmr3⁄   (2) 
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Where, nr is the unit vector of r and εm is the dielectric constant of the matrix [21].  

The dipole moments of all particles are assumed to be in the same direction and have equal 

magnitude when an electric field is applied; i.e. pi=pj=p. We only consider the contributing 

fields in the direction of the external field (e.g. the x vector). Since the formed dipoles oppose 

the applied external field, E(p,r) can be written as:  

E(p, ri) = −p (3cos2θisin2øi − 1) (4πεm⁄ ri
3 ) (3) 

E(p,ri) given by the above equation is in fact the scalar component of vector E(p,ri) in the 

direction of the applied field. θ is the angle between the x vector and the projection of r vector 

onto the xy plane. ø is the angle between r and the z vector. θ ranges from 0º to 360º, ø is in 

the range of 0º to 180º and r is the distance from the origin to the center of a surrounding 

particle (the inter-particle distance).  

∑ E(p, ri)
𝑛
1  represents the contribution from all dipoles within the cavity. For evaluating the 

contribution of ∑ E(p, ri)
𝑛
1  to the local field, one has to sum over the fields of individual 

dipoles. We know that the dipole moment (p) of a spherical particle is linearly related to the 

local field through its polarizability (p=αEloc) [20, 21]. From the definition of polarizability 

for a spherical particle in a medium with dielectric constant εm, we have: 

∑ E(p, ri)
𝑛
1 = −

(εf−εm)

(εf+2εm)
R3Eloc × ∑

3cos2θisin2øi−1

(ri
3)

𝑛
1                                               (4)                                                                                                                            

By looking at Eq. 4, it is possible to define a geometrical factor which we refer to as the ‘A 

parameter’ with the magnitude of − ∑ (3cos2θisin2øi − 1) R3 ri
3⁄𝑛

1 . Parameter A is 

dependent on the location of the particles inside the cavity in relation to the probe particle; 
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i.e. the orientation of surrounding particles and their inter-particle distances in respect to the 

probe particle. In other words, the A parameter is a function of microstructure which can 

influence the magnitude of the local field. Based on Eq. 4, it can be shown that when the 

particles are located in a cubic lattice with the same inter-particle distance from the probe 

particle, A=0 and Enear vanishes. However, when the particles are not arranged 

symmetrically, parameter A is not necessarily zero.  

To calculate ∑ E(p, ri)
𝑛
1 , first and foremost the size of the imaginary cavity should be set in 

order to have an estimation of the number of particles inside the cavity which contribute to 

the near field. The size of the cavity should be much larger than the distance between the 

particles [20-22]. The average inter-particle distance can be considered as a scale for the 

radius of the imaginary cavity. For uniform distribution of particles, the probe particle is 

surrounded by 6 contiguous particles with inter-particle distance; dave = R (4π 3øf)⁄
1

3 . 

Where øf is the particles volume fraction and R is the particle radius [27]. Hence, the radius 

of the cavity (Rc) should be large enough to hold in all 6 particles; Rc=dave+R.  

For a disordered (or random) distribution, the number of particles inside the cavity besides 

the probe particle (nc) can be estimated mathematically as a function of filler volume fraction 

(øf) and particle radius (R):   

nc = (0.52)øf(Rc R)⁄ 3
− 1  (5) 

Thus, the probe particle at the center of the presumed cavity is surrounded by nc number of 

particles distributed randomly within the cavity. Coefficient 0.52 is deduced from dividing 

the volume of a sphere with radius Rc by the volume of a cube with length 2Rc.   
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In a random distribution, particles in the neighborhood of the probe particle can be located 

anywhere from r=2R to r=dave inside the cavity. To consider randomness in particle 

distribution, a rather simple program was written in MATLAB software to obtain the amount 

of A parameter as a function of filler volume fraction (Appendix A). It should be pointed out 

that for random distribution of particles, parameter A is a function of dave/R which is related 

to particle volume fraction and not directly dependent on particle size.  To consider the 

randomness in distribution of particles, the A parameter is calculated repeatedly (1000 runs) 

and the average value is considered as the final value. For every filler volume fraction a 

unique value is obtained for the A parameter. The obtained A parameters as a function of 

filler volume fraction are presented in table 1.  

øf dave/R nc Rc/R A 

0 0 0 0  0 

0.1 3.5 3.6 4.5 0.07 

0.2 2.8 4.5 3.8 0.13 

0.3 2.4 5.2 3.4 0.18 

0.4 2.2 5.7 3.3 0.23 

0.5 2 6.2 3 0.29 

 

From Table 1, it can be seen that the value of A parameter increases with increase in particle 

volume fraction with an almost linear trend. Therefore, the A parameter can be written as a 

function of filler volume fraction; A≈0.6øf. Thus, the near filed is:  

The local field for a random distribution of particles is achieved by taking into account the 

value of the near field calculated above. Now from the relation between dielectric 

Enear = AEloc (εf − εm) (εf + 2εm)⁄   (6) 
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displacement, effective dielectric constant, polarization and the local field [21], the effective 

permittivity can be obtained through the achieved modified version of the local field: 

εeff = εm + 3εmø
f
(εf − εm) [ε

f
+ 2εm⁄ − (øf + A)(εf − εm)]   (7)                                                                                                

Eq. 7 generates the effective permittivity of a composite with random distribution of mono-

dispersed particles at various filler volume fractions by taking into account the effect of 

interactions between nearby particles. It can be seen that the Maxwell-Garnet formula [26] 

is retrieved when the A parameter is dropped. It is worth mentioning that based on equation 

7, if we place εeff=εf, then Øf equals to 0.65 when εm=1 and εf=10. This is in fact very close 

to the maximum volume fraction for random packing of same sized particles.   

The obtained A parameter above is for the case of random dispersion of particles which is 

quite ideal in composite materials. Now, we need to take the effect of various dispersion 

states and agglomeration into account. Dispersion degree is related to the distance between 

particles and it reduces as the particles assemble into agglomerates. In other words, dispersion 

degree can be viewed as a function of particle packing density inside agglomerates (or the 

distance between neighbouring particles inside agglomerates) and the relative distance of 

agglomerates themselves. Accordingly, the inter-particle interactions differ based on the 

dispersion state resulting in different effective dielectric constants. The different dispersion 

scenarios presented in Fig. 1 can be used as reference for calculating the A parameter.  

In an agglomerated microstructure, the particles are assumed to be dispersed randomly within 

the agglomerates. In a way, the agglomerate can be thought of as a composite with random 

dispersion of particles with relatively high volume fraction. The formed agglomerates are 
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assumed to be spherical and identical in terms of size and number of primary particles, and 

they are randomly distributed inside the matrix. This is demonstrated in Fig. 3. A 

microstructure can vary based on volume fraction of particles inside the agglomerates and 

agglomerate size.  

 

To calculate the effective dielectric constant as a function of particle dispersion state, once 

again we need to establish the Lorentz cavity. Then the value of the near field as a measure 

of inter-particle interactions is calculated. The Lorentz cavity should be large enough to 

include an agglomerate. The particles located at the inner core of the agglomerates (nfa) in 

respect to the particles on the outer surface of the agglomerate (nfs) are surrounded by roughly 

double the number of particles. Hence, the magnitude of inter-particle interactions for the 

inner particles is expectedly double the magnitude of inter-particle interactions for the 

boarder particles. Since the agglomerates resemble a composite with relatively high filler 

volume fraction, the near filed can be calculated with the same approach discussed for the 

case of random dispersion of particles. So, for the inner particles, the A value is expected to 

be linearly dependent on the volume fraction of particles inside the agglomerate (0.6øfa). For 

the particles on the outer surface of the agglomerate the A value is expected to be half the 

predicted value for the inner particles (0.3øfa). So, the total A parameter is comprised of two 

parts:  
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A =
nfa−ns

nfa
(0.6∅fa) +

ns

nfa
(0.3∅fa)  (8) 

The ratio of ns/nfa is dependent on the ratio of agglomerate to particle radius; ns/nfa≈3R/Ra. 

So, we can write; 

A = [0.6 − 0.9 (R
Ra

⁄ )](∅fa) (9) 

Finally, the effective dielectric constant of nanocomposite can be obtained by replacing the 

obtained expression for the A parameter into equation 7. From the above equation we can 

see that the A parameter increases with growth of agglomerates radius (Ra) and filler volume 

fraction inside the agglomerates (øfa). It should be noted that there are limitations for øfa and 

R/Ra; øf<øfa<0.64 and R/Ra<1/3. At percolation the agglomerates come into each other’s 

proximity and so even the border particles are in the neighborhood of particles from 

surrounding agglomerates and so the A parameter increases to 0.6øfa.  

Changes in the A parameter value as a function of øfa and R/Ra is presented in Fig. 4. It 

appears that at the same agglomerate packing density (øfa), the growth of A parameter 

becomes insignificant with further increase in agglomerate radius. The impact of agglomerate 

radius on the A parameter is more pronounced at higher agglomerate packing densities.  
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3. Experimental 

Now, to check the validity of the proposed model in considering the effect of various filler 

dispersion states, several ZnO/PS samples are produced with controlled dispersion states. 

3.1. Materials and equipments: 

ZnO macro-particles were purchased from Nutrino Chemical Co. with average size of about 

100μm. Polystyrene 336 with 20000 molecular weight was purchased from En Chun 

Company. Toluene with 99% purity was used as solvent and Ethanol with 96% purity was 

used as anti-solvent. A joint sonic (with 1.5 kW power) and shear mixing (with 12000 

turns/min) device was used in order to provide suitable distribution and dispersion of 

particles. Dielectric measurement was carried out using a precision LCR Meter (GWINSTEK 

LCR-8101G) from 103 to 106 Hz.  
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3.2. Sample preparation  

First polystyrene granules were solved in toluene and then ZnO powder was added to the 

mixture. Sonication along with shear mixing was used for 30 minutes in order to provide a 

uniform distribution of ZnO macro particles into the polystyrene matrix in a wide range of 

filler volume fractions (0.1, 0.2, 0.3, 0.4, 0.5, 0.6 vol. fraction.).  To separate the composite 

material from the solvent, ethanol was used as anti-solvent. The mixture was then left to dry 

for 24 hours in an oven.  

To evaluate the effect of agglomerate packing density on effective dielectric constant, two 

composites with controlled agglomeration were produced. Both composites had the same 

filler volume fraction and similar sized agglomerates but different filler packing densities. 

To create same size agglomerates with different particle packing densities, composites 

containing 0.4 and 0.6 vol. fraction were grinded and passed through sieves with mesh 

numbers 20 and 25 to achieve composite particles with size 710 to 850 μm. These composite 

particles resemble same sized agglomerates with packing densities (øfa) of 0.4 and 0.6 vol. 

fraction, respectively. Then the resultant composite particles were mixed with polystyrene in 

appropriate amounts and hot pressed to form composites with 0.3 ZnO vol. fraction. It should 

be noted that in the prepared composites with agglomerated microstructure, Ra>>R. 
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3.3. Characterization 

Dielectric properties measurement was performed in a frequency sweep by an LCR-meter 

from GW Instek, and dielectric constants of the samples were calculated using the measured 

capacitance. 

4. Results and Discussion 

Fig. 5 compares the results of the calculated and experimental dielectric constant at 104 Hz 

for ZnO/PS composites. The theoretical effective dielectric constant was calculated using 

equation 7 by assuming random dispersion of various volume fractions of ZnO particles with 

εf=8.9 into polystyrene matrix with εm=2.5; i.e. A=0.6øf. There is an excellent consistency 

between the experimental and the calculated effective dielectric constant which confirms the 

random dispersion of ZnO particles in the PS matrix. When the A parameter is dropped then 

the interaction between particles are not accounted for and the Maxwell-Garnett formula is 

retrieved. This is why there is a deviation from the predictions of the model when A=0 with 

the experimental data, especially at higher filler volume fractions. 

The impact of agglomerate packing density on the effective dielectric constant, 

experimentally and theoretically, for three ZnO/PS samples with øf=0.3, and øfa=0, 0.4 and 

0.6, is demonstrated in Fig. 6. It should be noted that since Ra>>R, then A≈0.6øfa. It can be 

seen that the effective dielectric constant increases with increase in packing density of 

agglomerates which can be ascribed to increased inter-particle interaction. There is a very 

good agreement between the results of the presented model and the experimental data. 
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It is realized that the developed model is successful in predicting the effective dielectric 

constant of composite materials with both random dispersion and agglomeration of dielectric 

particles. Hence, the achieved effective dielectric constant can be used for the evaluation of 

dispersion state of composite materials. Further experiments have been conducted in order to 

fully understand the impact of dispersion state on the effective dielectric constant and the 

ability of the developed model for characterization of dispersion which will be published 

hopefully in the near future. 
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5. Conclusion 

Effect of inter-particle interaction on the effective dielectric constant was calculated as a 

function of filler volume fraction, volume fraction of particles inside agglomerates and 

agglomerate size which characterize the dispersion state in a composite. As a result, a 

relationship was developed between the effective dielectric constant and dispersion state in 

non-polar polymers filled with dielectric particles. It was shown that the effective dielectric 

constant increases with agglomeration of particles due to increased inter-particle interactions. 

The calculated dielectric constant was consistent with experimental data for both random 

dispersion and controlled agglomeration of particles. Hence, the developed effective 

dielectric constant can be used as a novel method to characterize the dispersion state in a 

composite.  
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APPENDIX A 

The program for the calculation of the A parameter for øf=0.3 where there are 5 particles in 

the vicinity of the probe particle inside the Lorentz cavity with a radius equal to Rc=3.4R is: 

An=0; 
for n=1:1000 
sumA=0; 
for i=1:5 

xi=2*pi*randi([0,100])/100; 
ai=cos(xi); 

yi=pi*randi([0,100])/100; 
bi=sin(yi); 
ri^3=randi([8,14]); 

Ai=(3*ai*ai*bi*bi -1)/ri^3; 
sumA=sumA+Ai; 
end 
An=sumA+An; 
end 
A=An/1000 
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Figures Captions: 

Fig. 1. Various possible dispersion scenarios from a) random dispersion to b, c, d and e) agglomeration 

of particles  

Fig.2 Schematic representation of Lorentz cavity and the components of the local field 

Fig. 3 Treatment of agglomerates as spherical particles with a new dielectric constant  

Fig. 4. Changes in the A parameter with øfa and R/Ra 

Fig. 5 Comparison between experimental with the calculated effective dielectric constant for random 

dispersion of ZnO particles in polystyrene  

Fig. 6 effect of dispersion on effective dielectric properties ZnO/PS composites with øf=0.3 and øfa=0, 

øfa=0.4 and øfa=0.6 
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Tables captions: 

Table 1. Values of A parameter for different filler volume fractions 

 


