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Abstract                                                                                               

Flexible polypyrrole nanosheets (thickness ~150 nm) grown at the air-liquid interface have been 

investigated for charge transport and NH3 sensing application. Polypyrrole nanosheets films were 

mechanically strong and exhibited a uniform and dense morphology. Temperature dependent charge 

transport measurements revealed that the PPy films obey Mott’s 3-D variable range hopping 

mechanism. The mobility values calculated using temperature dependent current voltage characteristics 

indicated them to obey Arrhenius behavior. These films exhibited a reversible response towards NH3 at 

room temperature. The sensor exhibited a sensitivity of ~12% with a typical response and recovery 

times of 240 s and 50 min, respectively towards 50 ppm of NH3. Raman studies indicated that there is 

an increase in the antisymmetrical C-N stretching upon exposure to higher concentration of NH3 (500 

ppm) and could be assigned to the interaction of NH3 with the carbon backbone of PPy film. Our results 

clearly emphasize that these flexible PPy films could be used to realize flexible sensors. 
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1. Introduction  

Conducting polymers (CPs) like polyanilene, polythiophene and polypyrrole (PPy) have been 

investigated elaborately because of their high electrical conductivity, ease of preparation, high and 

uniform yield and environmentally benign [1]. Their unique π-conjugated electronic system plays a 

crucial role in achieving high conductivity with subgap states [2,3]. Of these, PPy is a conducting 

polymer of the rigid-rod polymer host family, all basically derivatives of polyacetylene. Importantly, it 

was the first polyacetylene-derivative that exhibited a high conductivity. Additionally, it exhibited 

properties like good environmental stability, low toxicity and also has been demonstrated to produce 

changes in its color, mass, work function or electrical conductivity [4,5]. Accordingly, it has been 

investigated elaborately for potential applications including artificial muscles, fuel cell membrane [6], 

electromagnetic irradiation shielding materials, photovoltaic cells, coating materials, corrosion 

inhibitors, and chemical and biosensors [7,8,9,10]. In particular, for chemical sensors the PPy in the 

form of nanoparticles, nanowires and thin films have demonstrated an enhanced sensing performance 

towards NH3 gas [11,12,13,14].  

 Ammonia in particular, is a poisonous, colorless gas with a characteristic pungent smell and has 

a fairly low odor threshold of approximately 0.6–53 ppm. It has a short term explosive limit of 35 ppm. 

The presence of ammonium salts at 200–500 mg/kg of body weight results in lung oedema, nervous 

system dysfunction, acidosis, and kidney damage. The interaction of PPy with ammonia is found to be 

reversible at low concentrations and short exposure times, however longer exposures to higher 

concentrations produce irreversible effects [15]. PPy film undergoes a complex reversible redox 

reaction during ammonia detection. Besides, they possess advantages in comparison to metal-oxide gas 

sensors like capability to operate at room temperature, bulk penetration by analytes, and tunable 

selectivity/sensitivity. The free standing PPy films having good mechanical strength could also be 

effectively used for fabricating flexible sensors. The fabrication of electronic devices on flexible 

substrates is of technological importance. The applications of flexible sensors are complementary to that 
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of conventional sensors. For example, they can be used in handheld and portable consumer electronics 

[16], aero-space applications and civil engineering [17].  

In the present work, the charge transport and NH3 sensing properties of flexible PPy nanosheets 

synthesized by a novel route using j-aggregates of porphyrin derivatives as in-situ templates have been 

investigated [18]. The low temperature charge transport measurement indicated that the conductivity of 

PPy films obeys Mott’s variable range hopping mechanism. The flexible PPy films sensor films could 

reversibly detect NH3 at room temperature. The sensor film exhibited a sensitivity of ~12% with a 

typical response and recovery times of 240 s and 50 min, respectively towards 50 ppm of NH3. A linear 

dependence of sensitivity on gas concentration upto 100 ppm (S%- 28) was observed.  

2. Experimental Section 

2.1. Methods and Materials 

Pyrrole (98%) was procured from Aldrich and distilled over calcium hydride under reduced pressure 

prior to use. Anhydrous FeCl3 (LR grade) was purchased from Thomas Baker. The organic solvents 

namely dichloromethane (DCM), chloroform were of analytical grade and Millipore water was used for 

solution preparation and washing. The 5-(4-hydroxyphenyl)-10,15,20-triphenylporphyrin (TPPOH) was 

synthesized using the procedure reported elsewhere [16]. 

2.2. Nanosheets growth 

Two types of free standing PPy films were synthesized using interfacial polymerization at air-liquid 

interface. The growth process is elaborated below: 

1. PPy using TPPOH template: Our one pot fabrication strategy for the growth of free standing PPy 

nanosheets involves the use of spontaneously formed TPPOH j-aggregate films at air/aqueous 

FeCl3 interface as an in-situ template. Briefly, to a 80 ml of 0.1 M aqueous FeCl3 solution in a 

beaker a 200 µL solution consisting of 1 mM TPPOH and 0.1 M pyrrole in DCM was slowly 

dropped using a micropipette. When a solution containing mixture of TPPOH and pyrrole in DCM 

is dropped, first TPPOH immediately forms a film at the air/liquid interface which is due to rapid 
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j-aggragation i.e., aggregation of monomeric units stacking into edge-to-edge configurations, of 

TPPOH. Now as the growth of PPy is a slower process compared to j-aggreagtion of TPPOH, 

these films grow as a sandwich layer between TPPOH and the liquid interface. J-aggregation and 

the template action of the TPPOH have already been confirmed using UV-vis and FTIR 

spectroscopic measurements as reported earlier [16]. Films formed at the air-aqueous interface 

were mechanically strong and lifted easily on microglass slides after 24 h and washed repeatedly 

(5 times) with millipore water and DCM  to remove the traces of FeCl3 and j-aggregate template. 

2. PPy without the TPPOH template: Briefly, to a 80 ml of 0.1 M aqueous FeCl3 solution in a beaker 

a 200 µL solution consisting of 0.01 M pyrrole in DCM was slowly dropped using a micropipette 

[16]. It requires more than 20 min for the free standing films to be formed at the air-liquid 

interface. The resulting films were highly porous in nature and most of them ruptured into small 

islands when attempted for transfer onto the microglass slides.   

All the films were washed thoroughly using Millipore water and then used for further characterization 

and application.  

2.3. Nanosheets characterization 

Surface morphology of the as-grown films were investigated using scanning electron microscopy (SEM) 

TESCAN, Model TS 5130MM. Raman spectrum was collected using a microscopic confocal Raman 

spectrometer (HORIBA Jobin Yvon, Lab RAM HR) employing a 514 nm laser beam and using 100X 

objective at room temperature. Exposure to concentrations below 100 ppm did not exhibit a variation in 

the Raman signal. However, at higher exposure concentration of 500 ppm a change in signal is 

observed.   

2.4. Low temperature conductivity measurements 

For low temperature conductivity measurements two probe configuration was used. The charge 

transport measurements were carried out using in-plane electrode geometry. For this purpose, two 

planar gold electrodes of length 3 mm, width 2 mm with 12 µm electrode spacing were thermally 

deposited onto films using a metal mask and silver wires were attached to the gold pads with silver 
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paint. The IV measurements were carried out using Keithley 6487 picoammeter/voltage source and 

Labview based data acquisition system. The measurements at low temperatures (300-50K) were carried 

out using a closed cycle cryostat. All measurements were performed in dark to avoid the problem of 

photoconductivity. Conductivity measurements were carried out in a helium gas environment. 

2.5.Gas sensing measurements 

Gas sensing measurements were performed in a static environment method as reported elsewhere [19]. 

In brief, an interdigitated array (IDA) electrode of Au was first thermally deposited onto the sensor 

films. IDA represents the most suitable geometry to serve as a transducer in chemi-resistive gas sensors. 

A Pt wire heater was attached at the backside of the glass substrate to maintain and control the operating 

temperature of the sensor. The sensor films were mounted upside down in a leak tight stainless steel 

chamber having volume of 250 cm
3
. Required concentration of a test gas in the chamber was attained by 

introducing a measured quantity of desired gas using a syringe. The response curves towards various 

test gases were measured by applying a fix bias of 0.1 V across the electrode and the time dependence 

of the current was recorded using PC based data acquisition system using Labview software. Once a 

steady state was achieved, recovery of sensors was recorded by exposing the sensors to air, which is 

achieved by opening the lid of the chamber. The sensitivity (S (%)) of the sensors was calculated from 

the response curves using the relation:  

S (%) = 
a

ag

I

II 
 x 100 %     - (1) 

 

 

where, Ig and Ia are current values of the sensor films in test gas and fresh air, respectively. Response 

and recovery times were defined as the times needed for 90% of total change in resistance upon 

exposure to test gas and fresh air, respectively. 

3. Results and Discussion 

3.1. Morphological Characterization  

Figure 1 shows the SEM images of the as grown films transferred onto the microglass slide substrates. 

PPy films grown without the TPPOH template (Figure 1 (a)) exhibited a porous morphology attributed 
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to the slow kinetics of the interfacial polymerization of PPy. The porous nature of the film is clearly 

evident from the high magnification image as shown in Figure 1 (b). Most of the films ruptured into 

small islands when attempted for transfer onto the substrates. This further implies that PPy films grown 

without the TPPOH template are not mechanically strong. Hence were not investigated in detail for 

further experiments. On the other hand, PPy films grown using TPPOH template are observed to 

maintain the similar i.e., j-aggregate morphology of the TPPOH template as shown in Figure 1 (b).  

Herein, the –N-H group of pyrrole rings forms hydrogen bonding with porphyrin core of the j-

aggregates. This further provides the directionality for polymerization in the form of nanothreads. High 

magnification image (Figure 1 (d)) shows that the film is highly uniform with dense morphology and 

devoid of pores. These films were mechanically strong and do not rupture or break when attempted to 

transfer on substrates. 

3.2. Low temperature conductivity measurements 

The electronic properties of the conducting polymers are very much dependent on the structural aspects 

like the orientation, conformation, chain length, etc. The transport properties are also affected by the 

defects, disorders and presence of dopants ions. Polarons and bipolarons are localized states with finite 

mobility. PPy grown using the present strategy are very weakly doped (Cl
¯
) as is evident from the 

conductivity values and was also proven with the help of Uv-vis measurements [16,20].  A decision 

about the conduction mechanism is often comprehended based on the type of temperature dependence 

of the conductivity [21, 22]. The temperature dependence of d. c. electrical resistivity (T) of the PPy 

films grown using TPPOH template (Figure 2 (a)) revealed that the  increases with lowering 

temperature indicating a critical or insulating behavior of the films in the whole range of investigation. 

The temperature dependence of the reduced activation energy, described as:  

W =  dln[ρ(T)]/dlnT    - (2) 
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is plotted in Figure 2 (b) [23]. Positive, zero and negative slopes of W vs T corresponds to the 

metallic, critical and insulating regimes, respectively. A negative slope for PPy film indicates that it is in 

the insulating regime.   

For the sample in the insulating regime of the metal to insulator (M-I) transitions, the low 

temperature resistivity follows the exponential temperature dependence of variable range hopping 

conduction (VRH) (Figure 2 (c)) [20, 24]. In this model the resistivity of the disordered material is 

controlled by the hopping of charge carriers between local states near the Fermi level. When the 

Coulomb interaction between charge carriers is weak and can be neglected, then the Mott-VRH is 

applicable. In this case the temperature dependence of resistivity can be expressed as:  

1

1

0 )/exp()0()(  dTTT 
   - (3) 

where, d is the dimensionality of the hopping process, T0 is the characteristics Mott temperature and 

given as:  

BFc kENL
T

)(

18
30      - (4)  

where, Lc is the localization length, N(EF) is the density of states at the Fermi energy. The typical value 

of N(EF) for moderately doped PPy is 2 x 10
20

 eV
-1

cm
-3

 [25]. The average hopping distance Rhop is 

related to the Lc and T0 by relation:  

1

1

0

8

3 











d

Chop
T

T
LR

     

- (5) 

As seen in Figure 2 (c), for pure PPy films the temperature dependence of resistivity is best described by 

Motts 3D-VRH with T0 = 2.34 x10
7 

K. Using N(EF) as is 2 x 10
18

 eV
-1

cm
-3

 , the estimated LC and Rhop  

are 16.5 Å and 103 Å. The ratio Rhop/Lc ~ 6, indicates that in pure PPy films the carriers are strongly 

localized therefore making it close to the insulating behavior of M-I transition. 
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3.3. Current – voltage characteristics 

Typical J-V characteristics recorded for PPy films, as shown in Figure 3, indicates that the variation of 

current depends on the applied bias. Based on the nature of J dependence on V, two distinct regions 

(marked as I to II in Figure 3) have been identified. The analyses of these regions are described below. 

As shown in Figure 3 (a), a transition from region I to region II takes place as a function of applied bias. 

In the region I, the slope of the linear fit to data is ~1, indicating an ohmic conduction. In molecular 

semiconductors, an ohmic conduction normally occurs if the thermally generated carriers exceed that of 

injected carriers through the electrode, and the J in this case is given by:  

EenJ 0
      

-(6) 

where, n0 is the thermally generated hole concentration, e is electronic charge, µ is the hole mobility and 

d is the electrode separation [26]. However, the slope value in region II is ~2, indicating that the charge 

transport is via trap-free space-charge limited characteristics (SCLC). SCLC occurs if the injected 

carrier density is higher than the thermally generated carrier density and the J depends on applied bias 

using the relation:
  

3

2

8

9

d

V
J         - (7) 

where,  is the permittivity of the film [23]. The typical reported value of   for PPy films is 1.2x10
-10 

F/m [27]. Using data of Figure 3 (a), we have calculated the values of no and . The value of n0 is 

determined from the crossover voltage (Vt), as shown in Figure 3 (a) and using the relationship: 

9/8 2

0ednVt  . The estimated value of n0 at 300K is 2.8 10
20

 m
-3

, which is in agreement with the 

reported literature of organic semiconductor films [24]. The  values at different temperatures were 

calculated from the slopes of J-V
2
 plots. The  value at 300K was found to be 5.34 x10

-5 
m

2
/V-s. The 

temperature dependence of  is plotted in Figure 3 (b), which is found to obey the Arrhenius behavior 

i.e. T/1~ln . 
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3.4. Gas sensing properties 

Two types of PPy films namely grown with and without the TPPOH templates were investigated for 

their NH3 sensing properties. Under similar concentrations of the starting solutions the thickness of the 

films was identical. PPy films grown without the TPPOH template suffered from the inherent drawback 

of poor intergrain connectivity. Hence, it was difficult to get a continuous and uniform film onto the 

substrates. Most of the films ruptured forming islands when attempted for transfer. However, one of the 

successful attempts resulted in a reasonable film transfer onto the microglass slides and accordingly was 

investigated along with the PPy films grown using TPPOH template. The response curves recorded for 

PPy films grown with and without the templates are shown in Figure 4. PPy films grown without the 

template exhibited a response towards NH3 only at room temperature. A typical response and recovery 

times towards 50 ppm of NH3 were 150 s and 24 min, respectively. Besides, a linear dependence of 

sensitivity on gas concentration upto 100 ppm (S%-23) was observed. These films did not exhibit any 

response at higher temperatures greater than RT.  

 On the other hand films grown using TPPOH templates were quite stable and exhibited an 

enhanced sensitivity towards NH3. A typical response and recovery times towards 50 ppm of NH3 were 

240 s and 50 min, respectively. They also exhibited a linear dependence of sensitivity on gas 

concentration upto 100 ppm (S%- 28). Importantly, these films were mechanically strong and could 

easily be lifted onto the desired substrates. For comparison, we have also investigated the gas sensing 

properties of the PPy films but without the removal of template. As expected these films do not 

exhibited a response towards NH3 due to the blocking action of TPPOH. 

Figure 5 (a) shows the plot of sensitivity as a function of operating temperature for PPy films 

grown using TPPOH template towards 25 ppm of NH3. The sensitivity of these films was found to 

decrease with increase in the operating temperature with maximum at room temperature. Long term 

stability measurements performed on these sensors as shown in figure 5 (b) indicated them to be 
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reasonably stable for over 25 days. The base line resistance changed from 72 to 242 kΩ while no 

significant variation in the sensitivity values was observed.  

3.5. Sensing mechanism 

Ammonia is a kind of electron donating gas and can donate to the initially oxidized PPy sensor film. 

Exposure to NH3 has been demonstrated to result in both reversible as well as irreversible processes 

[28]. The interaction of PPy with ammonia is found to be reversible at low concentrations and short 

exposure times, whereas long exposure to higher concentrations produces irreversible effects [29]. As is 

evident from the response curves in the present case interaction of PPy with NH3 takes place reversibly. 

The reversible changes have been assigned to compensation effects involving electron or proton 

transfer. For electron transfer compensation, NH3 molecule compensates the electrical p-type charge 

created by the dopant anion molecule  

PPy
+
A

-
 + NH3 ↔ PPy

0
  — NH3

+
, A

-
   - (8) 

Similarly, for proton transfer compensation, NH3 attacks and removes the hydrogen atom attached to the 

heteroatom of the pyrrole ring via formation of ammonium ion NH4
+
. This eventually compensates the 

p-type charge induced by the dopant anion molecule. The overall effect is that the number of charge 

carriers on the polymer surface reduces making polymer more neutral causing conductivity to reduce.  

 Now this process is reversible when ammonium ion only binds very weakly to the negative 

anion facilitating the reverse reaction 

PPy
+
A

-
 + NH3 ↔ [PPy(—H1

+
)]

0
 + NH4

+
A

-
  - (9) 

Irreversible changes in polymers are mainly ascribed to the nucleophilic attack of NH3 molecules on the 

carbon backbone. This attack introduces defects that shorten the conjugation length of the polymer 

chain. This leads to increase in disorder and decrease in conductivity as charge transport becomes more 

dominated by interchain hopping rather than charge transfer along the polymer chain. 

3.6. Raman Investigations 

In order to understand the nature of interaction between NH3 and PPy, Raman investigations have been 

performed both in the presence and the absence of NH3 gas. Accordingly, Figure 6 shows the Raman 
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spectra of the type I sample. In the absence of NH3 the sample exhibited a peaks at 928, 985, 1045, 

1249, 1332, 1405 and 1576 cm
-1

. The peak at 928 is associated with the bipolaron, 1045 is assigned to 

the C-H in plane deformation. The small hump at 1249 cm
-1

 is assigned to the C-H in plane and the ring 

stretching, peak at 1332 to the ring-stretching mode, 1405 to the antisymmetrical C-N stretching and the 

peak at 1576 represents the C═C backbone stretching [30,31,32].
 
Now, upon exposure to small 

concentrations of NH3 no significant variation in the Raman peak was observed. However, upon 

exposure to higher concentrations ~500 ppm a change in the Raman signals was observed. Although, 

the position of all the peaks remains same, the peaks at 928 and 1045 cm
-1

 decrease in intensity. This 

implies that there is a reduction in bipolaron density and decrease in the C-H in-plane deformation. 

Also, an increase in intensity of peaks at 1332, 1405 and 1576 cm
-1

 is observed and could be attributed 

to the increase in ring-streching mode, antisymmetrical C-N stretching and C═C backbone stretching. 

This further confirms that upon higher dose of exposure (500 ppm) NH3 molecules attacks on the carbon 

backbone and could result in irreversible changes in PPy film. 

Conclusions 

Polypyrrole nanosheet films grown at the air-liquid interface have been investigated for charge transport 

and NH3 sensing application. These films were mechanically strong and could easily be lifted onto the 

desired substrates. Charge transport measurements revealed that conductivity of the PPy films obeys 

Mott’s 3-D variable range hopping mechanism. The mobility values calculated using temperature 

dependent current voltage characteristics indicated them to obey Arrhenius behavior. Additionally, these 

films exhibited a reversible response towards NH3 at room temperature. A typical response and recovery 

times towards 50 ppm of NH3 were 240 s and 50 min, respectively with sensitivity (S%) of ~12%. They 

also exhibited a linear dependence of sensitivity on gas concentration upto 100 ppm (S%- 28). Raman 

studies indicated that there is an increase in the antisymmetrical C-N stretching upon exposure to higher 

concentration of NH3 (500 ppm) and could be assigned to the interaction of NH3 with the carbon 

backbone of PPy film. Thus, our results clearly indicate that the PPy films could be looked upon as a 

potential candidate for realizing flexible sensors. 



 12 

Acknowledgments  

This work is partly supported by ―DAE-SRC Outstanding Research Investigator Award‖ (2008/21/05-

BRNS) and ―Prospective Research Funds‖ (2008/38/02-BRNS) granted to D.K.A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 13 

References  

                                                 

[1]  F. Faverolle, A. J. Attias, B. Bloch, P. Audebert, C. P. Andrieux, Highly conducting and strongly 

adhering polypyrrole coating layers deposited on glass substrates by a chemical process, Chem. 

Mater. 10 (1998) 740-752. 

[2]  X. Zhang, J. Zhang, W. Song, Z. Liu, Controllable Synthesis of conducting polypyrrole 

nanostructures, J. Phys. Chem. B 110 (2005) 1158–1165.  

[3]  S. Pirsa, N. Alizadeh, Design and fabrication of gas sensor based on nanostructure conductive 

polypyrrole for determination of volatile organic solvents, Sens. Actuators B 147 (2010) 461–466. 

[4]   J. W. Gardner, P. N. Bartlett, A brief history of electronic noses, Sens. Actuators B 18/19 (1994) 

211–220. 

[5]  C. C. Bof Bufon, J. Vollmer, T. Heinzel, P. Espindola, H. John, J. Heinze, Relationship between 

chain length, disorder, and resistivity in polypyrrole films, J. Phys. Chem. B 109 (2005) 19191-

19199. 

[6]  H. S. Park, Y. J. Kim, W. H. Hong, H. K. Lee, Physical and electrochemical properties of 

Nafion/polypyrrole composite membrane for DMFC, J. Membrane Sci. 272 (2006) 28-36. 

[7]  A. Joshi, S.A. Gangal, S.K. Gupta, Ammonia sensing properties of polypyrrole thin films at room 

temperature, Sens. Actuators B 156 (2011) 938– 942. 

[8]  S. C. Hernandez, D. Chaudhuri, W. Chen, N. V. Myung, A. Mulchandani, Single polypyrrole 

nanowire ammonia gas sensor, Electroanalysis 19 (2007) 2125-2130. 

[9]  X. Ma, X. Zhang, Y. Li, H. Yu, G. Li, M. Wang, H. Chen, Gas sensing behavior of nano-

structured polypyrrole prepared by “carbon nanotubes seeding” approach, J. Nanopart. Res. 10 

(2008) 289. 

[10]  S. Cosnier, Biosensors based on immobilization of biomolecules by electrogenerated polymer 

films; New perspectives, Appl. Biochem. Biotechnol. 89 (2000) 127-138. 



 14 

                                                                                                                                                                         

[11]  L. Zhang, F. Meng, Y. Chen, J. Liu, Y. Sun, T. Luo, M. Li, J. Liu, A novel ammonia sensor based 

on high density, small diameter polypyrrole nanowire arrays, Sens. Actuators B 142 (2009) 204–

209. 

[12]  N. Chartuprayoon, C. M. Hangarter, Y. Rheem, H. Jung, N. V. Myung, Wafer-scale fabrication of 

single polypyrrole nanoribbon-based ammonia sensor, J. Phys. Chem. C 114 (2010) 11103–11108. 

[13]  O. S. Kwon, J.-Y. Hong, S. J. Park, Y. Jang, J. Jang, Resistive gas sensors based on precisely size-

controlled polypyrrole nanoparticles: effects of particle size and deposition method, J. Phys. 

Chem. C 114 (2010) 18874–18879. 

[14] S. Carquigny, J.-B. Sanchez, F. Berger, B. Lakard, F. Lallemand, Ammonia gas sensor based on 

electrosynthesized polypyrrole films, Talanta 78 (2009) 199–206. 

[15]  Q. Ameer, S. B. Adeloju, Polypyrrole-based electronic noses for environmental and industrial 

analysis, Sens. Actuators B 106 (2005) 541–552. 

[16]  M. C. McAlpine, H. Ahmad, D. Wang, J. R. Heath, Highly ordered nanowire arrays on plastic 

substrates for ultrasensitive flexible chemical sensors, Nature Mater. 6 (2007) 379 - 384. 

[17]  Y. Sun, H. Hau Wang, High-performance, flexible hydrogen sensors that use carbon nanotubes 

decorated with palladium nanoparticles, Adv. Mater. 19 (2007) 2818–2823. 

[18] P. Jha, S. P. Koiry, V. Saxena, P. Veerender, A. K. Chauhan, D. K. Aswal, S. K. Gupta, Growth of 

free-standing polypyrrole nanosheets at air/liquid interface using j-aggregate of porphyrin 

derivative as in-situ template, Macromolecules 44 (2011) 4583-4585. 

[19]  N. Datta, N. S. Ramgir, M. Kaur, S. Kailasaganapathi, A.K. Debnath, D.K. Aswal, S.K. Gupta, 

Selective H2S sensing characteristics of hydrothermally grown ZnO-nanowires network tailored 

by ultrathin CuO layers, Sens. Actuators B 166– 167 (2012) 394– 401. 

[20]  D. Y. Kim, J. Y. Lee, D. K. Moon, C. Y. Kim, Stability of reduced polypyrrole, Synth. Met. 69 

(1995) 471-474.  



 15 

                                                                                                                                                                         

[21]  P. Ohlckers, P. Pipinys, Phonon-assisted tunneling in charge transport of polypyrrole thin films 

and nanofibers, J. Appl. Phys. 109 (2011) 083713. 

[22]  K. Sato, M. Yamaura, T. Hagiwara, K. Murata, M. Tokumoto, Study on the electrical conduction 

mechanism of polypyrrole films, Synth. Met. 40 (1991) 35-48. 

[23]  T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds, Eds., Handbook of conducting polymers, 2
nd

 

ed., Marcel Dekker Inc. Newyork (1998). 

[24]  N. F. Mott, Metal–insulator transition 2
nd

 edition, Talor-Francis London (1990) and references 

therein. 

[25]  M. Ghosh, A. Barman, A. Das, A. K. Meikap, S. K. De, S. Chatterjee, Electrical transport in 

paratoluene sulfonate doped polypyrrole  films at low temperature, J. Appl. Phys. 83 (1998) 4230-

4235. 

[26]  S. Samanta, D. K. Aswal, A. Singh, A. K. Debnath, M. Senthil Kumar, Y. Hayakawa, S. K. Gupta, 

J. V. Yakhmi, Bias and temperature dependent charge transport in high mobility cobalt-

phthalocyanine thin films, Appl. Phys. Lett. 96 (2010) 013305-3. 

[27]  C. C. Bof Bufon, T. Heinzel, Transport properties  of chemically synthesized polypyrrole thin 

films, Phys. Rev. B 76 (2007) 245206-6. 

[28]  N. T. Kemp, A. B. Kaiser, H. J. Trodahl, B. Chapman, R. G. Buckley, A. C. Partridge, P. J. S. 

Foot, Effect of ammonia on the temperature-dependent conductivity and thermopower of 

polypyrrole, J. Poly. Sci. B 44 (2006) 1331-1338. 

[29]  Q. Ameer, S. B. Adeloju, Polypyrrole-based electronic noses for environmental and industrial 

analysis, Sens. Actuators B 106 (2005) 541–552. 

[30]  M. Li, J. Yuan, G. Shi, Electrochemical fabrication of nanoporous polypyrrole thin films, Thin 

Solid Films 516 (2008) 3836–3840. 



 16 

                                                                                                                                                                         

[31]  J. Arjomandi, A. A. Shah, S. Bilal, H. V. Hoang, R. Holze, In situ Raman and UV–vis 

spectroscopic studies of polypyrrole and poly(pyrrole-2,6-dimethyl--cyclodextrin), Spectrochim. 

Acta A 78 (2011) 1–6. 

[32]  H. Nguyen Thi Le, M.C. Bernard, B. Garcia-Renaud, C. Deslouis, Raman spectroscopy analysis of 

polypyrrole films as protective coatings on iron, Synth. Met. 140 (2004) 287–293. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 17 

                                                                                                                                                                         

Figure captions 

Figure 1. SEM images of (a) PPy film grown without TPPOH template, and (b) PPy film grown using 

TPPOH template with an inset showing the corresponding magnified images. 

Figure 2. (a) The temperature dependence of d. c. electrical resistivity (T) of the PPy film grown using 

TPPOH template recorded with electrode separation of 12 µm, (b) the temperature dependence of the 

reduced activation energy and (c) exponential temperature dependence of variable range hopping. 

Figure 3. (a) Typical J-V characteristics as a function of temperature and (b) the temperature 

dependence of . 

Figure 4. Response curve behavior of (a) PPy film grown without TPPOH template, (b) PPy film grown 

using TPPOH template and (c) linear dependence of sensitivity of both the films as a function of gas 

concentration. 

Figure 5. (a) Sensitivity as a function of operating temperature for Type I sensor towards 25 ppm of 

NH3 and (b) Long term stability measurements for Type I sensors towards 25 ppm of NH3. 

Figure 6. Raman spectra of PPy films grown using TPPOH templates with and without the exposure to 

500 ppm of NH3. 
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Figure 2.  
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