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Abstract 

Electrode misplacement during 12-lead 

Electrocardiogram (ECG) acquisition can adversely cause 

false ECG interpretation, diagnosis and subsequent 

incorrect clinical treatment or lack thereof. A common 

misplacement errors are the. superior placement of V1 

and V2 electrodes. The analysis of ECG signals that were 

recorded from ECGs with vertically misplaced leads V1 

and V2 can yield a false diagnosis of Brugada syndrome, 

myocardial infarction (MI) or left ventricular hypertrophy 

(LVH). The aim of the current research was to detect lead 

V1 and V2 misplacement using feature engineered 

machine learning algorithms to enhance ECG data quality 

to improve clinical decision making in cardiac care. In 

this particular study, we reasonably assume that V1 and 

V2 are concurrently superiorly misplaced together. ECGs 

for 450 patients, (normal n=150, LVH n=150, MI n=150) 

were extracted from body surface potential maps. ECG 

signals were extracted using correct and incorrectly 

placed V1 and V2 electrodes, i.e. leads derived from the 

fourth intercostal space (ICS) as well as the first ICS, 

second ICS, and third ICS. The prevalence for correct and 

incorrect leads were 50%. Sixteen features were extracted 

including: morphological, statistical and time-frequency 

features. Two feature selection approaches (filter method 

and wrapper method) were applied to find an optimal set 

of features that provide a high accuracy when used with a 

machine learning model. To ensure accuracy, six 

classifiers were applied including: fine tree, coarse tree, 

bagged tree, Linear Support Vector Machine (LSVM), 

Quadratic Support Vector Machine (QSVM) and logistic 

regression. The accuracy of V1 and V2 misplacement 

detection was 94.3% in the first ICS, 92.7% in the second 

ICS and 70% in third ICS respectively. Based on 

accuracy results, bagged tree was the best classifier in the 

first, second and third ICS to detect V1 and V2 

misplacement 

1. Introduction 

The standard 12-lead ECG is the most commonly used 

layout to record the electrical activity of the heart muscle. 

However, the ECG has a low sensitivity (30–70 %) and 

specificity (70–95 %) to detect acute coronary syndromes 

for many reasons. An electrode misplacement which 

could arise from challenging for clinicians need to keep 

the chest wall clear for other diagnostic procedures 

[1][2][3]. Misplacement effects on the 12-lead ECG can 

cause differences in ECG morphology and interpretation 

[4]. Recorded ECGs with lead misplacements can result 

in significant false diagnoses made by computer-based 

systems or human interpretation or such a false diagnosis 

of ventricular hypertrophy, anterior infarction, ischemia, 

or Brugada syndrome which could lead to a false 

diagnosis in 17–24 % of patients [5]. Lead V2 is the most 

sensitive signal to electrode misplacement followed by 

V3, V1 and V4, while in leads V5 and V6 there are no 

apparent changes in ECG morphology [2]. Body surface 

potential maps (BSPMs) were used for simulating the 

electrode misplacement in 12-lead ECG [6]. The P-wave 

morphology changes in V1 and V2 were significant at 2 

cm distances, while other leads were not prominently 

different up to 5 cm from the location of V3, V4, V5 and 

V6. V1 is more sensitive to vertical misplacements than 

to horizontal misplacements compared to other leads. 

Misplacement can conceal myocardial infarction or even 

mimic a lateral MI in a true case of inferior MI [7][8]. V1 

and V2 misplacement too high or too low can cause 

misplacement of the other precordial electrodes, which 

can cause false diagnoses of left ventricular hypertrophy 
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[9] [10]. An electrode misplacement simulator (EMS) 

which is a web-based simulation tool for training students 

was suggested to improve electrode placement. The 

cardio quick patch (CQP) device was developed to help 

clinicians in accurately placing precordial electrodes 

during ECG recording [11][12]. CQP significantly 

improved the positioning accuracy of precordial 

electrodes V1, V3–V6 with little additional effort [12]. A 

selection method has been developed to detect the 

optimal placement of bipolar electrodes. However, the 

performed study suggested further investigations to assess 

if abnormal atrial activation can affect the performance of 

the P-lead [6]. 

 

2. Method 

2.1. Data collection 

The signals for V1 and V2 leads were extracted from a 

body surface potential maps (BSPMs) which is comprised 

of 117 nodes (leads) and is known as the Kornreich 

dataset [13][14][15]. The Kornreich dataset has been used 

in a large number of studies around the world, but no 

study has used it to detect V1 and V2 misplacement. The 

ECG dataset comprises three different subject types 

including ECGs of MI, LVH and normal subjects. This 

research has ECGs for 450 subjects, (normal n=150, LVH 

n=150, MI n=150). For each subject, the ECG signals 

were recoded simultaneously for leads V1 and V2. For 

each BSPM, the correct ECG and an incorrect ECG 

(where leads V1 and V2 were misplaced) were extracted. 

To provide a class balance, 50% of cases are correct 

ECGs and 50% are incorrect. For pre-processing, a 

transformation matrix has been multiplied with 117 nodes 

in each BSPM to get 352 nodes that provide a greater 

resolution (using the Dalhousie torso [13]). Nodes 169 

and 171 are denoted in the green color as shown in figure 

1 to represent V1 and V2 leads in their correct positions. 

Nodes 126 and 128 are denoted in the blue color to 

represent V1 and V2 misplacement in the third ICS and 

nodes 83 and 85 represent the misplaced V1 and V2 leads 

in the second ICS. 

2.2. Feature extraction 

Sixteen ECG features have been extracted in three different 

domains including time domain features such as P wave 

amplitude, PR interval, QRS onset value, R amplitude, offset 

of the QRS and S amplitude and  Statistical features including 

the mean, standard deviation, skewness, kurtosis of the ECG, 

Pearson correlation coefficient and the root mean square error 

(RMSE) between V1 and V2 leads because they are 

commonly misplaced together. Time-frequency features are 

derived using a discrete wavelet transform (DWT) using 4 

levels and symlets wavelet mother function. The maximum, 

minimum and mean value of details coefficient four(D4) was 

considered as features.  

 

Figure 1. Dalhousie torso with 352 nodes. 

 

2.3. Feature selection 

To find an optimal set of features that provides a good 

classification results; A hybrid feature selection approach 

(combining the filter method and the wrapper method) 

has been applied. The sixteen features have been ranked 

using five different filter methods including, mutual 

information feature selection (MIFS) in equation (1), joint 

mutual information JMI in equation (1), Entropy in 

equation (2) and maximum relevance minimum 

redundancy (MRMR) in equation (1), and Relief in 

equation (3). Then, a backwards elimination algorithm 

has been applied on ranked features to find an optimal set 

of features.  

 

𝑓𝑡 = arg max I(𝑥𝑖 ; 𝑦) − [𝛼 ∑ 𝐼(𝑥𝑓𝑘; 𝑥𝑖) −𝑡−1
𝑘=1

𝛽 ∑ 𝐼(𝑥𝑓𝑘; 𝑥𝑖|𝑦)𝑡−1
𝑘=1 ]   (1) Where x represents features and y represents labels 

In JMI:𝛼 =
1

𝑡−1
 𝑎𝑛𝑑 𝛽 =

1

𝑡−1
 

In MIFS:𝛼 = 0 𝑎𝑛𝑑 𝛽 = 0 

In MRMR: 𝛼 =
1

𝑡−1
 𝑎𝑛𝑑 𝛽 = 0 

𝐻(𝑋) = − ∑ 𝑝(𝑥) log2 𝑝(𝑥)            (2) where x represents features  

𝑊𝑖 = 𝑊𝑖 − (𝑥𝑖 − 𝑛𝑒𝑎𝑟𝐻𝑖𝑡𝑖)2 + (𝑥𝑖 − 𝑛𝑒𝑎𝑟𝑀𝑖𝑠𝑠𝑖)2                            

(3) w is the weighted vector initialised with zeros, where x represents features, nearHit 

is the closest same class instance and nearMiss is the closest different class instance. 

 



2.4. Classification 

Six classifiers including 1) fine tree, 2) coarse tree, 3) 

bagged tree, 4) Linear Support Vector Machine (LSVM), 

5) Quadratic Support Vector Machine (QSVM) and 6) 

logistic regression have been applied to get the best 

possible accuracy. 

  

3. Results 

The six machine learning classifiers were tested on 

each feature selection algorithm to attain the best 

performance. Bagged tree classifier got the highest 

accuracy among the other classifiers as shown in table 1. 

 

Table 1. Machine learning classifiers accuracy. 

 

 

 

 

 

 

 

 

Sensitivity and specificity were calculated in each IC 

space for the best classifier. Figure 2.a shows ROC curve 

for bagged tree in the first ICS, figure 2.b shows ROC 

curve in the second ICS and figure 2.c shows ROC curve 

in the second ICS. The best feature selection algorithm in 

the first ICS was entropy, while the best feature selection 

algorithm in the second ICS was MRMR and in the third 

ICS the best feature selection was JMI and relief 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

           Figure 2. Roc curve for bagged tree in each ICS. 

1st Intercostal Space 

 ENTR JMI MIFS MRMR REL 

FTREE 87% 88.3% 87.0% 87.0% 87.7% 

CTREE 87.7% 87.7% 87.7% 87.7% 87.7% 

LOG 87.7% 85.7% 87.7% 87.7% 87.7% 

LSVM 84.7% 84.3% 84.7% 84.7% 85.0% 

QSVM 87.3% 91.0% 87.3% 87.3% 88.0% 

BAGT 94.3% 93.7% 92.0% 91.7% 93.3% 

2nd Intercostal Space 

FTREE 85.0% 85.0% 85.0% 82.7% 84.0% 

CTREE 87.7% 87.7% 87.7% 85.7% 87.7% 

LOG 82.7% 82.7% 83.7% 81.3% 82.7% 

LSVM 78.7% 78.7% 75.7% 76.0% 78.7% 

QSVM 79.0% 79.0% 78.3% 79.0% 79.0% 

BAGT 88.3% 92.3% 90.3% 92.7% 90.7% 

3rd Intercostal Space 

FTREE 60.0% 59.0% 60.3% 58.3% 59.0% 

CTREE 69.7% 69.7% 69.7% 69.7% 69.7% 

LOG 64.3% 63.7% 65.7% 63.7% 63.7% 

LSVM 59.0% 60.3% 61.0% 61.3% 60.3% 

QSVM 58.7% 60.0% 62.7% 60.3% 60.0% 

BAGT 69.3% 70.0% 66.3% 69.0% 70.0% 

Prevalence: 50.0% 

Sensitivity: 93.3% 

Specificity:92.0%, Accuracy:92.7%  

Predictivity of positive test: 92.1% 

Predictivity of negative test 93.2% 

F1-score: 0.9  

 

Prevalence: 50.0% 

Sensitivity: 70.0% 

Specificity:70.0%, Accuracy: 70.0% 

Predictivity of positive test: 70.0% 

Predictivity of negative test:70.0% 

F1-score: 0.7  

 

Prevalence: 50.0% 

Sensitivity: 94.0% 

Specificity:94.6%, Accuracy: 94.3% 

Predictivity of positive test: 94.7% 

Predictivity of negative test:94.0% 

F1-score: 0.9 

 

FTREE: fine tree, CTREE: coarse tree, LOG: logistic 

regression, LSVM: linear support vector machine, 

QSVM: Quadratic Support Vector and BAGT: bagged 

tree. ENTR: entropy, JMI: joint mutual information, 

MIFS: mutual information feature selection, MRMR: 

maximum relevance minimum redundancy and REL: 

relief 



4. Discussion 

    This study presents a machine learning algorithm to 

detect V1 and V2 lead misplacement. The aim of this 

work is to improve ECG signal quality which can help 

clinicians in decision making in cardiac care. According 

to the literature review, ECG lead misplacement is one of 

the most critical issues affecting ECG morphology and 

interpretation as well [8]; which can cause false diagnoses 

and inappropriate treatment. V1 and V2 are commonly 

misplaced leads and they placed too high and wide from 

their correct position which can cause a false diagnosis. 

This study highlights a noticeable decline in accuracy 

when there is lead misplacement in the third ICS. Which 

is expected; because the ECG features will be more 

similar to features recorded in the 4th ICS. This suggests 

future research to improve accuracy of detecting chest 

lead misplacement in the third ICS using a new method. 

 

5. Conclusion 

In this study, bagged tree provides the best performance 

for detecting chest electrode misplacement in three ICSs 

(1st, 2nd, 3rd). Based on feature selection algorithm, in the 

first ICS the best feature selection algorithm was entropy, 

while in the second ICS, the best algorithm was MRMR 

and in the third ICS the best feature selection was JMI 

and relief. Based on results, another study should be 

carried to improve performance in the third ICS by using 

new features or including a new machine learning 

classifier. A broader dataset should be used in a 

derivation study to check if the developed algorithm can 

improve ECG data quality and decision making in cardiac 

care 
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