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Featured Application: Plasma-aerosol systems open new potential opportunities in a wide range 

of applications including agriculture, combustion control, nanotechnology, medicine and 

cosmetics. 

Abstract: The interaction of plasmas and liquid aerosols offers special advantages and opens new 

perspectives for plasma–liquid applications. The paper focuses on the key research challenges and 

potential of plasma-aerosol interaction at atmospheric pressure in several fields, outlining 

opportunities and benefits in terms of process tuning and throughputs. After a short overview of 

the recent achievements in plasma–liquid field, the possible application benefits from aerosol 

injection in combination with plasma discharge are listed and discussed. Since the nature of the 

chemicophysical plasma-droplet interactions is still unclear, a multidisciplinary approach is 

recommended to overcome the current lack of knowledge and to open the plasma communities to 

scientists from other fields, already active in biphasic systems diagnostic. In this perspective, a better 

understanding of the high chemical reactivity of gas–liquid reactions will bring new opportunities 

for plasma assisted in-situ and on-demand reactive species production and material processing. 
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1. Plasma-Liquid as a Bench of Emerging Applications from 2010 

Plasmas in/above/with liquids [1] science and technology at atmospheric pressure have been 

reawakened these last few years, partly due to the very active research activity in the field of plasma 

medicine and the requirement to account for liquid layers covering in vitro cell culture or organs 

during in vivo or clinical studies. Grown from the pioneering works of Gubkin [2] and Cavendish 

[3], and accounted as the origin of life on Earth [4,5], the investigation of plasma–liquid interaction at 

atmospheric pressure became a fruitful and multidisciplinary research field [6,7]. Focus was drawn, 

in particular, to the crucial role of so-called reactive oxygen and nitrogen species (RONS) [8] in 

various biomedical applications, ranging from biomaterials to therapeutics. The use of plasma-

treated liquids has also been proposed where a direct contact between target and plasma needs to be 
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avoided or is not possible. The combination of extensive efforts devoted to both plasma action on 

animal cells and the chemical analysis of plasma-treated solutions, together with the development of 

dedicated plasma sources for such applications, were between the key reasons why new emerging 

fields have been recently introduced, such as plasma agriculture, plasma catalysis, plasma 

nanomaterial synthesis/functionalization, plasma cancer, and plasma for skin treatment and 

cosmetics [9–15]. In this framework, many scientific works and reviews [1,16] provided insights into 

the non-equilibrium chemistry created at the plasma–liquid interface and addressed the role of liquid 

and gas reaction pathways. The most common experimental setups, involving the direct contact of a 

narrow gas discharge with a batch solution, limit the production of reactive species and, thus, process 

throughput. While direct contact with a flowing liquid film has been proposed as an alternative to 

increase the plasma–liquid interface [17,18], some recent works have proposed the use of plasma-

droplet interactions with the aim of overcoming the limit of batch process enabling in in-situ and on-

demand dispensing [19–21]. The large number of reaction pathways and available plasma 

parameters, already challenging for batch processes, bring even more complexity to the analysis and 

investigation of plasma–liquid interaction but open new possibilities for technological applications. 

2. Plasma and Aerosols: Opportunities, Economical and Societal Benefits 

All these recent advances should, in our opinion and as has already been documented in the 

literature [19,20,22], result in a strong effort and a specific interest in the development, optimization 

and applications of plasma in interaction with liquid droplets and aerosols in various fields of 

technology over the next decade. The topic of this paper is to summarize the opportunities for 

generating and delivering plasmas into aerosols and sprays, as a specific branch of plasma–liquid 

science and technology.  

The term “plasma-aerosol”, where “aerosol” means a dynamic suspension of liquid droplets 

dispersed in a gas, encompasses a wide range of scenarios that can involve a range of options, from 

single microscopic droplets up to dense sprays and jets, while atmospheric pressure plasmas may 

vary from the low temperature and non-equilibrium family of devices to extremely hot plasmas.  

The plasma–aerosol configuration offers special beneficial advantages, not only in furthering the 

development of plasma–liquid applications, but also enabling greater scientific insights into what is 

an extremely complex problem involving potentially thousands of transient and non-equilibrium 

chemical reactions. Moreover, the incorporation of large surface-to-volume ratio media into cold 

plasma creates new opportunities, correlated to highly demanding societal and technological needs, 

in: 

• Enhancing the transfer of activation energy from the plasma to the liquid. Batch processes are often 

limited by the transport of species through the liquid surface. This limit is overcome in the 

plasma–aerosol configuration thanks to a large surface-to-volume ratio and the production of 

species in close proximity to the droplet surface. 

• Controlling reactivity in the liquid. The droplets can act as individual microreactors, enabling a 

range of conditions that cannot otherwise be achieved in batch processes. 

• In-flight production and on-demand delivery of designed micro/nanomaterials associated with the 

generation of clusters and/or liquid evaporation. Aerosol droplets could be employed as micro-

carriers, able to deliver particles and molecules in the discharge region opening, for example, for 

the use of low-volatility liquid compounds. 

• Delivery of short-lived species. Plasma-aerosol driven by high velocity sprays may represent a new 

and unique way to generate and deliver significant amounts of short-lived species (sub-second 

lifetime) together with solvated electrons away from the plasma itself on millisecond timescales. 

Dealing with economic benefits, in the synthesis of high value chemicals, drugs and 

nanomaterials, there is an increasing trend to move away from batch processing, which is expensive, 

difficult to control, and has an unwelcome environmental impact. Efficient green process research is 

looking to develop micro reaction technology. Plasma and aerosols offer many further advantages 

with regard to cross-contamination, throughput, chemical recovery and waste generation. In 
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addition, the ability to generate high value chemicals, locally and on-demand, offers tremendous 

potential. This includes, for example, pristine or drug-coated nanoparticle generation and delivery to 

patients for nanomedicine applications (e.g., wound healing and cancer treatment) and size-

controlled nanoparticles for volume catalytic processes. Alternatively, the encapsulation of 

biomolecules, drugs, and nanocarriers in liquid droplets seems to prevent possible plasma-induced 

damage during the deposition of bioactive, nanostructured and functional coatings, allowing the 

retention in the deposited coating of important chemical functionalities [23–26]. 

On the side of energy saving, the valuable work of Locke and Shih [27] on energy yields for H2O2 

generation by plasma-water processes reported how the highest efficiency is achieved by adopting 

liquid droplets that sequester H2O2 and hinder its decomposition by radicals in the gas phase. One 

would expect that optimizing the energy transfer from plasma to liquid as an aerosol will also 

broaden opportunities for on-demand, in-situ plasma activated aerosols, likely to be used in 

developing countries where electricity availability is still a challenge, together with the specific 

design of battery operated and solar energy powered devices. Such development would be of key 

importance and highly beneficial for new agriculture, medicine and decontamination solutions [28]. 

The use of plasma aerosols will also consist in a water/high value solution-saving technology, 

matched for applications like indoor cultivation and large surface material deposition, thus keeping 

plasma as an almost dry technology, preventing from huge effluent volumes to be treated as 

byproducts. As detailed further in the following sections, plasma and aerosols could also help to 

prove our understanding of the climate impact and significance of streamer discharges in the 

atmosphere [29]. Moreover, introducing plasma and aerosols as a new alternative in 3D or ink 

printing technologies has been very recently discussed [30] and should be an objective for large-scale 

dissemination of plasma processes, even in today’s unexplored applications. 

3. Plasma and Aerosols: Challenges 

Compared to plasma discharges in and over liquids, biphasic aerosol–plasmas have been far less 

investigated, and many aspects of their nature are still unknown. The generation of plasma in such 

finely dispersed biphasic media is very challenging for physical and chemical diagnostics and 

modeling studies, where very local, transient and fast dynamic behaviors, and long-distance effects 

should be accounted for. Nowadays, the significant lack of basic understanding concerning the 

mechanisms governing these plasmas hinders the optimization of their applications. The scientific 

questions that need to be addressed to improve our knowledge on plasma–aerosol interactions can 

be ideally sorted into three main categories (see Figure 1): 

• Modification of the plasma due to liquid droplets 

• Modification of the liquid droplets due to plasma 

• Multiphase species transport between plasma and liquid droplets 

 

In the first category all the phenomena governing the plasma discharge propagation and 

intersection with the droplets in a biphasic environment can be found. Based on this, some pioneering 

studies [31,32] highlighted how the propagation of streamers can be significantly disturbed by the 

presence of droplets due to the local modification of the electric field that results from the droplets 

polarization and charging [33]. This local modulation of the electric field in turn modifies the local 

rate of ionization. 
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Figure 1. Schematic representation of the interactions between the plasma and an aerosol droplet. 

Other possible effects include charge removal from the streamer and shadowing of the 

photoionization behind the droplets; both mechanisms strongly depend on liquid characteristics 

(e.g., permittivity) and droplet size. Small droplets (tens of µm or less) of moderate permittivity are 

expected to be enveloped by the streamer and do not significantly perturb its propagation, while 

larger drops, with a big enough capacitance, can intercept and reinitiate the streamer or stall its 

further propagation. Droplets may thus be considered as controlling and tracing the path where the 

discharge energy is deposited [31]. Other mechanisms that can possibly play a role and that deserve 

further investigation include: droplets induction of streamer branching; extraction of electrons from 

the droplet surface owing to photons emitted from the streamer head; alteration of the streamer 

propagation velocity. Besides, arising from surface evaporation, the interfacial layer in proximity of 

the droplet surface is suspected to contain a cocktail of positively and negatively charged clusters 

with a large size range, along with a very high localized vapor density, possibly up to tens of times 

that possible in a normal plasma before extinction. We can speculate that this may lead to amplified 

non-equilibrium gas-phase chemistry, the products of which may be sequestered by the droplet 

boundary. Even if the analysis of transient phenomena (streamer propagation, streamer droplet 

interaction) at the microscale requires a great deal of effort, a combined simulative and experimental 

approach to the subject greatly benefits the community in addressing the role of different phenomena 
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in the plasma–droplet interaction. In particular, a better understanding of the effect of liquid 

(conductivity, droplet dimension, colloidal state) and gas (electron density, electron temperature, 

electric field) properties will help researchers to optimize the design of plasma processes and sources. 

Concerning droplets modifications due to the interaction with plasma, a droplet entering a 

plasma region is subjected to charging and subsequently experiencing deformation and possibly 

splitting due to Coulombic fission as a result of exposure to a plasma-related electric field [20]. In 

addition, the rate of evaporation of such droplets could be enhanced by additional factors other than 

those encountered in non-reactive gases, such as irradiation by ultra-low energy electrons [34]. In 

fact, these electrons can have energies much lower than is achievable by any other technique, such as 

radiolysis. Irradiation, however, may also lead to other processes, such as electron–ion or anion–ion 

recombination, Auger and UV emission, which have received very little attention to date in this 

context. Moreover, droplets introduced in atmospheric plasma are also susceptible of being 

accelerated by the combined effect of the drag forces, ionic wind and electrostatic forces and this 

could result in various effects including size segregation. While it is generally believed that the weak 

magnetic field produced by atmospheric pressure plasma discharge [35] cannot be accounted for, for 

the direct modification of a droplet’s properties (Moses effect [36], evaporation and modification of 

surface energy), the application of an external field can be employed to modify the plasma discharge 

characteristics and droplet properties [37–40], inducing breakdown [41] or colloid segregation [42]. 

Precise control over these mechanisms by means of plasma technology would open new perspectives 

from the point of view of droplet manipulation, from millimetric to nanometric scales, from a single 

droplet to an aerosol. From this perspective, a deeper investigation of droplet evaporation, taking 

into account both thermal and physical effects, can strongly influence the use of plasma for on-

demand and in-situ synthesis of chemicals and reactive species. Further efforts should be devoted to 

the fundamental study of droplet charging and electron impaction, with an important focus on the 

roles of electron density, temperature and droplet size. 

Concerning multiphase species transport, in the last ten years, considerable advancements have 

improved our knowledge on the subject [1]. It is considered that plasma–aerosol droplets act as 

efficient microreactors where reaction rates, mixing and surface/volume ratio are considerably 

enhanced, posing new unique challenges in the understanding of transport of a species in this 

configuration [27,43]. Computational studies [43–46] showed the importance of the synergy between 

the plasma and the liquid, including evaporation and the solvation of ions, electrons and neutral 

particles. They also investigated the plasma treated water chemical and transport processes. They 

highlighted the importance of the water microdroplet size (or thin water film thickness) on the 

transport processes of plasma reactive species. While extremely challenging, devoting additional 

efforts to the analysis of convection and reaction pathways inside a droplet microreactor would be 

valuable, as well as comparing results with scientific works already published for batch processes. 

The achievement of better knowledge on this issue will result in the possibility to tune the chemical 

and physical characteristics of an effluent. Future applications will also take advantage of a better 

understanding of droplet transportation for the in-situ delivery of chemicals.  

The understanding of the aforementioned mechanisms is still at an early stage and certainly 

deserves more attention from the scientific community. The operative ranges for biphasic plasma 

generation based on aerosol density and granulometry are widely uncharted; the influence of various 

and numerous process parameters (e.g., pulse repetition frequency, aerosol density) and most of the 

proposed hypotheses still need to be validated for a wider number of conditions and plasma source 

architectures. Future studies will have to face the challenges of identifying and validating diagnostic 

methods able to allow in-situ characterization of this multiphase environment, despite the intrinsic 

inhomogeneity and transient nature. The measurement of a microdroplet thermal, electrical and 

chemical characteristics presents a significant challenge that has, to date, seriously limited our 

understanding of this important system. Recent advances in spectroscopic techniques, from UV to 

infra-red, and with high spatial and temporal resolution now offer the possibility for accurate study 

of this system, aided by recent developments in plasma control and in precision microdroplet 

generation [34,47,48]. Considering, for example, the range of available gases, liquids or colloids and 
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the choice of plasma parameters, droplet sizes and exposure time, this experimental and simulation 

environment offers very fertile ground for future discoveries. 

Nevertheless, the most important challenge in the study of complex multiphase plasmas 

probably comes from accounting for the strong coupling that links the above mentioned phenomena. 

For example, a droplet entering a plasma region locally modifies the electric fields, but may in turn 

be deformed by the electrostatic forces up to the point of splitting into smaller droplets, characterized 

by a higher rate of evaporation that will modify the liquid vapor content in the gas phase and 

therefore the plasma discharge. The acknowledgment of this coupling will demand a considerable 

effort and the adoption a multi-diagnostic approach combining techniques for the characterization of 

the plasma, the aerosol, the fluid dynamic mixing and the liquid properties together with advanced 

numerical models able to account for droplet surface modification. The design of new experiments 

aimed to “decouple” these phenomena, for example considering the interaction between a single 

drop with a single pulse discharge, will also be essential to further improve our knowledge on these 

mechanisms. 

New plasma source architectures, best coupled with aerosol nebulizers, will need to be 

developed and customized to ensure a precise control of droplet dimension distribution and 

residence time. The optimization of existing applications based on the interaction of plasma-droplets 

(e.g., plasma-assisted coating deposition [23], wastewater treatment and decontamination [49]) will 

promptly benefit from research effort on biphasic plasmas while numerous new applications (e.g., 

plasma aerosol catalysis, plasma assisted printing [50]) are expected to rapidly develop and gain 

interest. With a precise control of the plasma and microdroplet parameters we could engineer a 

unique non-equilibrium multiphase structure comprised of gas, plasma, liquid and, importantly, a 

dynamic interfacial layer. This enhanced transport, combined with a fine control of the droplet 

trajectories and residence time in the plasma region, opens new opportunities in the control of the 

treatment time and potentially in the use of solvated electrons and short-lived reactive species. With 

this control, not possible with any other steady-state system, we may gain insight into the transport 

and mass accommodation of radical species before the onset of Henry’s Law [51]. This is of critical 

importance in the study of atmospheric chemistry, pollution and climate change [29]. With the 

introduction of solid and polymer materials, or their precursors, into a liquid droplet, the scope for 

new materials and new diagnostics appears immense. 

4. Bridges to Other Communities 

Great help in tackling the presented new challenges may come from closely related research 

fields and communities that have already been addressing effects of interest for biphasic plasmas. As 

an example, there are multiple studies, some of them over 100 years old, on electrospraying 

(electrohydrodynamic atomization) of liquids by applying strong electric fields, i.e., high voltages on 

the nozzle [52,53]. The electrospray community has produced a huge amount of valuable literature 

on the mechanisms implied in droplets charging, deformation and fissioning in the presence of strong 

electric fields and eventually in the presence of plasma discharges when operating with liquids with 

high surface tension (e.g., water) that require the use of high voltages [54]. However, in most of 

electrospray applications, the occurrence of plasma discharge is undesired, as the discharge typically 

perturbs the stability and homogeneity of the spray (see Figure 2).  
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Figure 2. Photographs of the electrospraying of water in an 8-mm gap, water flow rate 0.5 mL min−1: 

(a) droplet without a high voltage, (b) electrospray with a high voltage applied, 5.5 kV, (c) 

electrospray combined with streamer corona, 6.5 kV, (d) electrospray with transition streamer corona-

transient spark, 7.8 kV. Reproduced from Machala et al. [55]. All rights reserved. 

 

There were a few studies, which investigated the interactions of the sprayed charged aerosol 

droplets and the discharge, especially with respect to the space charges and ion mobility effects [56–

58], or even studies that intentionally employed these complex interactions, e.g., for water treatment 

or surface decontamination [59–61]. Valuable information, methods, techniques and models can be 

extracted from these studies or reviews [54,62] and used for a deeper investigations of plasma-aerosol 

interaction. Other fields that probably deserve attention from the plasma community are fuel 

injection for combustion engines [62], low pressure dusty plasmas [63], aerodynamic [64], thermal 

plasma spray [65], space plasmas and once again atmospheric plasma phenomena [29]. Far from 

being trivial, the scouting of these domains’ literature and the instauration of efficient collaborations 

with the relative researchers will be a key factor to support the advancement of the research in 

biphasic plasmas. Certainly, the benefit will be mutual and the collaboration will provide new 

perspectives and tools to the cited domains (e.g., enhanced evaporation and introduction of reactive 

species in fuel droplets to increase flame control and reduce pollutant production). 
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