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ABSTRACT 

In this paper, the issue of scale is addressed in the context of salient 

object detection. To date, many single scale models have been 

proposed for detecting salient objects within a scene. Scale is a 

fundamental problem within image processing, and therefore, 

multiple scale techniques are investigated and evaluated, as well 

the presentation of a novel multi-scale saliency model. The 

proposed model is compared with two state-of-the-art multi-scale 

saliency algorithms and qualitatively evaluated with respect to 

algorithmic accuracy and efficiency on the publicly available 

MSRA10K salient object dataset.   
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1. INTRODUCTION 
Visual saliency refers to the stimulus that causes an object/region 

to stand out, and therefore capture human attention. The Human 

Visual System (HVS) selectively processes visual data, before 

allocating attention to areas of interest, prior to further processing 

[1]. Scale is a fundamental problem within image processing. 

Within saliency detection the concept of scale has to be considered 

when extracting meaningful features from images. The strength of 

a feature depends on the scale at which it is detected. Therefore, 

 

some features become insignificant at particular scales. Issues have 

been identified in a number of saliency models, which struggle 

when dealing with scenes containing small-scale highly contrasting 

textures/patterns [2]. The posed question of this research is, what 

impact does scale have on salient object detection, and can any 

improvements be gained via different techniques? When 

calculating saliency at multiple scales, computation costs become a 

consideration, especially when global operations are implemented 

e.g. global colour. To address the aforementioned concerns, a 

number of scaling techniques are evaluated, and a novel multi-scale 

saliency algorithm is proposed. With respect to computational 

performance, super-pixels have been incorporated into the 

proposed model using the Simple Linear Iterative Clustering 

(SLIC) algorithm [3]. The focus of this research is low-level 

mathematical principles applied within saliency detection rather 

than shallow or deep learning. The remainder of the paper is 

structured as follows. Section 2 summarises relevant works. 

Section 3 outlines a number of scaling techniques, with the 

proposed multi-scale model presented in Section 4. Evaluation is 

undertaken in Section 5 and conclusions drawn in Section 6.  

2. RELATED WORK 
Many machine learning approaches have been applied to the 

challenge of detecting salient objects, for example [4] and [5]. 

However, the focus of this paper is bottom-up multi-scale saliency 

models, rather than deep or shallow learning models. Hierarchical 

Saliency Detection [2], introduces a novel approach to produce 

multiple layers of the input image. Each layer is the result of a 

merging process, meaning each layer includes different levels of 

detail from fine to coarse. Saliency cues are calculated on each 

layer, then fed into a hierarchical inference model to calculate the 

final saliency map. Visual Saliency Detection based on Gradient 

Contrast and Colour Complexity [6] adopts a Gaussian pyramid to 

create three image scales. At each scale, saliency features are 

calculated, then linearly combined. In the calculation of 

morphological gradient, three sizes of structuring elements are 

employed as a means of computing multi-scale gradient. In [7] a 

bottom-up multi-scale model is proposed using super-pixels as a 

scaling mechanism. Background and foreground priors are 

employed to calculate saliency. In [8], scale is utilised by enlarging 

the patch sizes at which the dissimilarity measure is calculated. A 

multi-scale super-pixel approach is presented in [9]. 
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Figure. 1. Overview of multi-scale saliency model pipeline. 

The calculation of features to determine saliency is often 

computationally expensive. As a result, many algorithms have 

adopted clustering/segmentation, to group pixels and form 

perceptually meaningful regions, before performing feature 

extraction. A watershed-like method was implemented in [2], 

whereas super-pixels were adopted in [6]. As a means of improving 

computation time, the presented model will incorporate the use of 

super-pixel regions. A number of different methods have 

considered scale as a means of improving salient object detection. 

Within this work, gradient is employed as a feature cue, in 

conjunction with evaluating different multi-scale approaches 

similar to those used in [2, 6, 8 and 9]. 

3. SCALING TECHNIQUES 
The issue of scale has been approached with a number of different 

techniques, a few of which are outlined in this section. The well-

known pyramid scheme is used to represent images hierarchically. 

Input image 𝐼  of size 𝑀 × 𝑁 , follows a repeated process of 

smoothing and resampling.  

Super-pixels encode important information regarding object shape 

and boundary, aiding segmentation. However, the challenge is 

choosing the optimal number of super-pixels, which has a direct 

impact on the success of saliency features. Figure 2 shows an image 

partitioned with a varying number of super-pixels. At each scale of 

super-pixel, different information regarding the salient object is 

captured. As in [7, 9, 10], image 𝐼  is segmented using multiple 

levels of super-pixels 𝐾. To calculate multi-scale gradient, multiple 

scales of the Near-Circular operator [11] are used namely operators 

of size 3 × 3, 5 × 5 and 7 × 7, referred to as multi-scale mask and 

super-pixel approach (MSM&SP) 

Methods [2, 6, 9] as detailed in Section 2 are also evaluated as 

scaling techniques in Section 5. The work in [2] proposes a layering 

hierarchical scheme, with each image layer containing different 

levels of detail. At each layer a mean filter is used to calculate a 

scale value, with values less than a threshold being combined with 

neighbour regions. The algorithm in [6] processes three scales of 

images, produced by a Gaussian Pyramid. Colour complexity and 

morphological gradient are calculated at each scale, before 

producing the final saliency map. In [9] multi-scale segmentations 

of super-pixels are computed. Various Gaussian smoothing 

variables are utilised in the generation of both coarse and fine 

results. 

 

Figure. 2. Image with varying number of super-pixels. 

4. MULTI-SCALE SALIENCY APPROACH 
Within this section a novel multi-scale salient object detection 

model is presented entailing four main steps. First, the input image 

is decomposed into three different scales [𝑅, 𝑅/2, 𝑅/4], using a 

pyramid approach, where 𝑅 is the original scale of the input image. 

Within this work, image 𝐼 is subsampled into three scales by 𝑀/2 

and 𝑁/2. As the gradient operator employed in this research for 

feature detection has built-in Gaussian smoothing, it is therefore not 

included as part of the image decomposition, resulting in 

computational speed-up. Next, each image layer is over-segmented 

with super-pixels. Feature cues are then computed on each layer, 

and finally amalgamated to obtain the resultant saliency map.  The 

model pipeline is shown in Figure 1.  

4.1 Super-Pixel Segmentation 
After the original image is decomposed into three different levels, 

each image level is segmented into super-pixels using the Simple 

Linear Iterative Clustering (SLIC) algorithm [3]. SLIC clusters 



pixels with similar colour values in close proximity, permitting 

images to be processed in a region-based manner, thus improving 

efficiency. The challenge with processing regions is achieving the 

correct balance between computation and accuracy. To choose an 

optimal number of super-pixels, colour contrast was computed 

across 100 randomly selected images, determining the mean 

accuracy and runtime while varying the number of super-pixels 

generated throughout the image domain. Results are presented in 

Table 1. 

Table 1. Mean accuracy and runtime by varying number of 

super-pixels across 100 images. 

Super-Pixels Accuracy Runtime 
(secs) 

15 91.18 0.81 

20 91.18 0.82 

30 91.49 0.92 

40 92.03 0.98 

45 92.82 0.92 

50 92.81 0.92 

60 92.59 1.01 

70 92.59 1.01 

80 92.46 1.15 

90 92.41 1.23 

100 92.40 1.15 

 

The number of super-pixels was varied from 15 − 100 . The 

experiment found that accuracy, as well as runtime, generally 

increased with a higher number of super-pixels. However, after 45 

super-pixels accuracy started to decline while runtime continued to 

rise. Within the SLIC algorithm, the number of super-pixels (K) is 

manually selected. On all three image scales, 𝐾 was chosen as 45, 

as this scored the highest accuracy. It should be noted, although 𝐾 

is manually selected, the actual number of super-pixels may vary 

slightly depending on the image, observed during experimentation. 

4.2 Feature Cues 
Low-level feature cues are an essential part of saliency detection. 

Algorithms normally adopt two or more features, as one typically 

doesn’t suffice when processing vast numbers of colours, objects, 

backgrounds and lighting. This section details the feature cues 

derived for the detection of salient objects.  

4.2.1 Global Colour 
One of the main visual features that fascinates human attention is 

colour. Pixels/regions that have a high contrast to their 

surroundings are considered to be salient [12]. Many models 

compare pixels/regions to their neighbours which is known as local 

contrast. Feature maps from local colour contrast tend to be noisy 

and mainly highlight the edges of the salient object, whereas global 

contrast computes the contrast of a pixel/region in relation to all of 

the remaining pixels/regions within an image. Global colour 

contrast (𝐶𝐶) of a super-pixel 𝑖 at each scale is defined as: 

               𝐶𝐶(𝑖) =  ∑ 𝜏(𝑐(𝑖), 𝑐(𝑗))√(𝐷(𝑖) − 𝐷(𝑗))2

𝑁

𝑗=1

                         (1) 

where 𝑁 is the total number of super-pixels and 𝐷(𝑖) and 𝐷(𝑗) are 

the average 𝐿∗ 𝑎∗ 𝑏∗  values of super-pixels 𝑖  and 𝑗  respectively. 

𝜏(𝑐(𝑖), 𝑐(𝑗))  is a weighting term controlling the range of colour 

contrast feature, calculated as: 

            𝜏(𝑐(𝑖), 𝑐(𝑗)) =  exp (−
1

0.125
 ‖𝑐(𝑖) −  𝑐(𝑗)‖

2
)                   (2) 

where 𝑐(𝑖) and 𝑐(𝑗) are the centre positions of super-pixels 𝑖 and 𝑗 

respectively. 

4.2.2 Local Gradient 
Having evaluated a family of Gaussian based derivate operators, 

specifically the Linear Gaussian [13], Bilinear Gaussian [14] and 

the Near-Circular [11], in the context of saliency. The Near-

Circular operator [11] was found to be best suited for saliency 

detection, outperforming the other compared operators. Therefore, 

the 7 × 7 Near-Circular operator is adopted, and gradient contrast 

calculated across a local neighbouring region of [9 × 9]  pixels.  

Gradient contrast (𝐺𝐶) per scale level is formulated as: 

                            𝐺𝐶(𝑖) =  ∑ ∑‖𝑔(𝑖,𝑗) − 𝑔(𝑛)‖

𝑁

𝑗=1

𝑁

𝑖=1

                    (3) 

 

where 𝑁 is the total number of pixels within the neighbourhood 

region and 𝑔(𝑖,𝑗) and 𝑔(𝑛) are gradient magnitude value of pixel 𝑖, 𝑗 

and the sum of gradient values across a neighbourhood 𝑛 

respectively.  

4.3 Scale and Feature Fusion  
Fusion of features is a key step in any saliency algorithm to obtain 

a final saliency image/map. With the proposed model implemented 

at multiple scales, 𝐶𝐶 and 𝐺𝐶 require amalgamation at each scale. 

Gradient and colour features are fused independently with their 

respective multi-scale maps, likened to an inverse pyramid scheme. 

Prior to this, feature maps are re-scaled to the original size and 

fused by algorithmically summing each feature map output, such 

that the fused colour scale map (𝐶𝑀) can be defined by: 

                                         𝐶𝑀(𝑥,𝑦) =  ∑ 𝐶𝐶(𝑥,𝑦)
𝑟

3

𝑟=1

                                (4) 

 

where 𝐶𝐶(𝑥,𝑦)
𝑟  is the colour contrast value of the pixel at coordinate 

(𝑥, 𝑦) at each scale 𝑟. After the scaled feature maps are merged by 

summation of corresponding pixels at each scale, the resultant 

fused feature cues need to be integrated to form the final saliency 

map. The algorithm’s final saliency map 𝑆𝑀 can be calculated as: 

                                     𝑆𝑀 =  (𝛼 ∗ 𝐶𝑀) + (𝛽 ∗ 𝐺𝑀)                       (5) 

 

where 𝛼 is set to 0.7 and 𝛽 is 0.6. It was empirically determined 

this combination of weights yielded the best results. 𝐶𝑀 and 𝐺𝑀 

(as depicted in Figure 1) are the colour and gradient fused scaled 

feature maps respectively. 

5. EVALUATION 
To evaluate the proposed saliency approach, different metrics were 

used as outlined in Section 5.1. Firstly, the proposed approach was 

implemented on a single-scale referred to as Single Scale Saliency 

(SSS), progressing to multi-scale, comparing with a number of 

techniques. These techniques included, using a pyramid scheme to 

decompose the image into different scales, and implementing the 



proposed feature cues but scaling the number of super-pixels rather 

than the image [7, 9]. In the latter approach, the multi-scale gradient 

feature entailed using multiple scales of near-circular operator 

masks namely 𝟑 × 𝟑 , 𝟓 × 𝟓 , 𝟕 × 𝟕  (MSM&SP). The final 

proposed model is evaluated against two state-of-the-art multi-

scale saliency approaches: Visual Saliency Detection based on 

Gradient Contrast and Colour Complexity [6] (VSD) and 

Hierarchical Saliency Detection [2] (HSD), on the publicly 

available MSRA10K salient object dataset [14]. 

5.1 Evaluation Metrics 
Before calculating evaluation metrics, the resultant saliency map 

𝑆𝑀  is binarised by varying a threshold from [0, 255] . At each 

threshold, the Accuracy measure 𝐴  is calculated, which is the 

percentage difference when comparing each pixel of the binarised 

saliency map 𝐵𝑀 with the associated ground truth mask 𝑀. This 

determines how successful a model is at correctly labelling pixels 

as salient or non-salient and is outlined as: 

 

                               𝐴 =  
(𝑡𝑝 + 𝑡𝑛)

(𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛)
                              (6) 

 

where 𝑡𝑝 , 𝑡𝑛 , 𝑓𝑝  and 𝑓𝑛  are defined as true positives, true 

negatives, false positives and false negatives respectively. 

Precision and recall are used to evaluate saliency models due to 

their similarity with a linear classification problem. The precision 

value refers to the ratio of correctly assigned salient pixels against 

all extracted regions. Recall measures the percentage of truly 

salient regions the algorithm was able to correctly label. 

Receiver operating characteristics (ROC) curve reports the false 

positive rate (𝐹𝑃𝑅) against the true positive rate (𝑇𝑃𝑅) at different 

thresholds and each is calculated by: 

 

                         𝑇𝑃𝑅 =  
𝐵𝑀 ∩ 𝑀

𝐵𝑀
,   𝐹𝑃𝑅 =  

𝐵𝑀 ∩ 𝑀

𝑀
                     (7) 

 

From the ROC curve, the area under ROC curve (AUROC) can be 

calculated, with a perfect model scoring an AUROC of 1 and an 

AUROC score of 0.5 is equated to guessing. 

5.2 Results 
The proposed model was tested on a single scale model as well as 

different multi-scale techniques, as well as evaluated against two 

state-of-the-art multi-scale saliency approaches, namely, HSD [2] 

and VSD [6]. As seen in Table 2, the maximum and mean of each 

algorithm’s accuracy are recorded. Hierarchical saliency detection 

scored the highest in both, with the proposed pyramid multi-scale 

approach following closely. The highest AUROC score was 

recorded by the proposed model scoring 0.9321, with visual 

saliency detection coming in second with a 0.8967 score. Runtime 

was recorded in seconds measuring algorithm efficiency. The 

single scale saliency (SSS) approach recorded the fastest average 

runtime, which is expected as every other approach is processing 

multiple scales. The proposed model closely followed, recording a 

runtime of 0.4 seconds on average. The precision/recall and ROC 

curves are represented in Figure 3. Figure 4 shows a visual 

comparison of each algorithm, where our approach can be seen to 

detect and highlight the internal regions of the salient object, as well 

as preserving the edges with fine scale details. In particular, images 

on rows one, three and four, show our method outperforming the 

other techniques in terms of highlighting the entire salient object 

consistently. Some techniques can be seen to completely miss 

certain internal small-scale regions of the salient object, 

specifically, VSD, MSM&SP and SSS.   

6. CONCLUSION 
This paper investigated gradient information as a feature for use in 

salient object detection. The Near-Circular derivative operator was 

utilised for the calculation of gradient feature, within the proposed 

model. The presented algorithm combines local gradient contrast 

with global colour contrast. The algorithm was implemented on a 

single-scale, as well as on two different multi-scale approaches. A 

study was also completed for choosing the optimal number of 

super-pixels, found to be 45.  

The proposed model is evaluated against two state-of-the-art 

hierarchical algorithms, outperforming them in terms of ROC, 

AUC and runtime. Further investigation is required to improve the 

computational efficiency of the proposed algorithm for real-time 

usage, as seen in the presented results. Other feature cues such as 

depth, texture and motion will be considered as means of improving 

the robustness of the proposed approach, with a view to extending 

the algorithm for use in videos.  
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Table 2. Comparison of multi-scale saliency technique results 

Approach Max Acc. Mean Acc. AUROC Runtime 

Single-Scale Approach (SSS) 99.8% 91.6% 0.7108 0.3 secs 

Proposed Pyramid Multi-Scale Approach (Ours) 99.8% 92.9% 0.9321 0.4 secs. 

Multi-Scale Super-Pixel Approach (MSM&SP) 99.8% 92.4% 0.8673 0.7 secs. 

Visual Saliency Detection (VSD) 99.7% 92.8% 0.8967 0.9 secs 

Hierarchical Saliency Detection (HSD) 99.9% 96.3% 0.5866 0.6 secs 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 3. ROC and Precision/Recall Curves 

 

 

Figure. 4. Visual comparison of saliency approaches. 


