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Abstract

Large-scale plasmonic substrates consisting of metal-insulator nanostructures coated

with a bio-recognition layer can be exploited for enhanced label-free sensing, by uti-

lizing the principle of localized surface plasmon resonance (LSPR). Most often the

uniformity and thickness of the bio-recognition layer determines the sensitivity of plas-

monic resonances as the inherent LSPR sensitivity of nanomaterials is limited to 10–

20 nm from the surface. However, due to time-consuming nanofabrication processes,

there is limited work on both the development of large-scale plasmonic materials, and

the subsequent surface functionalizing with bio-recognition layers. In this work, by

exploiting properties of reactive ions in a SF6 plasma environment, we are able to de-

velop a nanoplasmonic substrate containing ∼ 106/cm2 mushroom-like structures on

a large sized silicon dioxide substrate (i.e., 2.5 cm by 7.5 cm). We further investi-

gate the underlying mechanism of the nanoassembly of gold on glass inside the plasma

environment, which can be expanded to a variety of metal-insulator systems. By in-

corporating a novel microcontact printing technique, we deposit a highly uniform bio-

recognition layer of proteins on the nanoplasmonic substrate. The bioplasmonic assays
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performed on these substrates achieve a limit of detection of 10−17 g/mL (∼ 66 zM)

for biomolecules such as antibodies (∼ 150 kDa). Our simple nanofabrication proce-

dure opens new opportunities in fabricating versatile bioplasmonic materials for a wide

range of biomedical and sensing applications.
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1 Introduction

Constituting a major class of photonic nanomaterials, nanoplasmonic materials are made of

nanostructures where the electron density of the material can be coupled with electromag-

netic radiation of wavelengths that are greater than the size of the nanostructure. These

materials are not only important for the development of fundamental knowledge in quantum

mechanics and optics, but also as a foundation for enabling technologies related to biosensors,

telecommunication devices, solar cells, light-emitting diodes, video processing and imaging

systems.1–3 One fundamental principle associated with noble metal nanoplasmonic structures

is localized surface plasmon resonance (LSPR).4–6 LSPR is the coherent oscillation of the sur-

face electrons of metal nanostructures due to interactions between the incident light and the

conduction band electrons of the metal.7,8 LSPR technology has been utilized to perform

highly sensitive label-free detection of biomolecular interactions in real time, an essential

feature for the early detection of diseases and point-of-care (POC) clinical evaluations.1,8,9

However, standardized LSPR technology for routine clinical evaluations is still lacking due

to challenges in fabricating nanoplasmonic materials on large scale substrates.10,11

Two fundamental fabrication methodologies are routinely used to manufacture nanoplas-

monic materials: top-down fabrication and bottom-up assembly.12 Top-down fabrication

typically relies on various lithographic methods,13 whereas bottom-up approaches employ
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molecular and polymer templating,14,15 and colloidal chemistry16 to develop structures with

nanometer dimensions.13 Although the inherent nature of the bottom-up approach en-

ables fine resolution, top-down methods are better suited for large-scale, high-throughput

nanostructure production.12,17 For example, various lithograhy techniques such as e-beam

lithography,18 angled-nanospherical lens19 and conventional photolithography20 have been

employed to fabricate large-scale nanoplasmonic substrates, for subsequent applications in

spectroscopy21 and large-scale communication devices.22 However, most often lithography

techniques involve time consuming steps to fabricate nanostructures at large scale. Existing

techniques to fabricate nanoplasmonic structures on large scale substrates also have limita-

tions.23–25 For instance, the performance of nanoimprint lithography can be affected by the

density of precursor particles.26 Other technologies such as X-ray interference lithography

and UV lithography,26,27 though lower in cost and allowing the fabrication of nanostructures

in large areas, suffer from low resolutions. Utilizing the merits of both top-down and bottom-

up approaches has seen some success in developing polymeric and small-scale metal-dielectric

materials. For instance, Molnár et al. developed a combined top-down bottom-up approach

to fabricate 3D polymer structures at nanoscale.17 Additionally, Choi et al. deposited gold

nanostructures on silicon by combining photolithography, deposition and etching steps.28

Baquedano et al. developed a hybrid method of using soft lithography patterning with

plasma etching to fabricate large scale plasmonic optical gratings (355 nm wide with a pe-

riod of 780 nm).29 Such nanostructures are easy to fabricate in large areas, but due to the low

surface to volume ratio, these gratings are not suitable for sensing biomolecules at ultra-low

concentrations (sub-picomolar). Moreover, the large inter-nanostructure spacing makes the

sensing surface more prone to non-specific biomolecule adsorption.

Motivated by this challenge, we develop a combined top-down/bottom-up approach to

create large-scale gold (Au) nanoplasmonic structures with high-throughput production.

Our process utilizes properties of reactive ion environments (plasma) of SF6 to assemble

gold nanomushroom-like structures. The gas plasma environment has been reported to as-
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Figure 1: Transforming Au Nanoisland (NI) precursors to nanomushroom (NM) arrays
in SF6 plasma: a) Scanning electron microscopy (SEM) image (Quanta 250 FEG, 5 KV, 100 kX
magnification) and schematic of NIs. b) Schematic showing a SiO2 substrate with NIs inside a SF6

plasma chamber, where SFx reactive ions etch out both SiO2 and Au. c) SEM image and schematic
of NMs formed after exposure to reactive ion etching inside SF6 plasma. The inset shows the cross
section of the NMs. The developed NM structures are 45–60 nm in total height with an average
spacing of 7.96 ± 2.12 nm. Examples of various configurations of NM substrates or integrated
chips: d) NM coated glass slide of size 2.5 cm × 7.5 cm. The pink color corresponds to the Au
nanostructures; e) Spots of 3 mm circles for multiplex bioassay applications; f) Integrating PDMS
wells on a NM substrate; g) Sealed device with PDMS microfluidic channels on a NM substrate,
connected with liquid delivery tubings. One Japanese yen coin (∼ 20 mm in diameter) serves as a
scale.

sist in deterministic nanofabrication for polymeric, silicons and carbon-based materials.30

However, this is the first attempt to exploit properties of a plasma environment to develop

nanoplasmonic substrates containing mushroom-like Au-topped nanostructures on a large

silicon dioxide (SiO2) substrate (2.5 cm×7.5 cm), as shown in Figure 1. Briefly, a 4 nm

thin layer of Au was deposited on a SiO2 surface. The Au thin films were then annealed at

560 ◦C to produce nanoisland (NI) like structures of Au. Nanomushrooms (NMs) were then

formed by exposing the NI decorated SiO2 substrate to a low-temperature (5 ◦C) plasma of
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sulfur hexafluoride (SF6) gas. Ions of SF6 selectively etched off SiO2, while Au NIs served

as nanomasks for the underlying SiO2. This masking resulted in the formation of NM struc-

tures, where each NM consists of a SiO2 stem of 30–40 nm in height, and a Au cap of

15–20 nm in thickness, evenly distributed with 7.96 ± 2.12 nm spacing (see Figure 1c).

The fabricated NM nanoplasmonic substrate was then used as an LSPR chip (see images

in Figure 1(d-g)) and characterized for generic bioassay applications for protein binding

studies. The bio-recognition layer containing the primary antibodies was immobilized on

the substrates by using microcontact printing techniques. The homogeneous nanomushroom

morphology allowed us to create more uniform protein coating on NM based LSPR chip. The

bioplasmonic assay performed on these substrates achieved a limit of detection of ∼ 66 zM

for biomolecules such as antibodies (∼ 150 kDa).

2 Experiments

2.1 Nanomushroom (NM) fabrication process

Nanolayers of Au were deposited on SiO2 using an electron beam vapor deposition equipment

(KE604TT1–TKF1, Kawasaki Science) in a class 1000 clean room. The substrates were

cleaned with acetone and isopropanol before deposition. A 4 nm Au film was deposited at

a rate of 0.3 nm/sec. The sample was then annealed at 560 ◦C for 3 hours, generating a

distribution of Au NIs across the surface of the substrate. An inductively coupled plasma

chemical vapor deposition (ICP CVD) equipment (Plasmalab 100, Oxford Instruments) was

then used to perform reactive ion etching (RIE) on the sample containing Au NIs. SF6 gas

was introduced inside the RIE chamber, maintained at an inside pressure of 10 mtorr and

a flow rate of 45 sccm (Standard Cubic Centimeters per Minute). The RF power coil and

the RF bias coils were fixed to 150 W and 10 W respectively and the temperature inside the

plasma chamber was maintained at 5 ◦C. The total duration of RIE was 5 minutes.
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2.2 Electron beam lithography

Electron beam lithography (EBL) was used to fabricate a series of uniformly-sized Au NI

arrays with 200 nm in diameter and 100 nm in spacing. EBL was performed on Si wafers with

a thin (10 nm) layer of natural oxide, and on Si wafers coated in a more robust, 500 nm layer

of SiO2. Samples were spin coated with the positive e-beam resist AR-P 6200 at 500 rpm

for 10 seconds, followed by 6000 rpm for 50 seconds. They were then soft baked at 150 ◦C

for 3 minutes. EBL was performed at 10 pA with a field size of 150 nm, and with the arrays

replicated 16 times in a pixel exposure series of 0.8–1.55 s. Development of the EBL patterns

was performed for 30 seconds in amyl acetate before being washed in IPA.

2.3 Material characterizations

A small section of the substrate was cut from the original sample using a diamond-tipped

glass cutter and attached to a scanning electron microscope (SEM, FEI Quanta 250 FEG)

mount using carbon tapes. SEM measurements were taken between 5–30 eV to obtain high

resolution images with magnification of at least 100 kX.

2.4 LSPR instrumentation and measurements

The instrument used to study LSPR response was custom assembled by combining discrete

optical components necessary for illumination and collection of light from the sample. The

setup is similar to the setups used in our prior work.31 Briefly, the assembly involves a 2 fibre

optics patch cords , one connected with a halogen light source (LS-1-LL) and other connected

to a spectroscope (USB4000-UV-VIS-ES), which were all purchased from Ocean Optics.

The fibre optics were alligined for light exposure and collection of light in transmission

setup using RTL-T stage purchased from Ocean Optics. Before taking any signal from the

spectroscope, the system was calibrated for dark and light spectrum modes. The LSPR

signal was then recorded in absorption mode by observing the wavelength dependence of the
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light absorbed by nanostructures via the OceanView software (cross-platform spectroscopy

operating software from Ocean Optics).

2.5 Microcontact printing and bioassay

PDMS (Polydimethylsiloxane) stamps comprising of (i) an array of 50 µm×50 µm squares

with 50 µm spacing; (ii) the logo of the university (50 µm in thickness with a total diameter

of 1 mm), were designed with AutoCAD (AutoDesk, USA). To fabricate the master for

the stamps, silicon wafers (4-inch in diameter, EM Corp. Ltd., Japan) were coated with a

50 µm layer of mr-DWL 40 photoresist (Microresist technologies, Germany), and the features

were patterned by photolithography using a DL1000 maskless writer (NanoSystem Solutions,

Japan), and developed using mr-Dev 600 developer (Microresist Technologies, Germany).

After thorough baking and cleaning, the wafers were coated with an anti-adhesive layer

by exposing it to trichloro(1H, 1H, 2H 2H-perfluorooctyl) silane (Sigma-Aldrich, Japan) in

vapor phase in a desiccator. PDMS stamps with the inverse copy of the pattern present on

the Si-wafer were obtained by pouring 10:1 (base to crosslinker) PDMS mixing ratio (DOW

Corning, Japan) on the wafer and curing the pre-polymer for 24 h at 60 ◦C after degassing

to remove air bubbles.

Prior to the microcontact printing process, the Au NIs and NMs covered SiO2 substrates

were cleaned with ethanol and dried well. The patterned stamps were inked with 10 µL of

AlexaFluor 546-conjugated goat anti-chicken immunoglobulins (IgGs) (Abcam, Japan) at a

concentration of 10 µg/mL in 1×PBS, for 5–7 minutes under a plasma activated (Harrick

Plasma, USA) coverslip. The stamps were rinsed with 1×PBS followed by milli-Q water

(Millipore, Japan) for 5 s each before rapid drying with a strong pulse of N2 gas. The

inked PDMS stamps were then contacted with pre-cleaned substrates for 5 s. Subsequently,

the micropatterns of the fluorescently labeled IgGs were imaged on a Ti-E Eclipse inverted

fluorescent microscope (Nikon, Japan) with a fixed exposure time of 10 s for all samples.

After confirming the presence of printed capture IgGs, the patterned IgGs were exposed to
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varied concentrations of AlexaFluor 488-conjugated chicken anti-goat IgGs (Abcam, Japan)

for dose-response bioassay studies.

3 Results and Discussions

3.1 Fabrication and nanoassembly mechanism

Au NIs shown in Figure 1a and Figure 2(a(i), b, d), were created by depositing a 4 nm

layer of Au onto a SiO2 surface by electron beam vapor (e-beam) deposition, after which

the structures were annealed at 560 ◦C for 3 hours. The process of annealing ruptured the

thin Au film deposited on the SiO2 substrate into island-like structures as a result of the

Au film dewetting.32 Previous work has used the dewetting of Au on glass to submerge

Au nanoparticles into glass substrates to fabricate nanochannels33 and nanoislands.34 Our

annealing temperature is lower than the reported work, which is why Au NIs stay on the

SiO2 surface. However, we cannot rule out that the Au/glass interface is not affected by the

annealing process.

Next, the SiO2 substrate containing Au NIs was subjected to RIE in a SF6 plasma

environment at 5 ◦C for 5 minutes, with Au NIs serving as nanomasks for the SiO2 substrate,

see schematic in Figure 2a(i–iv) highlighting each key step. SF6 gas etched SiO2, as the SiO2

around each NI was removed. SF6 etching of SiO2 is a well-established process, and usually

involves (1) generation of reactive fluorine species (SFx), (2) diffusion of these species to the

SiO2 surface and subsequent adsorption on the SiO2 surface, (3) reaction with SiO2, both

chemically and physically (such as sputtering), (4) desorption and (5) diffusion of reaction

products into the bulk gas.35,36 In parallel, Au NIs were also etched from the surface by both

physical and chemical processes. However, SF6 etches Au at rates approximately 100 times

slower than that of the etching of SiO2.
37 The physical etching processes, such as sputtering,

was primarily due to the bombardment of negative SFx ions that were accelerated toward

the substrate by strong electric fields,38 whereas chemical reaction of Au with SF6 generated
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Figure 2: Fabrication process to form nanomushroom-like structures (NMs). a)
Schematic illustrates (i,ii) the generation of building units from Au nanoislands (NIs), and (iii,iv)
subsequent transport and assembly of building units into more tightly packed NMs under RIE in a
SF6 plasma chamber; Scanning electron microscopy (SEM) images (Quanta 250 FEG, 5KV, 100 kX
magnification) of NIs and NMs; b,c) Transformation of NI arrays, prepared by dewetting process
with heterogeneous size (5-60 nm) and spacing (10–70 nm), to NMs of 45-60 nm in height, 20 nm
in diameter, topped with Au cap, with an average spacing of 7.96 ± 2.12 nm. The histograms show
the size distribution of NI and NM respectively; d,e) Transformation of ordered NI arrays prepared
by e-beam lithography (200 nm in diameter with a spacing of 100 nm) to NMs with 150–200 nm
of Au caps. Note there are 2 types of NMs, one formed from the original NIs and other, deposited
in the original vacant sites, clearly shown in the inset in (e).

AuFx species, see Figure 2a(i, ii). These etched off Au entities (in the form of atoms,

clusters of atoms and molecules of Au) were thus available to serve as building units for

further assembly.39 In short, the formation of NM was facilitated by: (a) SiO2 being ejected
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from the substrate into the plasma chamber; (b) Au building units being redistributed on

the SiO2 surface to form new Au nanostructures, see Figure 2a(iii). This redistribution of Au

building units back on the SiO2 surface is attributed to the fact that AuFx species are non-

volatile in nature, in comparison to highly volatile SiFx species generated by the interaction

of SF6 ions with the SiO2 substrate.40 These newly deposited Au building units accumulate

to form new NIs. Simultaneously, the SiO2 around the NIs was etched off, resulting in NMs

after the RIE process, as shown in Figure 2a(iv).

Further evidence is provided by X-Ray photoelectron spectrometry (XPS) with elemental

analysis of the surface of NM, NI and bare glass substrates for the contents of silicon (Si),

oxygen (O), gold (Au) and fluorine (F) (see more details in SI). In Figure S1(c, d), the NM

substrate displayed stronger peaks of Au and F, after the NI structures were etched off,

suggesting that non-volatile AuFx species fell back on the glass substrate during etching.

Simultaneously, there is a substantial increase in the Au 4f signal for the NM, confirming

that NMs are capped with gold at higher density. This is consistent with the size distribution

difference between the NM and NI substrates depicted by Figure 2(b, c). For instance, the

number density of nanosturctures in the NM substrate is significantly higher than those in

the NI substrate. Moreover, the average size of the nanostructures in the NM substrate is

around 17 ± 1.3 nm, in comparison to heterogeneous distribution of nanostructures in the

NI substrate.

We also performed radial distribution function (RDF) analysis of SEM images of NMs to

estimate the size and the gap, and further assess the homogeneity of the NM structures (see

more details in SI document). Figure S6 shows that the average spacing of NM structures

is around 7.96 ± 2.12 nm. Low standard deviation of 4.91% in the average normalized peak

intensity from the SEM image implies that the NMs consist of quasi-periodic structures.

Given this rather homogenous distribution of NM Au cap size and NM height (see Figure 2c),

the reorganization of Au on the surface appears to happen quickly relative to the etching of

the glass stems of the NMs.
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The non-periodic distribution of the NI precursors fabricated by annealing and dewetting

of Au on SiO2 made it difficult to observe how Au building units were re-deposited on the

SiO2 substrate to form NMs. To support and illustrate our explanation that Au building

units are generated from NIs when reacted with SF6 plasma and re-deposited in the gaps

between the NI structures, we designed a well-controlled experiment by creating initial Au

NIs with periodic distributions to further investigate the roles and fate of the building units

towards the assembly of new NMs. We first fabricated Au NIs (200 nm in diameter and 40 nm

in height, with 200 nm spacing) on SiO2 by using e-beam lithography, and then subjected

the substrate to reactive ion etching of SF6 (same etching time, gas pressure and flow rate as

before). In such a case, the location of newly formed NM structures after plasma exposure

can be easily tracked based on the original periodic locations of the precursor NIs. As seen

in Figure 2(d, e), we were able to observe clearly the newly formed secondary NMs in the

original gaps between NIs, upon etching with SF6 plasma. These observations support our

hypothesis that during RIE in plasma, non-volatile AuFx species build up and re-deposit to

vacant sites on the SiO2 surface. Similarly, the reorganization property of the reactive ions

in a plasma environment was recently demonstrated by Levchenko et al., where Nickel (Ni)

nanodots were assembled on silicon substrates in a plasma environment with reactive ions of

Argon.41 Note that the experiment shown in Figure 2 (d, e) was carried out only to reveal the

generation of building units and their re-deposition, but not used for sensing applications.

This is mainly due to the fact that, the dewetting protocol employed to generate NIs for

subsequent etching and fabrication of NMs (Figure 2(b, c)) is simpler, less time-consuming

and more practical for sensing applications, in comparison to the e-beam lithography method

employed to create larger structures of controlled sizes and spacing (Figure 2(d, e)).

We further demonstrate that nanoplasmonic substrates containing Au-SiO2 NMs are

compatible for microcontact printing of proteins and can be used as a novel biosensor for

generic bioassay applications. Generic bioassays are commonly characterized by the binding

of molecules on a given surface or binding of one molecule to another molecule (such as
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Figure 3: Characterization of NM substrate for binding assays. (a) Wavelength is plotted
against the refractive index for Au NM and NI substrates when exposed to solutions with different
refractive indices: DI-water (1.3330), Acetone (1.3590), Ethanol (1.361) and IPA (1.3776), each
point is averaged by measurments from 6 identical samples; Fluorescent IgGs patterned by micro-
contact printing in 50 µm×50 µm squares and in the shape of the OIST university logo respectively
on Au NM (b & c) and Au NI (d & e). Subfigures (f & g) LSPR wavelength shifts and (h & i) LSPR
absorbance shifts for NMs & NIs based nanoplasmonic substrates respectively, to varied amounts
of complementary IgGs being attached to the microcontact printed IgGs (blue symbols) and the
control reaction (red symbols) on adsorption of complementary IgGs. Comparing figure 3h and i
we can observe that NM substrates are more sensitive than NI as NI absorbances do not change as
much as the absorbances of NM structrues in response to antibody attachment. Large error bars
observed in subfigures f to i are due to varied levels of non-specific attachment of complementary
antibodies in areas where no primary antibodies are printed. Note: many points on subfigure 3i do
not show error bars as the size of the symbol is larger than the standard deviations.
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antibody-antigen interaction). The Au NIs were found to resonate at 540 nm and Au NMs

at 533 nm, see Figure S4 in the SI document. In general, decreasing the ratio of width to

height of a nanostructure results in blue shifts (decrease) in the wavelength of LSPR.42,43

Therefore, the wavelength peak shift (blue shift) of 7 nm from Au NMs to Au NIs struc-

tures is attributed to 1) smaller average size and narrower distributions in NMs; and 2)

increase in electronic charge density due to field enhancement in pillared nanostructures.

Figure 3a shows that the changes in the wavelength (∆λ) of Au nanostructures are caused

by the change in the local refractive index around the nanostructures. The refractive index

of the Au nanoplasmonic substrates (Au NMs and Au NIs) was characterized using water,

acetone, isopropanol and ethanol. The slope of the fit provides the sensitivity of the nanos-

tructured substrate: NM substrates are 4 times more sensitive (83.1 nm/RIU) than that

of NI substrates (17.5 nm/RIU). The increased periodicity due to the quasi homogeneous

distribution of NMs enables the enhancement in sensitivity of NM substrate performances.44

Furthermore, the tips of Au NMs are much sharper than those of NIs. It is well known

that sharp nanostructured features give rise to hot-spots in the electromagnetic field that

increase the sensitivity to changes in local refractive index and amplify surface-enhanced

phenomena such as LSPR.45,46 This sensitivity is reasonably good for a large sensor sub-

strate containing spherical gold nanostructures for LSPR applications, with reported range

of 20-96 nm/RIU.47 Moreover, it is possible to improve the sensitivity of the NM substrate

by modifying fabrication parameters (such as initial thickness of gold film and time of expo-

sure to plasma) to optimize the NM size, aspect ratio and spacing. This is ascribed to the

fact that any changes in NM geometry generally leads to a change in LSPR response. The

condition R/λ < 0.1, where R is the radius of the nanostructure and λ is the wavelength

of the incident light, should be satisfied for LSPR.48 The LSPR sensitivity can be enhanced

by reducing the ratio of R/λ, i.e., decreasing the size of the nanostructure with fixed wave-

length.26 The second parameter to consider in our NM geometry is the periodicity of the

nanostructures where decreasing the spacing of the nanostructures can also enhance the sen-
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sitivity of the LSPR.49 More systematic studies are required in the future to optimize the

size and distribution of NM structures for enhanced sensitivity of the NM based biosensor.

To validate the use of Au NMs for generic bioassay applications, we carried out a proof-of-

concept binding study, where AlexaFluor 546-conjugated goat anti-chicken IgGs were chosen

as the “capture IgGs” and AlexaFluor 488-conjugated chicken anti-goat IgGs were selected

as the “complementary IgGs”. To immobilize the capture IgGs onto the Au NI and NM

substrates, we exploited the microcontact printing (µCP) technique (more details in the

SI document): a simple method that involves transfer of biomolecules from a PDMS stamp

onto higher surface energy substrates in controlled microscale features with high accuracy and

reproducibility.50,51 Figure 3(b, c) depict printing of fluorescently-labelled IgGs on Au NMs

substrates and Figure 3(d, e) depict printing of fluorescent IgGs on Au NIs substrates, both

in well-defined geometries. It is worth noting that the printing of IgGs on NMs substrates is

more uniform than on NIs, correlated with more uniform and densely packed NM structures

on the SiO2 substrate (Figure 3(b,c)). A complex pattern (OIST university logo) of IgGs was

also successfully printed on NMs (Figure 3c), while a less uniform transfer of antibodies on

the Au NIs substrate was achieved (Figure 3e). The importance of patterning surfaces with

proteins in ‘complex’ patterns with uniformity, has been highlighted in cell-behavior studies,

as it allows the creation of well controlled micro/nano environments for cell growth.52 These

results stress the utility of plasma assembled large-scale Au NMs as superior nanostructures

for sensing and for complex biomolecules patterning.

Subsequently, the complementary IgG pair in solutions with incremented concentrations

were deposited to the µCP substrates, until signal saturation was reached. In Figure 3 (f,

h), LSPR responses (changes in wavelength and absorbance intensity respectively) for the

specific binding of IgGs to its complementary pair patterned on NMs (in blue symbols); and

the adsorption of complementary IgGs on blank NM surfaces without patterned antibodies

(in red symbols as control) were plotted. A standard bioassay response (S-shaped) was

observed against varied concentrations of complementary IgGs in both wavelengths shift
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and absorbance intensity shift of the LSPR signal. Upon attachment of 10 ag/mL of

complementary IgGs on the patterned NM surface, an average LSPR red shift of ∼ 5 nm and

less than 0.1 unit of change in absorbance intensity was observed. The LSPR response shows

less than ∼ 2 nm and ∼ 0.1 U change upon further addition of IgGs up to a concentration

of ∼ 100 fg/mL. Above ∼ 100 fg/mL, a dynamic response in the LSPR signal was observed

upon addition of IgG concentrations ranging from ∼ 100 fg/mL to ∼ 100 pg/mL, after

which the LSPR signal saturates. Therefore, we consider ∼ 100 fg/mL to ∼ 100 pg/mL as

the dynamic concentration range of our Au NMs LSPR substrate for this particular case

study. It must be noted that the dynamic range of the sensor is not an absolute biosensing

parameter and it will vary from one analyte to the other.

The LSPR signal variation due to absorbed IgGs showed less than 3 nm and 0.1 U of

change in the absorbance characteristics of the LSPR response. These changes were caused

by non-specific attachment of IgGs at high concentrations on the NM substrate. The limit

of detection (LOD) of the sensor was computed by comparison of standard deviation and

mean values of blank/control samples versus the experimental data set53 (see detailed LOD

calculation in SI). The LOD of IgG binding on the functionalized Au NMs was estimated to

be 10−17 g/mL (∼66 zM). This particular concentration is the lowest concentration of analyte

likely to be reliably distinguished from controls and at which detection was feasible. The

LOD value of 10−17 g/mL can be further asserted by observing wavelength change differences

in control (red line) and binding assay (blue line) shown on figure 3f. However, it must be

noted that for concentrations between 10 ag/mL and 100 fg/mL there is no significant signal

variation within the average. Therefore, in our experiment it is not possible to detect IgG

reliably below 100 fg/mL, which we call as the limit of quantification (LOQ) of the sensor.

LOQ can be either equal to LOD or higher than LOD. LOQ is generally determined by

the user to satisfy imprecisions in theoretical LOD calculations which account for lack of

accuracy in LOD models to predict practical sensing limits.53

These studies confirm that NM based substrates can be used as a highly sensitive plat-
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form for generic bioassay applications and for the detection of biomolecule binding events

on patterned surfaces. To further justify the need of NM development, binding assay on NI

substrates was carried out for the detection of IgG antibodies. Figure 3(g, i) show LSPR

wavelength and absorbance response of NI structures to varied (10−17 to 10−6 g/mL) con-

centrations of IgG complimentary antibodies. We observed less than 7 nm of shifts in the

wavelength response of NIs (Figure 3g) as compared to over 13 nm of wavelength shifts on

NMs substrates (Figure 3f). Furthermore, the wavelength changes on NIs can not be distin-

guished from the adsorption assay, suggesting that the results shown in NIs were caused by

non-specific binding. Similarily, the absorbance response of NIs is also not distinguishable

from the adsorption control (Figure 3i). These results suggest that NMs are superior to

NIs substrates for biosensing applications. The LSPR binding curves for both NMs and NIs

substrates are shown in Figure S4, in SI document.

Conclusion

In summary, we developed a simple nanofabrication protocol for generation of Au-SiO2 nao-

mushroom structures, and provided insights on the potential mechanisms that exploit the

assembly of metal at nanoscale in a plasma environment. The effects of SF6 plasma lead

to localization and control of energies at nanoscales, producing organized Au NMs with su-

perior properties for sensing applications. Our NM substrates were able to detect proteins

down to zepto molar concentrations as they allow uniform printing of capture antibodies

on their surfaces. Moreover, the fabrication process can be extended to other nanostruc-

tured metals by proper operating combinations of reactive ions, gas pressures and etching

rates. Further, plasma assisted metal species assembly provides an effective manufacturing

route for the production of stable nanostructures on substrates with large surface areas.

Our nanofabrication technique presents an attractive platform in the development of cost

effective fabrication processes for plasmonic biosensors. Significantly, this process is ‘scal-
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able’, as the size of the NM substrate is proportional to the size of the thin film evaporator

and furnace, readily available at most nanofabrication facilities whose sizes can always be

tailored according to the need. With this important feature, the described plasma-assisted

nanofabrication process offers immense opportunities to transfer nanoplasmonic substrate

fabrication technology from the laboratory to industry and clinical settings.
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bare glass substrates for silicon (Si), oxygen (O), gold (Au) and fluorine (F) contents.

• LSPR characteristic curves of Au NIs and NMs substrates.
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