Inexpensive and fast pathogenic bacteria screening using field-effect transistors
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Abstract

While pathogenic bacteria contribute to a large number of globally important diseases and
infections, current clinical diagnosis is based on processes that often involve culturing which
can be time-consuming. Therefore, innovative, simple, rapid and low-cost solutions to
effectively reduce the burden of bacterial infections are urgently needed. Here we
demonstrate a label-free sensor for fast bacterial detection based on metal-oxide—
semiconductor field-effect transistors (MOSFETs). The electric charge of bacteria binding to
the glycosylated gates of a MOSFET enables quantification in a straightforward manner. We



show that the limit of quantitation is 1.9 x 10° CFU/mL with this simple device, which is
more than 10,000-times lower than is achieved with electrochemical impedance spectroscopy
(EIS) and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry
(MALDI-ToF) on the same modified surfaces. Moreover, the measurements are extremely
fast and the sensor can be mass produced at trivial cost as a tool for initial screening of

pathogens.
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1. Introduction

Bacterial infection has a profound impact on global health (Coates et al., 2002) and
contributes to globally important diseases, such as tuberculosis, pneumonia, tetanus, typhoid
fever, diphtheria, syphilis, and is the cause of high infant mortality rates in developing
countries; bacterial infection is also believed to be responsible for more than 20% of human
tumours worldwide (Brachman & Abrutyn, 2009; Stein, 2011). The methods by which
bacteria are currently detected in routine clinical microbiology involve processes consisting
of an initial sample growth step where all the species in a sample are cultured in a rich
medium in order to obtain a sufficient mass for a subsequent analysis. The post-growth
analysis allows isolation and characterisation of single species in a sample, usually by means
of techniques such as staining, real-time polymerase chain reaction (RT-PCR), whole genome
sequencing (WGS) and matrix-assisted laser desorption ionisation time-of-flight mass
spectrometry (MALDI-ToF MS) (see e.g. Fournier ef al., 2013 and references therein).
Although elegant and effective alternative approaches to microorganism detection have been
reported (Mannoor ef al., 2012; Zourob et al., 2008; Ma et al., 2015), where single bacteria
sensing could be achieved (Kang et al., 2014; Mohanty & Berry, 2008), the current ‘gold
standard’ for clinicians is still represented by culturing methods, nucleic acid-based sensors,
immunoassays and fluorescence-based techniques (Ahmed et al., 2014). Limitations on the
adoption of new solutions for diagnosis include the complexity of the fabrication of new
sensors, the complexity of assay implementation and sample processing, and the prohibitive
costs of introducing new equipment to perform bacterial detection. In order to overcome such

obstacles while simultaneously introducing improvements in the current diagnostics, simple,



readily available sensors must be developed. The introduction of fast, simple and low-cost
sensors that could be easily employed in clinical laboratories would dramatically reduce both
the time and the cost of current bacterial diagnosis. For instance, a device that is able to
provide an initial screening of a sample at the initial growth stage with adequate detection
regarding its pathogenicity would be able to confirm the need to perform more complex and
expensive analysis. Given the status of national health systems worldwide and the ever
present need to reduce the cost of public healthcare, only very inexpensive, easily fabricated
devices that are able to perform in a rapid manner and with parallel screening would be

currently capable of supporting effectively clinical microbiology.

We here report on a label-free bacterial detection system using biologically-sensitive field-
effect transistors (BioFETs) (Poghossian & Schoning, 2014). The BioFETs were constructed
by immobilising a bioreceptor layer onto an extended gate of a metal-oxide—semiconductor
field-effect transistor (MOSFET). MOSFETs are ubiquitous electronic components that can
easily and cheaply be expanded into arrays for high-throughput screening. BioFETs with
extended gold gates have previously been used for the detection of DNA hybridisation
(Estrela et al., 2005) and proteins (Estrela et al., 2010). In this study we demonstrate the
detection of mannose-specific type 1 fimbrial Escherichia coli PKL1162 as a case study for

MOSFET-based bacterial detection.

Amongst pathogenic bacteria, uropathogenic Escherichia coli (UPEC) are responsible for
urinary tract infections. UPEC is the most predominant uropathogen causing approximately
80% of uncomplicated infections (Ronald, 2003). It is estimated that between 40-50% of
females and 15% of males will develop urinary infections and the rate of recurrent infections
has been reported to be as high as 30% (Foxman et al., 2000). In order to colonise the cells of
the urinary conducts and trigger a disease, UPEC can exploit hair-like protein structures
expressed on their surface (called fimbriae), which allow bacteria to firmly adhere on the
cells' surface and not be washed away in the urinary flow. Lectin protein structures, that
constitute fimbriae, are expressed in at least 9 out of 10 UPEC strains (Oelschlaeger et al.,
2002). As the specificity can vary towards different glycosylated surfaces, several
carbohydrate-specific fimbriae have been found and, amongst them, mannose-specific type 1
fimbriae is classified as one of the most commonly expressed (Hartmann & Lindhorst, 2011).
The recognition event interests the glycosylated cell of the urinary tract and the mannose-

specific protein, called FimH, situated at the tip of the fimbrial rod of the pathogenic bacteria.



The electric charge of bacteria binding to the glycosylated gate of a MOSFET enables
quantification in a straightforward manner. Both the charges on the membrane of the bacteria
and the displacement of water and ions from the biolayer surface when a bacteria is present,
disturbs significantly the electrochemical double layer capacitance, which causes a threshold
potential shift on the BioFETs. Very low limits of detection can be obtained with the
technique. As a comparison, the same electrodes were used for electrochemical impedance
spectroscopy (EIS) and matrix-assisted laser desorption ionisation time-of-flight mass
spectrometry (MALDI-ToF) — both techniques show significantly higher limits of detection
than the BioFETs.

2. Materials and methods
2.1. Bacteria preparation

Uropathogenic Escherichia coli strain PKL1162 was obtained by engineering the strain
SAR18 with the plasmid pPKL174 (Reisner et al., 2003). The bacteria were grown overnight
while shaking in an incubator at 37 C in lysogen broth growing media. The bacteria were
then harvested by centrifugation at 4000 rpm for 15 min at 4 °C. The pelleted bacterial cells
were resuspended in 10 mL of PBS Buffer and harvested twice before a final resuspension in

1 mL of PBS Buffer for their quantification and use.

2.2. Electrode functionalisation and affinity capture assay

A mixture of HS-(CH2)17-(OC2H4)3-OH and HS-(CH2)17-(OC2H4)s-OCH2COOH 1in a ratio
1:4 was used for the SAM formation. The mixture, obtained by mixing 53 pL of HS-(CH2)17-
(OC2H4)s-OCH2COOH (0.476 mM, 0.2 mg/mL in DMSO) and 147 pL of HS-(CH2)17-
(OC2H4)3-OH (0.328 mM, 0.2 mg/mL in DMSO) was sonicated for 20 minutes and used for

the overnight incubation with the electrodes at room temperature in a humidity chamber.

Aminoethyl glycosides in PBS at the concentration of 50 mM were immobilised overnight in
humidity chamber at room temperature overnight after activation of the carboxyl groups
using a solution of EDC/sulfo-NHS at the concentration of 40 mM and 10 mM, respectively,
for 1 hour. Once the glycosides were immobilised, a blocking step of the non-reacted sites
was performed using a 10 mM ethanolamine aqueous solution at pH 8.5 for 20 minutes. The

bacteria affinity capture was performed by incubating the electrodes at 37 °C for 1.5 hours.



Immobilised a-D-mannose was used to affinity capture uropathogenic Escherichia coli strain
PKL1162 while 2-Acetamido-2-deoxy-a-D-galactopyranose (GalNAc) was used as a control
glycan. A further control was performed by measuring the interaction between a-D-mannose

and the Escherichia coli strain K12.

The assay was carried out on in-house fabricated arrays of gold electrodes (100 nm thickness
deposited on 20 nm of chromium on glass substrates by means of thermal evaporation

through a shadow mask).

2.3. Measurements set up

The extended-gate FET sensor with gold thin film electrode consisted of two parts: (i) an
array of gold electrodes, where bacteria were captured, and (ii) the FET structure, which
transduces the binding events on the gold electrode into electrical signals. The extended gate
was fabricated by connecting the Au electrodes, fixed in a reaction cell, to the gate of a

MOSFET via a metal wire.

The BioFET measurements were carried out connecting the in-house fabricated arrays of gold
electrodes to the gate of an n-type MOSFET. The MOSFET readings were taken using an
Agilent BI5S00A HR CMU Semiconductor Device Analyser.

The bacterial detection is initially demonstrated by performing electrochemical impedance
spectroscopy (EIS) capacitive measurements. The capacitance (C) indicates the capacity of a
material to store charge (Q) due to a potential difference (V) and is given by the expression

. . . A .
C = %, which, for a parallel plate capacitor, can be rewritten as C = %, where ¢, is the

permittivity of the vacuum, &, is the relative permittivity that depends on the material
between the two plates having a surface area A that are a distance d from each other. The
imaginary and real part of the complex capacitance (C’ and C” respectively) were calculated
from the measured impedance using equation (1) (Formisano et al., 2015):

¥ _ s 10
C=C'+jC" = (1)

The percentage change of capacitance from each step where then calculated considering only
the real part of the capacitance, C’, at the frequency where the absolute value of the
imaginary value, C"', has its relative minimum. This frequency was 10 Hz throughout the

experiments.



For the EIS recordings, non-Faradaic measurements were carried out in a phosphate buffer
saline (PBS) solution diluted 100 times (ionic strength equal to 1.62 mM) without redox

markers. The same measurement solution conditions were applied for MOSFET readings.

EIS measurements were taken in a three electrode system using an Ag/AgCl as reference
electrode and applying a 10 mV AC signal superimposed to 0 mV DC bias voltage vs. the

open circuit potential.

The same electrodes were analysed by MALDI-ToF mass spectrometry. Since large area
electrically conducting surfaces are needed for MALDI-ToF measurements, the back of the
glass slides used for EIS and BioFET measurements were covered with silver paint or with a
conductive aluminium tape (Weissenborn et al., 2012). In addition, gold MALDI plates (AB
Sciex Ltd) were used as a platform containing self-assembled biorepulsive monolayers of
functionalised alkanethiols to which several aminoethyl glycosides were covalently attached

(Sardzik, R. et al., 2010) to alternatively compare measurements obtained from the BioFETs.

3. Results and discussion

In our work, specific glycan interactions were studied on electrodes modified with self-
assembled monolayers (SAMs). The functionalised electrodes were connected to the gates of
n-channel enhancement MOSFET devices, hence generating BioFETs (Figure 1).
Mannosides were immobilised on the electrodes and used to affinity capture uropathogeninc
Escherichia coli strain PKL1162 (Reisner ef al., 2003). The surface chemistry was previously
optimised and monitored by MALDI-ToF to obtain maximum bacteria binding (Both ef al.,
2014; Noble et al.; 2012; Sardzik et al., 2012; Zhi et al., 2008).
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Figurel - Working principle of the BioFET sensor. An array of evaporated gold electrodes
placed in a flow cell is connected to the gate of a MOSFET. An external reference electrode
is used to apply the gate voltage. The same electrodes were used for EIS and MALDI-ToF

measurements.

3.1. Impedance

The bacterial detection was initially demonstrated by performing electrochemical impedance
spectroscopy (EIS) capacitive measurements. The literature on capacitive sensors report both
on positive (Carrara et al., 2009; Varshney & Li, 2008; Couniot et al., 2015a; Couniot et al.,
2015b) and negative changes in capacitance measurements (Webster et al., 2009; Li et al.,
2011) after target binding. However, the behaviour of the sensor is dependent on the
electrode type, immobilisation strategies, SAM properties and type of molecules detected.
Ethylene-glycol terminated SAMs have hydrophilic properties (Carrara et al., 2009; Ostuni et
al., 1999) that lead to the entrapment of water molecules within the SAM chains. For our
sensor this phenomenon prevents the displacement of the ions in solution that form the
Helmbholtz plane upon bacteria binding. As a result, the bacteria and the underlying layers
cannot be modelled simply by a series of capacitors (or as a single capacitor characterised by
an increased distance separation d between the plates). Rather, the binding event will
augment the surface of the electrode-solution interface which is surrounded by the solvent
molecules forming the Helmholtz plane. Therefore, this can be modelled as two capacitors in
parallel where the first has a fixed value and the value of the second capacitor is characterised

by larger numbers of both d and relative permittivity €, (Asami ef al., 1980) and its extent



varies with the amount of bacteria bound onto the sugars on the gate of the BioFET. The
combination of such factors following the bacterial adhesion to the glycosylated surface
produce eventually a positive shift in the total capacitance. Exploiting the insulating
properties of ethylene glycol-terminated SAMs (Carrara et al., 2009; Berggren et al., 2001),

capacitive measurements are facilitated using non-Faradaic EIS.

A concentration of Escherichia coli PKL1162 equal to 4.2 x 10° CFU/mL produced an
increase in the capacitance of 18.6 £ 1.7% (Figure 2). The EIS capacitance change decreased
to 4.1+ 1.3% when a decreased amount of 4.2 x 10° cell/mL of Escherichia coli PKL1162
were used as a target on mannose. The capacitance change follows approximately a Hill-type
response of the form y = ymax ¢”"/(k"+c") where c is the concentration with ymax=22.8+1.4%,
n=0.429+0.039, k=(1.37+0.47)x10® CFU/mL and a R? of 0.998 (although the small amount
of data points needs to be taken into consideration when interpreting this R? value). Below
4.2 x 10® CFU/mL, the signal overlaps the values of capacitance change given by the negative
control reactions, namely in presence of negative sugar probe (bacteria PKL1162 on GalNAc
sugar), which produces a capacitance shift of 6.4 £2.6% and in presence of negative bacteria
(K12 on mannose), which gives a capacitance change of 2.5 + 1.7%. Absolute values of
capacitance range from 118 to 132 nF for electrodes functionalised with a-mannoside and

from 123 to 155 nF upon bacterial adhesion.
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Figure 2 - Bacterial detection performing EIS capacitive measurements. a) Complex
capacitance Cole-Cole plots for an electrode before (black line, squares) and after (red line,

circles) Escherichia coli PKL1162 binding. The inset shows a schematic equivalent circuit.



b) Changes of the real part of the complex capacitance vs. bacterial concentration. The line

represents a fit to the data with a Hill-type response (R?>= 0.998).

The use of a diluted measurement solution (PBS 1:100) reduced the ionic strength from 162
to 1.62 mM, which in turn, increased the Debye length from about 7.6 A to 76 A and
improved the EIS detection by over five fold for the Escherichia coli PKL1162 concentration
of 4.2 x 10° CFU/mL.

3.2. BioFET measurements

In the case of our BioFET, as in Figure 1, when the potential applied across the gate and the
source (Vgs) is larger than the threshold voltage (Vi) of the device (Vg>Vim), a conducting
channel is formed between the source and the drain. Additionally, if a voltage is applied
between the drain to source (V4s>0) a current (Ip) begins to flow through the induced channel
at the semiconductor. This condition of the device is known as the turn-on state where the
electron-current (Ip) enters the drain and exits the source. Any changes in Vs modulate the
conductivity of the channel and thereby alter Ip. In the case of molecular interactions at the
gate of the transistor, such as negatively charged Escherichia coli (Silhavy et al., 2010)
captured by surface mannosides, the minimum Vg required to bring the n-MOSFET in the

turn-on state is increased and it can be measured as an evidence of the binding event.

The negative charge of Escherichia coli produces a positive shift in the Vg of the BioFET as
can be seen in Figure 3a. Figure 3b presents the values of AV for different bacteria
concentration. AV increases from 31.0+11.9 mV to 115.2+12.9 mV when the bacterial
concentration increases from 1.9 x 10° CFU/mL to 4.2 x 10° CFU/mL. The voltage shift also
follows a Hill-type response with ymax=150£23 mV, n=0.250+0.045,

k=(4.26+6.03)x107 CFU/mL and a R? of 0.990. The lower value for 1.9 x 10> CFU/mL is still
distinguishable from the signals obtained both in the presence of bacteria non-specific to the
immobilised sugar (AVg=28.74+ 1.3 mV) and in the presence of a non-specific immobilised
sugar (AVg=16.2+ 1.5 mV). BioFET measurements have the additional advantage of being
very fast: data can be recorded in less than a second. Although EIS measurements could be
recorded at a single frequency, which greatly shortens the time of the experiment as
compared to the whole spectrum acquisition, miniaturisation of the devices would require

long measurement sampling in order to accurately measure small a.c. current signals. On the



contrary, BioFETs are inherently miniaturisable as the shift of the threshold voltage is a
charge density effect and hence the signal to noise ratio is preserved for miniaturised
electrodes. The data presented demonstrates that BioFETs can be used for the initial
differentiation between pathogenic and non-pathogenic E. Coli in order to decide which

samples to send for further analysis.
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Figure 3 - Bacterial detection using BioFETs. a) BioFET Ip/Vs characteristic for an electrode
before (black line) and after (red line) Escherichia coli binding. b) Vgs changes vs. bacterial
concentration. The line represents a fit to the data with a Hill-type response (R*= 0.990).

Error bars represent the standard deviation for three separate electrodes.

3.3. Scanning electron microscopy

Proof of bacterial binding and of good anti-fouling properties of the surface towards non-
specific bacteria are confirmed by scanning electron microscopy (SEM). The SEM images in
Figure 4 show surface bacterial coverage at different concentrations (from 4.2 x 10° to

4.2 x 10° CFU/mL) as well as in the presence of negative controls. The SEM pictures for
negative controls are congruent with both the EIS and BioFET signals, even though BioFETs
exhibited the highest sensitivity detecting much smaller amounts of PKL1162.
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Figure 4 - SEM microscopy pictures of the affinity capture assay. Binding of Escherichia coli
PKL1162 at the concentration of 4.2 x 10° (a), 4.2 x 108 (b), 4.2 x 107 (c), 4.2 x 10° (d),
4.2 x10° (e), 4.2 x 10* (f), CFU/mL on a-mannose; Escherichia coli strain K12 at the
concentration of 4.2 x 10° on a-mannose (g) and Escherichia coli strain PKL12 at the

concentration of 4.2 x 10° on GalNAc (h).

3.4. MALDI-ToF mass spectrometry

Glycan functionalisation of SAMs was confirmed using MALDI- ToF MS on both gold
arrays and on gold arrays evaporated on glass by direct surface ionisation (see Supplementary
Information). Specific peaks situated at 12000 and 16000 m/z corresponding to MS
fingerprint of Escherichia coli PKLL1162 can be observed by performing MS on bacterial
sample spotted on bare gold without SAM functionalisation (Figure 5a-Control). Such peaks
were also detected in the affinity reaction not only when performing the measurements on
gold arrays but also on the gold arrays evaporated on glass as it can be seen in Figure 5a. The
specificity of a-D-mannose towards Escherichia coli strain PKLL1162 is shown in the
Supplementary Information where Escherichia coli PKL1162 peaks are only clearly visible
after affinity capture and washing, when the gold electrodes are functionalised with a-D-
mannose but not with other sugars. Moreover, although SEM microscopy shows significant
bacterial adhesion using samples of Escherichia coli PKLL1162 diluted up to

4.2 x 10° CFU/mL (Figure 4), a minimum concentration of 2.7 x 10° CFU/mL was required to
produce observable peaks using MALDI-ToF on gold plate (Figure 5b). MALDI-ToF spectra

11



also showed absence of any significant non-specific attachment of Escherichia coli K12 on a-

mannose (Figure 5b, bottom image) as well as on other sugars (Supplementary Information).
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Figure 5 - MALDI-ToF spectra of the affinity capture assay. a) MALDI-ToF spectra of
uropathogenic Escherichia coli PKL1162 after affinity capture on a-D-mannose covalently
linked to gold electrodes evaporated on glass slides (top image), of Escherichia coli
PKL1162 spotted on bare gold (middle plot) and Escherichia coli PKL1162 after affinity
capture on a-D-mannose covalently linked to gold arrays (bottom image). The peaks at12000
and 16000 m/z are diagnostic for Escherichia coli PKL1162. b) MALDI-ToF spectra
responses for different concentrations of Escherichia coli PKL1162 on a-D-mannose. The
analysis was performed on SAM-functionalised gold plates, Escherichia coli K12 was used

as negative control and showed no peaks upon MS analysis.

In Table 1 the time of measurements and the limit of quantitation (LOQ) of our BioFET are
compared to the ones obtained by our EIS and MALDI-ToF measurements and show a
significant improvement (over 100 fold) of readout time. In the EIS set up, the absence of
redox molecules simplified the assay with respect to conventional Faradaic EIS experiments.
However, the EIS signal is a resultant of combined — and often competing — effects of the
variation of surface area coverage, relative permittivity and the distance between the
electrode and the Helmholtz plane upon bacterial binding, which can hinder the detection of

low levels of bacteria.

12



Table 1. BioFET, MALDI-ToF MS and EIS are compared in terms of limits of quantitation
(LOQ) and time for carrying out the measurements in this work. The comparison is obtained
considering that the three techniques were used on the same electrodes. Therefore,
immobilisation times of the electrodes as well as the bacterial growth are not considered as

they are equal for all the assays here reported.

Technique LOQ (CFU/mL) Time required for
the measurement

BioFET 1.9 x 10° ~2s

EIS 4.2 %107 ~ 10 min

MALDI-ToF MS 2.7 x 10° ~ 20 min

These effects are not as significant in the case of BioFETs. Using the electrodes as extended
gates for MOSFETs, the sensor response is mostly due to the bacterial charge, thereby

resulting in an LOQ being improved by more than two orders of magnitude (Table 1).

With respect to MS detection, the sensitivity of the BioFETs is four orders of magnitude
greater, which, together with its significantly reduced cost when compared to a MALDI-ToF
instrument (considering a similar price for the sensor array), confirms the value of our sensor.
Although low limits of bacteria detection have been reported for other types of biosensors
(Ahmed ef al., 2014), the mass-production of MOSFETs and the ease of integration into
multiplexed devices with commercial planar processes for large-scale circuitry using standard
semiconductor technologies such as CMOS, which has already been widely demonstrated by
their ubiquitous use in everyday applications, can allow multiple screening of samples
without leading to a significant increase in the costs of the sensor. Each individual
multiplexed chip can be mass produced at very low cost (typically below $1) and the use of
glycosides instead of e.g. antibodies as recognition elements doesn't had significant costs to
the biochips. Furthermore, the readout system is straightforward from an electronics point of
view and can be produced at a fairly low cost (below $100). Obviously the fingerprint given
by techniques such as MALDI-ToF or PCR is essential for obtaining detailed information
such as antimicrobial susceptibility, virulence and intra-species typing (Didelot et al., 2012;
Formisano et al., 2015). However, such evidence is only needed once the pathogenicity of a

sample has been confirmed. The ability to use an initial low-cost screening to limit the need

13



for more accurate and expensive techniques would significantly optimise times and costs of

the examinations.

4. Conclusions

With the BioFET sensor developed in this work we have specifically detected uropathogenic
Escherichia coli strains expressing type 1 fimbriae, which are responsible for the great
majority of urinary tract infections (Ronald, 2003). The FimH protein on the type 1 fimbriae
binds to the a-D-linked mannoses on glycoproteins of urinary epithelial cells. The BioFET
sensors are highly applicable for bacteria-glycan interactions by using other glycans as targets
for protein recognition; for example terminal sialic acid on gastrointestinal human mucins can
be recognised by H. pylori SabA adhesin (Mahdavi et al., 2002) while Vibrio cholerae GbpA
ahesin mainly binds to GalNAc (Bhowmick et al., 2008).

Upon the binding of bacteria to functionalised electrodes, charges at the membrane of the
bacteria and the displacement of water and ions from the biolayer surface (due to the
presence of the large bacteria), disturbs significantly the electrochemical double layer
capacitance. This in turn causes a shift on the threshold potential of the BioFETs. The
BioFET will provide a signal to any type of bacteria that binds to the functionalised
electrodes. For example, in Gram-positive bacteria the negative charge is mostly due to the
presence of negatively charged phosphate in teichoic acids — teichoic acids are linked to
either the peptidoglycan or to the underlying plasma membrane. For Gram-negative bacteria,
the outer bacterial wall is covered by phospholipids and lipopolysaccharides and the charge is
mostly given by the strong negative charge of lipopolysaccharides. Furthermore all bacteria
will cause displacement of water ions from the biolayer further changing the electrochemical

double layer capacitance.

In conclusion we have demonstrated a fast, effective and inexpensive sensor that can be used
to support current clinical microbiology by providing high-throughput screening of
pathogenic bacterial samples. Our technology can be easily implemented and would be
performed after the enrichment step and before further advanced investigations so that
additional time and costs can be saved in the area of traditional bacterial detection. The
results show through the use of suitable molecular probes, the BioFETSs can differentiate

pathogens that can be used for multiplexed screening. The large volume production of such
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chips will bring the assay price further down, making it an attractive proposition for pathogen

screening in point of care applications.
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