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ABSTRACT 1 

Oxidative stress and vascular endothelial dysfunction are established 2 

characteristics of cystic fibrosis (CF). Oxidative stress may contribute to vascular 3 

dysfunction via inhibition of nitric oxide (NO) bioavailability. Purpose: To determine if 4 

ingestion of an single antioxidant cocktail (AOC) improves vascular endothelial function 5 

in patients with CF. Methods: In 18 patients with CF (age 8-39 y), brachial artery flow-6 

mediated dilation (FMD) was assessed using Doppler ultrasound prior to and two hours 7 

following either an AOC (n=18; 1000 mg vitamin C, 600 IU vitamin E, and 600 mg α-lipoic 8 

acid) or placebo (n=9). In a subgroup of patients (n=9), changes in serum concentrations 9 

of α-tocopherol and lipid hydroperoxide (LOOH) were assessed following AOC and 10 

placebo. Results: A significant (p=0.032) increase in FMD was observed following AOC 11 

(∆1.9 ± 3.3%), compared to no change following placebo (∆-0.8 ± 1.9%). Moreover, 12 

compared with placebo, AOC prevented the decrease in α-tocopherol (∆0.48 ± 2.91 vs. -13 

1.98 ± 2.32 μM, p=0.024) and tended to decrease LOOH (∆-0.2 ± 0.1 vs. 0.1 ± 0.1 μM, 14 

p=0.063). Conclusions: These data demonstrate that ingestion of an antioxidant cocktail 15 

can improve vascular endothelial function and improve oxidative stress in patients with 16 

CF, providing evidence that oxidative stress is a key contributor to vascular endothelial 17 

dysfunction in CF.    18 
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INTRODUCTION 19 

Cystic Fibrosis (CF) is the most prevalent autosomal recessive genetic disease in 20 

North America. While the shortened life expectancy accompanying the disease can most 21 

often be attributed to pulmonary infection (Cantin 1995), patients with CF also suffer from 22 

a variety of systemic complications including dysfunction of the gastrointestinal, immune, 23 

endocrine, and musculoskeletal systems (Gruet, Troosters, and Verges 2017; Plant et al. 24 

2013).   25 

The flow-mediated dilation (FMD) technique is a widely used, non-invasive 26 

bioassay of conduit vessel endothelial function (Celermajer et al. 1992; Gori et al. 2011; 27 

Uehata et al. 1997) and nitric oxide (NO) bioavailability (Green 2005).  Our group has 28 

recently provided evidence of both microvascular and conduit artery endothelial 29 

dysfunction in patients with CF (Poore et al. 2013; Rodriguez-Miguelez et al. 2016); 30 

however, the mechanisms that contribute to vascular endothelial dysfunction in this 31 

population have yet to be elucidated. 32 

Considerable evidence indicates that systemic oxidative stress is a feature of CF 33 

(Brown and Kelly 1994; Brown et al. 1996; Coates et al. 1980; Lezo et al. 2013; Montuschi 34 

et al. 1999; Van Der Vliet et al. 1996; Wood et al. 2001) and may contribute to the 35 

reduction in NO bioavailability and subsequent endothelial dysfunction (Zalba et al. 2001). 36 

In CF, this imbalance between free radical production and neutralization of radicals by 37 

antioxidants arises due to the combined effects of persistently elevated immune activation 38 

(Galli et al. 2012; Wood et al. 2001) and both dietary deficiency and malabsorption of 39 

exogenous antioxidants (Brown et al. 1996; Galli et al. 2012; Wood et al. 2001). 40 

Administration of oral antioxidants has been demonstrated to temporarily reduce oxidative 41 
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stress and improve vascular function in other populations (Ryan A Harris et al. 2009; Wray 42 

et al. 2012; Sánchez-Moreno et al. 2004; Ives et al. 2014); however, the role of oxidative 43 

stress in vascular dysfunction  in patients with CF is unknown. Therefore, this study 44 

sought to test the hypothesis that a single dose of an antioxidant cocktail would reduce 45 

oxidative stress and improve vascular endothelial function, whereas no change would be 46 

observed following a placebo condition. 47 

 48 

MATERIALS AND METHODS 49 

Participants 50 

Figure 1 illustrates the recruitment and testing process for participants in this 51 

study. Based on the efficacy of the antioxidant cocktail (AOC) in other clinical populations 52 

(Ives et al. 2014; Wray et al. 2012), a proof of concept efficacy trial of the AOC was 53 

conducted in 9 patients during one visit. Following this initial study, 9 additional patients 54 

with CF were recruited to take part in a double blind, randomized, placebo-controlled, 55 

crossover trial where patients received the AOC (CF-AOC) and placebo (CF-PLC) in 56 

randomized order on separate experimental visits. Of our patient population, 50% were 57 

homozygous F508del, 22% were F508del/G551D, 22% were heterozygous with one copy 58 

of F508del, and 11% were heterozygous without f508del.  Only the four patients with 59 

gating mutations were on modulator therapy (ivacaftor) and had been taking it for at least 60 

3 months prior to testing.  To further examine the impact of the AOC on oxidative stress, 61 

circulating markers of oxidative stress balance were determined prior to and 2 hours 62 

following AOC or placebo treatment. 18 demographically matched (age, sex, height, 63 

weight, and BMI) healthy controls were recruited to provide a reference standard of 64 
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vascular function and to determine the efficacy of the treatment response in patients with 65 

CF. The control group did not undergo any treatment, nor were any of the pre-post 66 

treatment biomarkers evaluated.   67 

All patients were enrolled if they had a clinical diagnosis of CF based on positive 68 

sweat tests and genotype analysis. Participants were excluded if they 1) had a forced 69 

expiratory volume in one second (FEV1) < 50% of predicted, 2) had a resting oxygen 70 

saturation (SpO2) < 85%, 3) self-reported to be a smoker, 4) were diagnosed with 71 

pulmonary hypertension, 5) were pregnant or nursing at the time of the investigation, 6) 72 

had a clinical diagnosis of cardiovascular disease, hypertension, or CF related diabetes, 73 

or 7) were prescribed any vaso-active medications (i.e. nitrates, beta blockers, ACE 74 

inhibitors, etc.). All participants and parents of children provided written and verbal 75 

consent/assent prior to participation. All study protocols were approved by the Institutional 76 

Review Board at Augusta University. This study was registered to the clinicaltrials.gov 77 

website (#NCT01772758). 78 

 79 

Experimental Design 80 

All participants reported to the Laboratory of Integrated Vascular and Exercise 81 

Physiology (LIVEP) at the Georgia Prevention Institute for a preliminary visit that 82 

consisted of the informed consent process, body composition assessments, and a 83 

baseline pulmonary function test (PFT). For each of the experimental visits, participants 84 

reported to the LIVEP in the morning following an overnight fast, and having abstained 85 

from moderate to vigorous physical activity for 24 hours prior to investigation. Patients 86 

were instructed to adhere to the timing of their daily pulmonary therapy and come to the 87 
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lab following their morning airway clearance and inhaled medicines. Upon arrival, 88 

baseline assessments of PFT and flow-mediated dilation (FMD) were performed and a 89 

venous blood sample was obtained. Patients were then given either an oral AOC (CF-90 

AOX; 1000 mg vitamin C, 600 IU vitamin E, and 600 mg α-lipoic acid) or a visually similar 91 

cocktail of placebo pills (CF-PLC; sucrose or galactose). Following ingestion of treatment, 92 

patients rested quietly for two hours and a post-treatment FMD was performed.  93 

 94 

Participant Characteristics and Clinical Laboratory Values 95 

Height and weight were determined using a stadiometer and standard platform 96 

scale (CN20, DETECTO©, Webb City, MO) and used for calculations of body mass index 97 

(BMI). Total body fat, fat-mass, and fat-free mass were determined using dual energy X-98 

ray absorptiometry (QDR-4500W; Hologic, Waltham, MA) and resting systolic and 99 

diastolic blood pressures were evaluated using established protocols (Kapuku et al. 100 

1999). Resting oxygen saturation was obtained using an Onyx II fingertip sensor (Nonin 101 

Medical, Plymouth, MN). Fasting concentrations of total cholesterol (TC), high-density 102 

lipoproteins (HDL), low-density lipoproteins (LDL), triglycerides (TG), and glucose were 103 

obtained using a Cholestech LDX point of care analyzer (Alere Inc., Scarborough, ME). 104 

Hemoglobin and hematocrit were determined using a HemoPoint H2 analyzer (Stanbio 105 

Laboratories). Concentrations of high-sensitivity C-reactive protein (hsCRP) were 106 

obtained from standard core laboratory techniques (Laboratory Corporation of America 107 

Holdings, Burlington, NC). 108 

 109 

 110 
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Biomarkers of Oxidative Stress and Lipid Soluble Antioxidants 111 

Markers of oxidative stress balance were determined prior to and following the 112 

administration of the AOC and PLC. Plasma concentrations of 8-isoprostane (Cayman 113 

Chemical, Ann Arbor, MI) and nitrotyrosine (Cell Biolabs, Inc., San Diego, CA) were 114 

determined via colorimetric assay following the manufacturer’s instructions. Total  serum 115 

hydroperoxide (LOOH) concentrations were determined by the ferrous oxidation-xylenol 116 

orange (FOX1) assay (Wolff 1994) using a protocol previously described by our group 117 

(Medlow et al. 2015).  118 

Serum α-tocopherol, γ-tocopherol, retinol, and lycopene were determined using 119 

high performance liquid chromotography (HPLC) as previously described in a protocol by 120 

our group (Medlow et al. 2015). Data were analyzed by Empower analytical software 121 

(Waters, Ireland). 122 

 123 

Pulmonary Function Testing (PFT) 124 

An assessment of pulmonary function was performed using the EasyOne Pro® 125 

LAB system (ndd Medical Technologies, Andover, MA) to determine forced vital capacity 126 

(FVC), FEV1 (L),  FEV1  (% predicted), FEV1/FVC, and forced expiratory flow at 25-75% 127 

(FEF25-75) in all participants according to the American Thoracic Society standards 128 

(Kellogg et al. 1995). Briefly, following the American Thoracic Associations 129 

recommendations (Society 1995), a minimum of three reproducible trials were completed 130 

by each participant and the best of three acceptable forced expiratory maneuvers was 131 

used for analysis. The European Respiratory Society Global Lung Function Initiative 132 
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spirometric reference standards were used to determine the percentage predicted data 133 

set (Quanjer et al. 2012).  134 

 135 

Flow-Mediated Dilation (FMD) and Shear Rate 136 

Brachial artery FMD was determined using Doppler ultrasound (Logiq 7, GE 137 

Medical Systems, Milwaukee, WI) performed in accordance with published guidelines (R. 138 

A. Harris et al. 2010) and methodology previously described by our group (Poore et al. 139 

2013; R. A. Harris et al. 2012). Briefly, simultaneous B-mode and blood velocity profiles 140 

of the brachial artery were evaluated by ultrasound imaging using a 12-MHz linear 141 

transducer. After acquisition of baseline values, a forearm occlusion cuff placed 142 

immediately distal to the medial epicondyle, was rapidly inflated to 250 mm Hg for 5 min 143 

(E-20 rapid cuff inflator, Hokanson) to induce arterial occlusion and then deflated to 144 

induce reactive hyperemia of the brachial artery. R-wave gating (AccuSync 72, AccuSync 145 

Medical Research, Milford, CT) was used to capture end-diastolic arterial diameters for 146 

automated offline analysis of brachial artery vasodilation (Medical Imaging Applications, 147 

Coralville, IA). The greatest 5-s diameter average after cuff release was used as the peak 148 

response. FMD was expressed as the percent increase in peak diameter from baseline 149 

diameter and also relative to shear rate (FMD/shear). 150 

Cumulative shear rate (area under the curve [AUC, s-1]) and FMD/shear were 151 

determined as previously described by our group (R. A. Harris et al. 2012; Poore et al. 152 

2013). Absolute change in diameter, peak diameter, and time to peak dilation were 153 

calculated and reported according to published guidelines and recommendations 154 
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(Thijssen et al. 2011) to provide a comprehensive assessment of vascular endothelial 155 

function.  156 

 157 

Statistical Analyses 158 

All analyses were performed using SPSS version 24 (IBM Corporation, Somers, 159 

NY). Descriptive statistics were generated and range as well as normality checks were 160 

performed. Independent t-tests were performed to identify differences in demographics, 161 

clinical laboratory markers, and pulmonary function parameters between patients with CF 162 

and healthy controls. Comparisons of baseline (pre-treatment) parameters of the FMD 163 

test between CF-AOC and CF-PLC groups were performed using independent t-tests. A 164 

two-way (group by time) ANOVA was used to test for pre- to post-treatment differences 165 

in parameters of the FMD test and markers of oxidative stress between AOC and PLC. 166 

Covariates related to disease severity (FEV1 [% predicted] and HbA1c as an index of 167 

glycemic control) were included as covariates in the regression model where appropriate. 168 

Effect sizes (partial eta squared [ηP
2]) are reported for the interaction terms of the ANOVA, 169 

where values of 0.01, 0.06, and 0.14 correspond to small, medium, and large effects, 170 

respectively (Cohen 1988). Values are presented as mean ± SD unless otherwise noted. 171 

An alpha <0.05 was considered statistically significant for all analyses. 172 

 173 

RESULTS 174 

Participant Characteristics, Clinical Laboratory Values, and Pulmonary Function 175 

Baseline characteristics, clinical laboratory values, and indices of pulmonary 176 

function for patients with CF and healthy controls are presented in Table 1. There were 177 
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no differences in demographic or anthropometric characteristics between patients and 178 

controls; however, patients exhibited significantly lower (p<0.05) TC, and HDL, and 179 

significantly higher (p=0.003) hsCRP compared to controls. There were no differences in 180 

FVC between groups; however, patients had significantly lower absolute FEV1, FEV1 (% 181 

predicted), FEV1/FVC, and FEF25-75 versus controls (all p<0.05). In addition, while resting 182 

SpO2 was at a normal level in patients (98%), it was significantly lower compared with 183 

controls (p=0.005). 184 

 185 

Flow-Mediated Dilation 186 

Figure 2 illustrates a significant improvement (p=0.032, ηP
2=0.170) in FMD 187 

following the AOC, whereas no change was observed following placebo. Additional 188 

parameters of the FMD test are presented in Table 2.  There was a significant increase 189 

(p=0.004) in FMD normalized for shear rate (FMD/shear) and decrease in time to peak 190 

dilation (TTP; p=0.011) in CF-AOC and CF-PLC, but changes were not different between 191 

groups (p=0.137, ηP
2=0.086 and p=0.288, ηP

2=0.045, respectively). While the change in 192 

absolute diameter was significantly greater (p=0.023, ηP
2=0.189) in CF-AOC versus CF-193 

PLC, changes in baseline diameter (p=0.622, ηP
2=0.010), peak diameter (p=0.115, 194 

ηP
2=0.096), and shear rate (p=0.820, ηP

2=0.002) were not different between groups.  195 

In addition to the CF patient data, FMD data from demographically-matched, 196 

healthy participants are also presented in Table 2 as a control reference of normal 197 

vascular endothelial function. While pre-treatment FMD (%) was not significantly different 198 

in CF-AOC or CF-PLC versus controls (p=0.101 and p=0.590, respectively), pre-199 

treatment FMD/shear was significantly lower (p=0.010) in CF-AOC versus controls. This 200 
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deficit, however, was improved following the AOC treatment, leading to restoration in both 201 

post-treatment FMD and FMD FMD/shear compared to controls (p=0.660).   202 

There were no differences between CF-AOC or CF-PLC and controls in pre-203 

treatment baseline diameter (p=0.463 and p=0.077, respectively), peak diameter 204 

(p=0.688 and p=0.126), or absolute change in diameter (p=0.434 and p=0.753); however, 205 

TTP was lower in controls versus both CF-AOC (p=0.008) and CF-PLC (p=0.024).  206 

 207 

Biomarkers of Oxidative Stress and Lipid Soluble Antioxidants 208 

 Baseline (pre-treatment) levels of α-tocopherol (21.7 ± 14.4 vs. 21.3 ± 16.5 μM, 209 

p=0.788), lycopene (0.06 ± 0.06 vs. 0.05 ± 0.09 μM, p=0.610), and LOOH (0.74 ± 0.11 210 

vs. 0.87 ± 0.22 μM, p=0.164) were not different between PLC and AOC. Figure 3 211 

illustrates the change in oxidative stress balance following the AOC or PLC. Specifically, 212 

reductions in α-tocopherol (p=0.024, ηP
2=0.54) and lycopene (p=0.014, ηP

2=0.60) were 213 

significantly attenuated following AOC compared with PLC while controlling for HbA1c. 214 

While not significant, LOOH tended to decrease (p=0.063, ηP
2=0.33) following the AOC 215 

versus PLC. Additional systemic markers of oxidative stress and lipid soluble antioxidants 216 

are presented in Table 3. AOC treatment changes in 8-isoprostane (p=0.815, ηP
2=0.01), 217 

nitrotyrosine (p=0.820, ηP
2=0.01), γ-tocophorol (p=0.220, ηP

2=0.21), and retinol (p=0.121, 218 

ηP
2=0.31) were all similar to PLC.  219 

 220 

DISCUSSION 221 

Cystic fibrosis is associated with a variety of systemic complications including 222 

vascular endothelial dysfunction (Poore et al. 2013; Rodriguez-Miguelez et al. 2016). 223 
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However, the mechanism(s) contributing to this dysfunction in CF have yet to be 224 

elucidated. To the best of our knowledge, this is the first study to investigate oxidative 225 

stress as a potential mechanism that contributes to vascular endothelial dysfunction in 226 

CF. Findings from the present study support our hypothesis that a single dose of an AOC 227 

elicits a significant improvement in vascular endothelial function compared to no change 228 

with placebo (Figure 2). In addition, AOC treatment significantly prevented the reduction 229 

in circulating concentrations of α-tocopherol and tended to decrease LOOH compared to 230 

placebo (Figure 3). Together, these findings provide strong mechanistic evidence that 231 

oxidative stress contributes to vascular dysfunction in patients with CF.  232 

Recently, our group provided the first evidence of both conduit- and micro- 233 

vascular endothelial dysfunction in young patients with CF (Rodriguez-Miguelez et al. 234 

2016; Poore et al. 2013). The FMD test is not only reproducible in patients with CF 235 

(Derella et al. 2019), it allows for non-invasive assessment of vascular endothelial 236 

function (Celermajer et al. 1992; Gori et al. 2011; Uehata et al. 1997) and, importantly, 237 

nitric oxide (NO) bioavailability (Green 2005). NO-dependent vasodilation is perhaps the 238 

most important signaling function of the endothelium due to the protective effect against 239 

the development of atherosclerosis (Knowles and Moncada 1994). Oxidative stress, an 240 

established characteristic of CF (Brown and Kelly 1994; Brown et al. 1996; Coates et al. 241 

1980; Lezo et al. 2013; Montuschi et al. 1999; Van Der Vliet et al. 1996; Wood et al. 242 

2001), can negatively impact endothelial function as NO rapidly reacts with superoxide 243 

(Szabo, Ischiropoulos, and Radi 2007; Pacher, Beckman, and Liaudet 2007) and reduces 244 

NO bioavailability (Zalba et al. 2001).  245 
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     The etiology of oxidative stress in CF is related to both pulmonary and non-pulmonary 246 

manifestations of the disease. First, CF directly causes chronic pulmonary infection that 247 

not only contributes to a persistently elevated pro-inflammatory immune response, it also 248 

results in overproduction of reactive oxygen species (ROS) by activated leukocytes (Galli 249 

et al. 2012; Wood et al. 2001).  Although basal inflammation (i.e. CRP) was higher in 250 

patients compared to controls (Table 1), inflammatory biomarkers were not assessed as 251 

we did not anticipate any changes in systemic inflammation following a single AOC. 252 

Second, the dysfunctional cystic fibrosis transmembrane regulator (CFTR) gene 253 

contributes to pancreatic insufficiency and nutrient malabsorption (Singh and 254 

Schwarzenberg 2017) which leads to diminished  secretion of pancreatic enzymes, 255 

dysfunctional lipid digestion, and ultimately, reduced absorption of fat-soluble vitamins. 256 

Indeed, several of these essential vitamins serve as antioxidants (e.g., vitamins A and E) 257 

and their impaired absorption likely contributes to oxidative stress. For this reason, many 258 

patients with CF are prescribed daily fat-soluble vitamins (e.g., AquADEK); however, the 259 

AOC used in the present study may have even greater therapeutic potential for several 260 

reasons. First, α-tocopherol, the main lipid chain breaking antioxidant, is maintained only 261 

in the presence of ascorbic acid (Scarpa et al. 1984), and rapid reactions between the 262 

two encourages recycling of α-tocopherol. Further, α-lipoic acid, a powerful dual phase 263 

(aqueous and lipid) antioxidant (Wollin and Jones 2003), aids in the reduction of 264 

dehydroascorbic acid to ascorbic acid (Xu and Wells 1996), highlighting its recycling 265 

ability and involvement in complex antioxidant networks. Thus, the combination of 266 

antioxidants used in our AOC work synergistically to combat oxidative stress. Indeed, 267 

utilizing a placebo controlled within-patient experimental design, our data indicate that the 268 
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AOC significantly prevented the reduction in α-tocopherol and tended to reduce indices 269 

of oxidative stress (Figure 3).  In addition, these data support the ability of the CF gut to 270 

absorb the AOC into circulation.  Encouragingly, FMD following the AOC in both children 271 

and adults was restored to a value similar to that of healthy controls, possibly due to 272 

improved ROS buffering capacity and an increase in NO bioavailability (Table 2). 273 

Although outside the scope of the present investigation and unlikely to impact the findings 274 

following a single experimental treatment, we cannot rule out the potential effects of CFTR 275 

genotype and modulator therapies acting on the vasculature. The CFTR gene is 276 

expressed on endothelial cells and may impact vascular reactivity independent of 277 

oxidative stress balance.  Further studies are certainly warranted to clarify the potential 278 

influence of CFTR therapies on vascular endothelial function in CF. 279 

Taken together, these observations provide compelling evidence to support the 280 

role of oxidative stress as a key contributor to vascular endothelial dysfunction in CF. Our 281 

findings suggest that an oral AOC is capable of reducing oxidative stress and may provide 282 

therapeutic benefit for patients with CF. Indeed, the present findings warrant further 283 

investigation to determine the impact of extended (i.e., >6 months) antioxidant treatment 284 

on oxidative stress and vascular function in this patient population.  285 

 286 

Clinical Significance 287 

The development of cardiovascular disease (CVD) is closely tied to endothelial 288 

dysfunction (Vanhoutte et al. 2009) and a 1% decrease in FMD is associated with an ~8% 289 

increase in risk of future cardiovascular events (Inaba, Chen, and Bergmann 2010). In 290 

the present study, the 1.9% increase in FMD observed following the AOC treatment 291 
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translates to a ~15% risk reduction for future cardiovascular events. Beyond the potential 292 

impact antioxidant treatments may have on CVD risk reduction in CF, previous work from 293 

our group has implicated endothelial dysfunction as a contributor to exercise capacity 294 

(Poore et al. 2013) and exercise blood flow regulation (Tucker et al. 2018); key areas of 295 

concern for patients with CF given that exercise intolerance is an independent predictor 296 

of mortality in this population (Nixon et al. 1992; Pianosi, Leblanc, and Almudevar 2005). 297 

Thus, the therapeutic potential of antioxidant treatments in CF to improve endothelial 298 

function may have far-reaching clinical implications and warrants further investigation.  299 

  300 

Conclusions 301 

This is the first known study to investigate oxidative stress as a potential 302 

mechanism that contributes to vascular endothelial dysfunction in patients with CF. 303 

Importantly, ingestion of a single oral antioxidant cocktail treatment in patients not only 304 

improved FMD, but restored endothelial function to the value of healthy controls. 305 

Collectively, the improvement in oxidative stress balance coupled with the improved FMD 306 

following the antioxidant cocktail treatment indicate that oxidative stress is an important 307 

contributor to endothelial dysfunction in CF. Future studies are needed to determine if 308 

chronic antioxidant administration can lead to sustained improvements in endothelial 309 

function in patients with CF.  310 

 311 

Data Availability 312 

The data used to support the findings of this study are available from the corresponding 313 

author upon request.  314 
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FIGURE CAPTIONS 481 

 482 

Figure 1. Schematic illustrating the recruitment/enrollment process and overall 483 

experimental design. Flow-mediated dilation (FMD) was assessed in healthy controls 484 

(n=18) and in patients with CF (n=18) following an antioxidant cocktail (AOC). In a 485 

subgroup of patients with CF (n=9), measures of oxidative stress balance were 486 

assessed following ingestion of the AOC and a placebo condition.  487 

 488 

Figure 2. Changes in flow-mediated dilation (FMD) in patients with CF following either 489 

the AOC treatment (CF-AOC; n=18) or placebo (CF-PLC; n=9). *Significantly greater 490 

versus CF-PLC (p=0.032).  Values are presented as mean ± SEM. 491 

 492 

Figure 3. Changes in plasma levels of antioxidants (panels A and B) and lipid 493 

hydroperoxide (LOOH, panel C) in patients with CF in the AOC treatment and placebo 494 

(PLC) condition (n=9). *significant difference between treatments when controlling for 495 

HbA1c as an index of disease severity (p<0.05). 496 
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Table 1.  Participant characteristics, clinical laboratory markers, and pulmonary function 
in patients with CF and controls. 
 

Variable CF Controls P value 

  N 18 18  

  Sex (M/F) 8/10 8/10  

  Age (y) 18.8 ± 9.4 15.7 ± 5.2 0.227 

  Height (cm) 158 ± 15 163 ± 15 0.337 

  Weight (kg) 53.4 ± 15.9 52.5 ± 16.5 0.868 

  BMI (kg/m2) 20.8 ± 3.3 19.3 ± 3.9 0.225 

  Body Fat (%) 22.0 ± 6.3 22.3 ± 8.2 0.902 

  SBP (mmHg) 108 ± 12 108 ± 16 0.915 

  DBP (mmHg) 60 ± 7 63 ± 8 0.133 

  Resting SpO2 (%) 97.9 ± 1.5 99.0 ± 0.6 0.005 

Clinical Laboratory Markers    

  TC (mg/dL) 127 ± 22 148 ± 26 0.009 

  HDL (mg/dL) 42 ± 12 55 ±11 0.002 

  LDL (mg/dL) 66 ± 16 73 ± 36 0.508 

  Triglycerides (mg/dL) 88 ± 31 73 ± 27 0.144 

  Glucose (mg/dL) 86 ± 14 84 ± 9 0.658 

  TC:HDL 3.2 ± 0.7 2.8 ± 0.6 0.075 

  hsCRP 2.31 ± 2.33 0.51 ± 0.33 0.003 

Pulmonary Function    

  FVC (L) 3.66 ± 1.25 4.10 ± 1.28 0.291 

  FEV1 (L) 2.78 ± 1.00 3.53 ± 0.98 0.025 

  FEV1 (% predicted) 88.0 ± 18.1 104.4 ± 9.6 0.002 

  FEV1/FVC (%) 75.5 ± 9.2 87.6 ± 7.3 <0.001 

  FEF25-75 (L/s) 2.47 ± 1.23 4.06 ± 1.27 <0.001 

 
Values are mean ± SD. BMI = body mass index; SBP = systolic blood pressure; DBP = 
diastolic blood pressure; SpO2, oxygen saturation; TC = total cholesterol’ HDL = high 
density lipoprotein; LDL = low density lipoprotein; hsCRP = high sensitivity C-reactive 
protein; FVC = forced vital capacity; FEV1 = forced expiratory volume in 1 second; 
FEF25-75 = forced expiratory flow. 
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Table 2. Parameters of the FMD test in patients with CF completing the AOC treatment (CF-AOC; n=18), placebo 

condition (CF-PLC; n=9), or healthy controls (n=18).  

 

Values are mean ± SD. FMD = flow-mediated dilation. *significant pre- to post-treatment change versus CF-PLC (p<0.05); 
†significant difference versus Pre in CF-AOC (p<0.05); ‡significant difference versus Pre in CF-PLC (p=0.024). 

 CF-AOC   CF-PLC  Controls 

Variable Pre Post  Pre Post   

Baseline diameter (cm) 0.306 ± 0.055 0.302 ± 0.053  0.328 ± 0.049 0.325 ± 0.051  0.294 ± 0.043 

Peak diameter (cm) 0.323 ± 0.056 0.324 ± 0.054  0.348 ± 0.048 0.344 ± 0.053  0.315 ± 0.052 

FMD absolute change (cm) 0.017 ± 0.008 0.022 ± 0.011*  0.021 ± 0.012 0.018 ± 0.008  0.022 ± 0.012 

Shear rate (s-1, AUC) 58,273 ± 29,735 51,089 ± 24,393  52,527 ± 25,003 43,242 ± 30,749  45,737 ± 10,735 

FMD/Shear (% / s-1, AUC) 0.11 ± 0.06 0.15 ± 0.06  0.14 ± 0.09 0.16 ± 0.08  0.16 ± 0.06† 

Time to peak (s) 58.1 ± 28.1 45.3 ± 19.9  70.8 ± 35.3 41.4 ± 16.4  38.1 ± 10.1†‡ 
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Table 3. Biomarkers of oxidative stress and lipid soluble antioxidants in patients with CF following the AOC treatment and 
placebo (PLC) condition (n=9). 
 

 CF-AOC  CF-PLC 

Variable Pre Post Change  Pre Post Change 

8-isoprostane (pg/ml) 9.9 ± 3.8 11.4 ± 4.5 1.5 ± 1.6  10.9 ± 6.8 11.6 ± 7.5 0.8 ± 1.5 

Nitrotyrosine (nM) 172.7 ± 69.4 180.1 ± 72.3 7.4 ± 25.3  200.1 ± 84.8 215.5 ± 52.2 15.4 ± 84.6 

γ-tocophorol (μM) 2.16 ± 1.16 1.97 ± 0.78 -0.19 ± 1.34  2.12 ± 0.95 1.58 ± 0.81 -0.54 ± 0.84 

Retinol (μM) 2.36 ± 0.83 2.20 ± 0.72 -0.16 ± 0.93  2.22 ± 0.99 2.10 ± 0.94 -0.12 ± 1.11 

 

Values are mean ± SD.  

 

 


