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ABSTRACT 

The intense conditions generated in the core of a collapsing bubble have been the subject of 

intense scrutiny from fields as diverse as marine biology and nuclear fusion. In particular, the 

phenomenon of sonoluminescence - whereby a collapsing bubble emits light - has received 

significant attention. Sonoluminescence has been associated predominantly with millimetre 

sized bubbles excited at low frequencies and under conditions far removed from those 

associated with the use of ultrasound in medicine. In this study, however, we demonstrate that 

sonoluminescence is produced under medically relevant exposure conditions by microbubbles 

commonly used as contrast agents for ultrasound imaging. This provides a mechanistic 

explanation for the somewhat controversial reports of “sonodynamic” therapy (SDT), in which 

light sensitive drugs have been shown to be activated by ultrasound induced cavitation. To 

illustrate this, we demonstrate activation of a photodynamic therapy agent using microbubbles 

and ultrasound. Since ultrasound can be accurately focused at large tissue depths, this opens up 

the potential for generating light at locations that cannot be reached by external sources. This 

could be exploited both for diagnostic and therapeutic applications significantly increasing the 

range of applications that are currently restricted by the limited penetration of light in tissue.  
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INTRODUCTION 

Multi-bubble sonoluminescence is an intense thermal process whereby transient species 

formed during the collapse of bubbles under ultrasound excitation (cavitation) emit light 1. The 

majority of previous studies on sonoluminescence have employed ultrasound frequencies and 

intensities that are significantly different from those used in diagnostic or therapeutic 

ultrasound 2–7. However, with the increasing use of microbubbles in both ultrasound imaging 

and therapy 8, and studies showing sonoluminescence at ultrasound frequencies in the MHz 

range 9–15, there is a need to understand whether these extreme events can in fact occur in tissue. 

In particular, sonoluminescence and the reactive oxygen species associated with violent bubble 

collapse have been suggested as the means by which certain classes of drug can be activated 

by ultrasound 16–20, so called Sonodynamic Therapy (SDT). Reports on SDT have demonstrated 

promising results for the treatment of aggressive and resistant tumour cell lines 21–23. This 

approach relies on the combination of ultrasound, ground state molecular oxygen, and a 

“sensitizer” drug to produce cytotoxic reactive oxygen species in a targeted manner. Thus, SDT 

uses a similar approach to photodynamic therapy (PDT), a modality clinically approved for the 

treatment of superficial lesions and lesions that can be reached with an endoscope24. Ultrasound 

can, however, be more tightly focused in deeper regions of human tissues compared to light, 

allowing SDT potentially to treat a wider range of lesions, more deeply seated in the body 

compared to photodynamic therapy. 

The initial findings of drug activation using ultrasound were reported in 1989 17  and since then, 

a range of sensitisers have been investigated 22,23. Over the last decade, microbubbles have been 

shown to enhance SDT and a correlation between SDT and cavitation has been established, but 

the underlying mechanisms responsible for sensitiser activation have remained uncertain. 

Several theories have been proposed, including sonoluminescence 14,15 and pyrolysis 25 but a 

consensus has yet to be drawn. The aim of this study was to investigate whether 

sonoluminescence events occur during the excitation of phospholipid-coated microbubbles 

using ultrasound parameters previously shown to have a therapeutic effect in vivo 26–29; and 

whether these events could activate a known SDT sensitizer (Rose Bengal). Investigation was 

also made of the production of different types of reactive oxygen species to determine whether 

their formation could provide an alternative or complementary pathway for sensitizer activation 

via pyrolysis (please see Supporting Information). 



EXPERIMENTAL SECTION 

Microbubbles 

1,2-dibehenoyl-sn-glycero-3-phosphocholine (DBPC) was obtained from Avanti Polar Lipids 

Inc. (Alabaster, Alabama, USA). N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-

sn-glycero-3-phosphoethanolamine, 1,3-diphenylisobenzofuran (DPBF), triethylammonium 

salt (NBD-PE) and singlet oxygen sensor green (SOSG) were purchased from Thermo Fisher 

Scientific. Rose Bengal, Polyoxyethylene (40) stearate (PEG 40S), chloroform and ethanol 

were all obtained from Sigma Aldrich Ltd. (Gillingham, Dorset, UK). Sulphur hexafluoride 

(SF6) and oxygen (O2) gases was purchased from The BOC Group (Guilford, Surrey, UK). 

SonoVue® was purchased from Bracco Research (Geneva, Switzerland). 

 

To produce the microbubbles, a mixture of DBPC and PEG40Ss dissolved in chloroform were 

added to a glass vial to produce a 5-mL batch of microbubbles at a total concentration 4 mg/mL. 

The sample was covered with pierced parafilm and set on a hot plate at 50°C for 12 hours to 

evaporate the chloroform. Once all the solvent evaporated, the dried lipid film was suspended 

in 5 mL of filtered deionised water for 1 hour at 80°C under constant magnetic stirring. The 

magnetic stir bar was then removed.  

 

The lipid mix solution was sonicated at low intensity (QSonica Q125, 20kHz, 3 mm probe tip, 

amplitude: 20%, 1 min) with the sonicator probe tip immersed in the solution. The sonicator 

probe tip was moved to touch the air and water interface and a light flow of sulphur 

hexafluoride (SF6) gas was added to fill the headspace of the sample vial. The sonicator was 

then turned on at high intensity (amplitude: 80%, 20 sec). The samples were capped and cooled 

on ice for 10 mins after which a layer of foam was visible at the top of the sample and a thick 

layer of densely packed microbubbles underneath the foam. To produce O2 filled 

microbubbles, 1-mL samples of SF6 MBs was sparged with oxygen for 2 mins as described in 

30. SonoVue® was prepared according to the manufacturer’s instructions. 

 

Microbubble size and concentration were determined through an analysis of optical images as 

previous studies have confirmed the reliability of this method compared to particle sizing 

devices 31. For this, the microbubble suspension was diluted 1:20 in PBS and 10 μL were loaded 

onto a haemocytometer with a cover slide. 30 microscope images were acquired through an 

optical microscope (Leica DM500 optical microscope, Larch House, Milton Keynes, MK14 

6FG, UK) with a 40x objective lens at room temperature. The images were then analysed using 



purpose written MATLAB code (R2016b, The MathWorks, Natick, MA, USA) to determine 

microbubble mean size and concentration. For all experiments microbubbles with a modal 

diameter of 2.1 ± 1.6 μm (Figure S1) were used, corresponding to the agents used in ultrasound 

imaging and therapy. These were also diluted to 5x105 microbubble/mL in deionised water to 

reflect the concentrations that would be present in the human blood stream following injection. 

 

Exposure Chamber 

A chamber was designed and built for the characterisation of sonoluminescence events to 

enable simultaneous measurements of photon and acoustic emissions from ultrasound excited 

microbubbles. This consisted of a cube, made of black Delrin® to minimise external light 

contamination, with an internal volume of 100 ml (Figure S1). The base of the chamber was 

coated with ultrasound absorbing material (F28, Precision Acoustics, Dorset, UK) to avoid the 

formation of standing waves. Ports in the walls enabled co-alignment of the foci of two optical 

lenses (ACL25416U-A, Ø = 2.54 cm, f = 16 mm, NA = 0.79, ThorLabs, Ely, UK) and two 

ultrasound transducers at the centre of the chamber. Photons were detected using two 

photomultiplier tubes (PMTs, Hamamatsu H10493-03, Welwyn Garden City, UK) coupled to 

the lenses. The first ultrasound transducer (1 MHz centre frequency, 16 mm element diameter 

with an integrated drive system, Sonidel SP100, Dublin, Ireland) was used to transmit 

ultrasound in order to excite the microbubbles. The second transducer (7.5 MHz centre 

frequency unfocused, element diameter 1.25 cm, Olympus V320, Southend on Sea, UK) was 

used to passively receive nonlinear acoustic emissions indicative of cavitation activity. A 

schematic of the set up and associated instrumentation is shown in Figure 1.  

 



 

Figure 1. Schematic of the experimental setup used for the simultaneous recording of optical 

and acoustic emissions.  

 

Experimental Protocol 

Sonoluminescence events were investigated in aqueous solutions ± MB, ± Rose Bengal. 

Samples were prepared in filtered deionised water to obtain 5x105 MB / mL as above and 2.5 

μM RB. Samples were injected into the chamber via the filling port and exposed to ultrasound  

for 2 mins (1 MHz centre frequency, 3.5 W/cm2 temporal peak average intensity, 30% duty 

cycle, 100 Hz pulse repetition frequency) during which period 1000 PMT acquisitions were 

recorded. The first PMT was used to measure the overall light emissions. The second was used 

with appropriate filters to measure sonoluminescence at specific wavelengths. The 

corresponding acoustic emissions were recorded using the 7.5 MHz centre frequency 

transducer. A 2 MHz high-pass filter was used to remove the drive frequency from the recorded 

PCD traces before preamplifying (SR445A, SRS, Sunnyvale, CA, USA), digitising it 

(Handyscope HS3, TiePie Engineering, Sneek, Netherlands) and saving it on a computer drive 

for analysis. The effect of bulk temperature was examined to determine if sonoluminescence 

could occur at biologically-relevant temperatures. For this, experiments were conducted with 



a sample temperature of 10, 23, and 37°C, monitored using a PCE-T390 digital thermometer 

from PCE Instruments, before and after ultrasound exposure. 

 

Detection of reactive oxygen species 

The detection of singlet oxygen specifically was accomplished using the commercial product: 

singlet oxygen sensor green (SOSG) which reacts with 1O2 to form SOSG-endoperoxides with 

a strong fluorescence emission around 525-536 nm. The less specific detection of both 1O2 

and / or O2· - was determined through a decrease in absorbance of 1,3-diphenylisobenzofuran 

(DPBF) at 410 nm as it oxidises in the presence of either species forming non-fluorescent 1,2-

phenylenebis(phenylmethanone). For the detection of hydroxyl radical, non-fluorescent 

benzoic acid was used as it becomes permanently fluorescent (Ex: 305 nm / Em: 420 nm) upon 

aromatic hydroxylation by ·OH. 

 

Fluorescence and absorbance measurements were done in quadruplets on COSTAR or 

Greigner UV-Star clear flat-bottom 96-well plates from Sigma-Aldrich (Dorset, UK), using a 

FLUOstar Omega multi-purpose plate reader from BMG Labtech (Aylesbury, Bucks, UK) at 

room temperature. For some of the examination, these measurements were taken before and 

after sample exposition to determine a percent change in the intensity relative to the pre- 

exposure intensity. Sample absorbance measurements were all normalised to that of a blank 

control. 

 

Data analysis 

The acquired acoustic emission traces were fitted with a Tukey window to avoid discontinuities 

and then analysed with a Fast Fourier Transform (FFT) using MATLAB (R2017b The 

Mathworks, Natick, MA, USA). The harmonics (multiples of the drive frequency ± 100 kHz, 

> 2 MHz), ultraharmonics (half-integer harmonics of the drive frequency ± 50 kHz, > 2 MHz), 

and broadband (remaining signal > 2 MHz) components were extracted for each acquisition. 

The power and cumulative energy in these frequency subsets were calculated for each 

acquisition over the entire exposure time. In order to characterise the spectrum of the 

sonoluminescence, the signal of the filtered PMT was normalised with the total amount of light 

generated (Figure S1). This enabled a comparison between experimental runs. Each experiment 

was repeated n = 3 times. The fluorescence and absorbance readings were also performed four 

times for each sample. The average and the standard deviation within each group are presented. 



RESULTS AND DISCUSSION 

 Measurements of sonoluminescence and acoustic emissions at 23°C were made for 

microbubbles manufactured in-house 28 with a sulphur hexafluoride (SF6) or oxygen (O2) gas 

cores and the commercially available contrast agent Sonovue® (Figure S1), While all 

microbubbles tested produced sonoluminescence when exposed to US (Figure 2), reduced 

sonoluminescence counts were observed for O2 microbubbles compared to Sonovue® and SF6 

microbubbles. This was attributed to the lower stability of O2 microbubbles and the higher 

solubility of O2 in aqueous solutions compared to SF6. The reduced broadband energy levels 

produced by O2 microbubbles (Figure 2) further confirmed these results. The pulse height 

distribution of individual sonoluminescence events was however found to be comparable 

between the formulations (Figure S2) highlighting that the cavitation of these systems 

generated comparable collapse conditions and sonoluminescence 10,32. 

 

Figure 2. Sonoluminescence and broadband acoustic emissions produced by phospholipid-

coated microbubbles driven at 1 MHz with an intensity of 3.5 W/cm2, 30% duty cycle, and 100 

Hz pulse repetition frequency for 2 minutes. The total PMT (photomultiplier tube) counts 

above 6 mV in amplitude and broadband energy of acoustic emissions for three microbubble 

formulations and a water control are displayed. (n=3 runs of 1000 acquisitions each, error bars 

indicate standard deviations).  

 

The spectrum of the light generated using SF6 microbubbles was measured using a set of five 

optical filters at room temperature. Figure 3 shows a broad spectrum with an increased 

sonoluminescence generation at the lower wavelengths. As the intensity of sonoluminescence 
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reported here was low, the use of a monochromator to obtain a higher wavelength resolution 

was not feasible, thus specific molecular features in the optical spectrum were not discernible. 

However, sonoluminescence in water has been reported at 1 MHz with a broad continuous 

spectrum and no molecular features.12,33,34 Such broad spectra have been associated with 

radiation emissions from cavitation events e.g. blackbody9, bremsstrahlung35,36, and/or 

recombination radiations37,38. Although, no consensus has been reached on the exact 

mechanisms, the generation of reactive oxygen species (ROS) during microbubble cavitation 

such as hydrogen peroxide39 and hydroxyl radical40,41 concurs with the recombination radiation 

theory12,38.  

 

 

Figure 3. Spectrum of sonoluminescence for diluted SF6 microbubbles at 23°C. The percentage 

of overall sonoluminescence reflects the normalised counts from the filtered PMT at specific 

wavelengths over 1000 acquisitions with the counts from a non-filtered PMT. The normalised 

count was then corrected for the bandwidth of the optical filters used and the PMT sensitivity 

at that wavelength. n = 3 runs were performed for each wavelength and error bars indicate the 

standard deviation between the runs. 

 

An increase in bulk solution temperature has been reported to affect sonoluminescence by: (1) 

increasing the number of sonoluminescence events due to an increase in the number of 

cavitation events 10, and (2) lowering the amplitude of individual sonoluminescence events due 
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to lowering of the intensity of collapse 32. Measurements were taken at 10, 23, and 37° and 

their comparison in Figure 4a shows the expected increase in sonoluminescence occurrence 

and broadband activity at 37°C when SF6 microbubbles were used as cavitation nuclei. As the 

amplitude of sonoluminescence was examined (Figure 4b), a decrease in the number of high 

amplitude sonoluminescence events (> 60 mV) was observed with higher bulk solution 

temperatures (Figure 4b inset). Thus, these results demonstrate that at biologically relevant 

temperatures, a greater number of sonoluminescence events occur when microbubbles are 

exposed to mild therapeutic US conditions, however the amplitude of individual 

sonoluminescence events is reduced. 

 

The generation of sonoluminescence by microbubbles and ultrasound is potentially of great 

importance for the fields of  both photo- and sonodynamic therapy (PDT and SDT 

respectively). In PDT, significant efforts have been made to design sensitisers with increased 

absorption at wavelengths that allow improved penetration of light in tissue. Although the 

therapeutic effects of SDT have been reported since 1989 17, the explanation behind the 

activation of the sensitiser with this method was not well accepted. Therefore, we measured 

the sonoluminescence output with and without the presence of an absorbing sensitiser, in this 

case Rose Bengal (RB). Figure 5a highlights that the presence of RB and SF6 microbubbles at 

37°C led to a decrease in sonoluminescence measured at the absorption wavelength of the drug 

(560 nm, Figure S3) compared to a reference wavelength (350 nm). Hence, sonoluminescence 

from cavitating microbubbles can be absorbed by surrounding sensitisers, leading to their 

activation. These results support the hypothesis that sonoluminescence and the resulting 

transfer of energy to an accepting sensitiser is a key mechanism underlying SDT and are 

consistent with reports by Umemura et al. 15 and Giuntini et al. 14 at room temperatures and 

without the use of exogenously-added cavitation nuclei. Additionally, Figure 5b shows that at 

the same ultrasound parameters, the combination of RB and SF6 microbubbles in solution 

produced significantly more singlet oxygen radicals compared to microbubbles alone, 

confirming the activation of RB.  

 



 

Figure 4. Sonoluminescence and broadband acoustic emissions from SF6 microbubbles diluted 

in deionised water at 10, 23, 37°C (n=3, error bars indicate standard deviations for each run). 

a, Total PMT counts above 6 mV in amplitude and broadband energy for three different 

temperatures are displayed. b, Number of PMT counts for increasing peak amplitude. Number 

of PMT counts in each bin is normalised by the total number of counts recorded in each run. 

The inset shows the sum of normalised PMT counts above 60 mV for each temperature tested. 

These results indicate that with increasing temperatures, while the number of cavitation events 

increases, their amplitude decreases. The sample temperature before and after ultrasound 

exposure did not fluctuate substantially (±1°C). 
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Figure 5. The addition of Rose Bengal (RB) to SF6 microbubbles (SF6MB), and the resulting 

effect on sonoluminescence, broadband emissions and singlet oxygen radical generation. a, 

Percent of overall sonoluminescence measured with optical filters for 560 nm and 350 nm. 

Filtered PMT signal was normalised by the overall counts recorded by the non-filtered 

reference PMT and for the bandwidth of the filter used. These were acquired for water, SF6 

microbubbles (SF6MB), SF6 microbubbles and Rose Bengal samples at 37°C (n = 3 runs, each 

of 1000 acquisitions). Rose Bengal peak absorbance is known to be at 559 nm (Figure S3). 

The sonoluminescence measurement at 560 nm was made to assess the absorption of 

sonoluminescence by the sensitiser and compared to 350 nm for reference. b, The activation of 

Rose Bengal was assessed through the generation of cytotoxic singlet oxygen radical. This was 

characterised by ab increase in the fluorescence intensity of Singlet Oxygen Sensor Green 

(SOSG, left axis). The different groups were exposed to 1 MHz, 462 mVpk-pk, 30% duty cycles, 

100 Hz pulse repetition frequency for 30 seconds (n = 3). The ultraharmonic emissions of 

microbubbles were captured using a passive acoustic detector and displayed as the overall 

ultraharmonic energy during the exposure (right axis). 

 

In contrast, the presence of reactive oxygen species did not affect the activity of Rose Bengal 

at ambient temperatures and pressures (Figure S4) indicating that pyrolysis-induced ROS 

generation are not involved in the activation of Rose Bengal. Further, microbubble cavitation 

did not lead to significant degradation of Rose Bengal demonstrating that significant pyrolysis 

of the sensitiser itself does not occur at these exposure conditions (Figure S5). 

 

There are several aspects of these results that may be important for both diagnostic and 

therapeutic applications of ultrasound and microbubbles. In the absence of cavitation, 

ultrasound is a non-ionising modality and epidemiological studies of ultrasound imaging have 

not identified any significant health hazards associated with the technique 42,43. Yet, bubble 

cavitation was shown to cause ionisation of molecules as seen with a broad continuum of 

sonoluminescence, and the production of excited species and radicals 36,38. Here we 

demonstrate that, in the presence of microbubbles, cavitation produces reactive oxygen species 

and sonoluminescence. The sonoluminescence measured in this study is unlikely to cause 

phototoxicity as the number of photons is below that associated with the safe use of lasers in 

medical applications 44,45. In contrast, the generation of free radicals could cause local 

cytotoxicity; although the short lifetimes of radicals 46 and the small reaction volume 1 of 



cavitation will restrict the region of damage, making such an approach ideal for targeted 

applications in oncology.  

 

CONCLUSIONS 

In summary, cavitation of microbubbles under mild therapeutic ultrasound conditions was 

found to generate sonoluminescence, the intensity of which was positively correlated with the 

broadband energy of microbubble acoustic emissions. Further, this work confirms that 

sonoluminescence is involved in the activation of photosensitisers which allows a greater 

production of reactive oxygen species during SDT. The sensitisers used for PDT can then be 

locally activated by energy transfer through the sonoluminescence generated by ultrasound and 

microbubbles enabling the treatment of a wider range of lesions using SDT. 
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