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Abstract
This paper explores the nature of competition between hypotheses and the effect of failing
to model this relationship correctly when performing abductive inference. In terms of the
nature of competition, the importance of the interplay between direct and indirect pathways,
where the latter depends on the evidence under consideration, is investigated. Experimental
results show that models which treat hypotheses as mutually exclusive or independent per-
form well in an abduction problem that requires identifying the most probable hypothesis,
provided there is at least some positive degree of competition between the hypotheses. How-
ever, even in such cases a significant limitation of these models is their inability to identify
a second hypothesis that may well also be true.

Keywords Abduction · Inference to the best explanation · Hypothesis competition ·
Computer simulation

1 Introduction

Abduction or abductive inference is a mode of explanatory inference that has been consid-
ered at great length in both artificial intelligence and philosophy of science [1–4]. While
the term ‘abduction’ is sometimes used to refer only to how explanatory hypotheses are
generated, it is also used more generally to include the the evaluation of these hypotheses,
which is the focus in this paper. In this case it is often referred to as ‘inference to the best
explanation’ [4], where the general idea is to compare how well various competing hypothe-
ses explain the available evidence and then make an inference to the hypothesis that does
best. One of its main attractions is that it seems to capture aspects of scientific inference
as well as reasoning in everyday life. The relationship between abduction and probability
has been a frequent theme in the literature, with abduction often being spelt out in prob-
abilistic terms. Questions here concern the compatibility or otherwise between abduction
and Bayesian inference, which is to be preferred if they are incompatible and how ‘best’ is
to be quantified [3, 5–9].
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Logic-based approaches to abduction have received a lot of attention in the artificial intel-
ligence literature, with a lot of focus on abductive logic programming [10, 11]. From this
perspective, abduction involves finding an explanation which along with a background log-
ical theory entails an observation. A challenge in such approaches is how to handle the large
numbers of explanations that can exist. While various techniques for achieving this have
been proposed, of particular interest here is the use of probability such as probabilistic horn
abduction [12], which specifies probabilities over hypotheses and then uses explanations to
compute posterior probabilities of interest. This work also showed that the knowledge in a
discrete Bayesian network can be represented within this framework and vice versa. This
approach was extended into the independent choice logic, which provides a richer logic and
allows for multi-agent decision-making under uncertainty [13, 14].

There has also been a lot of research on abductive inference in the context of Bayesian
networks more generally [15]. Given a set of observations or evidence represented as an
instantiation of a subset of nodes (evidence nodes) within the network, the general idea
is to identify the best explanation in terms of a configuration of other nodes (explanatory
nodes) in the network. Most Probable Explanation (MPE) is a version of abductive infer-
ence that includes all the non-evidence nodes in the set of explanatory nodes [16]. Clearly,
the explanatory hypotheses under consideration are mutually exclusive since they differ in
the configuration of one or more of the explanatory nodes. A problem with this approach is
that it often produces explanations that are overspecified since they include many variables
that are irrelevant to the evidence and so an alternative approach is Maximum a Posteriori
(MAP) which instead includes only a subset of non-evidence nodes in the set of explana-
tory nodes [17]. A variety of approaches as well as approximation techniques have been
proposed to address this issue [17–22]. Irrespective of what selection of explanatory nodes
is made, typically these approaches still involve comparing mutually exclusive explanatory
hypotheses. Addressing concerns not only about overspecification, but also how to quantify
‘best explanation’ in probabilistic terms [7, 23], an approach based not on posterior prob-
ability but on generalized Bayes factors, which allows the set of explanatory variables to
be varied and does not restrict the comparison to mutually exclusive hypotheses, is very
relevant here [24].

The current paper focusses on the nature of competition between the hypotheses and how
this relates to inference. In many presentations of abduction the hypotheses are assumed
to be mutually exclusive, but while it is certainly true that mutually exclusive hypotheses
compete, it seems just as clear that hypotheses can compete even if they are compatible.
For example, in medical diagnosis suppose that two conditions are being considered to
explain a patient’s symptoms. Typically these conditions will be compatible and could both
contribute to the symptoms, but in many cases it will be reasonable to treat them as com-
peting nevertheless since it would be unnecessary to infer two conditions if one accounts
for all the evidence. For an insightful paper that raises the problem concerning the nature of
competition, see Harman [25]. This topic is closely related to that of explaining away and
intercausal reasoning which have been explored in the artificial intelligence literature [26,
27]. The relationship between explanatory hypotheses could also be relevant to evaluating
the goodness of an explanation, what Lipton calls its ‘loveliness’ [3]. Returning to the case
of diagnosis, sometimes two (or more) conditions will provide a better explanation than just
one condition, which suggests ‘best explanation’ should not be quantified in terms of poste-
rior probability. Also, it could be the case that there is merit to preferring hypotheses that are
compatible with other hypotheses that are less informative and/or have lower probability.
These issues will not be pursued here, however.
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In the next section of the paper, several features of a particular account of competition are
explored, particularly insofar as it differs from negative dependence between hypotheses,
which might initially seem to provide a promising way to generalize competition beyond
mutual exclusion. After exploring the nature of competition in Section 2, the rest of the
paper investigates a further question. If the relationship between hypotheses is modelled
incorrectly, how does that affect the results of abduction? This question is addressed by
means of experiments which involve generating a probability model (designated the correct
probability model) that has a specified degree of competition between hypotheses according
to a recently proposed measure of competition [28]. Three modifications of this model, two
that treat the hypotheses as mutually exclusive and a third that treats them as independent,
are then used for abductive inference and the results compared against those obtained with
the correct probability model. These experiments were designed to identify the limitations
of treating the hypotheses as mutually exclusive, for example, when in actual fact they may
just be competing to some extent or perhaps not competing at all.

2 Competing hypotheses

2.1 Preliminaries

Let B be a Boolean algebra closed under the usual logical operations (&, ∨, ¬) and P be
a probability measure defined over B. Let E ∈ B represent the evidence and H , H ′ ∈ B
hypotheses for E. The catchall hypotheses, denoted Hc, is defined as Hc = ¬H&¬H ′.
Probabilities are taken to represent degrees of belief of an agent relevant to background
knowledge, which is omitted in the notation for simplicity. Unless otherwise state, P(H),
P(H ′), P(E), P(H |E), P(H ′|E), P(H&¬H ′) and P(¬H&H ′) are assumed to be non-
extreme (neither zero nor one) representing the idea that the hypotheses and evidence are
not considered by the agent to be either certain or impossible and that neither hypothesis is
considered to entail the other.

2.2 An account of competition

Suppose a detective has two main suspects in a murder inquiry, Smith and Jones. Treating
the suspects as two competing hypotheses and reasoning abductively, the detective tries to
determine which hypothesis best explains all the relevant evidence. We can represent the
hypotheses as follows:

H : Smith committed the murder
H ′: Jones committed the murder

Note that in general the hypotheses need not be assumed to be mutually exclusive since
both Smith and Jones could have colluded in committing the murder and hence it cannot
be assumed that P(H&H ′) = 0. However, if the two hypotheses are known to be mutu-
ally exclusive so that—if Smith and Jones could not have colluded—then clearly they are
competing hypotheses. In reality, it might be difficult to establish mutual exclusion, but in
many cases it would still be reasonable to treat them as competing hypotheses. After all,
if either suspect’s guilt on its own would explain all the relevant evidence, it would seem
like a violation of Ockham’s razor to infer the guilt of both parties. However, in other cases
where, for example, the guilt of both parties is needed to explain the evidence, it may well
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be appropriate to make such an inference even though P(H&H ′|E) can be no greater than
P(H |E) or P(H ′|E).1

Since hypotheses could compete without being mutually exclusive, it might be tempting
to propose a more adequate account of competition in terms of negative dependence between
the hypotheses with respect to background knowledge only. For example, suppose Smith
and Jones are known to be criminal rivals and so very unlikely to have colluded. In such
a scenario, Smith’s guilt would reduce the probability of Jones’s guilt and vice versa, so
perhaps they could be considered as competing hypotheses. The difficulty with this is that
it fails to take into account the influence of the evidence on the relationship between the
hypotheses. For example, two hypotheses, H and H ′ could be negatively dependent i.e.
P(H |H ′) < P (H |¬H ′) and yet become positively dependent when evidence is taken into
account. This would occur if they account for the evidence much better when combined
than either would on its own. This suggests that competition between hypotheses should be
defined with respect to evidence, which motivates the following definition:

Definition 1 Let each of H and H ′ be hypotheses and E evidence under consideration and
suppose that P(H&E) and P(H ′&E) are greater than zero. Hypotheses H and H ′ are said
to be competing hypotheses with respect to evidence E if and only if P(H |H ′&E) <

P(H |E).

Since the relevant condition can also be expressed as P(H ′|H&E) < P(H ′|E), it is clear
that competition is a symmetric concept. This definition of competition can be expressed in
terms of Bayesian confirmation by noting that H and H ′ are in competition with respect to
E if and only if H ′ disconfirms H given E. It can be shown that an equivalent condition for
competition can be stated as follows:2

P(E|H&H ′) · P(E|¬H&¬H ′) · P(H ′|H) · P(¬H ′|¬H)

< P(E|¬H&H ′) · P(E|H&¬H ′) · P(H ′|¬H) · P(¬H ′|H). (1)

In recent work, Schupbach and Glass [28] defined a measure of the degree of competition
between two hypotheses, H and H ′, with respect to evidence E as the average degree to
which H and H ′ disconfirm each other given E [28]:

Comp(H, H ′|E) = Cl(H,¬H ′|E) + Cl(H
′, ¬H |E)

2
(2)

where Cl is the likelihood ratio measure of confirmation conditioned on E, that is,

Cl(H,H ′|E) = log

[
P(H |H ′&E)

P (H |¬H ′&E)

]
. (3)

So defined, Comp takes increasingly positive values to the extent that H and H ′ discon-
firm one another given E, decreasingly negative values to the extent that H and H ′ confirm
one another given E, and zero when H and H ′ are are probabilistically independent given
E. Note that if H and H ′ are assumed to be mutually exclusive, then P(H |H ′&E) = 0

1While it would be interesting to consider when the conjunctive hypothesis H&H ′ (or for that matter the
disjunctive hypothesis H ∨ H ′ or the exclusive disjunctive hypothesis H �H ′) is to be preferred to either H

or H ′, our focus here is on whether H and H ′ compete with each other.
2From P(H |H ′&E) < P(H |E), it follows that P(H |H ′&E) < P(H |¬H ′&E) and applying Bayes’ theo-
rem gives P(E|H&H ′)P (H |H ′)/P (E|H ′) < P (E|H&¬H ′)P (H |¬H ′)/P (E|¬H ′). Expanding the term
P(E|H ′) as P(E|H&H ′)P (H |H ′) + P(E|¬H&H ′)P (¬H |H ′) and similarly for P(E|¬H ′) gives the
desired result after some rearrangement.
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Fig. 1 If H and H ′ are unconditionally independent, they can nevertheless come into competition along an
indirect pathway via the evidence (a), but otherwise they can also compete along a direct pathway (b) [28]

and hence this would be a case with the highest possible degree of competition.3 H and H ′
can be said to compete with respect to E if Comp > 0. It can then be shown that H and
H ′ compete with respect to E if the condition in Definition 1 is met. Schupbach and Glass
also demonstrate that Comp can be expressed in terms of two pathways: a direct pathway
between H and H ′, which depends on the extent to which H and H ′ disconfirm each other
unconditionally, and hence does not depend on the evidence E, and an indirect pathway via
the evidence E (see Fig. 1).4 Since the measure of competition lies in the range [−∞, ∞]
their alternative measure, which lies in the range [−1, 1], will be used for convenience in
Sections 3 and 4. It is given by [28]

Compk(H,H ′|E) = Ck(H,¬H ′|E) + Ck(H
′, ¬H |E)

2
(4)

where Ck is the confirmation measure proposed by Kemeny and Oppenheim [29] when
conditioned on E,

Ck(H, H ′|E) =
[

P(H |H ′&E) − P(H |¬H ′&E)

P (H |H ′&E) + P(H |¬H ′&E)

]
. (5)

3Strictly speaking it is not defined since there is a division by zero in this case. However, the likelihood ratio
measure, Cl , is often taken to be infinite in this case and so the same approach could be adopted for Comp.
More straightforwardly, Compk in (4) will take on the maximum value of one when H and H ′ are mutually
exclusive.
4Comp(H,H ′|E) = CompD(H,H ′) + CompI(H,H ′|E), where the direct competition,
CompD(H,H ′) = [

Cl(H
′,¬H) + Cl(H, ¬H ′)

]
/2 and the indirect competition CompI(H,H ′|E) =[

Cl(E,H) − Cl(E,H |H ′) + Cl(E,H ′) − Cl(E,H ′|H)
]
/2.
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2.3 Features of the account

Motivation and justification for the above approach can be found in [28], but here it is
worth highlighting the importance of the fact that competition according to this account
depends not only on the hypotheses in question but also on the evidence under consid-
eration, which means that hypotheses could be competing with respect to one piece of
evidence and non-competing with respect to another. As noted earlier, merely consid-
ering negative dependence between the hypotheses would be inadequate, but it is still
relevant to competition via the direct pathway. Here some features of the account relat-
ing to the interplay between direct and indirect pathways contributing to competition are
explored.

Since expression (1) needs to be false for non-competing hypotheses and it is easy
to see that P(H ′|H) · P(¬H ′|¬H) < P(H ′|¬H) · P(¬H ′|H) in the case of nega-
tive dependence, then provided P(E|H&H ′) · P(E|¬H&¬H ′) is sufficiently greater than
P(E|H&¬H ′) · P(E|¬H&H ′) this would be sufficient to ensure non-competition. In
terms of the different pathways that contribute to competition, this means that a nega-
tive dependence along the direct pathway can be outweighed by a positive dependence
along the indirect pathway, which depends on the evidence. However, a stronger result
shows that this can be achieved even if both hypotheses are confirmed by the evidence
E, i.e.,

P(E|H) > P(E|¬H) and P(E|H ′) > P (E|¬H ′). (6)

The following result shows that this can be achieved irrespective of how negatively depen-
dent H and H ′ are, provided they are not mutually exclusive. Returning to our murder
example, this means that even if there is very good reason to think that Smith and Jones
do not collaborate in general and so there is negative dependence between them, this
could be overturned by appropriate evidence that could best be explained by their joint
involvement, in which case the hypotheses should not be considered to be competing. To
simplify notation, it will be useful to let x = P(H ′|H), y = P(H ′|¬H), x′ = P(H |H ′)
and y′ = P(H |¬H ′) and for the likelihoods a = P(E|H&H ′), b = P(E|H&¬H ′),
c = P(E|¬H&H ′) and d = P(E|¬H&¬H ′).

Theorem 1 Let H and H ′ be hypotheses and E evidence under consideration such that
E confirms both H and H ′ and let H and H ′ be negatively dependent, i.e. P(H ′|H) <

P(H ′|¬H). Unless H and H ′ are mutually exclusive, H and H ′ are not necessarily in
competition with respect to E.

Proof Using the notation provided above consider a scenario where a > d = b = c,
i.e. a probability model where the likelihood is greater for H&H ′ than it is for the other
conjunctions of hypotheses or their negations. The first condition in (6) can be expressed as

P(E|H&H ′) · P(H ′|H) + P(E|H&¬H ′) · P(¬H ′|H)

> P(E|¬H&H ′) · P(H ′|¬H) + P(E|¬H&¬H ′) · P(¬H ′|¬H).

Given the definition and assumption that b = c = d this condition can in turn be expressed
as ax + d(1 − x) > dy + d(1 − y) which becomes (a − d)x > 0 and since a > d this
condition is satisfied. Similarly, the second condition in (6) is also satisfied. The condition
of H and H ′ to be non-competing is that expression (1) be false, i.e

adx(1 − y) ≥ bcy(1 − x).
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Since a > d = b = c, this gives
a

d
≥ y(1 − x)

x(1 − y)
.

If a > y(1− x) and 0 < d < x(1− y) this condition will be satisfied and in such a case H

and H ′ will be non-competing irrespective of how much smaller y = P(H2|¬H1) is than
x = P(H ′|H) provided y �= 0.

Just as negatively dependent hypotheses need not be competing, so positively depen-
dent hypotheses can be competing. Contrary to the earlier supposition, if it is known that
Smith and Jones often work together in their criminal activity and hence are likely to have
colluded in this case, this could be overturned if there is compelling evidence that the mur-
der was committed by one person working alone. This means that while there is a positive
dependence along the direct pathway, it can be outweighed by a sufficiently strong negative
dependence along the indirect pathway. This is captured in the following result.

Theorem 2 Let H and H ′ be hypotheses and E evidence under consideration such that
E confirms both H and H ′ and let H and H ′ be positively dependent, i.e. P(H ′|H) >

P(H ′|¬H). Unless H entails H ′ or vice versa, it is possible that H and H ′ will be in
competition with respect to E.

Proof Using the notation provided earlier consider a probability model where a >

max(b, c) and min(b, c) > d = 0. Since the necessary condition for H and H ′ to be
competing in expression (1) can be expressed as adx(1 − y) < bcy(1 − x), then this con-
dition is satisfied provided y > 0 and x < 1. However, since E confirms both H and H ′,
the conditions in (6) must be satisfied. The first of these conditions can be expressed as
ax + b(1 − x) > cy + d(1 − y) and since d = 0, a > c and x > y (since there is a
positive dependence between H and H ′) then this condition is satisfied. Similarly, the sec-
ond of these conditions can be expressed as ax′ + c(1 − x′) > by′ + d(1 − y′) and since
d = 0, a > b and x′ > y′ (since there is a positive dependence between H and H ′ and so
P(H |H ′) > P (H |¬H ′)) then this condition is also satisfied.

Suppose that each of the hypotheses in conjunction with the negation of the other fails to
provide an explanation that raises the probability of the evidence, but that the conjunction
of both hypotheses does achieve this. As noted earlier, this seems like an example where the
hypotheses would not be in competition since they need to work together to account for the
evidence, but as the following result shows this need not be the case if there is a sufficiently
strong negative dependence between the two hypotheses before the evidence is taken into
account. This result can be seen as a counterpart to Theorem 1. In Theorem 1 a negative
dependence along the direct pathway could be outweighed by a positive dependence along
the indirect pathway, but here the converse is true where a positive dependence along the
indirect pathway can be outweighed if there is a strong enough negative dependence along
the direct pathway. In the murder investigation, it could be the case that the evidence is
better explained by Smith and Jones having colluded, but this positive dependence along
the indirect pathway is insufficient to outweigh previous evidence of their rivalry and hence
they are considered as competing hypotheses.

Theorem 3 Let H and H ′ be hypotheses and E evidence under consideration such that E
confirms both H and H ′ and let the likelihood for the conjunction of one hypothesis and the
negation of the other be equal to that of the catchall hypothesis, Hc, which is assumed to
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be non-zero, i.e. P(E|H&¬H ′) = P(E|¬H&H ′) = P(E|Hc) > 0, while the likelihood
for the conjunction of the two hypotheses is greater than that of the catchall. If H and
H ′ are independent or positively dependent, i.e. P(H ′|H) ≥ P(H ′|¬H), then they are
not in competition with respect to E, whereas if they are negatively dependent they can be
competing.

Proof Using the notation provided earlier, ad > bc which in the independent case corre-
sponds to expression (1) being false and so they are not competing. If they are positively
dependent, then x > y and so x(1 − y) > y(1 − x). This gives adx(1 − y) > bcy(1 − x)

which corresponds to expression (1) being false and so again they are not competing.
In the proof of theorem 1 it was shown that negative dependence between the hypotheses

could be outweighed in the case where the two hypotheses need each other to account for
the evidence, i.e. where a > d = b = c as in the current case, so that the two hypotheses are
not competing. Here the goal is to show that there are scenarios where the same condition
holds, i.e. a > d = b = c, but the negative dependence outweighs the fact that they need
each other and results in their being in competition. For this to be the case the following
condition must be satisfied

a

d
<

y(1 − x)

x(1 − y)
.

If x = d and y = a this condition will be satisfied since a > d. Furthermore, it is easy to
show that the conditions in (6) will be satisfied provided x > 0 and x ′ > 0. Hence, H and
H ′ will be competing hypotheses.

The results presented so far demonstrate some plausible features of this account of com-
petition between hypotheses, which goes beyond mutual exclusion. In light of our murder
example, the results highlight the fact that whether suspects should be viewed as competing
hypotheses depends on a subtle interplay between the direct pathway, which relates to pre-
vious knowledge about whether they are rivals or work together, and the indirect pathway,
which relates to how well their guilt either individually or together would account for the
current evidence.

The following result highlights a further important feature of the account.5

Theorem 4 Let H and H ′ be hypotheses, E evidence under consideration and suppose
that ¬H and ¬H ′ can also be considered as hypotheses for E. H and H ′ are competing
(non-competing) with respect to E if and only if ¬H and ¬H ′ are also competing (non-
competing) with respect to E.

Proof Necessity. Suppose H and H ′ compete with respect to E. From Definition 1,
this means that P(H |H ′&E) < P(H |E). From this it follows that P(H |H ′&E) <

P(H |¬H ′&E) and hence that P(¬H |H ′&E) > P(¬H |¬H ′&E). It in turn follows
that P(¬H |E) > P(¬H |¬H ′&E) and hence from Definition 1 that ¬H and ¬H ′
compete with respect to E. Sufficiency can be established similarly and the result for
non-competition follows trivially.

5It might be questioned whether ¬H and ¬H ′ should be considered as hypotheses, but there is nothing in
the definition or foregoing discussion to preclude doing so. However, even if they were not considered as
hypotheses the relevant probabilistic relations would still apply.
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The definition of competition tells us that if H and H ′ are competing with respect to E,
then learning that H ′ is true will reduce the probability of H . Suppose that H and H ′ are
non-competing with respect to E. Theorem 4 tells us that learning that H ′ is false cannot
make it more likely thatH is true. In fact, ifH andH ′ have a negative degree of competition,
then learning that H ′ is false makes it more likely that H is false as well.

This suggests that the account sets the bar quite high for two hypotheses to be non-
competing (or quite low for them to be competing). Two hypotheses might have some
explanatory merit on their own, but intuitively provide a much better explanation when
combined together as a ‘conjunctive explanation’ and both might be well-supported by the
evidence. Yet, if they are also the only plausible explanations on offer such that if one is
discovered to be false, it becomes very likely that the other one is true, then according to
Theorem 4 they must be in competition. Returning to our murder suspects, Smith and Jones,
consider the following example.

Example 1 Suppose that before any evidence is considered, the hypotheses that Smith com-
mitted the murder (H ) and that Jones did so (H ′) are probabilistically independent and each
has a prior probability of P(H) = P(H ′) = 0.2. Suppose also that the probability of the
evidence available is much higher if Smith and Jones worked together, P(E|H&H ′) = 0.9,
than it is if either committed the murder alone, P(E|H&¬H ′) = P(E|¬H&H ′) = 0.2,
which in turn is much higher than if neither was involved, P(E|¬H&¬H ′) = 0.01. The
posterior probability of Smith’s guilt is P(H |E) = 0.639. If subsequent evidence comes
to light showing that Jones was not involved (but otherwise the evidence is conditionally
independent of Smith’s guilt), then it becomes even more probable that Smith is guilty,
P(H |¬H ′&E) = 0.833, which implies that H and H ′ are in competition with respect to
E. This can be confirmed by noting that P(H |E) > P(H |H ′&E) = 0.529.

Even though the two hypotheses seem to work very well together to provide a better
account of the evidence, they are nevertheless in competition according to the account of
competition presented earlier. Is this a problem for the account? In a broad sense of com-
petition it might be argued that intuitively the hypotheses are not competing in this case
since they work together effectively and are both supported by the evidence. Alternatively,
it could be argued that in a narrow, but well-defined, sense they are competing since they
are negatively dependent given the evidence.

It would certainly be worth exploring this issue further, but it will not be pursued here
since for current purposes, the narrow sense of competition provided captures key features
of the relationship between the hypotheses, including the two pathways which affect their
interdependence. As such, it provides a suitable framework for the rest of the paper, where
the goal is to explore how treating hypotheses as mutually exclusive or independent affects
abductive inference as the interdependence between the hypotheses varies.

3 Abductive inference

Having considered the nature of competition, this section investigates what bearing this has
on abductive inference. In particular, if incorrect assumptions are made about the hypothe-
ses, what effect does that have on the reliability of the inferences made? Returning to
our murder example, it might be difficult to establish the mutual exclusivity of the sus-
pects’ guilt, but would mutual exclusion be a reasonable assumption nevertheless? How
would the reliability of inferences made depend on such an assumption, and how does this
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vary with the degree of competition? Alternatively, if the guilt of the suspects were incor-
rectly assumed to be probabilistically independent, so that prior to considering the evidence,
Smith’s guilt was assumed to have no bearing positively or negatively on Jones’s guilt and
vice versa, how would this affect inference?

In order to investigate the impact of failing to take into account the nature of competition
between two hypotheses properly, three experiments were carried out on abductive infer-
ence. Each of the experiments involves generating a probability model involving evidenceE

and hypotheses H , H ′ and a catchall hypothesis, Hc = ¬H&¬H ′, with a specified degree
of competition between H and H ′ given E. This model is stipulated to be the correct model
and three different incorrect models are used for inference in each of the experiments. One
reason for including a catchall hypothesis is that in most cases we cannot assume we have
an exhaustive list of hypotheses and so the catchall provides a way of representing our igno-
rance. Also, since in some cases the probability of neither H nor H ′ will be greater than the
probability of either, allowing the catchall to be inferred in the inference process ensures
that the inference procedure is not forced into inferring a false hypothesis. Hence its inclu-
sion provides a fairer way to evaluate the different approaches. In the first two experiments,
abductive inference is performed based on a modified probability model in which H and
H ′ are treated as mutually exclusive and the success of this approach is evaluated by com-
paring the inference with an inference made using the correct model. The third experiment
proceeds in the same way, but uses a modified probability model in which H and H ′ are
treated as independent before the evidence is taken into account.

3.1 Generating a probability model

The measure of competition given in (4) is used so that its value lies in the interval [−1, 1].
There are many different probability models that can give rise to the same value of compe-
tition, so the idea in the simulations is to sample this space of models multiple times and
then repeat the process for different values of competition. For a given value of competi-
tion, d, a probability model is generated as follows. First, note that d can be expressed as
(d1+d2)/2, where d1 = (b1−a1)/(b1+a1) and a1 = P(H |H ′&E), b1 = P(H |¬H ′&E),
and d2 = (b2 − a2)/(b2 + a2), where a2 = P(H ′|H&E) and b2 = P(H ′|¬H&E). For
a positive value of d , (a similar approach is adopted for negative values), d1 can then be
selected randomly from a uniform distribution over the interval (d − ε, d + ε), where ε is
set to 0.1, and d2 is then set to 2d − d1. This ensures values for d1 and d2 are selected from
intervals of the same size for each value of d and so allows for a meaningful comparison of
results. Given this choice, only values of d between -0.9 and 0.9 are considered. The fol-
lowing equations can then be used to generate a probability model based on these values of
d1 and d2:

P(H |E) = a1 · P(H ′|E) + b1 · P(¬H ′|E), (7)
P(H ′|E) = a2 · P(H |E) + b2 · P(¬H |E), (8)

and
a1 · P(H ′|E) = a2 · P(H |E). (9)

Since b1 = a1(1 + d1)/(1 − d1) and b2 = a2(1 + d2)/(1 − d2), b1 and b2 can be replaced
in (7) and (8). P(H |E) is selected randomly and then the three equations above can be used
to determine values for three unknowns, P(H ′|E), a1 and a2.6

6In the case where the degree of competition is zero, things are slightly different. Given that competition is
defined in terms of confirmation conditional on E, if d = 0 then H and H ′ are probabilistically independent
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The foregoing is sufficient to ensure that the degree of competition between H and H ′
given E is specified by d. However, a full probability model is needed so there is more to be
done. P(E) can be set randomly on the interval (0, 1), while P(H |¬E) can be set randomly
on the interval (0, P (H |E)) and P(H ′|¬E) on the interval (0, P (H ′|E)), which ensures
that E confirms both H and H ′. Finally given that

P(H ′|¬E) = P(H ′|H&¬E)P (H |¬E) + P(H ′|¬H&¬E)P (¬H |¬E), (10)

and letting x = P(H |¬E) and y = P(H ′|¬E), P(H ′|¬H&¬E) can be set randomly on
the interval (max[0, (y − x)/(1− x)],min[y/(1− x), 1]) and then P(H ′|H&¬E) obtained
by rearranging (10).

In specifying the probability model a number of random assignments have been made.
To get meaningful results the experiments are run multiple times (106) and average results
obtained, as will be discussed later.

3.2 Mutually exclusivemodels

As noted earlier, the first two experiments treat H and H ′ as mutually exclusive hypothe-
ses. In the first experiment, which will be referred to as MEx1, a probability model, denoted
P1, is obtained from the original model, P , essentially by replacing H with H&¬H ′
and H ′ with H ′&¬H . More precisely, P1 is obtained by setting P1(H) = P(H&¬H ′),
P1(H

′) = P(H ′&¬H), P1(E|H) = P(E|H&¬H ′), P1(E|H ′) = P(E|¬H&H ′),
P1(H

c) = 1 − P1(H) − P1(H
′) since this is equal to P1(¬H&¬H ′) = P1(¬(H ∨ H ′))

when P1(H&H ′) = 0, and P1(E|Hc) = P(E|Hc) (which is just P(E|¬H&¬H ′)).
However, this is not the only way to obtain a mutually exclusive model from the original

model, so in the second experiment, which will be referred to asMEx2, a different strategy is
adopted. A probability model, denoted P2, is obtained from the original model, P , by basing
the probabilities of P2(H) and P2(H

′) on P(H) and P(H ′) rather than on P(H&¬H ′) and
P(¬H&H ′). This is done in such a way that P2(H ∨H ′) = P2(H)+P2(H

′) = P(H ∨H ′),
which means that P2(H&H ′) = 0 and the total area of the probability space taken up by the
hypotheses H and H ′ remains the same as it was in the original model. This is achieved by a
normalizing factor, P(H ∨H ′)/(P (H)+P(H ′)), which is multiplied by P(H) and P(H ′)
to yield P2(H) and P2(H

′) respectively. Apart from that, the probabilities for the likelihood
terms are set in the same way as for P1 and the probability for the catchall hypothesis,Hc, is
similarly set to P2(H

c) = 1−P2(H)−P2(H
′) since H and H ′ are assumed to be mutually

exclusive.

3.3 Independencemodel

In contrast to the first two models, the third experiment, which will be referred to as IND,
treats H and H ′ as independent. One reason for considering a model of this kind is that it
provides a compromise between incorrectly treating hypotheses as mutually exclusive on
the one hand and fully taking into account the dependence between them on the other, so
it is interesting to see how it performs. Another reason is that in some cases hypotheses
are modelled as being independent. For example, in probabilistic horn abduction, hypothe-
ses, which can be represented as root nodes in a Bayesian network, are probabilistically

given E and from this it follows that d1 and d2 must also be zero as well. In the general case the value of
P(H ′|E) can be determined from P(H |E), d1 and d2, but this is not the case when d = d1 = d2 = 0. In
this case a value for P(H ′|E) can be assigned randomly.
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Table 1 Summary of probability models used in the experiments

P1(·), MEx1 P2(·), MEx2 P3(·), IND

Pi(H) P (H&¬H ′) P (H) · P(H∨H ′)
P (H)+P(H ′) P (H) · P(H∨H ′)

P (H)+P(H ′)
Pi (H&H ′) 0 0 P3(H) · P3(H

′)
Pi(H

c) 1 − P1(H) − P1(H
′) 1 − P2(H) − P2(H

′) 1 − P3(H ∨ H ′)
Pi(E|H) P (E|H&¬H ′) P (E|H&¬H ′) P (E|H&H ′) · P3(H

′)
+P(E|H&¬H ′) · P3(¬H ′)

Note that for a given probability model Pi(·) some of the expressions are based on the original probability
model, P(·), and some on terms already defined in the current model, Pi(·)

independent, though minimal explanations consisting of multiple hypotheses are typically
mutually exclusive [12]. More generally, independence assumptions are relevant to any con-
text in which root nodes in a Bayesian network constitute hypotheses. The probability model
in this case, denoted P3, is obtained from the original model, P , by first of all obtaining
P3(H) and P3(H

′) in the same way as used for P2, except that now the joint probabil-
ity is set to P3(H&H ′) = P3(H)P3(H

′). Furthermore, since H and H ′ are not treated as
being mutually exclusive in this case, the likelihoods are treated differently since the term
P3(E|H&H ′) cannot be ignored. This is done by setting P3(E|H&H ′) = P(E|H&H ′)
and similarly for the other likelihood terms. P3(E|H) is then obtained via the expression
P3(E|H) = P3(E|H&H ′) × P3(H

′) + P3(E|H&¬H ′) × P3(¬H ′) and P3(E|H ′) is
obtained in the same way. In this case the probability for the catchall hypothesis is given
by P3(H

c) = 1 − P3(H) − P3(H
′) + P3(H)P3(H

′). Key features of both the mutually
exclusive and independence models are presented in Table 1.

3.4 Experiments

With the models in hand, the experiments were carried out as follows (described here for
MEx1):

Experiment MEx1

1. For a specified value of the degree of competition, generate the correct probability
model, P .

2. From the correct model, generate the incorrect model P1.
3. Perform abductive inference for both the correct and incorrect models, i.e. for the

correct model find the hypothesis,H ,H ′ orHc which maximizes the posterior prob-
ability given evidence, E, and then do the same for the incorrect probability model,
P1.

4. If the hypothesis identified by abduction using the incorrect model, P1, is the same
as that identified by the correct model, P , count that as a success for P1.

5. Repeat 1–5 multiple (106) times to determine the accuracy (percentage success) for
P1 for this value of the degree of competition.

6. Repeat 1–6 for a range of values of the degree of competition between −1 and 1.

Exactly the same procedure was followed for MEx2 and IND. Note that the approach
here is to maximize the posterior probability, but this could be questioned as an approach
to abductive inference [7, 23] and instead other measures could be used for comparing
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hypotheses [8, 9, 24]. Nevertheless, inference based on maximizing posterior proba-
bility is frequently used in abductive inference in the artificial intelligence literature
through approaches such as Maximum a Posteriori (MAP) and Most Probable Explana-
tion (MPE) and so it provides a standard approach which is appropriate for investigating
how the degree of competition affects inference.
Two further modifications of the above experiments were also carried out. According

to the correct model, the two hypotheses, H and H ′ are not mutually exclusive and so
could both have a probability greater than 0.5 in some cases. Clearly, this is not possible
in the case of MEx1 or MEx2. Even in cases where they correctly infer the same hypoth-
esis as the correct model, they will not infer a second hypothesis even if that hypothesis
is more likely to be true than false according to the correct model. How much of a weak-
ness is this? Does this scenario occur frequently to the detriment of MEx1 and MEx2?
Similarly, how well does IND fare in this respect?
As a first step, the above experiments were repeated, but only cases where either H or

H ′ (or both) have a posterior probability greater than 0.5 according to the correct model,
P , were taken into account. That is, step 4 in the above procedure is modified as follows
to give another experiment MEx1-0.5:

Experiment MEx1-0.5
4′. If the hypothesis identified by abduction using the incorrect model, P1, is H or

H ′, and if it is the same as that identified by the correct model, P , and if the posterior
probability of that hypothesis is greater than 0.5 according to P , count that as a success
for MEx1. If the posterior probability of this hypothesis according to P is less than or
equal to 0.5 it is not taken into account in determining the accuracy.

Corresponding experiments MEx2-0.5 and IND-0.5 were also carried out. In these
experiments, the accuracy is defined to be the percentage success in identifying
whichever of H and H ′ has the greatest posterior probability according to the correct
model, P , in cases where this probability is greater than 0.5.
Following this, further experiments were carried in which, if there is a second hypoth-

esis with probability greater than 0.5 (according to the correct model), it is taken into
account in determining the accuracy. That is, step 4′ is used again, but now step 5 is
modified to give another experiment MEx1-2:

Experiment MEx1-2
5′. Repeat 1–5 multiple (106) times to determine the accuracy (percentage success)

for P1 for this value of the degree of competition taking into account the total number of
hypotheses with probability greater than 0.5 according to the correct model.
That is, the accuracy is defined as

Total number of correctly identified hypotheses

Total number of hypotheses with P(.|E) > 0.5
× 100%, (11)

where this is restricted to the hypotheses H and H ′ and as before correctly identified
hypotheses are those where the inference made using the incorrect probability model (P1
in the case of MEx1-2) matches the most probable hypothesis given the evidence accord-
ing to the correct model, P . Again, corresponding experiments MEx2-2 and IND-2 were
also carried out. Since there could be two hypotheses with posterior probability greater
than 0.5 in the case of the independence model, a second hypothesis can be included in
its successes in 4′ when this occurs.
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4 Results

The results for experiments MEx1, MEx2 and IND are presented in Fig. 2. All of the
approaches achieve a high accuracy for high degrees of competition. This is not surpris-
ing. Recall that when the degree of competition is one this corresponds to the case where
the probability of one hypothesis given the other, conditional on the evidence E, is zero
according to the correct model. Hence, given E, H and H ′ are mutually exclusive, which
of course is guaranteed by the mutually exclusive models (MEx1 and MEx2). The inde-
pendence model (IND) does not guarantee this, but by representing the likelihoods more
accurately than the other two models it is able to model the indirect negative dependence
between H and H ′ conditional on E and so still achieves good results for high degrees of
competition.

Interestingly, all three models perform well for positive degrees of competition, achiev-
ing an accuracy of over 90% in all cases for degrees of competition greater than 0.1. Hence,
despite the rather drastic modifications of the correct probability model, particular for MEx1
and MEx2, where the hypotheses are treated as if they were mutually exclusive, these mod-
els all perform well in terms of abductive inference provided there is some positive degree
of competition between the hypotheses given E.

For lower values of the degree of competition, the performance of MEx1 deteriorates
markedly. When the degree of competition is zero, its accuracy has already dropped to 81%
and it falls further to a value of 30% when the degree of competition is −0.3. Perhaps sur-
prisingly, it then increases for still lower values of the degree of competition. The reason for
this is that these are mostly cases in which MEx1 correctly identifies the catchall hypoth-
esis, Hc. Overall, the poor performance of MEx1 for negative degrees of competition can
be explained by the fact that it in effect represents H by H&¬H ′ and H ′ by H ′&¬H

and so discards the overlap between H and H ′. By comparison with the correct probabil-
ity model P , the probability model used in MEx1, ignores P(H&H ′) by simply assigning
P(H&¬H ′) to P1(H) and similarly for P1(H

′). By contrast, MEx2 does not ignore the
overlap between H and H ′, but essentially reassigns P(H&H ′) to P2(H) and P2(H

′). This
difference between MEx1 and MEx2 becomes much more important for negative degrees
of competition because in these cases the overlap between H and H ′ plays a much more
significant role. Indeed, in the extreme case where the degree of competition is −1, the
probability of one hypothesis given the other conditional on the evidence is one.

The results for MEx2 and IND in Fig. 2 are very similar across the range of degrees of
competition, with MEx2 performing slightly better at high values and IND slightly better at
low values. The accuracy is lower for lower degrees of competition and it begins to drop off
quite quickly for degrees of competition below zero, although not nearly as fast as it drops
off for MEx1.

Figure 3 shows the results for experiments MEx1-0.5, MEx2-0.5 and IND-0.5. Recall
that for these experiments the focus is on cases where either H or H ′ has the greatest pos-
terior probability according to the correct model, P , and this probability is greater than 0.5.
The results are similar to Fig. 2 for positive degrees of competition, but the accuracy drops
off much more quickly for negative values in all three models. This is particularly so for
MEx1-0.5 where the accuracy drops to almost zero at a degree of competition of −0.4 and
then remains at zero for all lower values. This highlights the point that its higher accuracy
in Fig. 2 was due to the catchall hypothesis. These low values can be attributed to the fact
that a) MEx1-0.5 essentially ignores the overlap between H and H ′ in the correct probabil-
ity model as noted earlier, and b) when there is a large negative degree of competition there
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Fig. 2 Results for experiments MEx1, MEx2 and IND, where the accuracy is defined as percentage success
in identifying the most probable hypothesis according to the correct probability model, P

can be a large overlap between these hypotheses, which results in small priors for H and H ′
in the probability model, P1, used in MEx1-0.5, and hence makes it likely that an inference
to the catchall hypothesis will be made.

The results for MEx2-0.5 and IND-0.5 in Fig. 3 are very similar across the range of
degrees of competition, although in contrast to Fig. 2, IND-0.5 now does slightly better for
both positive and negative degrees of competition. At very low degrees of competition the
difference between these approaches becomes more apparent, with IND-0.5 outperforming
MEx2-0.5. Like MEx1-0.5, MEx2-0.5 treats H and H ′ as mutually exclusive, but this is

Fig. 3 Results for experiments MEx1-0.5, MEx2-0.5 and IND-0.5, where the accuracy only considers cases
where either H or H ′ have posterior probabilities greater than 0.5 according to the correct probability model
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Fig. 4 Results for experiments MEx1-2, MEx2-2 and IND-2, where the accuracy takes into account the fact
that both H and H ′ could have posterior probabilities greater than 0.5 according to the correct probability
model

very inaccurate for very low degrees of competition, where there can be significant overlap
between them, indeed complete overlap given the evidence when the degree of competition
is -1. So while MEx2-0.5 does better than MEx1-0.5 in terms of the priors it assigns to H

and H ′, it eventually runs into similar problems for very low degrees of competition.
Figure 4 presents the results for experiments MEx1-2, MEx2-2 and IND-2. Recall that

for these experiments the fact that both H and H ′ could have a posterior probability greater
than 0.5 is taken into account. Hence, even if any of the three approaches is successful in
making an inference to the hypothesis with the greatest posterior probability according to
the correct model, it may not identify when it is appropriate to make an inference to more
than one hypothesis. Indeed, this is ruled out by the two mutually exclusive approaches
since they cannot have two hypotheses with probability greater than 0.5. By contrast, IND-2
does allow for this. Its successes are counted in the normal way, but if its probability model,
P3 correctly identifies two hypotheses with posterior probability greater than 0.5 a second
success is counted.

Unlike the previous two figures, the accuracy drops off more quickly even for positive
degrees of competition, so that when the degree of competition is zero the accuracies are
62%, 70% and 81% for MEx1-2, MEx2-2 and IND-2 respectively. This result is significant
because while Figs. 2 and 3 show that all three models perform quite well in terms of
identifying the correct hypothesis for positive degrees of competition, Fig. 4 shows they are
limited in that they fail to identify a second hypothesis which may also be true and this effect
is non-negligible even for positive degrees of competition. Not surprisingly this limitation
is even more evident for negative degrees of competition.

In the previous figures, there was very little to distinguish theMEx2 and IND approaches,
but in Fig. 4 it becomes clear that the independence model has a significant advantage.
While IND-2 is not immune to the problem of failing to identify a second hypothesis with
probability greater than 0.5, the fact that it is able to do so in some cases means that its drop
in performance between Figs. 3 and 4 is less marked than it is for MEx2.
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5 Conclusion

Competition between hypotheses is fundamental to abductive inference as it is usually
understood, but the nature of that competition and how it impinges upon inference have not
received much attention. This paper has considered both of these topics by exploring a number
of features of a particular account of hypothesis competition and the effect of failing to
model this relationship between hypotheses correctly when performing abductive inference.
In the former case, this involved studying the interplay between direct and indirect pathways,
which contribute to competition. For example, pre-theoretically, it might be thought that
hypotheses that are negatively dependent on each other would be competing, but this need
not be the case as they may become positively dependent when evidence is taken into account.
By exploring various features of the account, it was argued that it possesses a number of charac-
teristics that make it suitable at least as an account of competition in a narrow sense suitable
for the current work, although there is scope for further work on the nature of competition.

In terms of how this relates to inference, experimental results showed, rather surprisingly,
that modelling the relationship between two hypotheses as mutually exclusive or indepen-
dent can still generate good results provided the hypotheses are competing to some extent
(a positive degree of competition), at least for the problems considered here. This would
suggest that in applications to problems such as diagnosis, if hypotheses are modelled as
mutually exclusive or independent, the results will still be accurate provided the hypotheses
are negatively dependent given the evidence, though it would be interesting to explore this
in the context of real data. Related to this, it would be worthwhile exploring the feasibility
of using degrees of competition to discriminate between hypotheses so as to reduce the set
of hypotheses that needs to be considered.

Less surprisingly, the performance of these models was much worse when the hypothe-
ses were not competing (a negative degree of competition), with a model that completely
ignores the overlap between the hypotheses performing much worse than the other two mod-
els. Despite the success of all three models for positive degrees of competition, an important
failing is their inability to identify a second hypothesis that may well be true, and this is a
significant effect even when the hypotheses are competing. This failing is due to the focus
on maximizing posterior probability in the experiments carried out here. As noted earlier,
this approach is generally assumed in the context of abductive inference in Bayesian net-
works. The results suggest merit in exploring approaches that allow the number of variables
to vary and maximize quantities other than posterior probability [24, 30].

Directions for future research include carrying out similar experiments on a wider range
of inference problems, exploring how inference is affected when other measures are used
to compare explanations instead of maximizing posterior probability, and investigating how
abduction might best be formulated and implemented in light of the approach to hypothesis
competition considered here.
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