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Understanding the limitations of particle swarm algorithm for dynamic optimization tasks: A survey towards the singularity of PSO for swarm robotic applications.
dada emmanuel gbenga, University of Malaya
effirul ikhwan ramLan, University of Malaya
One of the most widely used biomimicry algorithm is the Particle Swarm Optimization (PSO). Since its introduction in 1995, it has caught the attention of both researchers and academicians as a way of solving various optimization problems, such as in the fields of engineering and medicine, to computer image processing and mission critical operations. PSO has been widely applied in the field of swarm robotics, however, the trend of creating a new variant PSO for each swarm robotic project is alarming. We investigate the basic properties of PSO algorithms relevant to the implementation of swarm robotics, and characterize the limitations that promote this trend to manifest. Experiments were conducted to investigate the convergence properties of three PSO variants (original PSO, SPSO and APSO) and the global optimum and local optimal of these PSO algorithms were determined. We were able to validate the existence of premature convergence in these PSO variants by comparing sixteen functions implemented alongside the PSO variant. This highlighted the fundamental flaws in most variant PSOs, and signifies the importance of developing a more generalized PSO algorithm to support the implementation of swarm robotics. This is critical in curbing the influx of custom PSO and theoretically addresses the fundamental flaws of the existing PSO algorithm.

Categories and Subject Descriptors: Theory of computation~Bio-inspired optimization

General Terms: Design, Algorithms, Optimization 

Additional Key Words and Phrases: Particle swarm optimization (PSO), swarm intelligence, swarm robotics

1. INTRODUCTION

Swarm robotics is defined as the collective and distributed autonomous robotic system (Navarro and Matía (2013), and Beni, (2004)). The deployment of a multitude of robots (or a swarm) in accomplishing a specific task provides a more robust, cost effective, simple and reliable platform compared to the conventional single robot, single task platform implemented in earlier studies ((Samuel, Nikolause, and Alcherio, 2009), Jager and Nebel (2002), Easton and Burdick (2005), and Rekleitis, Dudek and Milios (2001)). 

For instance, using robotic swarms have practical applications in areas such as trajectory planning and control (e.g., for snow sweeping applied in airports) (Saska, Vojtěch, and Libor, 2013), and development of portable low cost sensors (Ercan, and Xiang, 2011). Other practical benefits include localization of odor or light source (Meng, Li, Sun, Bai and Zeng, (2009), and Hereford, Siebold and Nichols, (2007)), and oil spill cleaning (Kakalis and Yiannis, (2008), and Fritsch, (2009)).

The use of robotic swarms has also highlighted the challenge of controlling the robots. Although robots are limited by their design, coordinating a swarm of robots to undertake specific tasks (e.g., gathering, converging, form patterns, flocking, partitioning, searching, exploring, mapping, spreading, and collision avoidance) is difficult. This type of action requires a more specialized algorithm as compared to any conventional control systems implemented in the field of robotics.

Theoretically, particle swarm optimization (PSO) is suitable to address this issue. PSO allows robots to perform the search collectively although they are independent of each other. However, despite the optimal convergence rate of PSO, the algorithm is not able to effectively cope with dynamic optimization tasks, which is essential in parallel coordination of swarm robotics. In this study, we investigate the performance of existing classes of PSO algorithm in solving dynamic optimization functions. The study focuses on an empirical evaluation of both static and dynamic unimodal and multimodal functions. We hypothesize that the influx of variant types of PSOs (currently available) is ill informed. The problem with current versions of the algorithm is fundamental, and yet none of them addresses these flaws. Instead, the issue is masked by targeting specific tasks, thus populating the field with a new PSO variant for each new task that needed to be solved.

2. Particle Swarm Optimization (PSO) in Swarm Robotics.

Due to its practicality, particle swarm optimization (PSO) has been used for several research applications in the field of robotics. For instance, PSO has been implemented as a solution to path planning problems (Qin et. al. (2004), Zhang, Wu and Wang (2013), Raja and Pugazhenti (2009), Ellips and Sedighizadeh (2010) and Xue, Guohui, and Bin (2009)), the odor localization problem (Hayes et. al. (2003) and Jatmiko et. al. (2007)), multi-robot searching (Doctor et. al. (2004)), obstacle avoidance (Cai, and Simon (2016) and Hao et. al. (2007)), control of physical robots (Hereford (2006), Hereford and Siebold (2008) and Q. Tang and P. Eberhard (2011)), multi-robot flocking (Meng, Kazeem, and Muller (2007)), the development of soccer robots (Wang et. al. (2006)) and motion planning problems (Karimi and Pourtakdoust (2013).  and (Wang, Sillitoe and Mulvaney (2007)).  

Other notable efforts in implementing PSO include a target search PSO algorithm by Xue et al. (2009). They carried out independent and concurrent simulation for controlling the swarm robots asynchronously and also considered the mechanical properties of the robot. However, there were no obstacles in their simulation, and the volume of the robots were not considered. Derr and Manic (2009) demonstrated how the distributed PSO (dPSO) algorithm could be used to direct the robots to their goal(s) in extremely hazardous environment. The algorithm was tested using a multitude of robots looking for single and multiple targets. It was established that the presence of an electromagnetic radiation (within a specific range at which radio signals are transmitted) could drastically influence the time a robot takes to get to its desired goal. 

Ellips and Sedighizadeh (2010) developed a multi-objective PSO-based algorithm for robot path planning, where PSO was used for global path planning and the Probabilistic Roadmap Method (PRM) was used for obstacle avoidance. Yinghua Xue and Hongpeng Liu (2011) then further improved this work by proposing a new variant of PSO that focuses on the degree at which the obstacle changes. This approach is highly distributed therefore increasing the flexibility of the robot path planning in the search space. The strengths of this algorithm are its simplicity, faster convergence, and automatic obstacle avoidance. It could also be used to generate the best path for the robot to navigate in various environments.

There is a general trend that can be observed from all of these studies. The majority (if not all) of the implementations require extensive localization of the PSO algorithm, thus reducing the embodiment of the algorithm as merely general principles. Without a more thorough understanding of the applicability of PSO as the governing function of swarm robotics, we are risking further localization of many more PSO algorithms, which might be ill-suited to the tasks associated with swarm robotics. In the next section, we will discuss the different classes of PSOs (in their general forms). We will then show the benchmarking exercise carried out which was used to form a practical guideline to understanding the compatibility of each PSO towards a specific swarm robotics task.

3. Particle Swarm Optimization (PSO)

PSO is a stochastic algorithm centered on the optimization of a candidate solution (or particle) based on a given performance measure. It is a method that has been applied successfully in several fields like engineering, science, education and financial management. PSO has been used to solve non-differentiable, non-linear and non-convex engineering problems. PSO is suitable for optimization problems because of its effectiveness, robustness, simplicity and extreme ease of implementation without the need for cumbersome derivative calculations. In 1995, Kennedy and Eberhart provided the first basic PSO algorithm. In swarm robotics, PSO particles move within the search space to find an optimal solution for the swarm by updating their velocity and position. According to Xue, et. al. (2011), a swarm of robots with actual velocities and physical positions can be mapped as particles in PSO, which facilitates the process of finding their target in the search space.

Kennedy and Eberhart (1995) proposed an algorithm based on the social behavior exemplified by a flock of bird, a school of fish, and herds of animals. The algorithm uses a set of candidates called particles that undergo gradual changes from one generation to another through inter-particle collaboration and contest. Each particle in a swarm formulates a possible solution in PSO. The particles then explore the problem search space seeking for the best solution. Every particle changes its movement according to its own accumulated knowledge of moving in the environment and that of their neighbors. 

In PSO, (Xi) represents the position of a particle, and (Vi) the velocity of the particle. The particle’s number is i, where (i = 1,…,N), and N is the number of particles in the swarm. The ith particle is represented as
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. While the velocity is the rate at which the next position is changing with respect to the current position.  represents the velocity for the particle i. At the start of the algorithm, initial numerical values of the position and velocity of the particles are assigned randomly. Equations (1) and (2) will then update the position and velocity of the particles for subsequent iterations during the search process.
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According to Shi and Eberhart (1998) the value 
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 is fixed at ± vmax in order to avert eruption. This is due to the value of vmax  becoming too large if the search range is very wide. If vmax is too small, the scope of the search will be excessively limited, thereby forcing the particles to support local exploration. "w" is the inertia weight (constriction factor) which serves to regulate the algorithm searching properties. Y. Shi, and R.C. Eberhart (1998) recommended starting with a larger inertia value (a more global search) that will be dynamically reduced towards the end of the optimization (a more local search). Using smaller inertia weight usually guarantees quick convergence as the time spent on the exploration of the global space is reduced (Aziz and Ibrahim, 2012).  

The inclusion of w in the equation is to provide equilibrium between the global and local search capability of the particles. The positive constant c1 and c2 represent the cognitive scaling and social scaling factors, which, according to Kennedy, Eberhart, and Shi (2001), are set to the value 2. The stochastic variables 
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 has a uniform distribution. These random variables are independent functions that provide energy to the particles. The best position found so far by the particle is represented as
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. There are two types of particle neighborhood in PSO, and the type of neighborhood is what determines the value of
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. The two types are:

· gBest (Global neighborhood) –The particles are completely connected, and swarm exploration is controlled by the best particle in the swarm. 

· lBest (Local neighborhood) – The particles in the swarm are not completely connected, rather they are connected only to their neighbors.

Equation (2) is used to update the position of the particles, whereby the velocity is added together with the earlier position, and a new search is initialized from its former position. Eberhart and Shi (2000) bounded 
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 to avoid a situation whereby particles spend too much time in undesired region. 

A problem dependent fitness function was used to evaluate the usefulness of 
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. Assuming the present solution is better than the fitness of 
[image: image13.wmf]m

i

pbest

,

 or 
[image: image14.wmf]m

gbest

 , then the new position will replace 
[image: image15.wmf]m

i

pbest

,

 or 
[image: image16.wmf]m

gbest

 accordingly. This updating process will continue until the condition for ending the search is met, where either the iteration has reached its peak, or the desired solution is found. The optimal solution would be based on the best particle found when the condition for stopping is satisfied (Aziz and Ibrahim, (2012)). Figure 1 shows a flowchart of the original PSO for collective robot search.  
Variations of particle swarm optimization based algorithms

In other to minimize the effect of some of the disadvantages of the PSO algorithms, various versions of the algorithm have been developed throughout the years. The different variants can be classified according to the modification made to some of the control parameters such as inertia weight, the velocity of the particles in the swarm, the size of the neighborhood, the epoch, the dimensionality of the problem, and the acceleration coefficients (c1 and c2). Table 1 summarizes the fundamental variations of PSO algorithms.


Figure 1: The flowchart of the conventional PSO Algorithm (Kennedy and Eberhart, (1995)). 
Table 1: A summary of the different classes of particle swarm optimization (PSO) algorithm.

	Variation Name
	Description
	Strength
	Weakness

	Synchronous Updates
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  update is carried out after fitness evaluation of all the particles. Gives only one feedback per iteration. 
	Quick convergence and good result. Better for
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.
	Costly, as the first particle evaluated will be redundant for some time as it has to wait for other particles to be evaluated before it can progress to a another position and continue exploring the search domain. Gives a slower feedback.

	Asynchronous Updates
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 of a particle, its velocity and position are updated immediately after computing their fitness and, as a consequence, are updated using incomplete information about the neighborhood.


	APSO is able to find solutions faster and has a similar accuracy to SPSO. 
	Longer computing time. 



	Inertia Weight
	The inertia weight is varied to control the exploration and exploitation of the  particles in the swarm.


	When the inertia weight is large, it helps the particles to converge faster thereby reducing the search time.
	Optimised for local search.

	Velocity clamping
	Used to control the global exploration of the particles in the swarm.
	If the value of the maximum velocity vmax is too large, the search range will be very wide. 
	If vmax is too small, the scope of the search will be excessively limited, forcing the particles to support local exploration.



	Constriction Coefficient
	This PSO variant helps to guarantee convergence to a constant point without the use of velocity clamping.

	Allows the particles to converge quickly thereby reducing the search time.
	There might be excessive instability of particles during convergence due to the fixed value of the constriction.


Extended variants of PSO specific for swarm robotics.

With the development of various PSO-derived algorithms aiming to tackle the disadvantage of general PSO, application of PSO in swarm robotics has spawned a number of dedicated PSO algorithms. These variants were developed to accommodate the different requirements of robotics tasks and characteristics. This is not limited to the extension from singular to multiple robots, but also includes the parallel operative nature of these swarm robots that work independently but at the same time in unison with the other robots.

3.1.1 Fully informed PSO (FIPS).

In 2004, Mendes Kennedy, Neves introduced the Fully Informed Particle Swarm Optimization (FIPS) algorithm. It is a PSO algorithm variant that exploits the velocity update approach based on the best value within the whole neighborhood. This algorithm readily reacts to alterations in the configuration of the population. The velocity of a particle is updated after carefully considering all neighboring particles. This is unlike other variants of PSO that only updates the velocity of a particle based on the neighbor with the best value. FIPS performs better when the topologies have a lower degree such as the ring lattice topology (local best) or topologies where the particles have very few neighbors (not more than three). 

3.1.2 Extended PSO (EPSO).

Pugh and Martinoli (2006, 2007) then proposed the extended Particle Swarm Optimization (EPSO). EPSO utilizes the existing advantages of gBest and lBest from previous versions of PSO.  In the EPSO algorithm, the robots are not connected sequentially and there is no restriction on the movement of the robots in the swarm. This allows a greater level of communication among the robots. The Braitenberg obstacle avoidance algorithm (Stefik, 1985) was incorporated into the main equation to achieve an obstacle avoidance mechanism in the EPSO algorithm. If the robot encounters an obstacle, it will implement subsequent steps of the algorithm, update its inner velocity and proceed by heading towards a different direction. The advantage of this technique is that it allows the collision prevention procedures to be treated separately from some of the other eminent characteristics of the robots. However, this approach is not practical when there is a need to analyze the steadiness of the algorithm in view of the effect that the barriers have on the robots (Couceiro et. al., (2012c)). Furthermore, it is difficult to define a technique that can be used in all situations, where parameters for the algorithm can simply be modified accordingly. (Couceiro et. al., (2012a)).

3.1.3 Detection and responding PSO (DRPSO) and charged PSO (CPSO).

According to a study by Andries P. Engelbrecht (2005), complications of a dynamic environment cannot be solved by the traditional PSO. There is a need to enhance the algorithm to allow it to handle problems that are dynamic in nature. Eberhart and Shi (2001), and Hu and Eberhart (2002) suggested that this could only be achieved through the integration of a system that can discover modification and react to it favorably. This led to the development of the Detection and responding PSO (DR PSO) algorithm (Jatmiko, Sekiyama and Fukuda (2006)). The global best information, gBest, is monitored by the alteration detection function. After some iteration, if gBest remains unchanged, this possibly means that another optimum solution exists. A productive plan for reacting positively to environmental fluctuations must be employed when environmental changes are detected. However, the DR-PSO algorithm is incapable of adapting to extreme alterations during its optimization phase. 

In 2006, Jatmiko, Sekiyama and Fukuda then presented the Charged PSO (CPSO) algorithm alongside DR-PSO as a solution to the circulation of odor with time in a dynamic environment. The CPSO algorithm adopted the idea of Coulomb’s inverse square law that described the electrostatic interaction between electrically charged particles. The charged particle here is represented as charged robot (which is used in CPSO). A non-attraction force is used on the charged robot while such force is not used on the neural robot. There is variety in the positional allocation of the robots to avoid being snared in a local maximum. This resolved the problem of coping with extreme changes faced by DR-PSO as mentioned previously.
3.1.4 Distributed PSO (dPSO).

The Distributed PSO (dPSO) was proposed by Hereford, J. M. (2006) as an algorithm that can adequately handle a swarm consisting of a considerable number of small robots. This PSO algorithm variant is very efficient in locating the goal of the search. This algorithm allows computation of the individual robot’s current position. The exchange of information and signals among the robots in the swarm will be greatly reduced. Also, there is no need for a representative robot to organize the rest of the robots into a swarm moving harmoniously towards their target. 

3.1.5 Augmented Lagrangian PSO (ALPSO).

The Augmented Lagrangian Particle Swarm Optimization (ALPSO) algorithm was developed in 2006 by Eberhard and Kai. They made use of some parts of the original PSO technique and combined them with the Augmented Lagrangian Multiplier. The Augmented Lagrangian Multiplier is a comprehensive, non-stationary penalty function method, which gives suitable results. The authors concluded from their experiments that ALPSO allows for quicker convergence, and is a powerful tool for solving problems in real life applications with limited solutions. The drawbacks of this algorithm are poor performance when a fully connected topology (global best) is used, and conflicting situations based on information from many neighboring particles. This approach however allows informed individuals to find better solutions, as it is more likely in the neighborhood to have a particle with a high quality value. Q. Tang and P. Eberhard (2011) then proposed the Augmented Lagrangian PSO with Velocity Limits (VL-ALPSO). This algorithm was proposed to handle changes in the physical position of swarm robots for collective search of targets to be more effective. The VL-ALPSO approach to swarm robotics is through the amalgamation of augmented Lagrangian multipliers, velocity restrictions in addition to virtual detectors to guarantee the implementation of constraints, obstacle avoidance and mutual avoidance, which are situations obtainable in, swarm mobile robots in coordinated movements. The algorithm is decentralized and the mechanical properties of the robots are taken into consideration. 
Physically embedded PSO (pePSO).

The physically embedded PSO (pePSO) algorithm was proposed by Hereford and Siebold in 2008 and employs two search strategies. First, the swarm robot moves throughout the search space and take measurements as they move towards their targets. Second, the concept of trophallactic, which is the exchange of vomited partially digested food that occurs between adults and larvae in colonies of social insects, was translated into an algorithm and utilized for the search. The second search algorithm is advantageous in that no robot-to-robot communication is needed; communication radius, protocol, or bandwidths become unnecessary. Also, the robots do not have to know their position explicitly. The pePSO does not make use of any main agent to direct the movements and behaviors of the robots in the swarm. Unlike the standard PSO, the movement of particles is confined within a regulated space to circumvent the inability for no direct movement in the traditional PSO. The pePSO algorithm presumes that all the robots in the swarm are in harmony, and it is after the transferring of all relevant information among the robots that the calculation of the robot’s new position is carried out. Moreover, a robot will only be able to disclose its individual solution if it is the ideal solution within the entire swarm. The advantage of this approach is that it drastically decreases the volume of information interchange among the robots. The approach can however lead to redundancy on the part of the robots, as they would have to remain idle for some time after successfully completing an iteration to process all appropriate information (Couceiro et al, 2013). 

3.1.6 Multi-Robot, Multi-Target PSO.

The Multi-Robot, Multi-Target PSO algorithm, proposed by Derr Kurt and Milos Manic in 2009, utilizes multiple small, mobile robots to search an unfamiliar terrain with the aim of locating the target(s). This algorithm made use of a new adaptive RSS (received signal strength), considered to be a very important element that directs the movement of the robots toward their goal(s) in a highly risky environment. Their experimental results show that electromagnetic wave frequency between audio and infrared can have a dramatic effect on the time it takes for the robots to reach its target. 

Couceiro, Rocha, and Ferreira (2011a & 2011b), as an extension of the Darwinian PSO (DPSO), presented the Robotic Darwinian PSO (RDPSO) algorithm. This algorithm, like the standard PSO, is made up of a swarm of robots that moves as a group in the search space in order to locate the ideal solution. Each robot has a position, the direction they are going, and their performance. The RDPSO permits the swarm to be divided into various dynamic groups of sub-swarms. This supports a distributed method rather than the centralized method implemented by other PSO algorithms, where the network is likely to have covered the whole swarm of robots. The advantage of this is that with the swarm divided into smaller groups of swarms, there is a decrease in the number of robots needed to get to the ideal solution, which leads to a decrease in the volume of information exchange among the robots, thus reducing the overhead cost. Moreover, this means that dividing the robot swarm into mutually exclusive categories is an added advantage for RDPSO, since the volume of information transfer among the robots will decrease to the minimum. The algorithm does not need any central agent to coordinate the robots’ movements or actions. The RDPSO is also highly scalable, thereby allowing the addition of a huge number of robots to the swarm. The weakness of the algorithm includes the lack of adaptability to contextual information, and the changing over time of the sub-optimal solutions, which according to J. Suarez, and R. Murphy (2011), can be overcome by sweeping the whole scenario with robots. Couceiro et al. (2012a, 2012b, & 2012c), in some of their most recent research, demonstrated that the RDPSO can solve a few problems related to swarm robotics, such as obstacle avoidance, dynamic nature of the robots in the search space, finding ideal solutions, and the ability to handle some of the communication restraints (Couceiro et al, 2013).

3.1.7 Group Decision Making Extended PSO (GDMEPSO).

Xue Songdong et. al. (2012) proposed the Group Decision Making Extended Particle Swarm Optimization (GDMEPSO) algorithm, which is a fully distributive algorithm and was proven to be effective even when the size of the swarm is very large. They modified the theory behind EPSO by exchanging the social experience with the approximate location of the desired goal. The swarm robots were mapped to the WSN (Wireless Sensor Network) and to enhance the efficacy of the search, the RSSI (received signal strength indication) WSN technique was considered as a merger of aggregate selection of action among several alternatives. 

Table 2: A summary of variant PSO algorithms implementation specifically for swarm robotics.
	Technique
	Reference
	Weaknesses
	Description

	Original PSO
	Kennedy and Eberhert (1995)
	Premature convergence, inability to solve dynamic optimization problems, and cannot be scaled to accommodate large number of robots.
	Uses particles that have position and velocity rather than genetic operators.

Inertia weight, w, is in the range of 0.2 to 0.4, while c1 and c2 equal to 2.



	Synchronous PSO (SPSO)
	Kennedy and Eberhert (1995)
	Costly due to the waiting time between evaluation of the first particle and the rest of the swarm before its position can be updated. It also has poor parallel competence.


	Inertia weight, w, is in the range of 0.4 to 0.9, while c1 and c2 equal to 2.

	Asynchronous PSO (APSO)
	Koh, Fregly, George,  and Haftka (2005)


	Provides the best accuracy at the expense of computational time.


	Inertia weight, w, is dynamic, while c1 and c2 equal to 2

	Extended PSO (EPSO)
	Jun-jie and Xin (2005)
	It cannot be used to solve complex dynamic optimization problems. Also, it cannot handle large number of robots in the swarm.


	Makes use of intuition knowledge to direct the movement of robots to their search goal.

	Group Decision Making Extended PSO (GDMEPSO)
	Xue, Zan, Zeng, Xue and Jing (2012)
	As the swarm size becomes larger, the efficiency of GDMEPSO becomes lower compared to EPSO.

Energy consumption increases as swarm size increases.


	It is a fully distributive algorithm where communication of swarm robots is taken as wireless sensor network.

	Multi-Robot Multi-Target PSO
	Derr Kurt and Milos Manic (2009)
	Signal degeneration can adversely affect robot navigation.
	It uses the combination of decentralized PSO algorithm and new adaptive RSS to enable robots to locate their target(s).



	Physically embedded PSO (pePSO)
	Hereford and Siebold (2008)
	Search time can be very long when there are obstacles in the search space.

Weak communication signal can unfavorably affect search time.
	Trophallactic behavior in social insects was translated into an algorithm.

The algorithm allows the robots to measure the distance from their location to the target within the search space.



	Distributed PSO (dPSO)
	Hereford (2006)
	The time taken to locate the target is very long. Limited mobility for the robots.


	It is a distributive algorithm and there is no need of an individual representative robot.

	Augmented Lagrangian PSO with Velocity Limits (VL-ALPSO)
	Tang and Eberhard (2011)
	There is non-monotonous decrease in the value of the objective function.

Requires lots of adjustments in order to obtain the best performance. 
	Uses a decentralized algorithm.

The technique employed a combination of augmented Lagrangian multiplier with velocity restrictions and virtual detectors.



	Detecting and Responding PSO (DR PSO)
	Jatmiko, Sekiyama and Fukuda (2006)
	Cannot survive extreme alterations in dynamic environment.
	It uses change detection function to monitor gBest.

	Charged PSO (CPSO)
	Sekiyama and Fukuda (2006)
	The instabilities in the charged swarm size can get very large.

Introduction of charged particles makes it wasteful.

The algorithm is not scalable.


	The idea was based on Coulomb’s law.

A charged robot is introduced with a repulsive force and a neutral robot with non -repulsive force.

	Augmented Lagrangian PSO (ALPSO)
	Sedlaczek and Eberhard (2006)
	There is a lack of information since an individual robot only has its own and the swarm’s best value.


	Makes use of classical PSO and Augmented Lagrangian multiplier.

	Fully Informed PSO (FPSO)
	Mendes, Kennedy, and Neves (2004)
	High computational cost is associated with this algorithm. Performs poorly when global best is used. Information from neighborhood can lead to conflict. Performance can be adversely affected by changes in topology of the population.


	It exploits the updated velocity of its neighborhood after careful consideration. 

	Robotic Darwinian PSO (RDPSO)
	Couceiro, Rocha and Ferreira (2011)
	Lack of adaptability to contextual information. Frequent changes of sub optimal solutions with time.

	It uses sociobiological technique to improve the ability of canonical PSO to avoid being trapped in local optimal.


4. Results and Discussion.

It is evident from the previous section, that in order to apply PSO into any swarm robotic applications, a different flavor of PSO algorithm is developed each time thus contributing towards the ever-expanding pool of PSO algorithms. This should have not been the norm since the natural characteristics of the algorithm (in its original form) should be able to support any swarm robotic projects.  It is rather absurd that an algorithm mimicking the natural swarm phenomena is unable to perform similarly when applied to a swarm-like environment. As it turns out, the algorithm is ill suited with some fundamental problems. This study is designed towards identifying and understanding these flaws by performing comparative review on a set of PSO algorithms (i.e., which are ancestor classes of the many PSO variants) through optimization of unimodal and multimodal dynamic constraint functions. Even if these functions are primitive compared to the many complex swarm robotic optimization problems, this study provides a fundamental look at the characteristics of the algorithms, providing valuable insights on their performance before any form of complications are embedded.

Experimental setup.

Though there are many variants of PSO that have been applied to swarm robotics, these variants can be categorized into three main versions based on their properties (i.e., minor fundamental changes from the basic PSO) of the PSO algorithm. We refer to this set of PSO algorithms as the ancestor classes of the original PSOs. The three variants are the original PSO, synchronous PSO (SPSO), and asynchronous PSO (APSO). Sixteen benchmark functions were selected. They can be classified as Unimodal or Multimodal, and can either have Static or Dynamic functions. The selected functions are Sphere (Panigrahi, Shi  and Lim 2011), Alpine (Clerc 2004), DeJong f3 (Xin 2004), DeJong f4 (Xin 2004), Foxhole (Grana et. al. 2004), Tripod (Clerc 2004), NDParabola (Clerc 2004), Griewank (Karaboga and Basturk 2007), Rastrigin (Karaboga and Basturk 2007), Rosenbrock (Karaboga and Basturk 2007), Ackley (Karaboga and Basturk 2007), Schaffer f6 (Sun, Lai and Wu 2012), Schaffer f6 modified (Matlab Central 2013), f6 Linear Dynamic (Matlab Central 2013), f6 Bubble Dynamic (Matlab Central 2013), and Schaffer f6 Spiral Dynamic (Matlab Central 2013). 
The dimension value for each function and particle size were set to n = 10 and 30, respectively, based on the same optimal parameter setting used in Eberhart and Shi (2000). We carried out 400 iterations for each of the PSO variants using previously mentioned 16 benchmark functions in MATLAB R2012a on an Intel ® Core ™ i3-2328M machine with 4GB memory running Windows 7. Detailed parameter settings for each function are represented in Table 3.

Table 3: Parameters for Test Functions

	Function
	Properties
	Dimension
	Initial Range
	Global Optima (x*)

	Sphere 

(De Jong f1)
	A unimodal function, simple, no communication between its variables.

	30
	[-100; 100]n
	[0,0,…,0]

	Rosenbrock

(De Jong f2)
	A unimodal function with complicated landscape due to very narrow ridge.

	30
	[30; 30]n
	[1,1,…,1]

	Griewank
	Non-linear multimodal function. Highly multimodal due to the addition of the cosine modulation that produces many widespread local minima.  

	30
	[-600;600]n
	[0,0,…,0]

	Rastrigin
	This is a multi-modal version of the sphere function with the addition of cosine modulation to produce frequent local minima. It contains millions of local optima. 

	30
	[-5.12; 5.12]n
	[0,0,…,0]

	Ackley
	Multi-modal function with deep local minima. It has several local minima.

	30
	[-32;32]n
	[0,0,…,0]

	Alpine
	Has many local and global minima of value zero.

	3
	
	[0,0,…,0]

	De Jong f3
	A uniformly increasing stepping function in five dimensions.

	5
	[-5.12; 5.12]n
	[0,0,…,0]

	De Jong f4
	A noisy function.
	-
	[-1.28; 1.28]n
	[0,0,…,0]


	Foxhole
	A multimodal test function.
	
	[-65.538;

65.538]

	[1,1,…,1]

	NDParabola
	Was used to test for global minimization problems in Clerc’s “semi-continuous challenge.” Works very well with gradient methods, but presents a challenge for PSO, which is a stochastic method.

	30
	[-20;20]
	[0,0,…,0]

	Schaffer f6
	Is a complex multimodal function. Most hill-climbing and reactive search methods find it very difficult due to its circular local maxima. It is considered a GA-hard function to optimize.

	-
	[-100,100]
	[0,0,…,0]

	Schaffer f6 modified
	This is the sum of five (5) Schaffer f6 functions with different centers to look for local minimum.

	-
	[-100,100]
	[0,0,…,0]

	Tripod 
	A semi-continuous function. This function presents a problem that many algorithms such as GA and PSO find very difficult to cope with, where it gets easily trapped in one of the two local optima.

	2
	[-100,100]
	[0,-50]

	F6 Linear Dynamic
	This is a version of Schaffer f6 that moves the optima minimum linearly along a 45-degree angle in x, y space.

	-
	[-100,100]
	-

	F6 Bubbles Dynamic
	This benchmark is made up of Schaffer f6 in which each phase goes on bubbles magnitude cycles up and down. They are 180 degree out of phase with each other.

	-
	[-100,100]
	[-8,-8] and others at [8,8]

	F6 Spiral Dynamic
	This version of Schaffer f6 moves the minimum about a Fermat spiral according to the equation: r = a*(theta^2), where theta is a function of time and is checked internally.

 ,x-centre. = r (cos(theta))

,y-centre. = r (sin(theta))

	-
	[-100,100]
	-


The cognitive scaling, c1, that influences local search is set to 2. Accordingly, the social scaling, c2, which influences the global search, is identically set to 2. Functions rand1 and rand2 are stochastic variables that have the uniform distribution U (0, 1). They are independent functions that provide energy to the particles. To avert eruption during the particles’ exploration of the search space, the value of the velocity is fixed at ±Vmax and the value of Vmax is set to be equal to the value of Xmax. This should assist in controlling the search range. The range of the search will become bigger if the value assigned to it is large, thus limiting the algorithm to only global exploration. In contrast, if the value of Vmax is small, the scope of the search will be excessively limited, thereby forcing the particles to support only local exploration. The inertia weight w, or the constriction factor, is the inertia parameter; this regulates the algorithm’s searching properties. The initial value is 0.9 and this value decreases to a final value of 0.4. We started with a larger inertia value (a more global search) that dynamically reduces towards the end of the optimization (a more local search). A small inertia weight guarantees quick convergence of the algorithms due to the reduced time needed for the exploration in the global space. The inertia weight w was used to provide equilibrium between the global and local search capability of the particles in the swarm.

Analysis of results.

The results of the experiment for the 16-benchmark functions on the three variants of the PSO algorithm are depicted in Figure 2. Each figure represents the performance of the variants in solving each benchmark function. The graphs were generated during the simulation process and were saved as .jpg files in Matlab. Since PSO and its variants are heuristic algorithms, the non-uniformity of the graphs is to be expected (Fig. 2 - 17).
Based on our general observation, the three PSO variants tested were able to converge to their respective local optimal and global optimum. However, there are exceptions where both the PSO and SPSO failed to find their local and global optimum using the Ackley, Alpine, Dejong f2, Dejong f4, and ND Parabola functions. 
	i) Ackley Function

	(a) PSO
	b) SPSO

	[image: image22.png]Il Figures - Figure 1 R R R R R,

File Edt View Inset Tools Debug Desktop Window Help

AANUPEL- 0B | mDO

aax

EEEEE
E

Ghest vs. lterations

10

10

ghest val.

10

s 100 180 200 250 300 30 400
No of teration

Common PSO
Dimensions : 2
#0f paricles : 30

Unconstrained
Function : ackley

Red = Global Best
Green = Personal Bests
Blue

Current Positions





	[image: image23.png]output

inpuz Eil]
inputt

Ghest vs. lterations

EEEEE
E

10

10

ghest val.

10

50 100 180 200 250 300 380
No of teration

Trelea Type 1
Dimensions - 10
#0f paricles : 30

Unconstrained
Function : ackley

Red = Global Best
Green = Personal Bests
Blue

Current Positions

400






	(c) APSO
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Figure 2: Simulation results of PSO, SPSO, and APSO for Ackley Function. In the figure above (a) – (c) is the Ackley function for PSO, SPSO and APSO. There were many local minima generated by the function. We observed global optimum for PSO at the 370th iteration, the SPSO at the 400th iteration, and the APSO at the 320th iteration. The differences are marginal, but APSO was observed to converge faster compared to SPSO and PSO.
	ii) Alpine Function

	(d) PSO
	(e) SPSO
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	(f) APSO 
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Figure 3: Simulation results of PSO, SPSO, and APSO for Ackley Function. Figures (d) – (f) above show results using the Alpine function for PSO, SPSO and APSO. There are many local minima observed in this function. PSO reached the global optimum at the 380th iteration, while for SPSO global optimum was reached at the 400th iteration and APSO at the 320th iteration. This suggests the superiority of the APSO (in terms of convergence speed) compared to the SPSO and the PSO algorithms.
The Ackley function works well for the PSO and APSO algorithms, converging 10% and 20% faster, respectively, compared to SPSO (Figure 2). APSO has the best performance because the particle’s velocity and position are updated immediately after the fitness is computed, thus updating occurs with incomplete information about the other particles in the neighborhood. We suspect that SPSO did not converge slower due to the deep local minima presented by the Ackley function. Similar observations can be made for the Alpine function (Figure 3). Theoretically, the Alpine function has many local and global minima with the values of zero and as expected, SPSO could not tackle these different plateaus and was outpaced by PSO (converged 5% faster) and APSO (converged 20% faster).
	iii) Dejong f2 Function

	(g) PSO
	(h) SPSO
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	(i) APSO
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Figure 4: Simulation results of PSO, SPSO, and APSO for Dejong f2 Function. In figures (g) – (i), we observed that there was a sharp drop in the value of the gBest as the run progresses, but convergence to the global optimum was difficult for all algorithms.
PSO converged 5% faster compared to SPSO and APSO using the De Jong f2 function (Figure 4). The performance of the SPSO and APSO are relatively similar for this function as it requires a longer time to converge. De Jong f2 function is a unimodal function with complicated search landscape comprising of very narrow ridges. 
	iv) Dejong f3 Function

	(j) PSO
	(k) SPSO
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	(l) APSO
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Figure 5: Simulation results of PSO, SPSO, and APSO for Dejong f3 Function. Figures (j) – (l) above show results using the Dejong f3 function for PSO, SPSO and APSO. There was convergence to the global optimum at the 52nd iteration for PSO, while SPSO reached the global optimum at the 30th iteration. APSO has its global optimum at the 42nd iteration. SPSO performs relatively better than APSO and PSO.

For the De Jong f4 function, none of the particles reached convergence (Figure 6). This is simply because De Jong f4 is a noisy function. It is therefore likely that the particles have been trapped in the local minima. 
	v) Dejong f4 Function
	

	(m) PSO
	(n) SPSO
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Figure 6: Simulation results of PSO, SPSO, and APSO for Dejong f4 Function. Figures (m) – (o) above show results using the Dejong f4 function for PSO, SPSO and APSO. There are some local minima for PSO but convergence to the global optimum was observed to be difficult to achieve. SPSO and APSO did not show any local minima and there was no convergence to the global optimum. This is most likely due to the particles being trapped in the local minima. 
	vi) Foxhole Function

	(p) PSO
	(q) SPSO
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	(r) APSO
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Figure 7: Simulation results of PSO, SPSO, and APSO for Foxhole Function. Figures (m) – (o) above show results using the Dejong f4 function for PSO, SPSO and APSO. There are some local minima for PSO but convergence to the global optimum was observed to be difficult to achieve. SPSO and APSO do not have any local minima and there was no convergence to the global optimum. The particles have most likely been trapped in the local minima. 
Using Shekel’s foxhole, a multimodal test function, PSO converged faster 60% of the time, SPSO 89% of the time, and APSO 88% of the time (Figure 7). Meanwhile, PSO converged faster 72.5% of the time, SPSO converged faster 88% of the time, while APSO converged faster 90% of the time using Griewank (Figure 8). The Griewank function is a highly multimodal function due to the addition of the cosine modulation that produces many widespread local minima.
	vii) Griewank Function

	(s) PSO
	(t) SPSO
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	(u) APSO
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Figure 8: Simulation results of PSO, SPSO, and APSO for Griewank Function. Figures (s) – (u) above show results using the Griewank function for PSO, SPSO and APSO. PSO shows many local optima and its convergence to the global optima was observed at the 115th iteration. SPSO reached global optimum at the 48th iteration while APSO reached it at the 42nd iteration.
	viii) NDParabola Function

	(v) PSO
	(w) SPSO
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	(x) APSO
	

	[image: image45.png]Figures - Figure 1 e T S

R — R
Fie Edt View Inset Tools Help v lnx
REEE) LRNODEL- 0B =T BOB 0
. 0 e
o
10
£ 0™
50 100 150 200 250 300 350 400
Mo of Iteration
.
Clerc Type 1"
Green = Personal Bests
Blue = Current Positions.
.





	


Figure 9: Simulation results of PSO, SPSO, and APSO for NDParabola Function. Figures (v) – (x) above show results using the NDParabola function for PSO, SPSO and APSO. There were no convergences to global optima for all three algorithms used in this experiment. This is most likely due to the entrapment of the particles in the local minima. Using this function poses a challenge to stochastic algorithms such as PSO and its variants.
	ix) Rastrigin Function

	(y) PSO
	(z) SPSO

	[image: image46.png]Deds VLU RL- 2|08 D EEI]]EIE'@
. 0
s
10
£
& 10
50 100 150 200 250 300 350 400
Mo of Iteration
. .
Common PSO
Green = Personal Bests
Blue = Current Positions.
.





	[image: image47.png]B Figures - ngmmu—t;
Fle Edt Viw Inset Tools Debug Deskiop Window Help -
REEE) LU EL- R |0E| 0 EEI]]EIE'@
. 0

s
10
g 2
% 10
50 100 150 200 250 300 350 400
Mo of Iteration
. .
Trelea Type 1
Green = Personal Bests
Blue = Current Positions.
. .
ioax
Fiaure Name:
Colormap: | I

Copper v

9] Show Fgure Number [ “yqor praperiens |
e
Fgure Color: [@r+]






	(aa) APSO
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Figure 10: Simulation results of PSO, SPSO, and APSO for Rastrigin Function. Figures (y) – (aa) above show results using the Rastrigin function for PSO, SPSO and APSO. This highly multimodal function has several local minima, which are regularly distributed throughout the iteration for all three algorithms. PSO converged to global optimum at the 320th iteration, SPSO at the 192nd iteration, while APSO reached its global optimum at the 57th iteration.

The three PSO algorithms did not converge under the NDParabola function as well (Figure 9). This is because NDParabola only works efficiently with gradient methods, and therefore poses a challenge for particle swarm algorithms (which is a stochastic method).
	x) Rosenbrock Function

	(ab) PSO
	(ac) SPSO
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	(ad) APSO
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Figure 11: Simulation results of PSO, SPSO, and APSO for Rosenbrock Function. Figures (ab) – (ad) above show results using the Rosenbrock function for PSO, SPSO and APSO. For this function (also called banana function), PSO has many local minima but convergence to global optimum was reached at the 390th iteration. SPSO has its global optimum at the 270th iteration, while APSO reached its global optimum at the 320th iteration.
	xi) Schaffer f6 Function

	(ae) PSO
	(af) SPSO
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Figure 12: Simulation results of PSO, SPSO, and APSO for Schaffer f6 Function. Figures (ae) – (ag) above show results using the Schaffer f6 function for PSO, SPSO and APSO. This multimodal function is very difficult for most hill-climbing and reactive search algorithm. There was quick convergence for PSO, SPSO and APSO. Global optima for APSO and SPSO were obtained at the 1st iteration, while PSO converged to global optimum at the 10th iteration.
Under the Rastrigin function, PSO converged faster 19.75% of the time, SPSO converged faster 52.5% of the time and APSO converged faster 87% of the time (Figure 10). Rastrigin is a multi-modal version of the sphere function with the addition of cosine modulation to produce frequent local minima. It contains millions of local optima.
	xii) Schaffer f6 Modified Function

	(ah) PSO
	(ai) SPSO
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	(aj) APSO
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Figure 13: Simulation results of PSO, SPSO, and APSO for Schaffer f6 Modified Function. The figures above (ah) – (aj) show results using the Schaffer f6 modified function for PSO, SPSO and APSO. All three algorithms converged quickly. Global optimum for PSO was observed at the 4th iteration, for SPSO at the 10th iteration and APSO at the 7th iteration.
PSO, SPSO and APSO all experienced premature convergence very early under the Schaffer f6 (Figure 12), Schaffer f6 modified (Figure 13), and Tripod functions (Figure 14). This is because the Schaffer f6 is a complex multimodal function with circular local maxima. Most hill-climbing and reactive search methods find this very difficult to tackle (Roberto, Mauro and Srinivas (2005)).  
	xiii) Tripod Function

	(ak) PSO
	(al) SPSO
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Figure 14: Simulation results of PSO, SPSO, and APSO for Tripod Function. Figures (ak) – (am) above show results using the Tripod function for PSO, SPSO and APSO. Global optimum for PSO was observed at the 3rd iteration, for SPSO it was at the 6th iteration and APSO reached the global optimum at the 1st iteration.
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Figure 15: Simulation results of PSO, SPSO, and APSO for Schaffer f6 Bubbles Dynamic Function. The figures above (an) – (ap) show results using the Schaffer f6 Bubble Dynamic function for PSO, SPSO and APSO. The magnitude of the bubbles cycles up and down. PSO is seen to have many local minima as the environment changes. We observe global optima for PSO from the 55th to 100th iterations, and from the 200th to 230th and 325th to 352nd iteration. SPSO also has many local minima, which are evenly distributed throughout the iteration. Global optima is observed between 148th and 180th, 270th to 300th and 380th to 400th iterations. Conversely, APSO also has many evenly distributed local optima in the iteration. Global optima were reached between 45th and 55th, 150th and 180th, and the 400th iterations.

In addition, the Schaffer f6 modified function has different centers that look for local minimum, while the Tripod function is a semi-continuous function, and this presents a problem that makes many algorithms such as PSO and GA easily trapped in the local optima (Ashish Raj (2013)).
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Figure 16: Simulation results of PSO, SPSO, and APSO for Schaffer f6 Linear Dynamic Function. In the figures above, (aq) – (as) are the results using the Schaffer f6 Linear Dynamic function for PSO, SPSO and APSO. For the three PSO algorithms used in this experiment, the function moves linearly along a 45-degree angle. PSO reached its global optimum at the 150th iteration, SPSO at the 379th iteration and APSO at the 179th iteration.
The F6 Linear Dynamic (Figure 15), F6 Bubbles Dynamic (Figure 16), and F6 Spiral Dynamic (Figure 17) functions all have several local optimal. F6 Linear Dynamic is a version of Schaffer f6 that moves the optima minimum linearly along a 45-degree angle in x, y space. The F6 Bubbles Dynamic function is made up of the Schaffer f6 function, in which each goes on bubbles magnitude cycles up and down which are 180 degree out of phase with each other. Moreover, the F6 Spiral Dynamic function is a version of the Schaffer f6 function that moves the minimum around a Fermat spiral according to the equation: r = a*(theta^2), where theta is a function of time and is checked internally, [image: image68.png]


 = r (cos(theta)) and [image: image70.png]


 = r (sin(theta)).
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Figure 17: Simulation results of PSO, SPSO, and APSO for Schaffer f6 Spiral Dynamic Function. In the figure above, (at) – (av) shows the results using the Schaffer f6 Spiral Dynamic function for PSO, SPSO and APSO. PSO reached its global optimum at the 130th iteration, SPSO at the 32nd iteration and APSO at the 48th iteration.
Our simulation results confirmed that PSO (in its original form and its variants) is plagued with conventional issues facing other optimization heuristics. These issues include premature convergence, inability to effectively cope with dynamic environment, and failure of the particles to escape (becoming trapped) in the local minima. Our results revealed the presence of premature convergence in 10 (out of the 16) functions and they are the Ackley, Dejong f3, Griewank, Foxhole, Schaffer f6, Schaffer f6 modified, Tripod, f6 Bubble Dynamic, f6 Linear Dynamic, and f6 spiral dynamic functions. The inability of PSO and its variants to escape from local minima is visible in 9 functions; Dejong f2, Dejong f3, Ackley, Alpine, Foxhole, Griewank, Rastrigin, Rosenbrock and Tripod functions. The simulation results from Schaffer f6 Bubble dynamic, Schaffer f6 linear dynamic, and Schaffer f6 spiral dynamic show that PSO, SPSO and APSO does not have the capability to effectively handle optimization problems in a dynamic setting. 

Admittedly, similar benchmarking exercise on any optimization heuristics would yield similar findings (i.e., diverse performances and inadequacies among the algorithms), as all of the 16 functions perform optimally in different situations, however, our results revealed that searching (exploration) using PSO does not perform well in dynamic environments. We observed that these flaws were caused by the nature of the particles that were inclined to move from the feasible to the infeasible areas during the course of searching. This highlights the weakness in the searching capabilities of PSO, which, if can be addressed, will yield a more robust PSO less susceptible to changes in its environment. 

5. Conclusion

This comprehensive discussion on the applicability of PSO as an optimization algorithm to support swarm robotics (as presented in the previous section) exposes the critical limitations that led to the recent trends of customizing a new swarm algorithm for each swarm robotic project. By comparing the different functions, the flaws of the algorithm are highlighted and most importantly, how the dynamic nature of these functions affects the exploration capability of the algorithms. The trend of developing hybrid PSOs to address the vulnerability of the standard algorithm has become the norm. As such we hypothesize that these limitations (concerning PSO) can only be addressed with the introduction of other techniques to improve the performance of PSO in dynamic optimization problems. Evidently, this would propel the initiative towards the creation of a singular PSO that can easily be adapted to any swarm robotics project without the need for heavy customization. 
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