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Abstract1

Combinatorial optimization focuses on arriving at a globally optimal solution given2

constraints, incomplete information and limited computational resources. The combi-3

nation of possible solutions are rather vast and often overwhelmed the limited com-4

putational power. Smart algorithms have been developed to address this issue. Each5

offers a more efficient way of traversing the search landscapes. Inadvertently, clogging6

the field with specialized algorithms for every new optimization problems. Critics7

have called for a realignment in the bio-inspired metaheuristics field. Inspired by the8

the Anglerfish population (found in the deep sea), we proposed an algorithm that sim-9

plified the search operation to only randomize population initialization. This relieves10

the need of complex operators normally imposed in the current meta-heuristics pool.11

The algorithm is more generic and adaptable to any optimization problems. A unique12

method of reproduction by the anglerfish provides a simple and elegant way to ran-13

domly generate good solutions. Benchmarking is conducted using the Traveling Sales-14

man Problem (TSP). The progression of our experiments charts the development of the15

anglerfish algorithm, and the results are comparable with advanced meta-heuristic al-16

gorithms. Hence, suggesting that arbitrary exploration is practicable as an operator to17

solve optimization problem.18
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1 Introduction22

Various methods and algorithms have been proposed to solve optimization problems.23

As of late, bio-inspired metaheuristics are among the favorites. On the one hand,24

this favoritism is highly influenced by the effectiveness of the search mechanism and25

the availability of powerful computer to generate potential solutions in a reasonable26

amount of time. On the other, these solutions are impractical to be generated using de-27

terministic approaches due to the incomplete problem definition and vast search land-28

scape characteristics of the potential solutions.29

Evidently, as the biological narratives grew, together with the advancement of30

computing, the pool of bio-inspired algorithms become excessive. As a consequence,31

knowledge creation stopped and the sophistication of the mechanisms remain hidden32

behind their metaphors and were never throughly discussed [1, 2, 3]. Issues related33

to the conflicting representation of the biological narrative which obfuscate the current34

knowledge and incessant competition with other algorithms further degraded the field.35

For instance, criticism on the harmony search algorithm [3, 4], and firefly algorithm [5]36

as being redundant copies of earlier bio-inspired algorithms (i.e., Evolutionary strate-37

gies and particle swarm) [2] is a common occurrence, emphasizing on the issue of re-38

dundancy populating the ever expanding pool of bio-inspired algorithms.39

Despite these criticisms, the expansion of the field is rather positive. The availabil-40

ity of these algorithms in tackling many optimization problems is fundamental to its41

existence (i.e., why we need algorithms in the first place). As a result, we can wisely42

choose the most suitable algorithm given the specific needs of the problem. Therefore,43

the problem is not how many, but how good are those algorithms. More importantly,44

whether these algorithms add any novelty to the body of knowledge in the metaheuris-45

tics field. Ideally, every new algorithm has to be thoroughly examined. This is to pre-46

vent redundancy, since it is liable to the pseudo-novelty trap. When designing bio-47

inspired metaheuristics, we have millions of species in the planet and consequently,48

we have millions of metaphors that might overlap biologically. As suggested in [1],49

metaheuristics should be explicitly identified, stripped down to the their essentials,50

and analyzed, to reveal their mechanisms in arriving to the solutions.51

Metaheuristics is a relatively new field, however, the adoption of metaheuristics52

in solving combinatorial optimization problems has attracted massive attention [6].53

Bioinsipired algorithms that closely mimic biological systems are synonymous with54

this field. At the forefront of is Genetic Algorithm (GA) [7], Evolutionary Program-55

ming (EP) [8] and Evolution Strategies (ES) [9]. The underlying idea behind these al-56

gorithms is fundamentally similar. Using natural selection as a key operator, iterative57

improvement of the population occurs through the survival-of-the-fittest principal.58

Briefly, a set of candidate solutions is randomly generated, and based on a qual-59

ity function to be maximized, a fitness is measured. Using this fitness measure, se-60

lected candidates undergo recombination or mutation (i.e., at times both operators) to61

generate the next generation of candidate solutions, producing offsprings for the new62

population. Both population are re-evaluated to produce parents for the next iteration.63

The process is repeated until a candidate with sufficient quality is produced or a com-64

putational limit is reached. Further sophistications related to gender-biases have been65

introduced to improve on the natural selection process. There are gender-based selec-66

tion whereby gender (female or male) value is assigned to each candidate alternatively67

in a population (sorted in descending fitness values) [10] and the introduction of selec-68

tion pressure on the two gender population whereby only one gender of the population69

goes through competition in order to produce offsprings [11]. Accordingly, these inclu-70
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Figure 1: The Humpback anglerfish (Melanocetus johnsonii), a species of black sea
devil (Melanocetidae). Adapted from August Brauer (1863ñ1917): Die Tiefsee-Fische.
I. Systematischer Teil.. In C. Chun. Wissenschaftl. Ergebnisse der deutschen Tiefsee-
Expedition ’Valdivia’, 1898-99, 1906.

sions produced significant improvements when compared to their corresponding basic71

version, however, the procedural structure of each remains (i.e., iterative improvement72

of a randomly generated set of individuals).73

Compared to the conventional initialize-and-then-optimize-procedure, we are74

proposing a random selection procedure, whereby only the initialization step occurs75

during each iteration. This highlights the importance of randomness as examplified76

in Greedy Randomized Adaptive Search Procedures (GRASP), with elements from a77

list created by a greedy function added randomly in constructing a solution [12]. Fol-78

lowing this recommendation, we introduced a simple bio-inspired algorithm based on79

the Humpback Anglerfish. In this study, we dissected the algorithm thoroughly to ex-80

plain the mechanism behind the metaphor and demonstrated its ability to solve the81

popular traveling salesman problem (TSP). The Anglerfish metaphor resembles the82

random incremental construction (RIC) function introduced in computational geom-83

etry [13]. RIC prevents similarity and pre-mature convergence with the asymptotic84

bound of O(n log n) in terms of complexity. The proposed algorithm is rather minimal;85

using only randomized iterative population as the only operator and a direct fitness86

evaluation between generations. The mechanism significantly improves on the execu-87

tion time, thus enabling it to become a plausible candidate for unsupervised learning88

intended for analytic applications.89

2 The Anglerfish metaphor90

The deep sea is known for its treacherous environment, e.g., freezing temperature, mas-91

sive water pressure weight, the absence of solar and inadequate food sources. How-92

ever, there are species that have adapted and thrived in such harsh environment, in-93

cluding the deep sea Humpback Anglerfish (i.e., a prime example of deep sea adap-94

tation [14]). Anglerfish is a predator fish commonly identified by a fleshly growth on95

the fish head called the esca (Refer Fig. 1), that acts as a lure and found on most adult96

females [15, 16] An interesting trait of the Anglerfish is sexual parasitism, prevalent97

among the sub-order called Ceratiodei, in which males are dwarfed and become perma-98

nently attached to their larger female counterpart.99
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The males Anglerfish have difficulty in finding food due to their size. Their sur-100

vival depends entirely on finding a female partner for mating. Naturally, the males101

have big eyes and huge nostrils, primarily for detecting pheromone released by the102

females. The common jaw teeth (observed in most females) are replaced by a set of103

pincer-like denticles at the tips of the jaws for grasping on a female. The male latches104

onto the female. The male then becomes permanently dependent on the female for105

blood-transported nutrients, and the female becomes a self-fertilizing hermaphrodite.106

Multiple spawning may take place afterwards. This sexual dimorphism ensures that107

there is a supply of sperms when the female is ready to spawn. Multiple males, up to108

eight males in some species, can be fused.109

Some key ideas were extracted from the metaphor in formulating the algorithm.110

These ideas are converted to the procedural and randomization mechanism of the al-111

gorithm.112

• A population consists of both gender. Males presence are more frequent than fe-113

males.114

• Males will die when they could not find a mate. There is some possibility for115

immature female to die without any attachment from the male.116

• Only mature females have the ability to spawn.117

• The fittest mature female spawns the most. However, there is a fix number of118

spawns that can be generated at each time cycle to control the population.119

• The spawns from the best mature female inherit her legacy. They have priority of120

luring males for mating.121

The adaptation of the ideas into the Anglerfish algorithm is presented in Fig. 2. As122

depicted in the figure, the procedure consists of only two processes (i.e., initialization123

and re-initialization). Although loosely resembles the natural selection principal, the124

recombination process is clearly absent (i.e., which is vital in directed evolution). The125

algorithm simply resets and repopulates after each iteration. Sub-mechanisms such as126

mating and spawning are selective randomization process to control the initialization127

of the next population based on the fitness value as a guide.

Re-Initialization

Figure 2: The Anglerfish Algorithm. The procedural step consists of intialization and
re-initialisation. Initialization is a purely random process unlike re-initialization, where
selective randomization occurs with embedded elitism element. The re-initialization
process is comprised of mating, fitness evaluation and spawning. Algorithm is termi-
nated once maximum epoch has been reached.

128
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3 Formal Definition of the Anglerfish algorithm129

Let N as real numbers, we define mature female, C as a set of N elements, young female130

F as a subset of C, and male, m an element from C.131

C = {1, 2, 3, ..., N} (1)

F ⊂ C, (N − 8) < |F | < (N − 1) (2)

m ∈ C (3)

The number 8 is chosen because up to 8 males can be attached to a female as indi-132

cated in the Anglerfish ecosystem [14]. At time cycle t=0, initialization happens with133

u young females and v males. There is no restriction on u and v, the only condition is134

that v must be a larger number than u.135

A(0) = {F1, F2, F3, ..., Fu,m1,m2,m3, ...mv} (4)

Females are much rarer than males. Therefore,136

m(t) > F (t) (5)

Mating occurs when the male has any elements absence in young female. They137

merge to become a mature female. This continues until all 7 cases are merged.138

C = F ∪m1, whereby m1 6∈ F, |F | = N − 1 (6)

C = F ∪m1 ∪m2, whereby m1,m2 6∈ F, |F | = N − 2,m1 6= m2

C = F ∪m1 ∪m2 ∪m3, whereby m1,m2,m3 6∈ F, |F | = N − 3,m1 6= m2 6= m3

Males die when they could not find a mate. There is probability of a young female139

to remain immature due to lack of males. Eventually, she will die as well.140

A(t) = {C1, C2, C3, ..., Cc(t)} (7)

Mature females spawn young females and young males. Spawning is skewed to-141

wards the male offsprings.142

Pr(m) > Pr(F ) (8)

We fixed the probability of a young male to spawn at 0.8 after intial trial runs. This143

value can be optimized depending on a given task. By increasing the bias towards male144

offspring, we will effectively preserved the diversity of the population. Reversely, the145

bias skewed towards female offspring generation limits the randomization mechanism,146

influencing the exploration capability of the algorithm.147

Pr(m) = 0.8 (9)

Pr(F ) = 0.2
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Number of spawns that can be generated at each time cycle is assigned as max-148

imum spawn number, sp. Let Sfittest be the spawn group of the fittest mature fish,149

Cfittest. We denote s as the individual spawn as150

s = m or F (10)

Sfittest = {s1, s2, s3, ..., ssp}

sp = sp− r (11)

Snext fittest = {s1, s2, s3, ..., ssp}

We denote r as the number to be reduced from sp. Each subsequent fittest fish will151

spawn a smaller group of sp (gradually). This iteration will continue until sp =0. The152

three dynamic parameters that can be refine for optimization are sp, r and maximum153

time cycle T as the termination criterion. All three variables effect the performance of154

the algorithm depending on the optimization problem at hand.155

4 The Anglerfish algorithm156

Similar to the existing population based optimization algorithms, the algorithms starts157

with the initialization phase. During initialization, only young females and young158

males are created as opposed to the complete candidate solution, which in our case is159

the mature female. In essence, representation of the sub-problems or sub-components160

of the solution, similar to the procedural steps of the randomized incremental construc-161

tion (RIC) technique proposed in [13]. RIC utilizes random sampling to split problems162

into subproblems, and then incrementally assembles the solution. These younglings163

are representation of sub-problems and accordingly, the incremental approach is imi-164

tated through the merging process of males with immature female.165

The next phase is mating. Unlike the recombination operator found in evolution-166

ary optimization algorithm, the mating process is a form of selective randomization167

applied to form the candidate solutions similar to the incremental approach in RIC.168

However, cifferent from RIC, the incremental steps in the anglerfish algorithm are ar-169

bitrary for each young female (F ) with a maximum incremental step (sets at 8 times170

following the metaphore). The anglerfish combines a single female (F ) with up to eight171

male (m). This produces a richer pool of candidates irregardless of the fitness value. In172

Anglerfish, mating is a part of the re-initialization process, and it is directly responsi-173

ble in creating the candidate solutions instead of the recombination process to produce174

offsprings as commonly observed in evolutionary algorithms. Randomness is further175

promoted during mating to allow for a creation of diverse candidate solutions.176

A key feature of population based algorithms is utilizing the neighborhood search177

to find the optimal solution. This is possible only if a neighborhood relation is defined178

in the search space. For instance, in Ant Colony Optimization (ACO), the neighbor-179

hood search are directed using pheromone as weight [17], while Particle Swarm Opti-180

mization (PSO) utilizes the positioning and velocity values to determines its flocking181

behaviour [18]. There is a need to define adaptive parameters to reflect the relation182

between agents. These parameters are constantly updated at each iteration, taking into183

consideration input from the sub-sequence or even the entire population. Adaptive pa-184

rameters between population are discarded and do not contribute to the optimization185
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Algorithm 1: The basic Anglerfish (TSP) algorithm
Data: TSP instance
Result: find the fittest solution (fish)

1 initialization with 10 young females and 50 young males;
2 while not end of Time cycle do
3 mating;
4 fitness evaluation;
5 sort according to descending fitness;
6 maximum spawn number, sp = 100, reduction number, r=10;
7 for each female fish,F from the top do
8 if sp > 0 then
9 f spawns sp, Pr(m)=0.8 and Pr(F)=0.2;

10 sp = sp - r;
11 else
12 break;
13 end
14 end
15 Time cycle=Time cycle+1;
16 end

process. Compared to common population based algorithms, Anglerfish has the ability186

to stumble upon quality solution at any steps even in less preferrable setting.187

In adapting the anglerfish metaphor, the fittest fish gets to spawn the most and188

the best breed of spawn gets to mate first because they are more attractive. Follow-189

ing the metaphor, ranking is performed to determine the candidate solution (C) that190

can become parents for the next generation. To ensure the fittest fish has an advan-191

tage compared to the unfit candidate, we reduce the spawn number for the next fittest192

fish until a threshold is reached. The spawn limit (sp) and reduction rate (r) can be193

tuned to optimize the algorithm. During the spawning process, a legacy value is as-194

signed to all female spawns. The legacy value represents the fitness order of their par-195

ent. This legacy attribute enables the spawn to have priorities during mating. Finally196

the algorithm checks for the end of time cycle (T ) and repeats the whole process if it197

has not reached T . Unlike most meta-heuristics, the exploration of the search land-198

scape is rather loose and undirected, except for the preferential treatment (priority) of199

the fittest candidate during mating. Further randomizations on the population are en-200

forced to ensure diversity is preserved (i.e., during the spawning and mating phases).201

This randomization mechanism would negate the elitism aspect in mating to indirectly202

prevents local optima.203

The basic version of the anglerfish algorithm (i.e., no legacy option) was imple-204

mented first on the TSP. Pseudo-code for the basic TSP Anglerfish is listed in Algo-205

rithm. 1. The legacy enable version (i.e., the advanced anglerfish algorithm), is pre-206

sented in Algorithm. 2.207

5 Results and Discussions208

An instance of the Traveling Salesman Problem (TSP) (from the TSPLIB [19]) was se-209

lected for benchmarking (the ulysses16). This instance has 16 cities with their respective210

coordinates. For the Anglerfish TSP algorithm, young males, (m) are representing a211
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Algorithm 2: The legacy Anglerfish (TSP)
Data: TSP instance
Result: find the fittest solution (fish)

1 initialization with 10 young females and 50 young males;
2 assign similar legacy to all females;
3 while not end of Time cycle do
4 sort according to descending legacy;
5 for each female fish,f from the top legacy do
6 mating;
7 end
8 remove all young males and young females;
9 fitness evaluation;

10 sort according to descending fitness;
11 assign descending legacy to all fishes,fittest fish has best legacy;
12 maximum spawn number sp=100, and reduction number r=10;
13 for each female fish,f from the top fitness do
14 if sp > 0 then
15 F spawns sp, Pr(male)=0.8 and Pr(female)=0.2;
16 assign F’s legacy to all spawns;
17 sp = sp - r;
18 else
19 break;
20 end
21 end
22 Time cycle=Time cycle+1;
23 end

single city and young females, (F ) are representing any 8 to 15 arbitrary ordered cities.212

The range of between 8 to 15 is selected based on the metaphor of having a minimum213

of eight males partner (that will latch to the female fish). Mating is permitted only if214

the city is not yet available in the females. A new city is added at any random points215

once mating is initiated. A female is deemed mature once all 16 cities are connected.216

Fitness evaluation is performed to all mature females in the population. The fitness217

value is determined by calculating the route of all 16 cities, in which the fittest repre-218

sents the shortest path. Re-population is performed afterwards. Priority of spawning219

is assigned to the fittest mature female. During spawning, young males is randomly220

assigned a city number of the 16 cities (with the likelihood sets to 0.8 as default). Young221

females inherit the route from their ancestor minus a single point (i.e., imitating a sin-222

gle base mutation operator common in evolutionary algorithms). These younglings are223

then allowed to latch to new males.224

For the simulation, 10 young females and 50 young males are initialized. Five sets225

of simulations were conducted. The five sets differ by the time cycle T (25 time cycles,226

50 time cycles, 75 time cycles, 100 time cycles and 125 time cycles). These time cycles227

act as a termination point of the algorithm. These cycles were selected based on pre-228

trial runs while developing the algorithm. Each set of simulation consists of 30 runs229

and the optimal solution is identified at 6859, as quoted from the online TSPLIB 1. Both230

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html
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Anglerfish TSP algorithms (with and without the legacy attribute) were tested.231

5.1 The Anglerfish TSP without the legacy attribute232

Benchmarking is conducted on the basic version of the Anglerfish TSP algorithm. We233

are excluding the legacy attribute to evaluate the performance of the exploration mech-234

anism. The population simply resets after the first initialization without ranking and235

assignment of the legacy attribute. Table 1 depicts the best and mean results from the

No. of
Iteration

Best
Result

Mean
Result

Std.
Dev.

Std.
Error

25 7002 7536.13 248.2 45.3
50 6875 7130.80 146.7 26.8
75 6859 7027.46 106.8 19.5

100 6859 6988.96 106.4 19.4
125 6859 6961.56 86.9 15.9

Table 1: Results for the Anglerfish TSP without the legacy attribute (or Basic Anglerfish
TSP). Optimal solution of 6859 were generated from 75, 100 and 125 cycles.
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Figure 3: Results distribution for the candidates in Table 1. Aside from cycle 25 and
50, the remaining cycles (75, 100 and 125) showed consistent means that hover approx-
imately within 7000.

236
30 runs. The distribution of the solutions is presented in Fig. 3. Runs were conducted237

with the spawn number (sp) sets to 100, this value is deducted with r = 10 from the238

previous run spawn number for subsequent runs.239
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The mean results consistently improved in correlation to the number of iterations.240

The dispersion of the solution and the standard error were reduced. In the absence241

of any directed evolution mechanism to converge the population, randomization takes242

central role, thus corresponding directly to the improvement of the exploration with an243

increase of iteration number. The algorithm produces better solution as more individ-244

uals are initialized. This is also reflected in the result of the best solution, where the 25245

iterations run was only able to produce 7002 (after 30 trials), an outlier to the 6859 op-246

timal solution generated from 75, 100 and 125 iterations. The value 6859 is the optimal247

solution for this instance.248

Since the Anglerfish algorithm preserved the population diversity, the population249

is not directed to converge to only sets of optimal individuals. As illustrated in Fig. 3,250

the mean results are relatively within the optimal solutions, with presence of a few251

outliers. We observed an improvement in the density of the population corresponding252

to the increase of the iterations. These occurred despite the absence of mechanism to253

converge the population following the underlying principal of RIC - as designed.254

5.2 The Anglerfish TSP with the legacy attribute255

The legacy attribute adaptation of the Anglerfish metaphor loosely mimics the elitist256

mechanism commonly found during the selection process in popular evolutionary al-257

gorithms. This attribute is introduced to all females. Based on the metaphor, the fittest258

mature female will have the highest legacy value and this attribute is inherited by sub-259

sequent generations (from the female spawns). Priority is given to the young females260

based on the attribute value. With the introduction of this attribute, young females with261

good legacy will be more attractive to the young males, thus allowing her to latch to262

her mates first. Ranking and legacy attribute assignment are embedded into the basic263

Anglerfish TSP.

No. of
Iteration

Best
Result

Mean
Result

Std.
Dev.

Std.
Error

25 6976 7254.6 219.1 40.0
50 6870 7005.3 121.0 22.1
75 6859 6920.0 42.1 7.7
100 6859 6900.0 40.1 7.3
125 6859 6892.7 31.1 5.7

Table 2: Results for the legacy Anglerfish (TSP). Optimal results were generated for
cycle 75, 100 and 125; as observed in Table 1. However, cycles 25 and 50 produced better
optimal values. The mean and standard deviation improved with the introduction of
the legacy attribute.

264
Immediate improvement for the best and mean values can be observed with the265

legacy attribute (Refer Tab. 2). Both iteration 25 and 50 produced better optimal values266

as compared to previous runs. Variants within the population are smaller for all runs267

with better dispersion, as indicated in Fig. 4). The effect of the legacy attribute is fur-268

ther highlighted with the significant reduction of the standard deviation values of all269

population. This indicates that each population has better fitted Anglerfish females as270

seeds during the randomization process as compared to the complete purely arbitrary271

order of the basic version.272

It is important to note that the improvement for the individual solutions was273

achieved by facilitating better seeds for randomization. In contract with the conven-274

10
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Figure 4: Result Distribution for the legacy Anglerfish (TSP). Population dispersion
improved in all cycles especially for cycles 75, 100 and 125. The same cycles that per-
formed in the basic version, however the mean improved to approximately± 20 points
between the three cycles.

tional “selection” phase employed in most bio-inspired algorithms. The Anglerfish275

maintain all individuals, however the legacy attribute allows mating to be prioritized,276

thus allowing more suitable males to latch first with more attractive females. The luring277

process remains random. Unlike conventional “selection” and “recombination” strate-278

gies that forced fittest individuals to become parent, enabling better offspring genera-279

tion.280

Mean processing time for all runs with the legacy attributes are marginally higher281

than the basic Anglerfish algorithm. Correspondingly, increasing the time cycle (T ) di-282

rectly affect the processing time as depicted in Fig, 5. Increasing the time cycle allows283

for more candidate solutions to be generated and promote a more thorough explo-284

ration. Depending on the computational power available, increasing the cycle time,285

might not be the best option. Similar exploration capability can be achieved through286

the utilization of the spawn number (sp) and reduction number (r).287

In principal, both the spawn number sp and reduction number r are able to affect288

the diversity of the candidate solution, thus allowing better results to be generated289

using smaller time cycle T . Although the optimization of sp and r values can reduce290

the time cycle T , the actual processing time might not differ by much, because the re-291

initialization process that involves both mating and spawning will take longer time to292
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Figure 5: The mean processing time between the basic and advanced Anglerfish al-
gorithms for each cycles. All runs were conducted on an Intel Core i7-4790 3.6GHz
Quadcore machines with 8GB RAM.

complete. Three seperate runs were conducted to investigate the influence of both sp293

and r in determining the solutions by assigning sp = 500 and r = 50 for the first run, sp294

= 700 and r = 50 for the second and sp = 1000 and r = 100 for the third.295

Compared to the legacy run (Tab. 2, the effect of tuning both sp and r resulted with296

better candidate solutions. As observed in Tab. 3, the increase of sp to 500 allows the297

optimal solution to be generated in only 50 iterations. The previous best solution using298

the legacy mode was stuck at 6870 and not the optimal solution of 6859. Furthermore,299

the variance between candidate solution is significantly better with 6894.4 as the mean300

average. This is further indicated by the smaller standard deviation value (i.e., 34.99 as301

compared to 219.1). Similar results can be obversed for the sp = 700 and sp = 1000. Evi-302

dently, further analysis is required to determine the impact of both sp and r parameters303

for the proposed algorithm. Tuning both paramaters does influence the exploration ca-304

pability of the algorithm, and could potentially reduced the no. of iteration (time cycle).305

From our limited observation, the trade-off between iterations and re-initialization in306

terms of actual computational time is not as significant. Considering the abundance307

of parallel computing resources available currently. However, fine tuning of the sp, r308
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sp r
No. of

Iteration
Best

Result
Mean
Result

Standard
Deviation

500 50 50 6859 6894.4 34.99
100 6859 6881.7 20.87

700 50 50 6859 6883.6 31.05
100 6859 6885.8 24.25

1000 100 50 6859 6886.0 26.39
100 6859 6885.4 27.06

Table 3: Results for the legacy Anglerfish (TSP) with sp=500 and r=50, sp=700 and r=50,
and sp=1000 and r=100. Optimal results are obtained in time cycle 50 as compared with
previous legacy runs depicted in Tab. 2. Both time cycles recorded better dispersion.

TSP
Instance ACS GA EP SA AG Anglerfish

oliver30 420 421 420 424 420 420

Table 4: Results for the oliver30 TSP benchmarking. The optimal values for Ant Colony
System (ACS), Genetic Algorithm (GA), Evolutionary Programming (EP), Simulated
Annealing (SA), hybrid algorithm of Simulated Annealing and Genetic Algorithm (AG)
are extracted directly from Table 3 in [17]. These values are the best optimal values
recorded during the simulation. The optimal value for the Anglerfish algorithm (An-
glerfish) was generated from the simulation, detailed in Tab. 5. Only ACS, EP, AG and
the Anglerfish managed to arrive at the optimal value.

and time cycle T is necessary to influence the optimal outcome, and requires a more309

detailed investigation.310

5.3 Benchmarking with other Algorithms311

The performance of the Anglerfish TSP algorithm are then tested against well-known312

metaheuristics. Benchmarking is conducted using oliver30 [17]. For replication pur-313

pose, oliver30 is selected because this instance has an optimal value and published re-314

sults for the common algorithms. Benchmarking is conducted only for these results as315

rerunning the experiment is difficult due to the lack of available codes, and biases that316

might be introduced during recoding of these algorithms.317

The coordinates of oliver30 is available online2. The optimal solution of oliver30 is318

420. For this experiment, the Anglerfish TSP algorithm is configured with 30 young319

females and 150 young males, maximum males that can attach to a female remains at320

8, with the sp value sets at 700, subsequent next best fish deduction sets to r = 50 from321

the previous spawn number, and population control of 10,000 fishes. These values are322

configured after pretrial runs. Adjustments were made according to the number of323

instances involved (i.e., from 16 to 30 cities).324

Benchmarking is performed only on the optimal solution based on the data avail-325

able from [17]. Table 4 summarized the optimal value generated from Ant Colony326

System (ACS), Genetic Algorithm (GA), Evolutionary Programming (EP), Simulated327

Annealing (SA), hybrid of SA and GA (AG) and the proposed Anglerfish algorithm.328

As mentioned above, the optimal solution for oliver30 is 420, and only ACS, EP, AG329

2http://stevedower.id.au/blog/research/oliver-30/
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No. of
Iteration

Best
Result

Mean
Result

Std.
Dev.

Std.
Error

400 420 452 22.5 4.1

Table 5: Results for the oliver30 runs from the legacy Anglerfish (TSP) algorithm after
400 cycles. The number of iterations was increased to 400 to accommodate for the
number of cities involved. The number of individuals allowed after each cycle are kept
at 10000.

and Anglerfish managed to produce the optimal value.330

Details of the runs are listed in Table 5. Since the termination criterion is solely331

based on number of iterations, we have conducted trial runs to gauge the maturity332

of the population. Similar to previous observation, the additional nodes evidently in-333

creases the number of iterations. The number of iterations was set to 400 cycles based334

on the trial runs conducted prior to the simulation. After 400 cycles, the population335

has the optimal value of 420, with relatively better dispersion of fishes (mean of 452336

± 4.1) when compared to the optimal solution. Standard deviation of the population337

is relatively low at 22.5, consistent with previous our findings with legacy attribute338

assignment.339

Benchmarking is then expanded to 52 cities (berlin52) to evaluate on the scalabil-340

ity of the proposed algorithm. As indicated in TSPLIB, the optimum solution for the341

berlin52 is 7542. The same configurations as described for the oliver30 version were ap-342

plied. Summary of the results is listed in Table 6. The Anglerfish TSP algorithm was343

able to generate the optimal value of 7542 after 4000 iterations. Since the number of344

cities tripled as compared to the previous benchmark, we have to extend the run cycles345

accordingly. For this experiment, we ran between 600 to 4000 iterations with varying346

outcomes (Refer Table 7). The optimal values fluctuate inconsistently between runs,

TSP Instance Basic
DCS

Improved
DCS DPSO ACS ACE Anglerfish

berlin52 (Best) 7542 7542 7542 7542 7542 7542

Table 6: Results for berlin52 TSP benchmarking. Optimal values for the common meta-
heuristics were extracted from Ouaarab et al. [20, Table 2] for Basic and Improved Dis-
crete Cuckoo Search (DCS), and Ouaarab et al. [20, Table 5] for Discrete Particle Swarm
Optimization (DPSO), from Escario et al. [21, Table 7] for Ant Colony System (ACS)
and Ant Colony Extended (ACE).

347
indicating no substantial pattern for the termination criterion (i.e., of better optimal348

values as the cycle increases). However, the mean values in the population are consis-349

tent. In essence, this shows the effectiveness of the randomization procedure, and at350

the same time highlights the importance of the stopping criterion (a common problem351

in combinatorial optimization algorithms). A further comparison against the common352

optimization strategy is omitted since performance analytics of these algorithms are353

missing from the references and recoding the codes would introduce unnecessary pro-354

gramming biases.355

In both cases (oliver30 and berlin52), the proposed TSP Anglerfish algorithm man-356

aged to arrive to the optimal results. Considering the minimal computational time in-357

volved for both runs, and the plausible adaptation to parallel runs, we believe that the358
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No. of
Iteration

Best
Result

Mean
Result

Std.
Dev.

Std.
Error

600 7775 8558.5 375.7 68.6
1000 7922 8525.4 402.9 73.6
1500 7854 8559.4 362.9 66.3
2000 8142 8637.3 346.4 63.3
3000 7764 8387.8 396.1 72.3
4000 7542 8447.9 391.8 71.5

Table 7: Results for the berlin52 runs from the legacy Anglerfish (TSP) algorithm. Since
there is no reference point and the size of the cities involved, multiple runs were exe-
cuted using between 600 to 4000 cycles as termination points. The optimal solution was
generated after 4000 runs. As mentioned previously, the number of individuals were
controlled at 10000.

proposed algorithm would be able to generate unconventional solutions as compared359

to the gradual improvement strategy employed by most optimization algorithms. Al-360

though there is no rule of thumb, a large time cycle would be adequate for the algorithm361

to stumble on the optimal values. This is suitable as the algorithm is computational in-362

expensive to run (i.e., and can be executed in parallel environment).363

6 Conclusion364

Extensive computational power is now available in the form of multi-core processors,365

where instruction can be executed in parallel. Therefore, the need of complicated al-366

gorithms to speed up computational is no longer necessary. To leverage on such tech-367

nology, we need to be able to run simple instructions concurrently for multiple times.368

The proposed Anglerfish algorithm fits this description. The algorithm traverses the369

search landscape using random sampling without any complicated procedural rou-370

tines. Issues such as the termination criterion and the efficacy of the algorithm re-371

mained, however, the proposed algorithm can become a blueprint towards realigning372

the bio-inspired metaheuristics field in producing simple and elegant solution, lever-373

aging on the current computational platform for future autonomous optimization.374

7 Additional Information375

The Anglerfish TSP algorithm is available for downloads at376

https://github.com/meifoong/AnglerfishAlgorithm377
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