
2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

978-1-5386-5488-0/18/$31.00 ©2018 IEEE 1478

An unobtrusive sensing solution for home based post-
stroke rehabilitation. 
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This paper proposes the use of unobtrusive sensing solutions to 
facilitate post-stroke rehabilitation exercises in home-based settings. 
Radar and thermal sensors are used to collect real-time data from a 
human subject as they perform rehabilitation exercises.  The data 
collected is then compared with a gold standard exercise, which has 
been clinically prescribed, to allow feedback to be provided on how 
the exercises have been completed. The first iteration of the technical 
platform is presented and plans for its further development are 
outlined.  
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I. INTRODUCTION 

The World Health Organisation (WHO) revealed that 
approximately 15 million people worldwide suffer from stroke each 
year. Furthermore,  an increase of 3.4 million incidents is 
anticipated by 2030 [1]. These statistics evidence the significant 
burden being placed on post-stroke rehabilitation centers, facilities 
and devices, which are aimed at retraining the affected 
neuromuscular functions of post-stroke sufferers. 

A. Post-Stroke Rehabilitation Techniques 
A range of post-stroke rehabilitation techniques have been explored 
in the past three decades [2]. These have included neurofacilitatory 
therapies such as the Bobath concept; isolated approaches such as 
isokinetic muscle strengthening and stretching; motor skill learning 
like constraint-induced movement therapy (CIMT); mirror neuron 
and motor imagery intervention; adjuvant therapies and technology 
based rehabilitation (TBR) [3] [1]. 

A systematic review by Pollock et al. [4] acknowledged that some 
physical rehabilitation activities can help recovery of motor 
functions post stroke. Some of these activities include CIMT, 
stretching and forced-use. While wearable devices can help 
monitor these activities they do, however, suffer from a range of 
problems relating to battery life, wearability, and adoption. 
Furthermore, rehabilitation centers pose a range of logistical 
complexities such as transportation constraints [5]. These 
challenges, amongst others, make home based unobtrusive sensing 
solutions, which offer benefits such as convenience and a feeling 
of relaxation and self-empowerment attractive offerings [6]. 

Unobtrusive sensing also offers the advantage of non-disruptive 
monitoring without the user having to wear or charge a device 
which may sometimes slip-off, be forgotten or become 
uncomfortable [5] [7]. It enables the user to perform activities of 
daily living (ADLs) without cuffs, belts and adhesives as could be 
the case with wearables. This work presents a novel unobtrusive 

sensing solution based on a heterogeneous sensor fusion technique 
to monitor post-stroke rehabilitation exercises within a home-
based environment. 

II. UNOBTRUSIVE MONITORING: THERMAL AND RADAR

Unobtrusive monitoring can be defined as the use of sensors for 
data acquisition from a target without any physical connection 
between the sensor(s) and the target(s) itself [8]. Some examples 
of unobtrusive sensors include: video camera; thermal, radar, 
ultrasonic and depth sensors. Thermal and radar sensors are 
considered suitable for this study because of the added advantages 
they provide over the above-mentioned [9] [10]. While the video 
camera is illumination dependent and has privacy concerns [11], 
the ultrasonic sensor has low range and temperature dependability 
[10]. Furthermore, thermal sensing is capable of measuring the 
surface temperature of its target in all lighting conditions [7] and 
also protects the user’s privacy. These capabilities have been 
demonstrated by recent research on home based ADLs and 
workplace sedentary behavior monitoring by Hevesi et al. [12] and 
Synnott et al. [7],  respectively. Furthermore, radar sensor is 
preferred to depth sensor because the latter suffers from pattern 
interference and depth accuracy when the user distance increases 
above 2.5m from the sensor [13]. Other advantages of radar 
sensing solutions include the ability to generate velocity 
calculations, resistant to temperature, dust, humidity and non-
interference with legacy systems and radio frequency [10].  

III. THE PROPOSED APPROACH

The proposed approach considers the fusion of thermal and radar 
sensors due to the aforementioned advantages and complementary 
data gathering. This implies that raw measurement data from both 
sensors will be sent to a fusion centre for spatial and temporal 
alignment. This would be followed by gating and association 
algorithms before central track management, filtering and 
prediction [14]. This fusion architecture is known as the centralized 
fusion architecture (CFA). It will be explored due to its ability to 
optimise estimated positions, reduced weight, cost and power 
requirement [14]. Here, the thermal sensor images will be 
complemented by the radar sensor’s velocity (rate of displacement) 
calculation based on Doppler effect. This effect is very useful in 
determining the rate of displacement of the upper limb on instances 
of extension and flexion using multi-scale image decomposition 
algorithms (which will continuously track, average and analyse 
waveforms of body segments of interest) [15]. These algorithms 
provide flexible control over data reporting, improved tracking and 
performance [16].  
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IV. MATERIALS AND METHODS

A Heimann HTPA 32x31 thermal sensor and HB100 radar were 
used for this experiment. The thermal sensor was connected to 
Sensor Central [17]. Frame images were stored after implementing 
adaptive background subtraction algorithms. 

The sensor was positioned horizontally above the ground. Data 
were collected at the instances of adduction, abduction, extension 
and flexion (Fig. 1) of the forearm with a human subject standing 
1.5m distance from the sensor.  

The HB100 radar sensor was programmed to run on MATLAB 
R2018a. It was connected to a PC via Arduino Uno 
microcontroller. Two signal types were gleaned from the radar 
sensor. These were analog (blue) and digital (red) output (Fig. 2). 
The digital output operated between two voltage levels (0 – 5V); 0 
represented ‘no displacement’ while 5V represented a ‘high 
displacement’. The analog output ranges from 2.5V to 5V. 
Measured displacement rates were represented by different voltage 
levels (Fig. 2). 

Fig. 1: HTPA 32X31 Thermal Sensor Images 

Fig. 2: HB 100 Radar Sensor Data. A = High displacement, B = No 
displacement and C = Low displacement.  

V. EXPERIMENTAL RESULTS AND DISCUSSION 
The HTPA 32x31 sensor generated thermal (grey) images based on 
the temperature of the body. In Fig. 1, thermal_13-14 and 15-16 
showed abduction and adduction, respectively while thermal_23-26 
indicated flexion and extension. Nevertheless, the image quality 
depreciated when the human subject was more than 3m from the 
sensor. 

Fig. 2 presents the HB 100 radar sensor data. It was observed that 
its analog output was able to distinguish between different 
displacement levels (an analogy of voltage levels) with time 
represented by A, B and C. This characteristic will help to 
determine the rate and velocity at which the upper extremity is 
stretched post stroke. 

Further work will involve the CFA and development of an avatar 
user interface (Fig. 3) to provide feedback to users of how well 
their exercises are following what they have been prescribed. 

Fig.3: Indicative interface of providing user feedback. 

VI. CONCLUSION AND FUTURE WORK

This paper presented a novel unobtrusive sensing solution aimed at 
assisting post-stroke sufferers in home-based settings. 
Experimental results presented thermal and radar sensor data of 
human subjects as they performed rehabilitation exercises. The 
next phase of this work will feature data fusion and avatar 
superimposition. Future work will attempt to monitor human 
subjects at any location within the line-of-sight of the sensors. 
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