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Abstract—The electroencephalogram (EEG) signals tend to
have poor time-frequency localization when analysis techniques
involve a fixed set of basis functions such as in short-time Fourier
transform (STFT) and wavelet transform (WT). These signals
also exhibit highly non-stationary characteristics and suffer from
low signal-to-noise ratio (SNR). As a result, there is often poor
task detection accuracy and high error rates in designed brain-
computer interfacing (BCI) systems. In this paper, a novel
preprocessing method is proposed to automatically reconstruct
the EEG signal by selecting the intrinsic mode functions (IMFs)
based on a median frequency measure. Multivariate empirical
mode decomposition (MEMD) is used to decompose the EEG
signals into a set of IMFs. The reconstructed EEG signal has
high SNR and contains only information correlated to a specific
motor imagery task. The common spatial pattern (CSP) is used
to extract features from the reconstructed EEG signals. The
linear discriminant analysis (LDA) and support vector machine
(SVM) have been utilized in order to classify the features
into left hand motor imagery (LHMI) and right hand motor
imagery (RHMI) tasks. Our experimental results on the BCI
competition IV dataset 2A show that the proposed method with
fifteen channels outperforms bandpass filtering with twenty-two
channels (> 1%) and by > 9 % (p = 0.0078) with raw EEG
signals, > 13% (p = 0.0039) with empirical mode decomposition
(EMD) based filtering and > 17 % (p = 0.0039) with discrete
wavelet transform (DWT) based filtering.

Index Terms—BCI, MEMD, filtering, common spatial pattern,
linear discriminant analysis.

I. INTRODUCTION

A brain-computer interface (BCI) is a system which fa-
cilitates a means of communication with external assistive
devices utilizing brain signals such as electroencephalogram
(EEG) [1]. In BCI, the aim is to translate the intent of a user
into control command by EEG signals for a neuroprosthetics
or a computer application. A popular example for a BCI
modality is motor imagery (MI) based BCI [2], [3]. The user
is expected to imagine the execution of a movement for a
particular limb. Moreover, a rhythmic activity is seen in the
sensorimotor cortex of the brain for a specific movement
in MI-based BCI [4], [5]. The BCI systems identify these
rhythmic activities and translate them into desired command.
One of the major problems in EEG based BCI systems is the
non-stationarity which arises when EEG signals are originating
from different sources. In addition, the recorded EEG signals
have a low signal-to-noise ratio (SNR)[6]. The low SNR may
be due to artifacts resulting from electrooculogram (EOG)
or electromyogram (EMG) interference and electrical power
lines.

To increase the SNR, a useful step would be to remove these
distortions or artifacts from raw EEG signals before extracting
the features for classification [1]. An extension method based
on common spatial pattern (CSP) has been studied to handle
the adverse results of intervention from noisy EEG signals [7].
A Bayesian learning method has been implemented for spatial
filtering in [8] for handling EEG signals with extremely low
SNR. The methods built on the self-organizing fuzzy neural
network (SOFNN) and the neural network (NN) concepts
have also been proposed to attain better feature separation
for MI tasks in MI-BCI [9], [10], [11]. Recently, a filtering
technique based on quantum neural network has been pro-
posed before the feature extraction step in [5] to gain better
separation between classes. However, a univariate empirical
mode decomposition (EMD) technique is also well suited for
the analysis of non-stationary and non-linear signals [12],
[13], [14]. This method is data dependent and adaptive in
nature. It gives a group of intrinsic mode functions (IMFs).
These are considered as narrow-band amplitude and frequency
modulated (AFM) signals. Univariate EMD, however suffers
from the problem of mode-mixing wherein similar frequencies
occur in different IMFs [15]. To overcome this issue, a multi-
channel version namely, multivariate EMD (MEMD) has been
investigated to show its comparative advantage [16], [15], [17],
[18]. The MEMD allows to achieve high localization of infor-
mation pertaining to specific frequency-bands. It decomposes
the raw EEG signal into a finite set of frequency modulated
(FM) and amplitude modulated (AM) components known as
multivariate IMFs (MIMFs) [15]. It also provides the same
number of IMFs for all the data channels in the time domain.
It should be noted that the original MEMD decomposition
method used visual inspection to discard the MIMFs [15].
Recently, a research group investigated several popular signal
processing techniques, namely, EMD, discrete wavelet trans-
form (DWT) [19] and wavelet packet decomposition (WPD)
to classify multi-channel EEG signals into two classes ([20].
Moreover, EMD and DWT have been studied on a single ECG
channel to extract respiratory waveforms [21].

In this work, a novel way to automatically select the subject
specific MIMFs is proposed. The selected MIMFs are chosen
based on the median frequency measure corresponding to
mu and beta rhythms. These selected IMFs are summed to
reconstruct EEG signal and remaining MIMFs are discarded.
The detailed procedure for MIMF selection is provided by the
algorithm II discussed in Section II .
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Fig. 1. Block diagram of the proposed methodology

Previously, a filtering technique was proposed [12] based on
EMD which is restricted to decomposition of EEG signals on
one channel at a time in MI-based BCI. Also, a multivariate
extension of EMD based filtering was also proposed namely,
MEMD based filtering [22], wherein mean frequency was
utilized to identify the MIMFs with all the provided twenty-
two channels but in this work only fifteen channels are used for
studying the median frequency measure to automatically iden-
tify the subject specific MIMFs to reconstruct the enhanced
EEG signals without compromising with the classification
accuracy.

The aims of the paper are thus as follows:

1) To investigate the inter- and intra-subject non-
stationarities persistent in the EEG signals;

2) To study whether the subjects have the different or same
frequency components involved in MI task when EEG
signals are measured from the same cortical areas;

3) Use median frequency measure to automatically find the
subject specific MIMFs;

4) To find whether it is possible to achieve better classifi-
cation accuracy using fewer monopolar EEG channels;

5) To report the classification accuracy when single trials
are classified.

A block diagram representation of the proposed pipeline
including MEMD based filtering with CSP features is shown
in Figure 1. The remaining paper is organised as follows: In
Section II, a brief introduction about the MEMD technique
is discussed. The CSP features and details about the LDA
classifier are discussed in Section III and Section IV. The
results pertaining to the proposed method along with the

Fig. 2. Channels over the motor cortex used for the current study.

discussion on those results and comparison with the method-
ologies developed by other research groups are discussed in
Section V and finally, the paper concludes in section VI.

II. MULTIVARIATE EMPIRICAL MODE DECOMPOSITION
(MEMD)

The EMD is a data driven technique to decompose a signal
into a finite set of band limited basis functions called IMFs
[23]. The MEMD has been developed recently where the local
mean is computed by averaging the projection of the signal
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across multiple n−dimensional envelopes. The EEG signals
tend to have poor SNR. They also suffer from interference
from both EOG and EMG [24]. The EEG signals of interest
corresponding to a particular movement (such as µ and β
rhythms for motor imagery) may contain a lot of noise
which leads to erroneous results. Therefore, a preprocessing
technique is required to filter out the noise without weakening
the original signal. In 1998, Huang et al. proposed EMD
[23] which decomposes the original signal into a finite group
of band limited basis functions which are known as IMFs,
represented as follows:

Z(t) =

p∑
k=1

Ik(t) +Rdp(t) (1)

where Z(t) denotes the actual signal in the time domain, Ik(t)
represents the kth IMF, and Rdp(t) gives the residue. Thus, a
summation of the selected IMFs can be done to reconstruct the
signal of interest. Rest of the IMFs are discarded which may
contribute to other artifacts and noise. However, univariate
EMD suffers from the mode-mixing issue. To overcome this
issue, another research group has proposed an ensemble empir-
ical mode decomposition (EEMD) method [25]. Unfortunately,
it is also not suitable for real-time implementations because it
adds white noise to the signals and requires ensemble of many
EMD methods which make this method very time-consuming.
Further, a multichannel version of the EMD method has been
proposed which utilizes cross channel information present
across channels called MEMD [15], [26], [27], [28]. The mean
A(t) is computed through multivariate envelope curves, given
as [29]:

A(t) =
1

p

p∑
j=1

eθj (t) (2)

where j gives the length of vectors. eθj (t) denotes the multi-
variate envelope curves for the entire set of direction vectors.
Further, the candidate IMF Rd(t) by Rd(t) = Z(t)−A(t) is
computed. If the candidate IMF satisfies the stoppage criterion,
then it becomes the multichannel IMF. Otherwise, we set the
input Z(t) equal to the remainder Rd(t) and the complete
process will be repeated again till remaining multivariate IMFs
have been extracted. For more details refer to [15].

The contribution of this work is to automatically select the
subject specific MIMFs for a particular subject corresponding
to µ and β rhythms and then perform the summation of
selected MIMFs. In order to select the MIMFs, the median
frequency measure has been calculated for all MIMFs corre-
sponding to the LHMI and RHMI. The median frequency of
each IMF is calculated as half of the total power of IMF in
the frequency domain [30]. The mathematical expression of
median frequency is given as,

MDNFIMF =

MDNF∑
i=1

Pi =

n∑
i=MDNF

Pi =
1

2

n∑
i=1

Pi (3)

where n denotes the length of frequency bin, and Pi gives the
total power of IMF in the frequency domain. These computed
median frequencies of each IMF represent frequency at which

the IMF power spectrum is divided into two regions having
equal amplitude in the spectrum in frequency domain. The
median frequency was used to first automatically identify the
subject specific MIMFs providing major contribution to µ and
β rhythms. Thereafter, the selected MIMFs are summed to
reconstruct the enhanced EEG signals corresponding to the
LHMI and RHMI. The reconstructed EEG signals contains
information which provides major contribution to mu (µ) (8-12
Hz) and beta (β) (16-24 Hz) rhythms observed over the central
region of the brain when the subjects plan or execute hand
movements. The features extracted from the reconstructed
EEG signals are used for classification of LHMI and RHMI
tasks.

Algorithm 1 Proposed pre-processing algorithm
Input: Let X denotes the signal in time domain
Output: Enhanced EEG signal in time domain

1: for each trial
2: MIMFs=memd(X)
3: Compute median frequency(mf) for each MIMF
4: if (mf > 6 and mf < 24 ) then
5: MIMFx is/are selected.
6: else
7: MIMF is discarded.
8: end if
9: Filtered signal=sum(MIMFx)

10: return Filtered signal

III. COMMON SPATIAL PATTERN (CSP)

CSP features are calculated by utilizing the CSP algorithm
from selected fifteen channels corresponding to MI-based BCI
( Fig. 2 ). The CSP algorithm may be understood as a method
which generates weight maps of the selected channels for
EEG signals. These weight maps provide the importance of
EEG signal content of the channels for separating the two
conditions present in the data [31], [32]. These weight maps
are spatial filters which are then projected onto data. With
the projection of these spatial filters, the data is altered in
such a way that the ratio of the variance for EEG amplitudes
between the given two conditions is maximized. Therefore,
the variance of the filtered EEG signal may serve as a
discriminative feature for a two-class classification problem.
The scalp potentials of the recorded EEG signal may not
have good spatial resolution. One possible reason may be the
volume conduction problem. With the poor spatial resolution,
the EEG signal classification task becomes tougher if other
sources give stronger signals when compared to the required
signal in the specified frequency range [31].

As mentioned in Section I, the CSP algorithm has shown
promising results in computing spatial filters for detecting
event related desyncronization / event related synchronization
(ERD/ERS) [31], [33]. It is a trial specific supervised decom-
position of signals which is parameterized by a projection
matrix PM ∈ <Chn×Chn where Chn denotes the number of
channels selected. In EEG signal sensor space, PM gives the
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Fig. 3. The EEG signal corresponding to channels FC3, C3, Cz, and C4 of the trial 1 of A08T for the LHMI task and its first nine IMFs.

projection of a single trial Tr ∈ <Chn×t to C ∈ <Chn×t in
the surrogate sensor space, which is represented as:

C = (PM)T × Tr (4)

where Tr gives Chn×t EEG measurement data from a single
trial, obtained from Chn EEG channels sampled t times. The
spatial filters are denoted by the rows of PM .

The spatially filtered signal C provided in (4), maximizes
the ratio of the variances of the two classes. A CSP analysis
is employed to obtain an efficient discrimination between two
different conditions which are described by ERD/S phenom-
ena. However, the variances concerning to a small subset of
spatial filters are usually selected. The first M and last M
rows of C i.e., Ce , e ∈ {1, 2, ..., 2M} given in (4) are used.
In this study, we have considered M = 5 spatial filters. For
more details, refer to [31].

IV. CLASSIFICATION

Generally, it is a demanding task to find the best feature
combination which can reduce classification errors and pro-
vide better feature separability [34]. The LDA classifier and
SVM classifier with linear kernel have been applied in this
work, which is most popularly used on EEG signals for BCI
applications. It reduces the dimensionality of the feature set
and also preserves the maximum information required for class
discrimination.

V. RESULTS AND DISCUSSION

The BCI competition IV dataset 2A [33], [35] has been
used for this study. This dataset contains EEG signals recorded
from nine healthy subjects, namely, A01-A09 for left hand,
right hand, feet, and tongue MI tasks. The effectiveness of
the proposed preprocessing technique has been evaluated on
LHMI and RHMI tasks in all nine subjects. Each subject’s
EEG data is recorded over two sessions, e.g., A01T and A01E
[33], [35]. In this paper, only fifteen channels (i.e., FC3, C3,
CP3, FC2, C2, CP2, FC1, C1, CP1, FCz, Cz, CPz, FC4,
C4 and CP4) are considered for analysis from the available
twenty-two channels as shown in Figure 2. More details on
this dataset can be obtained from [35]. For the computation
of classification accuracy (in %) for each subject, 100% of
A0ST data has been considered for training the classifier
model using an LDA classifier. Then, it is evaluated on 100%
data A0SE of the evaluation session, where S represents the
subject number. In the MI paradigm, the MI task begins at
2 second; the training session and evaluation session features
have been extracted from the 2.5 to 4.5 seconds time interval
similar to the competition winner [33].

During the training session, a five-fold cross-validation has
been applied to classify the EEG signals into LHMI and
RHMI tasks. To demonstrate the decomposition dynamics of
the MEMD technique, single trial EEG signals per class are
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Fig. 4. The EEG signal corresponding to channels FC3, C3, Cz, and C4 of the trial 1 of A08T for the RHMI task and its first nine IMFs.

considered from the subject A08’s training session data A08T.
Figure 3 demonstrates the LHMI tasks, raw EEG signals and
its obtained IMFs whilst Figure 4 gives the RHMI EEG signal
and its obtained IMFs. The statistical mean frequency measure
has been computed for each of the IMFs obtained pertaining
to LHMI and RHMI tasks. To get enhanced EEG signals
pertaining to these MI tasks, the IMFs are first identified based
on mean frequencies which lie in the frequency range 4− 33
Hz [12]. This frequency range comprises the mu (µ) band
and beta (β) band. These bands play a critical role in the
identification of MI EEG signals [5], [36], [12].

Figure 5 and Figure 6 display the feature distribution of
four features. The box plot in Fig. 5 represents the four
features using the Kruskal-Wallis test with the MEMDBF
method. To show the effect of the proposed method on the
available features, feature separability is evaluated using the
Wilcoxon test method for the LHMI and RHMI tasks. The
features are arranged in decreasing order of class separability.
The proposed preprocessing method has thus helped achieve
statistically significant improvement in feature separability
(p < 0.005) in training session for the LHMI and RHMI tasks.
Figure 6 displays the same four features from the raw EEG
signals giving p-values of 0.0250, 0.3816, 0.1572, and 0.0046.
These p-values reveal the fact that the two features are not
significantly different in their feature distribution for the LHMI
and RHMI tasks. However, with the proposed pipeline, the

p-values show a statistically significant difference in feature
distribution for all four features. The subject A01 was used
for computing results. The non-parametric Wilcoxon test is
used for ranking the four features.

Table I illustrates the specifics of the rejected trials in the
evaluation session from each subject marked with the event
1023 [35]. Subjects A04 and A06 have maximum number of
the rejected trials. Subject A04 has a total 28 rejected trials
while Subject A06 gives a total of 36 rejected trials. The
rejected trials pertaining to right hand and left hand MI tasks
across all nine subjects are as follow: right hand 58 trials and
left hand 55 trials respectively. A subject specific rejected trials
across all the nine subjects can be obtained from Table I.

TABLE I
REJECTED TRIALS FROM ALL SUBJECTS

Subject Total Correct Rejected Left Right
Trials Trials Trials hand hand

A01 144 141 3 1 2
A02 144 142 2 1 1
A03 144 137 7 5 2
A04 144 116 28 13 15
A05 144 135 9 2 7
A06 144 108 36 19 17
A07 144 140 4 1 3
A08 144 134 10 6 4
A09 144 130 14 7 7
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Table II shows the classification accuracy and precision
for the BCI competition IV dataset 2A obtained using LDA
classifier and SVM [37] classifier (linear kernel) with the pro-
posed method. This method provides enhanced EEG signals
for all A01-A09 subjects as compared to raw EEG signals,
EMD based filtering and DWT based filtering, across two
sessions namely, the training and evaluation sessions. This
pre-processing step has helped to achieve a classification ac-
curacy of 79.19% with LDA classifier and 79.18% with SVM
classifier (linear kernel) in the evaluation session. Moreover,
the classification accuracy was computed using other kernel
functions as well such Additionally, the precision obtained is
79.88 and 80.22 using LDA and SVM classifier respectively.

Table III presents the comparison of the classification results
obtained using the proposed method, raw EEG signals and
other filtering techniques such as EMD based filtering and
DWT based filtering. With the enhanced EEG signals using
the MEMDBF method, the group average of classification
accuracy improved by 6.68% as compared to raw EEG signals,
6.87% as compared to EMD based filtering and 11.49% as
compared to DWT based filtering across all subjects consider-
ing both training and evaluation sessions. Evaluation accuracy
has been computed with a classifier model created using 100%
training session data. The results computed in the training
session clearly depict that the average of the classification
accuracy improved by 4.01% (p = 0.0742) with a standard

deviation of 11.86 with the MEMDBF-CSP method compared
to the raw EEG signals considering the same features. The
proposed method also helped to achieve an average group
improvement of > 5% as compared to DWT based filtering in
the training session. Notably, eight of the nine subjects have
improved in classification accuracy in the evaluation session
when compared to other filtering techniques and raw signals.
Also the group average of classification accuracy across all
nine subjects has improved by > 9 % (p = 0.0078) with
raw EEG signals, > 13 % (p = 0.0039) with EMD based
filtering and > 17 % (p = 0.0039) with DWT based filtering
respectively. The proposed method was able to select the IMFs
which were contributing to the specific bands.

With the proposed method, the difference between accura-
cies obtained in the training session and evaluation session
have been very minimal (>3 %). As discussed, the training
session accuracies have been computed using a five-fold cross-
validation mechanism. Evaluation accuracies in Table III has
been computed by creating a learning model with 100% of
the training session data. Subjects A01, A03, A08, and A09
have obtained greater classification accuracy in the evaluation
session as compared to the training session accuracies. In
the column Evaluation, Subjects A02, A04, A05, A06, and
A07 have a difference of < 8.5% in terms of classification
accuracy across training and evaluation sessions. Thus, the
results clearly show the proposed pipeline has helped to
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Fig. 6. The box plot reveals that the same four features from the raw EEG signals are not statistically significant in terms of separability with p-values
(0.0250, 0.3816, 0.1572 and 0.0046).

TABLE II
CLASSIFICATION ACCURACIES (IN %) OBTAINED WITH THE PROPOSED MEMDBF METHOD AND RAW EEG SIGNALS BY LDA AND SVM CLASSIFIERS

EVALUATED ON BCI COMPETITION IV DATASET 2A.

.

Subject MEMDBF-CSP
LDA SVM(Linear Kernel)

Accuracy Precision Accuracy Precision
Training Evaluation Training Evaluation Training Evaluation Training Evaluation

A01 90.28 90.78 88.7 93.94 89.48 91.49 100 94.03
A02 65.28 57.75 65.16 55.45 61.9 59.86 76.92 57.95
A03 93.75 97.08 93.35 97.01 90.96 94.89 84.62 96.88
A04 74.31 70.69 69.81 68.66 72.11 70.69 57.14 75.51
A05 68.06 61.48 66.74 65 59.04 60.74 57.89 66.67
A06 78.47 70.37 78.64 69.09 73.62 67.59 76.92 66.07
A07 79.86 72.14 78.59 75.81 78.53 75 80 69.57
A08 97.22 97.76 95.14 95.65 96.57 97.76 100 97.01
A09 93.75 94.62 93.1 98.33 93.03 94.62 92.86 98.33

Average 82.33 79.19 81.03 79.88 79.47 79.18 80.71 80.22
Std 11.86 15.85 11.98 16.42 13.8 15.49 15.86 16.18
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TABLE III
CLASSIFICATION ACCURACIES (IN %) OBTAINED WITH THE PROPOSED MEMDBF METHOD AND RAW EEG SIGNALS BY LDA CLASSIFIER EVALUATED

ON BCI COMPETITION IV DATASET 2A.

.

Subject MEMDBF-CSP Raw EEG Signal EMD-CSP DWT-CSP
Training Evaluation Training Evaluation Training Evaluation Training Evaluation

A01 90.28 90.78 72.27 69.44 84.01 68.79 70.17 53.19
A02 65.28 57.75 63.21 50 73.62 49.3 70.81 50
A03 93.75 97.08 91.65 90.28 89.48 81.75 76.96 64.96
A04 74.31 70.69 71.58 59.03 77.14 54.31 70.81 53.45
A05 68.06 61.48 67.92 50 74.39 51.85 73.67 51.85
A06 78.47 70.37 67.99 54.86 77.73 58.33 71.57 49.07
A07 79.86 72.14 86.18 65.28 75.02 45 82.66 60.71
A08 97.22 97.76 95.19 97.92 95.12 92.54 86.89 80.6
A09 93.75 94.62 88.86 91.67 93.12 88.46 90.91 88.46

Average 82.33 79.19 78.32 69.83 82.18 65.59 77.16 61.37
Std 11.86 15.85 12.04 18.82 8.47 17.95 7.8 14.22

p-value 0.0078 0.0039 0.0039

TABLE IV
COMPARISON OF CLASSIFICATION ACCURACIES (%) OBTAINED WITH THE PROPOSED MEMDBF METHOD AND OTHER STATE-OF-THE-ART METHODS

EVALUATED ON BCI COMPETITION IV DATASET 2A.

Subject MEMDBF-CSP Method-1 Method-2 Method-3
A01 90.78 88.89 90.28 90.28
A02 57.75 51.39 54.17 57.64
A03 97.08 96.53 93.75 95.14
A04 70.69 70.14 64.58 65.97
A05 61.48 54.86 57.64 61.11
A06 70.37 71.53 65.28 65.28
A07 72.14 81.25 62.5 61.11
A08 97.76 93.75 90.97 91.67
A09 94.62 93.75 85.42 86.11

Average 79.19 78.01 73.84 74.92
Std 15.85 17.01 15.93 15.42

p-value 0.2852 0.0039 0.0039

counteract the inherent intersession non-stationarity present in
the EEG signals. This difference in the classification accuracy
across evaluation sessions in all subjects may be accounted
with the adaptive techniques/ transfer learning mechanisms.

Table IV presents the comparison of classification accuracy
values calculated with the MEMDBF-CSP method and other
comparable works in the literature. The proposed MEMDBF-
CSP has shown comparable performance with one approach
reported in [38] and substantial improvement when compared
to other research works reported in [39]. The superior average
classification accuracy has been achieved across nine subjects
in comparison to results reported by four most recent advanced
methods. The method-1 [38] reported 78.01% (p = 0.2852),
method-2 [39] obtained 73.84% (p = 0.0039) and method-3
[39] reported 74.92% (p = 0.0039). The Wilcoxon signed rank
test has been used to compute the p-values. These methods in-
vestigated the same two-class classification problem to classify
the LHMI and RHMI tasks but there is a slight variation in the
number of channels. Using the method-1, twenty-two channels
raw EEG signal was bandpass-filtered between 8-30 Hz and
further the CSP features with a number of components (nc=3)
were extracted. Thereafter, the features set was calculated by
taking the log variance of three pairs of selected filters. Finally,
they classified the feature set by an LDA classifier [38]. The
method-1 considered all twenty-two channels(nch =22) to
compute the classification accuracy while comparable results
are obtained with the MEMDBF-CSP method using only
fifteen channels(nch =15). Method-2 and method-3 used only

ten channels (nch =10) for the study. They extracted CSP
features from the bandpass filtered ten EEG channels and
further only 1 component (nc=1) was selected from the CSP
features. They detected the covariate shift in the feature matrix
and then applied adaptive learning and transductive learning
to adapt to the covariate shifts [39]. Their method performs
adaptation by updating the classifier in the evaluation stage.
More details can be obtained from [39]. The MEMDBF-CSP
thus demonstrates a tangible improvement in classification
accuracy for seven of the nine subjects as marked in boldface
in Table IV.

VI. CONCLUSION

A pipeline, namely, MEMDBF-CSP has been proposed to
enhance performance in MI-based BCI with a minimal number
of channels. This pipeline has the MEMDBF method as a
preprocessing step which is an extension of the MEMD. In
the second step of this pipeline, CSP features have been
implemented for enhancing the performance of a two-class
MI-based BCI. The key idea in the proposed pipeline is that
at the preprocessing stage, MEMD based filtering removes
inherent non-stationarity present in EEG signals to some extent
whilst filtering artifacts and noise. The enhanced EEG signals
have zero mean. There is no complexity introduced at the
feature extraction step or the classification step. A highly
significant performance has been obtained in MI-based BCI
simply by enhancing the EEG signals at the pre-processing
stage. A selection of multiple IMFs based on the median
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frequency measure which lie in the frequency range of the
mu and beta bands, helped gain improvement in classification
accuracy, while classifying LHMI and RHMI-based EEG sig-
nals as compared to raw EEG signals with CSP features. The
classification accuracy obtained from this pipeline has shown
significant improvement through both the training and the
evaluation sessions across multiple subjects. The MEMDBF
with CSP features has thus shown superior performance
in classification accuracy not only when compared to raw
EEG signals, but also when compared with similar advanced
techniques such as adaptive learning. An improved feature
separability was achieved using this pipeline. As a result, non-
stationarity present in the EEG signal has been handled to a
good extent. Future work may include proposing automated
computational methods such as a genetic algorithm (GA) or
particle swarm optimization (PSO) for selecting a subject
specific channel combination or parameters, which may further
increase performance. It may also be interesting to evaluate
the performance of pre-processing stage with hidden Markov
model (HMM) or long short-term memory (LSTM) networks.

REFERENCES

[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M.
Vaughan, “Brain–computer interfaces for communication and control,”
Clinical Neurophysiology, vol. 113, no. 6, pp. 767–791, 2002.

[2] G. Pfurtscheller, C. Neuper, D. Flotzinger, and M. Pregenzer, “EEG-
based discrimination between imagination of right and left hand move-
ment,” Electroencephalography and Clinical Neurophysiology, vol. 103,
no. 6, pp. 642–651, 1997.

[3] G. Pfurtscheller, C. Brunner, A. Schlögl, and F. L. Da Silva, “Mu rhythm
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