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Abstract— Motion-onset visually evoked potentials (mVEPs) 

are neural potentials that are time-locked to the onset of motion of 

evoking stimuli. Due to their visually elegant properties, mVEP 

stimuli may be suited to video game control given gaming’s 

inherent demand on the users’ visual attention and the 

requirement to process rapidly changing visual information. Here, 

we investigate mVEPs associated with 5 different stimuli to control 

the position of a car in a visually rich 3D racing game in a group 

of 15 BCI naïve teenagers and compared to 19 BCI naive adults. 

Results from an additional 14 BCI experienced adults were 

compared to BCI naïve adults. Our results demonstrate that game 

control accuracy is related to the number of trials used to make a 

decision on the users’ chosen button/stimulus (76%, 62% and 35% 

for 5, 3 and 1 trials, respectively) and information transfer rate 

(ITR) (13.4, 13.9 and 6.6 bits per minute (BPM)), although, even 

though accuracy decreases when using three compared to the 

commonly used five trial repetitions, ITR is maintained.  A 

Kruskal-Wallis test suggests that BCI naïve adults do not 

outperform BCI naïve teenagers in the 3D racing game in the first 

and seconds laps (p > 0.05), but do outperform in the third lap (p 

< 0.05). A comparison between BCI naïve and BCI experienced 

adults indicates BCI experienced adults do not perform better 

than BCI naïve adults (p > 0.05). 

 
Index Terms— brain-computer interface (BCI); motion-onset 

visually evoked potentials (mVEP); video game; 

electroencephalography (EEG); 3-dimensional (3D); neurogaming 

 

I. INTRODUCTION 

Visually evoked potential (VEP)-based brain-computer 

interfaces (BCIs) are a subset of BCIs which involve presenting 

visual stimuli in order to evoke a response in brain potentials 

measured using electroencephalography (EEG). Typically, 

flashing, flickering or moving visual stimuli are presented via 

computer screens/lighting panels to which the user attends 

visually. Each stimulus represents a command for the BCI 

system to process and execute. 

P300 VEPs have been successful in BCI spelling applications 

[1][2] and neurogame control [3][4] and involve using stimuli 

which are flashed, either individually or in groups at specific 

times. When the users’ gaze is focused on the intended target 

stimulus, a P300 response occurs i.e., a rare occurrence of the 

stimulus flash creates a positive peak in the EEG at around 

300ms post-stimulus and often referred to as the “oddball 

paradigm” [5]. Steady-state VEPs (SSVEP) have been used in 

a number of BCI studies including BCI spellers [6], 

neurogames [7][8] and wheelchair/orthosis control [9][10]. 

Typically, a number of stimuli are presented, each flashing at a 

constant but fixed frequency. When the users’ gaze is focused 

on the intended stimuli, the resulting EEG activity enters into a 

“steady-state” matching the fundamental frequency of the 

flashing stimulus and its harmonics. Code-modulated VEPs 

(cVEP) involve flashing stimuli and have been used in BCI 

spelling applications [11][12], computer control [13] and 

control in virtual environments [14][15]. Typically, numerous 

stimuli are delineated on a screen/lighting board, each flashing 

at the same code-modulated flash rate but differentiated from 

each other using time-shifted code sequences.  

Since the inception of BCIs, addressing the low 

communication rates available has been a major challenge. In a 

BCI, the communication rate between the user and computer is 

measured in bits per minute (BPM) and defined as information 

transfer rate (ITR). VEP-based BCIs offer the highest ITR 

compared to other neural potentials.  Chen et al. [16] employed 

SSVEPs to control a spelling application resulting in the highest 

ITR of any BCI speller to date with communication rates of up 

to 319 BPM. Previously, cVEP-based BCIs spellers achieved 

ITR of up to 133 BPM [12]. Typically, P300 BCIs can achieve 

ITRs of around 43 BPM [17]. A disadvantage with ‘flash’-

based VEPs is that their reliance on flashing/flickering imagery 

can cause visual fatigue after long-term use [18][19]. Han et al 

[20] addressed the problem of visually fatiguing SSVEP stimuli 

with a steady-state motion visual evoked potential (SSMVEP) 

paradigm that used ring-shaped motion checkerboard patterns 

with oscillating expansion and contraction. In this visually less 

fatiguing and training free paradigm, 18 participants (10 BCI 

naive) achieved an average accuracy of 94% and ITR 91.2BPM. 

Motion-onset VEPs (mVEP) are an alternative to flash-based 

BCIs and evoked using motion-based stimuli. mVEPs have 

been used in BCI spelling applications [21], user interfaces [22] 

and neurogaming [23][24][25]. Typically, a mVEP stimulus 

comprises a rectangular white box with a black border with a 

total length of 1.24° and height of 0.76°. A red line of height 

0.66° serves as the stimulus’ salient object by appearing in the 

white box and beginning motion starting at the extreme right-

hand side moving in one continuous motion to the left-hand side 

in 140 milliseconds (ms) and subsequently disappearing (Fig. 

1). The perception of motion begins at the magnocellular layers 

of the primary visual cortex and extends to the medial temporal 

and medial superior temporal areas [26][27]. The mVEP 

response occurs following the sudden motion of a moving 

stimulus and is composed of three main peaks. The initial P100 

positive peak occurs at approximately 100ms post-stimulus 

with its early phase (80-110ms) originating at the lateral 

extrastriate cortex and its later phase (110-140ms) emanating at 

the ventral occipitotemporal cortex [28]. The motion-specific 

N200 negative peak at approximately 160-200ms is the most 

prominent component and generated in the extrastriate 

temporo-occipital and parietal areas [29]. The positive P300 

peak occurs at around 240-500ms post-stimulus and originates 

at the parietal up to central areas [22] whose amplitude can be 
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increased with more complex moving stimuli (Fig. 2). mVEPs 

offer a visually elegant BCI paradigm and reliable mVEP 

responses are elicited in the EEG even with low luminance 

values and contrasts as low as 20 cd/m2 and 2%, respectively 

[29]. As mVEPs involve stimuli which are visually more 

elegant and subtle than other VEPs, they may be more suited to 

integration as a neurogame controller. Videogames typically 

have demanding visual stimuli/features that introduce 

continuous flickering like those used in VEPs, thus impacting 

the gameplay experience and causing visual fatigue. 

 

 
Fig. 1.  Close-up of a single mVEP stimulus as used in this study. The red line 

inside the black box moves horizontally from right to left lasting for 140 

milliseconds (ms).  

 

Fig. 2. A simulated  mVEP response including P100, N200, P300 neural 

potentials. Due to the more pronounced peaks, there is a clear difference 

between the target (blue) and non-target (red) responses to moving imagery.  

Marshall et al. [24] published the first mVEP-based paper 

relating to neurogaming and presented three video games from 

the action, puzzle, and sports genres. Game control was 

achieved using one of 5 available on-screen mVEP stimuli. 

Average offline accuracy across all participants for all games 

was >70% while online accuracy yielded accuracies of >60%. 

In a follow-up study [25] the approach was improved i.e., 

participants were trained and tested within the same 

environment, stimuli were delineated within a dedicated 

controller area and more control instances were added. All 

scenarios achieved average offline and online accuracies of 

>77%.  Li et al. [30] exploited the N200 component of the 

mVEP response to control a robot. Six mVEP stimuli were used 

to control the robot’s movements i.e., walk forward/backward, 

shift left/right and turn left/right. In an online evaluation, 

participants achieved average accuracies of 85% and 88% using 

3 and 5 trials, respectively. In a second online evaluation, 

participants achieved 92% and 96% using 3 and 5 trials, 

respectively. In our previous work [23], we investigated the 

effects on mVEP classification performance with users 

subjected to different video game graphics, ranging from basic 

to state-of-the-art. Findings demonstrated the feasibility of 

using state-of-the-art commercial-grade graphics within 

mVEP-controlled neurogames. We also evaluated mVEP-based 

game control in a virtual-reality (VR) environment using an 

Oculus Rift [31] VR head-mounted display to display a mVEP-

based racing game with both basic and complex graphics [23]. 

Results showed that contemporary visual display technologies 

could be used in mVEP-based neurogaming without degrading 

mVEP detection accuracies, compared to a standard LCD 

monitor. In [32], we tested a group of fifteen BCI naïve  

teenagers who played an online 3D racing car game using 

mVEP stimuli to control a racing car. Using one of five stimuli, 

participants were asked to select the correct lane while the car 

travelled around a racing track. Across three laps, participants 

achieved an average online performance of 68% (11 BPM) with 

up to 95% accuracy (23 BPM).  

 Here, we evaluate further factors affecting mVEP detection 

accuracy and investigate if 19 of the 33 adults who were  BCI 

naïve could perform better than the  BCI naïve teenagers using 

mVEPs to play a 3D car racing game. While teenagers represent 

a smaller target audience for computer games than adults [33], 

understanding differences in performance was considered 

important for future neurogaming applications. Zhang et al. 

[34] used the commercially available EEG headset Emotiv 

Epoc [35] to study how effectively healthy children between the 

ages of 6 and 18 years could control a simple BCI using both 

VEP and motor imagery paradigms and report performance 

variances based on strategy, task and age. Here, as well as 

investigating the underrepresented children group in VEP BCI 

studies, a goal of the current study was to investigate a trade-

off between accuracy of control and gameplay speed with 

mVEPs by varying the number of stimulus/trial repetitions used 

to make decisions related to game control. Variations in the 

speed of racing laps in the game resulted in slow, medium and 

fast laps. This paper addresses a number of limitations with 

current neurogames including; age group comparison; 

improvements in graphical quality; speed of control; reduced 

electrode montages; and VEP BCI calibration. 

 

II. METHODOLOGY  

A. Data acquisition setup 

 Fifteen healthy BCI naïve (nvBCI) teenagers (age range 13-

16, 4 female) and 33 healthy adults (19 nvBCI and the 

remaining 14 had prior BCI experience (exBCI) age 18-40, 6 

female) participated. Details of the teenagers study including 

results are available in [32]. Ethical approval was granted by 

the Ulster University Research Ethics Committee (UUREC). 

Written consent was provided by all participants. All 

participants had normal or corrected to normal vision. The 

teenagers completed an offline calibration run followed by 

three slow speed online racing laps within a single session. The 

adults also completed an offline calibration lap, followed by 

three each of the slow, medium and fast racing laps. The EEG 

setup involved g.Tec hardware [36] consisting of twelve 

g.LadyBird active EEG electrodes placed onto a g.GammaCap 

according to the international 10-20 system of electrode 

placement covering occipital areas Cz, TP7, CPz, TP8, P7, P3, 

Pz, P4, P8, O1, Oz, and O2 (Fig. 3). EEG was amplified with a 

g.BSamp signal amplifier and digitised at 250Hz with a 

National Instruments NI6390 analogue-to-digital data 

acquisition card [37]. The 3D racing game was created in the 

Unity 3D games engine [38]. A Matlab [39] session-based 

interface was used to store/process the raw EEG signals. As 

each of the visual stimuli were activated in the game, a unique 

stimulus identifier was sent over a user datagram protocol 
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(UDP) connection to Matlab. Once data processing completed, 

a number, 1-5, is relayed back to the game to perform a real-

time action.  

  

 
Fig. 3. The 12-channel EEG montage used for the study, covering the occipital 

areas (electrodes coloured in purple). The left ear was used as reference (ref) 

and the forehead electrode (Fpz - coloured in orange) used as ground. 

 

B. BCI calibration 

During the calibration run, responses of the user were not 

translated into in-game commands and instead stored for offline 

analysis and BCI calibration. The participants’ task was to 

focus gaze on the target stimulus (Fig 1) out of the five 

available. The target stimulus on which the user should gaze 

was indicated by a red-coloured arrow cue placed directly 

above the stimuli (Fig. 4), whereas the four other (non-target) 

stimuli, indicated by a black coloured arrow were to be ignored. 

During the calibration run, the user viewed gaming scenes 

similar to those in the online game, with the exception of some 

online-specific gaming elements such as the car model, 

checkpoints, and on-road visual cues. In previous studies, it was 

shown that maintaining consistency between the calibration 

training and online visuals could have an impact on gaming 

with mVEPs, compared to using white screen background 

during the calibration runs [24][25]. During the calibration run, 

each of the five stimuli was a target 60 times yielding data from 

300 trials (5 stimuli × 60 activations). Individual trials lasted 

1000ms and involved activation of each of the five stimuli in 

random order. Fig. 5 depicts the trial timing details of the 

calibration run. 

 
Fig. 4. Participants’ first-person view of the calibration run. The current target 

is stimulus 1 (left-hand side) which is currently active (red line is in motion) 

and indicated by a red-coloured arrow pointer located directly above the 

stimulus. All other stimuli are non-target, to be ignored by the participant and 

have black-coloured arrow pointers.  

 
Fig. 5. Trial timing details of the calibration run. Each stimulus was active (in 

motion) for 140 milliseconds (ms) with a break between one stimulus and the 

next randomly selected stimulus lasting 60ms, yielding a stimulus onset 

asynchrony (SOA) of 200ms. There was a 600ms inter-trial interval (ITI). 

 

C. Online game paradigm 

 A lap is defined as one complete circuit of the racing course 

from start to finish (Fig. 6).  

 

 
Fig. 6. Aerial view of the racing course used in the game. Each of the 20 

checkpoints are depicted by a red marker.  
 

 Typically, in mVEP-based BCI systems, the greater the 

number of trials used to detect the users’ required stimulus, the 

more accurate the classification [30][40], but this can be at the 

expense of decreased control/communication/interaction speed. 

To investigate mVEP discrimination accuracy with 5, 3 and 1 

trial(s), three different car speeds were used in the adult study: 

a slow speed lap  that used 5 repetitions of the stimuli to provide 
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a game command per checkpoint, a medium speed lap with 3 

trial repetitions and, a fast speed lap with a single repetition. 

Each adult participant completed nine laps – three each using 5, 

3, and 1 trials for classification. As the lap speed changed, a 

different car was presented representing analogous 

achievement as in commercially available racing games 

[41][42]. Due to time restrictions on the teenage study, each 

teenage participant completed only three laps using 5 trials for 

classification [32]. Each lap of online gameplay contained 

twenty checkpoints and mVEP stimuli are presented twenty 

times, once for each checkpoint. The participant must choose 

the correct (indicated) lane out of five available. To accentuate 

individual control periods, stimuli are only presented and active 

when the player is making a lane choice and hidden while 

traversing the checkpoint. Visual cues in the form of five 

moving arrows were delineated onto the road surface ahead of 

the car and in the peripheral vision of the participant in advance 

of the checkpoint (Fig. 7). One green-coloured arrow depicts 

the target lane and four red-coloured arrows depict the non-

target lanes. The participants’ task was to quickly identify the 

green arrow prior to the presentation of the stimuli (each 

representing a game control, here defined as a ‘button’) and 

attend visually to the corresponding button whilst ignoring the 

remaining four non-target buttons. Participants were instructed 

to mentally count the number of times the target button was 

activated i.e., attend to its motion. Upon successfully 

identifying and subsequently choosing the button 

corresponding to the target lane, the car proceeds through the 

checkpoint at a fast speed taking one second of time while 

hitting a green-coloured arrow (Fig. 8), providing real-time 

feedback. If any of the four non-target lanes were chosen, the 

car progresses through the checkpoint at a slower speed taking 

two seconds of time while hitting the traffic cone corresponding 

to their chosen lane. The participant can complete each lap in 

the quickest possible time if all correct lanes are chosen. At the 

end of the lap, the completion time is shown to the participant. 

A player score was visible on the bottom right-hand side of the 

screen within the speedometer clock and updated at each 

checkpoint. 500 points were awarded for each correct lane 

chosen, 300 points were awarded if the participant chose either 

of the two lanes closest to the target and only 100 points were 

added if the participant chose any of the two lanes located 

farthest from the target lane. The maximum possible score was 

10000 points (500 points × 20 lanes). Fig. 9 depicts the games 

decision-making process. 

 

 
Fig. 7. Players’ third-person view of the on-road arrow cues ahead of the car to 
which the participant attends visually. All arrows flash which simulates visuals 

seen in commercially available racing games. The target lane (and 

corresponding stimulus) on which the user should choose (gaze) is lane 3. 

 
Fig. 8. User approaches each checkpoint containing one green arrow. If the 

correct lane has been chosen and classified, the user traverses the checkpoint 

and hits the green arrow in-game item, otherwise, a cone is hit. 

 

 
Fig. 9.  Decision-making process of each lap from start to finish. 

 

D. Data pre-processing and feature extraction 

 Data epochs were derived within individual trials and lasted 

for 1200ms beginning 200ms prior to the motion onset of the 

five stimuli and ran until all five stimuli were activated. Single 

trials were baseline corrected with respect to the mean voltage 

over the 200ms preceding individual trials. Data were digitally 

filtered using a low-pass Butterworth filter (order 5, with cut-

off at 10Hz) and subsequently resampled at 20 samples per 

second. Features were extracted between the 100ms and 500ms 

epoch post-stimulus which normally contains the most reactive 

mVEP components e.g., P100, N200, and P300, yielding nine 

features per EEG channel. Data recorded in the calibration lap  

was used to train a classifier averaged on 5 trials, yielding 

twelve feature vectors per stimulus.  

  

E. Offline mVEP classification – calibration data 

Using the Biosig [43] toolbox, customised Matlab code was 

created for online/offline data analysis. To distinguish between 

target and non-target stimuli, all 300 trials of data collected in 

the calibration lap were used to train a linear discriminant 

analysis (LDA) classifier. A leave-p-out cross validation 

(LpOCV) procedure was applied (in this case, p = 2 where one 

target and one non-target were included in each test fold) for 

each of the twelve EEG channels which were subsequently 

ranked by accuracy. Features from the top three-ranked 

channels were concatenated to form a new feature vector 

containing 27 features. A further LpOCV was performed to 

assess performance with the best three channels. These offline 

results are reported as “train LpOCV 2-class”. We upsampled 

non-target class data by repetition of target samples. This 

balances classes, ensures sufficient data for classifier training, 

negates randomness, maximises training accuracy and 

generalisation performance.  

To classify individual symbols within a single trial test (i.e., 

5-class discrimination), each feature vector associated with 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

5 

each stimulus in a trial is classified as either target or non-target. 

The LDA classifier produces a distance value, D, reflecting the 

distance from the hyperplane separating target and non-target 

features (D>0 depicts target features and D<0 depicts non-

target features). The classified stimulus is selected based on the 

vector with the maximum positive distance from the separating 

hyperplane (in some cases, non-target data produces a D>0, 

however, the value of D is normally maximal among target 

stimulus). Single-trial results for 5-class discrimination are 

validated offline and reported as “train validation 5-class”. 

Calibration data was subjected to the above classification 

procedure i.e., 5 trials were averaged to train the  classifier 

which was then applied online for the slow, medium and, fast 

laps (5, 3 and 1 trial repetition(s), respectively).  

   

F. Performance assessment - accuracy and information 

transfer rate 

Online game control accuracy was assessed based on the 

ability of participants to select the correct stimuli from cues 

presented in the game. To account for time variations across 

different lap speeds, information transfer rate (ITR) was 

calculated [44][45]. For slow laps, each checkpoint requires 

five seconds of decision time to choose a lane, yielding a total 

of 100 seconds of concentration time (time spent controlling the 

BCI) per lap (i.e. 20 checkpoints × 5s), for a medium lap, three 

seconds decision time was required to make a lane choice (20 

checkpoints × 3s decision time = 60 seconds) and a fast lap 

requires one second of decision time to make lane choices (20 

checkpoints × 1s). Taking into account that 5, 3 and 1 second(s) 

of time is required per checkpoint for the slow, medium and fast 

laps, respectively, 12, 20 and 60 commands per minute (CPM) 

are required for three lap speeds. ITR, reported in bits per 

minute (BPM) is calculated in equation 1, where N is the 

number of classes and P is the probability of correct 

classification. 

𝐵𝑃𝑀 = (𝑙𝑜𝑔2(𝑁) + 𝑃𝑙𝑜𝑔2(𝑃) + (1 − 𝑃)𝑙𝑜𝑔2(
1−𝑃

𝑁−1
)) × 𝐶𝑃𝑀  (1) 

 

To evaluate significant differences between groups we used 

a Kruskal-Wallis test, a rank-based non-parametric test to 

determine if there are statistically significant differences 

between 2 or more groups of an independent variable on a 

continuous or ordinal dependent variable. This test can be easily 

applied to imbalanced group results. 

  

III. RESULTS 

A. nvBCI teenage vs nvBCI adult participants 

 The calibration and slow lap data from the nvBCI teenagers 

and the nvBCI adults were compared. Adults achieved  higher 

average accuracies in both the train LpOCV 2-class and train 

validation 5-class offline analysis tests (Table I). The offline 

performance differences between the adults and teenagers were 

not statistically significant for the LpOCV 2-class (p = 0.1358) 

and train validation 5-class comparisons (p = 0.1139). In terms 

of online performance, the adults achieved higher accuracies 

than teenagers in all laps (Table II). For each lap, the differences 

of adults and teenagers were compared. Although accuracy of 

adults is higher than teenager across all laps the differences 

were found to be insignificant in lap 1 (p = 0.3913) and lap 2 (p 

= 0.4130), whilst for lap 3 the differences between adults and 

teenagers were significant (p = 0.0414).   
 

TABLE I 
AVERAGE RESULTS OF THE OFFLINE CALIBRATION LAP BETWEEN BCI NAÏVE  

TEENAGERS AND BCI NAÏVE ADULTS. LEAVE P OUT CROSS VALIDATION 

(LPOCV) 2-CLASS AND TRAIN VALIDATION 5-CLASS.  

 
TABLE II 

AVERAGE ACCURACY AND INFORMATION TRANSFER RATE (ITR) OF THE 

ONLINE LAPS (5 TRIALS) BCI NAÏVE  TEENAGERS VS. BCI NAÏVE ADULTS.  

 
 

B. BCI naïve vs. BCI experienced adults 

  The adult cohort consists a mixture of exBCI and nvBCI 

participants. We calculated the accuracy and ITR of the online 

laps to compare the nvBCI and exBCI adults (Tables III, IV and 

V).  Some tests showed that nvBCI adults achieved higher 

accuracies than exBCI adults and vice-versa, but in no tests 

were significant differences found. 
 

TABLE III 
AVERAGE ACCURACY (%) AND INFORMATION TRANSFER RATE (ITR) IN BITS 

PER MINUTE (BPM) - ONLINE LAPS 5 TRIALS BCI NAÏVE  VS. BCI EXPERIENCED  

ADULTS.  

 
 

TABLE IV 
AVERAGE ACCURACY (%) AND INFORMATION TRANSFER RATE (ITR) IN BITS 

PER MINUTE (BPM) - ONLINE LAPS 3 TRIALS BCI NAÏVE VS. BCI EXPERIENCED 

ADULTS. 

 
 

TABLE V 
AVERAGE ACCURACY (%) AND INFORMATION TRANSFER RATE (ITR) IN BITS 

PER MINUTE (BPM) - ONLINE LAPS 1 TRIAL BCI NAÏVE VS. BCI EXPERIENCED 

ADULTS. 

 

 

C. EEG channel selection 

 The three highest-ranked EEG channels for both nvBCI and 

exBCI adults were P7, O1, and P3 (Fig. 10, left), demonstrating 

the most active EEG channels located on the left hemisphere. 

The three highest-ranked EEG electrodes across nvBCI 

teenagers were Cz, P7, and O1, demonstrating activity around 

the left up to central areas with some bilateral activity i.e., 

electrodes O2 and P8 providing features (Fig. 10, right). Data 

recorded from the calibration level was used to conduct an 

analysis of all twelve electrodes providing an indication of the 

Teenagers Adults Teenagers Adults

Mean Across all 

Participants
85.2 88.4 80.9 85.8

Difference

Offline Analysis 
LpOCV 2-class Validation 5-class

p = 0.1358 p = 0.1139

Teenagers Adults Teenagers Adults Teenagers Adults

Accuracy (%) 71.7 76.3 67.0 71.8 65.4 78.2

ITR (BPM) 12.0 14.3 10.3 12.3 9.9 14.8

Difference

Online Analysis 
Lap 1 Lap 2 Lap 3

p = 0.3913 p = 0.4130 p = 0.0414

Naïve Experienced Naïve Experienced Naïve Experienced

Accuracy (%) 76.3 79.3 71.8 77.5 78.2 72.9

ITR (BPM) 14.3 14.7 12.3 14.2 14.8 12.5

Difference

Online Analysis 

(5 trials)

Lap 1 Lap 2 Lap 3

p = 0.9852 p = 0.4736 p = 0.4302

Naïve Experienced Naïve Experienced Naïve Experienced

Accuracy (%) 60.0 61.8 65.0 64.6 63.4 63.6

ITR (BPM) 12.6 13.9 15.4 14.4 15.0 14.5

Difference

Online Analysis 

(3 trials)

Lap 1 Lap 2 Lap 3

p = 0.7693 p = 0.7412 p = 0.9127

Naïve Experienced Naïve Experienced Naïve Experienced

Accuracy (%) 38.95 32.5 34.2 32.5 35.8 31.8

ITR (BPM) 11.0 6.3 7.7 6.2 9.6 5.8

Difference

Online Analysis 

(1 trial)

Lap 1 Lap 2 Lap 3

p = 0.1888 p = 0.7398 p = 0.5333
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potential accuracies achievable if an optimal number of 

electrodes were used for classification (Fig. 11). Considering 

the nvBCI adults, the use of the two highest ranked electrodes 

provides 79.5% accuracy and using the three highest ranked 

electrodes, as used in the study, provided an average accuracy 

of 85%. Adding any more than nine of the highest ranked 

electrodes for the nvBCI adults did not increase the accuracy 

significantly. For the exBCI adults, the use of the two highest 

ranked electrodes provides 72.6% accuracy and using the three 

highest ranked electrodes provided an average accuracy of 

84.3%. Adding any more than eight of the highest ranked 

electrodes for the nvBCI adults did not increase the accuracy 

significantly. For the nvBCI teenagers, a minimum of three 

electrodes were required to achieve >70% accuracy (76.2%) 

and by adding any more than eight of the highest ranked 

electrodes, accuracy did not increase significantly. Considering 

the 5-class analysis, 70% accuracy is 50% above the chance 

level of 20% in this 5-class paradigm. To achieve this accuracy, 

both adults and teenagers, required just three electrodes.  

 

 
Fig. 10. Topographic representation of the three highest ranked electrodes 

across all adults (left) and teenage (right) participants. Colourbar depicts 

accuracy (%). 

 

 
Fig. 11. Accuracy as a function of electrode numbers nvBCI vs. exBCI adults 

vs. nvBCI teenagers. Differences annotated in asterisks’ are colour-coded 

according to individual groups and highlighted among groups at each electrode 

number. Key: *** = p<0.001; ** = p<0.005; * = p<0.05; - = not statistically 

significant.  

 Comparing all adults to the teenagers, statistically significant 

differences (p<0.05) were found between the two groups for 

electrodes TP7, CPz, P3, Pz, and P4 (Fig. 12). 

 

 
Fig. 12. Topographic plot depicting statistically significant differences in 

electrodes adults vs. teenagers. Electrodes TP7, CPz, P3, Pz, and P4 are 

significantly different (p < 0.05) between the 2 groups. Colourbar depicts p-

values.  

 

D. mVEP features 

 Considering the highest-ranking EEG channel in each 

participant group (i.e., Cz for the teenagers and P7 for the 

adults), mVEP features were analysed. The mVEP components 

were averaged across participants in each group. For all groups, 

there is a clear difference in P100, N200 and P300 amplitude 

between the average for target and non-target stimuli (figs. 13, 

14 and 15). 

 
Fig. 13. Average mVEP features for channel Cz across all trials for the BCI 

naïve teenagers. Target (blue line) vs. non-target stimuli (red line).  

 
Fig. 14. Average mVEP features for channel P7 across all trials for the BCI 

naïve adults. Target (blue line) vs. non-target stimuli (red line).
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Fig. 15. Average mVEP features for channel P7 across all trials for the BCI 

experienced adults. Target (blue line) vs. non-target stimuli (red line). 

 

We compared the latencies and amplitudes of the most 

reactive mVEP feature (N200) to assess differences across the 

different groups (Table VI). Differences in N200 latency 

between the nvBCI teenage and nvBCI adults show that the 

N200 latency for the adults were significantly later (p=0.0062). 

N200 amplitude differences between the nvBCI teenagers and 

nvBCI adults show that adults have a higher amplitude than the 

teenagers for all buttons except for button 2 (p=0.2506). 

 Differences in N200 latency between the nvBCI adults and 

exBCI adults show that the N200 latency for the exBCI adults 

were significantly later for buttons 1, 2 and 4 and the same for 

buttons 3 and 5 (p=0.0495). N200 amplitude differences 

between the nvBCI and exBCI adults show that exBCI adults 

have a higher amplitude than the nvBCI adults for all buttons 

(p=0.009). Figure 16 depicts the features obtained from the 

target vs. all other non-target buttons averaged across all 

participants. 

 
TABLE VI 

AVERAGE N200 LATENCIES AND AMPLITUDES OF ALL PARTICIPANT GROUPS. 

TABLE DEPICTS AVERAGED N200 MVEP RESPONSE ACROSS ALL FIVE 

BUTTONS. 

 
 

IV. DISCUSSION 

A. BCI naïve adults vs BCI naïve teenagers 

 Offline 2-class and 5-class results suggest the performance 

of the nvBCI adults do not significantly differ to the nvBCI 

teenagers. Online results showed that nvBCI adults achieved 

higher accuracies and ITR than the nvBCI teenagers in all laps, 

but this accuracy only differed significantly in lap 3. Accuracy 

is tipped in favour of the nvBCI adults and the difference 

between nvBCI adults and nvBCI teenagers widens as the 

session progresses across the three laps which does suggest that 

adults outperform teenagers, however, further trials are 

necessary to obtain conclusive evidence to support this 

assertion.   

Analysis of the mVEP features in figs. 13 to 15 has shown 

that the latencies of all mVEP components are later in all adults 

than nvBCI teenagers, while P300 amplitudes were higher for 

the teenagers. However, amplitude of the N200 component 

were higher for both adult groups. It is commonly reported in 

the literature that the N200 component is the most distinct 

response to motion onset [29][46][21], which could explain the 

greater classification accuracies achieved by the adults. 

Interestingly, amplitude of the N200 component is lower for the 

nvBCI adults than the exBCI adults, but the nvBCI adults 

obtained higher classification accuracies in more online laps 
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Fig. 16. Averaged mVEP features of all 5 target vs. the non-target buttons (stimuli) for all participant groups (buttons 1 to 5 are depicted from top to bottom, 

respectively). The y axis is the amplitude in microvolts (µV) and the x axis is the latency in milliseconds (ms). In each plot, the thick blue line depicts the target 

button and all other thinner coloured lines are the non-target buttons. 
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than the exBCI adults. This may suggest that experience may 

not have an impact on mVEP classification accuracies, 

strengthening the case that lengthy training periods are not 

necessary in this paradigm.   

The discrepancy in the sample size between the nvBCI adult 

and nvBCI teenage cohorts may have compounded results. 

Kuba [47] suggests that amplitudes of mVEPs did not display 

any significant changes for between age groups 6-18 years and 

19-60 years. Conversely, our results show differences in 

amplitude for the teenagers and adults, which may be due to a 

difference in paradigm i.e., in [47] mVEP stimuli were 

displayed within a rudimentary interface, whereas in our study, 

stimuli were displayed within a dynamic gaming environment. 

A previous study by Stelt et al. [48] involving 80 participants 

from the ages of 7-24 years investigated a visual selection task 

requiring the detection of the occurrence of targets among non-

target images. Results showed that, among other event-related 

potential (ERP) components, reduced N200 latencies were 

observed for the adults in the 19-24 years age range than all 

other (younger) age groups tested. Subsequently, a decrease in 

error rates in the task as a function of age is reported. The 

finding that teenagers and children underperform in visual 

attention during target detection and have less reactive ERP 

components may explain the inferior classification accuracies 

achieved by teenagers in this study. The teenagers’ performance 

declined as the session progressed, which suggests that their 

attention may have waned over time more dramatically than the 

adults. This finding is supported by research that suggests that 

adults visual processing and attention is more developed than 

children and thus adults are more likely to perform better at 

visual processing tasks and retain attention in prolonged 

assessments [49][50].  

Our results suggest that studies and applications should target 

users of different age groups to test the viability of mVEP-

controlled neurogames for a wide range of users, therefore, we 

recommend that BCI studies should report performance of 

different age groups, particularly in ERP-based BCI studies.  

 

B. Increased ITR and faster gameplay – adults 

 Accuracy increases as a function of the number of trials used 

for classification [30][40]. This is expected as the features 

derived from fewer trials are less separable i.e., increasing the 

number of trials from which to derive features can sharpen the 

ERP response and reduce noise. Although accuracy is reduced 

using fewer trials, our results show no significant difference in 

ITR when using 3 compared to 5 trials for the adult groups, 

suggesting the feasibility of using a lower number of just 3 trials 

for classification in mVEP neurogaming. Therefore, there is a 

good trade-off between accuracy and latency to enable a faster 

decision-making process, faster gameplay and more challenges 

per unit time for the player. Performance reduced significantly 

when 1 trial was used, suggesting the use of 3 trials may be 

optimal for a speed/accuracy trade-off in mVEP-controlled 

neurogaming.  

 A different trend is observed for adult participants S4, S15, 

S17, and S28, where they have shown greater performance 

using 3 compared to 5 trials indicating that attention span 

required for 5 trials may negatively impact performance. 

 

C. Ranking players - adults 

 We ranked participants based on accuracy separately for each 

lap speed and then averaged ranks. Ranking varied depending 

on the lap speed i.e., no individual participant dominated 

performance across all lap speeds e.g., S3 (aged 21) (nvBCI) 

ranked 1st in the slow and medium speed laps but 12th in the fast 

speed lap and therefore ranked 4th on average overall. S9 (aged 

30) (nvBCI) ranked 5th and 3rd on the slow and medium speed 

laps, but 1st on the fast lap, subsequently ranking 1st overall. 

 These results suggest that each player in mVEP-based 

neurogaming could outperform others using different strategies 

and/or if they have a naturally strong single trial mVEP 

response, therefore, they have a significant advantage to 

improve their overall performance. This could make for 

interesting competitiveness, skills, and strategies in mVEP-

controlled neurogaming. Further work could explore learning 

effects to determine if mVEP characteristics can be improved, 

if less trials can be used as the participant gains experience or if 

there are habituation effects that result in decreased 

performance. Questions that centre around skill development in 

mVEP-based neurogaming remain to be addressed, whereas it 

is well known that players/participants can enhance 

performance through motor learning during gameplay with 

motor imagery to modulate sensorimotor rhythms [51][52]. 

 

D. Spatial parameters and electrode requirements for   

mVEPs 

 Corroborating our previous findings, cortical activity using 

left-moving mVEP stimuli dominated the left visual 

hemisphere in adults. For the teenagers, the left hemisphere up 

to central areas were most active with some bilateral activity. 

This supports the occurrence of motion processing around the 

middle temporal (MT) and medial superior temporal (MST) 

areas [27]. Our analysis (fig. 11), shows the use of just 2 

electrodes enabled the adults to gain >70% accuracy, whereas, 

the teenagers required three electrodes to gain >70% accuracy, 

suggesting that age-related montages for mVEPs should be 

studied in the future. Three electrodes in the adults and 

teenagers here are sufficient for mVEP control well above 

chance level. A reduced EEG electrode montage represents an 

important finding for the future of neurogaming in that it offers 

a convenient, inexpensive and less obtrusive EEG hardware 

setup. Cross analysis of the best three ranking electrodes from 

our previous studies (data gathered from 82 participants) 

exemplifies that the most active three electrodes using this 

mVEP paradigm were P7, 01 and P3. 

 

V. CONCLUSION 

 A potential issue with VEP-based BCIs is the onset of visual 

fatigue, particularly after long-term use [18][19]. An inherent 

limitation with BCIs is the latency involved in detecting a 

reliable response from EEG. Previous neurogaming studies 

have employed rudimentary gameplay and graphical fidelity 

[53][54][55]. Here, we have employed high-fidelity graphics 

and gameplay scenarios akin to commercially available video 

games within a visually elegant mVEP-based controller. Our 

findings suggest that mVEP-based neurogaming is feasible for 

both adults and teenagers. In our analysis, nvBCI and exBCI 

adults achieved higher classification accuracies compared to 

nvBCI teenagers, but the difference between adults and 
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teenager is significant only in lap 3. Although accuracy is 

reduced when adults play the medium (3 trials) compared to the 

slow speed laps (5 trials), ITR is not significantly reduced.  The 

findings have implications for BCI control strategies involving 

mVEPs in neurogaming i.e. gameplay quality, speed of control 

and calibration for target audiences.  

 A commonly studied application area suitable for BCI 

control and perhaps one of the most helpful is to provide 

movement independent technology interaction and 

communication devices for the physically impaired [52]. BCI 

controlled assistive devices are also commonly studied in the 

field [56]. A next step in this research is to compare the 

performance of those with physical disabilities and explore 

other target benefits of mVEP-based paradigms for the 

physically impaired. 
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