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Abstract: The cost of genome assembly has gone down drastically with the advent of next 
generation sequencing technologies. These new sequencing technologies produce large amounts 
of DNA fragments. Software programs are used to construct the genome from these DNA 
fragments. The assembly programs take significant amount of time to execute. To reduce the 
execution time, these programs are being parallelised to take advantage of many cores available 
in present day processor chips. Further, hardware accelerators have been developed which when 
used along with processors speed up the execution. Velvet is a commonly used software for  
de novo assembly. We propose a novel method to reduce the overall time of assembly by using 
FPGAs. In this method, we perform pre-processing of these short reads on FPGAs and process 
the output using Velvet to reduce the overall time for assembly. We show that using our 
technique we can get significant speed-ups. 
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1 Introduction 

The basic building block of all organisms is the cell. All the 
cells (irrespective of the size of organism) have a nucleus 
which carries a genetic material known as deoxyribonucleic 
acid (DNA). DNA holds the hereditary information and is 
responsible for the controlling and functioning of the 
organism. DNA is made up of four bases: adenine (A), 
guanine (G), cytosine (C), and thymine (T). Adenosine (A) 
pairs with thymine (T), and cytosine (C) pairs with guanine 
(G) forming base pairs (bp). This pairing is due to weak 
hydrogen bonding and is the basis for DNA replication. A 
segment of a DNA molecule can be written using first letter 
of the bases it contains (e.g., …TACGTAG…). Genes, 
which are made up of DNA store information needed for 
making proteins useful for the life of the organism. The 
complete set of all genes along with non-coding DNA in an 
organism is called a genome. The study of genomes of 
various organisms is known as genomics. It has a lot of 
applications in medicine, biotechnology, anthropology, 
forensics and synthetic biology. Also, comparative study of 
different genomes is helpful for evolutionary studies. 
Increasingly, genomics is also being used to study the 
contribution of genes in many diseases and is aiding in  
the development of personalised drugs. Hence, genome 
construction is very important, which helps considerably in 
the study of various biological processes in an organism. 

DNA sequencing technology helps in generating the 
data needed for construction of genomes. Recently, next 
generation sequencing (NGS) platforms are being used for 
DNA sequencing. These platforms generate short fragments 
called ‘reads’ of length ranging from 35 to few hundreds of 
base-pairs. These reads are part of a large genome 
containing millions of base-pairs (the size of the human 
genome = 3 × 109 bp). The NGS platforms generate large 
amounts of accurate data at very low cost and at a greater 
speed when compared to older platforms (Nagarajan and 
Pop, 2013). 

The large amount of data has posed many challenges for 
computer scientists who develop softwares to analyse these 
data. New algorithms and data structures have been 
proposed to speed-up the analysis. Databases have been 
created and statistical analysis programs have been 
developed for retrieving specific information from this data. 
Sequence assembly is a computational biology problem 
where the reads generated from the NGS machine are used 
to build the whole genome. An example of assembly is 
shown in Figure 1. A biological sample is preprocessed and 
given to a sequencing machine, which generates a set of 
short reads. These short reads are assembled to construct the 
genome. The ‘T’ in the read CTGTGTGTT, is an error as 
the exact match to the genome at that position was supposed 
to be ‘C’. The error could be identified as the frequency of 
occurrence of ‘C’ at that position is more than that of ‘T’. 
The error can occur during the sequencing process by the 
sequencing machine. Error can also occur while assembling 
the genome from the short reads, where the read is falsely 
mapped to a particular location of the genome. Due to these 
errors, genome assembly problem is more difficult to  
solve than the well-studied shortest superstring problem 
(Nagarajan and Pop, 2013). 

Figure 1 NGS assembly: the DNA sample is given to  
sequencer, which generates read-set (see online  
version for colours) 

 
Note: The read-set is processed in CPUS to generate contigs. 
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Clearly like most of the bioinformatics applications, NGS 
assembly is also data dominated. Even though compute 
infrastructure ranging from server racks to cloud farms exist 
for solving these problems, the time taken is enormous. For 
example, assembly of human genome using PASHA 
software took around 21 hours on a 8-core workstation with 
72 GB memory (Liu et al., 2011). 

Hardware accelerators like GPU and FPGAs are used 
along with processors to reduce this execution time by 
running the program on multiple computation units in 
parallel (Lin and Lin, 2014; Okuyama et al., 2012; Halstead 
et al., 2014; Marino and Li, 2014). Some bioinformatics 
applications along with assembly programs have been 
accelerated by FPGA-based accelerators. They have shown 
significant speedups (Che et al., 2008). 

De novo assembly is a type of assembly process where 
genome is constructed without using a reference genome. It 
is the only way to construct a genome if the reference 
genome does not exist. As the shorter reads have less 
overlap information, the reads are generated with much 
more coverage in order to construct the genome. The 
overlap information from the reads are used to construct the 
contiguous consensus sequences known as contigs. The 
genome is constructed using these constructed contigs. 

Two graph-based methods used for de novo assembly 
are the overlap layout consensus (OLC) and de Bruijn 
graph. In this paper, we propose a hybrid approach where 
we generate the overlap and layout using the OLC technique 
and build the consensus using a de Bruijn method. The key 
innovation is to use a (parallel) hardware implementation  
to remove the ‘redundancy’ in the input data and use  
state-of-the-art highly computationally intensive de Bruijn 
graph-based Velvet software (Zerbino and Birney, 2008) to 
build the consensus sequence. 

Figure 2 Velvet flow and FPGA-based approach, (a) Velvet 
flow (b) FPGA-based approach 

 
(a) 

 
(b) 

Note: In our approach, we generate intermediate contigs 
which are given to velvet for further processing. 

Velvet is a widely used de Bruijn graph-based assembler 
(Zerbino and Birney, 2008). This software usually takes 
significant amount of time to execute. We attempt to 
accelerate it using FPGA-based accelerators. A high level 

design of our approach is shown in Figure 2. The reads  
are passed through redundancy remover unit (RRU) 
implemented in FPGA, which acts as preprocessor. The 
RRU is constructed using processing elements (PEs) 
connected in series. All the PEs form a pipelined structure 
and hence execute parallely. Each of the PEs stores a 
sequence. Reads are passed through each of the PE. The PE 
checks for overlap region at its ends and if the overlap 
region is greater than a threshold value, it is extended. 
These extended sequences form the intermediate contigs 
which are given to Velvet for constructing the final contigs. 
We have validated our design for 60 PEs. We estimate 
speed-ups of 13× using our approach using 3,000 PEs. 

The key contributions of this paper are the following: 

1 innovative way to speed-up de novo assembly of NGS 
data using FPGAs 

2 hardware-software co-design to achieve this 

3 efficient hardware implementation on FPGA. 

Section 2 shows the different softwares available for 
genome assembly. Section 3 describes the NGS de novo 
genome assembly problem and the work done by other 
research groups that have been reported in the literature. In 
Section 4, we describe the overall approach and high level 
implementation used for initial analysis and to do feasibility 
study. This study leads us to prepare an overall 
methodology to achieve speedups using FPGAs which is 
described in Section 5. Section 6 shows some of the results 
and this is followed by conclusion in Section 7. 

2 Genome assembly softwares 

Many softwares have been developed to do assembly 
(Miller et al., 2010). Algorithms are modified in order to 
alleviate some of the complexities involved in the  
assembly and to execute efficiently on processors. 
Assembly softwares can be divided into two categories; 
mapping-based comparative assembly and de novo 
assembly. In the former method, assembly is done by 
mapping the reads to an already pre-existing reference 
genome. Even though the genomes of a particular organism 
contain lots of similarities, there are certain dissimilar 
regions which make each organism unique. These dissimilar 
regions are of interest to biologists as they show particular 
behaviour unique to that individual organism. Mapping the 
reads to a pre-existing reference genome might cause this 
uniqueness to be destroyed and hence, the software 
assemblers allow certain amount of mismatches and gaps. 
Some of the mapping-based assembly programs are SOAP 
(Li et al., 2008b), MAQ (Li et al., 2008a), Bowtie 
(Langmead et al., 2009) and RMAP (Smith et al., 2008). 

The later method is called de novo assembly where the 
information is extracted from the reads and their overlaps. 
Some of the de novo assembly software programs are 
Velvet (Zerbino and Birney, 2008), Edena (Hernandez  
et al., 2008), PerM (Chen et al., 2009), BFAST (Homer  
et al., 2009) and Minia (Chikhi and Rizk, 2012).  
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De novo assembly takes more computational time than 
mapping-based assembly. Since the mapping-based 
assembly includes a pre-existing reference genome during 
mapping, the assembly process is biased and hence,  
in certain situations bioinformaticians prefer to use  
de novo-based assembly. 

3 De novo assembly 

De novo assembly is a method in which the genome is 
constructed using the reads without using reference 
sequence. It is the only way to construct new genomes. This 
method is also used when reference genome is available 
because the construction is unbiased. 

3.1 Principle 

The de novo genome construction from NGS data is 
complex due to the following reasons: 

1 A very large amount of data has to be processed. Most 
of the algorithms need computers with large amount of 
RAM for processing the data. If the RAM usage has to 
be reduced, data partitioning has to be done to keep the 
‘data of interest’ closer to the processor in the memory 
hierarchy. This process would involve swapping of data 
across the memory hierarchy and thus lead to increase 
the execution time. 

2 There are some common sequences in the genome 
called repeats. Identifying the reads which form these 
repeats is non-trivial. Some plant genomes include 
more than 80% of repeat sequences. 

3 The sequencing machine has a constraint on length of 
reads. If the read length is less than repeat it is almost 
impossible to detect which portion of the genome the 
read came from. 

4 The data generated by the sequencing machines are  
not fully accurate and contain errors. The genome 
constructed may be erroneous if the programs do not 
take error correction into consideration. 

De novo assembly can be divided into three categories; 
Greedy, OLC, and de Bruijn graph-based assemblers. The 
softwares like PCAP (Huang et al., 2003) and TIGER (Wu 
et al., 2012) that use greedy approaches make use of the 
overlap information for doing the assembly. In the greedy 
method, the pairwise alignment of all reads is done and the 
reads with the largest overlap is merged. This process is 
repeated till a single lengthy sequence is obtained. 

The OLC method is a graph-based method where an 
overlap graph is constructed from the reads. Some of the 
software assemblers based on OLC are Edena (Hernandez  
et al., 2008) and CABOG (Miller et al., 2008). The reads 
become the node and edges show the overlap information. 
The nodes are placed in the form of a graph. Multiple 
sequence alignment (MSA) is done with the reads having 
more than two edges. Based on this, consensus sequence is 

constructed and sequencing errors are removed. A 
‘Hamiltonian path’ in the graph is used to construct the 
contiguous sequences (contigs). Later, the whole genome is 
constructed using these contigs. 

The de Bruijn graph assembly also uses a graph where 
the nodes are k-mers. A ‘k-mer’ is a sequence of ‘k’  
base-pairs. Some of the software assemblers based on  
de Bruijn graph are PASHA (Liu et al., 2011), Velvet 
(Zerbino and Birney, 2008), Euler (Pevzner et al., 2001), 
etc. All the reads are broken into respective k-mers, i.e., all 
substrings of length ‘k’. A graph is constructed with  
(k–1)-mers as nodes and the k-mers as edges. This graph 
contains all the overlap information contained in the reads 
for a particular k-mer length. Due to errors in the reads, 
there can be a chain of nodes that are disconnected, i.e., they 
do not converge into the graph. These are called ‘tips’. The 
errors can also cause the graph to have redundant paths that 
have same starting and ending point, i.e., the paths converge 
back into the graph. These are called ‘bubbles’. These tips 
and the bubbles are removed using heuristics and sometimes 
with sequence comparisons. ‘Euler path’ is used in this  
de Bruijn graph to construct the contigs, which in turn is 
used for constructing the whole genome. 

The choice of assembly software is mainly dominated 
by the quality of assembly, speed of assembly and the  
RAM needed for the execution. Many techniques are  
used for error correction and improving the quality of 
assembly (Koren et al., 2012; Salmela and Schröder, 2011). 
Considering speed as the criteria, graph-based assemblers 
are preferred over greedy assemblers. In the graph-based 
assemblers, de Bruijn graph-based assemblers have become 
more popular as they are faster than OLC-based assemblers. 
This is because finding Hamiltonian path in a directed graph 
in OLC-based assemblers is a NP hard problem, while 
finding the Euler path is easier (Compeau et al., 2011). 
Also, MSA of the reads used in OLC method for removing 
errors is both compute intensive and memory intensive 
when compared to the techniques used in de Bruijn  
graph-based assemblers. 

3.2 Related work with FPGA-based acceleration 

Several groups have attempted to accelerate NGS short read 
mapping using FPGAs, where the genome is constructed by 
mapping the short reads to an already existing genome. 
Tang et al. (2012) have accelerated short read mapping and 
achieved 42× speed-up over software PerM (Chen et al., 
2009). Aluru and Jammula (2014) review the different 
acceleration techniques used for genome assembly. Olson  
et al. (2012) have also shown acceleration of short read 
mapping on FPGA. The authors compare their results with 
BFAST software (Homer et al., 2009) and show 250× 
improvement and 31× when compared to Langmead et al. 
(2009). Fernandez et al. (2010) and Knodel et al. (2011) 
have also accelerated NGS short read mapping. The Convey 
Computer (2015) firm have developed the convey graph 
constructor (CGC), which use FPGAs to accelerate de novo 
assembly. They show speedups of 2.2× to 8.4×. Meng  
et al. (2014) have accelerated de novo genome assembly 
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using FPGAs, but they use optical methods for sequencing. 
As de novo assembly is non-biased, it is important. We 
attempt to accelerate it using FPGAs. As it is not fair to 
compare mapping-based assembly with de novo assembly, 
as both are different and have their own advantages and 
disadvantages, we compare our hardware implementation 
with existing de novo software-based implementation.  
In our previous work, we presented initial results (Varma  
et al., 2013). In this paper, we discuss the hardware 
implementation which was very briefly discussed. We also 
discuss the results in more detail and the algorithm to 
architecture design process. We have shown how the FPGA 
architecture can be modified by introduction of hard 
embedded blocks (HEBs) in order to get further speedups 
(Varma et al., 2014), where we discuss more on the 
introduction of HEBs. 

4 Approach 

We chose to accelerate de Bruijn graph-based assembly, as 
they take less amount of time to execute when compared to 
OLC-based assemblers. We use the fact that there is a lot of 
redundancy in short read sequencing. Lander and Waterman 
(1988) describe the use of redundancy for getting good 
quality assembly. This redundancy helps in providing 
coverage as well as eliminating errors encountered during 
sequencing of these short reads. 

De Bruijn graph-based software assemblers take several 
GBs of RAM space while executing (Zhang et al., 2011). 
Efficient implementation of de Bruijn graph-based 
assemblers on an FPGA is difficult due to the memory 
resource constraints in current FPGAs. We model a hybrid 
approach where we implement a part of OLC-based 
assemblers on FPGA to remove the redundancy present in 
the reads. We run the de Bruijn graph-based assembler in 
software on the reduced set of reads from the FPGA. 

This approach allows us to effectively use the FPGA 
resources for removing redundancy in the reads. 

4.1 Algorithm 

The main thrust in our approach is to find the overlap region 
between reads and store the overlap region only once. This 
can be done using a greedy approach. A read from the 
readset is picked which is called ‘starter’ sequence. The 
starter sequence is checked for extension with the rest of the 
reads in read-set. This process has to be repeated until the 
starter does not extend, meanwhile removing the reads from 
readset which extend the starter. After many such iterations, 
we are left with a reduced read-set and a extended starter. 
This extended starter which can not further be extended is 
stored as an ‘intermediate contig’. This process has to be 
repeated by picking a read from the remaining read-set, so 
that we store the overlap information only once. After 
checking with all the reads, if it does not extend, it can be 
made an intermediate contig. If it gets extended the read 

causing the extension is removed. An example of a single 
contig construction is shown in Figure 3. In this example, 
the read 5 is made a starter. The extension in each round is 
shown. During the first round read number 4 and 6 extend 
the starter. Similarly, in round 2 reads 3 and 7 extend the 
starter. In round 3, all the reads are used up for extensions 
and the particular contig is constructed. For this ordering of 
reads and choice of starter 3 rounds were required for the 
construction of contig. We use this idea for constructing 
intermediate contigs. 

To implement this in parallel, we can start by picking a 
small subset of reads (multiple starters) and start comparing 
and checking if they can be extended by the reads left in the 
remaining read-set. After single iteration, the starters which 
did not get extended can be removed and put in intermediate 
contigs set, as there is no chance for them to get extended in 
further iterations. The removed starters are replaced with 
new reads from the remaining read-set for next iteration. 

As we do not consider error checking while extending, 
we call the contigs generated from our approach as 
‘intermediate contigs’, which can be further processed by 
other tools like velvet. The overall flow diagram is as shown 
in Figure 4. This approach reduces the size of the input to 
the velvet software, as shown in Figure 5, and thereby 
giving speedups compared to software. There may also be 
reduction in the RAM usage due to smaller input file. 

To study the benefits of our approach, we used an open 
source software known as Mapsembler (Peterlongo and 
Chikhi, 2012), which does targeted assembly. It takes NGS 
raw reads and a set of input sequences (starters). The 
software determines if the starter is read coherent, i.e., 
starter is a part of the original sequence. The neighbourhood 
of the starter is given as output if the starter is read coherent. 

The algorithm is described in Algorithm 1. All the  
k-mers in all of the starters are indexed and stored in a hash 
table ‘I’. The hash table consists of starter number and the 
corresponding position of the k-mer in that particular starter. 
A read is taken from the NGS read set and the respective  
k-mers are searched in the hash table. If the k-mer is already 
hashed, the corresponding starters are tried for extension 
with the reads. 

This high level model based on Mapsembler was used to 
study its effectiveness in removing redundancy. This model 
was also used for conducting experiments with Velvet 
software on various data sets. From these experiments, we 
verified that the time taken by Velvet software was 
dependent on the input file size. Removing the redundancy 
by our approach did not cause significant loss in the quality 
of output. We also studied the quality by varying the 
mismatches allowed during extension. Even though the 
software model was essentially done to study the initial 
benefits of our approach, we would also like to mention 
here that this approach takes very long time to execute, as 
the reads are compared serially with the starters. In fact, the 
time taken on a dual core desktop computer is more than the 
Velvet software time in most of the cases. 
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Figure 3 Example showing construction of contig using our approach (see online version for colours) 

 
Notes: In each round starter is extended. Contig is constructed from the reads in three rounds. 
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Figure 4 Software flow for estimation 

 
Note: Mapsembler was used for feasibility test and estimation. 

Figure 5 FPGA-based de novo assembly (see online version for colours) 

 
Note: The input size to velvet is reduced considerably by using our approach. 
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Algorithm 1 Redundancy removal using Mapsembler 

1: procedure RRUMAPSEMBLER(Read-set R) 
2:  pick N random reads and store as starter s ∈ S 
3:  delete these reads from R 
4:  for each starter s ∈ S do 
5:   index all k-mers of s in index-table I 
6:   starter → extendedFlag = 0 
7:  end for 

8:  if | | 0R ≠ /  then 

9:   for each read r ∈ R do 
10:    for each k-mer k in r do 
11:     if k indexed in I then 
12:      if r extends corresponding s then 
13:       s = extended(s) 
14:       set starter → extendedFlag = 1 
15:       delete r from R 
16:      end if 
17:     end if 
18:    end for 
19:   end for 
20:   for each starter s ∈ S do 
21:    if starter → extendedFlag = 0 then 
22:     store s as intermediate contig in IC 
23:     replace s with random read r ∈ R 
24:    else 
25:     starter → extendedFlag = 0 
26:    end if 
27:   end for 
28:  end if 
29:  store all starters to IC 
30:  Return IC 
31: end procedure 

4.2 From algorithm to architecture 

To take advantage of the FPGA architecture, we do a 
streaming design where PEs are connected in series. Each of 
the PEs stores a sequence called starter. The PEs are 
connected in a series. ‘N’ starters in the corresponding ‘N’ 
PEs are populated with ‘N’ random reads. A read from 
remaining read set is streamed through the PEs. In each PE, 
the read is checked if it can extend the starter. If extended, 
the starter is updated with the extended starter. This process 
is continued till all the reads are exhausted. We use the term 
‘round’ frequently in the rest of the paper which means that 
all the reads from the read set are compared once with 
current set of starters and tried for extensions. After each 
round, the starters which are not extended are replaced with 
new random reads from the remaining read set. These  
non-extended starters of the current round are stored in an 
output file. 

This process removes redundancy in the reads. The 
redundancy reduction process is repeated several times till 
there are no more reads. The remaining reads along with all 
the non-extending starters from previous rounds constitute 
the intermediate reads. These intermediate reads are stored 
in an output file. The intermediate reads are less in number 
and longer in length. This output file is given as input to 
Velvet software for removing errors and generating contigs. 

In order to get better performance, we do the hardware 
implementation of the redundancy removal unit using 
FPGAs. The proposed hardware model differs significantly 
form the software model. The hash-based searching of  
k-mers in the software model is not implemented in this 
hardware model due to memory resource constraints. The 
reads are compared with the starter ends and tried for 
extension. In each cycle, the read is shifted and checked if it 
can extend the starter. For example: 

1
       

Re        
4

        
Re         

:

Cycle
Starter ACTGTCGTGTCTGC

ad TGTCGTGTCTGCGC
Cycle
Starter ACTGTCGTGTCTGC

Shifted ad TCGTGTCTGCGCTG
Extd Starter ACTGTCGTGTCTGCGCTG

⎡
⎢ −⎢
⎢ −
⎢

−⎢
⎢ −
⎢

−⎢
⎢ −⎣

 

The extension phase is expensive as it is a long process. To 
avoid this long delay in the extender, we add a filter which 
eliminates reads with no probable extensions. The number 
of cycles needed for extension is equivalent to the 
difference of read length and k-mer length. From the 
software implementation, it is observed that for a single 
round, the number of reads used for extension are very 
small when compared to reads that extend the starters. To 
take advantage of this feature, we propose a pre-filter block. 
The pre-filter is added before the extension phase. Pre-filter 
compares the signature of the reads with the signature of the 
starter. This signature is called the ReadVector and is 
constructed by encoding the 4-mers in binary format. 4-mer 
was chosen for signature because the vector width would be 
256 corresponding to 44. If we choose a signature with more 
than 4-mer, then the signature will become much more 
lengthy and hence would require large memory for its 
storage and larger amount of resources for doing the  
pre-filter. 

An example of construction of the readvector is shown 
in Figure 6. In the example, the readvector for read 
AAAAAAAGGGGG is ‘100100…001’. Each bit represents 
a particular 4-mer. It is set if the 4-mer exists else it is reset. 
Only one bit is stored if there is repetition of the 4-mer. The 
construction of read vectors has to be done only once, as it 
does not change during the whole process of assembly. We 
first implemented this in software and found that it was 
taking significant amount of time and so we implemented 
this in hardware. The details of this implementation are 
explained in Section 5. 
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Figure 6 Example showing construction of Read Vector 

 

The PE consists of the pre-filter and the extender part. Each 
PE has to store the starter sequence. As the starter keeps 
increasing in length, it becomes difficult to store the whole 
starter inside the PE, due to limited resources available in 
the FPGA. In order to alleviate this problem, we decided to 
store the left end and right end of the starter in the PE, and 
reconstruct the starters in the host. The length of the starter 
ends stored in PE is equivalent to the read-length, thus, 
allowing extensions at the ends. With this approach, the 
reads which are completely covered by the starter and do 
not extend the starter are not eliminated. We found that this 
does not cause significant difference in the speed-up. By 
using this approach, we gain two advantages: 

1 The memory resource usage is reduced, as we store 
only the left-end and the right-end of the starter. 

2 We need not re-construct the vectors for the  
starter-ends used in the pre-filter. This is because the 
extension is caused by the read for which read-vector is 
already available. If starter is extended, the starter end 
and its corresponding vector is replaced by the read and 
its vector. This saves considerable amount of time, as 
construction of vectors for each extension would be 
very expensive, both in terms of resource usage and 
execution time. 

The clock cycles required by each PE to process a read 
varies widely. The number of cycles is highly dependent on 
the read which is being processed. Due to rejection by the 
pre-filter there could be lot of data generated in a very few 
cycles for the next PE, or the next PE could be waiting for 
the extension phase of the PE. Due to this, there is 
irregularity in the time which PE can start processing the 
reads. To keep the PEs busy for most of the time, we  
have introduced FIFOs in between the PEs. As the 
implementation is done on FPGAs, the BRAMs were used 
for the FIFO implementation for effective resource usage. 

5 Hardware implementation 

The overall block diagram is shown in Figure 7. It  
shows the FPGA board interface with the host. We  
use Alpha-Data (Alpha-Data, 2015) board for hardware 
implementation. The board has a PCIe bridge which is used 
for data transmission between host and vice versa. The 
memory interface unit connects the onboard memory and 
the PCIe bridge. In our design, we use the ‘memory 
interface’ unit to send data to a ‘pre-processor’. From  
the pre-processor, a series of ‘PEs’ are connected through  
a set of FIFOs. The FIFOs are not shown in  
Figure 7 for clarity. The last PE is connected to a ‘post 
processor’ connected back to memory interface unit. The 
expanded diagram showing different stages is shown in 
Figure 8. 

The read set in fasta input file format is sent from the 
host to the FPGA board through PCIe bus. For initialising 
the starters, we encode the most significant three bits of the 
read. The fourth bit is used for marking the read that it has 
extended as a starter. In order to reconstruct the starters, the 
starter and the position of the extension is sent as output 
through the fifoSet. Reconstruction of starters is done in 
software. 

Figure 7 FPGA board 

 
Note: The RRU unit is implemented on an FPGA board connected to host through PCIe interface. 
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Figure 8 Block diagram of hardware implementation 

 
Note: The interconnectivity between modules is shown. 

 
Figure 9 Fasta to bit converter 

 

5.1 Fasta file to bit file converter 

The fasta to bit converter block reads data from the input 
buffer and encodes the base-pairs in binary format; ‘A’ as 
‘00’, ‘C’ as ‘01’, ‘T’ as ‘10’ and ‘G’ as ‘11’. It also 
generates the readvector. The block diagram is as shown in 
Figure 9. The Fasta to bit converter has an input BRAM 
which stores a part of the Fasta file. This block has two 
parts – the sequence coder and bit sequence generator which 
generates the read vector. 

The sequence coder reads data from the input FIFO and 
encodes the base pairs in binary format and removes the 
comments. Sequence coder is implemented as a state 
machine. The state diagram is shown in Figure 10. The bit 
sequence generator is made up of a 256 bit shift register, a 
256 bit register and a control unit as shown in Figure 11. 
The two bit sequence code from the sequence coder unit is 
pushed into the shift register by shifting two bits to the left. 
The first 8 bits are taken as an address to set the bit on the 
second 256 bit register. This register is read after a single 
read is encoded completely, which is known by the 
‘seqValid’ signal coming from the sequence coder unit. 
Control unit controls the shift operation and generates 
‘FifoWr’ signal for writing the readVector and the read 
when it is ready. 

Figure 10 State diagram for sequence coder 

 

Figure 11 Bit sequence generator 

 

This binary conversion from ASCII is done only once and 
the rest of the units use the binary format for further 
processing. During the next rounds, this state machine 
remains idle and so ‘mux’ and ‘control’ is used for selecting 
the required FIFO. 
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Figure 12 Processing element 

 

5.2 PE design 

The pre-processing block is followed by a series of PEs. 
The PE contains two parts; the pre-filter and the extender as 
shown in Figure 12. A read and corresponding readVector is 
taken from the remaining read set and compared with the 
starters for extension. Each PE stores the information of a 
single starter. The starter will be saved as an intermediate 
contig if it does not extend in the current round. Due to 
memory constraints in the FPGA, we store only the right 
end and the left end of the string for extension. Each of the 
starters have two parts-each of length equivalent to the read 
length. The left end is called starterLeft and the right end is 
called the starterRight. First ‘n’ reads, considering that the 
reads are arranged randomly are copied to starterLeft and 
starterRight. Similarly, we store starterVectorRight and 
starterVectorLeft used for pre-filtering. 

Figure 13 Pre-filter design 

 

5.2.1 Pre-filter design 

The pre-filter design is shown in Figure 13. In the pre-filter 
a logical ‘AND’ is done between readVector and 
starterVector-Left and stored in TempL register. Similarly, 
logical ‘AND’ is done between readVector and 
starVectorRight and stored in TempR register. The  

1-counter block counts the number of ‘1’s in the TempL and 
TempR register. If the number of ‘1’s is greater than the 
threshold, the read is passed to the extender else it is passed 
to the FIFO for next processing element to evaluate it. The 
1-counter block lies in the critical path and hence defines 
the clock period of operation. We implemented two versions 
of the one counter-one using Wallace tree and the second 
using the carry chain available in the Xilinx FPGA slices. 
The Wallace tree is built out of 6:3 compressors as the 
Xilinx Virtex 6 FPGA has 6 input LUTs. For the 256 bit 
implementation, we need a Wallace tree of 258 bits using 
the 6:3 compressors. The tree is built in five stages and 
requires 100 (43 + 24 + 14 + 10 + 9) 6:3 compressors with a 
carry adder at the final stage. The second implementation is 
done by adding each bit using the carry-chain available in 
the FPGA. This implementation took less time, but  
slightly more area when compared to the Wallace tree 
implementation. 

5.2.2 Extender design 

The extender design is shown in Figure 14. We  
use a ‘maskL’ and ‘maskR’ register for masking the 
corresponding bits in the starter after shifting the read. In 
the beginning, these registers are initialised with twice read 
length ‘1’s on the right and rest of the bits are set to ‘0’. The 
following operations are done in the extender: 

(   )  
(   )  .

tempL starterLeft AND maskL XNOR shiftedRdL
tempR starterRight AND maskR XNOR shiftedRdR

=⎡
⎢ =⎣

 

Figure 14 Extender design 

 

The corresponding scores, scoreL and scoreR are calculated 
from tempL and tempR, respectively using modified  
1-counter. A modified 1-counter is needed as we are 
encoding the basepair in two bits. An example is shown in 
Figure 15. Here, we see that the total score should be 
calculated by checking 2 consecutive 1s. For calculating 
this, we modify the Wallace tree implemented in pre-filter 
block. We store the appropriate values in the LUTs of the 
first stage of the Wallace tree implementation. For example, 
we store output as 11 for 11 11 11, 01 for 01 10 11 and 10 
for 11 11 01. So the score gives the exact matches of the 
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two sequences. If ((readLength/2) – scoreL) is less than 
allowed substitutions, the starter is extended on the left side 
or if ((readLength/2) – scoreR) is less than allowed 
substitutions, the starter is extended on the right side. The 
starterLeft and starterVectorLeft are replaced by the read 
and readVector, respectively, if the starter is extended on 
the left side. Similarly, starterRight and starterVectorRight 
are replaced by the read and readVector, respectively, if the 
starter gets extended on the right side. This step of counting 
the number of ‘1’s can be eliminated if the allowed 
substitution is set to zero. For this, only an ‘XOR’ operation 
of between (shifted read ‘AND’ with mask) and starter has 
to be done and checked if it is equivalent to zero for 
extension. This saves lots of resources and also from the 
experiments conducted we found that the quality of results 
is better with threshold set to ‘0’. If a starter is not extended 
on either of the two sides, then shiftedReadL and 
shiftedReadR are shifted to right and left, respectively by 
two bits as base-pair is encoded with two bits. The maskL 
and maskR are changed as follows: 

  ( 2)
2.

maskL maskL AND maskL
maskR maskR

= <<⎡
⎢ = >>⎣

 

This process is repeated till the read is shifted (readLength – 
kmer length), as we do not extend starter if there are less 
than ‘k’ matches. The reads that do not extend any of the 
starters are put in the next fifoSet for further processing by 
the next PEs. 

Figure 15 Example of score calculation in extender;  
e.g., score = 11 (see online version for colours) 

 

6 Results and discussion 

Zhang et al. (2011) have done a comparison of de novo 
assembly softwares. The authors have provided scripts for 
generating the read-set from the genome. We used these 
scripts to generate the read files for E. coli, swinepox and 
human influenza. For evaluating our approach, we 
generated the single ended readset with 100× coverage for 
read-length 36 and 75 and 1% error rate similar to what was 
reported by Zhang et al. (2011). For the software only flow 
time, Velvet software was run using the readset directly on a 
desktop computer with Intel (R) Core (TM) 2 Duo CPU 
E4700 running at 2.60 GHz with 4 GB RAM. 

6.1 Resource utilisation and operating frequency 

We have implemented the RRU on FPGA and obtained  
the clock period and utilised FPGA resources after  
running place and route tools provided by Xilinx (2015) ISE 
14.1. We use these parameters to estimate the speed-ups for 
running the Velvet on the output of RRU after each round. 
From place and route tools, the maximum clock frequency 
for the whole of the design was found to be 200 MHz. We 
get better performance by using multiple clocks. The 
sequence coder and generate units were able to run at a 
maximum frequency of 350 MHz on Virtex-6 FPGA. The 
maximum frequency of operation for the rest of the units 
was 200 MHz. The hardware implementation was done on 
Alpha-Data board having Xilinx Virtex-6 (XC6VSX475T) 
FPGA. 

Table 1 Resource utilisation 

Component Slices BRAM 

pre-processor 559 - 
in-fifo 17 32 
fifo-set 244 8 
post-processor 200 - 
out-fifo 93 15 
PCI-interface 2047 15 
Others 35 - 
PE-RdLen-36 380 - 
Threshold-0   
PE-RdLen-36 Theshold-11 939 - 
PE-RdLen-75 Theshold-0 643 - 
PE-RdLen-75 Theshold-11 1,175 - 

The resource utilisation obtained from ISE module level 
utilisation, for the different units are shown in Table 1. 
Here, we considered design which does not allow any 
substitution. The resources occupied by PEPE vary 
depending on the read length. When the threshold value of 
the pre-filter is set to ‘zero’ the 1-counter is removed and 
thus number of slices occupied is significantly reduced. 

Table 2 Number of PEs on Xilinx devices 

Xilinx device XC6VSX475T XC7V2000T 

PE-RdLen-36 Threshold-0 110 467 
PE-RdLen-36 Threshold-11 58 247 
PE-RdLen-75 Threshold-0 78 330 
PE-RdLen-75 Threshold-11 48 206 

Table 2 shows the number of PEs that could be 
implemented on Xilinx Virtex-6 (XC6VSX475T) FPGA. 
This table also shows the estimates of number of PEs on a 
larger Xilinx Virtex-7 (XC7V2000T) device considering 
97% resource utilisation. This is actually an under-estimate 
as many slices from various units get combined during the 
synthesis flow and more logic can be realised on the device. 
The threshold in this table also refers to the pre-filter 



 Hardware acceleration of de novo genome assembly 13 

threshold. If this pre-filter threshold is zero, the resource 
usage is less and hence the number of PEs which can be 
implemented on the device increases. 

Note that for design with larger number of PEs where 
multiple FPGAs would be required, we have not considered 
inter FPGA transfer time in our estimates. We assume 
FPGAs are connected in series and the data is streamed 
from the host, through the FPGAs and finally, back to the 
host. 

6.2 Speedups over software 

Figure 16 shows the graphs of the speed-ups at different 
rounds for swinepox with read length 36 using 30 PE,  
300 PE and 3,000 PE using Velvet software software.  
Figure 16 shows maximum speed-ups in the range of 5.2× 
to 11.9× for swinepox with read-length 36 over Velvet 
software. We also observe that the speed-ups reach a 
maximum and then start to decrease with increasing number 
of PEs. The reason for this is that the utilisation of the PEs 
goes down after a peak and hence the read and write cycles 
dominate. 

We have considered the worst case time by setting the 
threshold value for the pre-filter to zero. Similarly, we have 
the results on E. coli, swinepox and human influenza, not 

shown here due to space constraints. We observe same 
trends. The reduction in size of the input file in terms of 
base-pairs to Velvet software is shown in Figure 17. For a 
larger genome like E. coli, we need to have more PEs to get 
significant speed-ups. The maximum speed-ups are 
tabulated in Table 3. The speed-ups in each case first 
increases, reaches a peak and then tapers down. The initial 
increase can be attributed to the high reduction of input file 
size during the initial rounds. After these initial rounds, the 
redundancy removal is more limited and so the time taken 
by Velvet is almost constant. The FPGA processing time is 
incremental in nature and hence goes on increasing after 
each round. Even though there is not much redundancy 
removal during the later rounds, the hardware unit takes at 
least as many cycles as the number of reads and writes in 
each PE. 

From these results, we can determine a termination 
criterion for stopping FPGA processing to get maximum 
benefits from FPGA processing. For this, we keep track of 
reduction in the total size of data set in each round and if 
this is incrementally less than threshold we stop further 
rounds. In the future, this step would be integrated with the 
auto tuning of the pre-filter threshold. 

Figure 16 Speedups and number of base-pairs after each round for swinepox read-length 36, (a) input size 30 PE (b) input size 300 PE  
(c) input size 3,000 PE (d) speedups 30 PE (e) speedups 300 PE (f) speedups 3,000 PE (see online version for colours) 

 
(a) (b) (c) 

 
(d) (e) (f) 

Note: Figures 16(d), 16(e) and 16(f) show speedups over Velvet software. 
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Table 3 Maximum speed-ups over Velvet software 

Sample Swinepox Swinepox H. influenza H. influenza E. coli E. coli 

Read-length 75 36 75 36 75 36 
PE\size 30.8 MB 48.4 MB 449 MB 729.7 MB 1.2 GB 2.1 GB 
30 PE 3.5× 5.2× 1.1× 1.09× 1.2× 1.09× 
300 PE 13× 11.9× 3.2× 3.6× 2.5× 2.1× 
1,000 PE 6.5× 10.5× 6.8× 6.0× 4.4× 5.02× 
3,000 PE 4.8× 7× 6.8× 10× 6.5× 9.2× 

 
Figure 17 Input sizes (bp) before and after FPGA processing 

(see online version for colours) 

 

Table 4 Quality of assembly 

Swinepox 75 E. coli 36 
Sample 
parameters N-50 Max 

contig 

 

N-50 Max 
contig 

FPGA-based\ 
Velvet 

119,046 119,046  14,988 100,485 

30 PE 119,046 119,046  14,988 100,485 
300 PE 102,563 102,566  14,988 100,485 
1,000 PE 119,046 119,046  15,344 100,485 
3,000 PE 119,046 119,046  15,351 100,485 

6.3 Quality 

There are many factors which affect the quality of 
assembly. The quality is dependent on the sequencing 
machine. After the sequencing, the quality of assembly is 
dependent on many parameters that are used in the assembly 
algorithms. Mostly the input parameters to the assembler 
like k-mer length and number of mismatches allowed can 
significantly affect the quality of the output. The most 
popular metrics to measure quality are the maximum length 
of the contigs and the ‘N50’. N50 is the minimum length of 
the contig such that summing up the length of only those 
contigs whose length is more than N50 cover 50% of the 
genome. The quality of Velvet output using these metrics 
for different PEs is tabulated in Table 4. For example, the 

N-50 for Swinepox using Velvet software was 119046 
which remained the same when the FPGA-based RRU was 
used. From the various experiments conducted we observed 
that by not allowing mismatches during extension, there was 
no (significant) loss in quality of output as shown in results. 

7 Conclusions 

Genome assembly is used in many fields like personalised 
medicine, meta-genomics, forensics, etc. NGS can be used 
to solve diverse biological problems. These platforms 
produce several gigabytes of data in a single run. There is a 
need for faster and memory efficient tools to analyse and 
make sense of this large data. De novo assembly has some 
advantages over the mapping-based assembly, but these 
software programs take more time to execute. We have used 
a hybrid approach which uses techniques from both OLC 
method and de Bruijn method for accelerating assembly. 
We implemented our design using FPGAs and used them as 
hardware accelerators. 

From the results, we find that the speed-up is dependent 
on the nature and size of input data. For a fixed number of 
PEs, the speed-up first increases and then tapers down with 
larger number of rounds as FPGA processing time starts 
dominating. Maximum speed-up increases with number of 
PEs and reduces after reaching peak. We estimate speed-ups 
up-to 13× using our hybrid approach. 

The use of phred values which provide the information 
on the quality of reads generated by the NGS platform are 
becoming increasingly popular. A filter is typically used to 
filter out reads with lower score. This can be easily be 
integrated in our flow by modifying the pre-processor block. 
This can be done by adding one more state in the state 
diagram shown in Figure 10. The hardware area overhead is 
minimal as it would require a comparator and the delay 
would not be a concern since it is implemented as a pipeline 
stage. 

The multi-FPGA boards will be able to accommodate 
more number of PEs and hence can be used for reducing 
assembly time of larger genomes. We intend to implement 
the redundancy removal unit on multiple multi-FPGA 
boards and estimate the speedups for large genomes. We 
also want to modify Velvet to accelerate the assembly 
process using FPGAs. There could be reduction in the RAM 
usage using our approach. This study of reduction in RAM 
usage and velvet intervention to further speedup de novo 
genome assembly is a part of our future work. We also 
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intend to study benefit of our approach on softwares like 
Minia (Chikhi and Rizk, 2012), which use less memory for 
assembly. 
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