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edro  R.  Vizcaya a,  Gilberto  I.  Perpiñan b,1,  David  J.  McEneaney c, Omar  J.  Escalona d,∗

The School of Engineering, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
The Faculty of Electronic and Biomedical Engineering, Universidad Antonio Nariño, Cartagena, Colombia
The Cardiovascular Research Unit, Craigavon Area Hospital, Portadown, BT63 5QQ, UK
The Engineering Research Institute, Ulster University, Newtownabbey, BT37 0QB, UK

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 24 July 2018
eceived in revised form
1 December 2018
ccepted 7 January 2019

eywords:
lectrocardiography
iomedical monitoring
earable sensors

iological information theory
utual information

rtificial neural network

a  b  s  t  r  a  c  t

In  this  study,  the feasibility  of  interpreting  heart  rhythms  from  far-field  bipolar  ECG  arm-band  lead  record-
ings on  the  left-upper-arm  (LUA),  is  evaluated  in  a clinical  multichannel  arm-ECG  mapping  database  (N  =
153 subjects)  for  the  prospective  development  of  long-term  heart  rhythm  monitoring  from  comfortable
arm  wearable  devices.  A preliminary  multivariable  linear  regression  analysis  on  ECG  chest  Lead  I from
10 selected  far-field  bipolar  leads  along  the  left  arm,  indicated  that  3  of  them  in  the  LUA  were  relevant
and  worth  evaluating  in more  detail  from  a heart  rhythm  information  perspective.

To  derive  a good  and  effective  estimation  process,  a time  series  non-linear  regression  point  estimator,
using  an  artificial  neural  network  with  2 lags  was  investigated,  showing  a  correlation  coefficient  of up  to
0.969 for  a  single  subject.  Then,  a vector  approach  was  adopted  for the  whole  LUA  database,  aiming  to
develop  a  subject  independent  estimation  process  of  the  P-QRS-T  waveform  interval  and  its heart  rhythm
attributes  in  the  standard  chest  Lead  I. In  the  same  study,  the  first  96  coefficients,  of  the  Discrete  Cosine
Transform  on  the  P-QRS-T  interval  were  used  as  a means  for reducing  the  dimensionality  of  the  input
space,  with  a loss  of just  0.1%  in  power,  and reducing  the  dimensionality  to  just  5%  of the  original  size.

The  trained  ANN  for ECG  Lead  I estimation  from  one  upper  arm  Lead-1  showed  a correlation  coefficient
above  80%  on  a beat-to-beat  basis,  an  improvement  on  all  but 1.34%  of  the  beats  estimated  for  a  typical
train/test  partition  of  the  LUA database.  The  non-triviality  of  the  results  was  tested  with  random  and
intentional  true  negatives.  Information  theory  analytics  revealed  that there  is  an  estimated  information

UA  a
ublis
of  1.6  bits/beat  between  L
©  2019  The  Authors.  P

. Introduction

Cardiovascular risk and diseases are a major determinant of

lobal health [1]. Furthermore, patients with palpitations or loss
f consciousness (syncope) account for a large proportion of
ttendances at hospital outpatients and emergency rooms [2].
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In particular, cardiovascular disease (CVD), is the most common
underlying cause of death in the world, accounting for an estimated
31.5% of all global deaths [3]. The electrocardiogram (ECG) has been
the standard clinical tool for investigating the electrical conduction
in the heart, and for monitoring its ventricular stability, by means
of arrhythmic episode detection and by heart rhythm characterisa-
tion in standard ECG recordings. At risk patients present transient
abnormal heart rhythms (arrhythmias) which are important in the
diagnosis of heart disease and have prognostic significance [1].
As there are many different cardiac arrhythmias, their accurate
detection and recording is an important clinical need and thus,
continuous monitoring of the patients’ heart rhythm is required
for periods lasting from several days, up to a number of years,
in order to enable the detection of transient arrhythmias at an
early stage of heart disease, which would improve the effectiveness

of appropriate treatment, reducing disease burden, disability and
death. However, transient arrhythmias lasting only a few seconds
are clinically difficult to detect [4].

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Continuous monitoring of human physiological parameters
s becoming increasingly important. In general there are two
pproaches to long-term cardiac rhythm monitoring. a) Event
ecorders are non-invasive recording devices with sensing elec-
rodes attached on the patient’s body surface, usually on the chest
all; nevertheless, they are inconvenient (uncomfortable) for the

atient and only suitable for short term recordings. b) Implantable
oop recorders are implanted subcutaneously on the chest wall;
owever, while they are capable of monitoring heart rhythm dur-

ng very long periods, there are considerable costs associated with
he device itself and hospitalisation costs; besides the risks of
urgery including infection [5]. Currently available cardiac mon-
toring arm/wrist bands do provide support in monitoring the
eart rate; however, these cannot continuously capture ECG heart
hythm attributes provided within the heart beat P-QRS-T wave-
orm interval. With CVD and lethal heart arrhythmias continuing to
ave a high mortality rate, it is important to provide patient com-
liant solutions for non-invasively monitoring the heart rhythm

nformation in the P-QRS-T interval of the ECG from a long-term
earable device placed on comfortable positions of the body, such

s along a single arm (armband) [6], or ideally on the wrist. The
hallenges of this approach lie in the difficulty of detecting an ade-
uate bipolar ECG signal due to the low amplitude and excessive
uscle artefact in these far-field ECG locations [7].

At our Engineering Research Institute, we have developed
arious low-amplitude electrocardiographic signal recovery tech-
iques in the past few years [8–10]. This platform of knowledge
nd expertise has been combined with more recent ECG denois-
ng techniques, such as empirical mode decomposition (EMD) and
nhanced EMD  (EEMD), to address the aforementioned far-field
rm-ECG recovery problem [11,12]. Of particular interest in this
tudy is the information theory perspective of estimation capacity
or a selected standard chest ECG lead signal, such as ECG Lead-I
rom a selection of far-field bipolar leads on the left-arm.

Currently, there are many clinical applications for estimating
nd reconstructing signals, for example, in estimating the respira-
ory rate [13] and blood pressure using ECG characteristics. Also, for
stimating the precordial ECG leads from the standard limb leads
Lead I, Lead II and Lead III) [14]. Other efforts have been invested
n the far-field estimation of the 12-lead ECG from intracardiac
lectrograms, using for this purpose nonlinear estimation methods
ased on artificial neural networks (ANN) [15].

In previous studies [16,17], it has been indicated that certain
ar-field bipolar ECG recordings along the left-arm, present suffi-
ient information of standard electrocardiographic features to be
f diagnostic clinical value. In those reports, far-field bipolar ECG

eads on the left upper-arm, provided a stronger signal with gelled
IS

TM
sensor system than dry AgCI electrodes. Therefore, it would

e valuable to objectively assess the information capacity metrics
18] on the left upper-arm bipolar leads, enabling reliable estimate
f the standard ECG chest Lead I.

The purpose of the present study is to establish whether or not
nd to what extent and conditions, the feasibility of reconstruct-
ng the standard ECG Lead I from the ECG information extracted
rom left-arm bipolar ECG lead recordings after noise reduction.
o such extent, the ECG signal may  be generally categorised as

 quasi-periodic cyclostationary random process [19]. Basic mul-
ivariable linear regression models [20], as well as the ensemble
verage, may  be used to estimate the significance of different ECG
ead arrays. Principal component analysis (Eigen vector and values)
s also useful for this approach [21]. Then, the dimensionality of ECG
-QRS-T waveform complex (given the quasi-periodic hypothesis),

an be substantially reduced with the discrete cosine transform
DCT). With a reduced dimensionality of the ECG complex ensem-
le, it is then possible to generate a time series non-linear estimator
sing artificial neural networks.
Fig. 1. Location of left-arm recorded channels sensors.

In the recent paper addressing the problem of reconstructing
precordial leads from limb leads [14], based on a state variable esti-
mator that models the time relationship between leads, they report
final correlation coefficients as high as 0.98 for estimation analysis
on a single subject, showing again that ECG is a quasi-stationary
process. In our study, the estimation is not restricted to a subject.
Our objective is to derive an estimation process which would be
subject independent.  Hence we  utilise every full P-QRS-T interval
as a vector for every heartbeat, and a sequence of this vectors as
the time sequence.

Information theory has been used for 70 years as a solid frame-
work for data analysis [18]. Surprisingly, its use in signal processing
is relatively recent and has been limited. Mutual information is an
objective measure of the information content of a variable relative
to another variable; it is measured in bits. However, the correlation
coefficient is still the most widely used parameter because of its
mathematical treatability [20]. Our study includes a basic analysis
of performance of the estimator using both approaches.

This paper is organized as follows: the Methods section presents
the characteristics of the database of patients’ electrograms and
the flowchart of the main processing steps and algorithms for
pre-filtering, P-QRS-T waveform detection and selection, and the
ANN based estimation process. The following section presents
the results of feature extraction, training and testing of and
ANN, and the performance evaluation of the estimation process.
The last section, presents a discussion and the conclusions of
the work.

2. Methods

2.1. Arm-ECG mapping

In this study, three leads derived from the upper arm are tested
for the estimation of Lead I. Fig. 1. illustrates the location of sensors
used in this study. Table 1 describes the location of the leads used
for the estimation of Lead I, the conventional chest lead.

Lead 1 is transversal, bipolar, Lead 2 is front-back, and Lead 3
axial, upper arm-forearm.
2.2. Clinical database

This study is carried out on a population of 153 subjects (99
women and 54 men), aged between 19 and 82 years, whose exclu-
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Table  1
Channel sensors pair associated to the selected bipolar leads.

Name Sensor Description

Lead I Ch16-Ch17 Conventional chest lead.
Lead-1 Ch9-Ch10 Transversal, bipolar upper arm, lateral.
Lead-2 Ch8-CMS Transversal, upper arm, front-back 90◦

Lead-3 Ch7-Ch10 Axial; upper arm – forearm.

Table 2
Baseline characteristic of the 153 subjects (99 women and 54 men) under study. SD
stands for standard deviation, IQR for interquartile range.

Characteristics Mean SD Median IQR

Age (year) 42.9 17.4 45 26.3
Height (m) 1.5 0.5 1.7 0.1
Weight (Kg) 70.3 29.5 76 22
BMI  24.3 10.6 26 7
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Pulse (bpm) 73.5 14.1 73 17.5
Systolic pressure (mm  Hg) 126.8 22.2 125 28.3
Diastolic pressure (mm  Hg) 70.7 12.8 70 16.3

ion criterion is the presence of atrial fibrillation. The database
as collected in the Cardiovascular Research Unit at Craigavon
rea Hospital, located in Portadown (Northern Ireland). All sub-

ects agreed to the study by signing an informed consent. Ethical
pproval was obtained from HSC REC B (Health and Social Care,
esearch Ethical Committee, reference: 16/NI/0158), and IRAS
Integrated Research Application System, registered project ID:
03125, dated: 21/September/2016).

Table 2 summarises the characteristics of the study population.
Recordings were carried out on different days using the same

oom environment and recording equipment. The recording dura-
ion of the multichannel ECG (14 unipolar channels with the
eference electrode [CMS] positioned on the upper arm) for each
ubject was 500 s, at a sample rate of 2048 Hz, and a nominal resolu-
ion of 24 bit. All subjects were recorded in their resting position. To
ather a clinical database of left-arm ECGs under ethical approval, a
ensor system with known high performance on the skin–electrode
nterface impedance and good potential stability, the BIS-Quatro

TM

four-electrode) sensor (Covidien, Mansfield, MA,  USA) are used.

.3. Estimation process

From our preliminary analysis of the arm leads on 12 subjects,
t was clear that some of the there was signal information loss of
CG Lead I features as a consequence of signal attenuation along
istance and muscle artefact arising from the arm. Our prelimi-
ary analysis also showed that this was subject dependent. Also,

 multivariable linear regression analysis on Lead I from 10 leads
aken from the left arm showed that up to 3 of them were relevant.
he R-squared statistics (relation between error variance and signal
ariance) showed a moderated average value of 0.443 between the
stimated and the real Lead I. In order to obtain a better estimation,

 time series non-linear regression point estimator using an artifi-
ial neural network with 2 lags was tested; which means that the
urrent beat and the two previous ones were used, showing a cor-
elation coefficient of up to 0.969 for a single subject, very much in
greement with [14]. This shows that the ECG signal may  be consid-
red as a quasi cyclostationary random process. The random part,
hen the ECG is taken in rest, supine position, is the latency of the

-QRS-T waveform; this explains why the correlation coefficient
etween waveforms of the same subject is very high [14]. Thus,
e concluded that a larger database was necessary in order to be
ble to develop a waveform approach for a subject independent
stimation of Lead I.

In our pilot study, the Discrete Cosine Transform (DCT) on the
-QRS-T waveform was tested as a means for reducing the dimen-
Fig. 2. Overall study methods flowchart for the implemented estimation process of
Lead I.

sionality of the input space. A typical P-QRS-T waveform interval
is close to 2000 samples long. The objective was to select a suffi-
cient number of first 96 coefficients (discarding the DC component),
representing a low percentage of the original dimensionality, but
nonetheless retaining a high percentage (> 99.5%) of the power of
the signal.

For the present study, the following steps on the ECG Lead I and
its arm leads ANN estimation are performed, as summarized in the
flowchart presented in Fig. 2:

Step1. Filtering. Linear filters are used to attenuate power line
interference, reduce out-of-band noise, and limit the signal band-
width. A second order high pass Butterworth filter at 0.2 Hz is used
to limit DC wandering due to respiratory artefact. A second order
low pass Butterworth filter at 40 Hz is used to limit the bandwidth of
the signal and attenuate out of band noise and the power line inter-
ference. A Q = 20 notch filter designed at 50 Hz is used to cancel the
power line influence. These filters were applied offline backward
and forward to reduce group delay differences as a function of the
frequency. The cut frequencies were chosen for ECG monitoring
purposes.

Step 2. P-QRS-T segment extraction. Chest Lead I was used to
obtain the single fiducial point (SFP) of ventricular depolarisation
events. The location of the SFP referring to ventricular activity is
obtained by filtering the signal with a band pass filter with cut-off
frequencies at 3 and 30 Hz, then zero-level crossing is located in
the RS interval. Based on the maximum value Rmax within a time
window starting at 20 s and spanning 50 s, the algorithm then pro-
ceeds to search for signal values above the threshold 60% of Rmax
followed by zero-level crossing; if the number of samples of the
signal in this RS interval is contained within a valid time duration
criteria of minimum time, RDTMIN = 15 samples time, and maxi-
mum,  RDTMAX = 50 samples, the QRS complex is validated and its
corresponding SFP is recorded. The extracted SFP time-series was

then used to ensemble a 700 ms  signal window, centred around
every time element of the SFP time-series (from 400 ms before the
SFP and 300 ms  after the SFP), for every arm-ECG bipolar lead sig-
nal. The SFP is used for segmenting three arm-ECG bipolar leads,
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Fig. 3. Artificial neural network for estimation of Lead I. The size-5 hidden network, having the Lead X-DCT (X = 1,2 or 3) vector as its input, is adapted with the error to
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inimize the difference between the estimated Lead I DCT vector, built with the o
raining mode).

onsecutively aligned ventricular depolarization events; around 70
eartbeats or more were included in each subject case for further
rocessing. Detrending was applied to every segment to further
educe wandering. 35 out 153 subjects with excessively noisy or
bnormal beats (less than 50% of similarity among beats with a
emplate of the first 40 beats as measured with its correlation coef-
cient) were excluded. A total of 8260 beats, 70 beats for each 118
ubjects were retained.

DCT dimensionality reduction.  As pointed out before, the DCT
s used to reduce the dimensionality of the signal space. The DCT
as properties related to Markov processes: its correlation matrix

s similar to the correlation matrix of a first order Markov pro-
ess, which makes it as close as possible to the optimal transform
or compression (the Karhunen-Loeve transform) for processes for

hich first order dominates the behaviour, with the advantage
f being fixed and independent of the actual autocorrelation. In
ontemporary practise DCT is a standard procedure for signal com-
ression for 1-D and 2-D processes. The Discrete Cosine Transform
DCT) on the P-QRS-T waveform was calculated for reducing the
imensionality of the input space.

Step 3. Arm leads (1–3) are filtered as described in Step 1. The
xtraction of the P-QRS-T segment uses the information found from
ts corresponding Lead I segment, in Step 2. Detrending is used
o supress the wandering reminding after the application of the
.4 Hz high pass filter. Dimensionality reduction follows the same
rocedure described in Step 2 for Lead I.

Step 4. In this step, a time series non-linear NN vector estima-
ion of Lead I is implemented. For this, a non-linear artificial neural
etwork (ANN) is trained to estimate the corresponding Lead I P-
RS-T DCT based on each of the three LUA leads considered. In the
onsidered bipolar arm leads 1–3 (see Table 1), the DCT is normal-
zed (both DC and standard deviation). In the preliminary study
t was found that a size 5 hidden network with 2 input delays was
ecessary to obtain the best match between input and output, as an

ncrease in the size of the hidden network or the number of delays
id not improve performance significantly. The ANN architecture

s shown in Fig. 3.
The training algorithm used for the feed-forward back-

ropagation time-series ANN is the Levenberg-Marquardt method,
nd the optimization criteria is to minimize the mean squared
rror between the reference Lead I DCT, and the estimated one.
o, the correlation coefficient between these two vectors, �,
s a good indicator of its performance [20], defined as shown
n Eq. (1).

Note that the correlation coefficient evaluated on the DCT is

quivalent to the correlation coefficient evaluated on the original
ime space, since the DCT is a linear transformation (and so it does
ot change the shape of the space) since the Parseval’s relationship
etween the two spaces applies.
 layer which is also updated through error feedback (backward error propagation

�̂ =

96∑
i=1

(
ALi − �̂AL

)  (
LeadIi − �̂LeadI

)
i

�̂AL�̂LeadI

with

�̂AL = 1
96

96∑
i=1

ALi, �̂LeadI = 1
96

96∑
i=1

LeadIi

and

�̂AL =

√√√√ 1
95

96∑
i=1

(
ALi − �̂AL

)2
,

�̂LeadI =

√√√√ 1
95

96∑
i=1

(
LeadIi − �̂LeadI

)2
,

where

AL : Arm Lead DCT,

LeadI : Lead I DCT.

(1)

Moreover, the following transformation of the correlation coef-
ficient renders a Gaussian random variable [20] (p. 434):

X = 1
2

ln
(

1 + R

1 − R

)

�X = 1
2

ln
(

1 + �

1 − �

)

�2
X = 1

n − 3

z =
√
n − 3
2

ln
(

1 + r

1 − r

1 − �0

1 + �0

)

(2)

In Eq. (2), R is any estimator of the correlation coefficient seen
as a random variable, X is its transform which has Gaussian dis-
tribution, so after normalizing it, by subtraction of its mean and
division by its standard deviation, a normal Gaussian Z distri-
bution is obtained for hypothesis testing using a z or t-student
distribution.

The ANN is initially trained with a selection of heartbeats taken
from up to 118 subjects. A subject is included in the selection if
his/her ECG record satisfies the acceptance fidelity criteria. The cri-
teria applied is as follows: first a P-QRS-T template pattern based
on Lead I is built by averaging the first 40 beats; then every beat
is tested against this template using their correlation coefficient

as an indicator. If the beat satisfies a given threshold for this cor-
relation, then it is accepted. If the whole record satisfies a given
number of accepted beats (70 for this experiment), then the subject
is accepted, otherwise is rejected for training.
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This training set is divided randomly into three subsets: 70%
or training properly, 15% for validation (during training, this set is
sed as a way to know when to stop the training procedure), and
5% for testing. This procedure assures that the ANN is not over
rained and that it will generalize, as far as the database used for
raining is statistically representative of the whole population. The
istribution of the correlation coefficient between the original arm

ead (1, 2 or 3) and the original Lead I, is compared to the correlation
oefficient between the estimated Lead I and the actual Lead I to
valuate the performance of this process.

The ANN, trained as described above, is then tested against the
est 70 beats (relative to its template according to the correla-
ion test) of the subjects not included in the training process. Its
erformance is evaluated using the same procedure as above.

.4. Performance evaluation

The standard approach for evaluating the performance of the
stimation process is through the analysis of the correlation coef-
cient between the estimated Lead I and the original Lead I. As a
tarting point for comparison, the correlation coefficient between
he original Lead-1 and the original Lead I is evaluated as a baseline.
nd finally, to test whether the ANN is using the current informa-

ion on Lead-1 or it has just learned the mean relationship between
ead 1 and Lead I, the trained ANN is tested with random Lead-1
aveforms taken from different subjects. This comparison tells us
hether ANN is actually using the information of the current Lead

 or it is just using a memorized mean waveform.
An alternative way to evaluate the performance of the estima-

or is using information theory concepts [18]. Evaluation based
n correlation, as before, hides the real information content of a
ignal, as well as of the estimator. The first concept is to estimate
he amount of information contained in the signal (DCT), which is
alled entropy. In order to estimate its entropy, the signal DCTs are
lassified in a finite number of prototype DCTs; the process is called
ector quantization (VQ) or k-means. The parameter k is the num-
er of classes; it has to be selected based on an expected amount
f information or a given mean square error tolerance of the VQ
rocess. The signal DCT is then encoded with the VQ as an index
ut of k.

Once both signal DCTs (the original and the estimation) are
ncoded with the VQ entropy is estimated from the probability
istribution function of their indices. The entropy is defined as [18]:

H (VQDCT ) = −
k−1∑
i=0

pilog2pi[bits]

wherepi is the probability of indexi.

(3)

Then, the common information between the estimated DCT and
he original DCT, which is called the mutual information, is esti-

ated as follows:

I
(
VQDCTLeadI ; VQDCTEstLeadI

)
= H

(
VQDCTLeadI

)
+ H

(
VQDCTEstLeadI

)

− H
(
VQDCTLeadI , VQDCTEstLeadI

)

where

H
(
VQDCTLeadI , VQDCTEstLeadI

)
= −

k∑
i=1

k∑
j

pijlog2pij

is the joint entropy between Lead I and its estimation.

(4)
he concept of mutual information and its relationship with the
oint entropy and marginal entropies, used in Eq. (4), is illustrated

ith a Venn Diagram, as shown in Fig. 4. It shows the mutual infor-
Fig. 4. Venn diagram showing graphically the relationship between marginal
entropies, joint entropy and mutual information, as expressed in Eq. (5).

mation between two random variables is the common information,
and it shows the relationship with the joint entropy used in Eq. (4):

H (X, Y) = H (X) + H (Y) − I (X, Y) (5)

3. Results

3.1. Heart beats inclusion process

Fig. 5 shows 70 heart beats (around 1 min) acquired trans-
versely, on the left arm Lead-1 (Fig. 5a) and on chest Lead I (Fig. 5b).
These P-QRS-T waveform intervals have been previously filtered
and aligned, using the single fiducial point technique [9], and nor-
malized (zero dc and unit variance). These beats have been chosen
with 85% of similarity with an ensemble template built from the
first 40 beats.

3.2. DCT transform

The first 96 coefficients of the DCT were chosen (excluding the
zero dc component).

Fig. 6 illustrates the DCT sequence for the upper-arm Lead-1
(Fig. 6a) and for Lead I (Fig. 6b).

Notice that the ensemble of Lead I coefficients has smaller vari-
ance than the Lead-1 ensemble. The average correlation between
Lead I waveforms for subject #1 is 0.96, while the average correla-
tion for Lead 1 waveforms is 0.65.

Regarding dimensionality reduction performance, the analysis
results revealed that the first 96 coefficients (discarding the DC
component), just 5% of the original dimensionality, were sufficient
to retain about 99.9% of the power of the signal.

3.3. Performance of the estimation process

Table 3 shows the mean (and standard deviation, sd) of the cor-
relation values (�) when ANN is trained with different exclusion
criteria among beats similarity: 93% means that only subjects with
70 beats with at least 93% of similarity among them were accepted.
Training correlation values are better when similarity among beats
increased and a few subjects are included, contrary with testing
ones, correlation values are lower if ANN has been trained with low
beats similarity percentage and many subjects from the database.

Fig. 7 compares the distributions (normalized histograms) for �
train and � test for the two  extreme cases considered in Table 3.

Table 3 and Fig. 7 show that as the fidelity criteria for testing
is reduced, the testing distribution becomes closer, so it shows
that it generalizes better. Comparison of the correlation coefficients
between Lead-1 and Lead I for 85% correlation and the baseline are

displayed in Figs. 8 and 9.

Fig. 8 shows the probability distributions of the transformed cor-
relation coefficients for both the baseline and the estimator. They
are clearly separated but overlapped.



176 P.R. Vizcaya et al. / Biomedical Signal Processing and Control 51 (2019) 171–180

Fig. 5. 70 aligned beats from the subject Case #1 of the database; on the top (a), it shows left arm Lead-1 beats, and on the bottom (b) the chest Lead I P-QRS-T beat waveforms.

Fig. 6. Discrete cosine transform coefficients from several beats for subject #1. Top figure (a) shows left arm (Lead 1) and, bottom figure (b) shows chest Lead I. Beats from
left  arm are used as inputs in artificial neural network (ANN) and beats from chest lead as target inputs in the ANN.

Table 3
Training and test results of the ANN based on the left upper-arm Lead-1 only.

Values are mean (sd).

Correlation acceptance criteria

93% 90% 88% 85%

Number of subjects training/testing 37/57 51/55 59/37 68/30
�  train mean (sd) 0.956 (0.054) 0.945 (0.065) 0.937 (0.072) 0.938 (0.06)
�  test mean (sd) 0.801 (0.188) 0.824 (0.179) 0.825 (0.186) 0.807 (0.154)

sd: standard deviation.
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Fig. 7. Probability distribution of the correlation coefficients between estimated Lead-I and original Lead-I for the steps of training and testing of the ANN. On (a), left, for
Correlation Criterion 93% and on (b), right, for 85%.

Fig. 8. Distribution of the baseline correlation (Lead-1 vs. Lead I) and estimated
correlation (Lead-I estimated vs. Lead I).

F
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n

Table 4
Training and testing results of � correlation performance of the ANN for chest Lead
I  estimation. Values are mean standard deviation (sd).

Correlation
Criteria

Subjects
train/test

Lead 2 �
mean (sd)

Lead 3 �
mean (sd)

95 15/74 0.694 (0.325) 0.554 (0.397)
93 15/74 0.741 (0.244) 0.650 (0.271)
90 38/55 0.771 (0.216) 0.725 (0.256)
88 51/42 0.710 (0. 299) 0.765 (0. 242)
85  59/37 0.793 (0.217) 0.813 (0.171)

Table 5
Summary of basic statistics of the ANN estimator using different leads.

Lead 1 Mean (sd) Lead 2 Mean (sd) Lead 3 Mean (sd)

Baseline 0.371 (0.459) 0.181 (0.389) 0.199 (0.392)
Estimated Lead I 1.400 (0.459) 1.260 (0.570) 1.283 (0.529)
ig. 9. Plot of baseline correlation and estimated correlation beats. Only 1.35% (red
ircles) of the baseline correlation did not improved after ANN process.
On the other hand, Fig. 9 shows the point spread of these cor-
elation coefficients. Most of the beats improved their correlation
fter estimation (points above line). Only 35 out of 2588 beats did
ot improve (less than 1.4%).
sd: standard deviation.

Lead I was also estimated using two  more left arm lead (Lead-2
and Lead-3). Fig. 10 shows, 70 beats aligned for subject #1 from
Lead-2 (Fig. 10a, top) and Lead-3 (Fig. 10b, mid.) compared with
respective Lead I beats (Fig. 10c, bottom).

Table 4 summarizes the results on � for training and testing cor-
relation performance with the ANN Lead I estimation, for left arm
Lead-2 and Lead-3. Lead-3 results, using 85% of similarity, shows
the best performance compared to estimation using Lead-2.

Table 5 summarizes statistics that allow us to compare the per-
formance on estimation of the three leads considered. It turns out
that Lead-1 (Table 3) offers the best estimation performance and
capacity to reconstruct Lead I.

Fig. 11 presents a comparison plot of original and estimated
heart beat in contrasting cases: Fig. 11a (top), a good case with a
high correlation (0.99), and a bad case with low correlation of only
0.13 (Fig. 11b, bottom).

A basic null hypothesis test of this method was run using a
random signal as input to the ANN. Fig. 12 shows the probabil-
ity distribution of the correlation coefficient of the estimation with
Gaussian noise: its mean is closer to 0 and its overlap with the dis-
tribution with the estimation based on Lead I is small. The mean
of correlation transformed (mean (sd)) using as inputs Gaussian
noise, 0.175 (0.33), is significantly different than the mean using as
inputs Lead-1, 1.40 (0.45). Another test based on random selection

of the Lead-1 DCT (instead of the corresponding to the Lead I), also
reveals good performance, as presented in Fig. 13.
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Fig. 10. 70 aligned beats from the same subject #1; on the top, it shows upper-arm Lead-2 (a), in the middle, Lead-3 (b) and in bottom, the chest Lead I (c).

Fig. 11. Comparison of original and estimated heart beat (P-QRS-T waveform) for a
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ell behaved case, top graph (a), with a high 0.99 correlation, and a bad case, bottom
raph (b), with a poor correlation of 0.13.

This figure shows the transformed correlation coefficient dis-
ributions between the random Lead-1 and Lead I, and the true
ead-1 and Lead I. The point spread shows more clearly their joint
istribution, as presented in Fig. 14.

For the performance evaluation based on information theory
oncepts, the test database for 88% rejection criterion was used for
esting. It consists of 37 subjects with 68 beats each, Lead I and
stimated Lead I DCT vectors. The parameter for development of
he k-means unsupervised classifier was chosen as 37, under the
ssumption that every Lead I for each subject is different; in which
ase, every subject will generate a different class. The analysis of
he joint distribution between the original subject class and the

ncoded class showed a mutual information of 4.43 bits, equiva-
ent to 21.5 subject discrimination capacity out of 37; based on the
riginal Lead I DCT. So, this is an upper limit for the performance of
he estimator. The same analysis for the k-means classifier, k = 37,
Fig. 12. Histograms of transformed correlation among Lead I and its estimation,
when inputs to the ANN are Gaussian noise (brown) and Lead-1 (blue) correlation.

for the estimated Lead-I DCT (based on Lead-1) provides a tighter
upper bound of 1.91 bits for the final mutual information between
these 2 classifiers, which is finally calculated using Eq. (4) as: 1.6
bits.

4. Discussion and conclusion

The results from this study provide useful information metrics
evidence that it is possible to estimate the standard ECG Lead I
waveforms, in the P-QRS-T interval, from LUA bipolar leads, with
a mean correlation higher than 80%; thus enabling the possibility
of monitoring heart rhythm information features from a wearable
ECG recording band placed on the LUA, as our prototype develop-

ment in Fig. 15.

In this study we have only considered single arm leads inde-
pendently. Based on our observations, it is reasonable to suggest
improved methods by combining two or more arm leads simul-
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Fig. 13. Transform Histograms of correlation among Lead I and its estimation, when
inputs to the ANN are random Lead-1 (brown) and Lead-1 (blue).

Fig. 14. Plot of estimated correlation and random input Lead-1 estimated correla-
t
a
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n
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f
b
w
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s
p

ion. 4.52% (values below red line) of the random input estimation did not improve
fter the ANN process.

aneously, e.g., Lead-1 and Lead-2; as these two  present mutual
rthogonal orientation on the LUA.

Even though the DCT is effective for dimensionality reduction,
 significant reduction could be obtained from selection of compo-
ents according to their mean power, instead of using the first 96
oefficients, since the P-QRS-T wave class has characteristic time-
requency features. Further improvements could be investigated
y using a compact-support decomposition transform (wavelets)
ith a possible optimization approach [22].

The ANN has not been optimised; its number of free parame-
ers is too high and sparse. Training with subsets and a hierarchical

etwork, and limiting the connections among the input would
ignificantly reduce its complexity with no significant loss in its
erformance.
Fig. 15. Prototype of LUA wearable band monitoring device (WASTCArD Project),
for  long-term heart rhythm monitoring.

The variability of the P-QRS-T wave in this database is limited
as a consequence of the majority of the population having nor-
mal  electrocardiograms (ECGs). A database with abnormal heart
rhythms would be great value [14]. A larger database with standard
ECG leads and arm leads currently does not exist. This methodol-
ogy of estimation used in this study could be used to build such
database for abnormal Lead I estimation from abnormal left-arm-
lead recordings.

Information theory provides useful and objective measures for
evaluating the performance of estimation processes. The analysis
also shows, as a side result, that ECG may  be used as a biometric
characteristic with value comparative to features such as speech.

The main finding in this chest lead I estimation using arm leads,
was the capability of the system based on ANN to produce a heart-
beat with information about heart rhythm as is shown in Fig. 10 (a),
in this figure a smooth P-QRS-T wave form has been well estimated
and its correlation with Lead I was 99%.

As it shown in Table 3, correlation criterion acceptance was
important to observe the relation between number of subjects used
in both, training and testing ANN process in our database. When
the ANN is trained with optimum best heartbeats per subject (93%
of similarity), there was only one third of the subjects for train-
ing (37), and the remaining testing (57), yield to higher correlation
among estimated and Lead I in training and lower in testing, which
can indicate insufficient subjects in the training set to include most
of the P-QRS-T heartbeats morphology in our database and make
a good generalization. Further improvement on the generalisation
ability may  be investigated by adopting a Convolutional Neural Net-
work (CNN) approach and fusing the extracted deep features of a
simple CNN and P-QRS-T features [23].

In Table 3 and 4, comparing correlation criterion acceptance of
85%, Lead-1 {0.807 (0.154)} shows better performance among other
arm leads, as expected due its higher amplitude and signal to noise
ratio [12], comparing to Lead-2 {0.793 (0.217)} and Lead-3 {0.813
(0.171)}.

Some Authors have estimated precordial leads with three bipo-
lar leads [14] and 12-lead ECG using a single beat in a set of three
leads [24], thus it will be useful to conduct further studies on ANN
training, using some signal quality indexing approach [25] and ECG
data fusion from several arm leads.
In conclusion, a clinical multichannel arm-ECG mapping
database gathered from 153 subjects, has evidenced through the
proposed robust methods in this study, the indication (similarity
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