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Abstract:  

Quantifying the pre-evacuation time (i.e., the time between first awareness and deliberate evacuation 

movement),  is a key task for evacuation model users and fire safety engineers. The identification and 

employment of pre-evacuation data given an incident scenario is not a simple task for evacuation model 

users  and fire safety engineers since data is typically scarce, partial and often difficult to access. In this 

work, we address this issue by presenting an expanded database including pre-evacuation times collected 

from 9 fire incidents and 103 evacuation drills involving 13,591 evacuees in 16 countries. These case 

studies are grouped according to the occupancy type of the structure(s) involved. We also used cluster 

analysis to identify sub-groups and potential factors that influence performance. Using this pre-

evacuation data, we calibrate a set of pre-evacuation distributions that can be used to represent pre-

evacuation data in existing building evacuation models. This work provides a useful resource for 

evacuation model users and fire safety engineers and also may provide additional insights to researchers 

into the factors that influence pre-evacuation times. Finally, this work can have an impact on future data 

collection and analysis by identifying the need for new data for specific occupancies. 
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1. INTRODUCTION 

Evacuee behavior is a key factor in any fire safety performance based design. As such, understanding and 

predicting evacuee behavior is fundamental to enhancing the safety of buildings. To date, several egress 

models have been developed to simulate fire evacuations to determine whether the required safe egress 

time is less than the available safe egress time [1,2]. 

 

The building evacuation process can be divided into several components that form a response timeline 

[3,4]. The total evacuation time is generally divided into pre-evacuation time and travel time. The pre-

evacuation time is the interval between the time at which a general alarm signal or warning is given (or 

other cues received) and the time at which the first deliberate evacuation movement is made [5]. The 

travel time is the interval needed for an evacuee to reach a safe place, once movement toward an exit has 

begun [5]. The evacuation performance in these two stages is dependent on the conditions faced by 

evacuees and their capacity to respond. As such, evacuation model users and fire safety engineers need 

to identify those conditions that define the incident scenarios that they wish to simulate [6]. 

 

A key issue for model users is the identification and employment of pre-evacuation data that describes 

likely egress performance given pre-determined fire scenarios. This task might be demanding as pre-

evacuation data is typically scarce, partial, difficult to access and/or in a format which is not supported by 

evacuation models [6]. An initial attempt to simplify this process was made by Gwynne and Boyce in the 
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SFPE Handbook [4] who pulled together existing engineering data in a series of tables in a format which 

could be easily accessed by evacuation modelers. Part of the work done by Gwynne and Boyce focused 

on pre-evacuation data. They identified 76 case studies (i.e., 4 fire incidents and 72 evacuation drills) 

which they divided according to occupancy classes and presented in nine tables. The goal of the SFPE 

chapter is to provide the user with a characterization of each case study and present the related pre-

evacuation data using four descriptive statistics: mean, standard deviation, minimum and maximum 

(depending on the data summary available in the original source material). The first limitation of this 

existing database is that, in many instances, one or more of the four statistics is missing. Moreover, the 

statistics presented in the existing database are not intended to be used directly as an input to existing 

evacuation models, which require users to define the parameters of pre-evacuation distributions. These 

summary measures were instead intended to encourage the reader to select between and explore the 

original data sources provided. 

 

In this paper, we address this issue presenting an expanded version of the database proposed by  Gwynne 

and Boyce [4]. We present an expanded database, including pre-evacuation times collected from 9 fire 

incidents and 103 evacuation drills1. In contrast to the work presented in the SFPE chapter, we collected 

raw pre-evacuation data such as individual pre-evacuation data or aggregated pre-evacuation data 

through cumulative frequencies from the original datasets. This was achieved by searching the original 

references and contacting the original researchers. It was possible to collect data from the original 

references for 91 case studies while the data for the remaining case studies were provided by the authors. 

Through this process, we collected 2889 data points, where each data point includes a pre-evacuation 

time and its frequency. The advantage of this new data structure, i.e., combining pre-evacuation times 

and frequencies is that it allows (1) the calculation of all the statistics proposed in this paper without 

missing values; and (2) the calibration of pre-evacuation distributions for single case studies or a 

combination of them. 

 

The case studies included in this expanded database are categorized according to the occupancy involved 

(e.g., business, residential, mercantile, etc.), in accordance with the work conducted by Gwynne and 

Boyce in the SFPE Handbook [4]. This categorization was originally used to reflect the typical way in which 

practitioners would search for and select data; i.e., the first decision being the type of occupancy being 

represented. The original occupancy classification has been expanded to accommodate the new case 

studies identified in this work i.e., Hotel, Road Tunnel (i.e., drivers’ evacuation behavior) and 

Miscellaneous. This was done to accommodate the new case studies identified in this work. A few original 

occupancy classes such as Industrial, Health Care and Transport (i.e., transportation terminal users) are 

not included in this work as they included only a few case studies that are included in the new 

Miscellaneous class. Here, we go further than the original approach by examining variables that further 

differentiate the data; i.e., we use cluster analysis to identify possible sub-sets of data within the 

occupancy groups in an attempt to explore additional influential factors within each occupancy type. Such 

an analysis allows the identification of possible factors that may influence pre-evacuation timing with a 

view to potentially producing more rational approaches to grouping data in the future (i.e., beyond 

occupancy grouping). 

 

                                                           
1 An evacuation drill is defined as a preplanned simulation of an emergency evacuation for a specific 
incident scenario [26]. In this work, evacuation drills refer to both unannounced and announced evacuations 
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2. BACKGROUND  

To date, numerous studies have shown that pre-evacuation time can represent a significant portion of an 

evacuee’s total evacuation time [7–9], which can have serious consequences depending on the nature of 

the incident [8]. Conceptual models have been developed to show the types, and even the sequence, of 

evacuee behaviors that are performed during pre-evacuation. One of the first of these models was 

proposed by Canter, Breaux, and Sime [10] who charted processes for all the possible actions and 

responses that could be taken by evacuees in different types of occupancies [11]. More recent conceptual 

models have been proposed in [12–14] which were inspired by the general Protective Action Model by 

Lindell and Perry [15]. Other studies have been performed to investigate and quantify the internal and 

external factors that might influence pre-evacuation behavior [11,16,17].  Notwithstanding, pre-

evacuation behaviors are generally less documented, quantified and modelled than movement behaviors 

[8,18,19].  

 

At a conceptual level, three main modelling approaches have been proposed to represent evacuee pre-

evacuation time in building evacuation models [13]. The first approach relies on the user assignment of a 

pre-defined time to individuals or groups (i.e., a deterministic approach) or a pseudo-random number 

obtained from a distribution (i.e., a stochastic approach). The second approach involves the user 

assignment of sequences of pre-evacuation actions. The agents move to different parts of the simulated 

building to perform their activities. Each action has a pre-defined specific duration for each agent, 

assigned by the user. The last approach is the predictive-based approach. In this case, agents perform 

protective actions in accordance with different internal and external factors. Examples of this last 

approach are the Evacuation Decision Model proposed in [20] and its implementations for different 

evacuation studies [21–24].  

 

All three approaches have strengths and limitations. For instance, the main weakness of the first two 

approaches is that the behavior is not actually predicted by the models, but it is based on user 

assumptions while the main limitation of the third approach is the ‘homogeneity’ assumption (i.e., agents 

react to particular cues in similar ways) [13]. The main advantage of the predictive-based approach (i.e., 

the third approach) is that the evacuee pre-evacuation behavior is actually modelled whilst the other two 

approaches expect users to define such behavior as an input by selecting a pre-evacuation distribution(s) 

or a sequence of pre-evacuation actions.  It is recognized, however, that such an approach has only been 

applied to a limited number of cases and situations such as [21–24]. From an implementation viewpoint 

and evacuation model users still typically rely on the first approach to simulate pre-evacuation timing 

(particularly the stochastic approach).  

 

The first approach (either deterministic or stochastic) requires the model users to supply pre-evacuation 

timing data to implicitly represent the types of behaviors that various people perform during the pre-

evacuation time period, and the overall time that it takes to perform these series of behaviors. This is 

done by asking the users to define pre-evacuation distributions which could represent the timing 

uncertainty. Data from evacuation drills and real emergencies  can be used to quantify the pre-evacuation 

time and distributions for different types of buildings [25,26].  To date, three pre-evacuation databases 

have been proposed to do just that.  The first, produced by Shi et al. [27], introduced several descriptive 

statistics for pre-evacuation times collected in 69 evacuation drills dividing them according to a small set 

of occupancy classes. The second database produced by Fahy and Proulx [28], provided users with 

descriptive statistics for several fire drills and fire accidents which had occurred in offices, residential 
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buildings, hotels and stores. The most recent database was provided by Gwynne and Boyce in the SFPE 

Handbook [4]. They identified 76 case studies and provided descriptive statistics for pre-evacuation time 

divided according to occupancy classes. The main similarity and limitation of the existing works is that all 

provide only descriptive statistics of pre-evacuation data.  Although these statistics provide users with the 

order of magnitude of the pre-evacuation times for different scenarios, converting them into a 

probabilistic distribution is not an easy task for evacuation model users. Ideally, evacuation model users 

should find those distributions in the original references listed in the existing databases. However, many 

times those are not published as they are out of the scope of those works. In this article, we aim to fill this 

gap expanding the pre-evacuation database proposed by Gwynne and Boyce in the SFPE Handbook [4] 

and estimating those distributions using the methodological approach described in the following section.   

 

3. METHODOLOGY 

 

3.1 Data Selection and Representation 

The pre-evacuation data included in this paper has been found in sources typically considered as credible 

outlets within the field. Those sources were identified by Gwynne and Boyce in the SFPE Handbook [4], 

and include: 

1. Journal publications: Journal of Fire Protection Engineering, Fire Safety Journal, Fire Technology, 

Fire and Materials, Safety Science, International Journal of Performance- Based Fire Codes, 

Journal of Applied Fire Sciences, Building and Environment, Journal of Transportation Engineering 

Transportation Research Record, Physica A: 

2. Conference proceedings: International Association Fire Safety Science (IAFSS), Interflam, 

Pedestrian and Evacuation Dynamics (PED), Human Behavior in Fire, Asia- Oceania Association for 

Fire and Technology, Mobility and Transport for Elderly and Disabled People; 

3. Reports: National Institute of Standards and Technology (NIST), National Fire Protection 

Association (NFPA), National   Research   Council Canada (NRCC), British Standard Institute (BSI), 

Fire Protection Research Foundation (FPRF), Lund Department of Fire Safety Engineering and VTT 

Technical Research Centre (Finland).  

The identification of potential references has also been assisted by the reviews provided in seminal 

publications in the field of human behavior in fire [4,27–29]. The final set of references which provided 

data for analysis here were identified and selected according to the following criteria, whereby the 

sources were: 

1. Publicly available; 

2. Written in English (or where translations were available upon request); 

3. Published after 1980 to ensure relevance; 

4. Providing at least four data points, where each data point included a pre-evacuation time and its 

cumulative frequency (i.e., percentiles), in digital or graphical forms.  

The first three criteria are the same as those adopted by Gwynne and Boyce in the SFPE Handbook [4] to 

identify papers presenting pre-evacuation data. The reason behind the selection of data published after 

1980 is to get evacuation data which is fairly contemporary and thus having evacuation conditions and 

responses similar to those present today. The last criterion was added in this work to select papers having 

a specific pre-evacuation data structure. This has been added since the goal here, in contrast to the SFPE 
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Chapter, is to collect raw pre-evacuation data (individual pre-evacuation data or aggregated pre-

evacuation data through frequencies). This fourth criterion is fundamental to broadly estimate pre-

evacuation distributions (as explained in Section 3.3), that are more useful for computational evacuation 

models. In fact, having four percentiles allows the estimation of distributions that represent the pre-

evacuation trends observed during an evacuation. 

The pre-evacuation data (i.e., pre-evacuation times and their frequencies) is generally available in the 

published references through tables and charts. When a reference did not satisfy the fourth criterion, the 

reference authors were contacted and asked if they could provide the raw data.  If the data was available 

only in graphic form, it was converted into a digital form by using the open source application called 

WebPlotDigitizer2. This graphic conversion was done for 34 case studies which are identified by the * 

symbol in the following Tables 2,4,8,12, 14 and 16. The selection and rejection procedure is illustrated in 

Figure 1.   

 

 
Figure 1 – Data selection procedure. 

 

The datasets (originating from evacuation drills or fire incidents) included in the expanded database are 

presented in this paper in tabular and graphical form. The tables provide two statistics regarding the pre-

evacuation times: mean and standard deviation. Those statistics were taken from the references when 

available, otherwise they were calculated using the frequencies either provided in the paper or by the 

reference authors. 

 

The tables presented here also provide background information that allows the reader to understand the 

context in which the data was collected and the scenarios associated with the datasets.  

 

In this paper, the tables are presented in standardized format according to the structure used in the SFPE 

Chapter [4]. The table structure includes the following items: 

- Reference (“Ref.” in the Tables) indicates one or more references where the data is from; 

                                                           
2 Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 

experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, 
materials, or equipment are necessarily the best available for the purpose. 

https://apps.automeris.io/wpd/
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- Building is a description of the type of building where the evacuation took place; 

- Country in which the building is located; 

- Nature indicates the nature of the evacuation and the understanding of the event by the 

population; i.e., whether the evacuation was a total evacuation or a partial evacuation and 

whether it took place during announced or unannounced drills/real events (i.e., total 

Unannounced Drill: UD; Partial Unannounced Drill: P-UD), Announced Drills (AD), Semi-

Announced Drills (SAD) or Fire Incidents (FI); 

- Alarm provides information regarding the alarm systems: i.e., sirens, bells, and horns (AL); T3 fire 

alarm systems (T3); live voice notifications (LV); and prerecorded voice notifications (PV); 

- Floors indicate the number of floors of the building; 

- Sample is the number of evacuees whose pre-evacuation times are observed and included in the 

study; 

- Mean and Standard Deviation (SD) of the pre-evacuation times3; 

The datasets included in this publication are also presented in a graphical form, i.e., in two standard 

charts: a 2D plot showing the pre-evacuation time on the horizontal axis and the cumulative frequency or 

probability on the vertical axis and a 2D plot showing the mean and standard deviation of pre-evacuation 

times in the horizontal and vertical axis respectively. The former chart form has been selected as 

cumulative measurements easily allow the comparison of several pre-evacuation datasets and 

distributions. Moreover, such a format is preferred as the pre-evacuation distributions are estimated 

using cumulative frequencies as explained in Section 3.2.  The second form of chart is used to illustrate 

where several datasets are located in such a two-dimensional space. This approach enabled cluster 

analysis to be performed (as described in Section 3.3) to identify potential factors affecting the grouping. 

 

3.2 Distribution Estimation 

Starting from collected pre-evacuation data points, it is possible to calibrate continuous distributions. Let 

f(x|𝑎, 𝑏) be a continuous probabilistic distribution defined by two parameters (i.e., 𝑎 and 𝑏) and F(x|𝑎, 𝑏) 

its cumulative distribution. Let (𝑡𝑖
𝑑,𝑃𝑖

𝑑) be a data point representing the i pre-evacuation times (𝑡𝑖
𝑑) and 

the cumulative frequencies (𝑃𝑖
𝑑) of the d dataset (i=1, …, Id and d=1, …, D). f can be calibrated with the 

existing data using Least Squares Method [30] by solving the optimization problem in Equation 1. 

 

arg min
𝑎,𝑏

∑ 𝑤𝑑

𝐷

𝑑=1

∑(𝑃𝑖 − 𝐹(𝑥𝑖|𝑎, 𝑏))2

𝐼𝑑

𝑖=1

 Equation 1 

 

                                                           
3 Those statistics were taken from the original references (when available) or calculated using the available 
frequency data: 

𝑚𝑒𝑎𝑛 =
∑ 𝑡𝑖𝐸𝑖𝑖

∑ 𝐸𝑖𝑖
 

𝑠𝑡. 𝑑𝑒𝑣. = √
∑ (𝑡𝑖 − 𝑚𝑒𝑎𝑛)2𝐸𝑖𝑖

∑ 𝐸𝑖𝑖

 

 
where 𝐸𝑖  is the number of evacuees having 𝑡𝑖  as pre-evacuation time. 
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where 𝑤𝑑 are the weights associated with each dataset. Considering that each d dataset is made of Id data 

points accounting for 𝑒𝑑 evacuees, we assume that 𝑤𝑑 is the ratio between 𝑒𝑑and 𝐼𝑑 (i.e., 𝑤𝑑 = 𝑒𝑑/𝐼𝑑). 

In such a way, each dataset contributes in the fitting of a curve according to the size of the sample. Further 

details regarding such an approach (i.e., weighted nonlinear regression) and its challenges are available in 

[31,32]. 

 

In this paper, we consider four possible pre-evacuation distributions defined by two parameters: gamma 

(Equation 2), lognormal (Equation 3), loglogistic (Equation 4), and Weibull distributions (Equation 5). 

These are fitted against the various dataset groupings. Those distribution were selected as they are 

defined only for positive values of the x random variable (i.e., negative value of pre-evacuation time are 

not allowed). Those distribution also have a skewed shape which is typical for pre-evacuation data [7]. 

Moreover, those distributions are implemented in many well-known evacuation models such as FDS+Evac  

[33], Pathfinder [34] and EXODUS [35].  

 

Gamma:  𝐹(𝑥|𝑎, 𝑏) =
1

𝑏𝑎𝛤(𝑎)
 ∫ 𝑡𝑎−1𝑒

−𝑡
𝑏 𝑑𝑡

𝑥

0

 Equation 2 

 

Lognormal:  𝐹(𝑥|𝑎, 𝑏) =
1

𝑏√2𝜋
 ∫

exp (
−(ln(𝑡) − 𝑎)2

2𝑏2 )

𝑡
𝑑𝑡

𝑥

0

 Equation 3 

 

Loglogistic:  𝐹(𝑥|𝑎, 𝑏) =
1

1 + (𝑥/𝑎)−𝑏
 Equation 4 

 

Weibull ∶   𝐹(𝑥|𝑎, 𝑏) = ∫ 𝑏𝑎−𝑏𝑡𝑏−1exp (−(𝑡/𝑎)𝑏)
𝑥

0

 𝑑𝑡  Equation 5 

 

The fitting of those four distributions is assessed and compared using the R2 parameter4. The results of all 

four distributions are always presented (in Section 4) as some evacuation models might not have the 

capacity to represent each distribution. As such, the users can select an alternative distribution between 

the remaining ones. 

 

The proposed approach can be used to estimate more complex distribution having more than two 

parameters. However, those distributions have not been used in the literature or implemented in well-

known evacuation models. 

 

The methodology proposed in this section is used in Section 4 to calibrate pre-evacuation distributions by 

combining the data points from different data sets.  

 

                                                           
4 There is some debate over the general applicability of the R2 indicator, especially to non-linear distributions. 
Multiple fitting indicators can be used when Likelihood methods are used to fit models as indicated in [80]. However, 
in this work we adopted a weighted Least Squares method where the weights account for the sample size of each 
dataset (see Equation 1).  As such, for the purpose of this paper, readers should refer to R2 indicators as well as to 
the regression charts (i.e. the scatter plots including the lines representing regression models) to have a 
comprehensive understanding of advantages and limitations of the proposed regression models.  
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3.3 Clustering Analysis 

In this work, a clustering solution was used to group the case studies identified in the expanded database. 

To achieve this, the k-mean cluster analysis was used [36]. Such a mathematical solution allows us to 

investigate whether it is possible to subdivide the case studies included in our database into clusters and 

thus identify candidate factors that may segregate the datasets in addition to or instead of the occupancy 

types already identified. 

 

The average and standard deviation of the pre-evacuation times of each dataset belonging to the same 

occupancy group are the input for the cluster analysis. Let 𝒙𝒊 = {𝑀𝑖, 𝑆𝑖} be a two-dimensional real vector 

defined by the mean (𝑀𝑖) and standard deviation (𝑆𝑖) of the i case study (i=1, …, n). The k-mean cluster 

analysis is a technique that allows the partition of the n vectors into k (<n) cluster 𝑪 = {𝐶1, … , 𝐶𝑘} by 

minimizing the within-cluster sum of squares [36]. This is done by solving this optimization problem: 

arg min
𝑪

∑ ∑ ‖𝒙 − 𝝁𝒋‖
2

𝒙∈𝐶𝑗

𝑘

𝑖=𝑗

 Equation 2 

where 𝝁𝒋 is the mean of the 𝒙𝒊 points belonging to the 𝐶𝑗 cluster. A fundamental input requirement of 

this clustering approach is the number of clusters (k). This number can be identified using the Elbow 

method [37], which focuses on the reduction of the within-cluster sum of square as a function of the 

number of clusters as illustrated in Figure 2. As such, the resulting clusters includes case studies sharing 

‘similar’ mean and standard deviation of pre-evacuation time. 

 

 
Figure 2 – An example of Elbow chart. 

 

In the following sections, the pre-evacuation distributions in Section 3.2 are calibrated for each individual 

cluster. It is worth highlighting that the R2 parameters given below must not be used as a criterion to select 

between clusters, but need to be only used to choose between distributions estimated within the same 

cluster. 

 

4. RESULTS 

The database presented in this paper is an expanded version of the database proposed by Gwynne and 

Boyce [4]. It includes pre-evacuation times collected from 112 case studies, including 9 fire incidents and 

103 evacuation drills. 93 of those drills were unannounced while the remaining 10 drills were announced 
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or semi announced. The data included in this dataset originates from 16 countries. The percentage of case 

studies belonging to each country is illustrated in Figure 3.a. It is evident that Sweden and the US account 

for almost 40% of the total case studies.  

 

The case studies are divided here depending on their occupancy, in accordance with the original work 

conducted by Gwynne and Boyce in the SFPE Handbook [4]. The original occupancy classification has been 

partially extended in this work by the introduction of 3 new categories, i.e., Hotel, Road Tunnel and 

Miscellaneous. The list of occupancy groups and the percentage of case studies belonging to each group 

is depicted in Figure 3.b. From Figure 3.b it is evident that a third of the case studies consist of evacuations 

that took place in educational buildings. 

 

A comparison of the expanded database with the databases proposed by Gwynne and Boyce [4], Fahy and 

Proulx [28] and Shi et al. [27] is presented in Figure 45. 

 

From Figure 4, it is possible to observe some overlapping between the expanded database and the existing 

databases. 68% of case studies from the Gwynne and Boyce database [4] are included in the expanded 

database. Moreover, all the case studies from the Fahy and Proulx [28] and 9% from Shi et al. [27] are also 

included in the expanded database. The case studies that were excluded did not meet the criterion 4 (See 

Section 3.1). 

 

 
(a) 

 
(b) 

Figure 3 – Percentages of the case studies for each (a) country and (b) occupancy 

 

                                                           
5 Such a comparison can be only carried out using the mean values of each case study as the standard deviations 
are not reported by Fahy and Proulx [28] and Shi et al. [27]. 
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Figure 4 – Comparison between the proposed database with the database proposed by Gwynne and Boyce [4], 

Fahy and Proulx [28] and Shi et al. [27]  

 

Using the mean and the standard deviation of the pre-evacuation time of those evacuations, it was 

possible to identify three clusters using the k-mean cluster analysis (Section 3.2) as illustrated in Figure 7. 

From Figure 7, it is possible to observe that Clusters 2 and 3 represent four extreme case studies having 

the greatest pre-evacuation times. Those case studies are all fire incidents which took place in a high rise 

hotel and office buildings, listed in Table 1. 
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Figure 5 – Available data points by occupancy 

 

 
Figure 6 – Mean and standard deviation of the case study divided by occupancy  
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(a) 

 
(b) 

Figure 7– Pre-evacuation data divided by clusters: (a) means and standard deviations; (b) data points. 

 

Table 1 – Pre-evacuation data for the four case studies having the greatest mean pre-evacuation time and 

standard deviations.  

Ref. Building Country Nature Alarm Floors Sample 
Mean 
[min] 

SD 
[min] 

Cluster 

[28] High-rise office US FI No AL 110 85 11.300 58.489 2 

[28] High-rise office US FI No AL 110 46 28.400 43.490 2 

[38] High-rise hotel US FI No AL 13 47 21.125 55.510 2 

[39] High-rise hotel US FI No AL 26 536 73.613 73.370 3 

 

In the following subsections, the pre-evacuation data is analyzed according to each occupancy type. For 

each occupancy type, the case studies and characteristics (noted in Section 3.1 above) are provided in 

tabular format. These case studies are clustered, when possible, using the approach introduced in Section 

3.3.  For each occupancy an attempt can be made to explain/interpret the clustering.  In some cases, this 

may be obvious given the characteristics of the case studies presented in the tables; in other the clustering 

may be rather difficult to explain with the reasons being much more complex. 

 

Several factors can explain the clustering results. Some factors are reported in the following tables 

allowing the reader to infer any relationships; however, other influential factors may exist but are not 

included as they were not reported in the original referenced material. Any relationships drawn should 

then be considered provisional. The factors reported in the following tables are those selected in the SFPE 

Chapter [4] while the remaining are from the existing literature on pre-evacuation behavior. As such, we 

provide a comprehensive list of factors that readers can use to assess the difference among clusters: 

1) The presence of an alarm, the type of alarm system and its performance [4]; 

2) Country and evacuee culture [4]; 

3) Nature of the event, i.e., fire accidents vs drills [4]; 

4) Type of building structure, e.g., number of floors, geometry, etc. [4]; 

5) Evacuation procedure [4]; 

6) Length of voice message and nature of the provided message [40,41]; 

7) Time of the day [42,43]; 

8) Weather conditions [44–46]; 
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9) Difference in the methodology to collect behavioral data, such as closed-circuit television video 

analysis, questionnaires and interview [19,26]; 

10) Percentage of disabilities, elderly and motion impaired occupants [47]. 

Given the inconsistencies and omissions in the original 112 datasets, it was not possible for the authors 

to definitively establish the underlying factors that generated the clusters identified. As such, we suggest 

evacuation model users select the occupancy and the cluster that have the most similarities with their 

own case study depending on the list of those ten factors. The clusters might then act as a means by which 

to narrow the search of the data available. The readers should refer to the original references in case of 

uncertainty regarding the best cluster to select. 

 

In Sections 4.1 – 4.8, we estimate four pre-evacuation distributions (i.e., gamma, lognormal, loglogistic 

and Weibull distributions) for each cluster. In choosing the most representative distribution, evacuation 

model users should consider both the R2 parameters as well as the regression charts within the same 

cluster. In fact, the R2 parameters provide an overall assessment of the fitting while the regression charts 

help identify distributions which fit better across the range of interest. Where users cannot use a 

particular distribution (e.g., where their evacuation model cannot represent a distribution), they can 

select an alternative distribution between the remaining ones. In both instances, the user will have an 

idea of how representative the curve is of the underlying data given the associated R2 value. 

 

4.1 Business Occupancy 

There were 13 case studies belonging to the business occupancy group. Those evacuations took place in 

buildings containing 4 to 110 floors located mostly in the US and Canada (50%). Using the mean and the 

standard deviation of the pre-evacuation time of those evacuations, it was possible to identify two clusters 

as illustrated in Table 2. Figure 8.a illustrates the location of 13 case studies on the mean vs. standard 

definition plane while the data points of those case studies are displayed in Figure 8.b.  
 

Table 2 – Pre-evacuation data for business occupancy 

Ref. 
Case 
Study 

Building Country Nature Alarm Floors Sample 
Mean 
[min] 

SD 
[min] 

Cluster 

[44,45] 1 Office US P-UD PV 11 72 2.355 1.060 1 

[44,45] 2 Mixed Office US UD T3 4 348 1.693 0.841 1 

[44,45] 3 Mixed Office US P-UD PV 12 132 1.233 0.562 1 

[48] 4 Office Canada UD AL 13 458 1.398 1.436 1 

[49] 5 Office Canada UD AL 6 92 0.573 0.385 1 

[49] 6 Office Canada UD AL 7 161 1.196 0.827 1 

[50] 7 Office* Finland AD AL 7 33 2.722 1.151 1 

[50] 8 Office* Finland AD AL 4 9 2.017 0.850 1 

[51] 9 Office UK UD AL 6 19 0.467 0.183 1 

[52] 10 Office Denmark UD PV 12 70 0.961 0.600 1 

[42] 11 Office Australia FI No AL 14 106 5.415 1.547 1 

[28] 12 Office** US FI No AL 110 85 11.300 58.489 2 

[28] 13 Office** US FI No AL 110 46 28.400 43.490 2 

* Data converted from graphical to digital form 

** World Trade Center 
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(a) 

 
(b) 

Figure 8 – Pre-evacuation data for business occupancy by clusters: (a) means and standard divisions of the case 

studies; (b) data point of the case studies. 
 

Four pre-evacuation distributions are estimated for each cluster. The estimate parameters and the R2 are 

displayed in Table 3. Those distributions and the related data points are illustrated in Figure 9. 

 
Table 3 – Estimated parameters of the pre-evacuation distributions for the business clusters  

Cluster Distribution 
Distribution in seconds Distribution in minutes 

Data points 𝑹𝟐  

𝒂  𝒃 𝒂 𝒃 

1 

Gamma 1.291 103.901 1.291 1.732 

2597 

0.564 

Lognormal 381.651 0.967 40.919 0.967 0.548 

Loglogistic 4.592 0.587 0.498 0.587 0.548 

Weibull 139.285 1.195 2.321 1.195 0.566 

2 

Gamma 0.557 1419.096 0.557 23.651 

10 

0.942 

Lognormal 36.131 1.613 11.104 1.613 0.949 

Loglogistic 5.905 0.958 1.811 0.958 0.950 

Weibull 672.010 0.664 11.200 0.664 0.944 

 

It is worth highlighting that Cluster 2 refers to the evacuation that took place in the World Trade Center 

in 1993. For this evacuation, it was possible to find only ten percentiles (see Figure 8.b) from the literature. 

This small number of data points explains the high value of R2 in Table 3. Regardless of the limitation of 

this case study, the proposed distribution is capable of representing the pre-evacuation event as 

illustrated in Figure 9. 

 

 
Cluster 1 

 
Cluster 2 

Figure 9 – Regression charts for the business clusters 
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4.2 Residential Occupancy 

There were 11 residential occupancy case studies. Those evacuations took place in buildings containing 4 

to 30 floors located mostly in Canada (63%). For this occupancy, we exclude the sleep data presented in 

[4] as they focus on the effectiveness of different notification systems to wake sleeping participants and 

on arousal time rather than pre-evacuation time. Using the mean and the standard deviation of the pre-

evacuation time of those evacuations, it is possible to identify two clusters as illustrated in Table 4. Figure 

10.a illustrates the location of 11 case studies on the mean vs. standard definition plane while the data 

points of those case studies are displayed in Figure 10.b.  

 
Table 4 – Pre-evacuation data for residential occupancy 

Ref. 
Case 
Study 

Building Country Nature Alarm Floors Sample 
Mean 
[min] 

SD 
[min] 

Cluster 

[45] 1 Univ. Residence US UD T3 4 40 0.995 0.346 1 

[45] 2 Univ. Residence US UD T3 4 33 0.600 0.245 1 

[53] 3 Apartment Canada UD AL 7 42 2.673 2.727 1 

[53] 4 Apartment Canada UD AL 7 80 3.313 2.961 1 

[54] 5 Apartment  Canada UD AL 14 31 1.637 1.225 1 

[54] 6 Apartment  Canada UD AL 14 94 1.455 1.169 1 

[47] 7 Residential Care  UK UD AL 3 13 1.462 1.887 1 

[43] 8 Apartment*  Canada FI    ALa b 30 103 13.239 9.127 2 

[42] 9 Apartment  Australia FI ALa 18 26 10.731 4.670 2 

[53] 10 Apartment  Canada UD ALb 6 55 8.332 7.344 2 

[53] 11 Apartment  Canada UD ALb 7 79 10.190 8.182 2 

* Data converted from graphical to digital form 
a Early morning; b Poor performance of the alarm system 

 

 
(a) 

 
(b) 

Figure 10 – Pre-evacuation data for residential occupancy divided by clusters: (a) means and standard deviations of 

the case studies; (b) data points of the case studies. 

 

Four pre-evacuation distributions are estimated for each cluster. The estimate parameters and the R2 are 

displayed in Table 5. Those distributions and the related data points are illustrated in Figure 11. 
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Table 5 – Estimate parameters of the pre-evacuation distributions for the residential clusters  

Cluster Distribution 
Distribution in seconds Distribution in minutes 

Data points 𝑹𝟐  

𝒂 𝒃 𝒂 𝒃 

1 

Gamma 0.650 178.024 0.650 2.967 

149 

0.601 

Lognormal 54.879 1.432 -0.119 1.432 0.589 

Loglogistic 4.087 0.873 -0.007 0.873 0.586 

Weibull 102.475 0.767 1.708 0.767 0.599 

2 

Gamma 0.911 812.708 0.911 13.545 

78 

0.820 

Lognormal 98.986 1.268 32.821 1.268 0.785 

Loglogistic 6.143 0.763 2.049 0.763 0.784 

Weibull 724.617 0.978 12.077 0.978 0.819 

 

 
Cluster 1 

 
Cluster 2 

Figure 11 – Regression charts for the residential clusters 

 

The results In Table 5 and Figure 11 show a reasonably good agreement between existing data and 

proposed distributions. In this case, the lower values of R2 for Cluster 1 can be explained by the high 

dispersion of the data points of this cluster as shown in Figure 11. However, given the regression charts 

in Figure 11 the proposed distributions seem to provide a good representation of the trends shown by the 

data points. 

 

4.3 Mercantile Occupancy 

There were 8 case studies belonging to this occupancy group. Those evacuations took place in buildings 

containing 1 to 3 floors located mostly in the UK and Sweden (88%). Using the mean and the standard 

deviation of the pre-evacuation time of those evacuations, it is possible to identify two clusters as 

illustrated in Table 6. Figure 12.a illustrates the location of the 8 case studies on the mean vs. standard  

deviation plane while the data points of those case studies are displayed in Figure 12.b.  
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Table 6 – Pre-evacuation data for mercantile occupancy 

Ref. 
Case 
Study 

Building Country Nature Alarm Floors Sample 
Mean 
[min] 

SD 
[min] 

Cluster 

[55] 1 
Marks & Spencer 

(Sprucefield Centre) 
UK UD AL 1 95 0.417 0.233 1 

[56] 2 
Marks & Spencer 

(Culverhouse Cross) 
UK UD AL 1 71 0.417 0.217 1 

[57] 3 
IKEA 

(Örebro) 
Sweden UD VA 1 16 0.703 0.217 1 

[57] 4 
IKEA 

(Västerås) 
Sweden UD VA 1 12 0.610 0.222 1 

[57] 5 
IKEA 

(Älmhult) 
Sweden UD VA 3 17 0.713 0.445 1 

[56] 6 
Marks & Spencer 

(Royal Ave) 
UK UD AL 3 122 0.617 0.317 1 

[56] 7 
Marks & Spencer 

(Queen St) 
UK UD AL 3 122 0.517 0.300 1 

[58] 8 Xin Lian Xin Store China AD AL 1 294 1.450 0.921 2 

 

 
(a) 

 
(b) 

Figure 12 – Pre-evacuation data for mercantile occupancy divided by clusters: (a) means and standard deviations of 

the case studies; (b) data points of the case studies. 

 

Four pre-evacuation distributions are estimated for each cluster. The estimated parameters and the R2 

values are displayed in Table 7. Those distributions and the related data points are illustrated in Figure 13. 
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Table 7 – Estimate parameters of the pre-evacuation distributions for the mercantile clusters  

Cluster Distribution 
Distribution in seconds Distribution in minutes 

Data points 𝑹𝟐  

𝒂 (s) 𝒃 (s) 𝒂 (min) 𝒃 (min) 

1 

Gamma 3.005 14.564 3.005 0.243 

4 

0.901 

Lognormal 62.874 0.574 -7.764 0.574 0.895 

Loglogistic 3.660 0.334 -0.434 0.334 0.893 

Weibull 48.453 1.957 0.808 1.957 0.905 

2 

Gamma 2.535 34.561 2.535 0.576 

63 

0.996 

Lognormal 150.491 0.610 7.704 0.610 0.996 

Loglogistic 4.309 0.362 0.215 0.362 0.993 

Weibull 96.470 1.642 1.608 1.642 0.994 

 

 
Cluster 1 

 
Cluster 2 

Figure 13 – Regression charts for the mercantile clusters 

 

It is worth highlighting that Cluster 2 refers to the evacuation that took place in the Xin Lian Xin Store in 

China. For this evacuation, it was possible to find only four data points from the literature. This small 

number of data points explains the high value of R2 in Table 7. Regardless of the limitation of this case 

study, the proposed distribution is capable of representing the pre-evacuation event as illustrated in 

Figure 13. 

 

4.4 Assembly Occupancy 

There were 21 case studies belonging to the assembly occupancy group. Those evacuations took place in 

buildings containing 1 to 3 floors located in the UK, Sweden, and China. Cluster analysis was conducted 

for the cinema and theatre case studies, only. Using the mean and the standard deviation of the pre-

evacuation time of those cinema evacuations, it is possible to identify four clusters as illustrated in Table 

8. Figure 14.a illustrates the location of 21 case studies on the mean vs. standard definition plane while 

the data points of those case studies are displayed in Figure 14.b. Considering the differences between 

buildings types within this specific occupancy category, we manually defined independent clusters for the 

restaurant/bar case studies. This occupancy contains a broader range of building types that may require 

different pre-evacuation data, e.g., restaurants/bars vs. cinema theaters. Since it is likely that engineers 

will search for data related to building type (even within the same occupancy), this approach simplifies 

the users’ choice by manually separating those case studies from restaurants/bars and those from cinema 

theaters into separate clusters. 
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Table 8 – Pre-evacuation data for assembly occupancy 

Ref. 
Case 
Study 

Building Country Nature Alarm Floors Sample 
Mean 
[min] 

SD 
[min] 

Cluster 

[59] 1 Theatre* UK UD PV 3 338 0.357 0.128 1 

[60] 2 Cinema-Theatre Sweden UD AL 1 87 0.299 0.094 1 

[60] 3 Cinema-Theatre Sweden UD AL 1 98 0.457 0.086 2 

[60] 4 Cinema-Theatre Sweden UD PV 1 108 0.539 0.102 2 

[60] 5 Cinema-Theatre Sweden UD PV 1 128 0.516 0.083 2 

[60] 6 Cinema-Theatre Sweden UD PV 1 129 0.551 0.119 2 

[61] 7,8,9 Cinema* Sweden UD PV 1 126 0.607 0.166 2 

[61] 10,11,12 Cinema* Sweden UD PV 1 297 0.567 0.173 2 

[61] 13,14,15 Cinema* Sweden UD PV 1 39 0.725 0.178 3 

[61] 16,17,18 Cinema* Sweden UD PV 1 178 0.668 0.200 3 

[7] 19 Theatre* UK UD LV+PV 3 115 0.927 0.418 4 

[7] 20 Restaurant* UK UD AL+PV 2 11 0.811 0.120 5 

[62] 21 Bar China UD - 1 40 0.513 0.114 5 

* Data converted from graphical to digital form 

 

 
(a) 

 
(b) 

Figure 14 – Pre-evacuation data for assembly occupancy divided by clusters: (a) means and standard deviations of 

the case studies; (b) data point of the case studies. 

 

Four pre-evacuation distributions are estimated for each cluster. The estimated parameters and the R2 

are displayed in Table 9. 
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Table 9 – Estimate parameters of the pre-evacuation distributions for the assembly clusters  

Cluster Distribution 
Distribution in seconds Distribution in minutes 

𝑹𝟐  

𝒂 𝒃 𝒂 𝒃 
1 Gamma 10.584 1.664 10.584 0.028 0.961 

1 Lognormal 417.150 0.308 -186.262 0.308 0.962 

1 Loglogistic 2.829 0.184 -1.266 0.184 0.960 

1 Weibull 19.187 3.554 0.320 3.554 0.954 

2 Gamma 16.627 1.898 16.627 0.032 0.886 

2 Lognormal 798.053 0.248 -154.961 0.248 0.888 

2 Loglogistic 3.428 0.149 -0.666 0.149 0.889 

2 Weibull 33.790 4.631 0.563 4.631 0.880 

3 Gamma 12.779 3.138 12.779 0.052 0.992 

3 Lognormal 428.761 0.281 -51.083 0.281 0.993 

3 Loglogistic 3.658 0.166 -0.436 0.166 0.992 

3 Weibull 43.514 4.008 0.725 4.008 0.986 

4 Gamma 5.544 9.949 5.544 0.166 0.999 

4 Lognormal 904.832 0.427 -36.708 0.427 1.000 

4 Loglogistic 3.935 0.251 -0.159 0.251 0.999 

4 Weibull 60.959 2.579 1.016 2.579 0.996 

5 Gamma 2.861 12.757 2.861 0.213 0.372 

5 Lognormal 62.497 0.611 -11.308 0.611 0.378 

5 Loglogistic 3.466 0.376 -0.628 0.376 0.377 

5 Weibull 39.969 1.780 0.666 1.780 0.367 

 

 
Cluster 1 

 
Cluster 2 

 
Cluster 3 

 
Cluster 4 

 
Cluster 5 

Figure 15 – Regression charts for the assembly clusters 

 

The results in Table 9 and Figure 15 show good agreement between the existing data and the proposed 

distributions except for Cluster 5. This is due to the high dispersion of the data from the two evacuations 

which took place in a bar and a restaurant. For Cluster 4, it is possible to observe a close match between 

data and distribution (i.e., the R2 parameter is very close to one). This result can be explained by the fact 

that the 15 data points (see Figure 14.b) were from a single evacuation from a theatre in UK. 
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4.5 Hotel Occupancy 

There were five case studies belonging to the hotel occupancy group. Those evacuations took place in 

buildings located mostly in the Netherlands and the US. Using the mean and the standard deviation of the 

pre-evacuation time of those evacuations, it is possible to identify three clusters as illustrated in Table 10. 

Figure 16.a illustrates the location of 5 case studies on the mean vs. standard definition plane while the 

data points of those case studies are displayed in Figure 16.b. 

 
Table 10 – Pre-evacuation data for hotel occupancy 

Ref. 
Case 
Study 

Building Country Nature Alarm Floors Sample 
Mean 
[min] 

SD 
[min] 

Cluster 

[63] 1 Hotel Netherland UD 
Phone 

Message 
** 18 2.277 3.169 1 

[63] 2 Hotel Netherland UD 
Phone 

Message 
** 37 1.498 1.076 1 

[63] 3 Hotel Netherland UD 
Phone 

Message 
** 23 1.633 1.325 1 

[38] 4 High-rise hotel US FI No Alarm 13 47 21.125 55.510 2 

[39] 5 High-rise hotel US FI No Alarm 26 536 73.613 73.370 3 

** those experiments took place on a single floor and corridor 

 

 
(a) 

 
(b) 

Figure 16 – Pre-evacuation data for hotel occupancy divided by clusters: (a) means and standard deviations of the 

case studies; (b) data point of the case studies. 

 

Four pre-evacuation distributions are estimated for each cluster. The estimate parameters and the R2 are 

displayed in Table 11. Those distributions and the related data points are illustrated in Figure 17. 
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Table 11 – Estimate parameters of the pre-evacuation distributions for the hotel clusters  

Cluster Distribution 
Distribution in seconds Distribution in minutes Data 

points 𝑹𝟐  

𝒂 𝒃 𝒂 𝒃 

1 

Gamma 2.787 29.503 2.787 0.492 

78 

0.974 

Lognormal 423.443 0.631 16.852 0.631 0.978 

Loglogistic 4.262 0.379 0.168 0.379 0.978 

Weibull 90.500 1.790 1.508 1.790 0.968 

2 

Gamma 0.567 1276.836 0.567 21.281 

4 

0.994 

Lognormal 93.846 1.571 27.487 1.571 0.997 

Loglogistic 5.780 0.946 1.686 0.946 0.996 

Weibull 606.399 0.684 10.107 0.684 0.996 

3 

Gamma 0.294 14165.384 0.294 236.085 

7 

0.875 

Lognormal 13.082 2.560 4.947 2.560 0.784 

Loglogistic 6.589 1.567 2.495 1.567 0.772 

Weibull 2088.400 0.440 34.806 0.440 0.835 

 

 
Cluster 1 

 
Cluster 2 

 
Cluster 3 

Figure 17 – Regression charts for the hotel clusters 

 

The results In Table 11 and Figure 17 show good agreement between the existing data and the proposed 

distributions. It is worth highlighting that Cluster 2 refers to the evacuation that took place in a high-rise 

hotel in the US. For this evacuation, it was possible to find only five data points from the literature. This 

small number of data points explains the high value of R2 in Table 11. Regardless of the limitations of this 

case study, the proposed distribution is capable representing the pre-evacuation event as illustrated in 

Figure 17. 

 

4.6 Educational Occupancy 

There were 36 educational case studies. These took place in schools, libraries, laboratories and university 

lecture halls. A cluster analysis is used to analyze the case studies of kindergartens, pre-schools, primary 

and secondary school buildings (i.e., case studies 1-22).  Using the mean and the standard deviation of the 

pre-evacuation time of those evacuations, it is possible to identify two clusters as illustrated in Table 12. 

It is worth highlighting that the pre-evacuation times of schools, i.e., case studies 7-22, refer to the 

classroom instead of single evacuees as the students belonging to the same classroom evacuate as a single 

group. 

 

The remaining case studies are manually divided (without the use of cluster analysis) accordingly to the 

type of buildings into clusters referring to Library (Clusters 3), Laboratory (Cluster 4) and Lecture hall 

(Cluster 5) as illustrated in Table 12. This occupancy contains a broader range of building types that may 

require different pre-evacuation data. Since it is likely that engineers will search for data related to 
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building type (even within the same occupancy), this approach simplifies the users’ choice by manually 

separating those case studies. 

 

Figure 18.a illustrates the location of the 26 case studies on the mean vs. standard definition plane while 

the data points of those case studies are displayed in Figure 18.b.  

 
Table 12 – Pre-evacuation data for educational occupancy 

Ref. 
Case 
Study 

Building Country Nature Alarm Floor Sample 
Mean 
[min] 

SD 
[min] 

Cluster 

[64] 1 Kindergarten*a Russia UD AL >1 25 3.027 0.811 1 

[64] 2 Kindergarten*b Russia UD AL >1 77 4.046 1.276 1 

[64] 3 Kindergarten*c Russia UD AL >1 52 0.451 0.086 2 

[64] 4 Kindergarten*d Russia UD AL >1 34 0.642 0.166 2 

[65] 5 Pre-school Czech Rep. SAD Verbal 3 106 0.647 0.339 2 

[65] 6 Pre-school Czech Rep. SAD Verbal 3 101 0.543 0.259 2 

[66] 7 Primary School-1* Ireland UD AL 2 228 0.557 0.169 2 

[66] 8 Primary School-1* Ireland UD AL 2 210 0.357 0.163 2 

[66] 9 Primary School-1* Ireland UD AL 2 234 0.306 0.111 2 

[66] 10 Primary School-2* Ireland UD AL 2 263 0.133 0.032 2 

[66] 11 Primary School-2* Ireland UD AL 2 268 0.339 0.206 2 

[66] 12 Primary School-2* Ireland UD AL 2 259 0.181 0.079 2 

[66] 13 Primary School-3* Ireland UD AL 2 144 0.290 0.179 2 

[66] 14 Primary School-3* Ireland UD AL 2 140 0.243 0.131 2 

[66] 15 Primary School-4* Ireland UD AL 2 195 0.366 0.186 2 

[66] 16 Primary School-4* Ireland UD AL 2 187 0.326 0.152 2 

[66] 17 Primary School-4* Ireland UD AL 2 170 0.298 0.120 2 

[67] 18 
Primary and 

secondary school 
Spain SAD AL 3 131 0.270 0.254 2 

[67] 19 
Primary and 

secondary school 
Spain UD AL 3 167 0.308 0.095 2 

[67] 20 
Primary and 

secondary school 
Spain UD AL 3 247 0.661 0.302 2 

[67] 21 
Primary and 

secondary school 
Spain UD AL 3 244 0.381 0.161 2 

[67] 22 
Primary and 

secondary school 
Spain UD AL 3 243 0.323 0.128 2 

[68] 23 Library Poland UD PV 3 192 1.165 0.644 3 

[69] 24 Library Turkey UD AL + PV 2 51 0.935 0.716 3 

[70] 25 Library* Czech Rep. UD AL+ PV +LM 2 70 1.545 1.617 3 

[71] 26 Library UK UD AL 3 119 1.633 1.164 3 

[72] 27 Library UK UD AL 3 247 1.225 0.656 3 

[40] 28 Laboratory UK UD PV ** 17 0.688 0.288 4 

[40] 29 Laboratory UK UD PV ** 16 0.474 0.079 4 

[40] 30 Laboratory UK UD PV ** 15 0.272 0.130 4 

[73] 31 Lecture hall China AD AL ** 60 0.188 0.105 5 

[74] 32 Lecture hall Italy UD AL ** 62 0.572 0.250 5 

[74] 33 Lecture hall Italy UD AL ** 42 0.227 0.091 5 

[61] 34,35,36 Lecture hall Sweden UD PV ** 187 0.548 0.160 5 

* Data converted from graphical to digital form 
a Autumn or Spring; b Winter; c Summer; d Winter with blankets 

** those experiments took place on single rooms 
 

 



24 
 

 
(a) 

 
(b) 

Figure 18 – Pre-evacuation data for educational occupancy divided by clusters: (a) means and standard deviations 

of the case studies; (b) data point of the case studies. 

 

Four pre-evacuation distributions are estimated for each cluster. The estimate parameters and the R2 are 

displayed in Table 13. Those distributions and the related data points are illustrated in Figure 19. 
 

Table 13 – Estimate parameters of the pre-evacuation distributions for the educational clusters 

Cluster Distribution 
Distribution in seconds Distribution in minutes 

Data points 𝑹𝟐  

𝒂 𝒃 𝒂 𝒃 

1 

Gamma 7.859 24.692 7.859 0.412 

14 

0.931 

Lognormal 125.572 0.358 27.017 0.358 0.931 

Loglogistic 5.218 0.211 1.124 0.211 0.931 

Weibull 212.216 3.142 3.537 3.142 0.929 

2 

Gamma 0.757 30.111 0.757 0.502 

141 

0.377 

Lognormal 34.794 1.294 -20.181 1.294 0.380 

Loglogistic 2.591 0.794 -1.504 0.794 0.380 

Weibull 21.378 0.835 0.356 0.836 0.378 

3 

Gamma 2.743 28.042 2.743 0.467 

291 

0.937 

Lognormal 364.484 0.624 8.701 0.624 0.934 

Loglogistic 4.197 0.373 0.103 0.373 0.935 

Weibull 84.428 1.798 1.407 1.798 0.937 

4 

Gamma 1.117 30.385 1.118 0.506 

48 

0.386 

Lognormal 29.943 1.108 -8.731 1.108 0.372 

Loglogistic 3.177 0.675 -0.917 0.675 0.371 

Weibull 34.413 1.100 0.574 1.100 0.386 

5 

Gamma 1.144 24.612 1.144 0.410 

127 

0.528 

Lognormal 40.702 1.015 -15.379 1.015 0.504 

Loglogistic 2.977 0.620 -1.117 0.620 0.501 

Weibull 28.908 1.127 0.482 1.127 0.530 
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Cluster 1 

 
Cluster 2 

 
Cluster 3 

 
Cluster 4 

 
Cluster 5 

Figure 19 – Regression charts for the educational clusters 

 

The results In Table 13 and Figure 19 show good agreement between the existing data and the proposed 

distributions for Cluster 1 and 3. The remaining clusters have a low value of R2 as there is a large dispersion 

of the data belonging to those clusters. Moreover, Figure 19 indicates that the estimated distributions 

proposed for those remaining clusters are capable of representing the overall trends, but they do present 

some issues with the tails. As such the readers may need to use truncated versions of those distributions 

to account for this limitation. 

 

4.7 Road Tunnel Occupancy 

There are 8 case studies road tunnel case studies. Those evacuations took place in tunnels located in 

Sweden and Netherland. Again, it is possible to identify three clusters as illustrated in Table 14. Figure 

20.a illustrates the location of 8 case studies on the mean vs. standard definition plane while the data 

points of those case studies are displayed in Figure 20.b.  

 

Four pre-evacuation distributions are estimated for each cluster. In the case studies belonging to Cluster 

3, all the evacuees evacuate after the alarm. Considering that the alarm was given at different times, we 

have normalized those data assuming that the time is equal to zero when the alarm goes off. The estimate 

the parameters and the R2 are displayed in Table 15. Those distributions and the related data points are 

illustrated in Figure 21. 
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Table 14 – Pre-evacuation data for road tunnel occupancy 

Ref. 
Case 
Study 

Building Country Nature Alarm Sample 
Mean 
[min] 

SD 
[min] 

Cluster 

[75] 1 Road Tunnel* Sweden UD PV 29 1.840 0.806 1 

[76] 2 Road Tunnel Netherlands UD late PV (5min) 10 3.942 2.054 2 

[76] 3 Road Tunnel Netherlands UD late PV (4.7min) 31 5.845 0.276 3 

[76] 4 Road Tunnel Netherlands UD late PV (5.75min) 26 6.688 0.777 3 

[76] 5 Road Tunnel Netherlands UD late PV (5 min) 10 5.963 0.588 3 

[76] 6 Road Tunnel Netherlands UD late PV (6.3 min) 30 6.864 0.222 3 

[76] 7 Road Tunnel Netherlands UD late PV (6.2 min) 30 7.944 0.573 3 

[76] 8 Road Tunnel Netherlands UD late PV (5.85 min) 36 6.486 0.215 3 

* Data converted from graphical to digital form 

 

 

 
(a) 

 

 
 (b) 

 

Figure 20 – Pre-evacuation data for road tunnel occupancy divided by clusters: (a) means and standard deviations 

of the case studies; (b) data point of the case studies. 

 

Table 15 – Estimate parameters of the pre-evacuation distributions for the road tunnel clusters  

Cluster Distribution 
Distribution in seconds Distribution in minutes 

Data points 𝑹𝟐  

𝒂 𝒃 𝒂 𝒃 

1 

Gamma* 3.201 35.874 3.201 0.598 

29 

0.950 

Lognormal* 163.758 0.591 18.410 0.591 0.938 

Loglogistic* 4.620 0.356 0.525 0.356 0.938 

Weibull* 126.413 2.039 2.107 2.039 0.959 

2 

Gamma* 1.465 185.101 1.465 3.085 

32 

0.771 

Lognormal* 55.511 0.961 12.732 0.961 0.751 

Loglogistic* 5.333 0.569 1.238 0.569 0.756 

Weibull* 286.860 1.385 4.781 1.385 0.776 

3 

Gamma** 0.846 90.500 0.846 1.508 

161 

0.390 

Lognormal** 62.977 1.236 -3.852 1.236 0.399 

Loglogistic** 3.855 0.767 -0.239 0.767 0.397 

Weibull** 74.155 0.890 1.236 0.890 0.391 

* it considers the time required to stop the car;   

** the reference time (i.e., t=0) is the time when the alarm goes off (the vehicles are already stopped) 
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Cluster 1 

 
Cluster 2 

 
Cluster 3 

Figure 21 – Pre-evacuation distributions for the road tunnel clusters 

 

The results in Table 15 and Figure 21 show reasonable agreement between the existing data and the 

proposed distributions for Cluster 1. Cluster 2 has a very specific pattern that cannot be represented with 

any bi-parametric distributions. In this case, a multiple parameters distribution could have been used or 

the data could have been truncated into two groups to estimate two different set of distributions. This 

analysis was not pursued here since, to the best of our knowledge, the most popular and widely used 

evacuation models are not designed to accommodate such. Hence, it has not been possible to provide 

usable distributions for Cluster 2. Finally, Cluster 3 has a low value of R2 as there is a great dispersion of 

the data belonging to those clusters. However, given the regression charts in Figure 21 the proposed 

distributions seem to provide a good representation of the trends shown by the observed data. 

 

4.8 Miscellaneous Occupancies 

There are 8 case studies belonging to this occupancy group. These evacuations took place in several types 

of evacuation environments, and in turn, the case studies are divided accordingly to the type of 

environment without the use of cluster analysis: Ferry (Clusters 1), Cruise Ship (Clusters 2), Hospital 

Outpatient (Cluster 3), Nuclear Power Plant (Cluster 4), mixed-use buildings including libraries, offices and 

computer spaces (Cluster 5) and Metro Station (Cluster 6), as illustrated in Table 16. 

 

Figure 22.a illustrates the location of the 8 case studies on the mean vs. standard definition plane while 

the data points of those case studies are displayed in Figure 22.b.  
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Table 16– Pre-evacuation data for miscellaneous occupancy 

Ref. 
Case 
Study 

Environment Country Nature Alarm Sample 
Mean 
[min] 

SD 
[min] 

Cluster 

[77] 1 Ferry* - UD AL 553 0.650 0.868 1 

[77] 2 Ferry* - UD AL 470 0.861 1.106 1 

[77] 3 Cruise Ship* - UD AL 1228 3.131 3.339 2 

[72] 4 
Hospital 

Outpatient  
UK UD AL 33 1.066 0.704 3 

[78] 5 
Nuclear Power 

Plant 
Sweden UD AL 16 1.617 0.926 4 

[44] 6 
University 

Library/Office/ 
Computer Space 

UK UD AL 153 1.689 0.966 5 

[44] 7 
University 

Library/Office/ 
Computer Space 

UK UD PV 15 0.870 0.314 5 

[44] 8 
University 

Library/Office/ 
Computer Space 

UK UD T3 10 0.262 0.158 5 

[79] 9 Metro Station China UD - 182 0.453 0.306 6 

* Data converted from graphical to digital form 

 

 
(a) 

 
(b) 

Figure 22 – Pre-evacuation data for miscellaneous occupancy divided by clusters: (a) means and standard 

deviations of the case studies; (b) data point of the case studies. 

 

Four pre-evacuation distributions were estimated for each cluster. The estimated parameters and the R2 

values are displayed in Table 17. Those distributions and the related data points are illustrated in Figure 

23. 
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Table 17 – Estimate parameters of the pre-evacuation distributions for the miscellaneous clusters  

Cluster Distribution 
Distribution in seconds Distribution in minutes 

Data points 𝑹𝟐  

𝒂 𝒃 𝒂 𝒃 

1 

Gamma 0.860 45.026 0.860 0.750 

47 

0.963 

Lognormal 95.661 1.142 -28.454 1.142 0.980 

Loglogistic 3.167 0.659 -0.927 0.659 0.982 

Weibull 37.179 0.881 0.620 0.881 0.966 

2 

Gamma 0.891 205.509 0.891 3.425 

28 

0.994 

Lognormal 332.809 1.078 45.411 1.078 0.998 

Loglogistic 4.748 0.628 0.654 0.628 0.995 

Weibull 177.769 0.922 2.963 0.922 0.995 

3 

Gamma 5.595 8.460 5.595 0.141 

33 

0.988 

Lognormal 448.327 0.431 -36.600 0.431 0.987 

Loglogistic 3.785 0.261 -0.309 0.261 0.986 

Weibull 52.013 2.639 0.867 2.639 0.987 

4 

Gamma 2.055 46.065 2.055 0.768 

16 

0.979 

Lognormal 138.477 0.744 7.873 0.744 0.973 

Loglogistic 4.344 0.448 0.250 0.448 0.971 

Weibull 103.167 1.537 1.719 1.537 0.980 

5 

Gamma 1.721 58.304 1.721 0.972 

178 

0.671 

Lognormal 137.519 0.794 9.094 0.794 0.650 

Loglogistic 4.388 0.481 0.293 0.481 0.656 

Weibull 106.771 1.427 1.780 1.427 0.676 

6 

Gamma 1.067 16.402 1.067 0.273 

4 

0.998 

Lognormal 32.483 0.941 -20.980 0.941 0.995 

Loglogistic 2.479 0.558 -1.616 0.558 0.994 

Weibull 17.739 1.044 0.296 1.044 0.998 

 

 
Cluster 1 

 
Cluster 2 

 
Cluster 3 

 
Cluster 4 

 
Cluster 5 

 
Cluster 6 

Figure 23 – Pre-evacuation distributions for the miscellaneous clusters 

 

The results In Table 17 and Figure 23 show reasonable agreement between the existing data and the 

proposed distributions. It is worth highlighting that Cluster 6 refers to the evacuation that took place in a 
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metro station in China. For this evacuation, it was possible to find only four data points from the literature. 

This small number of data points explains the high value of R2 in Table 11. Regardless of the limitations of 

this case study, the proposed distribution is capable of representing the pre-evacuation event as 

illustrated in Figure 23. 

 

4.9 Result Summary 

The summary of the pre-evacuation distributions estimated in this work is provided in Table 18. Those 

distributions are divided in eight occupancy classes. Users can select among those propose pre-evacuation 

distributions depending on fire scenarios to simulate. The description column of Table 18 provides a brief 

description where the data are from. However, we recommend the readers to check for more information 

regarding those data and the factors affecting those data using the references provided in Sections 4.1-

4.8. Moreover, the reader should refer to the instructions in Section 4 on how to select between clusters 

and how to select the best distribution within the same cluster.  

  
Table 18 – Summary of the pre-evacuation distributions 

Occupancy Cluster Description 
 Distribution in seconds Distribution in minutes 

𝑹𝟐  

Distribution 𝒂 𝒃 𝒂 𝒃 

Business 

1 

Building: Office and Mixed Office 
Country: US, Canada, Finland, UK    
                 Denmark, Australia 
Nature: UD, AD, P-UD, FI 
Alarm: AL, PV and T3 
Floors: 4-14 

Gamma 1.291 103.901 1.291 1.732 0.564 

Lognormal 381.651 0.967 40.919 0.967 0.548 

Loglogistic 4.592 0.587 0.498 0.587 0.548 

Weibull 139.285 1.195 2.321 1.195 0.566 

2 

Building: World Trade Center 
Country: US 
Nature: FI 
Alarm: none 
Floors: 110 

Gamma 0.557 1419.096 0.557 23.651 0.942 

Lognormal 36.131 1.613 11.104 1.613 0.949 

Loglogistic 5.905 0.958 1.811 0.958 0.950 

Weibull 672.010 0.664 11.200 0.664 0.944 

Residential 

1 

Building: Apartment, Univ. Residence,  
                 Residential Care 
Country: US, Canada, UK 
Nature: UD 
Alarm: AL and T3 (good alarm 
performance) 
Floor: 3-14 

Gamma 0.650 178.024 0.650 2.967 0.601 

Lognormal 54.879 1.432 -0.119 1.432 0.589 

Loglogistic 4.087 0.873 -0.007 0.873 0.586 

Weibull 102.475 0.767 1.708 0.767 0.599 

2 

Building: Apartment 
Country: Canada, Australia 
Nature: FI, UD 
Alarm: AL (early morning and/or poor 
performance) 
Floors: 3-30 

Gamma 0.911 812.708 0.911 13.545 0.820 

Lognormal 98.986 1.268 32.821 1.268 0.785 

Loglogistic 6.143 0.763 2.049 0.763 0.784 

Weibull 724.617 0.978 12.077 0.978 0.819 

Mercantile 

1 

Building: Marks & Spencer, IKEA stores 
Country: UK, Sweden 
Nature: UD 
Alarm: AL and VA 
Floors: 1-3 

Gamma 3.005 14.564 3.005 0.243 0.901 

Lognormal 62.874 0.574 -7.764 0.574 0.895 

Loglogistic 3.660 0.334 -0.434 0.334 0.893 

Weibull 48.453 1.957 0.808 1.957 0.905 

2 

Building: Xin Lian Xin store 
Country: China 
Nature: AD 
Alarm: AL 
Floors: 1 

Gamma 2.535 34.561 2.535 0.576 0.996 

Lognormal 150.491 0.610 7.704 0.610 0.996 

Loglogistic 4.309 0.362 0.215 0.362 0.993 

Weibull 96.470 1.642 1.608 1.642 0.994 
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Assembly 

1 

Building: Theatre, Cinema-Theatre 
Country: UK, Sweden 
Nature: UD 
Alarm: PV, AL 
Floors: 1 

Gamma 10.584 1.664 10.584 0.028 0.961 

Lognormal 417.150 0.308 -186.262 0.308 0.962 

Loglogistic 2.829 0.184 -1.266 0.184 0.960 

Weibull 19.187 3.554 0.320 3.554 0.954 

2 

Building: Cinema-Theatre, Cinema 
Country: Sweden 
Nature: UD 
Alarm: AL, PV 
Floors: 1 

Gamma 16.627 1.898 16.627 0.032 0.886 

Lognormal 798.053 0.248 -154.961 0.248 0.888 

Loglogistic 3.428 0.149 -0.666 0.149 0.889 

Weibull 33.790 4.631 0.563 4.631 0.880 

3 

Building: Cinema 
Country: Sweden 
Nature: UD 
Alarm: PV 
Floors:  1 

Gamma 12.779 3.138 12.779 0.052 0.992 

Lognormal 428.761 0.281 -51.083 0.281 0.993 

Loglogistic 3.658 0.166 -0.436 0.166 0.992 

Weibull 43.514 4.008 0.725 4.008 0.986 

4 

Building: Theatre 
Country: UK 
Nature: UD 
Alarm: PV 
Floors: 3 

Gamma 5.544 9.949 5.544 0.166 0.999 

Lognormal 904.832 0.427 -36.708 0.427 1.000 

Loglogistic 3.935 0.251 -0.159 0.251 0.999 

Weibull 60.959 2.579 1.016 2.579 0.996 

5 

Building: Restaurant, Bar 
Country: UK, China 
Nature: UD 
Alarm: AL+PV 
Floors: 1-2 

Gamma 2.861 12.757 2.861 0.213 0.372 

Lognormal 62.497 0.611 -11.308 0.611 0.378 

Loglogistic 3.466 0.376 -0.628 0.376 0.377 

Weibull 39.969 1.780 0.666 1.780 0.367 

Hotel 

1 

Building: Hotel 
Country: Netherland 
Nature: UD 
Alarm: Phone Message 
Floors: - 

Gamma 2.787 29.503 2.787 0.492 0.974 

Lognormal 423.443 0.631 16.852 0.631 0.978 

Loglogistic 4.262 0.379 0.168 0.379 0.978 

Weibull 90.500 1.790 1.508 1.790 0.968 

2 

Building: High-rise hotel 
Country: US 
Nature: FI 
Alarm: none 
Floors: 13 

Gamma 0.567 1276.836 0.567 21.281 0.994 

Lognormal 93.846 1.571 27.487 1.571 0.997 

Loglogistic 5.780 0.946 1.686 0.946 0.996 

Weibull 606.399 0.684 10.107 0.684 0.996 

3 

Building: High-rise hotel 
Country: US 
Nature: FI 
Alarm: none 
Floors: 26 

Gamma 0.294 14165.384 0.294 236.085 0.875 

Lognormal 13.082 2.560 4.947 2.560 0.784 

Loglogistic 6.589 1.567 2.495 1.567 0.772 

Weibull 2088.400 0.440 34.806 0.440 0.835 

Educational 

1 

Building:  Kindergarten 
Country: Russia 
Nature: UD (Autumn or spring and 
winter) 
Alarm: AL 
Floors: >1 

Gamma 7.859 24.692 7.859 0.412 0.931 

Lognormal 125.572 0.358 27.017 0.358 0.931 

Loglogistic 5.218 0.211 1.124 0.211 0.931 

Weibull 212.216 3.142 3.537 3.142 0.929 

2 

Building: Kindergarten, Pre-school,     
                 Primary and Secondary school 
Country: Russia, Czech Rep., Ireland, 
Spain 
Nature: UD, SAD 
Alarm: AL, Verbal 
Floors: 1-3 

Gamma 0.757 30.111 0.757 0.502 0.377 

Lognormal 34.794 1.294 -20.181 1.294 0.380 

Loglogistic 2.591 0.794 -1.504 0.794 0.380 

Weibull 21.378 0.835 0.356 0.836 0.378 

3 
Building: Library 
Country: Poland, Turkey, Czech Rep., UK 

Gamma 2.743 28.042 2.743 0.467 0.937 

Lognormal 364.484 0.624 8.701 0.624 0.934 
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Nature: UD 
Alarm: AL, PV, AL+PV, AL+ PV +LM 
Floors: 2-3 

Loglogistic 4.197 0.373 0.103 0.373 0.935 

Weibull 84.428 1.798 1.407 1.798 0.937 

4 

Building: Laboratory 
Country: UK 
Nature: UD 
Alarm: PV 

Gamma 1.117 30.385 1.118 0.506 0.386 

Lognormal 29.943 1.108 -8.731 1.108 0.372 

Loglogistic 3.177 0.675 -0.917 0.675 0.371 

Weibull 34.413 1.100 0.574 1.100 0.386 

5 

Building: Lecture hall 
Country: China, Italy, Sweden 
Nature: AD, UD 
Alarm: AL, PV 

Gamma 1.144 24.612 1.144 0.410 0.528 

Lognormal 40.702 1.015 -15.379 1.015 0.504 

Loglogistic 2.977 0.620 -1.117 0.620 0.501 

Weibull 28.908 1.127 0.482 1.127 0.530 

Road Tunnel 

1 

Building: Road Tunnel  
Country: Sweden 
Nature: UD 
Alarm: PV 

Gamma* 3.201 35.874 3.201 0.598 0.950 

Lognormal* 163.758 0.591 18.410 0.591 0.938 

Loglogistic* 4.620 0.356 0.525 0.356 0.938 

Weibull* 126.413 2.039 2.107 2.039 0.959 

2 

Building: Road Tunnel  
Country: Netherlands 
Nature: UD 
Alarm: late PV 

Gamma* 1.465 185.101 1.465 3.085 0.771 

Lognormal* 55.511 0.961 12.732 0.961 0.751 

Loglogistic* 5.333 0.569 1.238 0.569 0.756 

Weibull* 286.860 1.385 4.781 1.385 0.776 

3 

Building: Road Tunnel  
Country: Netherlands 
Nature: UD 
Alarm: late PV 

Gamma** 0.846 90.500 0.846 1.508 0.390 

Lognormal** 62.977 1.236 -3.852 1.236 0.399 

Loglogistic** 3.855 0.767 -0.239 0.767 0.397 

Weibull** 74.155 0.890 1.236 0.890 0.391 

Miscellaneous 

1 
Building: Ferry 
Nature: UD 
Alarm: AL 

Gamma 0.860 45.026 0.860 0.750 0.963 

Lognormal 95.661 1.142 -28.454 1.142 0.980 

Loglogistic 3.167 0.659 -0.927 0.659 0.982 

Weibull 37.179 0.881 0.620 0.881 0.966 

2 
Building: Cruise Ship 
Nature: UD 
Alarm: AL 

Gamma 0.891 205.509 0.891 3.425 0.994 

Lognormal 332.809 1.078 45.411 1.078 0.998 

Loglogistic 4.748 0.628 0.654 0.628 0.995 

Weibull 177.769 0.922 2.963 0.922 0.995 

3 

Building: Hospital Outpatient 
Country: UK 
Nature: UD 
Alarm: AL 

Gamma 5.595 8.460 5.595 0.141 0.988 

Lognormal 448.327 0.431 -36.600 0.431 0.987 

Loglogistic 3.785 0.261 -0.309 0.261 0.986 

Weibull 52.013 2.639 0.867 2.639 0.987 

4 

Building: Nuclear Power Plant 
Country: Sweden 
Nature: UD 
Alarm: AL 

Gamma 2.055 46.065 2.055 0.768 0.979 

Lognormal 138.477 0.744 7.873 0.744 0.973 

Loglogistic 4.344 0.448 0.250 0.448 0.971 

Weibull 103.167 1.537 1.719 1.537 0.980 

5 

Building: University Library/Office/  
Country: UK 
Computer Space 
Nature: UD 
Alarm: AL, PV, T3 

Gamma 1.721 58.304 1.721 0.972 0.671 

Lognormal 137.519 0.794 9.094 0.794 0.650 

Loglogistic 4.388 0.481 0.293 0.481 0.656 

Weibull 106.771 1.427 1.780 1.427 0.676 

6 

Building: Metro Station 
Country: China 
Nature: UD 
Alarm: - 

Gamma 1.067 16.402 1.067 0.273 0.998 

Lognormal 32.483 0.941 -20.980 0.941 0.995 

Loglogistic 2.479 0.558 -1.616 0.558 0.994 

Weibull 17.739 1.044 0.296 1.044 0.998 

* it considers the time required to stop the car;   

** the reference time (i.e., t=0) is the time when the alarm goes off (the vehicles are already stopped)  

 

5. DISCUSSION AND CONCLUSION 

Simulating evacuation scenarios requires several modelling inputs. Pre-evacuation time is an important 

input since it can have significant impact on evacuation results. Pre-evacuation data is typically scarce, 

partial and presented in a data structure which can be difficult to use as input into evacuation simulations. 
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With this work, we address such an issue by presenting a pre-evacuation database expanding the one 

proposed by  Gwynne and Boyce [4]. This was done by including 60 additional case studies. From the best 

of our knowledge, this expanded database, which includes 9 fire incidents and 103 evacuation drills, is the 

largest available in the fire safety field. Those fire incidents and evacuation drills have been subdivided 

using the occupancy classification proposed by Gwynne and Boyce in the SFPE Handbook [4], as well as 

newly added classifications where appropriate. Differently from existing databases, each case study 

included in the expanded database has been interrogated to obtain a representative frequency 

distribution instead of relying simply on summary statistics (see Criterion 4 in Section 3.1). This data is 

fundamental to estimate pre-evacuation distributions using the approach described in Section 3.2. 

 

The proposed database consists of a summary table for each of the 8 occupancies presented in this paper. 

Each table provides information regarding occupancy type and country where the evacuations occurred. 

Moreover, information regarding the nature of the evacuations and the alarm system as well as the 

sample size 6and pre-evacuation statistics is provided in those tables. This information provides readers 

with a context of where the pre-evacuation data is from. Moreover, although the proposed data are from 

fire accidents and drills, the proposed database could be applied to other egress events such as exposure 

to chemical or biological agents, active shooter as pre-evacuation data for those events are not available 

yet in the literature. 

 

Clustering analyses were used to investigate potential groups of case studies sharing ‘similar’ pre-

evacuation time mean and standard deviation. This analysis was done using all of the data examined (i.e. 

across all of the occupancy types, see Figure 7). In the remaining part of the paper, cluster analysis was 

used within each occupancy class to identify sub-occupancy groups. Such analysis choice acknowledges 

the importance of type of occupancies as “it is likely to be the first factor that the engineer encounters and 

is likely to form the base assessment of the scenario represented” [4]. An attempt can be made to 

explain/interpret the clustering results obtained for each occupancy class. The difficulty in interpreting 

such results may vary across occupancy classes given the characteristics of the case studies presented. A 

list of possible factors that can explain those results is provided in Section 4. A main limitation of this study 

is related to the uncertainty in the interpretation of those clustering results; indeed, it is not always 

possible to state with certainty which factors had an impact on pre-evacuation timing in the proposed 

case studies. 

  

The clusters represent datasets of sufficient similarity that they are statistically notable. We make no 

claims as to underlying nature of their connectivity, given differences and discrepancies in the datasets 

examined. However, the clusters may allow engineers to identify a curve to use once they have associated 

their scenario to a particular cluster (e.g., given occupancy type). The clusters may also be a starting point 

for researchers to generate research questions (e.g., to investigate what the underlying mechanisms that 

produce these clusters might be). Along with some guidance on the methodology for producing such 

clusters in the future. The paper also very clearly demonstrates the importance of data collectors 

documenting and presenting scenario information when presenting results. 

 

                                                           
6 In this paper, the term ‘sample size’ refers to the number of evacuees whose pre-evacuation times are analysed 
and published. As such, for some case studies the sample size can be less than the total number of evacuees 
involved in a drill or an accident (i.e., population). 
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In contrast to other databases, this work also provides readers with a set of estimate pre-evacuation 

distributions that can be directly used in evacuation models. For each identified cluster, we estimate four 

bi-parametric distributions: Gamma, Lognormal, Loglogistic, and Weibull. Providing distributions for each 

cluster (within each occupancy type) will significantly simplify the work of evacuation model users and fire 

safety engineers when forced to choose the most appropriate pre-evacuation inputs for particular 

evacuation scenarios (see Section 4.9). The criterion used to select between pre-evacuation distributions 

referring to the same cluster is the R2 parameter. This parameter provides information regarding the 

goodness of fitting of the proposed distributions given the available data. However, R2 parameters must 

not be used as a criterion to select between clusters. In fact, this parameter is strongly affected by the 

number of data-points (i.e., having small numbers of data point can generate very high values of R2 see 

Cluster 2 in Section 4.3). Form this study, it possible to evaluate that the distributions selected in Section 

3.2 provide similar fitting results excluding few exceptions, i.e., hotel distributions.  

 

Another novelty of this paper is the used of data from different case studies to estimate a single pre-

evacuation distribution. This is done by combining the Least Squares Method and weights accounting for 

the sample size of each dataset (see Equation 1). However, such a calibration solution raises the issue of 

combining datasets having different uncertainties. In this work, we combined data from several studies 

which used different methodologies to collect pre-evacuation time, such as closed-circuit television 

videos, questionnaires and interviews. This produced various levels of measurement uncertainty that 

cannot be accounted for in the calibration procedure used in this work. Each of those data collection 

approaches have advantages and disadvantages related to the study of pre-evacuation behaviors. As such, 

it is not always possible to identify the optimal measurement procedure to collect those data. It is also 

worth noting that data collected with the same methodology, such as via the use of closed-circuit 

television cameras, have different levels of uncertainty due to differences in coding procedures among 

various observers. 
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