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Abstract: Background: Zinc is an essential component for all living organisms, representing the second most 

abundant trace element, after iron. This element is widely distributed in the tissues of human body where it is 

involved in the normal growth, reproduction and several biological functions including immunity, energy 

metabolism and antioxidant processes. Because of its essential role, zinc levels in human body must remain 

constant, independently of dietary intake fluctuations. The homeostasis of zinc is a well-regulated cellular 

process and has been reported to be chiefly mediated by the expression and activity of zinc-binding proteins 

such as metallothioneins and zinc transporters. Genes encoding for these proteins are subjected to genetic 

variants. 

Methods: We performed a multi-database electronic search to provide an overview on the relationship 

between specific polymorphisms (SNP) of genes encoding for metallothioneins and zinc transporters and their 

relationship with zinc status, immune function and some non-communicable diseases. 

Results: A number of SNP are implicated in a range of metabolic disease. Some SNP may affect the impact 

of zinc supplementation on immune function, diabetes, obesity. 

Conclusion: New studies are needed to clarify the interaction between individual genetic profile and zinc 

status. Moreover, there is a need to a better interaction between the scientific bodies and health professionals to 

allow better dietary and behavioural recommendations to promote human health, with particular concern to 

elderly people.         

Keywords: Zinc, Genetic Polimorphisms, Metallothionein, Zinc transporters, Immune function, Non- 

communicable disease 

 

1. INTRODUCTION 

Zinc (Zn) is recognised as an essential 

micronutrient involved in the structural and 

functional components that underpin a wide range 

of biological processes involved in cellular 

metabolism, growth, development, cellular 

physiology and immune function [1]. To date more 

than 300 enzymes and 100 transcription factors 

have been identified to have a requirement of Zn 

for their activity. Zn plays a key role as a structural 

component for the stabilization of the tertiary 

structure of many proteins, such as  transcription 

factors containing "zinc finger" (ZNF) domains, 

which interact with a variety of proteins, lipids and 

nucleic acid. Moreover, as cofactor of numerous 

enzymes present in animal tissues, it ensures the 

catalytic activity of six main classes of enzymes 

including oxidoreductases, transferases, hydrolases, 

lyases, isomerases and ligases [2, 3].  

Because of its essential pleiotropic role, human 

body needs to maintain constant levels of zinc, 

independently of dietary intake fluctuations. In 

humans, the daily turnover corresponds to about 

1% of the total zinc content. Zinc is lost through 

urine and by the non-avoidable skin and intestinal 

cell desquamation and hair. In specific harsh 

conditions, significant amounts can be lost through 

perspirations and together with occasional loss of 

fluids during menstruations and ejaculation. The 

homeostasis is therefore obtained thanks to its daily 

replacement by the diet and is closely controlled by 

the intestinal absorption system and excretion 

through pancreatic and intestinal secretions. The 

homeostasis of zinc is a well-regulated cellular 
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process. In fact, the expression of the membrane 

conveyors and zinc sequestering proteins varies 

greatly and rapidly, depending on the intracellular 

concentration of zinc [4]. 

The homeostasis of zinc has been reported to 

be chiefly mediated through the expression and 

action of zinc binding proteins such as 

metallothioneins (MTs) and zinc transporters [5, 6]. 

According to membrane topology data, transporters 

of zinc have been grouped into two major families:  

(a) 10 zinc “exporters” (ZnT1-10) of the 

SLC305 family, which are associated with 

lowering of cytoplasmic zinc by transportation of 

zinc either out of the cell or into intracellular 

organelles, and  

(b) 14 zinc “importers” of the SLC39s family 

(Zrt (zinc regulated transporter)-like Irt (iron-

regulated transporter)-like proteins, ZIP 1-14), the 

activity of which result in increased cytoplasmic 

zinc [7].   

Zinc associated to enzymes and transcription 

factors accounts for about 90% of the zinc 

proteome – indicating the key role of this trace 

element in the regulation of the processes of 

catalysis and transcription [6]. MTs are a cysteine-

rich family of proteins, mainly localized at the level 

of Golgi apparatus having the capacity to bind 

either Zinc and other transition elements (Selenium 

and Copper) or potentially toxic heavy metals such 

as mercury and arsenic [8]. By binding and 

releasing zinc, MTs may regulate zinc levels within 

the body and are involved in Zn detoxification. 

Thanks to its protein sequence, rich in cysteines, 

and its quaternary structure, MTs are able to bind 7 

zinc atoms, sequestering them from the 

surrounding environment, in order to protect the 

cell from its toxic action [9]. MTs expression is 

ubiquitous but is particularly high in parenchymal 

cells of the intestine, pancreas, kidney and liver. 

Very few data are available on the molecular 

mechanisms involved in MTs’ and ZnTs’ 

functions. MTs’ cellular protection mechanisms 

were initially shown to involve interaction with 

antioxidant proteins [10-12]. Then, a role of 

reactive oxygen species (ROS) [13], anti-

inflammatory [14], antiapoptotic proteins [15] and 

of the mitogen-activated protein kinase [16] was 

reported. More recent findings show an indirect 

involvement of uncoupling proteins in the MTs-

dependent attenuation of the free radical-induced 

cardiac toxicity [17]. With respect to ZnTs, some 

data is available for ZnT7 that has been shown to 

upregulate insulin gene expression through MTF1 

activation [18] and Irs2 and Akt phosphorylation 

[19]. MTF1 is believed to act as a buffer 

influencing the cellular sensitivity to zinc through 

the modulation of MT and ZnT expression [20], 

however, no information is available on the 

relationships between ZnTs, zinc and MTF1. 

Similarly, ZnT9 functions as a transcriptional 

coactivator moving into the nucleus upon activation 

by hormone stimulation, binding to nuclear 

receptors complexes to regulate gene transcription 

[21] and activating Wnt signaling through β-catenin 

interaction [22]. However, no information is 

available on ZnT9 transcriptional activation.  

Zinc deficiency has been associated with 

insufficient dietary intakes or impaired intestinal 

function in groups of population either aged or 

suffering of a wide spectrum of different chronic 

conditions and also related to specific dietary 

profiles such as vegetarian/vegan [23,24]. Given 

that there are no specialised storage reserves of zinc 

within the body, it is necessary to maintain an 

adequate, regular supply [25]. Specifically, people 

in developing countries are at particular risk and it 

has been estimated that globally close to 2 billion 

people may be zinc deficient [3]. A broad range of 

clinical manifestations have been associated either 

to nutritional zinc deficiency or to inherited 

phenotypes concerning zinc absorption and 

metabolism. When zinc homeostasis is concerned, 

several important pathologies have been reported 

including growth retardation, testicular 

hypofunction, compromised immune function, 

oxidative stress, and an increase in the production 

of inflammatory cytokines [2, 5, 7, 26-28]. 

Accordingly with the evidence of the association 

between zinc deficiency or malnutrition and 

diarrheal disease, zinc supplementation has been 

used for the treatment and prevention of diarrhoea 

in infants and children [3,29]. The occurrence of a 

more marginal zinc deficiency has been observed 

in vegetarians and vegans and is thought to be the 

result of the consumption of high levels of zinc-

chelating agents present in cereals, legumes or 

plant parts. In fact, lignins and phytate, found in 

these types of foods, have been reported to be able 

to bind Zinc and counter its absorption therefore 

reducing its bioavailability [6, 30,31]. It has also 

been reported that a rise in Cu to Zn ratio (CZr) is a 

common feature associated with a number of age-

related chronic conditions; something which has 

been postulated to be more dependent on 

physiological alterations arising with age as 

opposed to regular nutritional intake [32,33]. 

Elderly people are a group of population at an 

increased risk of nutritional disorders owing to a 

combination of the impact of the ageing on 

physiological/physical/biochemical capacities, as 

well as behavioural and dietary factors [24,34]. 

People aged more than 60-65 years have been 
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reported to have intakes of zinc significantly below 

the recommended intakes, and about 30% of them 

has been assessed as “zinc deficient” [6].This 

deficiency, is likely to result in impaired immune 

function  and in a significant increase of the risk of 

a spectrum of degenerative disease [24]. 

Zinc has low toxicity and is generally 

considered to be safe even though very high, 

excessive supplementations can have detrimental 

consequences possibly due to inadequate 

absorption of copper [35]. Therefore, numerous 

zinc supplementation trials have shown a wide 

range of health benefits, including decrease 

diarrhoea mortality in children, incidence of 

infections and immune functions improvement [36-

39]. Moreover, the efficacy of zinc supplements in 

boosting health and well-being has been further 

confirmed by the meta-analysis addressing growth 

and body weight gain in children [40] and also 

dealing with the  incidence of blindness and the 

risk of developing age related macular degeneration 

[41].  

Single nucleotide polymorphisms (SNPs) are a 

common type of genetic variation with high 

prevalence (>1%) among people. Each SNP is 

characterized by a specific substitution of a single 

DNA base occurring with high frequency. Overall, 

population studies conducted by multicentric 

consortia have recent contributed to the 

identification of about 60 million SNPs in the 

human genome [42]. These allelic variants may fall 

within coding and in non-coding sequences of 

genes as well or in the intergenic regions (regions 

between genes). SNPs within a coding sequence do 

not necessarily change the amino acid sequence of 

the encoded protein due to degeneracy of the 

genetic code: in fact, synonymous SNPs do not 

affect the protein sequence.  SNPs not occurring in 

protein-coding regions may still affect gene 

splicing, transcription factor binding, messenger 

RNA degradation, or the sequence of noncoding 

RNA. SNPs may determine an individual’s 

response to certain drugs, and the susceptibility to 

environmental factors such as toxins, and risk of 

developing particular diseases. So far several SNPs 

have been associated with complex diseases such 

as heart disease, diabetes, and cancer. 

Several SNPs have been identified to modulate 

zinc intake/ status [43]. Costarelli e colleagues [44] 

have reported that gene expression of MTs, zinc-

transporters and inflammatory cytokines are 

regulated by zinc intake. In addition to zinc-

regulated transcription, genetic polymorphisms of 

MTs and zinc transporters have been associated 

with age-related diseases, such as chronic 

inflammation [45], type 2 diabetes ([46] and 

cardiovascular diseases (CVD) [47].  

In this review, we will focus on the relationship 

between specific polymorphisms of genes encoding 

for MTs and zinc transporters and their relationship 

with zinc status, immune function and some non- 

communicable diseases. 

 

2. GENETIC POLYMORPHISMS OF 

METALLOTHIONEINS AND ZINC 

TRANSPORTERS 

As mentioned above, the physiological 

requirement of trace metal elements is regulated by 

proteins specialized in the transport and deposit of 

metals in non-toxic forms. MTs have been very 

well characterized for their high content in 

cysteine, an amino acid that plays a key role in the 

formation of complexes with transition metals 

resulting in a high capacity to bind heavy metals 

[48]. At the same time, zinc transporters (ZnTs) 

family of membrane transport proteins of the solute 

carrier family control the membrane transport of 

zinc and regulate its intracellular and cytoplasmic 

concentrations [49,50]. ZnTs belong to two major 

groups: i) zinc transporters (ZnT) involved in the 

controls the efflux of zinc from the cytoplasm out 

of the cell and from the cytoplasm into vesicles; 

and ii) zinc importers, Zrt- and Irt-like protein 

(ZIP), controlling the influx of zinc into the 

cytoplasm from outside the cell and from vesicles 

[48,50]. 

SNPs in genes encoding for MTs and ZnTs can 

modify different aspects of gene product including 

its transcription, and also the specific molecular 

characteristics of the protein resulting e.g. in 

changes of their Zn binding affinity  [51,52].  

Such finding, already 20 years ago, encouraged 

for the search of genetic variants affecting the 

functioning of MTs and ZnTs, both necessary for 

cellular zinc homeostasis.   

2.1 Metallothioneins 

MTs can be considered “cellular buffer” of 

metals regulating their cellular amounts and being 

in turn regulated by metals, protecting organisms 

from harmful effects of highly toxic heavy metals, 

such as cadmium and mercury, but also regulating 

the cellular amounts of trace metal micronutrients 

including zinc, copper, iron, manganese. MT are 

low molecular weight (6-8 kDa) proteins with high 

content of cysteine, a low or null content of 

aromatic amino acids, and spectroscopic 

characteristics typical of metal-thiolate clusters. 

Cysteine content and its particular sequence 

arrangement is crucial for the MTs’ ability to form 

https://en.wikipedia.org/wiki/Membrane_transport_protein
https://en.wikipedia.org/wiki/Solute_carrier_family
https://en.wikipedia.org/wiki/Solute_carrier_family
https://en.wikipedia.org/wiki/Membrane_transport
https://en.wikipedia.org/wiki/Zinc
https://en.wikipedia.org/wiki/Intracellular
https://en.wikipedia.org/wiki/Cytoplasm
https://en.wikipedia.org/wiki/Flux_(biology)
https://en.wikipedia.org/wiki/Vesicle_(biology_and_chemistry)
https://en.wikipedia.org/wiki/Flux_(biology)
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complexes with heavy metal ions, those three-

dimensional structure is influenced in turn by 

presence of the metal [53]. MTs are particularly 

abundant in liver and kidney tissues and they are 

also present in the central nervous system and in 

mammary, olfactory and thyroid glands, in gastric 

and intestinal tissues, in hair follicles and in 

circulating monocytes.  

As mentioned above, the main role of MTs is 

linked to their ability to bind and regulate the 

homeostasis of essential trace elements, in order to 

prevent their harmful effects [54]. MTs are 

polymorphic genes, clustering together on a single 

chromosomal locus (16q12-22 for homo sapiens 

[55]), and coded proteins have very similar amino 

acid sequences. Accordingly, experiments on 

transgenic mice [56] suggested already 20 years 

ago that single MT isoforms are not essential for 

life but rather that MT functions are redundant and 

compensated by homeostatic mechanisms.  

Several studies have demonstrated that MT 

isoforms are differentially transcribed, translated 

and maintained in the cell, with a different response 

to metals. MT1 and MT2 isoforms, which are 

present in all mammalian tissues, are inducible, 

with MT2 appearing to be expressed more than 

MT1 [57], constituting the 50% of the total 

expressions of all metallothionein isoforms [58] 

and being frequently overexpressed in invasive 

human breast cancers [59]. 

2.1.1 MT polymorphisms   

2.1.1.1 MT1A polymorphisms 

According to the database of The National 

Center for Biotechnology Information (NCBI, 

http://www.ncbi.nlm.nih.gov/SNP/, May 2018), 98 

validated SNPs are present in the human MT1A 

gene region. Ten are located in the 5’UTR, 14 in 

the coding sequence, 64 in introns and 10 in the 

3’UTR (May 2018). Of these, seven SNPs are 

mentioned in the literature (rs11076161, 

rs8052394, rs7196890, rs11640851, rs7190725, 

rs11076160, rs8049883 and rs11647171) and three 

have an impact on metabolic disease [60, 61] (table 

1). rs11076161 and rs8052394 were considered in a 

search for an association between MT and type 2 

diabetes mellitus (T2DM) in a population of 851 

Chinese people of Han descent (397 diabetes and 

454 controls) [60]. An association of the SNPs was 

found with the disease and its clinical symptoms, 

i.e. neuropathy (rs11076161) and serum superoxide 

dismutase activity (rs8052394) [60].  

 

Table 1. MT polymorphisms, SNP variant and association with metabolic disease  

MT polymorphisms SNP variant Associated with Ref. 

MT1A     

rs11076161 intron Diabetic neuropathy [60] 

rs8052394 missense  T2DM, Serum superoxide dismutase [60] 

rs11640851 missense Longevity, Cardiovascular disease,  

T2DM, MT levels, IL-6 plasma concentration 

[61] 

MT1B     

rs964372 intron Hyperlipidemia, Diabetic neuropathy  [60] 

rs7198427 5’UTR Advanced glycation end-products [62] 

rs7197489 5’UTR Advanced glycation end-products [62] 

MT2A     

rs28366003 5’UTR CKD and DM 

B-MT and -Zn levels in T2DM 

[66] 

[46]  

rs1610216 5’UTR B-Zn levels, T1DM and cardiovascular 

complications 

Diabetes 

[45] 

 

[68] 

rs10636 3’UTR Atherosclerosis, B-Zn, B-Cu and inflammatory 

cytokines levels 

Diabetic neuropathy and hyperlipidemia in T2DM  

[69] 

 

[66] 

MT4     

rs396230 intron Blood pressure, serum uric acid [73] 

T2DM: Type 2 diabetes mellitus; CKD: chronic kidney disease; DM: diabetes mellitus; MT: Metallothionein; IL-6: 

Interleukin 6; T1DM: Type 1 diabetes mellitus. 

2.1.1.2 MT1B polymorphisms:  

103 SNPs are present in the human MT1B gene 

region. Seven are located in the 5’UTR, 25 in the 

coding sequence, 54 in introns and 17 in the 

3’UTR. Of these, nine SNPs are mentioned in the 

literature (rs964372, rs8052334, rs7191779, 

rs2070839, rs1875232, rs7197489, rs7198427, 
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rs12051311 and rs61744104) with the first four 

having a significant association with diseases. As 

for variants of MT1A, significant association of 

rs964372 exists with diabetic neuropathy (linked to 

hyperlipidemia) [60] (as for MT2A, see below). 

More recently, rs7198427 and rs7197489, initially 

attributed to the MT1A gene portion, were 

identified by genome-wide association study 

(GWAS) as associated to advanced glycation end-

products (AGEs) in diabetic subjects [62]. 

2.1.1.3 MT1E polymorphisms  

The MT1E gene regions contains 188 validated 

SNPs, ten are located in the 5’UTR, 63 in the 

coding sequence, 87 in introns and 28 in the 

3’UTR. Of these, only four SNPs are mentioned in 

the literature (rs7403881, rs34166523, rs2070836 

and rs708274) and an association of rs7403881 was 

reported with sporadic amyotrophic lateral sclerosis 

(SALS) [63]. None of these have been considered 

to be associated to metabolic disorders.  

2.1.1.4 MT1F polymorphisms 

112 SNPs have been identified so far in the 

human MT1F gene region. Eight are located in the 

5’UTR, 27 in the coding sequence, 51 in introns 

and 26 in the 3’UTR. Of these, only one SNP is 

mentioned in the literature (rs2291956) and still 

lacks any association with metabolic diseases. 

2.1.1.5 MT1G and MT1H polymorphisms  

A total of 258 validated SNPs have been found 

in human MT1G and MT1H gene regions, 

including 55 variants spread along all regions, but 

not in the 3’UTRs of the two genes, that bear 17 

and 11 SNPs respectively. Twenty 5’UTR SNPs 

are entirely shared between the two genes. SNPs in 

intron regions are discretely 94 and 78, plus 25 

shared. Finally, coding regions contain respectively 

27 and 26 SNPs, plus 10 shared variants. Of these, 

only five SNPs are mentioned in the literature for 

both genes, including two in shared gene regions 

(rs12448654 and rs4784708), and rs2298847, 

rs2298846 and rs12315 for MT1G and rs9934181, 

rs2062546 and rs2062545 for MT1H. None of 

these has been reported so far to have any 

association with metabolic diseases. 

2.1.1.6 MT1M polymorphisms 

MT1M variants, whose genomic region 

partially overlaps with that of the MT1JP 

pseudogene, include a total of 116 SNPs, 11 in the 

5’UTR, 34 in the coding sequence, 59 in introns, 

and 12 in the 3’UTR region. Five are mentioned in 

the literature, three with no associations with 

diseases (rs2270837, rs1827210 and rs1827208), 

and two linked with mercury levels in the urine 

(rs2270836) and in hair (rs9936741) [64]. 

Activation of MT1M in Hep-G2 cells, upon heavy 

metals or glucocorticoids exposition, was shown to 

affect NF-kB activity,  therefore potentially 

involving also metabolic dysfunctions [65]. 

2.1.1.7 MT1X polymorphisms 

139 SNPs have been already reported in the 

human MT1X gene region. Eleven are located in 

the 5’UTR, 21 in the coding sequence, 93 in introns 

and 14 in the 3’UTR. Of these, two SNPs are 

mentioned in the literature (rs2301234 and 

rs8051405) but none of them has been associated to 

metabolic diseases. 

2.1.1.8 MT2A polymorphisms 

According to the NCBI dbSNP database, the 

human MT2A gene region contains 68 validated 

SNPs. Eight are located in the 5’UTR, 14 in the 

coding sequence, 34 in introns and 8 in the 3’UTR. 

Among those, three SNPs are cited in the literature 

having association with diseases: rs28366003, 

rs1610216 and rs10636.  

Recently, the rs28366003 SNP has been 

associated with increased risk of chronic kidney 

disease (CKD), and diabetes mellitus (DM) in a 

large Japanese population [66],  

According to the previously reported 

association of MTs to diabetes and metabolic 

diseases [67], an association with the disease in 

elderly patients was reported with two more SNPs 

within MT2A. The first one, rs1610216, was linked 

to higher risk for type 1 diabetes mellitus (T1DM) 

and cardiovascular complications (chronic 

inflammation, higher plasma levels of IL-6 and 

glycosylated hemoglobin), together with lower 

plasma zinc levels, in Italian atherosclerotic 

patients [45]. rs1610216 has been confirmed to be 

associated to diabetes also in Bulgarian diabetic 

patients [68]. The second one, rs10636, was linked 

to higher risk of atherosclerosis and carotid 

plaques, increased inflammatory cytokines and 

decreased zinc and copper plasma levels [69]. 

rs10636 role in diabetes has been confirmed by 

Yang and coworkers that observed variants of the 

SNP in T2DM patients with diabetic neuropathy 

and hyperlipidemia [60]. 

2.1.1.9 MT3 polymorphisms 

The expression of MT3 (also known as growth 

inhibitory factor), is primary in the central nervous 

system [70]. According to the NCBI dbSNP 

database, the human MT3 gene contains 131 

validated SNPs. 26 are located in the 5’UTR, 22 in 

the coding sequence, 72 in introns and 11 in the 

3’UTR. Among those, three SNPs are cited in the 

literature and two (rs45570941 and rs11644094) 
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have been reported to be associated with distinct 

pathologies, but not to metabolic dysfunction.  

2.1.1.10 MT4 polymorphisms 

MT4 was isolated from digestive and neonatal skin 

epithelia [71] and showed better Cu binding 

properties than MT1 [72]. Two MT4 SNPs are 

present in the coding sequence and 55 in introns. 

Only one association has been reported, i.e. that of 

rs396230, with blood pressure and serum uric acid 

values in car battery workers [73]. 

 

2.2 ZnT zinc transporters 

ZnT are membrane proteins that regulate its 

intracellular and cytoplasmic concentrations of zinc 

through its transport. They differ from the zinc 

importers, Zrt- and Irt-like proteins (ZIP), because 

they control the efflux of zinc from the cytoplasm 

out of the cell (Znt1) and into vesicles (all other 

except ZnT9, considered a misnomer) [74], while 

the latter, not considered in this review, control the 

influx of zinc into the cytoplasm from outside the 

cell and from vesicles.  This review will not 

specifically address on ZIP and  will be mainly 

focus on  ZnT.  

The SLC30 family of ZnT zinc transporters 

family comprises 10 mammalian members that 

belong to the large superfamily of CDF transporters 

that also includes zinc transporters in bacteria, 

fungi, nematodes, insects and plants [75]. Based on 

structural information obtained in the bacterial 

homolog YiiP [76], CDF family members are 

predicted to have six trans-membrane domains 

(TM) and a histidine/serine-rich loop between TM4 

and TM5, except for ZnT5 which contains 

additional TM domains at the N-terminal. At the C-

terminal, ZnTsbear long tails, from 82 amino acids 

for ZnT7 to 203 for ZnT6. Differently from MTs, 

high length heterogeneity exists for the amino acid 

sequences upstream of the first TM domain where 

different subcellular targeting signals are present. 

Based on sequence similarities, ZnT family 

members are grouped into four subfamilies with 

SLC30A5 (ZnT5) and SLC30A7 (ZnT7) in 

subfamily I, SLC30A2/3/4 and SLC30A8 (ZnT2, 

ZnT3, ZnT4 and ZnT8) in subfamily II, SLC30A1 

(ZnT1) and SLC30A10 (ZnT10) in subfamily III, 

and SLC30A6 (ZnT6) and SLC30A9 (ZnT9) in 

subfamily IV.  

Expression of ZnT is in general ubiquitous 

(ZnT1) but ZnT5, ZnT6, ZnT7, and ZnT9 are 

highly expressed in certain districts and tissue-

specific with respect to other tissues and 

characterized by specific temporal patterns. For 

example, the members of the subfamily II are 

restricted to secretory tissues such as lactating 

mammary glands, glutamatergic neurons, prostate, 

and pancreatic β-cells. A high expression of ZnT5, 

ZnT6 and ZnT7 has been reported in the heart [77], 

in the brain [78] in the intestine [79], respectively 

while ZnT10 expression is limited to brain and 

liver [80].  

ZnT1 expression in the placenta and other 

tissues is induced by dietary zinc intake [81] and is 

switched on during post-implantation period in 

trophoblasts and in the maternal deciduum [82]. 

The activation depends on MTF1 binding to MRE 

of ZnT1 promoter [83]. On the other hand, dietary 

zinc intake reduces ZnT5 expression both in vitro 

in Caco2 cells and in vivo in the ileal mucosa [84].  

Differently from MT KO, ZnT silencing has 

serious consequences and ZnT KO is hardly 

compatible with life, indicating a crucial role of 

these transporters. For instance, ZnT1 KO mice are 

embryonically unviable because of impaired zinc 

transfer from the mother [85]. ZnT5 [86] and ZnT7 

[79] are localized on the membrane of the Golgi 

apparatus and in cytoplasmic vesicles. ZnT7 KO 

mice display poor growth, with decreased adiposity 

and insulin resistance [87]. Znt8 KO mice have an 

impaired insulin secretion and zinc-insulin crystals 

[88,89].  

2.2.2 ZnT polymorphisms 

2.2.2.1 ZnT1, ZnT4, ZnT5, ZnT6, ZnT7 and 

ZnT9 polymorphisms 

According to the NCBI database (May 2018), 

152 and 1482 validated SNPs are present in the 

human ZnT1 and ZnT4 gene regions, respectively. 

With respect to ZnT1, four are located in the 

5’UTR, 93 in the coding sequence, 49 in introns 

and 4 in the 3’UTR. Regarding ZnT4, 109 are 

located in the 5’UTR, 90 in the coding sequence, 

1256 in introns and 27 in the 3’UTR.  

1527 SNPs are present in the ZnT5 gene region, 

14 in the 5’UTR, 172 in the coding, 1265 in introns 

and 76 in the 3’UTR. Among those, only two SNPs 

have publications in PubMed, rs337253 and 

rs164578, with no association with diseases. 

However,  rs337253 has been proposed to be 

associated with the expression of antioxidant 

response element (ARE)-regulated genes, and in 

particular to NRF2-mediated antioxidant response 

pathway [90], which is involved in metabolic 

diseases [91].  

Near three thousand SNPs have been identified 

in the ZnT6 gene region, 99 in the 5’UTR, 173 in 

the coding, 2309 in introns and 217 in the 3’UTR. 

Finally, almost four thousand SNPs are present in 

both Znt7 and Znt9 gene regions. Znt7 has 45 in 

the 5’UTR, 133 in the coding, 3292 in introns and 
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267 in the 3’UTR. Similarly, the majority of ZNT9 

SNPs are in the intron region (3496), 11 are located 

in the 5’UTR, 129 in the coding sequence and 43 in 

the 3’UTR. Several links are present for these three 

SNPs in PubMed citations, but no associations with 

metabolic diseases have been reported, so far. 

 

 

2.2.2.2 ZnT2 polymorphisms 

The human ZnT2 gene region presents 422 

SNPs. Eighteen are located in the 5’UTR, 107 in 

the coding sequence, 256 in introns and 41 in the 

3’UTR (May 2018). Several are mentioned in the 

literature and the number is actually underestimated 

because of the presence of rs-unclassified variants 

(table 2). So far, no association with metabolic 

disease has been reported.  

 

Table 2. ZnT polymorphisms, SNP variant and association with metabolic disease 

ZnT polymorphisms SNP variant Associated with Ref. 

ZnT2    

rs35623192 missense R340C T2DM (100) 

rs35235055 missense L23P T2DM (100) 

Znt8     

rs13266634 missense R325W T2DM 

T2DM drug therapeutic efficacy 

Proinsulin conversion 

Insulin secretion 

T1DM 

Dyslipidemia 

Chronic coronary artery disease 

Muscle strength and size 

[94- 96, 103-110] 

[105] 

[120-121] 

[122-123] 

[125-127] 

[129] 

[128] 

[130] 

rs16889462 missense R325Q T2DM and drug therapeutic efficacy [105] 

rs11558471 3’UTR T2DM [131-135] 

rs3802177 3’UTR T2DM [98,132,136] 

rs2466293 3’UTR T2DM 

T1DM 

Gestational diabetes mellitus 

[137] 

[138] 

[139] 

T2DM: Type 2 diabetes mellitus; T1DM: Type 1 diabetes mellitus 

 

2.2.2.3 ZnT3 polymorphisms  

According to the NCBI database, 1103 

validated SNPs are present in the human ZnT3 

gene region. 127 are located in the 5’UTR, 178 in 

the coding, 759 in introns and 39 in the 3’UTR. 

Several ZnT3 SNPs have PubMed links in 

neurological disorders and with Zn status, which is 

consistent with the phenotype of the mouse KO 

[92], but none was associated to metabolic disease 

or diabetes.  

2.2.2.4 ZnT8 polymorphisms 

According to the NCBI database more than 

eight thousand validated SNPs are present in the 

human ZnT8 gene regions, the majority are in the 

intron region (8021), 56 are located in the 5’UTR, 

141 in the coding sequence and 134 in the 3’UTR. 

32 SNPs have links with PubMed citations, and six 

have an association with diseases.  

rs13266634 has a number of citations (more 

than two hundred) related to the R325W variant, a 

well-known susceptibility locus of T2DM, since its 

finding ten years ago in several genome-wide 

association studies conducted in European [93-96], 

Asian [97-107], Russian [108], Tunisian [109], 

Mexican Mestizo [110] (but not Mexican 

[111,112], African [113], Hispanic American 

[114], Qatari [115] nor south Iranian [116]) 

subjects (reviewed in [117,118]. These findings are 

consistent with ZnT8’s major role as transporter of 

zinc, necessary for insulin maturation, into 

secretory pancreatic -cells [119]. In fact, impaired 

proinsulin conversion [120,121] and insulin 

secretion [122,123] have been found in carriers of 

the R325W variant. Recent reports demonstrate that 

T2DM risk depends on different zinc transport 

kinetics of the variants [124]. Because of its role in 

-cell functions, rs13266634 SNP was tested and 

found implicated also in T1DM [125-127], and in 

cardiovascular diseases incidence [128]. Other 

studies of associations of rs13266634 variants 

include implication with dyslipidemia in 
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HIV/hepatitis C virus co-infected patients [129] 

and with skeletal muscle strength and size [130]. 

Other ZnT8 SNPs implicated in T2DM were 

reported (frequently in high linkage disequilibrium 

with rs13266634), i.e rs16889462 [105], 

rs11558471 [131-135] and rs3802177 [98,132,136] 

and rs2466293 [137]. rs16889462, actually 

concerning the same codon 325 (R325Q) involved in 

rs13266634, found in a single African-Americans 

family, but not in Caucasians, was associated like 

rs13266634 with repaglinide therapeutic efficacy in 

Chinese patients [105]. rs2466293 has been 

recently associated with T1DM in Latin Americans 

[138] and was identified by means of in silico as a 

miR-binding SNP in Chinese pregnant women 

affected by  gestational diabetes mellitus (GDM) 

[139]. On the other hand, rs13266634 lowered 

GDM risk in in European women [140] and was 

excluded as a risk factor for Euro-Brazilian ones 

[141]. 

2.2.2.5 ZnT10 polymorphisms 

According to the NCBI database, the human 

ZnT10 gene region contains 1799 validated SNPs. 

50 are located in the 5’UTR, 125 in the coding 

sequence, 1571 in introns and 53 in the 3’UTR. 

Among those, six intron SNPs are cited in the 

literature to be associated with metal physiology 

but no reports about any association with metabolic 

syndrome has been reported.  

 

3. GENETIC POLYMORPHISMS, ZINC 

STATUS AND ALTERATIONS IN 

IMMUNE AND INFLAMMATORY 

FUNCTION 

Zinc has been demonstrated to have both 

antioxidant and anti-inflammatory roles. It has been 

described as a “second messenger” for immune 

cells, with a range of transcription factors 

associated with the gene expression of 

inflammatory cytokines and with adhesion 

molecules having been reported to be zinc 

dependent  [3]. Zinc has been demonstrated to have 

a role in both innate and adaptive immune function 

[23] with a long established relationship recognised 

between zinc deficiency and immune dysfunction 

[142]. Via its availability, which is closely 

regulated by a number of transporters and 

regulators, zinc functions as a modulator of 

immune response. Perturbations of these processes 

may alter zinc availability, impacting on the 

survival, proliferation and maturation of cells 

associated with both innate and adaptive immunity 

[143]. 

Patients who are clinically zinc deficient may 

present range of immune-related symptoms 

including lymphopenia, decreased ratio of T-helper  

(Th) cells to cytotoxic T-cells; a decrease in the 

cellular natural killer cell activity and an increase in 

cytoxicity. Such deficiency is associated with 

chronic diarrhoea, administration of parenteral 

nutrition lacking in zinc or as a result of excessive 

consumption of alcohol, as well as being found in 

patients with the malabsorption disorder, 

Acrodermatitis Enteropathica (AE). Owing to the 

prevalence of marginal zinc deficiency in older 

people there is likely to be a correlation between 

zinc status and impaired immune function in 

elderly people. Increased risk of inflammatory 

conditions, increased susceptibility to infection, 

autoimmune diseases, cardiovascular disease and 

cancer are all associated with immunosenescence – 

the age-related alterations in immune function [6, 

24, 36].  

Changes in immune function associated with 

zinc deficiency and ageing show many similar 

features in both innate and adaptive immunity and 

neutrophil function which led [24] to propose the 

existence of a tight relationship between zinc 

deficiency and immunosenescence. Zinc 

supplementation may, therefore, be particularly 

relevant in older people in the prevention, reduction 

or delay of disease. However, the data from 

intervention studies to date are conflicting. This 

may be owing to the usage of different doses, 

durations and forms of zinc supplements utilised. In 

addition in the presence of high oxidative stress 

high doses of zinc may trigger apoptosis of immune 

cells [144] The accumulation of zinc may reach 

toxic levels resulting in the aberrant activation of 

zinc-dependent enzymes such as PARP-1 with a 

role in genomic stability or promote the uptake of 

excessive levels of calcium into the cells, resulting 

in cell death [24]  

It has been stated that the key factors 

underpinning intracellular zinc levels during ageing 

are increased expression of MTs and defective zinc 

transporters, leading to increased sequestration of 

zinc and low intracellular free zinc content [145]. 

In its role as a “second messenger” within the 

immune system, zinc may alter the signalling 

cascades that promote antioxidant and immune 

defence [146]. In the elderly low free zinc ion 

availability and increased MTs levels may result in 

compromised antioxidant and immune response, 

increasing inflammation accompanied by repeated 

infections and risk of degenerative disease [145]. 

Although data from intervention studies are 

contradictory, there is evidence that zinc 

supplementation may have a positive impact on 

DNA repair and increase the expression of some 
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zinc transporters genes, improving zinc 

homeostasis and reducing infections [145,147,148]. 

Following a systematic review of the literature 

examining the relationship between zinc status and 

autoimmunity Sanna and coworkers [149] have 

identified a relationship between zinc homeostasis 

imbalance and the state of autoimmunity, 

suggesting a need to commence a screening 

campaign for the evaluation of zinc levels in 

children. They have also proposed a clinical trial in 

populations at higher risk of autoimmunity to 

investigate the possibility of personalised zinc 

supplementation for the prevention or treatment of 

autoimmune diseases.  

Giacconi et al. [47] reviewed the pro-

inflammatory genetic factors and zinc status in 

older atherosclerotic subjects and stated that the 

identification of polymorphisms of pro-and anti-

inflammatory cytokines and their interaction with 

nutrients, such as zinc that impact on Th1/Th2 

balance, represents an opportunity for predicting 

atherosclerotic plaque formation and targets for 

future therapies. Nonetheless, conflicting data exist 

between polymorphisms, the occurrence of 

atherosclerosis and the influence on zinc 

homeostasis.   

Genetic make-up may influence the response to 

zinc supplementation, with recent studies indicating 

that polymorphisms in IL-6-174 G/C and MT1a 

+647A/C loci may affect the impact of zinc 

supplementation on antioxidant and immune 

function in older people [24, 150,151]. In the rare, 

inborn disorder of zinc metabolism, AE, a mutation 

in ZIP 4 (SLC 49A4) importer gene results in 

severe zinc deficiency symptoms [152]. A variety 

of other polymorphisms in zinc-related proteins 

have been implicated in a range of disorders and it 

has been suggested that zinc, via zinc transporters, 

may affect DNA stability resulting in altered zinc 

homeostasis and metabolism [43]. Through zinc 

fingers, extraction part of several transcription 

factors, zinc is involved in the DNA replication 

processes which are necessary for a wide range of 

key cellular processes [145]. Some of these are 

transcription factors which are involved in the 

regulation of pro-inflammatory cytokines (IL6 and 

TNFα) and heat shock proteins (Hsp70) [153] 

Giacconi et al. [154] investigated the 

association of Hsp70 1267 A/G and TNFα -308 

G/A polymorphisms with pro-inflammatory 

mediators and zinc status in elderly people. 

Utilizing a linear regression modelling approach to 

examine additive, dominant or recessive 

associations of each SNP with pro-inflammatory 

mediators, MT and zinc status measures they 

concluded that HsP70 A/G is linked to the 

production of pro-inflammatory cytokines in 

healthy elderly people, which might be involved in 

determining how vulnerable individuals are to 

inflammatory disease. They also concluded that 

TNFα -308 G/A SNP do not impact on production 

of pro-inflammatory cytokines but that both SNP 

are associated with levels of creatinine. Giacconi 

and colleagues [52] also investigated the role of 

ZIP 2 Gln/Arg/Leu (rs2234632) polymorphism on 

zinc homeostasis and inflammatory response 

following zinc supplementation, again in elderly 

volunteers. Enhanced IL-6, TNFα and RANTES 

plasma level were demonstrated in ZIP2 Leu- 

(Arg43Arg) carriers. This was associated with 

decreased free cytosolic zinc and an up-regulation 

of the ZIP2, ZIP8 and Znt1 transporters. Upon zinc 

supplementation, the volunteers who were Leu- 

showed a decrease in inflammatory mediators. 

Wong et al.[155] investigated the impact of 

zinc deficiency on cellular immune activation and 

the epigenetic mechanisms which might enhance 

inflammation. They concluded that the zinc 

deficiency induced inflammatory responses at least 

partly by promoting irregular immune cell 

activation and altering promoter methylation.  

Borghaei et al. [156] demonstrated that the 

zinc-binding protein -89 (ZIP-89) cooperates with 

NF-kB to regulate matrix metalloproteins (MMPs) 

expression as a response to inflammatory cytokine. 

MMPs have important roles in physiological tissue 

remodelling and wound healing as well as roles in 

the pathology of a range of disease conditions and 

transcriptional mechanisms are key in regulating 

healthy physiological level. ZBP-89 has been 

reported to bind the MMP-3 promoter at a site 

which is polymorphic, namely 5A/6A along with 

NF-kB. Tissue MMP-3 protein levels are affected 

by this polymorphism. They reported that ZBP-89 

was necessary for maximal induction of both genes 

by IL-B and TNFα and suggested a role for ZBP-89 

in expression of MMP-1 and in inflammatory 

processes via interaction with NF-kB [156,157]. In 

2010 Mocchegiani et al. [158] reported that the 

contradictory data from studies investigating the 

association between IL-6 polymorphisms, 

longevity and age-related diseases appear to be as a 

result of the interaction of these inflammatory 

processes with dietary intake, providing further 

evidence for a link among gene interaction and 

frailty in older age. Mocchegiani et al. [145] 

provide further supporting evidence of 

micronutrient-gene interactions related to 

inflammatory/immune response and antioxidant 

activity in ageing and propose that elucidating 

these associations could give a formula of 

personalised zinc supplementation or chelation to 

promote healthy ageing and long life.    
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4. GENETIC POLYMORPHISMS 

INVOLVED IN ZINC STATUS AND NON 

COMMUNICABLE DISEASE 

Noncommunicable diseases (NCDs), also 

known as chronic diseases are the result of a 

combination of genetic, physiological, 

environmental and behaviours factors. The main 

types of NCDs are cardiovascular diseases, 

metabolic disorders, cancers and chronic 

respiratory diseases [159]. The metabolic disorder 

frequently known as the “metabolic syndrome” 

(MetS), is defined by a clustering of abdominal 

obesity, high level in serum concentration of 

triglycerides, a lower quantity level of 

high-density lipoprotein (HDL) cholesterol, high 

blood pressure and an increased fasting blood 

glucose level [160,161] .  

In Europe the MetS prevalence is 

approximately 25% of adults, with a progressive 

increase in the elderly population [162]. Moreover, 

the heritability for MetS ranges from 10% to 30% 

[163,164]. Meta-analyses revealed a combined 

heritability estimate for Adult Treatment Panel-III 

MetS of 0.24 (95% CI, 0.11-0.36) and for the 

MetS severity score of 0.50 (95% CI, -0.05 to 

0.99) [165], indicating that this syndrome is in part 

inheritable. Knowledge of the exact genetic factors 

underlying MetS development may help to explain 

why the features of MetS frequently co-occur 

within one individual [166]. 

Several studies have demonstrated a 

relationship between obesity and Zn homeostasis. 

In particular, a significant decrease of blood Zn 

levels and an increase of urinary concentrations 

have been found in obese patients [167-169]. 

Moreover, erythrocyte Zn levels have been found 

to be associated with BMI and waist 

circumference [170].  In obesity, low nutritional 

Zn status is also associated with the aggravation of 

obesity-related metabolic disturbances such as 

insulin resistance, inflammation, and altered lipid 

profile [44, 171] and numerous studies dealing 

with zinc supplementation reported an 

improvement of blood pressure, glucose, and LDL 

cholesterol serum level [172]. Zinc plays a role in 

insulin signal transduction through the modulation 

of insulin receptor phosphorylation and of the 

activities of phosphoinositide-3-kinase, 

phosphoinositide-dependent kinase 1, Akt/protein 

kinase B and glycogen synthase kinase 3, which 

are part of the insulin signaling pathway [173].  

The interaction between zinc status, obesity, 

altered glucose metabolism and other metabolic 

disorders may be at least partially mediated by the 

pathological-induced modulation of zinc 

transporters that regulate cellular and intracellular 

Zn fluxes [174]. 

In recent years, polymorphisms in the solute 

carrier family 30 member 8 (SLC30A8) gene 

(ZnT8) with increased type 1 [175-180] and type 2 

diabetes  [177, 181-184] susceptibility were found 

(see also paragraph 2). In fact, a connection 

between the functionality of SLC30A8 has been 

observed and zinc concentration in plasma was 

shown able to influence glucose tolerance [185]. 

Type 1 diabetes is characterized by a 

destruction of pancreatic β-cells, resulting in 

absolute insulin deficiency causing hyperglycemia 

through the involvement of autoimmune-

mechanisms and genetic and environmental 

factors, that can accelerate or slow down the 

clinical course of the disease [179].  The 

mechanisms involved in the autoimmune reaction 

against specific antigens of the pancreatic islands 

may involve ZnT8 which has been identified as a 

new target of cell mediated and humoral 

autoimmunity in T1DM [186]. The C allele of the 

rs13266634 SNP was found associated with 

younger age onset of T1DM patients [176] but not 

in a Swedish population [187].  Furthermore, 

Swedish subjects had a lower frequency of the 

R325 (C/C) genotype than the non-Swedes, which 

could reduce genetic predisposition to T1DM 

[186]. While rs11203203 was identified as a 

genetic marker in children, AA genotype conferred 

a higher risk of persistent islet autoimmunity and 

type 1 diabetes [188].  Both SLC30A8 

polymorphisms were found to be associated with 

the HLA-DQ gene. However, further research will 

serve to better understand the role of SLC30A in 

the pathogenesis of type 1 diabetes across different 

population and its association with other genes and 

HLA which may permit major advances in future 

diagnostic and therapeutic approaches. 

Type 2 diabetes is a progressive and chronic 

metabolic disease and it is characterized by 

peripheral insulin resistance and pancreatic beta β 

cell dysfunction with a growing interest in the role 

of zinc signaling in this disease [173,189].  GWAS 

of the past decade have identified variants in the 

human SLC30A8 gene as affecting the risk of Type 

2 Diabetes [189]. Genome-wide association studies 

demonstrate an association of the above mentioned 

rs13266634 SNP of ZnT8 with decreased insulin 

release and T2DM susceptibility [43]. In particular, 

the common allele C of rs13266634 was associated 

with increased odds of T2DM in Europeans and 

Asians populations [186]. However, when Zn 

intake was taken into consideration, the C allele of 

rs13266634 was associated with lower odds of 

T2DM after zinc supplementation [182]. On the 
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other hand, Maruthur et al [190] reported that 

carriers of the T allele have increased insulin 

response after supplementation with Zn and thus 

may benefit more from Zn supplementation. A 

recent study identified 44 novel SLC30A8 variants; 

the minor alleles of rs2464591, rs2466296, 

rs2466297, and rs2466299 were associated with 

improvement in β-cell function, while carriers of 

the minor allele of rs2466293 had worsened 

functions. However, no association was observed 

between Zn intake and SNPs on diabetes incidence 

suggesting a limited role for dietary manipulation 

in affecting risk in relation to the SNPs identified 

[191]. 

As systematically reported in paragraph 2, there is 

another common SNP rs11558471 A/G in 3’-UTR 

of the SLC30A8 gene. A cross-sectional meta-

analysis on 14 cohorts assessed the interaction of 

20 genetic variants known to be related to glucose 

metabolism traits among individuals of European 

ancestry [192]. The strongest interaction effect was 

detected for rs11558471, where carriers of the A 

allele had increased fasting glucose.  Moreover, a 

strong linkage disequilibrium between rs11558471 

and rs13266634 was observed in this study. The 

results show that an increase in Zn intake decreases 

diabetes risk in A allele carriers, suggesting that Zn 

intake has an inverse association with fasting 

glucose plasma concentration.  

All these observations highlight the need to 

generate personalized recommendations of Zn 

according to the genotype of SLC30A8 [43]. 

Similar results were also found in the Asian 

population [193-195]. In this population, another 

SNP (rs3802177) has been identified in the 

SLC30A8 gene which increases the risk of type 2 

diabetes [196]. Rs3802177 showed the strongest 

association with T2D compared to the other SNP 

in the SLC30A8 gene [194]. Moreover, this SNP is 

strongly linked (r2 = 0.83) to another SNP in the 

SLC30A8 gene, rs13266634 [196]. However only 

about 10% of the total hereditary risk of T2D can 

be attributed to SLC30A8 genes and this lack 

could be due to rare variants and epigenetic factors 

[197]. Flannick et al. [198] genotyped ~ 150,000 

individuals across five ethnicities and identified 12 

rare protein-truncating variants in SLC30A8 that 

overall have reduced risk of T2DM for over 60%. 

Of the 12 variants, two common protein-truncating 

variants (p.Arg138X and p.Lys34SerfsX50) were 

associated with T2DM protection. The association 

of common alleles of SLC30A8 polymorphisms 

with T2DM implicates that this is a susceptibility 

gene in T2DM, while loss of SLC30A8 function 

may have a protective effect in the diseases. With 

regard to epigenetics, a significant increase in 

DNA methylation levels in the SLC30A8 gene has 

been recently observed in patients with T2DM 

[197]. 

Independently of SNPs located within genes 

encoding for proteins involved in Zn metabolism 

and trafficking, allelic variants located in the gene 

region encoding for the zinc finger of transcription 

factors have been reported to play an important 

role in determining the genetic risk of metabolic 

disease. Among genetic polymorphisms involved 

in lipid metabolism and hypertension and 

associated with zinc, there is rs964184 within 

the Zinc Finger Protein 259 (ZNF259). Mirhafez 

and coworkers [199], in a study performed in an 

Iranian population, found that the risk of MetS is 

increased in individuals carrying the G allele with 

an OR of 2.52 (95% CI= 1.33- 4.77; P= 0.005). 

Likewise, others authors found a positive 

association between ZNF259 and serum lipid 

levels in different populations [200,201]. Wu et al. 

[202], performed a case-control study on 1,812 

MetS patients and 2,036 controls from the 

Northeastern of China and found significant 

differences (p < 0.05) between the two population 

groups within the ZNF259 rs964184 and 

rs2075290 genotypes,  that could thus be 

associated with triglycerides levels, blood 

pressure, abdominal obesity, fasting 

hyperglycemia and HDL-C levels.  Similar results 

were found by Ueyama et al. [203] on an Japanese 

population including 1,822 subjects with MetS and 

1,096 controls. A GWAS performed on 815 

Hispanic children seeking genetic markers 

associated with obesity-related traits identified 

among several genes involved in obesity 

pathogenesis also variants in the APOA5-ZNF259 

region, in particular linked with triglycerides 

levels (p = 2.5-4.8E-08)  [204]. 

 

5. CONCLUSIONS 

A constant daily supply of Zn is necessary to 

maintain an optimal nutritional status and health. 

Both zinc deficiency and excess may lead to 

important health impairment such as in immune 

function, cardiovascular diseases, type 2 diabetes. 

Zinc homeostasis is therefore critical to protect 

against infection and reduce the risk of 

inflammatory disease and other chronic 

pathological conditions. There is a growing body of 

evidence demonstrating links between the genetic 

factors and requirements for zinc and the 

consequential impact on immune function and 

other aspects of human health, especially and 

critically in ageing. 

Zinc homeostasis is mediated by 

metallothioneins (MTs) and zinc transporters. Zinc 
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status and specific polymorphisms of genes coding 

for zinc-transporters have been in fact associated 

with chronic diseases. Base mutation experiments 

have demonstrated that specific DNA mutations 

can modify the structure and the expression of MTs 

and affect their ability to bind metal, through the 

impairment of transcription factors’ activity to 

MTs’ regulatory elements [51]. Indeed, as here 

summarized, SNPs affect several MTs functions 

linked to metal binding, from cancer to metabolic 

syndrome-related pathologies and their 

complications. Overall, 18 MT SNPs with an 

impact on pathological processes are known and 16 

are in non-coding regions. They are present in 

every MT gene class, excluding 3 out 8 MT1 genes 

(E, F, G and H) though 12 SNPs occur in this class. 

Main implications are on metal disbalance (8 

SNPs) and cancer (6 SNPs). Metal-related 

functions are also impaired by specific SNPs in 

ZnT genes and a total of 28 SNPs are involved in 

pathological processes. Their effects include insulin 

levels [120-123] and severe complications like 

dyslipidemia  and diabetes [94-110,125-127, 131-

139]. However, differently from MT SNPs, the 

majority of ZnT variants involves non-synonymous 

changes in the coding region of genes (16 out of 

28). Variants belong mainly to ZnT2 and ZnT8 

genes, according to genes’ roles in insulin secretion 

[88,89]. Nonetheless, like for MTs, other functions, 

linked to cardiovascular [128], are impaired.  

New studies are needed to allow a more 

comprehensive understanding of MT and ZnT 

mechanisms of action and of the effects of their 

common genetic variants. Moreover, the clear 

impact of zinc in diseases strengthens the need of 

more studies in transporters’ role in the regulation 

of physiological processes, for the set-up of 

accurate biomarkers able to monitor and detect 

subtle changes in cellular zinc homeostasis. 

Genetic studies have demonstrated that common 

DNA polymorphisms in some metallothioneins and 

zinc transporters confer susceptibility for some 

chronic diseases but the information is still limited 

and there is a need to better clarify the interactions 

between genes and other molecules. Furthermore, 

when considering the assumption of Zn the results 

remain controversial. This highlights the 

importance in the near future to clarify gene-

nutrient interactions and provide a clear 

understanding of any intervention requirements. 

There is a need to communicate this scientific 

information to health professionals in a way, which 

will allow them to translate this into dietary and 

behavioural recommendations which will promote 

human health, particularly for the elderly.         

 

LIST OF ABBREVIATIONS (not included in the 

text) 

Irs2 = insulin receptor substrate   

Akt  = Protein kinase B (PKB),  

kDa = kilodalton 

UTR  = Untranslated region 

CDF  =  Cation Diffusion Facilitator  

NF-κB  =nuclear factor kappa-light-chain-

enhancer of activated B cells 

IL-6 =  Interleukin 6 

NCBI  = National Center for Biotechnology 

Information 

MRE = Metal response element 

KO mice =knockout 

NRF2  = Nuclear factor E2-related factor 2 

PARP-1 = Poly (ADP-ribose) polymerase-1  

HSP70  = Heat Shock Protein 70 kilodaltons 

TNFα = Tumor necrosis factor alpha 

RANTES  = Regulated on activation, normal T-cell 

expressed, and secreted 

APOA5 = Apolipoprotein A5  
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