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Abstract 
Motivation. Atherosclerosis is amongst the leading causes of death globally.  However, it is challeng-

ing to study in vivo or in vitro and no detailed, openly-available computational models exist. Clinical 

studies hint that pharmaceutical therapy may be possible.  Here we develop the first detailed, compu-

tational model of atherosclerosis and use it to develop multi-drug therapeutic hypotheses.  

Results. We assembled a network describing atheroma development from the literature.  Maps and 

mathematical models were produced using the Systems Biology Graphical Notation (SBGN) and Sys-

tems Biology Markup Language (SBML), respectively.  The model was constrained against clinical 

and laboratory data.  We identified five drugs that together potentially reverse advanced atheroma 

formation.   

Availability and Implementation. The map is available in the supplementary information in SBGN-

ML format.  The model is available in the supplementary material and from BioModels, a repository of 

SBML models, containing CellDesigner markup.   

Contact.  s.watterson@ulster.ac.uk 

Supplementary Information.  Available from Bioinformatics online.  

 

 

 

1 Introduction  

Cardiovascular disease (CVD) is the primary cause of global mortali-

ty. CVD is estimated to account for 17.9m deaths worldwide each year, 

representing 31% of all-cause mortality worldwide (WHO, 2018) and 

45% of all-cause mortality within Europe (Wilkins, 2017).  Such a 

prevalent condition incurs a significant financial burden, accounting for 

17% of all healthcare expenditure in the USA.  Age is a significant risk 

factor and with an aging population, the cost of CVD related therapies is 

predicted to almost triple in the USA from $273 billion in 2010 to $818 

billion by 2030 (Heidenreich, 2011).  

Atherosclerosis is estimated to account for 71% of CVD diagnoses 

(Nichols, 2012).  It is characterized by the hardening of an artery wall, 

and the formation of a fibrous-fatty lesion within the surface layer.  As 

the disorder progresses, thick extracellular plaques of lipid build within 
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the artery wall, occluding the artery and reducing blood flow.  Either as a 

result of plaque rupture or of the turbulent blood flow they induce, 

thrombosis can occur, further occluding the artery (Insull Jr, 2009; Par-

ton, 2016). 

Despite our increasing knowledge of the mechanisms involved in this 

disorder, its formation is still not fully understood.  In part, this is due to 

the significant challenge inherent in studying live, dynamic plaques.  

Accessing plaques in vivo is logistically difficult, necessitating catheteri-

zation, and ethically challenging as it can increase the risk of plaque 

rupture.  As a result, alternative approaches to studying the dynamics of 

atherosclerosis are needed.  Computational modelling has the potential to 

be especially valuable here due to its flexibility, low financial and ethical 

cost, consistency and ease of replication.  However, currently there are 

no computational or mathematical models of atherosclerosis that capture 

the molecular biology involved and are available to the research commu-

nity for use in exploratory studies.   

The molecular and cellular biology that mediates plaque formation 

can furnish drug targets for therapy development.  Previous studies have 

typically focused on blood flow and plaque initiation (Parton, 2016; Di 

Tomaso, 2011; Silva, 2013) routinely omitting or simplifying details of 

the molecular and cellular biology for reasons of mathematical expedi-

ency (Bulelzai, 2012; Friedman, 2015; El Khatib, 2009).  Critically, the 

resulting models have not been made publicly available with only one 

model pertaining to atheroma formation presently in the BioModels 

database (Chelliah, 2015), focusing on lipoprotein action and B-cell 

signaling with little detail on the mechanisms of plaque formation 

(Gomez-Cabrero, 2011). KEGG (Kanehisa, 2017), Reactome (Fabregat, 

2016) and Wikipathways (Kutmon, 2011) contain no molecular biology 

maps of atherosclerosis.  However models of contributory factors such as 

cholesterol metabolism do exist (Mazein, 2013; Watterson, 2013). 

Here we develop the first detailed, predictive dynamical computation-

al model of the formation of atherosclerosis using Systems Biology 

standards.  The model is mapped using the Systems Biology Graphical 

Notation (SBGN) (Le Novere, 2009) and made available to the research 

community for reuse and refinement using the Systems Biology Graph-

ical Notation Markup Language (SBGN-ML) (van Iersel, 2012).  This 

map is accompanied by a mathematical model describing the dynamics 

of the interactions in the map as a system of ordinary differential equa-

tions (ODEs), made available using the Systems Biology Markup Lan-

guage (SBML) (Hucka, 2003) and compatible with CellDesigner (Fu-

nahashi, 2008).  There are many examples of SBGN and SBML compli-

ant software (see http://sbgn.github.io/sbgn/software_support and 

http://sbml.org/SBML_Software_Guide respectively). 

Currently, treatment of atherosclerosis focuses on limiting disease 

progression (though smoking cessation, lipid lowering, and anti-platelet 

therapies and optimal management of hypertension and diabetes) and 

revascularization procedures such as angioplasty and bypass grafting to 

clinically relevant stenotic lesions in the vasculature. Such treatments are 

clinically effective in managing patient risk.  It is less clear whether 

therapies can reduce plaque size, although there is some evidence to 

suggest that intense statin treatment (Lima, 2004), combined statin-

PCSK9 inhibitor treatment (Nicholls, 2016) or Cyclodextrin treatment 

(Zimmer, 2016) may yield a modest plaque reduction.  New therapies 

that yield a substantial reduction in plaque size could have a dramatic 

impact on CVD morbidity and mortality and so their identification has 

high strategic importance.  Here, we employ the model to develop effec-

tive therapeutic strategies comprising multi-drug combinations that re-

program disease dynamics leading to plaque regression.   

2 Methods 

A list of the cell types involved in atherosclerosis was compiled from 

the existing literature (see supplementary table S4).  Each article identi-

fied was also searched for references to proteins and small molecules 

with each entity found considered for the model.  A protein or small 

molecule was incorporated if its biological source, presence within a 

compartment and influence on atherogenesis (however minor) were all 

described. The model was assembled with CellDesigner (Funahashi, 

2008) using SBGN with mass action and Michaelis-Menten equations 

primarily used to describe the dynamics.  The resulting model was ex-

ported to SBGN-ML file format to disseminate the visual map and to 

SBML file format to disseminate the mathematical model. It was subse-

quently analysed using MATLAB software 

(https://www.mathworks.com). 

We considered dynamics for three lipid profiles: high risk, medium-

risk and low-risk comprising LDL concentrations of 190 mg/dl, 110 

mg/dl (https://www.nhlbi.nih.gov/health/resources/heart/heart-

cholesterol-hbc-what-html) and 50mg/dl (O'Keefe, 2004), respectively 

and HDL concentrations of 40 mg/dl, 50 mg/dl and 50 mg/dl, respective-

ly (Boden, 2000).  Atherosclerosis is considered to be a chronic condi-

tion.  Hence, we considered plaque formation across a representative 

time scale of 80 years.  The BRENDA enzyme database was searched 

for relevant known rate parameters (Placzek, 2017).  In order to con-

strain parameters with unknown values, PubMed and Google Scholar 

searches were undertaken to find studies describing representative con-

centrations of the cells, proteins and small molecules involved.  This 

enabled us to compile a series of clinical observations.  Unknown pa-

rameters were optimized so as to maximize the agreement between the 

behavior of the model and these observations (see tables 1 and 2).   

There are between 5 and 800 cells within a plaque area per high pow-

ered field (HPF) at 400x magnification (Brandl, 1997), where one HPF 

displays approximately 0.2mm2 of plaque area (Bonanno, 2000).  We 

estimate that a plaque contains between 25 and 4000 cells per mm2. 

Average plaque area has been shown to be 15.2mm2 (von Birgelen, 

1998), giving the number of cells in a plaque as being between 380 and 

60800.  Using this result and the references shown, we identified the 

quantitative and qualitative constraints outlined in tables 1 and 2. 

The model was replicated in MATLAB and simulated using the non-

stiff differential equation solver function ‘ode23t’. To ensure accurate 

replication, the SBML version of the model was also simulated using the 

SBML ODE Solver built into CellDesigner.  Initial conditions for each 

entity were estimated using control group data in cardiovascular disease 

studies (see supplementary table S3). Concentrations of LDL and HDL 

in the blood were kept constant, to reflect a stable patient context.  

The resulting model contains 89 ordinary differential equations 

(ODEs), which are detailed in supplementary table S1. 

2.1 Multi-drug plaque regression therapeutic hypotheses 

To demonstrate the utility of the model, we undertook to identify an 

optimal multi-drug intervention hypothesis that would reprogram the 

dynamics of the model leading to regression of advanced plaques.  It has 

been demonstrated that multidrug approaches have the potential to ex-

ploit compound effects to yield effective interventions at lower individu-

al and collective dosages than in comparable single-drug interventions, 

reducing the risk from pleotropic effects (Benson, 2017).  This is an 

example of the type of investigation that would be highly challenging to 

undertake in vivo yet can be undertaken computationally with ease. 
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We identified the following 9 drugs with targets in the model (targets 

in brackets): 2-(4-Chloro-3-(trifluoromethyl)phenoxy)-5-(((1-methyl-6-

morpholino-2-oxo-1,2-dihydropyrimidin-4-yl)oxy)methyl)benzonitrile  

  

Figure 1. A map of atherosclerotic plaque dynamics shown using the Systems Biology Graphical Notation (SBGN). 
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(PLA2), GW4869 (SMase), Quercetin Monoglucoside (Lipoxygen-

ase), cFMS Receptor Inhibitor III (MCSF), Bindarit (CCL2), Imatinib 

Mesylate (PDGF), Ustekinumab (IL12R), GSK1070806 (IL18R), 

SCH546738 (CXCL9, CXCL10, CXCL11, CCL5).  Because PLA2, 

SMase and Lipoxygenase all catalyse the same interaction, we con-

strained these drugs to have the same concentration, giving a set of drugs 

with seven degrees of freedom.  

We identified the optimal combination of drugs that would drive ath-

erosclerosis regression using a genetic algorithm and a bespoke scoring 

function (see supplementary section S1) in MATLAB.  A genetic algo-

rithm was chosen for its ease of parallelisation and the transparency of its 

convergence.  The analysis was run on an Intel(R) Xeon(R) CPU E5-

2630 v3 @ 2.6GHz (Octo-core) CPU with 64GB of RAM running Cen-

tOS 7.   

3 Results 

A map of the model obtained is shown in Figure 1 using the SBGN 

schema.  The model covers the liver, intestine, lumen, endothelium and 

tunica intima, including LDL retention, LDL oxidation, monocyte re-

cruitment, monocyte differentiation, smooth muscle cell proliferation, 

phagocytosis, reverse cholesterol transport and T-cell proliferation.  The 

cell types involved include monocytes, endothelial cells, T-cells, macro-

phages, foam cells, B-cells, smooth muscle cells, neutrophils, dendritic 

cells and mast cells.  Each interaction represents a parameterized equa-

tion (see supplementary tables S1 and S2), enabling us to simulate the 

changing concentrations/abundances of the model as the plaque forms.   

The initial conditions identified are described in supplementary table 

S3 and unknown parameters were optimized so that the model simulta-

neously satisfied the constraints described in tables 1 and 2.  Along with 

figures S2, S3 and S4, tables 1 and 2 demonstrate consistency with the 

underlying unperturbed biology.   Key markers for plaque development 

include smooth muscle cell, macrophage and foam cell and Th1 cell 

proliferation.  Their behavior for the three risk profiles is shown in Fig-

ure 2.  

3.1 Reusability of the model 

The files can be opened, edited and analyzed in software supporting the 

SBGN-ML and SBML standards.  SBML compliant software includes 

Copasi (Bergmann, 2017), Cytoscape with the cy3SBML plugin (König, 

2012) and Dizzy (Ramsey, 2005).  Supplementary Fig S1 shows the 

graphical map opened in three representative SBGN compliant editors: 

Newt (http://web.newteditor.org/), PathVisio (Kutmon, 2015) and 

VANTED with SBGN-ED extension (Czauderna, 2010) along with a 

subsection of the plain text, XML file.   

3.2 Therapeutic hypothesis generation 

We determined the following drug combination that optimally drove 

plaque regression.  Concentrations are described as multiples of the 

corresponding inhibition constants, ki. 2-(4-Chloro-3-

(trifluoromethyl)phenoxy)-5-(((1-methyl-6-morpholino-2-oxo-1,2-

dihydropyrimidin-4-yl)oxy)methyl)benzonitrile (PLA2) – 4.35x10-5, 

GW4869 (SMase) – 4.35x10-5, Quercetin Monoglucoside (Lipoxygen-

ase) – 4.35x10-5, Bindarit (CCL2) – 37.0, cFMS Receptor Inhibitor III 

(MCSF) – 0, SCH546738 (CXCL9, CXCL10, CXCL11, CCL5) – 

8.45x10-4, Ustekinumab (IL12R) – 7.62, GSK1070806 (IL18R) – 7.60, 

Imatinib Mesylate (PDGF) – 0.  As can be seen from Fig 3A, this com-

bination was identified quickly with approximately optimal results being 

identified within 20 generations using a genetic algorithm.  Figs 3B, 3C 

and 3D show the predicted dynamics of atherosclerosis after this inter-

vention is applied at forty years following forty years of the high risk 

lipid profile.  We can see that smooth muscle cells, macrophages and 

foam cells and Th1-cell counts are all rapidly driven down by the inter-

vention.   

4 Discussion 

CVD is a large burden on healthcare worldwide.  Front line therapies for 

the primary and secondary prevention of atherosclerotic disease include 

smoking cessation, lipid management, blood pressure control, optimal 

control of diabetes and the use of antiplatelet agents.  However, the 

Figure 2.  Key indicators of plaque formation during plaque development 

for the three blood LDL/HDL profiles: 190/40 mg/dl, 110/50 mg/dl and 

50/50 mg/dl.  (A) Smooth muscle cell concentrations.  (B) macrophage 

and foam cell concentrations.   (C) Th1 cell concentrations  
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number of pharmaceutical therapies is limited. By far the most common-

ly used  

class of lipid lowering drugs is statins, which inhibit HMG-CoA reduc-

tase. Ezetimibe, a cholesterol absorption inhibitor, may be used in pa-

tients who are statin intolerant or who do not achieve lipid targets on the 

highest maximally targeted dose of statin. A new, recently licenced class 

of drugs, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibi-

tors, suppress degradation of LDLR by PCSK9 and are associated with a 

significant reduction in serum LDL concentration and in cardiovascular 

events. Emerging drugs include Apolipoprotein B antisense drugs that 

suppress translation of ApoB, a key component of LDL, and microsomal 

triglyceride transfer protein inhibitors that induce significant LDL reduc-

tion (Henderson, 2016). 
Atherosclerotic plaques are highly challenging to study due to their 

location.  In vivo study presents logistical and ethical challenges and 

there are few in vitro resources.  Whilst they are not a replacement for in 

vivo studies, computational studies have the potential to contribute non-

in vivo resources that can improve our understanding of CVD.  

Here we have produced the first detailed, predictive model of athero-

sclerosis pathophysiology and it can serve as a resource for the research 

community to be reused, refined and expanded in future.  Models of this 

type can be used to predict the on-target and off-target consequences of 

interventions.  This can be exploited in single drug development to iden-

tify the drug targets that have the greatest potential therapeutic value or 

in multi-drug intervention development to identify drug combinations 

and target combinations with the greatest potential therapeutic value 

(Benson, 2017).  The scale of the global CVD burden means that there is 

a pressing need to develop new pharmaceutical therapeutics that both 

address clinical need and can sustain the pharmaceutical industry as 

intellectual property protection expires around current therapeutics.  

Multi-drug interventions of the type identified here have a vast untapped 

potential to contribute to future therapeutics in this way.   

The development of therapeutic hypotheses can form part of pro-

grammes of personalized or stratified medicine by adapting the parame-

ters to individuals or to patient subgroups. Such parameterizations could 

be identified by optimizing the model to time course data or by determin-

ing the impact of single nucleotide polymorphisms on protein function. 

The dynamics of the model show broad agreement with observed clin-

ical results (see tables 1 and 2).  Because the model describes spatial 

effects and cellular function very simply, it is unlikely to be able to rec-

reate all clinical results exactly.  Doing so would require greater com-

plexity across length scales.  However, we demonstrate order of magni-

tude agreement in almost all cases and show the correct qualitative dose 

responses.  Optimizing the parameters so as to ensure a sufficiently large 

response to changes in lipoprotein profile for particular model compo-

nents was challenging.  Consequently, particular components are sys-

tematically over-estimated for the low LDL profile and the difference 

between high and low LDL profiles, although large, is not as great as 

that observed clinically.  In changing the lipid profile, we adjusted the 

concentrations of LDL and HDL in the model.  This logically does not 

impact upon components upstream of LDL and HDL.  Hence, we would 

expect to see no resulting change in chylomicron or triglyceride concen-

trations as described in rows 28 and 29 of table 1.  To see changes in 

chylomicron or triglyceride concentrations would require either modify-

ing VLDL and IDL values across risk profiles or incorporating further 

feedback into the model. 

Atherosclerosis is known to have comorbidities such as rheumatoid 

arthritis and depression (Gibson, 2017).  By using incorporating ‘omic 

data from studies of other diseases, this model can be used to explore 

their impact on atherosclerosis as a comorbidity.  Similarly, it can be 

used to explore the impact of therapies for other diseases on atheroscle-

rosis either where there are targets in atherosclerosis associated pathways 

or through changes to ‘omic profiles.   

The therapeutic hypotheses identified here could be validated and de-

veloped further by experimentation in animal models (Getz, 2012).  Each 

animal model has limitations and none are a perfect surrogate for human 

atheroma.  As a result, the computational model presented here would 

need to be adapted for each animal system and new therapeutic hypothe-

ses would need to be generated.  However, this would be the next step 

towards therapy development. 

Funding 

This work was supported by European Union Regional Development 

Fund (ERDF) EU Sustainable Competitiveness Programme for N. Ire-

land; the Northern Ireland Public Health Agency (Health and Social Care 

R&D); Ulster University [all to Professor Tony Bjourson]; and Microsoft 

Azure Research [CRM:0740357 to SW]. 

 

Conflict of Interest: The authors declare that they have no competing 

interests. 

References 

Adiguzel E, et al. (2009) Collagens in the progression and complications of athero-

sclerosis. Vascular Medicine. 14(1), 73-89.  

Arakelyan A, et al. (2005) Serum levels of the MCP-1 chemokine in patients with 

ischemic stroke and myocardial infarction. Mediators of Inflammation 2005(3), 

175–9.  

Benson H, et al. (2017) Is systems pharmacology ready to impact upon therapy 

development? A study on the cholesterol biosynthesis pathway. Br J Pharma 

174(23), 4362-4382 

Bergmann FT, et al. (2017) COPASI and its applications in biotechnology, J Bio-

technol. 261, 215-220.  

Boden WE. (2000) High-density lipoprotein cholesterol as an independent risk 

factor in cardiovascular disease: assessing the data from Framingham to the 

Figure 3. Therapeutic hypothesis generation.  (A) Convergence on an 

atheroprotective multi-drug intervention hypothesis.  (B – D) The 

impact of the identified intervention on key plaque constituents when 

applied after 40 years of plaque development at the high risk 

LDL/HDL profile of 190/40mg/dl. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/bty980/5232220 by U

niversity of U
lster user on 20 D

ecem
ber 2018



A. Parton et al. 

Veterans Affairs High-Density Lipoprotein Intervention Trial. Am J Cardio 

86(12), 19-22.  

Bonanno E, et al. (2000). Flow cytometry analysis of atherosclerotic plaque cells 

from human carotids: A validation study. Cytometry 39(2), 158–165.  

Brandl R, et al. (1997). Topographic Analysis of Proliferative Activity in Carotid 

Endarterectomy Specimens by Immunocytochemical Detection of the Cell Cy-

cle Related Antigen Ki-67. Circulation 96(10), 3360–3368.  

Bulelzai MA, et al. (2012) Long time evolution of atherosclerotic plaques. J Theor 

Biol 297, 1–10.  

Chelliah V, et al. (2015) BioModels: ten-year anniversary, Nucl. Acids Res 43(D1), 

D542–D548 

Czauderna T, et al. (2010) Editing, Validating, and Translating of SBGN Maps. 

Bioinformatics 26(18), 2340-2341.  

Delgado-Roche L, et al. (2015) Arresting progressive atherosclerosis by immuniza-

tion with an anti-glycosaminoglycan monoclonal antibody in apolipoprotein E-

deficient mice. Free Radical Biol Med 89, 557-66.  

Di Iorio A, et al. (2003). Serum IL-1b levels in health and disease: A population-

based study. “The InCHIANTI study.” Cytokine 22(6), 198–205.  

Di Tomaso G, et al. (2011) A multiscale model of atherosclerotic plaque formation 

at its early stage, IEEE Trans Biomed Eng 58(12), 3460-63 

El Khatib N, et al. (2009) Mathematical modelling of atherosclerosis as an inflam-

matory disease. Phil Trans Roy Soc A: Math, Phys Eng Sci 367(1908), 4877-

86. 

Fabregat A, et al. (2016) The Reactome pathway Knowledgebase, Nucl Acid Res 

44(D1), D481-7. 

Ferdousie VT, et al. (2017) Serum CXCL10 and CXCL12 chemokine levels are 

associated with the severity of coronary artery disease and coronary artery oc-

clusion. Int J Cardio 233, 23-8.  

Ferns GA, et al. (1991) Inhibition of neointimal smooth muscle accumulation after 

angioplasty by an antibody to PDGF. Science 253(5024), 1129-32. 

Friedman A, et al. (2015) A Mathematical Model of Atherosclerosis with Reverse 

Cholesterol Transport and Associated Risk Factors, Bull Math Biol 77(5), 758-

781  

Funahashi A, et al. (2008) CellDesigner 3.5: A Versatile Modeling Tool for Bio-

chemical Networks, Proc IEEE 96(8), 1254 – 1265. 

Getz GS, Reardon CA (2012) Animal models of atherosclerosis. Arterio, Thromb, 

Vasc Bio 32(5), 1104-15. 

Gibson D, et al. (2017) Coincidence versus consequence: opportunities in multi-

morbidity research and inflammation as a pervasive feature, Exp Rev Precis 

Med Drug Dev 2(3), 147-156 

Gomez-Cabrero D, et al. (2011) Workflow for generating competing hypothesis 

from models with parameter uncertainty, Interface Focus 1(3), 438-49. 

Gonçalves I, et al. (2003). Changes related to age and cerebrovascular symptoms in 

the extracellular matrix of human carotid plaques. Stroke 34(3), 616–22.  

Grufman H, et al. (2004) Evidence for altered inflammatory and repair responses in 

symptomatic carotid plaques from elderly patients. Atherosclerosis 237(1), 

177-82.  

Gupta S, et al. (1997) IFN-gamma potentiates atherosclerosis in ApoE knock-out 

mice, J Clin Invest 99(11), 2752-61.  

Hauer A, et al. (2005) Blockade of Interleukin-12 Function by Protein Vaccination 

Attenuates Atherosclerosis, Circulation 112, 1054-1062.  

Heidenreich PA, et al. (2011) Forecasting the future of cardiovascular disease in 

the United States: A policy statement from the American Heart Association. 

Circulation. 123(8), 933-44.  

Henderson R., et al. (2016) The genetics and screening of familial hypercholester-

olaemia. J Biomed Sci 23(1), 39. 

Herder C, et al. (2011) RANTES/CCL5 and risk for coronary events: results from 

the MONICA/KORA Augsburg case-cohort, Athero-Express and CARDIo-

GRAM studies. PLoS One 6(12), e25734 

Herder C, et al. (2012) TGF-b1 content in atherosclerotic plaques, TGF-b1 serum 

concentrations and incident coronary events. Euro J Clin Inv 42(3), 329–37.  

Hoff H, et al. (1978). Apo B concentration in the normal human aorta. Biochem 

Biophys Res Comm 85(4), 1424–1430. 

Hucka M, et al. (2003) The systems biology markup language (SBML): a medium 

for representation and exchange of biochemical network models, Bioinformat-

ics 19(4), 524-31. 

Insull Jr W. (2009) The pathology of atherosclerosis: plaque development and 

plaque responses to medical treatment. Am J Med 122(1), S3-14. 

Kanehisa M, et al. (2017) KEGG: new perspectives on genomes, pathways, diseas-

es and drugs, Nucl Acid Res 45(D1), D353-D361.  

Kao J, et al. (2003). Elevated serum levels of the CXCR3 chemokine ITAC are 

associated with the development of transplant coronary artery disease. Circula-

tion 107(15), 1958–1961. 

König M, et al. (2012) CySBML: a Cytoscape plugin for SBML, Bioinformatics 

28(18), 2402-3  

Kutmon M, et al. (2015) PathVisio 3: An Extendable Pathway Analysis Toolbox, 

PLoS Comp Bio 11(2), e1004085  

Kutmon M, et al. (2016) WikiPathways: capturing the full diversity of pathway 

knowledge Nucl Acid Res 44(D1), D488-D494.  

Le Novere N, et al. (2009) The Systems Biology Graphical Notation. Nat Biotech 

27, 735–41.  

Lima JA, et al. (2004) Statin-induced cholesterol lowering and plaque regression 

after 6 months of magnetic resonance imaging–monitored therapy, Circulation 

110(16), 2336-41.  

Mazein A., et al. (2013) A comprehensive machine-readable view of the mammali-

an cholesterol biosynthesis pathway. Biochem Pharma 86(1), 56-66.  

Molloy KJ, et al. (2004). Comparison of levels of matrix metalloproteinases, tissue 

inhibitor of metalloproteinases, interleukins, and tissue necrosis factor in carot-

id endarterectomy specimens from patients on versus not on statins preopera-

tively. Am J Cardio 94(1), 144–146.  

Nichols M, et al. (2012) European Cardiovascular Disease Statistics 2012. Europe-

an Heart Network, Brussels, European Society of Cardiology, Sophia Antipolis 

Nicholls SJ, et al. (2016) Effect of Evolocumab on Progression of Coronary Dis-

ease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial. 

JAMA 316(22), 2373-2384.  

Nishi K, et al. (2002). Oxidized LDL in carotid plaques and plasma associates with 

plaque instability. Arterio, Thromb, Vasc Biol 22(10), 1649–1654.  

O'Keefe JH, et al. (2004) Optimal low-density lipoprotein is 50 to 70 mg/dl: lower 

is better and physiologically normal. JACC 43(11), 2142-6.  

Parton A, et al. (2016) Computational modelling of atherosclerosis. Brief Bioinf 

17(4), 562-575. 

Placzek S, et al. (2017), BRENDA in 2017: new perspectives and new tools in 

BRENDA, Nucl Acid Res 45(D1), D380–D388. 

Qiao JH, et al. (1997) Role of Macrophage Colony-Stimulating Factor in Athero-

sclerosis: Studies of Osteopetrotic Mice. Am J Pathol 150(5), 1687–1699. 

Ragino YI, et al. (2012). Activity of the inflammatory process in different types of 

unstable atherosclerotic plaques. Bull Exp Biol Med 153(2), 186–189.  

Ramalho LS, et al. (2013). Role of mast cell chymase and tryptase in the progres-

sion of atherosclerosis: Study in 44 autopsied cases. Ann Diag Path 17(1), 28-

31.  

Ramsey S, et al. (2005) Dizzy: stochastic simulation of large-scale genetic regula-

tory networks. J Bioinform Comp Bio 3(2), 415-36. 

Sakai N, et al. (2003). Measurement of fasting serum apoB-48 levels in normoli-

pidemic and hyperlipidemic subjects by ELISA. J Lipid Res 44(6), 1256–1262.  

Silva T, et al. (2013). Mathematical modeling of atherosclerotic plaque formation 

coupled with a non-newtonian model of blood flow. In Conference Papers in 

Science 2013 (Vol. 2013). Hindawi. 

Stein A., et al. (2008). Circulating endothelial progenitor cells decrease in patients 

after endarterectomy. J Vasc Surg 48(5), 1217–1222.  

Szodoray P, et al. (2006) TH1/TH2 imbalance, measured by circulating and intra-

cytoplasmic inflammatory cytokines–immunological alterations in acute coro-

nary syndrome and stable coronary artery disease. Scandi J Immun 64(3), 336-

344.  

Trogan E, et al. (2006) Gene expression changes in foam cells and the role of 

chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient 

mice. PNAS 103(10), 3781-6.  

van Dijk RA, et al. (2015) A change in inflammatory footprint precedes plaque 

instability: a systematic evaluation of cellular aspects of the adaptive immune 

response in human atherosclerosis. JAMA 4(4), e001403.  

van Iersel MP, et al. (2012) Software support for SBGN maps: SBGN-ML and 

LibSBGN, Bioinformatics 28(15), 2016-21.  

von Birgelen C, et al. (1998) Atherosclerotic coronary lesions with inadequate 

compensatory enlargement have smaller plaque and vessel volumes: observa-

tions with three dimensional intravascular ultrasound in vivo. Heart 79(2), 137-

42. 

Vickers K, et al. (2009) Relationship of lipoprotein-associated phospholipase A2 

and oxidized low density lipoprotein in carotid atherosclerosis, J Lipid Res 

50(9), 1735-1743.   

Watterson S, et al. (2013) A model of flux regulation in the cholesterol biosynthesis 

pathway: immune mediated graduated flux reduction versus statin-like led 

stepped flux reduction. Biochimie 95(3), 613-621. 

Westerterp M, et al. (2013) Deficiency of ATP-Binding Cassette Transporters A1 

and G1 in Macrophages Increases Inflammation and Accelerates Atherosclero-

sis in Mice. Circulation Research 112, 1456–1465 .  

Whitman SC, et al. (2002) Interleukin-18 enhances atherosclerosis in apolipopro-

tein E−/− mice through release of interferon-γ. Circulation Res 90(2), e34-8.  

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/bty980/5232220 by U

niversity of U
lster user on 20 D

ecem
ber 2018



New models of atherosclerosis 

WHO (2018) Noncommunicable diseases country profiles 2018, World Health 

Organisation 

Wilkins E, et al. (2017) European Cardiovascular Disease Statistics 2017 edition, 

European Heart Network. 

Yu HT, et al. (2015). Serum monokine induced by gamma interferon as a novel 

biomarker for coronary artery calcification in humans. Coronary Artery Dis-

ease 26(4), 317–321.  

Zimmer S, et al. (2016), Cyclodextrin promotes atherosclerosis regression via 

macrophage reprogramming, Sci Trans Med 8(333), 333ra50. 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/bty980/5232220 by U

niversity of U
lster user on 20 D

ecem
ber 2018



Quantitative Comparison From literature From model 

No Measureable Location Units Estimate source Lower 

estimate 

Upper 

estimate  

Sole 

estimate 

Lower 

prediction 

Upper 

prediction 

Sole predic-

tion 

Figure 

1 Smooth muscle cell 

count 

Plaque cells 35.10% of cellular composition (Bonanno, 2000) 133 21341  230 42287  2A 

2 Macrophage (including 

foam cell) count 

Plaque cells 34.07% of cellular composition (Bonanno, 2000) 129 20715  3463 27630  2B 

3 Th1 cell count Plaque cells Ratio of Th1 to non-Th1 cells approximately 0.3 

(van Dijk, 2015) 

88  14031  223 7186  2C 

4 MCP1/CCL2 concen-

tration 

Blood 

serum 

pg/ml myocardial infarction and ischemic stroke patients 

(Arakelyan, 2005) 

100  775  163.8 649.8  S2.1 

5 CXCL9 concentration Blood 

serum 

pg/ml patients assessed for coronary artery calcium depos-

its (Yu, 2015) 

17.4  271.2  23.8 283.9  S2.2 

6 CXCL10 concentration Blood 

serum 

pg/ml patients assessed for coronary artery disease 

(Ferdousie, 2017) 

127.6  956.5  120.9 850.0  S2.3 

7 CXCL11 concentration Blood 

serum 

pg/ml control groups in transplantation studies (Kao, 2003) 420  1062  355 965  S2.4 

8 IL1b concentration Blood 

serum 

pg/ml congestive heart failure and control patients (Di 

Iorio, 2003) 

0.28  2.12  0.97 2.04   S2.5 

9 TIMP1 concentration Plaque μg/g carotid endarterectomy patients, per wet weight 

plaque (Molloy, 2004) 

5.3  12.4  3.6 11.5  S2.6 

10 IFNg concentration Plaque pg/g carotid endarterectomy patients, per wet weight 

plaque (Grufman, 2004) 

20  182  5 167  S2.7 

11 TGFb concentration Plaque mg/g control and coronary artery disease patients, per 

weight protein (Herder, 2012) 

0.33  0.76  0.05 0.80  S2.8 

12 Chymase to tryptase 

density ratio 

Plaque none (Ramalho, 2013)   107.8:135

.1 

  106.0:134.3 

high risk 

profile. 

S2.9 

13 T cell count Plaque cells 30.82% of cellular composition (Bonanno, 2000) 117  18739  8012  18562  S2.10 

14 CCL5 concentration Blood 

serum 

ng/ml control and coronary event patients (Herder, 2011) 2.7  176.0  45.7 181.1  S2.11 

15 MMP1 concentration Plaque ng/g carotid endarterectomy patients, per wet weight 

plaque (Molloy, 2004) 

18  104  0.2  86.8  S2.12 

16 MMP9 concentration Plaque ng/g carotid endarterectomy patients, per wet weight 

plaque (Molloy, 2004) 

121  722  1.6 609.6  S2.13 

17 IL1b concentration Plaque ng/g carotid endarterectomy patients, per wet weight 

plaque (Molloy, 2004)  

12  24  0.1 23.6  S2.14 

18 IL6 concentration Plaque μg/g carotid endarterectomy patients, per wet weight 

plaque (Molloy, 2004)  

1.5  5.1  0.025 5.3  S2.15 

48
49
50
51
52
53
54
55
56
57
58
59
60
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19 TNFa concentration Plaque ng/g carotid endarterectomy patients, per wet weight 

plaque (Molloy, 2004) 

15  27  0.3 24  S3.1 

20 IL10 concentration Plaque ng/g arterial occlusion patients, ranging per wet weight 

plaque (Stein, 2008) 

1.51  2.29  0.6 2.1  S3.2 

21 IL12 concentration Plaque ng/g arterial occlusion patients, per wet weight plaque 

(Stein, 2008) 

3.6  4.6  0.7 5.2  S3.3 

22 Elastin concentration Plaque mg/g acute coronary syndrome patients, per wet weight 

plaque (Gonçalves, 2003) 

  1.58    1.85 high 

risk profile 

S3.4 

23 Collagen concentration Plaque  mg/g acute coronary syndrome patients, per wet weight 

plaque (Gonçalves, 2003) 

  6.26    4.87 high 

risk profile. 

S3.5 

24 PDGF concentration Plaque pg/g carotid endarterectomy patients, per wet weight 

plaque (Grufman, 2004) 

279  1381  2 1048  S3.6 

25 Oxidized LDL concen-

tration 

Plaque μg/g weight of oxidized LDL per weight ApoB is 19.6 

ng/μg in plaques and 1.9 ng/μg in normal intimal 

tissue (Nishi, 2002).  Plaque concentration of ApoB 

ranges from 1.97 μg/mg to 0.13 μg/mg (Hoff, 1978) 

0.25  38.6  2.6 36.8   S3.7 

26 IL2 concentration Plaque ng/g acute coronary syndrome patients, per weight protein 

(Ragino, 2012) 

  24.0    27 high risk 

profile 

S3.8 

27 IL18 concentration Plaque ng/g acute coronary syndrome patients, per weight protein 

(Ragino, 2012) 

  10.7    10.9 high 

risk profile 

S3.9 

28 Chylomicron concen-

tration 

Blood 

serum 

μg/ml control and hyperlipidemic patients (Sakai, 2003) 1.4  52.6  49.1l 49.1  S3.10 

29 Triglyceride concen-

tration 

Blood 

serum 

mg/dl control and hyperlipidemic patients (Sakai, 2003) 58  1005   754  754l  S3.11 

 

 

 

 

  

 

Table 1:  Quantitative constraints applied to the model. 
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Qualitative comparison From literature From model 

No Measureable Location Estimate source Predicted behaviour Figure 

30 Atherogenic cell 

count  

Plaque Ratio of Th1 to Th2 cell count 

correlates with atherogenesis 

(Szodoray, 2006) 

For high risk profile, increasing rate 

parameter of differentiation to Th1 

cells by 10% and decreasing rate 

parameter of differentiation to Th2 

cells by 10% increases foam cell 

counts.   

S3.12 

31 Atherogenic cell 

counts 

Plaque Animal models show plaque 

reduction mediated by reverse 

cholesterol transport after 

reducing lipid profile (Trogan, 

2006) 

Oxidized LDL concentration, smooth 

muscle cell count and foam cell count 

reduce when high risk profile 

switched to low risk profile. 

S3.13, 

S3.14, 

S3.15 

32 Atherogenic cell 

counts 

Plaque Blocking endogenous IL-12 

has been shown to reduce 

atherogenesis (Hauer, 2005) 

Reducing the rate parameter for IL-12 

production by 75%, reduces foam cell 

count. 

S4.1 

33 Atherogenic cell 

counts 

Plaque Deficiency of ABCA1 func-

tion impairs reverse cholester-

ol transport, increases athero-

ma size (Westerterp, 2013) 

Reducing the initial ABCA1 concen-

tration by 90%, increases foam cell 

concentration. 

S4.2 

34 Macrophage and 

monocyte cell count 

Plaque Deficiency of MCSF reduces 

monocyte/macrophage circu-

lation, plaque formation (Qi-

ao, 1997) 

Reducing the initial MCSF concentra-

tions from 100 mg/g of tissue to 0 

reduces macrophage count. 

S4.3 

35 T cell count Plaque IFNGR knockout reduces T-

cells abundance (Gupta, 1997) 

Decreasing the rate parameter for 

IFNG production by 50% reduces T-

cell abundance. 

S4.4 

36 Atherogenic cell 

count 

Plaque IL-18 increases are atherogen-

ic (Whitman, 2002) 

Increasing the rate parameter for IL-

18 production by 50%, increases 

smooth muscle cell recruitment. 

S4.5 

37 Oxidized LDL 

concentration 

Plaque Reducing proteoglycan con-

centration reduces intimal 

oxLDL concentrations (Del-

gado-Roche, 2015) 

Decreasing the initial concentration 

of proteoglycan concentration from 

500 to 100 mg/g of tissue reduces 

oxidized LDL concentration. 

S4.6 

38 Collagen concentra-

tion 

Plaque Increasing matrix metallopro-

teinase activity leads to de-

graded extracellular matrix 

(Adiguzel, 2009) 

Doubling the rate parameter for bind-

ing between extra cellular matrix and 

matrix metalloproteinases reduces 

collagen concentrations. 

S4.7 

39 Atherogenic cell 

count 

Plaque PLA2 concentration correlates 

with atherogenesis (Vickers, 

2009) 

Reducing initial PLA2 concentration 

by 90% reduces foam cell count. 

S4.8 

40 Smooth muscle cell 

count 

Plaque Increasing PDGF activity 

increases smooth muscle cell 

abundance (Ferns, 1991) 

Increasing the rate parameter for 

PGDF production by 200% increases 

smooth muscle cell recruitment.  

S4.9 

 

Table 2: Qualitative constraints applied to the model.  
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