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Abstract 

Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech 

production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this 

paper we present a multiband approach for the detection of voice disorders given that the voice source generally 

interacts with the vocal tract in a non-linear way. In normal phonation, and assuming sustained phonation of a vowel, 

the lower frequencies of speech are heavily source dependent due to the low frequency glottal formant, while the 

higher frequencies are less dependent on the source signal. During abnormal phonation, this is still a valid, but 

turbulent noise of source, because of the irregular vibration, affects also higher frequencies. Motivated by such a 

model, we suggest a multiband approach based on a three-level discrete wavelet transformation (DWT) and in each 

band the fractal dimension (FD) of the estimated power spectrum is estimated. The experiments suggest that frequency 

band 1 - 1562 Hz, lower frequencies after level 3, exhibits a significant difference in the spectrum of a normal and 

pathological subject. With this band, a detection rate of 91.28% is obtained with one feature, and the obtained result 

is higher than all other frequency bands. Moreover, an accuracy of 92.45% and an area under receiver operating 

characteristic curve (AUC) of 95.06% is acquired when the FD of all levels is fused. Likewise, when the FD of all 

levels is combined with 22 Multi-Dimensional Voice Program (MDVP) parameters, an improvement of 2.26% in 

accuracy and 1.45% in AUC is observed.  

Keywords: Voice pathology detection, wavelet transformation, fractal dimension, Katz algorithm, Higuchi 

algorithm, MDVP parameters 

 

1 Introduction 

The attributes of the elements of a speech production system of a person suffering from vocal folds disorder differ 

from those of a normal person.  Phonation, resonance, and articulation are three important phases to produce speech. 

In a speech production system, expired air and pressure induce vocal folds vibration. Vocal folds directly affect 

phonation and resonance in the speech production system, and abnormal behavior of these folds makes the voice 

strained and harsh due to tight closure of the vocal fold, whereas excessive distance between the vocal folds make the 

voice weaker, whispering, and breathier. The lack of control regarding the length and tension of vocal folds distorts 

the voice due to uncontrolled pitch breaks and makes it flat and expressionless. Moreover, suppleness of the vocal 

folds’ mucosa provides free vibration. The resonance is a modification of phonation and produces voice. The 

unmodified and phonated sound of the vocal folds is a strident and unpleasant noise [1]. Some of the more common 
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and most spreading voice disorders are vocal fold nodules, keratosis, vocal fold paralysis, and adductor spasmodic 

dysphonia [2], [3].  

The use of subjective measures [4] for pathology detection depends on individual experience and area of expertise. 

On the other hand, an objective assessment that includes acoustical analysis is independent of human biasness and can 

assess the voice quality more reliably by relating certain parameters to vocal fold behavior. Various types of the 

automatic voice pathology detection (AVPD) systems are developed using different kinds of acoustic features [5], [6], 

[7], [8]. The researchers are trying to develop efficient detection systems with good accuracies by using fewer features 

and processing steps. The advantage of such a system is that they can be used in web-based applications to prevent 

patients from having to visit a hospital. It is also observed that few studies have introduced features from other 

scientific areas to detect voice pathology, such as MPEG-7 and local binary pattern (LBP) based features have been 

used in [9] and [10], respectively, for AVPD.   

Like other features, fractal dimension (FD) have also been used to analyze biomedical signals. Fractal geometry was 

invented by Mandelbrot in 1977 and used for many applications in diverse fields of science and engineering [11]. 

Various algorithms, such as Katz [12], Higuchi [13], Petrosian [14], Maragos [15], and the amplitude scale method 

[16], were proposed to estimate the FD of time series/waveforms. Biomedical signals such as electrocardiogram 

(ECG), electroencephalogram (EEG), and speech can also be characterized as a time series, and hence, different FD 

algorithms were applied for the classification of biomedical signals [17], [18]. A comparison of some FD estimation 

algorithm is presented in [19]. Katz and Higuchi methods are compared in [20] to show the dependency of the 

algorithm on amplitude, frequency, and sampling frequency of the waveform.   

FDs measure the complexity of a waveform [21], [22] and, based on this measure, a waveform can be characterized 

into different classes. Voice disorders affect the voice box and produce irregular vibrations in the vocal folds. Due to 

vocal fold irregularity, the speech signal becomes more transient in comparison with that of normal subjects, as shown 

in Figure 1. The Katz and Higuchi algorithms provide high FD fractal dimension for the signals that exhibit 

irregularities. 

  
(a) (b) 

Figure 1. First 500 samples of (a) normal and (b) pathological subjects; the disordered subject is more transient in 

comparison with the normal subject 
 

To the best of our knowledge, FD was used first by Accord in 1992 [23] for voice pathology detection when the author 

used short-term fractal dimension with two other parameters, zero crossing and the ratio between low- and high-

frequency energy.  Four normal and four dysarthria subjects were considered for the detection, and the results showed 

that when accompanied by other acoustic parameters, FD can differentiate voice pathology successfully. The FD was 

calculated from the method proposed by Maragos [15]. In 1997, Accord also estimated the FD of EEG signals using 

the Higuchi algorithm to classify different physio-pathological conditions [22].   
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Voice pathology detection was performed using FD and Mel-frequency cepstral coefficients (MFCC) in [21]. The FD 

was calculated directly from waveform in a time domain with three different methods: Katz algorithm [3], Higuchi 

algorithm, and Hurst exponent. A subset of the Massachusetts Eye & Ear Infirmary (MEEI) database [24] containing 

173 pathological and 53 normal subjects was used for the experimental result. All samples are down sampled to 25 

KHz, and different frame lengths with 50% overlapping were considered to extract the features. The maximum 

obtained accuracy rate obtained with FD was 87.72% using the Hurst exponent. The accuracy of 95.65% was obtained 

with MFCC. When the score level fusion of FD and MFCC was used, the obtained accuracy was 97.54%, which is 

only 1.89% better than the MFCC alone.  

In a study [25], two new tools, recurrence and fractal scaling, were proposed and an accuracy of 91.8% was attained 

with 2.0% standard deviations, while obtained sensitivity and specificity were 95.4% and 91.5%, respectively. The 

comparison of the proposed features was done with combinations of different Multi-Dimensional Voice Program 

(MDVP) [24] parameters. The maximum accuracy provided by the MDVP was 81.4% with a combination of jitter 

and shimmer. Twenty-two MDVP parameters were used in [26] by Arjmandi and an accuracy of 89.29% was obtained, 

when 22 original features were used with a support vector machine (SVM) [27]. In [28], a short-term fractal dimension 

was computed to classify the normal and pathological subject. The highest obtained accuracy was 88.90%, and only 

two types of disorder, polyp and nodules, were considered in this study.  

Different methods based on FD are proposed in this study to differentiate between disordered and normal subjects.  

By using the calculated FDs, which represent the complexity of the waveform, the signals are classified into two 

classes, normal and disordered. FDs are computed in both time and frequency domain. In time domain, the FD is 

estimated over a whole signal to produce a single value. In case of frequency domain, the signal is decomposed into 

multi-resolution frequency bands by applying a three-level discrete wavelet transformation (DWT), and the FD is 

calculated for each level. We implemented the Katz and Higuchi methods to estimate FD. MDVP parameters are also 

complemented with FD to enhance the system accuracy. SVM is implemented to differentiate between two types of 

subjects.  

The rest of the paper is organized as follows; Section 2 presents the proposed methods and their major components. 

Section 3 gives brief information of the speech database.  Section 4 provides the experimental results and a discussion, 

and Section 5 draws some conclusions. 

 

2 Methodology 

In this paper, different methods for pathology detection are proposed, and block diagrams of these methods are 

depicted in Figure 2. The first two methods use Katz and Higuchi algorithms, respectively, to compute FD in the time 

domain, as shown in Figure 2(a). The third and fourth methods decompose a speech signal into different frequency 

bands, and FD is calculated for each frequency band by using Katz and Higuchi algorithms, as depicted in Figure 2(b). 

In all methods, SVM is used to differentiate between normal and pathological subjects.  

In terms of results, the approach depicted in Figure 3 is the best. The approach is a modification of the third method, 

where the FD, calculated by the Katz algorithm, of each frequency band is fused before being given to SVM. This 

approach provided better results than all other methods. 

In the time domain, fractal algorithms are applied to the whole signal, and in the frequency domain the algorithms are 

applied to each level after decomposing the signal. No pre-processing, such as framing and windowing, is performed 

on the speech signal. The components of the proposed system are described in the following subsections. The major 

components are two FD algorithms, to capture the complexity of a signal, and DWT, to decompose a speech signal 

into frequency bands. 
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Figure 2. A block diagram of proposed methods 
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Figure 3. The best approach (a modification of the third method) in term of results 

 

2.1 Katz Algorithm 

The FD with Katz algorithm can be calculated as a ratio between the length of the curve, represented by L, and the 

maximum distance from the first point of the curve to any point on it, represented by d and also called planar extent. 

The length of the curve is a summation of Euclidean distances of all consecutive points of the curve. The roughness 

of the curve results in a larger length, which reveals the transient behavior of the curve. The FD for a curve C of n 

points with the Katz method is given by Eq. (1). 
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2.2 Higuchi Algorithm 

The Higuchi method creates new curves from the original waveform by selecting different samples as the starting 

point, and delay factor k. For a given waveform X of n points:  X = x(1), x(2), x(3), … , x(n) 

m

kX represents new curves, with k indicating the delay factor and m indicating the starting point for each new curve 

given by Eq. (2), 
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To calculate the FD, a least square linear best fit graph is plotted between ( )ln kL  and ( )1ln
k

. The slope of the 

graph refers to the FD. For a larger delay factor, which involves bypassing many samples, the curves will become 

smoother and their lengths will be expected to decrease. The slope of the graph will also decrease and results in a 

larger FD. The waveform of a pathological sample is more irregular and transient than the waveform of a normal 

sample. Therefore, the FD of the pathological samples will be larger than that of normal samples.  

 

2.3 Discrete Wavelet Transformation 

Wavelet transformation has an advantage of localization over Fourier transformation. Fourier transformation is 

localized over frequency but not in time. Therefore, Fourier transformation produce change everywhere in the time 

domain when small change occurs in frequency. Wavelets produce change in both time and frequency via translations 

and dilations, respectively. The wavelet is a small wave, and many waves can be produced from it by dilation and 

translation [29]. The wavelet function is defined as  

( )2k

klW w t l= −       (5) 

The wavelet function Wkl is obtained from the main wavelet function by shifting l samples and compressing by a factor 

of 2k. A time signal can be represented in terms of wavelet functions as given by Eq. (6) 
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The wavelet coefficients klc  at level k are given by 

0

( )    

T

kl klc h t W dt=        (7) 

where T represents the frame duration. Eq. (7) is valid for orthogonal wavelets. Every summation in Eq. (6) 

represents the whole signal in different frequency bands.   
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3 Material 

Sustained vowels /a/ in the MEEI database [24] have different average lengths for normal and disordered subjects: 

three seconds for the former and one second for the latter. Before applying fractal algorithms, the length of normal 

samples was reduced to one second to make the duration equal to disordered samples. As the MEEI database is 

recorded at two sampling frequencies, 25 KHz and 50 KHz, all samples of both types of subject are down sampled to 

one frequency, i.e., 25 KHz. A subset of the MEEI database as mentioned in [30] and [31] is used for the evaluation 

of the proposed system for the automatic disorder detection.  The subset contains 173 pathological and 53 normal 

samples. The distribution of the normal and pathological samples having different types of disorders is depicted in 

Table 1. 

Table 1: Distribution of normal and pathological samples 

Subjects Disorder Types No. of Samples Total 

Pathological 

Adductor 22 

173 

Vocal Nodules 20 

Keratosis 26 

Vocal Fold Polyp 20 

Paralysis 85 

Normal --- 53 53 

 

Normal subjects include 21 males and 32 females, while the number of men and women for pathological subjects are 

70 and 103, respectively. For normal subjects, the age range of male speakers is 26-59 years, and for female speakers 

the range is 22-52 years. The average age for men and women in case of normal subject is 38.81 and 34.1 years, 

respectively.  For pathological subjects, the age of male patients is within the range of 26-58 years, and the range for 

female patients is 21-51 years. The average age for men is 41.71 years and for women is 37.58 years. A summary of 

statistics of the MEEI database used in this study is provided in Table 2. 

Table 2: Statistics of the MEEI database subset with respect to gender and age 

Subject 
Number Mean age Age range Standard Deviation for age 

Male Female Male Female Male Female Male Female 

Normal  21 32 38.8 34.2 26-59 22-52 8.5 7.9 

Pathological 70 103 41.7 37.6 26-58 21-51 9.4 8.2 

*Age cited in years 

4 Experiments and Discussion  

In this paper, MDVP parameters are appended with fractal dimensions in few experiments. Five samples in the MEEI 

database out of 173 pathological samples do not have MDVP parameters; hence, the database used in the study 

includes a total of 221 samples containing 168 disorders and 53 normal cases.  The five samples that do not have 

MDVP parameters are listed in Appendix A.  The dataset was divided into five distinct test sets. Each time one of the 

sets was used to evaluate the system, the remaining four sets were used for training. The five-fold approach was 

repeated four times, which provides 20 trials for the system evaluation and helps to draw a smooth receiver operating 

characteristic (ROC) curve to exhibit the classifier performance graphically. Classification of pathological and normal 

samples was carried out by using LIBSVM [32] with a radial basis function as kernel, given by Eq. (8). 

( ) ( )2
, expK x x x x = − −                            (8) 
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where x  is the training sample, x is the testing sample, and  is a free parameter. SVM is a linear classifier, 

however, in most of the cases, data is not linearly separable. Therefore, kernel function is implemented to map the 

original input space to higher dimensional space, where features are lineally separable. 

The results of the developed system are expressed in terms of following performance parameters: sensitivity (SEN), 

specificity (SPE), accuracy (ACC), and the area under the ROC curve (AUC). These parameters are defined as follows: 

SEN is the ratio between truly identified pathological samples and the total number of pathological samples, SPE is 

the ratio of truly classified normal samples and the total number of normal samples, and ACC is the ratio between 

correctly detected samples and the total number of samples,. The performance parameters SEN, SPE, and ACC are 

calculated by using following relationships: 

           100
TP

SEN
TP FN

= 
+

             (9) 

         100
TN

SPE
TN FP

= 
+

        (10) 

    100
TP TN

ACC
TP TN FP FN

+
= 

+ + +
         (11) 

where TN stands for true negative and means that the system detects a normal subject as a normal subject, TP stands 

for true positive and means that the system detects a pathological subject as a pathological subject, FN stands for false 

negative and means that the system detects the pathological subject as a normal subject, and FP stands for false 

positive and means that the system detects the normal subject as a pathological subject. 

4.1 Fractal Dimension in Time Domain  

To calculate the FD in time domain, neither windowing nor any pre-processing was applied to the signal. The FD was 

determined by considering the whole signal, and a single value was obtained for the entire signal.  The SVM performed 

the classification among the two classes. The results of the experiments in time domain by using the Katz and Higuchi 

algorithms are provided in Table 3, and they are explained in terms of performance parameters SEN, SPE, ACC and 

AUC. Positive class represents the pathological samples and negative class is for the normal samples. Standard 

deviation, represented by STD, is calculated over 20 trials.  

Table 3: Detection rate for fractal dimension in time domain 

Method No. of 

Features 
SEN ± STD SPE ± STD ACC ± STD AUC 

Katz 1 71.52 ± 3.1 34.88 ± 7.2 62.77 ± 1.6 55.45 

Higuchi 1 96.24 ± 0.6 26.54 ± 2.3 79.53 ± 0.4 62.96 
  SEN, SPE, ACC, and AUC are provided in percentage. 

4.2 Fractal Dimension in Frequency Domain 

Speech signal is transformed into frequency domain by applying DWT.  The signal is decomposed into three levels, 

where level 1 (L1) signifies a frequency band of 6251 – 12500 Hz, level 2 (L2) indicates a band of 3126 – 6250 Hz, 

and level 3 (L3) represents the frequencies of 1563 – 3125 Hz. During decomposition of the signal, lower frequencies 

are decomposed at each level into lower and higher frequencies. Residue indicates the lower frequencies achieved 

after decomposition of level 3.  

For each level, after applying an algorithm for FD, a single feature is obtained. The calculated features (FDs) are then 

provided to the SVM for classification. Different experiments are performed for the pathology detection with L1, L2, 

L3, and Residue. Some experiments by concatenating the FDs of L1, L2, L3 and Residue are also performed and these 
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experiments are represented by L1-L3+R in Table 4 and 5. Moreover, the experiments known as Synthesis are also 

performed by doing the synthesis of all levels. Results of all experiments with Katz and Higuchi algorithms are listed 

in Tables 4 and 5, respectively. 

Figure 4 shows the spectrum of L1, L2, L3, and Residue. The spectrum of the Residue for the pathological subject 

(ALB18AN) can be observed in Figure 4(b), which shows an irregular pattern in comparison with the spectrum of the 

normal subject (AXH1NAL) exhibited in Figure 4(a).  This is the reason that maximum accuracy to discriminate 

between the normal and disordered subject is obtained with Residue, which is 91.28% with the Katz algorithm. The 

accuracy with Residue is better than that of L1, L2, and L3 by 15%, 4%, and 4%, respectively. The irregular pattern 

in the spectrum of pathological subject might be due to being a more transient signal than a normal subject, which is 

captured by the FD and leads to a differentiation among the two classes significantly. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Discrete Wavelet Transformation of (a) Normal subject, (b) Disordered subject, (c) Normal subject 

(first 500 samples), and (d) Disordered subject (first 500 samples) 

 

The maximum obtained recognition rate for the individual frequency band is 91.28%, which implies that the 

contribution of the frequency band 1 – 1562 Hz is more than the bands represented by L1, L2, and L3. The overall 

maximum accuracy is found with L1-L3+R and it is 92.45% by using four features. AUC with these four features is 

95.06%. 
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Table 4: Detection rate for fractal dimension in frequency domain with Katz Algorithm 

Level Frequency band 
No. of 

Features 
SEN ± STD SPE ± STD ACC ± STD AUC 

1 6251 – 12500 Hz 1 98.96 ± 1.4 4.67 ± 5.9 76.36 ± 0.6 52.14 

2 3126 – 6250 Hz 1 93.01 ± 0.9 68.41 ± 3.1 87.10 ± 0.6 85.89 

3 1563 – 3125 Hz 1 95.45 ± 1.3 61.15 ± 3.9 87.22 ± 0.4 84.59 

Residue 1 – 1562 Hz 1 93.98 ± 0.9 82.74 ± 2.9 91.28 ± 0.4 89.79 

L1-L3+R --- 4 93.99 ± 0.9 87.61 ± 2.7 92.45 ± 0.6 95.06 

Synthesis --- 1 93.71 ± 1.0 82.73 ± 2.3 91.06 ± 0.6 88.85 
  SEN, SPE, ACC, and AUC are provided in percentage. 

Table 5: Detection rate for fractal dimension in frequency domain with Higuchi Algorithm 

Level Frequency band 
No. of 

Features 
SEN ± STD SPE ± STD ACC ± STD AUC 

1 6251 – 12500 Hz 1 98.42 ± 0.8 3.62 ± 2.2 75.69 ± 0.4 51.98 

2 3126 – 6250 Hz 1 98.34 ± 1.2 7.2 ± 4.2 76.50 ± 0.6 54.31 

3 1563 – 3125 Hz 1 94.75 ± 1.4 14.0 ± 4 75.40 ± 0.3 59.37 

Residue 1 – 1562 Hz 1 100 ± 0 0 ± 0 76.02 ± 0 50.40 

L1-L3+R --- 4 95.58 ± 1.6 13.82 ± 5.4 76.0 ± 0.7 62.57 

Synthesis --- 1 93.73 ± 1.0 59.94 ± 3.9 84.85 ± 0.6 87.13 
  SEN, SPE, ACC, and AUC are provided in percentage. 

The ROC curves for both algorithms are plotted and depicted in Figure 5. False positive rate (1 – SEN) is along the 

X-axis and true positive rate (SPE) is along the Y-axis. In Figures 5(a) and 5(b), the ROC curves for the FD in time 

and frequency domain are plotted. For frequency domain, the ROC curve for each level is plotted separately. Figure 

5 shows that, for both algorithms, the performance of the classifier is best when the FD of all four levels was 

concatenated.  

  
(a) (b) 

Figure 5. The ROC curves for (a) Katz and (b) Higuchi algorithms 
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4.3 MDVP Parameters and Fractal Dimension in Frequency Domain 

An accuracy of 89.29% was achieved with 22 original MDVP parameters, as reported in [26]. In this paper, we attained 

an accuracy of 88.4%, as depicted in Table 6, with 22 MDVP parameters. An improvement in accuracy is observed 

when 22 MDVP parameters are concatenated with FDs of four levels, referred as L1-L3+R in Table 4, estimated by 

the Katz’ method. The detection rate of 94.71% with standard deviation of 0.5% is obtained and is comparable with 

that of [26]. Three ROC curves are plotted in Figure 6, showing the performance of MDVP parameters only, MDVP 

with Katz, and MDVP with Higuchi algorithm. 

Table 6: Detection rate for 22 MDVP parameters and fractal dimension in frequency domain  

Features 
No. of 

Features 
SEN ± STD SPE ± STD ACC ± STD AUC 

MDVP only 22 97.43 ± 1.3 62.00 ± 5.3 88.94 ± 1.1 89.96 

Katz + MDVP 4 + 22 97.48 ± 0.8 85.94 ± 3.2 94.71 ± 0.5 96.56 

Higuchi + MDVP 4 + 22 96.60 ± 0.9 68.0 ± 5.0 89.75 ± 0.9 91.91 
  SEN, SPE, ACC, and AUC are provided in percentage. 

 

 

Figure 6. ROC curves for combinations of MDVP parameters with Katz and Higuchi algorithms 

 

When the FDs of different levels are concatenated with MDVP features, multi-dimensional features arise that are 

difficult for human interpretation. Studies based on these types of multi-dimensional features need a machine-learning 

stage to make a decision for a test utterance. In the proposed system, the output of the SVM classifier, which is a 

decision value for a test utterance, might be considered as a discriminant measurement to differentiate between the 

samples of two classes. The significance of the results depends on the discriminative power of the computed decision 

values. The Mann-Whitney U-test is performed to check the discriminant power of the decision values at the 5% 

significance level.  

A two-sided p-value using the Mann-Whitney U-test is determined in the case of best accuracy (94.71%). The obtained 

p-value is 0.0001E-15, which is less than 0.05 and therefore rejects the null hypothesis that the decision values of 

normal and pathological classes are the result of continuous distributions with equal medians. A smaller p-value for 
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decision values shows that the proposed system can discriminate between normal and pathological samples 

successfully.  

 

5 Conclusion 

The contribution of different frequency bands for pathology detection through multiresolution analysis has been 

examined in this study. The speech signal is decomposed into three levels by DWT. The FDs are calculated with the 

Katz and Higuchi algorithms for each level, and are provided to the SVM for classification. The multiresolution 

analysis of the speech signal signifies an irregular pattern in pathological samples, specifically in a spectrum of the 

frequency band of 1 - 1562 Hz. This band also provides the highest detection accuracy (91.28% ± 0.4) than any other 

frequency bands. The irregular pattern is due to the more transient nature of the abnormal waveform than the normal 

waveform, occurring as a result of abnormal vibration of vocal folds. The experimental results show that the FD 

successfully captures the transient behavior of the disordered speech and leads to a characterization of the signal into 

normal and pathological classes.  To enhance the accuracy of the system, the FD of all levels is concatenated with 

MDVP parameters that provided an accuracy of 94.71%. The obtained accuracy is higher than the accuracy reported 

in [30] and [31], which is 94.07% and 94.1%, respectively. The FD did not perform well in a time domain as the best 

accuracy achieved is 79.53%. 
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Appendix A 

The list of files that do not contain MDVP parameters in the MEEI database: 

JFG08AN.RES 

KXH30AN.RES 

LES15AN.RES 

TAB21AN.RES 

WPB30AN.RES 
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